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Should the definition of ring require the existence of a multiplicative iden-
tity 1?

Emmy Noether, when giving the modern axiomatic definition of a commu-
tative ring, in 1921, did not include such an axiom [15, p. 29]. For several
decades, algebra books followed suit [16, §3.1], [18, I.§5]. But starting around
1960, many books by notable researchers began using the term “ring” to mean
“ring with 1” [7, 0.(1.0.1)], [14, II.§1], [17, p. XIV], [1, p. 1]. Sometimes a change
of heart occurred in a single person, or between editions of a single book, always
towards requiring a 1: compare [11, p. 49] with [13, p. 86], or [2, p. 370] with
[3, p. 346], or [4, I.§8.1] with [5, I.§8.1]. Reasons were not given; perhaps it was
just becoming increasingly clear that the 1 was needed for many theorems to
hold; some good reasons for requiring a 1 are explained in [6].

But is either convention more natural? The purpose of this article is to
answer yes, and to give a reason: existence of a 1 is a part of what associativity
should be.

1 Total associativity

The usual associative law is about reparenthesizing triples: (ab)c = a(bc) for all
a, b, c. Why are there not also ring axioms about reparenthesizing n-tuples for
n > 3? It is because they would be redundant, implied by the law for triples.
The whole point of associativity is that it lets us assign an unambiguous value
to the product of any finite sequence of two or more terms.

By why settle for “two or more”? Cognoscenti do not require sets to have
two or more elements. So why restrict attention to sequences with two or more
terms? Most natural would be to require every finite sequence to have a product,
even if the sequence is of length 1 or 0. This suggests the following:

Definition. A product on a set A is a rule that assigns to each finite sequence
of elements of A an element of A, such that the product of a 1-term sequence
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is the term.

Next, let us explain why the usual associative law is insufficient to regulate
such products. The usual associative law, although it involves three elements
at a time, is a condition on a binary operation; that is, it constrains only the
2-fold products. But the new definition of product provides a value also to the
4-term sequence abcd, and so far there is no axiom to require this value to be
the same as ((ab)c)d built up using the product on pairs repeatedly. We need a
stronger associativity axiom to relate all the products of various lengths. This
motivates the following:

Definition. A product is totally associative if each finite product of finite prod-
ucts equals the product of the concatenated sequence (for example, (abc)d(ef)
should equal the 6-term product abcdef).

Note that the finite products in this definition are not required to involve
two or more terms; indeed, the definition would be more awkward if it spoke
only of “finite products of two or more finite products of two or more terms
each”.

As argued at the beginning of this section, a product is more natural than
a binary operation, insofar as it does not assign preferential status to the num-
ber 2. Similarly, total associativity, although less familiar than associativity, is
more natural in that a law applicable to all tuples is more natural than a law
applicable only to triples; after all, the number 3 is not magical either. Hence
the ring axioms should be designed so that they give rise to a totally associa-
tive product. Now the key point is the following theorem, whose proof will be
sketched at the end of this section:

Theorem. A binary operation extends to a totally associative product if and
only if it is associative and admits an identity element.

What?! Where did that identity element come from? The definition of
totally associative implies the equations

(abc)d = abcd

(ab)c = abc

(a)b = ab

()a = a.

The last equation, which holds for any a, shows that the empty product () is a
left identity. Similarly, () is a right identity, so () is an identity element.

Thus the natural extension of associativity demands that rings should con-
tain an empty product, so it is natural to require rings to have a 1. But oc-
casionally one does encounter structures that satisfy all the axioms of a ring
except for the existence of a 1. What should they be called? Happily, there
is an apt answer, suggested by Louis Rowen [13, p. 155]: rng! (Other sugges-
tions include pseudo-ring [5, I.§8.1] and (associative) Z-algebra [6, Appendix A].)
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As our reasoning explains and as Rowen’s terminology suggests, it is better to
think of a rng as a ring with something missing than to think of a ring with 1
as having something extra.

Sketch of proof of the theorem. Given a binary operation that extends to a to-
tally associative product, the argument above shows that it admits an identity
element, and the usual associative law (ab)c = a(bc) follows too since total
associativity implies that both sides equal the 3-term product abc.

Conversely, given a binary operation ∗ that is associative and admits a 1,
define

a1a2 · · · an :=


1, if n = 0;

a1, if n = 1;

(a1a2 · · · an−1) ∗ an, (inductively) if n ≥ 2.

This is a product extending ∗, and an involved but standard inductive argument
shows that the usual associative law for ∗ can be used over and over to reparen-
thesize any finite product of finite products into the product of the concatenated
sequence; for the details, see [5, I.§1.2, Théorème 1, and §2.1]. In other words,
this extension of ∗ is a totally associative product.

2 Counterarguments

Here we mention some arguments for not requiring a 1, in order to rebut them.

• “Algebras should be rings, but Lie algebras usually do not have a 1.”

Lie algebras, which are objects used in more advanced mathematics to
study the group of invertible n × n real matrices and its subgroups [8],
are usually not associative either. We require a 1 only in the presence
of associativity. It is accepted nearly universally that ring multiplication
should be associative, so when the word “algebra” is used in a sense broad
enough to include Lie algebras, it is understood that algebras have no
reason to be rings.

• “An infinite direct sum of nonzero rings does not have a 1.”

By definition, if A1, A2, . . . are abelian groups, say, then the direct product∏∞
i=1 Ai is the set of tuples (a1, a2, . . .) with ai ∈ Ai for each i, while the

direct sum
⊕∞

i=1 Ai is the subgroup consisting of those tuples satisfying
the additional condition that there are only finitely many i for which ai is
nonzero. Direct sums are typically defined for objects like vector spaces
and abelian groups, for which the set of homomorphisms between two
given objects is an abelian group, for which quotients exist, and so on.
Rings fail to have these properties, whether or not a 1 is required: the
quotient of a ring by a subring is no longer a ring (there is no natural way
to multiply elements of R/Z, for instance). So it is strange even to speak
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of a direct sum of rings. Instead one should speak of the direct product,
which does have a 1, namely the tuple with a 1 in every position.

• “If a 1 is required, then function spaces like the space Cc(R) of continuous
functions f : R→ R that are 0 outside some unspecified bounded interval
will be disqualified.”

This is perhaps the hardest to rebut, given the importance of function
spaces. But many such spaces are ideals in a natural ring (e.g., Cc(R) is
an ideal in the ring C(R) of all continuous functions f : R→ R), and fail
to include the 1 only because of some condition imposed on their elements.
So one can say that they, like the direct sums above and like the rng of
even integers, deserve to be ousted from the fellowship of the ring. In any
case, however, these function spaces still qualify as R-algebras.

Further counterarguments can be found in the preface to [9].
Rngs should not be banished completely, because there are applications for

which rngs are more convenient than rings: see [12, pp. 31–36] and [10], for
instance. The latter gave the first example of an infinite finitely generated
group all of whose elements have finite order.

3 Implications

Once the role of the empty product is acknowledged, other definitions that
seemed arbitrary become natural.

• A ring homomorphism A → B should respect finite products, so in par-
ticular it should map the empty product 1A to the empty product 1B .

• A subring should be closed under finite products, so it should contain the
empty product 1.

• An ideal is prime if and only if its complement is closed under finite
products. This explains why the unit ideal (1) in a ring is never considered
to be prime: if (1) were a prime ideal, then its complement ∅ would be
closed under finite products and in particular would contain the empty
product 1; but ∅ does not contain 1.

• The argument that rings should have a 1 involved only one binary opera-
tion, multiplication, so the same argument explains also why monoids are
more natural than semigroups. (A semigroup is a set with an associative
binary operation, and a monoid is a semigroup with a 1.)

There are also applications of these ideas in higher mathematics. For example,
there is the notion of a category, which has objects and morphisms satisfying
certain axioms modeled on the properties of groups and homomorphisms. One
of these axioms lets one compose morphisms f : A → B and g : B → C to
produce g ◦ f when the target object of f (here called B) matches the source
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object of g. Another axiom asserts the existence of identity morphisms. Now
we can see why the axiom about identity morphisms is natural: it arises as a
special case of composing a chain of morphisms. More specifically, given objects
A0, . . . , An and a chain of morphisms

A0
f1−→ A1

f2−→ · · · fn−→ An,

one wants to be able to form the composition, even when n = 0, and in the
n = 0 case the composition is the identity morphism from A0 to A0.

4 Final comments

It would be ridiculous to introduce the definition of ring to beginners in terms of
totally associative products. But it is nice to understand why certain definitions
should be favored over others.
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5 Summary

We argue that the definition of ring should require the existence of a multiplica-
tive identity 1 because this requirement is part of what associativity should
be. We also address counterarguments and explore some implications of our
argument.
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