
MIT Open Access Articles

A deep learning approach to classify atherosclerosis 
using intracoronary optical coherence tomography

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Athanasiou, Lambros S. et al. “A deep learning approach to classify atherosclerosis 
using intracoronary optical coherence tomography.” Medical Imaging 2019: Computer-Aided 
Diagnosis, vol. 10950 © 2019 The Author(s)

As Published: 10.1117/12.2513078

Publisher: SPIE

Persistent URL: https://hdl.handle.net/1721.1/126580

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/126580


PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A deep learning approach to classify
atherosclerosis using intracoronary
optical coherence tomography 

Lambros S. Athanasiou, Max L. Olender, José M.  de la
Torre Hernandez, Eyal Ben-Assa, Elazer R. Edelman

Lambros S. Athanasiou, Max L. Olender, José M.  de la Torre Hernandez,
Eyal Ben-Assa, Elazer R. Edelman, "A deep learning approach to classify
atherosclerosis using intracoronary optical coherence tomography ," Proc.
SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109500N (13
March 2019); doi: 10.1117/12.2513078

Event: SPIE Medical Imaging, 2019, San Diego, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Oct 2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



A deep learning approach to classify atherosclerosis using 

intracoronary optical coherence tomography  
 

Lambros S. Athanasiou*a,b, Max L. Olendera,c, José M. de la Torre Hernandezd, Eyal Ben-Assae,f, 

Elazer R. Edelmana,b 

aInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, 

MA, United States; bCardiovascular Division, Brigham and Women’s Hospital, Harvard Medical 

School, Boston, MA, United States; cDepartment of Mechanical Engineering, Massachusetts 

Institute of Technology, Cambridge, MA, United States; dHospital Universitario Marques de 

Valdecilla, Unidad de Cardiologia Intervencionista, Servicio de Cardiologia, Santander, Spain; 
eMassachusetts General Hospital, Harvard Medical School, Cardiology Division, Department of 

Medicine, Boston, MA United States; fTel Aviv Sourasky Medical Center, Sackler Faculty of 

Medicine, Cardiology Division, Tel Aviv, Israel 

ABSTRACT 

Optical coherence tomography (OCT) is a fiber-based intravascular imaging modality that produces high-resolution 

tomographic images of artery lumen and vessel wall morphology. Manual analysis of the diseased arterial wall is time 

consuming and sensitive to inter-observer variability; therefore, machine-learning methods have been developed to 

automatically detect and classify mural composition of atherosclerotic vessels. However, none of the tissue classification 

methods include in their analysis the outer border of the OCT vessel, they consider the whole arterial wall as pathological, 

and they do not consider in their analysis the OCT imaging limitations, e.g. shadowed areas. The aim of this study is to 

present a deep learning method that subdivides the whole arterial wall into six different classes: calcium, lipid tissue, 

fibrous tissue, mixed tissue, non-pathological tissue or media, and no visible tissue. The method steps include defining 

wall area (WAR) using previously developed lumen and outer border detection methods, and automatic characterization 

of the WAR using a convolutional neural network (CNN) algorithm. To validate this approach, 700 images of diseased 

coronary arteries from 28 patients were manually annotated by two medical experts, while the non-pathological wall and 

media was automatically detected based on the Euclidian distance of the lumen to the outer border of the WAR. Using the 

proposed method, an overall classification accuracy 96% is reported, indicating great promise for clinical translation. 

Keywords: Optical coherence tomography, Deep learning, Atherosclerosis, Convolutional neural network 

1. INTRODUCTION  

Intravascular optical coherence tomography (OCT)1,2 is a catheter-based imaging modality developed over recent decades 

that has become popular in interventional cardiology. OCT has much higher resolution than other intravascular imaging 

modalities, like intravascular ultrasound (IVUS): 12-18 microns axially and a lateral resolution of 20-90 microns3. OCT 

calculates the proportion of the light backscattered and absorbed by the vessel tissue and reconstructs two-dimensional 

(2D) images which represent the cross sections of the imaged vessel. 

OCT can provide accurate measurements of a vessel’s lumen, assess wall morphology, and allow detection of four different 

tissue types4: calcium (CA), lipid tissue (LT), fibrous tissue (FT), and mixed tissue (MT). Moreover, it enables the detection 

of features that are associated with plaque vulnerability, including the measurement of fibrous cap thickness, which cannot 

be accurately evaluated by IVUS or by any other intravascular imaging technique5. However, the technology has a serious 

drawback, the limited tissue penetration (maximum depth: 1.5-2.0 mm)4, which may not allow visualization and 

assessment of the entire plaque and the media-adventitia border. 

The aforementioned limitation of OCT led to the implementation of automated analysis methodologies that detected only 

the lumen border of the vessel6–9, or the lumen border and estimated the plaque area of the vessel10,11. Since manual plaque 
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characterization is time consuming and relies on well-trained readers, several studies attempted to automatically detect the 

various plaque components using OCT images12. Xu et al.13 correlated the backscattering and attenuation coefficients with 

CA, LT, and FT, while, in a similar attempt, van Soest et al.14 correlated the attenuation coefficients with healthy vessel 

wall, intimal thickening, lipid pool, and macrophage infiltration. However, they both failed to define any clear threshold 

values between the different tissue types. Going one step further and using machine learning, Athanasiou et al.10 presented 

a fully-automated OCT plaque characterization method which classified plaque as CA, LT, FT, or MT, with 83% accuracy. 

More recently, deep learning approaches using convolutional neural networks (CNNs)15–18 were presented, achieving an 

overall accuracy of up to 91.7%18. 

Although, CNN-based methods outperformed machine learning methods, they all failed to characterize the whole arterial 

wall, resulting in methods which cannot compete with widely-used virtual histology IVUS (VH-IVUS)19, limiting the 

imaging detail superiority benefits of OCT when compared to IVUS. The primary drawbacks hampering automated OCT 

plaque characterization are the lack of large amounts of annotated images and the non-realistic tissue (area of interest) 

segmentation caused by the difficulty of automatically detecting the outer border. The proposed approach leverages our 

recently developed lumen8 and outer border detection20 algorithms to introduce an automated method which characterizes 

the whole arterial wall. We present a novel and accurate method for detecting and characterizing, for the first time, the 

whole arterial tissue in a way similar to VH-IVUS. 

The innovative aspects of proposed tissue characterization method are: 

1. use of CNNs with a large amount of annotated data to detect atherosclerosis; 

2. detection of normal tissue and shadowed areas within the OCT images; and 

3. detection and classification of the whole arterial wall using OCT images in a similar way as VH-IVUS performs 

its analysis, enabling the wide use of OCT in atherosclerotic tissue detection. 

2. MATERIALS AND METHODS 

The proposed method (Figure 1) comprises the following three steps: 

1. wall area (WAR) detection using previously developed lumen and outer border detection methods;  

2. definition of the non-pathologic intima-media area; and 

3. automatic characterization of the WAR using a CNN algorithm. 

 

 

Figure 1: Schematic presentation of the proposed methodology. 
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2.1 Wall area detection 

WAR is defined as the area between the lumen and outer border (Figure 2), i.e. the media-adventitia transition. The lumen 

detection method uses as input 2D cross-sectional OCT images, produces longitudinal cross-sectional images (sagittal 

cuts) which represent more accurately the sequential area of the OCT pullback, detects the lumen by applying bilateral 

filtering and a K-means algorithm, and translates the detected lumen to the 2D OCT images8. The outer border detection 

method detects the outer vessel border within segments of the OCT pullback that are visible and then, by using a unique 

3D surface-fitting method, fills the non-visible parts20. 

2.2 Non-pathologic intima-media area detection 

Once the lumen and media-adventitia borders are detected, the non-pathological tissue and media layer (M) of the WAR 

are defined. The concept is based on the VH-IVUS histology method where the normal vessel wall has intimal thickening 

of <300μm4,19. To measure the distance of the two borders, we calculate for each pixel of the WAR, 𝑝 ∈ 𝑊𝐴𝑅, the 

combined distance of the pixel from the lumen and media-adventitia borders: 

𝐷𝐿−𝑀𝐴 = 𝐷1 + 𝐷2, (1) 

and the distance of the pixel from the media-adventitia border: 𝐷1. 

Here, 𝐷1 is the Euclidean distance of the pixel 𝑝 from the media-adventitia border and 𝐷2 is the Euclidean distance of the 

pixel 𝑝 from the lumen border; if 𝐷1 < 100μm or 𝐷𝐿−𝑀𝐴 <300μm the pixel belong to M. A schematic presentation of the 

two distances is shown in Figure 2. 

 

Figure 2: Schematic presentation of the two Euclidean distances calculated for defining the non-pathologic intima-media area (M) 

within the WAR (white). 

2.3 CNN-based classification 

After detecting the pixels that belong to the non-pathological tissue and media (M) area, the remaining WAR pixels are 

automatically classified into one of five categories including four plaque types: calcium (C), lipid tissue (LT), fibrous 

tissue (FT), or mixed tissue (MT), and no visible tissue (catheter artifact; N), using a CNN network. 

2.3.1 CNN algorithm 

CNNs belong to the family of deep learning networks21, and are commonly used to analyze and classify images. They 

consist of an input and an output layer with multiple hidden layers between them. The hidden layers consist of several 

convolutional layers which automatically extract the complex features of the images. 

A CNN is represented by a non-linear function: 

𝑝𝑖 = 𝑃(𝐼; 𝜃) (2) 

which maps an image 𝐼 ∈ ℝH×H having 𝐻 × 𝐻 size, to a vector 𝑝𝑖 = (𝑝1, 𝑝2, … 𝑝𝑐)𝑇, where 𝑝𝑖  ∈ [0,1] and denotes the 

probability of the image 𝐼 to belong to one of 𝑐 classes: 𝑖 = 1 … 𝑐. 𝜃 = {𝜃1, 𝜃2, … 𝜃𝛫} are the number of 𝐾 parameters used 

to map the input image 𝐼 to the vector 𝑝𝑖 . 
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The training of the CNN can be considered as a non-linear optimization problem: 

𝜃̂=arg𝜃 min 𝐿{𝐼(1),𝐼(2),…,𝐼(𝑁)}(𝜃). (3) 

Here, 𝑁 is the number of images used to train the CNN, and  

𝐿{𝐼(1),𝐼(2),…,𝐼(𝑁)}
(𝜃) = −

1

𝛮
∑ 𝑤𝑗

𝑁

𝑗=1

𝑦𝐶(𝑖)𝑇𝑙𝑜𝑔𝑃(𝐼(𝑖); 𝜃) (4) 

is the cross-entropy loss (log loss) measuring the classification performance (having values between 0 and 1) for the 𝐶(𝑖)𝑇 

labeled vector of the 𝑐 classes and 𝑤 weights: 

𝑤𝑖 =

1

𝑀𝑖

∑
1

𝑀𝑖

𝑐
𝑖=1

, (5) 

for the 𝑀 training data. 

To minimize the training time of the CNN, the Stochastic Gradient Descent (SGD) iterative method can be used. SGD 

approximates the dataset with a batch of random samples, using the stochastic gradient computed from the batch to update 

the model with each iteration22. SGD might oscillate along the path of steepest descent (gradient descent) towards the 

optimum, instead of along the path toward the optimal, since the gradient always points towards the opposite side of this 

optimum from the current position. A solution to that problem is adding a momentum term to the parameter update to 

reduce oscillation: 

𝜃𝜆+1 = 𝜃𝜆 − 𝛼𝛻𝐿(𝜃𝜆) + 𝛾(𝜃ℓ − 𝜃𝜆−1), (6) 

where 𝜆 is the iteration number, 𝛼 > 0 is the learning rate, and the momentum term 𝛾 determines the contribution of the 

previous gradient step to the current iteration.  

The SGD algorithm uses a subset of the training set called a mini-batch, evaluates the gradient, and then updates the 

parameters. Each evaluation is an iteration, and at each iteration the loss function is minimized further. The full pass of the 

training process over the whole training set using mini-batches forms an epoch.  

2.3.2 CNN architecture 

To classify the pixels of the WAR, we used a sequence of convolutions. To achieve the best classification results, different 

patch sizes, numbers of input patch convolution sequences, filters, and filter sizes were tested. The best results were 

acquires when having 45 layers in our network (Figure 3).  

 
Figure 3: Architecture of the CNN used to classify the WAR pixels. 
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3. DATASET 

Twenty-eight (28) patients who underwent OCT examinations gave their informed consent for the study, and the study 

was approved by the Ethics Committee of the institution. Medical experts used the optical frequency domain imaging 

system FD-OCT C7XR system and the DragonFly catheter (St. Jude Medical, Lightlab Imaging Inc., Westford, MA, USA), 

which offers a maximum frame rate of 100 frames per second, 500 lines per frame, a scan diameter of 10 mm, and axial 

resolution of 15 μm, to image 28 coronary vessels. All images were digitally stored in raw format for off-line analysis, and 

all imaging data sets were anonymized and transferred to our lab for further analysis. 

4. RESULTS 

3.1 Wall area detection 

Two medical experts examined the OCT frames in the twenty two patients and selected 700 images which corresponded 

to diseased coronary segments. Afterwards, they marked independently the contours of the lumen border, the intima-media 

border, and regions of calcium (C), lipid tissue (LT), fibrous tissue (FT), mixed (C+ LT) plaque (MP), and the area of the 

catheter shadow (no visible tissue; N); any disagreements in their annotations were resolved by consensus. The areas 

detected by the algorithm and annotated by the experts were calculated and compared (Figure 4). 

 
         (a)              (b) 

Figure 4: (a) Regression analysis plot between the WAR detected by our method and annotated by the experts and, (b) Bland and 

Altman analysis plot for the WAR detected by our method and annotated by the experts. 

3.2 Plaque characterization 

The medical experts completely annotated 300 different plaque regions for 22 of the patients, from which 32 K patches 

were randomly selected for each class and augmented (each patch rotated 90o and 180o), resulting in 480 K patches (96 K 

for each of the five classes). The patches were used to train (450 K) and validate (30 K) the CNN parameters. The CNN 

algorithm reached a validation accuracy of 94.00% (Figure 5). 

One expert annotated 50 areas in the remaining 6 patients as C (9450 patches), LT (174448 patches), FT (216336 patches), 

MT (35301 patches), or N (408243 patches) regions to test the classification accuracy of the proposed method. The CNN 

network was trained and validated using the MATLAB Deep Learning Toolbox and a NVIDIA Titan Xp GPU (PG611) 

with 12 GB RAM. The overall accuracy of the proposed algorithm is 96.05% (Table 1); the ability of the method to produce 

an integrated plaque characterization map using OCT is presented in Figure 6. 

Table 1: Confusion matrix of the tested patches. 

Confusion 

Matrix 
C LT FT MT N Accuracy 

C 6831 959 163 1497 0 72.3 % 

LT 8835 162214 1378 1803 218 93.0 % 

FT 1451 2425 208421 4038 1 96.3 % 

MT 1738 1782 2072 29709 0 84.2 % 

N 1259 2629 872 168 403315 98.8 % 

Accuracy 72.3 % 93.0 % 96.3 % 84.2 % 98.8 % 96.05 % 
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Figure 5: Training results of the CNN algorithm: Classification accuracies (top) and loss (bottom) for the training and testing data 

using the proposed CNN network over 3 epochs (3515 iterations each).  

  

  

Figure 6: Application examples of the proposed integrated OCT plaque characterization method: initial images (top) and their 

corresponding color-coded images (bottom). C: white, LT: red, FT: green, MT: light green, N: light gray and M: dark gray. 
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5. DISCUSSION AND CONCLUSIONS 

Few methods have been presented during the last decade for detecting and characterizing atherosclerotic plaque using OCT 

images10,14–16. These methods were primarily based on machine learning algorithms10,13,14 and most recently on deep 

learning approaches using convolutional neural networks (CNN)15,16. These methods can sufficiently detect a large 

percentage of the atherosclerotic tissue within the arterial wall. However, while CNN-based methods outperformed the 

machine learning methods, they could not characterize the whole arterial wall as VH-IVUS19 does.  

We present an automated method that automatically detects atherosclerosis and classifies the plaque image to 5 different 

classes: calcium (C), lipid tissue (LT), fibrous tissue (FT), mixed tissue (MT), no visible tissue (guidewire shadow artifact; 

N), and detects the non-pathological tissue or media (M). The method is based on the combination of WAR detection 

algorithms and CNN, and was validated using the estimations of expert observers as gold standard in a large clinically-

relevant dataset. Our results demonstrate reliable tissue detection and characterization, even in images having artifacts.  

The method is more accurate and realistic than the methods presented previously in the literature, which makes it notably 

qualified for use in the clinical and research arenas. Improvements can be made as the method has lower accuracy when 

detecting calcific tissue (Table 1). This limitation is due to the nature of mixed tissue which includes calcium and lipid and 

shares image characteristics of both C and LT. Increasing the clinical dataset and incorporating histological findings in the 

training/testing phase of the proposed method is expected to solve the former limitation, enable its use in the 

clinical/research arena and enhance the field of computational cardiology23. 
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