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Abstract

In this study, we propose a new approach for novelty detection that uses kernel dependence techniques for

characterizing the statistical dependencies of random variables (RV) and use this characterization as a basis

for making inference. Considering the statistical dependencies of the RVs in multivariate problems is an

important challenge in novelty detection. Ignoring these dependencies, when they are strong, may result

in inaccurate inference, usually in the form of high false positive rates. Previously studied methods, such

as graphical models or conditional classifiers, mainly use density estimation techniques as their main learn-

ing element to characterize the dependencies of the relevant RVs. Therefore, they suffer from the curse of

dimensionality which makes them unable to handle high-dimensional problems. The proposed method, how-

ever, avoids using density estimation methods, and rather, employs a kernel method, which is robust with

respect to dimensionality, to encode the dependencies and hence, it can handle problems with arbitrarily

high-dimensional data. Furthermore, the proposed method does not need any prior information about the

dependence structure of the RVs; thus, it is applicable to general novelty detection problems with no sim-

plifying assumption. To test the performance of the proposed method, we apply it to realistic application

problems for analyzing sensor networks and compare the results to those obtained by peer methods.

Keywords: Novelty detection, kernel independence, reproducing kernel Hilbert space, two-sample test,

Hilbert-Schmidt independence criterion, graphical model, structural health monitoring, sensor network,

video camera, camera-based measurement.

1. Introduction1

From the pattern recognition point of view, novelty detection can be viewed as a one-class classification2

that aims to distinguish one well sampled class from all other possible classes for which the available data is3

insufficient to build an explicit model for the latter [1]. Important methods in this regard are the k-nearest4

neighbors [2], one-class support vector machines [3], neural networks [4], density estimation and clustering5

[5], and decision tree based techniques such as one-class random forests [6]. The data from the observed class6

are usually represented in terms of certain features which can be modeled as random variables (RV); and the7
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above-mentioned methods are usually most effective when the statistical dependencies of the relevant RVs8

are weak as these techniques ignore such dependencies. As a result these methods may provide inaccurate9

predictions, especially in the form of high false positive rates, in applications such as saliency detection10

in image processing [7], analyzing sensor networks [8], structural health monitoring and damage detection11

[8, 9, 10], where the dependencies of RVs are not negligible.12

To consider the statistical dependencies of RVs in novelty detection, previous studies applied methods such13

as statistical graphical models [7, 8, 11] and conditional classifiers [10]. These techniques mainly use density14

estimation for characterizing the dependencies between the RVs of the problem. Noting that the density15

estimation techniques usually suffer from the curse of dimensionality [12], the novelty detection techniques16

which use density estimation may not be able to handle high-dimensional problems. Moreover, some of these17

techniques have limited applications due to simplifying assumptions they make or specific prior information18

they need about the dependence structure of RVs [8]. These issues motivate the objective of this study which19

is to develop suitable novelty detection algorithm with the capability of considering statistical dependencies20

of relevant RVs in high-dimensional problems.21

To address the objective of this study we develop a kernel dependence novelty detection (KDND) algorithm22

that uses kernel two-sample tests [13, 14, 15, 16] and kernel independence analysis [17, 18, 19] as the basis23

for making inference. Our proposed KDND method aims to detect novel realizations of RVs with respect to24

a baseline by tracking the changes in the pairwise dependence structure of RVs. This dependence structure25

is learned by using a kernel dependence criterion [17, 18] that is robust with respect to dimensionality26

of data. By doing so, the contributions of our study can be summarized as follows: (1) We formulate27

a KDND classifier that is capable of considering the dependencies of RVs in arbitrarily high-dimensional28

novelty detection problems without any prior information about these dependencies; (2) We experimentally29

evaluate the proposed method in structural health monitoring (SHM) problems, one on a full scale steel30

structure, and compare the results with other techniques.31

The paper is organized as follows. First, a review of kernel two-sample tests and kernel dependence32

analysis is presented in Section 3. Then, in Section 4 we describe the problem and formulate our proposed33

KDND method followed by an implementation of this method in Section 5. Section 6 provides a discussion34

about how to relax some of the assumption we made for formulating the proposed method as well as more35

details about the proposed formulation of the classifier. The results of the experimental evaluation of the36

proposed algorithm and its comparison with other methods are presented in Section 7. Finally, we conclude37

with a summary of our findings and a discussion of future research directions.38

2. Notation39

Through out this paper, the RVs are denoted by sans-serif fonts, e.g., x, and deterministic quantities such40

as the realizations of RVs are denoted using serifed fonts, e.g., x.41
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To exclude particular entries from a set we use ”\” followed by the indices of the entries to be excluded.42

For instance, if Z = {z1, z2, z3}, then Z \ {z2} = {z1, z3}. | · | is also the cardinality of a set.43

Probability distributions are denoted by p with a subscript denoting the RV; e.g., py is the probability44

density of the RV y. The probability of an event e is denoted by P(e).45

Finally, through out this paper, we use the standard as the opposite of novel, e.g., a standard data point46

with respect to a baseline distribution is the one that is drawn from that distribution. For the Gaussian47

distribution, we always use the term Gaussian.48

3. Review of kernel two-sample test and kernel independence analysis49

In this study, we use the kernel two-sample test and kernel independence analysis as the building blocks50

for formulating our proposed KDND algorithm. Therefore, we first provide a review of these methods to be51

used in the following sections.52

A two-sample test is a statistical test to infer whether two data sets are drawn from a same probability53

distribution [15]. One approach to perform such a test is to compare the estimated probability density models54

of the two data sets. The main issue of this approach is that density estimation techniques suffer from the55

curse of dimensionality and hence, density-based methods are not usually robust when the size of data set is56

relatively small compared to its dimensionality.57

An alternative approach for two-sample test is kernel-based method that maps data sets into the re-

producing kernel Hilbert space (RKHS) and uses appropriate similarity measures in this space to compare

the two samples [13, 14]. To further clarify this procedure, consider two RVs y1 and y2 with the fixed but

unknown probability distributions py1 and py2 . Letting k(·, ·) to be a universal kernel associated with the

RKHS, an appropriate distance between these distributions can be defined as [13]

D (py1 , py2) = Ey1,y
′
1
[k(y1, y

′

1)]− 2Ey1,y2 [k(y1, y2)] + Ey2,y
′
2
[k(y2, y

′

2)], (1)

where y
′

1 and y
′

2 are independent copies of y1, and y2, respectively, and E is the expectation operator.

D(·, ·), which is called the maximum mean discrepancy (MMD), basically measures the similarity of two

distributions by comparing the expectation operators that are defined with respect to their distribution (See

[13, 19] for more information about this similarity measure). In practice, however, we do not have access

to RVs’ distributions and we need to estimate the MMD using empirical data with finite samples. For such

estimation, let Y1 = {y11, . . . , y1m} and Y2 = {y21, . . . , y2m} be two sets of m i.i.d. realizations drawn from

py1 and py2 , respectively. It can be shown that an unbiased estimate of D(·, ·) is [14]

D (py1 , py2) ≈ D̂ (Y1, Y2) =

1

m(m− 1)

m∑
j 6=j′

k(y1j , y1j′ )− 2k(y1j , y2j′ ) + k(y2j , y2j′ ).
(2)

where j, j
′ ∈ {1, . . . ,m}.58
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The MMD, as it was mentioned before, is a measure of similarity between two arbitrary distributions;

therefore, it can be extended to obtain a measure of dependency of RVs. To do that, first remember that two

RVs y1 and y2 are statistically independent if their joint distribution equals the product of their marginal

distributions, i.e., py1y2 = py1py2 . Therefore, comparing py1y2 and py1py2 can provide information about the

dependency of y1 and y2. Performing this comparison via the MMD, a measure of independence between the

two RVs is obtained. This independence measure is called Hilbert-Schmidt independence criterion (HSIC)

and estimated as follows [13, 18]

ηy1y2 =
1

m2
tr (H ·Ky1y1 ·H ·Ky2y2) , (3)

where tr(·) is the matrix trace; Ky1y1 = [k(y1j , y1j′ )] and Ky2y2 = [k(y2j , y2j′ )]; and H = Im − 1/m with Im
to be the identity matrix of size m. The HSIC defined in (3) can be normalized as [18]

hy1y2 =
ηy1y2√
ηy1y1ηy2y2

. (4)

This normalization maps ηy1y2 into the interval of [0, 1], which makes it easier to interpret this independence59

criterion.60

The MMD and normalized HSIC are used in the next section as a basis for formulating our KDND61

classifier.62

4. Kernel dependence novelty detection classifier63

Assume we have a system with n components that each can have two possible states, standard (in-64

tact/healthy) and novel (damaged), with respect to a baseline data set. Let xi, i ∈ {1, . . . ,n}, be a Bernoulli65

RV which can take on values in {−1, +1} such that xi = +1 if the ith component of the system is intact66

and xi = −1 if the ith in novel. Assume we can observe all components of the system and represent the67

observations from the ith component via a feature vector yi ∈ Rd. Note that this feature vector is modeled68

as a d-dimensional RV, i.e., yi = [yi1, . . . , yid], where yik, k ∈ {1, . . . , d}, is a univariate RV that represents a69

single feature that is extracted from the observations of the ith component.70

Consider the two sets x = {x1, . . . , xn} and Y = {y1, . . . , yn}, and assume that the relationship between x71

and Y can be captured by a fixed but unknown joint probability distribution denoted by pY,x. Let us denote72

the baseline training set by T which contains m data points, i.e., T =
{

(Y
(b)
j , x

(b)
j ; j ∈ {1, . . . ,m}

}
where73

Y
(b)
j = {y(b)

1j , . . . , y
(b)
nj } is the set of feature vectors associated with the jth baseline observation of the system,74

x
(b)
j = {x(b)1j , . . . ,x

(b)
nj } are the class labels for these observations, and the superscript (b) denotes baseline.75

Note that in novelty detection problems, the baseline data belongs to only one state of the system [1, 20] in76

which all components are intact and hence, x
(b)
ij = +1, ∀(i, j). Given T and a set of m

′
new realizations of77

Y, denoted by Y = {Y1, . . . , Ym′}, the objective is to distinguish the standard and novel components of the78

system based on Y, i.e., to predict xi,∀i.79
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Our proposed approach to satisfy the above-mentioned objective is to track the changes in the dependence80

structure of the RVs of the problem using kernel dependence methods. In doing so, first we consider a pairwise81

graphical model G = (V, E) where V is the set of vertices such that vertex i ∈ V is associated with yi, and82

the edges E = V × V represent the pairwise dependencies between each pair of RVs. For the moment, let us83

assume that the edge potentials of this graph are fixed and unique for each possible realization of x. Thus,84

we expect that the state transition of a subset of the system’s components from intact to novel is reflected in85

the properties of G. Therefore, finding novel components of the system can be accomplished by comparing86

the dependencies encoded by two such graphical models which are respectively learned from T and Y. Note87

that the assumption about the uniqueness of the edge potential of G for each realization of x may not always88

hold. In Section 6 we discuss how to deal with the cases where this assumption is not true.89

To proceed with formulating our KDND classifier, let Ni be the set of neighboring vertices of the ith vertex

of G. For any edge (i, i
′
) ∈ E , i

′ ∈ Ni, we use hyiyi′ as an estimate of the dependence strength associated

with this edge. We compute hyiyi′ using (4) and denote it by hii′ for ease of notation. Given the above

assumptions and definitions, we define classifier C(hii′ ) as

xi = C(hii′ ) = sign (f(hii′ )) , (5a)

f(hii′ ) =
∑
i′∈Ni

wii′ `ii′ , (5b)

`ii′ = sign
(
p
(b)
h
ii

′ (hii′ )− p
∗
ii′

)
, (5c)

where wii′ is the weight that is (pre-)assigned to the edge (i, i
′
) ∈ E and

∑
i′∈Ni

wii′ = 1. wii′ can be viewed90

as an importance factor of the (i, i
′
) edge in making inferences about the ith component of the system. The91

reason for considering these weights is to make our formulation applicable to problems where prior information92

is available on the dependencies of a subset of RVs. In case there is no such information, the weights can93

be set to wii′ = 1/|Ni| for (i, i
′
) ∈ E and ∀i′ ∈ Ni. p(b)h

ii
′ (·) is the baseline distribution of hii′ , which is the94

dependence strength associated with the (i, i
′
) edge; and p∗

ii′
is an appropriate likelihood threshold. Note95

that in this formulation, the edge potentials are modeled as RVs and shown using sans-serif font, i.e., hii′ .96

The realization of this RV, that is obtained by using Y along with (4), is shown by serif font, hii′ .97

To find the novel components of the system, the proposed classifier starts with classifying each edge of98

G via (5c). The aim of this preliminary classification is to find the edges that encode significantly different99

dependence strengths, in a statistical sense, for T and Y. In doing so, the new edge potentials of the graph,100

hii′ , are calculated using Y along with (4). Then the likelihood of these potentials with respect to their101

baseline distribution, p
(b)
h
ii

′ , is compared with a likelihood threshold p∗
ii′

as stated in (5c). The result of this102

preliminary classification is `ii′ which is a Bernoulli RV that can take on values in {−1, +1}. `ii′ = +1 means103

that the dependencies between yi and yi′ for the two data sets T and Y are not significantly different. The104

converse is true for `ii′ = −1 which indicates that the edge potential that is obtained from Y for the (i, i
′
)105

edge is statistically different from its baseline. Note that hii′ in (5) is obtained by using Y along with (4),106

and p
(b)
h
ii

′ is learned from the training set T . We will address the details of learning this classifier in the next107
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section. Note that performing a likelihood test in (5c) is not the only way of classifying the edges. One can108

use other methods, such as off-the-shelf classifiers such as the SVM to do this task.109

After classifying all edges of G, we find the RVs which are most responsible for the discrepancies between110

the two graphs that are learned from T and Y. The idea to identify such RVs is to find the vertices whose111

dependencies with their neighbors have changed the most. This task is carried out in (5b) that counts the112

number of those incoming edges to a given vertex i which are significantly different from their baseline, i.e.,113

`ii′ = −1, i
′ ∈ Ni. This can be viewed as a voting approach where each edge can vote for the two vertices it114

connects. The advantage of using the voting strategy over other possible prediction methods will be discussed115

in Section 6. Note that the importance of the incoming edges to a given vertex may not be equal; thus, we116

consider wii′ to account for such importance and the generality of the formulation. The final step, which is117

carried out in (5a), is to classify the components of the system based on the majority of the votes that they118

have received.119

Based on the above explanations, three tasks are needed for implmenting the proposed KDND classifier.120

These tasks are: (1) choosing an appropriate kernel and learning its parameters, (2) learning p
(b)
h
ii

′ from the121

training set, and (3) determining p∗
ii′

. In what follows, we explain our solutions for each of these tasks.122

5. Implementation of the proposed KDND classifier123

5.1. Choice of kernel and determining its parameters124

Using a universal kernel in the sense of [21] is a necessary condition for derivation of the MMD and HSIC

[13, 14]. Based on the discussion provided in [22], we chose a Gaussian kernel to be used in this study. To

use this kernel, consider yij = [yij1, . . . , yijd] as the jth realization of yi, and yi′ j′ = [yi′ j′1, . . . , yi′ j′d] as j
′th

realization of yi′ . Note that yijk is the kth feature that is extracted from the jth observation of the response

of the ith system’s component. The dissimilarity between the two realizations yij and yi′ j′ with respect to

an isotropic Gaussian kernel is

k(yij , yi′ j′ ) = exp

(
−
‖yij − yi′ j′‖2

2σ2

)
, (6)

where σ is the kernel width and ‖ · ‖ is vector norm. In practice, the median distance between the aggregate125

data points can be used as an estimate of σ [17, 18, 19].126

Previous studies on kernel two-sample tests usually used the above-mentioned form of the Gaussian kernel.

However, the isotropic property may not effectively capture the dissimilarities of data points in multivariate

problem where the distributions of the feature yik, that were defined in Section 4, are different. To address

this problem, we suggest using an anisotropic Gaussian kernel with the form of

k(yij , yi′ j′ ) = exp

(
−1

2
(yij − yi′ j′ )

TΣ2(yij − yi′ j′ )

)
, (7)

where Σ = diag(1/σ1, . . . , 1/σd) with σk, k ∈ {1, . . . , d}, is the kernel width along the kth dimension which127

corresponds to the kth feature. The superscript T is matrix/vector transpose. Note that the kernel matrix128
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that is obtained from (7) is strictly positive definite because Σ2 is diagonal with positive diagonal elements;129

therefore, this anisotropic kernel is universal [23, 24].130

The anisotropic kernel in (7) considers a unique kernel width for each dimension of the multivariate RVs131

yi and yi′ and hence, it is expected to better capture the shape of data. However, the trade-off of using such132

kernel is to learn d parameters instead of one. More information about anisotropic Gaussian kernels and133

learning its parameters for various applications can be found in [25, 26, 27]. In this study, we propose using134

the median distance of aggregate data points along the kth direction as an estimate of σk. This proposition135

basically uses the conventional method suggested in [17, 18, 19] for each feature individually to estimate its136

corresponding kernel width.137

5.2. Learning p
(b)
h
ii

′138

Our approach here is to generate multiple realizations of hii′ and learn its distribution accordingly. For139

a given (i, i
′
) ∈ E , consider (y

(b)
ij , y

(b)

i′ j′
),∀(j, j′), which are all permutations of training sample points for the140

two vertices i and i
′
. The dissimilarity between each pair of data points corresponding to a unique (j, j

′
) with141

respect to an anisotropic Gaussian kernel can be obtained using (7). The calculated dissimilarities for all142

pairs of (j, j
′
) can be assembled in an m×m kernel matrix Kii′ . The procedure can be followed to assemble143

Kii and Ki′ i′ for (i, i) and (i
′
, i

′
), respectively. Using these matrices along with (3) and (4) provides a single144

realization of hii′ , whereas we need multiple such realizations for learning p
(b)
h
ii

′ .145

In order to generate multiple samples for hii′ , we use bootstrap aggregation (bagging). For doing so, we146

randomly pick m̃ number of training data points. The dissimilarities between the chosen data points can be147

determined using (7), and assembled to form new kernel matrices which are called sampled kernel matrices148

and denoted by K̃ii′ , K̃ii, and K̃i′ i′ for Kii′ , Kii, and Ki′ i′ , respectively. Note that, for computational149

efficiency, the sampled kernel matrices can be formed by finding and assembling the corresponding elements150

of Kii′ , Kii, and Ki′ i′ to the randomly chosen data points. Using the sampled kernel matrices along with (3)151

and (4), a new realization of hii′ is obtained. By running this procedure multiple times, a set of realizations152

for hii′ can be generated. Finally, we use Gaussian mixture models (GMM) to learn p
(b)
h
ii

′ from the generated153

realizations of hii′ . Note that the curse of dimensionality is not a problem in using GMM for learning p
(b)
h
ii

′ ,154

because it is a univariate distribution and we can generate as many realizations of hii′ as needed through the155

bagging procedure.156

5.3. Determining p∗
ii′

157

If there exists a prior distribution for the novel realizations of Y, the parameter p∗
ii′

can be determined158

accordingly. Otherwise, in the absence of such prior information, hypothesis testing can be used. In this159

case, p∗
ii′

is the likelihood threshold associated with a 100(1 − α)% confidence bound for p
(b)
h
ii

′ , where α is a160

predefined significance level. Note that the notion of confidence interval for non-symmetric or multi-modal161

distributions is controversial [28]. Thus, we propose determining p∗
ii′

by using the notion of a high density162

region (HDR), which is described as follows.163
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For a probability distribution pz(z) of RV z, the 100(1− α)% HDR is defined as the subset R(p∗α) of the

sample space of z such that [29]

R(pα) = {z : pz(z) ≥ p∗α}, (8)

where p∗α is the largest value such that P (z ∈ R(p∗α)) ≥ 1 − α. This is schematically shown in Figure 1 for164

a univariate distribution. By applying this concept to our problem, p∗
ii′

becomes the 100(1 − α)% HDR of165

p
(b)
h
ii

′ .

Figure 1: The 100(1− α)% HDR for z is R(p∗α) = [a, b] ∪ [c, d] if P (z ∈ R(p∗α)) ≥ 1− α [29]

166

6. Discussions167

In this section, we clarify how to solve the problem when the main assumption we made in Section 4 do168

not hold. We also discuss alternative approaches for edge classification instead of density estimation, the169

reasons for using the averaging in (5b), and how to use this classifier when the data sets are unbalanced.170

6.1. Using the KDND method when the main assumptions do not hold171

To formulate the proposed KDND method we assumed that the changes in the state of some components172

of the system, from standard/intact to novel, affect the edge potentials of G. This assumption may not173

always be true as it is theoretically possible that there exist special state transformations which change the174

distributions of the relevant RVs in such a way that their dependencies are retained unaffected. Although175

such special cases are unlikely in practice due to noise and complexities of the systems being monitored, we176

address a solution for this issue to ensure the robustness of our method.177

For the situation that was described above, using the HSIC is no longer effective in detecting the novel178

realizations of the RVs. But, we can still use MMD as suggested in section 7.5 of [14] to detect any changes179

in the marginal distributions of the RVs. MMD, as described in this reference, is capable of detecting the180

novel realizations of RVs without suffering from the curse of dimensionality; however, this method may181

result in high false positive rates due to ignoring the dependencies of RVs. Thus, we suggest performing a182

preliminary classification using the MMD to ensure capturing the state changes in the system. Once some183

state transformations are detected in this preliminary analysis, we can use the proposed KDND algorithm to184

improve the accuracy of our predictions.185
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6.2. Alternative methods for learning p
(b)
h
ii

′186

As was explained in section 4, we use likelihood tests in (5c) to classify each edge of G. This requires187

learning p
(b)
h
ii

′ for which we proposed using GMM; however, this is not the only approach for classifying the188

edges. In fact, any novelty detection classifier can be trained using the realizations of hii′ , that are obtained189

via bagging (see section 5.2), and used instead of the likelihood test in (5c).190

6.3. Reason for using the voting strategy in (5b)191

In the formulation of our proposed KDND classifier, `ii′ is a binary RV which is the vote of edge (i, i
′
) ∈ E192

for the ith and i
′th vertices. An alternative for this voting strategy would be the direct use of the likelihood193

difference, p
(b)
h
ii

′ (hii′ )− p∗ii′ , in our predictions. Due to the inverse relationship of the HSIC’s magnitude with194

its variance [14], making inferences based on the explicit value of p
(b)
h
ii

′ (hii′ ) results in the dominance of those195

edges of G whose potentials are small. This is equivalent to assigning more weight to the weakly dependent196

RVs in the process of decision making. By doing so on the extreme case, we only consider the RVs which are197

almost independent, and this is not consistent with the objective of this study. For more information about198

the variance analysis of the MMD and HSIC the readers are referred to [14]. For an example showing the199

behavior of these two measures in comparing Gaussian RVs see Appendix Appendix A.200

6.4. Dealing with unbalanced data sets201

It is common in practice that the baseline and test data sets are not equally sized, i.e., m 6= m
′
. This202

results in different error rates in computing the dependence strength of RVs for T and Y [14]. Herein, we203

provide two solutions to get around this problem. The first solution is applicable if m > m
′

and can be204

applied to the bagging procedure for learning the underlying distribution of hii′ . To do that, we suggest205

simply choosing m̃ = m
′

for each bagging iteration. Otherwise, if m
′
> m or the sizes of data sets are too206

small, we can use over sampling methods such as the synthetic minority over sampling technique [30].207

7. Experimental evaluation208

To evaluate the efficacy of the proposed method, we applied it to realistic problems of analyzing sensor209

network data in SHM applications. In vibration-based SHM, the dynamic behavior of structures is used as a210

basis for evaluating their health and safety. For this purpose, their vibrational responses are measured and211

the measurements are compared with a baseline that represents the intact state of the system. This baseline212

can be a set of theoretical facts about the behavior of structures or an empirical data set that has been213

provided from the same structure at the intact or reliable state. Noting that there may be an infinite number214

of damaged states for a structure, the SHM problem clearly fits the novelty detection framework [31, 32].215

One of the main goals of this comparison is to detect and localize damages in the structure [33]. In recent216

years, statistical methods and machine learning techniques have assisted the researchers in achieving this goal217

[31, 32, 34, 35]. SVM [36], clustering techniques [37], and deep learning [38] are examples of such methods.218
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However, the predictions from most of these techniques are inaccurate if the size of data set is small, the219

relevant RVs are strongly dependent, or the dimensionality of the data is extremely large [12]. Our proposed220

KDND classifier has been specifically designed for handling these issues and hence, can be considered as an221

approach to deal with real-world SHM applications.222

In the following two sections, we present the application of our proposed method in monitoring a plate223

structure and a full scale steel structure. In each of these sections we first describe the experimental setup224

and the data acquisition system we used to measure the response of the structures. Then, we show the225

damage localization result of the proposed KDND algorithm, and its comparison with peer novelty detection226

methods.227

7.1. Plate structure228

7.1.1. Experimental Setup229

This structure was a steel plate with dimensions of 60 cm × 5.08 cm × 0.64 cm, fixed to a massive concrete230

base using four bolts. The experimental setup for measuring the plate involved a shaker that is attached to231

the top of the plate, high-speed camera, and extra lighting, as shown in Figure 2. The video camera and the232

extra lighting are used along with the phased-based optical flow approach [39, 40] to extract the displacement233

field of the plate from video.234

A summary of how the displacement extraction algorithm works is as follows. The complex steerable235

pyramid filters are used to obtain the local amplitude and phase at multiple orientations and physical length236

scales [41]. As was shown in previous works [41], the motion of constant phase contours corresponds to motion237

signals in the video. Therefore, we use the decomposed local phase signals to calculate the displacement signal238

at every pixel in the video. More details about the video decomposition and the calculation of displacements239

is contained in [42]. Note that there are few assumptions in calculating the displacement signal from objects240

in video. The first assumption is that the motion must be small and on the order of one pixel or smaller;241

otherwise, the local filters stop working. Secondly, displacements are only well defined at edges or textured242

regions in the video. In order to satisfy this condition, we applied a speckled pattern on the steel plate by first243

painting it white and then spraying a random pattern of black paint on the plate in a spotty manner. The244

last assumption for the measurement is that the lighting is constant. Flickering lights, such as fluorescent245

lighting, introduce an apparent motion signal into the video with the same variation in time as the lighting.246

To prevent this from happening, the object under test is flood illuminated with several bright battery powered247

lamps so that the lighting stays consistent.248

To run the tests, the shaker excited the plate with a white Gaussian noise waveform in a horizontal249

direction in the video. After allowing some time for the excitation to reach steady state, 3.5 seconds of video250

were recorded at 2000 frames per second with a resolution of 1736×244 pixels using the high speed camera.251

This was repeated for the damaged plate with a machined crack towards its base. The details of the intact and252

notched plates, and screenshots from the input videos are shown in Figure 3. To extract the displacements253

of the plate, 100 pixels are chosen, on a grid of 5 × 20, as the pseudo sensor locations on this structure.254
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Figure 2: Picture of the experimental setup for the plate, showing the plate fixed to a concrete base, the shaker bolted to the

top of the plate, high-speed camera, and extra lighting

The displacements of these locations were calculated from the recorded video using the phase-based method255

described above. Each pixel’s displacement time history was windowed in time to produce 22 pseudo tests256

that each consisted of 800 time points. The reason for dividing one measurement into multiple windows is257

that in the real world it is unlikely to have multiple extreme events in civil structures. However, we may258

have few extreme events that last for about 10 to 20 seconds or even more.259

7.1.2. Damage sensitive features and evaluation criteria260

The Fourier coefficients in the frequency range of 1 to 400 Hz are used as the damage sensitive features261

in this example. As a result, the dimensionality of the feature space becomes 400 while we have only 22262

pseudo tests. Many of the widely used novelty detection algorithms, such as the one-class SVM, cannot be263

learned for such a data set in which the number of features significantly exceeds the number of sample points.264

Therefore, to evaluate the efficacy of the proposed KDND method, its classification results were compared265

to a one-class gradient boosting algorithm [6, 12] which is robust with respect to dimensionality of data sets.266

For comparing the results of the proposed method and peer methods we used the false positive reduction

and true positive improvement criteria which were defined in [8]. The definition of false positive (FP) and

true positive (TP) are controversial in SHM application as it is unlikely that the damage occurs exactly

at the sensor locations. Therefore, the FP for SHM is defined in [8] as the detection of damage at sensor

locations which may not coincide with the damage location nor the closest neighboring sensor locations. The

TP is also defined as detecting the damage at the sensor location where the damage is located or its closest

neighboring sensor locations. Assume I = {1, · · · ,n} with n to be the number of sensors in a network, Da is

the set of sensor locations which are either at the damage location or its closest neighborhood, and Dc
a is the

complement of Da with respect to I. Also assume that Dk and Dg are the set of damaged locations which are

detected by the proposed KDND method and the alternative novelty detection method, respectively. Then,
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(a) (b) (c) (d)

Figure 3: Details of the plate structures (dimensions are in centimeters): a) detail of the plates, b) location of the machined

crack on the damaged plate, c) screenshot of input video for the intact plate, (d) screenshot of input video for the damaged

plate with crack

for a new measurement the FP reduction (FPR) and TP improvement (TPI) criteria are defined as

FPR =
|Dg ∩Dc

a| − |Dk ∩Dc
a|

|Dc
a|

(9a)

TPI = 1Dk∩Da 6=∅ − 1Dg∩Da 6=∅ (9b)

where |·| is the cardinality of a set, and 1(·) is the indicator function. FPR essentially shows how much267

the FP is reduced by using the proposed method compared to the gradient boosting algorithm. TRI shows268

which algorithm can/cannot localize the damage.269

7.1.3. Fitting the KDND models and damage detection results270

The graph G in this example is considered as a fully connected pairwise graphical model in which, a271

generic edge (i, i
′
) encodes the dependencies of the displacement responses at the ith and i

′th pseudo sensor272

locations. Note yi, i ∈ {1, · · · , 100}, which is the feature vector associated with the response of the ith pseudo273

sensor is a 22 × 400 matrix in this experiment. Using these vectors, we followed the procedure described in274

Section 5 to learn the KDND model. Due to the lack of prior information about the dependencies of the275

sensor measurements, the edge weights are considered to be wii′ = 1/|Ni| for (i, i
′
) ∈ E , ∀i ∈ V and ∀i′ ∈ Ni.276

We also chose an anisotropic Gaussian kernel which results in computing 400 different kernel widths for each277

edge of the graph. Figure 4 shows the kernel width for four of the features (out of 400) and all edges. The278

kernel width between sensors i and j is colored at the intersection of the ith row and the jth column of these279

plots. Note that these graphs are symmetric because there is no difference between the edges (i, j) and (j, i)280

for computing the kernel width. Also, the diagonal entries are zero in these plots, because we do not consider281
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self-looping in G and hence, we do not compute the associated kernel width. These plots imply that the282

kernel width can be quite different for different features and different subsets of the edges.283
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Figure 4: Kernel width for (a) first feature, (b) 10th feature, (c) 200th feature, (d) 100th feature.

For learning p
(b)
h
ii

′ , we first set α = 0.05 as the HDR significance level for decision making and then284

started fitting KDND models with various bagging trials starting from 10 and increased this number until285

the prediction error converges. The result of this procedure is shown in Figure 5(a). It follows from this plot286

that the FP rates does not change after the bagging trials reach 30.287

In this case study we chose the one-class gradient boosting method as the alternative method to be288

compared to the KDND. The main reason for choosing the gradient boosting method in this part is the289

robustness of decision tree based algorithms with respect to the dimensionality of learning problems. Also,290

most of other widely used novelty detection algorithms, such as the one-class SVM, are not applicable to291

this application example due to the high dimensionality of the feature space. To learn the one-class gradient292

boosting classifier, we followed the approach that is explained in [6, 12].293
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The damage localization result of the proposed algorithm and its comparison with the predictions of294

the one-class gradient boosting algorithm are shown in Figures 5(b) and 5(c). In Figure 5(b), the average295

classification results of the gradient boosting algorithm for the 22 pseudo tests on the damaged structure296

are color coded. The red and green colors in these plots are, respectively, used to show whether a pseudo297

sensor location is predicted as damaged or intact. It follows from the results shown in Figure 5 that both298

algorithms can detect the damage, but their damage localization accuracies are significantly different. The299

localization results of the gradient boosting algorithm are almost inconclusive, while the proposed KDND300

algorithm can perfectly localize the damage by detecting two pseudo sensor locations right above the notch.301

The proposed algorithm also has some false positives, mainly at the top of the plate. These false alarms might302

have been due to the loss of the speckled pattern in that zone on the plate and hence inaccurate displacement303

extraction, especially since the lightening is weaker at the top of the plates compared to the other areas (see304

Figure 3(c)). This suggests that more attention needs to be paid when using video-based measurements in305

practice as this method is quite sensitive to lightening. Comparison of the two algorithms using the criteria306

defined in Section 7.1.2 shows that the proposed algorithm reduces the FP rate by 24% while keeping the307

TP rate the same. This means that by using the KDND method we localize the anomalies more accurately308

without sacrificing the TP.309
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Figure 5: KDND training and damage localization results; (a) Variation of false positive rates versus the number of bagging

trials, (b) damage detection results of gradient boosting, (c) damage detection results of the proposed KDND algorithm. In (a)

and (b), the colors show the binary classification results where red and green colors at a pseudo sensot location, respectively,

means that location is predicted as damaged or intact.
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7.2. Full scale steel structure310

7.2.1. Experimental Setup311

The full scale structure that we study in this chapter is the upper half of a truncated telecommunication312

tower. The dimensions of this tower are 83× 83× 239 inches and it consists of L-shaped steel elements with313

bolted connections as shown in Figure 6. The structure has three stories, which are all similar in shape314

and configuration, and a cab floor which is shown in Figure 6(c). The beams are connected to the columns315

using one bolt at each side. The bracing-column connections are also made by one bolt, but the connection316

between a pair of bracings when they cross are made using three bolts as shown in Figures 6(d) and 6(e).317

The four faces of the structure are identical; therefore, we have named them as A, B, C, and D to be used318

when addressing damage scenarios. These faces and the global coordinate system are shown in Figure 6(c).319

To measure the dynamic response of the structure it was instrumented by 48 triaxial MEMS accelerome-320

ters, as well as two shakers at its top corner for generating excitation along the two perpendicular axis of the321

structure (Figure 6). The maximum sampling rate of the MEMS sensors was 2 kHz, and the shakers could322

generate white Gaussian noise excitation in the frequency range of 5 to 350 Hz. The sensor network and the323

shakers were controlled via a central computer and a data acquisition system that were placed in a trailer324

next to the structure. Note that the structure was symmetric, but torsional modes could be excited due to325

the placement of the shakers.326

7.2.2. Experimental tests and damage scenarios327

We considered five different damage scenarios in addition to testing the intact structure. The first damage328

scenario was introduced by loosening a bolt in a beam-column connection at the location shown in Figure329

7(a). The second damage scenario was introduced by replacing a reduced cross section element with one of330

the diagonal elements of the tower. Figures 7(b) and 7(d), respectively, show the location of this damage331

scenario and the reduced cross section element. To build the reduced cross section element, both flanges of332

a diagonal element were machined to reduce the element’s cross section throughout its length. The third333

damage scenario was made by taking out the reduced cross section element from the structure. Basically,334

the location of this damage was the same as in the second scenario, but for the third case, the element was335

taken out. The fourth and fifth damage scenarios were simulating the presence of multiple damages on a336

structure. For these damage scenarios we removed the beams that are shown in Figure 7(c) from face C of337

the structure, and combined this scenario with the second and the third scenarios. Table 1 summarizes the338

tested damage scenarios on this structure.339

To establish a baseline data set for the intact state, the structure was tested four times. In each test,340

the structure was excited under a pink noise excitation with the spectrum that is shown in Figure 8 for two341

minutes. Then, each test was segmented, by windowing with overlaps, to generate 14 pseudo tests. The342

reason for this segmentation of the structural response was to model real world scenario, as it was explained343

in Section 7.1.1. Each damage scenario was also tested two times with the same manner as testing the344

intact structure. Therefore, we provided 56 and 28 pseudo tests, respectively, for the intact and each damage345
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Figure 6: Large scale structure: (a) structure, sensor units, and shakers, (b) side view, (c) roof plan of the top floor, the location

of the trailer with respect to the structure, and the name of each of its faces, (d) beam-column connection, (e) bracing connection

.

scenarios. For damage sensitive features, we considered the autoregressive (AR) coefficients. To determine346

the order of the AR model, we followed the AR model selection approach using the Akaike information347

criterion (AIC) that is suggested in [43]. Figure 9 shows the variation of the AIC for different AR model348

orders. Each line in this plot corresponds to the AR model selection result of a specific sensor. It follows349

from these results that the variations of the AIC are negligible for model orders that are larger than 16 for all350

sensors’ measurements; thus, we choose this number as the AR model order in our study. The weights wii′351

were chosen similar to the previous experiment due to the lack of prior information about the dependencies352

of sensor measurements, i.e. wii′ = 1/|Ni| for (i, i
′
) ∈ E , ∀i ∈ V and ∀i′ ∈ Ni For comparing the performance353

of the KDND with other methods on this structure we use the evaluation criteria that were defined in section354

7.1.2.355

7.2.3. Detection results and comparison356

For learning the KDND, we followed the same procedure that was explained in section 7.1.3 for the357

plate structure. For evaluating the performance of the proposed method on this structure, we compared the358

KDND with the one-class gradient boosting, one-class SVM, and one-class clustering via GMM. We followed359

[44, 3] for learning the SVM models and [5] for learning the clustering model. The detection results of these360
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Figure 7: Location of damages on the structure. (a) location of the loosened bolt at the beam-column connection on face A, (b)

location of the reduced cross section element on face A, (c) location of the removed beam on face C of the structure for damage

scenarios 4 and 5, (d) the reduced cross section element
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Figure 8: The spectrum of the pink noise excitation

algorithms for the first damage scenario are illustrated in Figure 10. The sensor locations are shown with361

circles in the plots of this figure. In Figure 10(a) the actual location of damage is marked by a red circle,362

and the black lines and circles, respectively, show the intact elements and sensor locations. Figures 10(b)363

to 10(e) show the detection results of the four above-mentioned methods. The red and blue circles in these364

plots are the sensor locations which are predicted as damaged and intact, respectively. It follows from these365

plots that all techniques can detect the damage; however, the localization results are significantly different.366

Basically, the localization with the gradient boosting is inconclusive. The results of SVM and clustering are367
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Table 1: Summary of the tested damage scenarios

Scenario No. Description

1 Bolt loosening at a beam-column connection at the location shown in Figure

7(a) on face A

2 Reduced cross section element at the location shown in Figure 7(b) on face A

3 Element removal at the location shown in Figure 7(b) on face A

4 Multiple damage scenario by combining scenario #2 and element removal at

the location shown in Figure 7(c) on face C

5 Multiple damage scenario by combining scenario #3 and element removal at

the location shown in Figure 7(c) on face C

2 4 6 8 10 12 14 16 18 20

AR order

-2

-1.95

-1.9

-1.85

A
IC

105

Figure 9: Variation of AIC for different AR model orders for the vibration response at all sensor locations. There are 56 lines

in this plot and each line is associated with one sensor location.

more concentrated around the true location of damage, but these techniques also suffer from high false rates.368

The KDND, on the other hand, provides a more accurate localization result by detecting the true location369

of damage and one sensor location that is directly connected to the damaged location. This method has370

only one false detection that is two elements away from the actual location of damage. The predictions of371

these algorithms for other damage scenarios follow a similar pattern; thus, we skip showing the plots for372

brevity, and instead, summarize the results in Table 2. It should be noted that all algorithms can correctly373

detect the damage in all scenarios; therefore, we only report the false positive reduction rates in this table.374

The information in this table implies that considering the dependencies of RV via the KDND method can375

effectively reduce the false positive rates between 14% to 33% without affecting the true positive rates.376

8. Conclusion377

In this paper we have proposed a novelty detection method that uses kernel dependence analysis for378

considering the statistical dependencies of the problem’s RVs to make predictions. The method considers a379

pairwise graphical model over the RVs and aims to detect statistically significant variations in the parameters380
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Figure 10: Damage detection/localization results for the bolt loosening damage scenario. The red color shows the damaged

locations and the blue is used for the intact ones: (a) actual damage location, (b) predictions of one-class gradient boosting

algorithm, (c) prediction of one-class SVM, (d) predictions of clustering technique using GMM, (e) predictions of our proposed

KDND algorithm.

of this graph as a result of changes in the characteristics of those RVs. The main advantage of graph structure381

morphing using the kernel dependence technique is its robustness with respect to the dimensionality of the382

data sets. Therefore, the proposed KDND method is applicable to arbitrarily high dimensional data sets.383

The experimental results of applying the proposed algorithm to realistic SHM application problems shows384

that considering the dependencies of the relevant RVs by tracking their dependence structures can potentially385

yield more accurate classification results compared to traditional classification based on tracking the changes386

in the marginal distributions of the RVs. Followed by the results, the KDND method reduced the false387

positive rates between 14% and 33% compared to peer techniques such as gradient boosting method, which388
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Table 2: Comparing the performance of KDND with one-class gradient boosting algorithm, one-class SVM, and clustering

method using the false positive reduction criteria that was defined in section 7.1.3

Damage scenarios

FP reduction compared to (%) 1 2 3 4 5

one-class gradient boosting 32.5 33.3 36.1 29.6 29.6

one-class SVM 20.9 16.6 19.4 14.8 14.8

one-class clustering 20.9 22.2 14.8 22.2 18.5

is another robust method with respect to the dimensionality of data sets, one-class SVM, and clustering via389

GMM.390

The main trade-off of using the proposed technique over the alternative methods is its higher computa-391

tional demand as a result of computing kernel matrices and iterative operations on such matrices. Also, only392

a few dimensionality reduction methods, such as random subspace feature selection which are also usually393

demanding, can be used along with the KDND classifier. Moreover, the formulation of the KDND algorithm394

requires a fixed set of features to be used for all RVs. This can be viewed as an additional constraint when395

it comes to feature selection. Thus, developing specific feature selection techniques for the KDND classifier,396

and similar techniques that impose the same constraint, can be pursued in future studies.397
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Appendix A. MMD and HSIC for comparing Gaussian RVs401

Consider two Gaussian RV z1 and z2, where z1 ∼ N (0, 1) and z2 ∼ N (µ,σ), and N (., .) denotes Gaussian402

RV with the mean and variance as its first and second arguments, respectively. The reason for considering403

Gaussian RVs is that their correlation coefficient is an exact measure of their dependency. To study the404

variations of HSIC and MMD for Gaussian RVs, we keep the parameters of z1 unchanged while changing405

the parameters of z2. For each new set of parameters of z2 we draw two sets of samples from z1 and z2 and406

compute their associated HSIC and MMD.407

We consider 41 linearly spaced values between 0.0 and 3.0 for changing µ. For each new value of µ, we408

use 20 different values, which are linearly spaced between 0.0 and 1.0, as the correlation coefficient between409

z1 and z2. For a desired correlation coefficient, we adjust σ accordingly. Thus, the new parameter of z2 can410

sit on a grid of 41 × 20. For each pair of (µ,σ) on this grid, we run 30 simulations by sampling from the411

distributions of z1 and z2 with its new parameters and computing the associated HSIC and MMD of the two412

RVs. The result of these simulations is shown in Figure A.11. It follows from this figure that the HSIC is413
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Figure A.11: Variations of (a) HSIC and (b) MMD as a result of changing the mean value and correlation coefficient of two

Gaussian RV. The distance between the mean values of these RV is color coded such that dark blue is used for zero distance

between the mean values, red is used for a shift of mean value of 3, and other colors are in between these extreme cases.

monotonically changed from zero to unity as the correlation coefficient, ρ, varies from zero to one; however,414

the independence criterion is not as sensitive to the shift of mean values of the Gaussian RVs. In contrast to415

HSIC, the MMD is capable of capturing the translational discrepancy between two Gaussian clusters, while it416

is not sensitive to the change of their correlation. Therefore, by using both of these measures, as suggested in417

Section 6.1, we should be able to track the translational discrepancies as well as the change of dependencies418

between two clusters of data.419

Another important characteristic of these measures is the relation between their magnitude and variance.420

Figure 12(a) shows the same data as Figure 11(b), but in logarithmic scale. As is shown, the variation of421

HSIC increases when its magnitude decreases. This can be quantified by the coefficient of variation (CoV) of422

the HSIC which is shown in Figure 12(b) for different correlation coefficients and shifts of mean values. µh423

and σh in this plot are, respectively, the mean value and the standard deviation of the HSIC for a given mean424

shift and correlation coefficient between z1 and z2. Due to the high variations of HSIC for weak dependencies,425

direct use of the likelihood difference stated in (5c) in our classification problem results in the dominance of426

the weakly dependent variables in the final decision making. This is in contrast with our main objective; thus,427

we proposed the voting strategy to avoid the direct use of likelihood ratios in our decision making process.428
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