
MIT Open Access Articles

Isospin amplitudes in #0b→J/##(#0) and #0b→J/##0(#) decays

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: LHCb Collaboration (Aaij, R. et al.) "Isospin amplitudes in Λ0b→J/ψΛ(Σ0) and 
Ξ0b→J/ψΞ0(Λ) decays." Physical Review Letters 124 (March 2020): 111802 doi 10.1103/
PhysRevLett.124.111802 ©2020 Author(s)

As Published: 10.1103/PhysRevLett.124.111802

Publisher: American Physical Society

Persistent URL: https://hdl.handle.net/1721.1/126585

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of use: Creative Commons Attribution 3.0 unported license

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/126585
http://creativecommons.org/licenses/by/3.0


 

Isospin Amplitudes in Λ0
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b → J=ψΞ0ðΛÞ Decays
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Ratios of isospin amplitudes in hadron decays are a useful probe of the interplay between weak and
strong interactions and allow searches for physics beyond the standard model. We present the first results
on isospin amplitudes in b-baryon decays, using data corresponding to an integrated luminosity of
8.5 fb−1, collected with the LHCb detector in pp collisions at center of mass energies of 7, 8, and
13 TeV. The isospin amplitude ratio jA1ðΛ0

b → J=ψΣ0Þ=A0ðΛ0
b → J=ψΛÞj, where the subscript on A

indicates the final-state isospin, is measured to be less than 1=21.8 at 95% confidence level. The Cabibbo
suppressed Ξ0

b → J=ψΛ decay is observed for the first time, allowing for the measurement
jA0ðΞ0

b → J=ψΛÞ=A1=2ðΞ0
b → J=ψΞ0Þj ¼ 0.37� 0.06� 0.02, where the uncertainties are statistical

and systematic, respectively.

DOI: 10.1103/PhysRevLett.124.111802

Measurements of ratios of isospin amplitudes Ai (i
denotes the final-state isospin) in hadronic weak decays
are a sensitive way to probe the interplay between strong
and weak interactions. Such ratios can also reveal the
presence of nonstandard model amplitudes. For example, in
K → ππ decays the experimentally determined ratio
jA0=A2j ≈ 22.5 has not been understood for over 50 years
[1]. Recent models of the strong dynamics [2] and lattice
gauge calculations [3] for these decays give only partial
explanations. Determinations of isospin amplitudes from
D → ππ and B → ππ decays, using input from other two-
body decays into light hadrons, found jA0=A2j ≈ 2.5 [4]
and jA0=A2j ≈ 1.0 [5], respectively.
In this Letter, we investigate Λ0

b → J=ψΛðΣ0Þ and Ξ0
b →

J=ψΞ0ðΛÞ decays. (Mention of a specific decay implies the
use of its charge conjugate as well.) The leading order
Feynman diagrams for all four processes are shown in
Fig. 1. The isospins of the J=ψ meson and Λ baryon are
zero, and that of the Σ0 baryon is one. The isospin of the Λ0

b
baryon is predicted by the quark model to be zero. Since the
b → cc̄s weak operator involves no isospin change, if this
prediction is correct, we expect a dominant A0 amplitude
and a preference for the J=ψΛ final state over J=ψΣ0,
which proceeds via the A1 amplitude. Isospin breaking
effects are possible due to the difference in mass and charge
of the u and d quarks and can also be induced by QED,
electroweak-penguin, or new physics processes [6]. If the
Λ0
b baryon comprises a ud diquark, such effects should be

small. Mixing of the Λ and Σ0 baryons is also predicted to
be small, ∼1°, and could contribute ∼0.01 to the jA1=A0j
amplitude ratio [7]. A severely suppressed J=ψΣ0 final
state would determine the isospin of the Λ0

b baryon to be
zero. Some previous LHCb analyses of Λ0

b decays made
assumptions concerning isospin amplitudes. For instance,
the pentaquark analysis, using the Λ0

b → J=ψK−p channel
[8], assumed that the A0 amplitude was dominant, and in
the measurement of jVub=Vcbj using Λ0

b → pμ−ν̄ decays
[9], the A3=2 amplitude was assumed to be much smaller
than the A1=2 amplitude.
In Ξ0

b → J=ψΞ0ðΛÞ decays, taking the Ξb isospin as 1=2,
the final state results from an isospin change of zero (1=2)
and has Ai ¼ A1=2ðA0Þ. In the reaction resulting in a final-
state Λ baryon, the weak transition changes isospin due to
the b → cc̄d rather than the b → cc̄s transition. Here we
investigate if the larger isospin change is suppressed or if
the decay amplitude is independent of the isospin change.
Note that we measure the decay Ξ−

b → J=ψΞ− for two
purposes: as a proxy for Ξ0

b → J=ψΞ0, which is difficult for
us to measure, and to determine the background in J=ψΛ
mass spectrum from these decays where Ξ → Λπ.
The LHCb detector is a single-arm forward spectrometer

covering the pseudorapidity range 2 < η < 5, described in
detail in Refs. [10,11]. The trigger [12] consists of a
hardware stage, based on information from the calorimeter
and muon systems, followed by a software stage, which
reconstructs charged particles. Natural units are used here
with c ¼ ℏ ¼ 1. We use data collected by the LHCb
detector, corresponding to 1.0 fb−1 of integrated luminosity
in 7 TeV pp collisions, 2.0 fb−1 at 8 TeV, and 5.5 fb−1
collected at 13 TeV. Hereafter, the data recorded at 7 and
8 TeV are referred to as run 1, and the data recorded at
13 TeV are referred to as run 2.
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Simulation is required to model the effects of the detector
acceptance and selection requirements. We generate pp
collisions using PYTHIA [13] with a specific LHCb con-
figuration [14]. Decays of unstable particles are described
by EvtGen [15], where final-state radiation is generated using
PHOTOS [16]. The interaction of the particles with the
detector and its response are implemented using the
GEANT4 toolkit [17] as described in Ref. [18]. The lifetimes
for the Λ0

b and Ξ−
b baryons are taken as 1.473 and 1.572 ps

[19], respectively. All simulations are performed separately
for runs 1 and 2.
Our strategy is to fully reconstruct the J=ψΛ final state

and partially reconstruct the J=ψΣ0 mode by ignoring the
photon from the Σ0 → γΛ decay, because of the low
efficiency of the calorimeter at small photon energies.
For these decays, the J=ψΛ mass distribution is almost
uniform in the mass range 5350–5620 MeV. We simulate
its shape and then fit the mass distribution to ascertain its
size. The J=ψ meson is reconstructed through the J=ψ →
μþμ− decay. Candidates are formed by combining two
oppositely charged tracks identified as muons, with trans-
verse momentum pT > 550 MeV. Each of the two muons
are required to have a maximal χ2 of distance of closest
approach of 30 and are also required to form a vertex with
χ2vtx < 16. The J=ψ candidate is required to have a decay
length significance from every primary vertex (PV) of
greater than 3 and a mass in the range 3049–3140 MeV.
Candidate Λ baryons are formed from a pair of identified

proton and π− particles, each with momentum greater than
2 GeV. Because of their long lifetime and high boost, a
majority of the Λ baryons decay after the vertex detector.
However, we use only putative decays that occur inside the
vertex detector. Each of the two tracks must be inconsistent
with having originated from a PV, have a maximal χ2 of
distance of closest approach of 30, form a vertex with χ2vtx <
12 that is separated from that PV by more than 3 standard
deviations, and have amass between 1105 and 1124MeV. In
addition, we eliminate candidates that when interpreted as
πþπ− fall within 7.5 MeVof the knownK0

S mass. Candidate
Ξ− → Λπ− decays are reconstructed using the criteria in
Ref. [20], with the additional requirement that theΞ− decays
in the LHCb vertex detector. These are combined with
selected J=ψ mesons to form candidate Ξ−

b baryons.
We improve the J=ψΛ mass resolution by constraining

the J=ψ and Λ candidates to their known masses and their
decay products to originate from each of the relevant decay

vertices; we also constrain the J=ψ and the Λ candidates to
come from the same decay point [21].
After these selections, we use two boosted decision trees

(BDTs) [22,23] implemented in the TMVA toolkit [24] to
further separate signal from background. The first BDT is
trained to reject generic b → J=ψX decays, where X
contains one or more charged tracks. We train this “iso-
lation” BDT using the following information: the χ2IP of
additional charged tracks with respect to the J=ψ vertex,
where χ2IP is defined as the difference in the χ2vtx of the J=ψ
vertex reconstructed with and without the track being
considered, the χ2vtx of the vertex formed by the J=ψ plus
each additional track, the minimum χ2IP of the additional
track with respect to any PV, and the pT of the additional
track. For the isolation BDT training, we use samples of
Λ0
b → J=ψΛ and B− → J=ψK− candidates for the signal

and background models, respectively. Both samples are
background subtracted using the “sPlot” technique [25].
The output of the isolation BDT is used as an input variable
in the final BDT.
The 20 discrimination variables used in the final BDTare

listed in the Supplemental Material [26]. These mostly
exploit the topology of the decay using the vertexing
properties of the J=ψ , Λ, and Λ0

b candidates and particle
identification of their decay products. The signal sample
again is background subtracted Λ0

b → J=ψΛ combinations.
For background training, we use candidates in the upper
sideband with J=ψΛ masses between 5.7 and 6.0 GeV,
excluding events in 5.77–5.81 GeV to avoid including
Ξ0
b → J=ψΛ decays in the background sample. We use k-

folding cross validation with five folds in both BDTs to
avoid any possible bias [27]. The final BDT selection is
optimized to maximize the Punzi figure of merit, ϵs=ð

ffiffiffiffi
B

p þ
1.5Þ [28], where ϵs is the efficiency of the final BDT
selection on simulated Λ0

b → J=ψΣ0 decays and B is the
number of background candidates in the above defined
sideband that pass the BDT requirement, scaled to the
width of the J=ψΣ0 signal window. The analysis is
performed separately on run 1 and run 2 data. The resulting
J=ψΛ mass spectrum for run 2 data is shown in Fig. 2. The
run 1 mass distribution is similar and is shown in the
Supplemental Material [26].
There are two signal peaks evident in the mass distri-

bution in Fig. 2. The larger is due to Λ0
b → J=ψΛ decays,

and the smaller corresponds to Ξ0
b → J=ψΛ decays. The

Λ(Σ ) Ξ (Λ)
Ξ s(d)

FIG. 1. Leading order Feynman diagrams for Λ0
b → J=ψΛðΣ0Þ and Ξ0

b → J=ψΞ0ðΛÞ decays.
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latter is a heretofore unobserved Cabibbo suppressed decay.
The run 1 and 2 mass distribution data are fit jointly to
determine the Λ0

b → J=ψΛ,Λ0
b → J=ψΣ0, and Ξ0

b → J=ψΛ
yields. The Λ0

b → J=ψΣ0 signal is modeled using a
Gaussian kernel [29] shape fit to simulation. The Λ0

b →
J=ψΛ signal is described by a Hypatia function, whose tail
parameters are fixed from simulation, with the mass and
width allowed to vary in the fit to the data [30]. The Ξ0

b →
J=ψΛ peak is fit to the same shape but with its mean
constrained to the fitted Λ0

b mass plus the known Ξ0
b − Λ0

b
mass difference of 172.5 MeV [19].
While most of the candidates above the Λ0

b peak are the
result of combinatoric background, those below are due to
additional sources. One is due to Λ0

b → J=ψΛ� decays,
with Λ� → Σ0π0 and Σ0 → γΛ. Here, Λ� denotes strange
baryon resonances ranging from 1405 to 2350 MeV in
mass. Another source comprises partially reconstructed
Λ0
b → ψð2SÞΛ decays, where ψð2SÞ → ππJ=ψ . These

decays mainly populate masses lower than the Λ0
b →

J=ψΣ0 signal, but need to be included to accurately model
the combinatoric background. The existence of the Λ0

b →
J=ψΛ� channels was demonstrated in a study of Λ0

b →
J=ψK−p decays [8]. We can model the resulting J=ψΛ
mass shapes of the different Λ0

b → J=ψΛ� backgrounds,
although we do not know their yields due to lack of
knowledge of the relative Λ� → Σ0π0 branching fractions.
We use separate shapes in the fit for the backgrounds
corresponding to the Λð1405Þ, Λð1520Þ, and Λð1600Þ
resonances. These backgrounds are simulated, processed
through the event selections, and fit using Gaussian kernel
shapes. We collectively model the sum of the remaining Λ�
and ψð2SÞ backgrounds in the fit using a Gaussian shape.
Note that our aim here is not to accurately disentangle each

source of background, but only to model their collec-
tive sum.
A third background source arises from Ξb → J=ψΞ

decays, where Ξ → Λπ, when the pion from the Ξ decay
is not reconstructed. This background is modeled by a
Gaussian kernel shape fit to simulated Ξ−

b → J=ψΞ−

decays, which are partially reconstructed as J=ψΛ. The
normalization of this background is determined by fully
reconstructing Ξ−

b → J=ψΞ− decays in data and simulation
to obtain an efficiency-corrected yield. The reconstruction
uses the criteria in Ref. [20]. The reconstructed J=ψΞ−

mass distribution in data is shown in the Supplemental
Material [26]. The efficiency-corrected yield is multiplied
by the relative efficiency of reconstructing Ξ−

b → J=ψΞ−,
as J=ψΛ, and then more than doubled to account for Ξ0

b →
J=ψΞ0 decays. The production rates are unequal mostly
because the Ξ0

bð5935Þ0 state is too light to decay into Ξ−
bπ

þ,
so it always decays into Ξ0

b [31]. In addition, we incorporate
the production measurements of other excited Ξb resonan-
ces [32] to determine the inclusive production ratio of
Ξ0
b=Ξ−

b ¼ 1.37� 0.07, where the uncertainty arises mainly
from the production fraction measurements of the excited
states. We further corrected for the lifetime ratio τΞ−

b
=τΞ0

b
¼

1.08� 0.04 [33]. This normalization is introduced into the
final fit as a Gaussian constraint and done separately for run
1 and run 2 data, as the detection efficiencies differ.
The remaining background comes mostly from random

combinations of real J=ψ and Λ, which contribute both
above and below the Λ0

b → J=ψΛ mass peak. This combi-
natoric background is modeled using an exponential
function.
The run 1 and run 2 mass distribution data are fit

simultaneously, using a binned extended maximum-like-
lihood fit, where the efficiency-corrected relative yields of
the Λ0

b → J=ψΣ0 signal, and those of the three Λ0
b →

J=ψΛ� decays, with respect to the Λ0
b → J=ψΛ signal, are

constrained to be the same in the two datasets. We define

R≡ jA1j2
jA0j2

¼ BðΛ0
b → J=ψΣ0Þ

BðΛ0
b → J=ψΛÞ ΦΛ0

b

¼
NΛ0

b→J=ψΣ

NΛ0
b→J=ψΛ

ϵΛ0
b→J=ψΛ

ϵΛ0
b→J=ψΣ

ΦΛ0
b
; ð1Þ

where NΛ0
b→J=ψΣ and NΛ0

b→J=ψΛ are the yields of the Λ0
b →

J=ψΣ and Λ0
b → J=ψΛ decays, and ϵΛ0

b→J=ψΣ and ϵΛ0
b→J=ψΛ

are their respective efficiencies, as estimated from simu-
lation. The phase space correction factor ΦΛ0

b
is 1.058. The

free parameters of interest in the fit are R, NΛ0
b→J=ψΛ, and

NΞ0
b→J=ψΛ; NΛ0

b→J=ψΣ can be calculated from these.
Systematic uncertainties are folded into the fit components
as Gaussian constraints. These include uncertainties on the
simulated ratios of efficiencies for the different Λ0

b final

FIG. 2. Distribution of the J=ψΛmass for run 2 data. Error bars
without data points indicate empty bins. Also shown is the
projection of the joint fit to the data. The thick (blue) solid curve
shows the total fit. For illustrative purposes, the Λ0

b → J=ψΣ0

signal component is artificially scaled to its measured upper limit.
The shapes are identified in the legend.
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states with respect to the J=ψΛ final state, which range
from 1.4% to 2.4%. The uncertainty of the relative
normalization of the Ξb → J=ψΞ background is estimated
to be 12.1% for run 1 and 9.8% for run 2. This has
contributions from the fit yield of the fully reconstructed
Ξ−
b → J=ψΞ− decay, the reconstruction and efficiency of

finding the Ξ− → Λπ− decay, and the Ξ−
b =Ξ0

b lifetime ratio.
The results of the fit are shown in Fig. 2 and reported in

Table I. The fitted value for R is consistent with zero. In
Fig. 2, we illustrate what this component would look like if
observed at the upper limit onR. We do not quote the yields
of the Λ0

b → J=ψΛ� decays, as these are highly correlated.
To set an upper limit onR, we use the CLsmethod [34].

The variation of the observed and expectedCLs versusR is
scanned from 0 to 0.005 and shown in Fig. 3. Our observed
upper limit on R is

R < 0.0021 at 95%C:L:

Systematic uncertainties are incorporated in the fit and
included in this limit. Further consistency checks include
changing the fit range, eliminating the Λ0

b → J=ψΛ� back-
ground components one at a time, and fitting the Λ0

b →
J=ψΛ peak with different functions. These change the
upper limit only by small amounts.
The run 1 and run 2 signal yields for Ξ0

b → J=ψΛ are
listed in Table I. The statistical significance of the Ξ0

b →
J=ψΛ signal is 5.6 standard deviations, obtained using
Wilks’s theorem [35], and includes both the statistical and
systematic uncertainties. The branching fraction ratio
BðΞ0

b → J=ψΛÞ=BðΞ0
b → J=ψΞ0Þ is determined using

the fully reconstructed Ξ−
b → J=ψΞ− sample described

above. To determine the branching fraction of
BðΞ0

b → J=ψΞ0Þ, we assume equal decay widths for the
two different Ξb → J=ψΞ charge states and correct for the
different neutral and charged Ξb production rates as
described above. We use the measured lifetime ratio [33]
to translate the decay width equality into the needed
branching fraction. The run 1 and run 2 results are
consistent. Combining the two, we find

RΞb
≡ BðΞ0

b → J=ψΛÞ
BðΞ0

b → J=ψΞ0Þ ¼ ð8.2� 2.1� 0.9Þ × 10−3;

where the first uncertainty is statistical the second is
systematic, where the leading source is the systematic
uncertainty in the Ξ−

b → J=ψΞ− fit yield.
We convert RΞb

into a measurement of the amplitude
ratio

���� A0

A1=2

���� ¼ 1

λ

ffiffiffiffiffiffiffiffi
RΞb

ΦΞb

s
¼ 0.37� 0.06� 0.02;

where ΦΞb
¼ 1.15 is the relative phase space factor, and

λ ¼ 0.231 is the relative Cabibbo suppression jVcdj=jVcsj,
which is assumed equal to jVusj=jVudj [19]. Taking the s
and u quarks in the Ξ0

b baryon to be a diquark state with
isospin 1=2 and combining with the null isospin of the s
quark from the b quark decay leads to isospin 1=2 for the
J=ψΞ0 final state. On the other hand, for the Cabibbo
suppressed transition with the isospin 1=2 d quark, we have
either isospin 0 or 1 final states. The former corresponds to
J=ψΛ, with the latter to J=ψΣ0, which we cannot currently
measure. In order to predict the expected ratio of isospin
amplitudes the SU(3) flavor [36] b-baryon couplings must
be taken into account [37]. Then, if there are no other
amplitudes, the theoretically predicted ratio corresponding
to no preference between isospin 0 and 1=2 amplitudes is
jA0=A1=2j equal to 1=

ffiffiffi
6

p
(≈0.41). Therefore, our result is

consistent with no suppression of the isospin changing
amplitude. These results are not precise enough to see the
effects of SU(3) flavor symmetry breaking.
In conclusion, we set an upper limit in Λ0

b → J=ψΛðΣ0Þ
decays on the isospin amplitude ratio

jA1=A0j ¼
ffiffiffiffiffi
R

p
< 1=21.8 at 95%C:L:

TABLE I. Results from the fit to the J=ψΛ mass distribution.
The fitted yields are indicated by N. Note NΞb→J=ψΞ indicates the
sum of Ξ−

b and Ξ0
b decays.

Parameter Shared value Run 1 value Run 2 value

R ð0� 5.3Þ × 10−4 � � � � � �
NΛ0

b→J=ψΛ � � � 4417� 66 16970� 130

NΞb→J=ψΞ � � � 23.3� 5.7 139.7� 21.9
NΞ0

b→J=ψΛ � � � 6.2� 3.0 17.8� 5.1

0 2 4
3 10⋅R

0.2

0.4

0.6

0.8

1

p 
va

lu
e

Observed CLs

Expected CLs - Median

σ 1 ±Expected CLs 

σ 2 ±Expected CLs 

LHCb

FIG. 3. Result of the hypothesis tests conducted using the
CLs method by varying R is shown. The observed CLs
distribution is shown by the round (black) points. The expected
CLs distribution (based on the background only hypothesis) is
shown by the dashed line (black), with 1 and 2σ uncertainty bands
depicted in dark shaded (green) and light shaded (yellow) bands.
The observed and expected upper limits are obtained by seeing
where the bands cross the p value of 0.05 shown as the horizontal
(red) line.
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This limit is stringent and rules out isospin violation at an
∼1% rate. Isospin violation has been seen at this level, for
example, in ρ − ω mixing in B̄0 → J=ψπþπ− decays [38].
Our limit is consistent with the Λ0

b being formed of a b
quark and a ud diquark. This measurement also constrains
nonstandard model A1 amplitudes contributing to Λ0

b
decays. Furthermore, our results support the quark model
prediction of the Λ0

b being an isosinglet. Assumptions of
isospin suppression in Λ0

b → J=ψX decays made in past
analyses are shown to be justified. Finally, we report the
discovery of the Cabibbo suppressed decay Ξ0

b → J=ψΛ
and measure its branching fraction relative to Ξ0

b → J=ψΞ0

to be ð8.2� 2.1� 0.9Þ × 10−3. We see no evidence for the
preference of either isospin amplitude in the ratio
jA0=A1=2j ¼ 0.37� 0.06� 0.02� 0.1, as the prediction

for the equality of isospin amplitudes is 1=
ffiffiffi
6

p
.
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13I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany
14Fakultät Physik, Technische Universität Dortmund, Dortmund, Germany

15Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
16Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany

17School of Physics, University College Dublin, Dublin, Ireland
18INFN Sezione di Bari, Bari, Italy

19INFN Sezione di Bologna, Bologna, Italy
20INFN Sezione di Ferrara, Ferrara, Italy
21INFN Sezione di Firenze, Firenze, Italy

22INFN Laboratori Nazionali di Frascati, Frascati, Italy
23INFN Sezione di Genova, Genova, Italy

24INFN Sezione di Milano-Bicocca, Milano, Italy
25INFN Sezione di Milano, Milano, Italy

26INFN Sezione di Cagliari, Monserrato, Italy
27INFN Sezione di Padova, Padova, Italy

28INFN Sezione di Pisa, Pisa, Italy
29INFN Sezione di Roma Tor Vergata, Roma, Italy
30INFN Sezione di Roma La Sapienza, Roma, Italy

31Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
32Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, Netherlands

33Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
34AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland

35National Center for Nuclear Research (NCBJ), Warsaw, Poland
36Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

37Petersburg Nuclear Physics Institute NRC Kurchatov Institute (PNPI NRC KI), Gatchina, Russia
38Institute of Theoretical and Experimental Physics NRC Kurchatov Institute (ITEP NRC KI), Moscow, Russia, Moscow, Russia

39Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
40Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia

41Yandex School of Data Analysis, Moscow, Russia
42Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia

43Institute for High Energy Physics NRC Kurchatov Institute (IHEP NRC KI), Protvino, Russia, Protvino, Russia
44ICCUB, Universitat de Barcelona, Barcelona, Spain

45Instituto Galego de Física de Altas Enerxías (IGFAE), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
46Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia—CSIC, Valencia, Spain

47European Organization for Nuclear Research (CERN), Geneva, Switzerland
48Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

49Physik-Institut, Universität Zürich, Zürich, Switzerland
50NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

51Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
52University of Birmingham, Birmingham, United Kingdom

53H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom
54Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

55Department of Physics, University of Warwick, Coventry, United Kingdom
56STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

57School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
58School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

59Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

PHYSICAL REVIEW LETTERS 124, 111802 (2020)

111802-9



60Imperial College London, London, United Kingdom
61Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

62Department of Physics, University of Oxford, Oxford, United Kingdom
63Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

64University of Cincinnati, Cincinnati, Ohio, USA
65University of Maryland, College Park, Maryland, USA

66Los Alamos National Laboratory (LANL), Los Alamos, USA
67Syracuse University, Syracuse, New York, USA

68Laboratory of Mathematical and Subatomic Physics, Constantine, Algeria
[associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]

69School of Physics and Astronomy, Monash University, Melbourne, Australia
(associated with Department of Physics, University of Warwick, Coventry, United Kingdom)

70Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
[associated with Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil]

71South China Normal University, Guangzhou, China
(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

72School of Physics and Technology, Wuhan University, Wuhan, China
(associated with Center for High Energy Physics, Tsinghua University, Beijing, China)

73Departamento de Fisica, Universidad Nacional de Colombia, Bogota, Colombia
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