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ABSTRACT 

The intrinsic competitive nature of the fast-moving consumer goods (FMCG) industry have made it a 
priority for companies to maximize profitability by aggressive cost-cutting measures in the context of 
growing material cost, surging labor expenses and increasing demand for product customization. While 
exploring optimization opportunities in outbound logistics management, which mainly focuses on 
delivering goods and services out of a business entity, many market players shifted gears to delve into 
inbound logistics operations, which center on the management of materials and finished goods into a 
facility. This project unlocks cost saving opportunities in the inbound logistics system of a consumer 
goods company by answering two questions: What is the optimal minimum production quantity for 
finished goods? What is the appropriate minimum order quantity for packaging materials to minimize 
delivery and storage cost? Multiple machine learning techniques are utilized throughout the research: 
clustering techniques are used to identify MPQ, and a cost minimization model in Microsoft Excel and 
Python is developed to compare current cost with simulated cost. It is estimated that 16% cost savings 
can be obtained by optimizing MPQ and MOQ. Additionally, the models are highly replicable to other 
manufacturing sites of the CPG company to generate greater operational efficiency. 
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1 INTRODUCTION 
 

This section provides a high-level introduction of inbound logistics management and the common 

industry practices of utilizing logistics service providers (LSP). We put into context the specific issues 

encountered by the sponsoring company and the motivation to conduct the research. The section 

concludes with a summary of the two models we developed in order to address the specific challenges 

in our project. 

1.1 Overview of Inbound Logistics Management 
 

The fast-moving consumer goods (FMCG) industry is best known for its high volume, low profitability, 

convoluted supply chain networks and high stock turnover (Kumar, 2011). Additionally, since many 

consumer products are commodities, companies utilize value-based pricing as opposed to cost-based 

pricing to provide buyers with significant tangible value beyond offering cost (Zhang et al, 2018), 

meaning they set the price at a level the market is willing to pay. These dynamics necessitate a 

comparatively stringent cost management to maintain competitive profitability in the context of greater 

need for customization. As logistics has become an integral part in connecting production with 

consumers, more and more companies are looking for ways to better streamline both interior and 

exterior flows of goods, information, and capital.  

Prior to delving into details of cost saving initiatives in inbound logistics management, it is necessary to 

distinguish inbound logistics from outbound logistics. As the name indicates, inbound logistics consists 

of the whole process from the sourcing of raw materials to entry into production facilities. While 

outbound logistics encompasses the delivery of goods to end customers. Figure 1 shows the distinction 

between the scope of these two supply chain management systems. 
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Figure 1:  Generalized Inbound and Outbound Logistics Network.  
Source: Felicio & Sharma, 2018  

 

As inbound logistics involves the planning of materials and resources to meet production demand with a 

required level of flexibility to hedge against demand volatility, key activities within the inbound logistics 

management system go beyond the mere scope of material delivery and transportation.  Safety stock 

planning, component ordering cadence and packaging material delivery are among the key performance 

indices for industry professionals. Due to the complexity of an array of stakeholders in inbound logistics 

management, a common practice deployed by most FMCG companies is the use of logistics service 

providers (LSP or 3PL). According to the research conducted by Murphy and Poist, the most common 

types of services used by companies are detailed in Table 1.  

Table 1:  The Ten 3PL Services Most Commonly Used.  
Source: Murphy & Poist, 2000.  
 

Most commonly used services Percentage of 3PL customers using 

Warehousing 65.7 

Freight bill payment 56.7 
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Freight charge auditing 50.7 

Customs clearance 47.8 

Pickup and delivery 46.3 

Freight consolidation 37.3 

Consulting 35.8 

EDI Capability 32.8 

Internal services 31.3 

Order picking and packaging 25.4 

 

However, utilizing outsourced LSP service is not without risks. On one hand, companies are able to 

allocate resources from cumbersome operational routines to core businesses by outsourcing. On the 

other hand, the lack of company-specific knowledge on the part of LSPs may lead to a loss of operational 

efficiency, leaving a multitude of opportunities for further operational integration and improvement. 

Therefore, it is paramount that companies identify outsourced operational activities that are crucial to 

overall supply chain performance prior to passing down to third parties. 

1.2 The Company and Motivation 
 

The sponsoring company for this research is a FMCG organization with a production location in Europe. 

The inbound logistics problems we aim to address in our research are driven by both industry and 

company-specific factors.   

First, the highly competitive nature of fast-moving consumer goods industry calls for a high service level 

and order fill rate for each market player, hence the usual practice of over-driving raw materials. Since 

home products are mostly homogeneous with readily available substitution in the competitive 
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consumer markets, missing orders not only leads to lost sales but also jeopardizes the long-term 

relationship with consumers. As a consequence, the plant has historically not emphasized efficiency in 

material ordering, warehousing, or returns policies, but instead focused on ordering enough to ensure 

production is completed and dealt with the resulting warehousing and returns afterwards. The plant has 

a relatively small warehouse for thousands of packaging materials, and therefore relies on third-party 

vendors for the majority of its warehousing needs. This practice not only adds a substantial fixed cost, 

but also a large variable cost, which mainly consists of truck maintenance and dispatching cost, 

palletized transportation cost and remnants storage cost. 

Second, the frequent return flows of production materials due to limited material storage space give rise 

to cumulated production remnants. Products not only flow from the warehouses to the plant, but in the 

case of returns, can also flow from the plant back to the warehouse, meaning that in certain instances 

the plant is paying for the same product to be moved three times: the first transportation flow from 

warehouse to plant for production, the return flow from plant back to the warehouse for remnants and 

the third flow from warehouse to plant for the second production run. The frequent return flows of 

materials are dually driven by limited storage space in the production area and an economic production 

quantity (MPQ) strategy that is solely calculated based on minimum production hours per batch. As a 

result of this MPQ strategy for finished goods, the actual delivery quantity of packaging materials is in 

most cases more than the required demand as delivery of packaging materials requires full containers. A 

typical material flow is illustrated in Figure 2 demonstrating a three-haul travel for material remnants. 

Additionally, with customers distributed over a wide range of countries, most of the labels and other 

packing materials are country-specific, making it difficult for the logistics team to optimize their 

production schedule by batch production. For instance, one changeover will occur per production line 

every time new labels are needed. Since the inbound logistics team is the recipient of daily production 
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plan created by the planning team, they cannot project the next time raw materials will be needed, and 

therefore utilize the 3PL warehouses rather than storing remnants onsite. 

 

Figure 2: Typical material flow with remnants between production site and warehouse.  
Notice how packaging materials may have three transportation hauls, each representing costs to the 
organization. 
 

With rising costs in transportation, material handling, and storage, the inbound logistics team has looked 

at different ways to optimize their material management process with logistics service providers.  A 

recent analysis by the company estimated that the plant can cut costs by over €1 million by optimizing 

the lot size of its raw materials. Due to the complexity of the SKU portfolio and packaging materials, it is 

hypothesized that machine learning might be the right methodology to unlock these opportunities. 

Furthermore, we believe that upon successful implementation and validation of the model, it is highly 

replicable and scalable to other management systems of the plant as well as all other production 

facilities with similar operation structures of the company. It is also worth noting that cost savings and 

efficiency improvement will also contribute to the development of sustainable logistics thanks to 

reduced flow of materials. 
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1.3 Problem Statement 
 

In summary, the company's inbound logistics management system is confronted with two problems: 

 Minimum Production Quantity (MPQ) for finished goods: The team is currently following a 

traditional methodology in calculating MPQ on a nine-month review cycle for hundreds of active 

SKUs. Calculated MPQ is production driven so as to minimize changeover cost by observing a 

minimum running rate per product at each production run. The minimum production hours for 

each product is experimentally identified based on historical orders and independent of the 

correlated packaging material cost, thus making this methodology prone to unnecessary 

material remnants. As the focal point is to reduce unnecessary return flows of packaging 

materials, we have identified MPQ optimization for finished goods as the first step.  

 Minimum Order Quantity (MOQ) for packaging materials: With production quantity fixed for 

each SKU observing MPQ requirements, the Material Requirement System (MRP) is triggered 

simultaneously to generate material requests on a daily basis, which is then passed down to 

logistics service providers for planning material delivery. As packaging materials are palletized in 

delivery and follow a minimum order quantity, the required number of pallets are rounded up 

whenever there is a decimal in the calculated demand. Specifically, the overdrive in packaging 

material request is magnified in labels, as labels are packed in reels and two reels fit in one box 

as the basis unit of delivery. This rounding up approach to drive material is one of the 

fundamental causes of remnants. That is, the planning team is currently utilizing a round-up 

policy for all SKUs and only in rare cases does the minimum lot size exactly match the required 

demand, hence the frequent flows of remnants between production sites and material 

warehouses. With a stochastic production schedule and a customer base located in a wide range 

of countries, the plant is currently returning around 30% of the labels which they order for 
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production, while the industry average  is much lower at 8.1%  (Terry, 2014). Transportation 

cost, warehousing cost, together with the overhead cost incurred thereafter may well exceed 

the economic value of the packaging material itself. However, there is no legacy system in the 

plant to determine the optimal MOQ for each packaging material to reduce return flows. 

Through this project we seek to recommend models to determine the optimal MPQ for finished goods 

and MOQ for packaging materials to minimize total cost. As finished goods production quantity is a 

critical input to extrapolate packaging material demand, we will develop the models sequentially. 

Machine learning techniques were utilized in both models to accommodate the business requirement of 

on-demand simulations for optimal MPQ and MOQ. This approach distinguished itself from the 

commonly adopted fixed horizon review practice. The deployment of machine learning will infuse 

greater flexibility to fit customized optimization requests in view of increasing complexity of the product 

portfolio. By adjusting review periods and cost parameters on-demand, planners will be able to pivot 

focus SKUs when needed. 
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2 LITERATURE REVIEW  
 

This section provides an overview of the research that we utilized to guide our work.  The related 

literature can be segmented into five categories: inbound logistics optimization, machine learning 

techniques, MPQ optimization, lot size optimization, and reverse logistics management.   

2.1 Inbound Logistics Optimization Overview 
 

The crux of inbound logistics management is the system of flows rather than the generation of stocks 

(Takita & Leite, 2019). A myriad of factors interacts with each other contributing to a significant cost 

difference to the logistics department and third-party service providers. Factors include the sequence of 

material flows, the quantity and frequency at each delivery, minimum order quantity, storage locations, 

as well as the management of return materials and production residuals. The delivery of materials prior 

to entry into the manufacturing facility is a delicate science that calls for scrupulous planning on both 

temporal and spatial dimensions.  

Traditional inbound logistics optimization efforts are biased towards delivery performance and suppliers’ 

responsiveness to quality disruptions, while the quality and utilization of logistics resources have 

historically been deprioritized (Kahl, 2006). Quantitative parameters such as On Time Delivery (OTD), 

Order Fill Rate (OFR) and Inventory Turnover Rate have been continuously tracked via real-time data 

platforms. However, there have been fewer challenges on the rationale behind a set of parameters that 

are usually taken by default, such as the rounding methodology in calculating material demand based on 

container size, the optimal frequency to revise the minimum production quantity (MPQ), as well as the 

calibration between finished goods MPQ with corresponding material MOQ. Some studies combine 

MOQ with pack size (Arayapan & Warunyuwong, 2009) using Microsoft Excel’s Solver. Arayapan and 
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Warunyuwong correctly argue that optimizing container loading requires both pack size optimization 

and a proper MOQ. Meanwhile, Hakim et al (2018) focus on minimizing inbound logistics cost by 

optimizing the choice of container types and quantity with the use of Mixed Linear Integer Programming 

(MILP). The inbound logistics cost consists of origin costs, freight costs and destination costs (Hakim et 

al, 2018). Other studies look into the advantages and disadvantages of various storage locations for 

materials, and how third-party service providers can alleviate the strain of a lack of storage space for 

manufacturers (Brahimi & Khan, 2014). Maulida Hakim et al, 2018 successfully implement Mixed Integer 

Nonlinear Programming (MINLP) approach to determine the type, number and optimal material load for 

each container. In their research, the total inbound logistics cost is a function of material cost, 

transportation cost and administration cost.  

2.2 Machine Learning Techniques in Inbound Logistics Management 
 

As companies are serving a more global customer base and with consumer demands changing at a 

growing speed, manufacturers are increasingly looking for new and creative solutions to satisfy demand 

rather than relying on knowledge from prior years (Knoll et al, 2016). One of the recent trends in supply 

chain is turning to machine learning systems that can manipulate vast amounts of data and quickly 

present optimized outputs. Our sponsor company is looking to be at the forefront of this trend and is 

eager to develop tools that not only unlock cost saving opportunities but are also adaptable to future 

changes in product portfolio and demand.  Knoll et al explain how machine learning planning systems 

have several advantages over manual systems, namely that once a machine learning model is trained 

using a large input data set and supervised learning, it can perform “learned tasks” on new data. This 

process allows the model to continuously improve over time while also freeing up managers’ time to 

focus on more value-add areas.   
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The approach of using machine learning techniques in supply chain has proven to be successful in the 

healthcare industry, where researchers were able to utilize a machine learning algorithm on healthcare 

data and achieve a disease detection accuracy rate of 94.8% (Chen et al, 2017).  The research used large 

amounts of input data in order to train the model and then applied real hospital data from China to 

create predictions of disease.  Not only was the model extremely accurate, it also was able to provide 

the outputs at much faster speed than prior methods.  While our research is in a different industry, we 

aim to create tools for our sponsor company that are similarly effective and can utilize new data to 

quickly predict future trends.  If our tools are adopted, the sponsor company can upload recent 

production order data to our model and quickly gain insights into ways to manipulate the MOQ and 

MPQ in order to reduce costs. 

2.3 MPQ Optimization for Finished Goods 
 

Previous studies look at the impact of minimum production quantity (MPQ) and the tradeoffs involved 

in setting the optimal level (Yenipazarli et al, 2016).  Most studies we reviewed present the history of 

minimum production quantity, its benefits to manufacturers, and its strain on buyers driven by 

improved economies of scale in production and transportation (Bin, 2010). However, Bin also explains: 

“Many buyers, on the other hand, are left perplexed as to how to effectively establish their inventory 

policies.” 

These studies are informative to our project. However, as mentioned earlier, only 30% of the plant’s 

current orders are at MPQ, meaning that 70% of orders are exceeding MPQ given most of its customers 

are large retailers. The limitation of these studies is that they are only relevant to 30% of the plant’s 

orders while our research aims to make an impact on a larger proportion of orders.  
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A typical cost optimization approach to determine MPQ takes into consideration set-up cost, interest 

and depreciation on stock for each stock keeping unit (SKU). The cost structure model has been widely 

adopted by various industries since then (Khan et al., 2017). Figure 3 shows an increase in the size of the 

order results in an upside of interest charge and a decrease of set-up cost. A cost optimization model 

tends to locate the optimal intersection where total cost is minimized. 

 

Figure 3: Relationship of Order size and Cost 
Source: HW. Harris, 1913 

 

2.4 MOQ Optimization for Packaging Material 
 

Most of the studies we reviewed discuss the financial benefits of increasing material lot sizes, including 

bulk purchase and transportation cost discounts (Taleizadeh, 2018).  Other studies looked at the pros 

and cons of increasing and decreasing lot size of raw materials, with the conclusion that larger lot sizes 

tend to be more advantageous (Kang et al, 2018).  These studies are informative, but do not address the 

issue of lot sizing in connection with packaging materials.  We plan to use the available literature but will 

not incorporate it into our models since it does not directly address the issue at hand.   
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2.5 Reverse Logistics and Production Remnants Management  
 

A multitude of studies have been conducted on reverse logistics (Bouzon et al, 2015) and reverse 

logistics optimization has gained extensive academic attention due to growing concerns on 

environmental protection, corporate social responsibility and corporate competitiveness (Agrawal et al, 

2015).  Sarkis et al (2010) discuss the economic, environmental, and social factors that reverse logistics 

has increasingly introduced into organization’s focus. While the focus of our work was mostly driven by 

economic factors and cost considerations, the sponsor company has voiced a desire to reduce its 

environmental impact by introducing a compelling win-win situation if returns can be minimized. 

2.6 Conclusions 
 

Previous studies assume fixed container lot size upon completion of a review cycle and succeeding 

shipment will be measured full load or less than full load based on the set value. In practice, however, as 

in the case of our sponsoring company, the number of labels to carry per roll can be adjusted within 

certain specifications as long as it does not require change of container design due to ergonomics 

concerns. Furthermore, the transportation and warehouse cost incurred to deal with production 

residuals and remnants are barely mentioned, leading to a potential oversight where first-haul logistics 

cost is minimized while total cost may increase. Finally, cost optimization for finished goods and 

packaging materials are disconnected and analyzed on separate platforms without visibility of combined 

benefits. These three areas – an optimal lot size for packaging materials, an economic production 

quantity for finished goods and the development of a link connecting materials with finished goods are 

minimally covered by previous researches and are the focus of our project. 
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3 DATA AND METHODOLOGY 
 

This section provides an overview of the data and the analytical methods used in our research. The two 

areas we are aiming to improve are MPQ optimization for finished goods, and MOQ optimization for 

packaging materials.  For finished goods we will explain which SKUs were selected, the machine learning 

techniques, and the results of optimization.  For packaging materials, we discussed the different models 

that we built, and the process flows that were followed to verify model feasibility.  Lastly, sensitivity 

analysis was conducted to ensure that users can make informed decisions when data input changes. 

3.1 MPQ Optimization for Finished Goods 
 

The current MPQ is manually identified based on a rule of thumb and is directly linked to the minimum 

number of hours to schedule a production. We plan to utilize machine learning to measure product 

similarity and adopt a higher MPQ for SKUs in the cluster to reduce number of production scheduling.   

3.1.1 Main Steps in MPQ Optimization 
 

As illustrated in Figure 4, four main steps were followed to identify the new MPQ for the selected SKUs. 

First, candidate SKUs for optimization were identified based on historical production orders. Specifically, 

the number of current MPQ gating events was calculated with a predefined threshold value to 

determine whether a product is a potential candidate. Second, (Partition Around Medoids) PAM and K-

means clustering were performed for these SKUs and new MPQ values were assigned to SKUs of the 

same cluster. Based on the clustering results, the expected reduction in the total number of productions 

was simulated with the updated MPQs. Finally, the estimated benefits were compared and evaluated 

based on different clustering methodologies. These four steps were executed consecutively and 
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interdependently, which means any change in the output of previous steps would constitute a possible 

change in the final MPQ.  

 

Figure 4: Four Step Process Flow in Finished Goods MPQ Optimization 
 

3.1.2 Identify SKU Candidates for MPQ Optimization 
 

With a wide range of products designed to cater different consumer segments, demand patterns and 

production volume vary greatly among products, thus high variations among SKUs were observed. 

Typical characteristics of SKUs which were often scheduled at MPQ quantity are summarized as below: 

1) Capacity: Sufficient production capacity 

2) Demand: High demand variability with potential risk of obsolescence, mostly seen in C type SKUs 

3) Production: Changeover cost relatively low with homogeneity shared with other scheduled SKUs 

As the primary target for MPQ optimization is to identify opportunities to increase from its current value 

to reduce the number of production scheduling without impacting demand fulfillment, we first need to 

determine the scope of SKUs that are consistently produced exactly at the current MPQ quantity. The 

attributes listed Table 2 were selected to identify SKUs that should be in scope for MPQ optimization. 

Table 2: Selected Attributes to Identify Optimization Candidates for Clustering 
 

Count Attribute Relevance to MPQ Optimization 

1 Number of Production Records Production frequency 

2 Number of Production Records Gated by Current MPQ Necessity for optimization 

3 Percentage of MPQ Gating Events Necessity for optimization 

 

SKU down-
selection

PAM/K-means
clustering

Simulate scheduling
reductions

Compare savings
and finalize MPQ
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3.1.3 Clustering 

3.1.3.1 Attributes in Clustering 
 

As aligned with the sponsoring company, the selected attributes listed in Table 3 to determine finished 

goods clusters mainly consist of two dimensions: package type and production history, which were 

taken as key indicators of product commonality.  

Table 3: List of Attributes for SKU Clustering 
 

Variable Category Variable Name Data Type Description 

MPQ Observance MPQ Numeric Current MPQ Quantity 

Production 

Quantity 

Sum of Production 

Record 

Numeric Number of times production is scheduled 

for this SKU 

MPQ Observance MPQ Gating Events Numeric Number of times actual production 

quantity equals current MPQ 

Production 

Quantity 

Average Production 

Quantity 

Numeric Average production quantity per 

production order 

Production 

Quantity 

Average Production 

Time 

Numeric Actual production time per production 

order 

Packaging Primary Package 

Type 

Categorical Box type for each product 

Packaging Case Converter Categorical Number of cases per box 

 

3.1.3.2 Clustering Methodologies and Comparison 
 

Given that SKUs in the same cluster were assigned the same MPQ value, it was more plausible to 

simulate with multiple clustering algorithms than to use a single clustering method in order to maximize 

possibilities for cost savings. The sponsoring company would also benefit from being provided multiple 

options as the planning team can apply different MPQ values under different circumstances based on 
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the actual capacity situation and order status. Therefore, PAM clustering and K-means clustering were 

used to measure product similarity. A comparison of the two clustering methods can be found in Table 4. 

Table 4:Comparison of PAM Clustering and K-means Clustering 
 

Clustering 

Methodology 

Number/Type of 

Attributes Used 

Methodology to 

Determine Optimal 

Number of Clusters 

Distance 

Measurement 

Center of 

Cluster 

Partition Around 

Medoids (PAM) 

7 (Numeric + 

Categorical) 

Average Silhouette 

width 

Gower 

distance 

Medoids 

(In the dataset) 

K-means without 

categorical 

attributes 

5 (Numeric, one 

categorical attribute 

converted to 

numeric attribute) 

Average Silhouette 

width 

Euclidean 

distance 

Centroids  

(may not be in 

the dataset) 

K-means with 

categorical 

attributes 

6 (Numeric) Average Silhouette 

width 

Euclidean 

distance 

Centroids 

(may not be in 

the dataset) 

 

As similarity and distance calculation play a key role in determining the number of clusters as well as the 

proximity between each pair of SKUs, a general overview of the three distances: The Silhouette width, 

Gower distance and Euclidean distance are introduced as below. 

- The Silhouette width: The Silhouette width calculates the average distance of elements in the same 

cluster compared to the average distance to elements of the other clusters. A higher value of silhouette 

coefficient indicates better clustering. The inflection point of Silhouette width indicates the optimal 

number of clusters. 

- Gower distance: The Gower distance measures the partial dissimilarity between elements. For numeric 

features it compares the distance between two elements to the maximum distance among pairs of all 
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elements in the dataset. For categorical attributes the distance will be a binary value depending on 

whether two elements belong to the same or different category (Filaire, 2018). A higher value of Gower 

distance between elements indicates less commonality and similarity. 

- Euclidean distance: Different from Gower distance, Euclidean distance is measured in K-means 

clustering to determine data points in the same cluster. The centroids will not change until the total 

distance of each data point to its respective centroids reaches the minimum. 

3.1.4 MPQ Optimization   
 

Upon completion of each clustering, MPQ for SKUs in the same cluster were assigned two values: the 

MPQ of the medoid of the cluster and the maximum MPQ of that cluster. An updated production 

schedule was generated to compare with original production records to calculate cost savings driven by 

less production set-up and changeover. As changeover loss is difficult to quantify, we shared with the 

sponsoring company the simulation results using both scenarios.  

The guiding rationale to utilize clustering for MPQ optimization is listed as below: 

1) Product sequencing in scheduling: Arrange SKUs of the same cluster in production scheduling so 

that the run rate and throughput for machines are more stable as compared to product 

scheduling with SKUs with higher variability. 

2) Contingency planning and SKU replacement: In case of material shortage, quality issues for 

certain SKUs, the production plan can be replaced by another SKU of the same cluster so that 

the impact on overall production scheduling will be minimized. 

3) Packaging material demand planning: Due to the high commonality of SKUs in the same cluster, 

shortage or excess of packaging material in one SKU may trigger preventative actions in other 
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SKUs of the same cluster. The production planning team is advised to utilize clustering results to 

improve material management efficiency by product groups. 

3.2 Packaging Material MOQ Optimization 
 

MOQ optimization has been performed on every packaging material, and the delivery and 

transportation of packaging material is triggered by every production order of finished goods. We first 

converted each production plan into packaging material demand and aggregated the demand per day 

for each packaging material. A cost minimization function consisting of transportation cost and storage 

cost was formulated to find the optimal MOQ for each material. As advised by the sponsoring company, 

we started initial model testing on one label using Microsoft Excel Solver to ensure the trial run result is 

bought off across the board. Since labels take up a sizeable portion of total material value, we tested the 

model on more labels prior to replication in Python, a widely used programming language that can 

efficiently process big data and perform mathematical optimization. Finally, a sensitivity analysis was 

conducted to quantify how the optimal MOQ value will change in response to changes in cost and 

demand parameters.  

As this would be the initial implementation of Python to find MOQ, the scope of optimization has been 

scaled to labels only for our project with the potential to be replicated to other material categories. 

3.2.1 Packaging Material MOQ Optimization Process Flow 
 

Five steps were followed sequentially for packaging material MOQ Optimization as detailed in Figure 5. 

Microsoft Excel Solver and Python were the two platforms that were utilized for optimization after data 

collection. A sensitivity analysis concluded this section to provide insights on the model stability. 
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Figure 5: Five-step Process Flow for Packaging Material MOQ Optimization 

3.2.2 Data Gathering  
 

Finished goods production plan and packaging material Bill of Material (BOM) are the primary data 

sources extracted from the sponsoring company’s Enterprise Resource Planning (ERP) system. As the 

total cost function needs to be formulated with constraints, secondary data are manually provided from 

the logistics team. The secondary dataset typically includes packaging material conversion rate such as 

box to pallet, storage cost, handling cost, warehouse capacity as well maximum packaging material 

MOQ. A brief workflow of the data gathering process is detailed in Figure 6. 

 

Figure 6: Workflow of Data Gathering for Packaging Material MOQ Optimization 

3.2.3 Data Types  
 

As optimization will run for each material with a cost minimization function, material demand per day is 

the required data before optimization. Given that one packaging material is used in multiple products, 

data conversion from finished goods demand to material demand was completed. Additionally, cost and 

capacity related parameters were provided manually by the sponsoring company. A summary of main 

data used for optimization has been detailed in Table 5. 

Data Gathering

Sample Model
Test in Microsoft
Excel Solver with

1 material

Sample Model
Validation in

Solver with more
Materials

Python
Replication for All

Labels

Sensitivity
Analysis

SAP:
•FG: Production

Order
•FG: BOM
•PM: BOM

Manual:
•Cost:Handling/W

arehousing
•Constraint:

Warehousing/M
ax MOQ

Consolidated Data
for Optimization
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Table 5:Data Types and Usage in Packaging Material MOQ Optimization 
 

Data Description Data Source Usage 

FG Production Order ERP system Generate packaging material demand per day based 

on FG production order and BOM FG BOM ERP system 

Material BOM ERP system Add material information (price/packaging type) 

based on packaging material demand 

Handling Cost/unit Manual Input Calculate total cost in fulfilling production order 

Warehousing Cost/unit Manual Input 

Warehousing Capacity Manual Input Constraint in optimization model 

Packaging Lot Size Constraint Manual Input Constraint in optimization model 

 

3.2.4 Sample Model Test in Microsoft Excel Solver 
 

Microsoft Excel Solver was used to validate the sample model for packaging material optimization given 

its user-friendly interface and flexibility to allow model testing by changing assumptions. One label was 

chosen to build the sample model as advised by the sponsoring company prior to more trial runs and 

Python replication on a larger scale. Data gathering was then implemented to obtain packaging material 

demand on each day of usage along with its related cost per day. And it is typical that as the same 

material are used in multiple products. The target of this model is to advise a new MOQ so that the total 

cost to transport and store the material is minimized. As mentioned previously, the cost includes not 

only initial delivery cost of the packaging material to fulfill production demand, but also includes the 

cost to transport production remnants back to warehouse, which is the trigger point and fundamental 

issue we plan to resolve in this project. The optimal MOQ should be able to reduce the number of return 

flows based on the material demand. Additionally, assumptions and constraints included in the model 

were aligned with the sponsoring company.  
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3.2.4.1 Sample Model Assumptions 
 

Below are the assumptions made in setting up the model and these apply to all other labels once the 

model is replicated in Python. 

1) No material mix per pallet: each pallet can only accommodate one component and there’s no 

material mix in any delivery haul on a pallet level; 

2) Cut-off time: Each material is delivered to the production line from the warehouse on day N-1 

for production scheduled on day N with a cut-off time at 10pm (Day N production starts from 

Day N-1 10pm – Day N 9:59pm); 

3) Remnant return: Remnants will be returned to the same warehouse where they are initially 

delivered on day N if there is no material call-off request on day N+1; 

4) Material usage: A first-in, first-out (FIFO) approach is assumed for material inbound and 

outbound operations. Therefore, remnants will be consumed first in case of material call-off 

from warehouse;  

5) Number of returns: Remnants will not be returned to warehouse the second time after initial 

return to warehouse and will be consumed inline after the third-haul delivery to production. 

Material scrap cost is out of scope; 

6) Warehouse capacity: Warehouse capacity has been translated into the number of pallets as a 

hard constraint for each packaging material while the sponsoring company planned to use 

warehouse capacity as a soft constraint. Therefore, the preset limits on warehouse capacity in 

the model were tentatively relaxed; 

7) Optimal MOQ Lower and Upper Bound: As a change in the MOQ for each packaging material 

may lead to design changes for the material container due to ergonomics concerns, the limit of 

MOQ upper bound was provided by the sponsoring company manually. 
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3.2.4.2 Model Formulation 
 

1) Parameter Denotation: 

Ce: Transportation & handling cost per box per day (fixed cost in €/pallet) 

Cw: Storage cost/box/day (fixed cost in €/pallet) 

rv: Decision variable. Labels per base unit (e.g.: reel in box) 

Qb: Number of boxes delivered at first haul, 𝑄𝑏௧ = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝 ቀ
௧

ோ భ
ቁ 𝑖𝑓𝐹𝑑 = 1; 

𝑄𝑏௧ = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝 ൬
𝐷𝑡 − 𝑅𝑝

𝑅𝑉𝑏
൰  𝑓𝑜𝑟  𝐹𝑑 ≥ 0 

Rb: Number of boxes returned in the second haul delivery. 𝑅𝑏௧ = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝 ቀ
ோ

ோ௩
/𝐵𝑢2ቁ 

Ds: Days of storage for a material in the warehouse (calculated from raw data) 

2) Decision Variable: rv: Rounding Value per container for one packing material 

3) Objective Function: Total cost = 1st haul transportation cost for initial delivery + 2nd haul 

transportation cost for remnants + 3rd haul transportation cost for remnants + Storage Cost 

 (𝑪𝒆 ∗ 𝑸𝒃𝒕) +
𝒊

𝒕ୀ𝟏
 (2 ∗ 𝑪𝒆 ∗ 𝑹𝒃𝒕) +

𝒊

𝒕ୀ𝟏
 (𝑪𝒘 ∗ 𝑫𝒔 ∗ 𝑹𝒘𝒑𝒕)

𝒊

𝒕ୀ𝟏
 

               t = 1, …, 273 

4) Constraints: 

(1) 𝑅𝑉𝑚𝑖𝑛 ≤ 𝑟𝑣 ≤ 𝑅𝑉𝑚𝑎𝑥 

(2) RV is an integer 

(3) 𝑅𝑤௧ ≥ 0 

(4) 𝑅𝑝௧ ≥ 0 

(5) 𝑅𝑤𝑝௧ ≤ 𝑃𝑚 

5) Other Variables 

(1) t: Day of production, t  i (1,273) (2019/01/01-2019/09/30) 
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(2) Fd: First day of production (binary, 1 if this production entry is the first of all 

production records) 

(3) Pn: Binary, 1 for production planned on t+1, 0 for no production planned on t+1 

(4) Demand: Production demand on day t in pieces 

(5) CumDemand: Cum demand to date in pieces 

(6) RVb: Labels per box,  𝑅𝑉𝑏 = 𝑟𝑣 ∗ 𝐵𝑢1 

(7) RVmax: Maximum number of labels per base unit (e.g.: reel in box) 

(8) RVmin: Minimum number of labels per base unit (e.g.: reel in box) 

(9) Bu1: Base unit per box in the first transportation haul for initial delivery 

(10) Bu2: Base unit per box in the second/third transportation haul for remnants 

(11) Bp: Box per pallet 

(12) Qp: Number of pieces delivered at first haul delivery on day t. 𝑄𝑝 = 𝑄𝑏 ∗ 𝐵𝑢1 ∗ 𝑟𝑣 

(13) Qc: Cum delivery in pieces. 𝑄𝑐(1) = 𝑄𝑝(1); 𝑄𝑐(𝑡) = 𝑄𝑐(𝑡 − 1) + 𝑄𝑐(𝑡))  𝑡 ≥ 2 

(14) Rq: Return quantity in pieces in the second haul. 𝑅𝑞 = (1 − 𝑃𝑛) ∗ (𝑄𝑝 − 𝐷𝑡)  

(15) Rp: Remnants in production line in pieces. 𝑅𝑝 = (𝑄𝑝 − 𝐷𝑡) ∗ 𝑃𝑛 

(16) Rw: Remnants in warehouse in pieces. 𝑅𝑤 = 𝑅𝑞 − 𝑅𝑝 

(17) Rwp: Remnants in warehouse in pallets. Rwp = Roundup (
ೃ್

ಳೠ

௩
/𝐵𝑝) 

(18) Pm: Maximum number of pallets in warehouse for each packaging material 

6) Sample model test and trial run in more labels 

Upon completion of formulating model constraints and clearing dataset, a nonlinear optimization model 

was developed using Microsoft Excel Solver. Discussions and review of the optimization result was 

completed with the sponsoring company. As advised by the planning team, more labels were chosen to 

test model feasibility prior to replication in Python. 
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3.2.5 Python Replication on All Labels 
 

Upon successful sample model test in Microsoft Excel solver and in light of the limit of maximum 200 

variables in one optimization using Excel, Python programming language was introduced to enable quick 

iterations for all labels using same optimization model built in Excel. In summary, we followed 4 steps as 

explained below to complete the MOQ optimization for all labels. 

1) Coding in Python using SciPy. As an open source Python-based library, the SciPy optimize function 

provides solutions for objective minimization or maximization with identified constraints (Jones, E., 

Oliphant, T., Peterson, P., & others. (2001). Mathematical formulas and constraints were translated into 

programming language in this step. 

2) Python SciPy validation with sample data. As the sample code written in Python will be iterated across 

all labels, it is critical to validate the optimization result in Python and compare with the result in Excel 

solver. Data replication will only be initiated upon complete alignment of the two platforms. 

3) Python iteration for all labels. In this step, mass data for all labels were loaded into Python. Two 

outputs were generated: the optimized MOQ and the total cost for each material. 

3.2.6 Sensitivity Analysis: Scenario Simulation 
 

In this section, we analyzed the sensitivity of total cost and optimal MOQ to the change of a set of other 

parameters. As demand patterns varies, one material has been selected to demonstrate model 

sensitivity. The analysis was performed in two steps in Excel Solver: 

1) Total cost sensitivity to the change of MOQ/Unit holding cost/Unit storage cost, 

2) Optimal MOQ sensitivity to the change of Unit storage cost/Unit holding cost/Component 

demand/Upper and lower bound constraint. 
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4 RESULTS AND ANALYSIS 

 
This section summarizes the results for finished goods MPQ optimization and MOQ optimization for 

packaging materials with a sensitivity analysis. 

4.1 MPQ Optimization for Finished Goods 
 

Following the four steps to optimize MPQ for selected SKUs, insights from SKU selection, clustering, and 

cost saving estimation are introduced in this section.  

Based on the threshold value of selected attributes, 104 SKUs were down selected among three product 

categories. As clustering analysis was conducted, the six SKUs in the C category were excluded. However, 

the complete list was shared with the sponsoring company for a separate analysis to optimize MPQ. A 

complete list of the 104 SKUs with MPQ optimization opportunity is detailed in Appendix A. 

Table 6: SKU Down-selection for MPQ Optimization 
 

FG 

Category 

Production 

Records 

Production 

Records  

Gated by 

MPQ 

% of 

MPQ 

Gating 

Events 

SKU  SKU with 

MPQ Gating 

Events 

above 9 

% of 

MPQ 

Gating 

Events 

% of Production 

Plans for SKU 

with MPQ Gating 

Events above 9 

A 10150 3187 31.40% 932 98 10.52% 26.82% 

B 2013 0 0% 308 0 0% 0% 

C 3113 163 5.24% 477 6 1.26% 6.06% 

Note: Production records with scheduled quantity at 1100 or less were excluded per request from the 

sponsoring company.  

In summary, the selected 98 SKUs in category A share below commonality: 
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 Number of MPQ gating events are equal or above 9 times in the nine months from January to 

September 2019 (at least once/month). 

 These SKU are sold regularly and are not seasonal or promotion items. 

4.1.1 Finished Goods Clustering  
 

As three clustering methodologies were implemented prior to identify a final MPQ for each of the 98 

SKUs, this section briefly summarized the clustering result for each methodology. 

4.1.1.1 Partition Around Medoids (PAM) 
 

One input required to cluster SKUs is the optimal number of clusters, which needs to be pre-defined 

based on the selected parameters to measure SKU proximality. Using the Silhouette width, it can be 

concluded from Figure 7 that four clusters would greatly increase the dissimilarity between each cluster 

groups. As the figure suggests, the clustering accuracy would increase with the number of clusters. 

However, it is more practical to choose the number of clusters at the inflection point to avoid 

overfitting.  

 

Figure 7:Silhouette width and number of clusters with numeric and categorical attributes 
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With the number of clusters identified at four, a PAM clustering is then conducted in R programming to 

group SKUs based on the set of production parameters. In conclusion, SKUs in the same cluster are more 

similar in production patterns and packaging attributes. The clustering result is visualized in Figure 8 

with a complete summary of each cluster in Appendix B.  

 

Figure 8: Clustering Results with 4 Clusters Using PAM 

4.1.1.2 K-means Clustering Without Categorical Attribute Conversion 
 

In order to identify the optimal MPQ for each SKU, K-means clustering was implemented to explore 

other possible options to measure product similarity. As illustrated previously, we first eliminated two 

categorical attributes: primary packaging type and case units per container. With the number of clusters 

identified at 2 as shown in Figure 9, the clustering result is visualized in Figure 10. 
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Figure 9: Silhouette Width and Number of Clusters with Numeric Attributes Only 
 

 

Figure 10: Clustering results with 2 clusters using K-means 

4.1.1.3 K-means Clustering with Categorical Attributes Conversion 
 

As K-means clustering can only process numeric values, another alternative to deal with categorical data 

is to convert the categorical values to numeric values on the premise that the number of categories is 

not widely distributed so as to miscalculate the distance between SKUs. Given the fact that primary 
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package type contains only one value and case units per box is considered a critical parameter to 

evaluate product similarity, we excluded the primary package attribute and converted the case number 

attribute in K-means clustering. Similar to the previous K-means clustering with numeric values only, 

two is suggested as the optimal number of clusters as detailed in Figure 11 and the clustering result has 

been displayed in Figure 12. 

 

Figure 11: Silhouette Width and Number of Clusters 
(categorical attribute converted to numeric values) 

 

 

Figure 12: Clustering Results with 2 Clusters Using K-means 
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4.1.1.4 Clustering Result Summary with Max and Medoids MPQ for Finished Goods 
 

Based on the three clustering methods performed, each SKU has been assigned six new MPQs aligned 

with the max and medoids (central for K-means clustering) values of each cluster. The max value from 

the three central points and three max points are selected as potential new MPQ for each SKU. 

Simulations were proceeded to evaluate the number of scheduling reduced with the new value. 

Table 7:Summary of Cluster Size with Medoids/Central Values and Max Values per Cluster  
 

Methodology Number of 

Clusters 

Cluster 1 

(Size/Medoids

/Max) 

Cluster 2 

(Size/Medoids

/Max) 

Cluster 3 

(Size/Medoids

/Max) 

Cluster 4 

(Size/Medoids

/Max) 

PAM 4 15/4200/8000 28/4000/5000 28/4000/4500 27/4000/4500 

K-means 

(Numeric) 

2 17/4000/8000 81/4000/4500 N/A N/A 

K-means 

(Numeric 

+Categorical) 

2 5/4000/8000 93/2000/4500 N/A N/A 

 

The rationale for adopting both the medoid value and max value was to provide more insights to the 

planning team on the potential gain from using a higher MPQ. In case the new MPQ value equaled 

current value, we only simulated with the different value. Adopting the max MPQ for all SKUs in the 

same cluster may lead to FG excess and obsolesce, hence we provided two simulations results to the 

sponsoring company for review and evaluation. 

4.1.2 Estimated Savings with New MPQ 
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Given the new MPQ and total production quantity required, an updated number of production 

scheduling was calculated. We then compared the updated scheduling with the original production 

plans to estimate the cost savings generated from a higher MPQ for each SKU. 

The full results for each SKU are summarized in Appendix B with estimated reduction in production 

scheduling for 98 SUD SKUs. A sample simulation result for 1 SKU is shown in Table 8 below:  

Table 8: Simulation Result of Estimated Reduction in Production Scheduling 
 

 

In summary, production scheduling is expected to be reduced by 42 times by using the medoids value 

and the reduction would add up to 491 with the max value. Table 9 is a high-level summary of expected 

production scheduling for all SKUs.  

Table 9: Summary of Estimated Reduction of Production Scheduling with FG MPQ optimization 
 

MPQ Methodology Number of SKUs with 

New MPQ 

Reduction of Production 

Scheduling 

Medoids 36 42 

Max 95 491 

 

4.2 Packaging Material MOQ Optimization 
 

In order to ensure that the optimization result for packaging material MOQ is aligned with the 

expectation of the sponsoring company, seven labels were selected by the sponsoring company after 

initial model validation using Microsoft Excel Solver. Due to the limited data processing capability of 

Microsoft Excel Solver, the use of Python programming language facilitates large data processing and 

optimization. In this section will briefly summarized optimization result in each step. 

SKUNum MPQ Med Max ProductionRecordReduction_Med ProductionRecordReduction_Max ProductionRecord NewProductionRecord_Med NewProductionRecord_Max
81663250 4000 4000 4500 0 1 11 11 10
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4.2.1 Sample Model Test Using Microsoft Excel Solver 
 

In order to test model feasibility and to ensure cost components have been correctly formulated, we 

used one label to run optimization in Microsoft Excel Solver. Material demand for this label on a daily 

basis was available after data processing. Figure 13 showed an example of one entry for the selected 

material. Column BV is the current rounding value for the selected label and column CK is the decision 

variable – the optimized rounding value. Four cost elements have been highlighted in orange with 

estimated total savings listed in column BH. The target is to minimize optimized total cost in column DE 

with previous total cost calculated in column DG.  

 

 

Figure 13: Sample data of daily demand for one packaging material 
 

As constraints were critical modeling components and should be aligned with the sponsoring company, 

a few parameters such as warehousing capacity and packaging limit per container were manually 

updated in the Excel working sheet. An example of preset constraints is detailed in Figure 14. 

 

Figure 14: Manually input constraints for model optimization 
 

Upon completion of data input, parameters were identified in solver with objectives, variables and 

constraints. The optimization solver then started running with the optimized result available in the 

working sheet. A snapshot of Excel interface can be found in Appendix C. Using the sample model as an 



 40 

example, the updated rounding value for the selected material is 4388 with a previous value of 4500 and 

an estimated cost savings of 11%, which was worth €255.48. 

4.2.2 Sample Model Validation on More Materials Using Microsoft Excel Solver 
 

As the model formulation and constraints would be used for all labels, another 6 materials were 

selected to further validate the assumptions and key cost parameters. A summary of the optimized 

result and savings for the seven trial run materials is presented in Table 10. It can be concluded from the 

table that an estimated saving of 34% is expected. 

Table 10: Summary of model trial run on 7 packaging materials with expected cost savings 
 

 

To better visualize the expected cost savings, a comparison chart is detailed in Figure 15. 

 

Figure 15: Total cost comparison for 7 materials after optimization  
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4.2.3 Full-scope Optimization Using Python 
 

As illustrated in previous sections, the main benefit of introducing Python in our project is mass data 

processing and automatic iterations. This section summarized key findings in packaging material MOQ 

optimization prior to running sensitivity analysis. 

4.2.3.1 Single Material Optimization Validation in Python 
 

As Python SciPy enabled automatic replication of optimization, same code would be executed across all 

labels after the trial run. And we tested validity of the sample code by comparing the results in Excel and 

in Python to ensure that the sample MPQ was generated in two platforms. 

Table 11 is a brief summary of the main components of Python SciPy optimization with its equivalents in 

Microsoft Excel Solver. The process flow of coding in Python was in essence a mathematical translation 

from non-programming language to programming language.  

Table 11: Comparison of Optimization in Microsoft Excel Solver and Python  
 

Components Name Microsoft Excel Solver Python  

Total Cost Objective Objective function 

Packaging Material MOQ Variable Variable 

Limitations Constraints Constraints, Bounds 

Relations Excel formulas Constraints 

Platform Excel Solver Engine Python SciPy optimization library 

Method GRG Non-linear minimize(method=’SLSQP’) 

 

For the selected label, the same optimized value has been generated by both Excel Solver and Python as 

illustrated in Figure 16. The alignment of the optimization results with these two platforms validated the 

correctness of the sample code and laid the foundation for replication to other materials. 
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Figure 16: Comparison of MOQ Optimization Results in Excel Solver and in Python 

4.2.3.2 Optimization Iteration for All Materials in Python 
 

As the logic and formulation for optimizing MOQ applies to all materials, iteration in Python is the 

recommended solution to complete repeated optimization tasks. It is not only time saving but also 

reduces errors that could otherwise occur in manual operations. 

Per the suggestion of the sponsoring company, MOQ optimization was done per product category with 

the highest selling product category being prioritized. Upon completion of each iteration, an Excel 

document was generated with the optimized MOQ value together with the associated total cost. As the 

sponsoring company is most interested in comparing the original MOQ and the optimized MOQ as well 

as the estimated cost savings, we created a simple template to facilitate convenient interpretation of 

the results. Table 12 showed an example of the optimization result shared with the sponsoring company. 

Table 12: MOQ Optimization Result Shared with Sponsoring Company 
 

 

Based on the optimization result covering three product categories in our research, the estimated cost 

savings is 16%, over €1 million in savings and 8% of the average value of all materials. In a highly 
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competitive market environment of the CPG industry, a 16% cost saving opportunity is non-trivial. Table 

13 shows a high-level summary of MOQ difference between the original value and the optimized value 

with its associated cost savings by product category.  

Table 13: MOQ Comparison and Estimated Cost Savings by Product Category 
 

Product Category Average Previous 

MOQ 

Average Optimized 

MOQ 

Cost Savings % 

A 3674 4555 14% 

B 8677 8880 28% 

C 4228 2714 24% 

Total 5527 5383 16% 

 

4.3 Sensitivity Analysis 
 

As introduced in previous chapters, sensitivity analysis was performed in Excel on the selected material 

to explore the dynamics of total cost and what might be the underlying parameters driving the change 

of optimal MOQ for materials. 

4.3.1 Total Cost Sensitivity to Change of MOQ 
 

The purpose of the optimization is to identify the optimal MOQ to generate minimized cost. Therefore, 

it is worthwhile to explore the sensitivity of cost to the change of MOQ. With this insight, the sponsoring 

company would be able to assess the cost impact in case an optimal MOQ cannot be executed. Table 14 

outlined the cost under different MOQs ranging from 2000 to 8000 on a given packaging material.  

Table 14: Total Cost Simulation with Different MOQ 
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It is self-explanatory from the simulation that there might be multiple optimal MOQs generating the 

same minimized cost. This can be explained by the fact that the number of containers will not change 

within a certain range of MOQ values due to the rounding up operation in calculating number of 

packaging units needed to fulfill a certain demand. 

4.3.2 Total Cost Sensitivity to Change of Unit Storage Cost and Unit Holding Cost 
 

Using the same methodology, similar simulation was conducted on the total cost sensitivity to the 

change of unit storage cost and unit holding cost by keeping other parameters constant. By adjusting 

unit storage cost and unit holding cost from 1 to 10 on a scale of 1, Table 15 explains the different 

sensitivity level of total cost to the change of storage cost and holding cost.  

Table 15: Total Cost Simulation with Different Unit Storage Cost and Unit Holding Cost 
 

 

 

Figure 17: Total Cost Simulation with Different MOQ, Unit Storage Cost, and Unit Holding Cost 

Holding/Storage Cost 1 2 3 4 5 6 7 8 9 10
Total Cost(Change Holding Cost) 86 99 112 125 138 151 164 177 190 203
Total Cost(Change Storage Cost) 91 164 237 310 383 456 529 602 675 748
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4.3.3 MOQ Sensitivity to Change in Cost and Demand 
 

For the selected packaging material, we conducted another simulation to understand how MOQ would 

change under different unit storage cost, holding cost, demand and change of upper/lower bound. 

These scenarios were simulated separately with only one changing variable while keeping other 

parameters constant. Table 16 provides a summary of simulation results under various scenarios. 

Table 16: MOQ Simulation with Different Unit Cost, Demand, Upper and Lower Bound Constraints 
 

Scenario Original Value Simulated Value MOQ 

POR (Plan on Record) No Change(baseline) No Change(baseline) 2371 

Unit Storage Cost 1 1.42 2371 

Unit Holding Cost 1.42 4.26 2371 

Component Demand 20701 41402 5203 

Upper/Lower Bound [2000,8000] [0,20000] 2371 

 

It is apparent from the table that the optimal MOQ is most sensitive to demand patterns. As the number 

of boxes to be transported between facilities and stored in warehouse is a key factor of the total cost, 

the optimal MOQ will hold constant within a certain range of cost parameters as long as the number of 

boxes required does not change. The business team is advised to review demand patterns on a regular 

basis to explore opportunities for cost saving by adjusting MOQ. 

Additionally, as the demand pattern for each material is unique, the above simulation only provided a 

glimpse of potential methodology to understand the underlying dynamics of the model and how the 

optimal results may not be optimal given certain changes in various other parameters. 
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5 DISCUSSION 

 
This chapter provides a high-level summary of some of the limitations of our research, and a roadmap 

for where the sponsoring company or future researchers can look to gain additional insights on MPQ 

and MOQ optimization. 

5.1 Limitations 
 

For finished goods MPQ optimization, clustering analysis was performed based on the production 

history of the first nine months of 2019 with packaging size and production order as key attributes to 

determine SKU commonality. As the primary target for MPQ optimization is to reduce production 

scheduling frequencies, more parameters can be introduced to explore the possibility of further 

increasing the MPQ value. These parameters may include shelf life, product life cycle and production 

set-up cost. The clustering analysis and optimized MPQ for all clusters can serve as a starting point to 

reduce the number of production runs.  While it should be used as a baseline to provide insights on SKU 

commonality, it is subject to further adjustment and review of the sponsoring company. 

For packaging material MOQ optimization, due to the technical requirement of iterations in Python and 

the need to automate replications for all materials, constraints are set uniformly across all materials. 

However, the maximum loading for each material container may vary, and the maximum warehouse 

capacity differs. Therefore, the optimization result may not be the global optimum when the constraints 

are relaxed. Due to the large scope of packaging materials, it is not feasible to run optimization by each 

material with customized constraint parameters.  Furthermore, the model made many assumptions on 

the operations of the plant that will likely not occur for 100% of ordering cycles. Our recommendation is 

for managers to identify a list of critical materials as candidates for separate optimization to further 
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exploit cost saving opportunities.  By focusing on high volume and/or high cost items, the company can 

achieve most of the model’s value at a fraction of the time, and also minimize the risk of error from 

global assumptions.  We also recommend that managers who use the model review the assumptions on 

a quarterly basis in order to verify that any changes in vendors, warehouses, or carriers are updated so 

the model outputs reflect those changes. 

Using standard personal computers, the run-time in Python for materials with more than 60 production 

records was significantly longer than the rest of materials and could take over 2 hours to complete a 

single optimization. If managers are going to run optimization on many items, a recommended approach 

is to separate the optimization for these materials to reduce total run time and increase optimization 

efficiency. 

For the sensitivity analysis, linear relationship was assumed between total cost and various parameters. 

However, the relationship may not be completely linear, which justifies the use of other non-linear 

regression methodologies. The assembling of both linear and non-linear regression is more likely to 

provide an understanding of the leading factors determining the optimal MPQ. 

5.2 Alternative Methodology 
 

As cost savings is the main driver behind all optimizations of the sponsoring company, a cost 

minimization function can also be utilized to identify the optimal MPQ for finished goods with 

production order history as the reference data. This is a similar approach adopted in identifying the 

optimal MOQ for packaging materials. Production set up cost, change over cost, production cost, and 

labor cost are key components of the objective function. The optimal MPQ for finished goods would 

generate the minimized total production cost for each SKU.  If this methodology were to be 

implemented it would also be necessary to rerun MOQ optimization for packaging materials, as the 
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MPQ for finished goods is one of the main factors that determine the number of packaging materials 

ordered. For optimal results, plant managers can run both an MPQ for finished goods and a MOQ 

optimization for packaging materials on an annual basis, thus ensuring an efficient interaction between 

both product types and optimization results that are up to date. 

For packaging material MOQ optimization, the same warehousing and packaging number constraints are 

applied for each material in our model.  More accurate results can be provided by segmenting materials 

into smaller groups prior to iterations in Python, enabling a more customized optimization based on the 

different characteristics for each group of materials.  Segmentation would likely improve results as 

grouping items with commonality in storage and packaging would reflect real-world operations for each 

group.  This approach will need to be adopted by our sponsor company regardless, as the constraints 

made for our model reflect conditions of one production facility, while the model is intended to be 

implemented at additional facilities company-wide. 
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6 CONCLUSION 

 
Our research established a new approach to identify the optimal MOQ for finished goods and MPQ for 

packaging materials with the cost of production remnants in scope. It is estimated that by simply 

reviewing production scheduling frequencies and production quantities for finished goods in various 

packaging sizes, clustering can be a valid approach to identify commonality between SKUs. This dynamic 

machine learning approach is expected to generate 16% of cost savings by increasing the number of 

production quantity without increasing the risk of excess and obsolesce.  

In regard to packaging material MPQ optimization, Python SciPy optimization is a highly efficient 

platform for mass data processing and simulation. The number of materials loaded on each material 

container has a large impact to the number of return flows and this optimal value is highly dependent 

on the production demand. Our initial optimization in Python anticipates a cost saving opportunity of 

16%, which indicates more room for improvement compared to the current practice of manual review. 

Below actions are recommended for the sponsoring company to improve cost effectiveness in inbound 

logistics management: 

1) Establish a set of key parameters to identify SKU commonality prior to clustering 

2) Set up a routine review period for optimization of finished goods and packaging materials 

3) Develop a list of critical SKUs and materials for separate runs with customized parameters 

4) Form a task force to communicate with suppliers and adjust results based on field practices 

Machine learning and programming language are viable approaches for mass data processing and 

simulation, which releases more resources on the part of planner to analyze and review results. By 

taking the steps listed, planners can most effectively use machine learning techniques to implement cost 

savings initiatives. 
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APPENDICES 

 
Appendix A. Clustering Result for 91 Category A SKU and 6 Category C SKU for MPQ Optimization 

Category A: SKU Candidates for MPQ Optimization 
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Category C: 6 SKU Candidates for MPQ Optimization 

 

 

 



 55 

 

Appendix B. Final MPQ for Each SKU with Estimated Reduction of Production Scheduling 
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Appendix C. Microsoft Solver Objective Function and Constraints 

Solver parameters user interface using Microsoft Excel Solver: 

 

Optimization completion interface: 

 


