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ABSTRACT

Human perception of 3D shapes goes beyond reconstructing them as a set of points
or a composition of geometric primitives: we also effortlessly understand higher-
level shape structure such as the repetition and reflective symmetry of object parts.
In contrast, recent advances in 3D shape sensing focus more on low-level geometry
but less on these higher-level relationships. In this paper, we propose 3D shape
programs, integrating bottom-up recognition systems with top-down, symbolic
program structure to capture both low-level geometry and high-level structural
priors for 3D shapes. Because there are no annotations of shape programs for
real shapes, we develop neural modules that not only learn to infer 3D shape
programs from raw, unannotated shapes, but also to execute these programs for
shape reconstruction. After initial bootstrapping, our end-to-end differentiable
model learns 3D shape programs by reconstructing shapes in a self-supervised
manner. Experiments demonstrate that our model accurately infers and executes
3D shape programs for highly complex shapes from various categories. It can
also be integrated with an image-to-shape module to infer 3D shape programs
directly from an RGB image, leading to 3D shape reconstructions that are both
more accurate and more physically plausible.

1 INTRODUCTION

Given the table in Figure 1, humans are able to instantly recognize its parts and regularities: there
exist sharp edges, smooth surfaces, a table top that is a perfect circle, and two lower, square layers.
Beyond these basic components, we also perceive higher-level, abstract concepts: the shape is
bilateral symmetric; the legs are all of equal length and laid out on the opposite positions of a 2D grid.
Knowledge like this is crucial for visual recognition and reasoning (Koffka, 2013; Dilks et al., 2011).

Recent AI systems for 3D shape understanding have made impressive progress on shape classification,
parsing, reconstruction, and completion (Qi et al., 2017; Tulsiani et al., 2017), many making use of
large shape repositories like ShapeNet (Chang et al., 2015). Popular shape representations include
voxels (Wu et al., 2015), point clouds (Qi et al., 2017), and meshes (Wang et al., 2018). While
each has its own advantages, these methods fall short on capturing the strong shape priors we just
described, such as sharp edges and smooth surfaces.

A few recent papers have studied modeling 3D shapes as a collection of primitives (Tulsiani et al.,
2017), with simple operations such as addition and subtraction (Sharma et al., 2018). These represen-
tations have demonstrated success in explaining complex 3D shapes. In this paper, we go beyond
them to capture the high-level regularity within a 3D shape, such as symmetry and repetition.

In this paper, we propose to represent 3D shapes as shape programs. We define a domain-specific
language (DSL) for shapes, containing both basic shape primitives for parts with their geometric and
semantic attributes, as well as statements such as loops to enforce higher-level structural priors.

Project page: http://shape2prog.csail.mit.edu
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Neural	Program	
Generator

Neural	Program	
Executor

Draw(“Top”, “Circle”, position, geometry)

for(i < 2, “translation”, a)
for(j < 2, “translation”, b)

Draw(“Leg”, “Cub”, position + i*a + j*b, geometry)

for(i < 2, “translation”, c)
Draw(“Layer”, “Rec”, position + i*c, geometry)

Figure 1: A 3D shape can be represented by a program via a program generator. This program can be
executed by a neural program executor to produce the corresponding 3D shape.

Because 3D shape programs are a new shape representation, there exist no annotations of shape
programs for 3D shapes. The lack of annotations makes it difficult to train an inference model with
full supervision. To overcome this obstacle, we propose to learn a shape program executor that
reconstructs a 3D shape from a shape program. After initial bootstrapping, our model can then learn
in a self-supervised way, by attempting to explain and reconstruct unlabeled 3D shapes with 3D shape
programs. This design minimizes the amount of supervision needed to get our model off the ground.

With the learned neural program executor, our model learns to explain input shapes without ground
truth program annotations. Experiments on ShapeNet show that our model infers accurate 3D shape
programs for highly complex shapes from various categories. We further extend our model by
integrating with an image-to-shape reconstruction module, so it directly infers a 3D shape program
from a color image. This leads to 3D shape reconstructions that are both more accurate and more
physically plausible.

Our contributions are three-fold. First, we propose 3D shape programs: a new representation for
shapes, building on classic findings in cognitive science and computer graphics. Second, we propose
to infer 3D shape programs by explaining the input shape, making use of a neural shape program
executor. Third, we demonstrate that the inference model, the executor, and the programs they recover
all achieve good performance on ShapeNet, learning to explain and reconstruct complex shapes. We
further show that an extension of the model can infer shape programs and reconstruct 3D shapes
directly from images.

2 RELATED WORK

Inverse procedural graphics. The problem of inferring programs from voxels is closely related
to inverse procedural graphics, where a procedural graphics program is inferred from an image or
declarative specification (Ritchie et al., 2016; Št’ava et al., 2010). Where the systems have been most
successful, however, are when they leverage a large shape–component library (Chaudhuri et al., 2011;
Schulz et al., 2017) or are applied to a sparse solution space (van den Hengel et al., 2015). Kulkarni
et al. (2015a) approached the problem of inverse graphics as inference in a probabilistic program
for generating 2D images, or image contours, from an underlying 3D model. They demonstrated
results on several different applications using parametric generative models for faces, bodies, and
simple multi-part objects based on generalized cylinders. In this work, we extend the idea of inverse
procedural graphics to 3-D voxel representations, and show how this idea can apply to large data sets
like ShapeNet. We furthermore do not have to match components to a library of possible shapes,
instead using a neural network to directly infer shapes and their parameters.

A few recent papers have explored the use of simple geometric primitives to describe shapes (Tulsiani
et al., 2017; Zou et al., 2017; Liu et al., 2018), putting the classic idea of generalized cylinders (Roberts,
1963; Binford, 1971) or geons (Biederman, 1987) in the modern context of deep learning. In particular,
Sharma et al. (2018) extended these papers and addressed the problem of inferring 3-D CAD programs
from perceptual input. We find this work inspiring, but also feel that a key goal of 3-D program
inference is to reconstruct a program in terms of semantically meaningful parts and their spatial
regularity, which we address here. Some other graphics papers also explore regularity, but without
using programs (Mitra et al., 2013; Zhu et al., 2018; Nishida et al., 2018; Li et al., 2017).

Work in the HCI community has also addressed the problem of inferring parametric graphics
primitives from perceptual input. For example, Nishida et al. (2016) proposed to learn to instantiate
procedural primitives for an interactive modeling system. In our work, we instead learn to instantiate
multiple procedural graphics primitives simultaneously, without assistance from a human user.
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Program → Statement; Program
Statement → Draw(Semantics, Shape, Position Params, Geometry Params)
Statement → For(For Params); Program; EndFor
Semantics → semantics 1 | semantics 2 | semantics 3 | ...

Shape → Cuboid | Cylinder | Rectangle | Circle | Line | ...
Position Params → (x, y, z)

Geometry Params → (g1, g2, g3, g4, ...)
For Params → Translation Params | Rotation Params

Translation Params → (times i, orientation u)
Rotation Params → (times i, angle θ, axis a)

Table 1: The domain specific language (DSL) for 3D shapes. Semantics depends on the types of
objects that are modeled, i.e., semantics for vehicle and furniture should be different. For details of
DSL in our experimental setting, please refer to supplementary.

Program synthesis. In the AI literature, Ellis et al. (2018) leveraged symbolic program synthesis
techniques to infer 2D graphics programs from images, extending their earlier work by using neural
nets for faster inference of low-level cues such as strokes (Ellis et al., 2015). Here, we show how a
purely end–to–end network can recover 3D graphics programs from voxels, conceptually relevant
to RobustFill (Devlin et al., 2017), which presents a purely end-to-end neural program synthesizer
for text editing. The very recent SPIRAL system (Ganin et al., 2018) also takes as its goal to learn
structured program–like models from (2D) images. An important distinction from our work here
is that SPIRAL explains an image in terms of paint-like “brush strokes”, whereas we explain 3D
voxels in terms of high-level objects and semantically meaningful parts of objects, like legs or tops.
Other tangential related work on program synthesis includes Balog et al. (2017); Devlin et al. (2017);
Parisotto et al. (2017); Gaunt et al. (2016); Sun et al. (2018a); Liu et al. (2019).

Learning to execute programs. Neural Program Interpreters (NPI) have been extensively studied
for programs that abstract and execute tasks such as sorting, shape manipulation, and grade-school
arithmetic (Reed & De Freitas, 2016; Cai et al., 2017; Bošnjak et al., 2017). In NPI (Reed &
De Freitas, 2016), the key insight is that a program execution trace can be decomposed into pre-
defined operations that are more primitive; and at each step, an NPI learns to predict what operation
to take next depending on the general environment, domain specific state , and previous actions.
Cai et al. (2017) improved the generalization of NPIs by adding recursion. Johnson et al. (2017)
learned to execute programs for visual question and answering. In this paper, we also learn a 3D
shape program executor that renders 3D shapes from programs as a component of our model.

3 3D SHAPE PROGRAMS

In this section, we define the domain-specific language for 3D shapes, as well as the problem of shape
program synthesis.

Table 1 shows our DSL for 3D shape programs. Each shape program consists of a variable number of
program statements. A program statement can be either Draw, which describes a shape primitive as
well as its geometric and semantic attributes, or For, which contains a sub-program and parameters
specifying how the subprogram should be repeatedly executed. The number of arguments for each
program statement varies. We tokenize programs for the purpose of neural network prediction.

Each shape primitive models a semantically-meaningful part of an object. Its geometric attributes
(Table 1: Geometry Params, Position Params) specify the position and orientation of the part. Its
semantic attributes (Table 1: Semantics) specify its relative role within the whole shape (e.g., top,
back, leg). They do not affect the geometry of the primitive; instead, they associate geometric parts
with their semantic meanings conveying how parts can be shared across object categories semantically
and functionally (e.g., a chair and a table may have similar legs).

Our For statement captures high-level regularity across parts. For example, the legs of a table can
be symmetric with respect to particular rotation angles. The horizontal bars of a chair may lay out
regularly with a fixed vertical gap. Each For statement can contain sub-programs, allowing recursive
generation of shape programs.

3



Published as a conference paper at ICLR 2019

draw('Top','Rect',…)
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Figure 2: The core of our 3D shape program generator are two LSTMs. The Block LSTM emits
features for each program block. The Step LSTM takes these features as input and outputs programs
inside each block, which includes either a single drawing statement or compound statements.

The problem of inferring a 3D shape program is defined as follows: predicting a 3D shape program
that reconstructs the input shape when the program is executed. In this paper, we use voxelized
shapes as input with a resolution of 32× 32× 32.

4 INFERRING AND EXECUTING 3D SHAPE PROGRAMS

Our model, called Shape Programs, consists of a program generator and a neural program executor.
The program generator takes a 3D shape as input and outputs a sequence of primitive programs that
describe this 3D shape. The neural program executor takes these programs as input and generates
the corresponding 3D shapes. This allows our model to learn in a self-supervised way by generating
programs from input shapes, executing these programs, and back-propagating the difference between
the generated shapes and the raw input.

4.1 PROGRAM GENERATOR

We model program generation as a sequential prediction problem. We partition full programs into two
types of subprograms, which we call blocks: (1) a single drawing statement describing a semantic
part, e.g. circle top; and (2) compound statements, which are a loop structure that interprets a set of
translated or rotated parts, e.g. four symmetric legs. This part-based, symmetry-aware decomposition
is inspired by human perception (Fleuret et al., 2011).

Our program generator is shown in Figure 2. The core of the program generator consists of two
orthogonal LSTMs. The first one,the Block LSTM, connects sequential blocks. The second one, the
Step LSTM, generates programs for each block. At each block, we first render the shape described
by previous program blocks with a graphics engine. Then, the rendered shape and the raw shape
are combined along the channel dimension and fed into a 3D ConvNet. The Block LSTM takes the
features output by the 3D ConvNet and outputs features of the current block, which are further fed
into the step LSTM to predict the block programs. The reason why we need the step LSTM is that
each block might have a different length (e.g., loop bodies of different sizes).

Given block feature hblk, the Step LSTM predicts a sequence of program tokens, each consisting
of a program id and an argument matrix. The i-th row of the argument matrix serves for the i-th
primitive program. From the LSTM hidden state ht, two decoders generate the output. The softmax
classification probability over program sets is obtained by fprog : RM → RN . The argument matrix
is computed by fparam : RM → RN×K , where N is the total number of program primitives and
K is the maximum possible number of arguments. The feed-forward steps of the Step LSTM are
summarized as

ht = flstm(xt, ht−1), (1)
pt = fprog(ht), at = fparam(ht), (2)

where the pt and at corresponds to the program probability distribution and argument matrix at time
t. After getting the program ID, we obtain its arguments by retrieving the corresponding row in the
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draw('Top','Rect',…) LSTM 3D Deconv

for (…): 

for (…):

draw('Leg','Cub',…)

Program Executor

LSTM

Program Executor

3D Deconv

(a) execute a single drawing statement (b) execute a compound statement

Figure 3: The learned program executor consits of an LSTM, which encodes multiple steps of
programs, and a subsequent 3D DeconvNet which decodes the features to a 3D shape.

argument matrix. At each time step, the input of the Step LSTM xt is the embedding of the output in
the previous step. For the first step, the block feature hblk is used instead.

We pretrain our program generator on a synthetic dataset with a few pre-defined simple program
templates. The set of all templates for tables are shown in Section A1. These templates are much
simpler than the actual shapes. The generator is trained to predict the program token and regress
the corresponding arguments via the following loss lgen =

∑
b,i wplcls(pb,i, p̂b,i)) +walreg(ab,i, âb,i),

where lcls(pb,i, p̂b,i)) and lreg(ab,i, âb,i) are the cross-entropy loss of program ID classification and
the L-2 loss of argument regression, in step i of block b, respectively. The weights wp and wa balance
the losses between classification and regression.

4.2 NEURAL PROGRAM EXECUTOR

We propose to learn a neural program executor, an approximate but differentiable graphics engine,
which generates a shape from a program. The program executor can then be used for training the
program generator by back-propagating gradients. An alternative is to design a graphics engine that
explicitly executes a symbolic program to produce a voxelized 3D shape. Certain high-level program
commands, such as For statements, will make the executor non-differentiable. Our use of a neural,
differentiable executor enables gradient-based fine-tuning of the program synthesizer on unannotated
shapes, which allows the model to generalize effectively to novel shapes outside training categories.

Learning to execute a long sequence of programs is difficult, since an executor has to learn to interpret
not only single statements but also complex combinations of multiple statements. We decompose
the problem by learning an executor that executes programs at the block level, e.g., either a single
drawing statement or a compound statements. Afterwards, we integrate these block-level shapes by
max-pooling to form the shape corresponding to a long sequence of programs. Our neural program
executor includes an LSTM followed by a deconv CNN, as shown in Figure 3. The LSTM aggregates
the block-level program into a fixed-length representation. The following deconv CNN takes this
representation and generates the desired shape.

To train the program executor, we synthesize large amounts of block-level programs and their
corresponding shapes. During training, we minimize the sum of the weighted binary cross-entropy
losses over all voxels via

L =
∑
v∈V
−w1yv log ŷv − w0(1− yv) log(1− ŷv), (1)

where v is a single voxel of the whole voxel space V , yv and ŷv are the ground truth and prediction,
respectively, while w0 and w1 balance the losses between vacant and occupied voxels. This training
leverages only synthetic data, not annotated shape and program pairs, which is a blessing of our
disentangled representation.

4.3 GUIDED ADAPTATION

A program generator trained only on a synthetic dataset does not generalize well to real-world datasets.
With the learned differentiable neural program executor, we can adapt our model to other datasets such
as ShapeNet, where program-level supervision is not available. We execute the predicted program
by the learned neural program executor and compute the reconstruction loss between the generated
shape and the input. Afterwards, the program generator is updated by the gradient back-propagated
from the learned program executor, whose weights are frozen.

This adaptation is guided by the learned program executor and therefore called guided adaptation
(GA), and is shown in Figure 4. Given an input shape, the program generator first outputs multiple
block programs. Each block is interpreted as 3D shapes by the program executor. A max-pooling
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Figure 4: Given an input 3D shape, the neural program executor executes the generated programs.
Errors between the rendered shape and the raw input are back-propagated.

operation over these block-level shapes generates the reconstructed shape. The use of max-pooling
also enables our executor to handle programs of variable length. Vacant tokens are also executed
and pooled. Gradients can then propagate through vacant tokens and the model can learn to add new
program primitives accordingly. Here, the loss for Guided Adaptation is the summation of the binary
cross-entropy loss over all voxels.

5 EXPERIMENTS

We present program generation and shape reconstruction results on three datasets: our synthetic
dataset, ShapeNet (Chang et al., 2015), and Pix3D (Sun et al., 2018b).

Setup. In our experiments, we use a single model to predict programs for multiple categories. Our
model is first pretrained on the synthetic dataset and subsequently adapted to target dataset such as
ShapeNet and Pix3D under the guidance of the neural program executor. All components of our
model are trained with Adam (Kingma & Ba, 2015).

5.1 EVALUATION ON THE SYNTHETIC DATASET

Program generator. We first pre-train our program generator on our synthetic dataset with simple
templates. The synthetic training set includes 100,000 chairs and 100,000 tables. The generator is
evaluated on 5,000 chairs and tables. More than 99.9% of the programs are accurately predicted. The
shapes rendered by the predicted programs have an average IoU of 0.991 with the input shapes. This
high accuracy is due to the simplicity of the synthetic dataset.

Program executor. Our program executor is trained on 500,000 pairs of synthetic block programs
and corresponding shapes, and tested on 30,000 pairs. The IoU between the shapes rendered by
the executor and the ground truth is 0.93 for a single drawing statement and 0.88 for compound
statements. This shows the neural program executor is a good approximation of the graphics engine.

5.2 GUIDED ADAPTATION ON SHAPENET

Setup. We validate the effectiveness of guided adaptation by testing our model on unseen examples
from ShapeNet. For both tables and chairs, we randomly select 1,000 shapes for evaluation and all
the remaining ones for guided adaptation.

Quantitative results. After our model generates programs from input shapes, we execute these
programs with a graphics engine and measure the reconstruction quality. Evaluation metrics include
IoU, Chamfer distance (CD) (Barrow et al., 1977), and Earth Mover’s distance (EMD) (Rubner et al.,
2000). While the pre-trained model achieves 0.99 IoU on the synthetic dataset, the IoU drops below
0.5 on ShapeNet, showing the significant disparity between these two domains. As shown in Table 2,
all evaluation metrics suggests improvement after guided adaptation. For example, the IoUs of table
and chair increase by 0.104 and 0.094, respectively. We compare our method with Tulsiani et al.
(2017), which describes shapes with a set of primitives; and CSGNet (Sharma et al., 2018), which
learns to describe shapes by applying arithmetic over primitives. For CSGNet, we evaluate two
variants: first, CSGNet-original, where we directly test the model released by the original authors;
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Models IoU ↑ CD ↓ EMD ↓
table chair table chair table chair

CSGNet-original 0.111 0.154 0.216 0.175 0.205 0.177

Tulsiani et al. (2017) 0.357 0.406 0.083 0.079 0.073 0.072
CSGNet-augmented 0.406 0.365 0.072 0.077 0.069 0.076
Nearest Neighbour 0.445 0.389 0.083 0.084 0.084 0.084

Shape Programs w/o GA 0.487 0.422 0.067 0.072 0.063 0.072
Shape Programs 0.591 0.516 0.058 0.063 0.056 0.060

Table 2: Shape reconstruction results on ShapeNet, evaluated in intersection over union (IoU, higher
is better), Chamfer distance (CD, lower is better), and Earth Mover’s distance (EMD, lower is better).
Our model outperforms the baselines.

second, CSGNet-augmented, where we retrain CSGNet on our dataset with the additional shape
primitives we introduced. We also introduce a nearest neighbor baseline, where we use Hamming
distance to search for a nearest neighbour from the training set for each testing sample.

Our model without guided adaptation outperforms Tulsiani et al. (2017) and CSGNet by a margin,
showing the benefit of capturing regularities such as symmetry and translation. The NN baseline
suggests that simply memorizing the training set does not generalize well to test shapes. With
the learned neural program executor, we try to directly train our program generator on ShapeNet
without any pre-training. This trial failed, possibly because of the extremely huge and complicated
combinatorial space of programs. However, the initial programs for pre-training can be very simple:
e.g., 10 simple table templates (Fig. A1) are sufficient to initialize the model, which later achieves
good performance under execution-guided adaptation.

Qualitative results. Figure 5 shows some program generation and shape reconstruction results for
tables and chairs, respectively. The input shapes can be noisy and contain components that are not
covered by templates in our synthetic dataset. After guided adaption, our model is able to extract
more meaningful programs and reconstruct the input shape reasonably well.

Our model can be adapted to either add or delete programs, as shown in Figure 5. In (a), we observe
an addition of translation describing the armrests. In (b) the “cylinder support” program is removed
and a nested translation is added to describe four legs. In (c) and (d), the addition of “Horizontal bar”
and “Rectangle layer” leads to more accurate representation. Improvements utilizing modifications
to compound programs are not restricted to translations, but can also be observed in rotations, e.g.,
the times of rotation in (a) is increased from 4 to 5. We also notice new templates emerges after
adaptation, e.g., tables in (c) and (d) are not in the synthetic dataset (check the synthetic templates for
tables in supplementary). These changes are significant because it indicates the generator can map
complex, non-linear relationships to the program space.

5.3 STABILITY AND CONNECTIVITY MEASUREMENT

Stability and connectivity are necessary for the functioning of many real-world shapes. This is difficult
to capture using purely low-level primitives, but are better suited to our program representations.

We define a shape as stable if its center of mass falls within the convex hull of its ground contacts, and
we define a shape as connected if all voxels form one connected component. In Table 3 we compare
our model against Tulsiani et al. (2017) and observe significant improvements in the stability of shapes
produced by our model when compared to this baseline. This is likely because our model is able to
represent multiple identical objects by utilizing translations and rotations. Before GA, our model
produces chairs with lower connectivity, but we observe significant improvements with GA. This can
be explained by the significant diversity in the ShapeNet dataset under the “chair” class. However,
the improvements with GA also demonstrate an ability for our model to generalize. Measured by
the percentage of produced shapes that are stable and connected, our model gets significantly better
results, and continues to improve with guided adaptation.
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draw('HoriBar','Cub',P=(-5,-6,-7)

+(i×u),G=(2,12,4))

draw('Top','Rect',P=(4,0,0),G=(2,7,12))

for(i<2,'Trans',u=(0,0,10))
draw('Leg','Cub',P=(-6,-1,-6)

+(i×u),G=(10,1,2))

for(i<2,'Trans',u=(0,0,13))
draw('HoriBar','Cub',P=(-5,-6,-8)

+(i×u),G=(1,12,2))

draw('HoriBar','Cub',P=(-5,0,-8),G=(2,2,15))

Reconstruction before adaption

Reconstruction after adaption
Input

Figure 5: The program generation for ShapeNet chairs and tables. For each shape, the first and second
rows represent results before and after guided adaptation. Best viewed in color.

Models Stable (%) Conn. (%) Stable & Conn. (%)

table chair table chair table chair

Tulsiani et al. (2017) 36.7 31.3 37.1 68.9 15.4 19.6

Shape Programs w/o GA 94.7 95.1 76.6 54.2 73.7 51.6
Shape Programs 97.0 96.5 78.4 68.5 77.0 66.0
Ground Truth 98.9 97.6 98.8 97.8 97.7 95.5

Table 3: Measurement of stability and connectivity. Our model is able to capture shape regularity such
as symmetry. Therefore, shapes represented by our programs are more stable and better connected.

5.4 GENERALIZATION ON OTHER SHAPES

While our program generator is pre-trained only on synthetic chairs and tables, generalization on
other shape categories is desirable. We further demonstrate that with guided adaptation, our program
generator can be transferred to other unseen categories.
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Models IoU ↑ CD ↓
bed sofa cabinet bench bed sofa cabinet bench

Shape Programs w/o GA 0.234 0.296 0.251 0.176 0.126 0.103 0.104 0.098
Shape Programs 0.367 0.597 0.478 0.418 0.096 0.067 0.092 0.059

Table 4: Shape reconstruction results on unseen categories. Results with or without guided adaptation
in intersection over union (IoU, higher is better) and Chamfer distance (CD, lower is better).

w/o GAGround truth w/ GAw/o GAGround truth w/ GA w/o GAGround truth w/ GA

B
e
n
ch

B
e
n
ch

So
fa

B
ed

C
ab
in
et

So
fa

Figure 6: ShapeNet objects from unseen categories reconstructed with shape programs before and
after guided adaptation. Shape Programs can learn to adapt and explain objects from novel classes.

MarrNetInput Image
MarrNet + 

Shape Programs (Ours) Ground Truth MarrNetInput Image
MarrNet + 

Shape Programs (Ours) Ground Truth

Figure 7: 3D reconstruction results on Pix3D dataset. MarrNet generates fragmentary shapes and our
model further smooths and completes such shapes.

We consider Bed, Bench, Cabinet, and Sofa, which share similar semantics with table and chair but
are unseen during pre-training. We split 80% shapes of each category for guided adaptation and the
remaining for evaluation. Table 4 suggests the pre-trained model performs poorly for these unseen
shapes but its performance improves with this unsupervised guided adaptation. The IoU of bed
improves from 0.23 to 0.37, sofa from 0.30 to 0.60, cabinet from 0.25 to 0.48, and bench from 0.18
to 0.42. This clearly illustrates the generalization ability of our framework. Visualized examples are
show in Figure 6.

5.5 SHAPE COMPLETION AND SMOOTHING BY PROGRAMS

One natural application of our model is to complete and smooth fragmentary shapes reconstructed
from 2D images. We separately train a MarrNet (Wu et al., 2017) model for chairs and tables on
ShapeNet, and then reconstruct 3D shapes from 2D images on the Pix3D dataset. As shown in
Figure 7, MarrNet can generate fragmentary shapes, which are then fed into our model to generate
programs. These programs are executed by the graphics engine to produce a smooth and complete
shape. For instance, our model can complete the legs of chairs and tables, as shown in Figure 7.

While stacking our model on top of MarrNet does not change the IoU of 3D reconstruction, our
model produces more visually appealing and human-perceptible results. A user study on AMT shows
that 78.9% of the participant responses prefer our results rather than MarrNet’s.

6 DISCUSSION

We have introduced 3D shape programs as a new shape representation. We have also proposed a
model for inferring shape programs, which combines a neural program synthesizer and a neural
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(a) Manipulation of dimension 27

(b) Manipulation of dimension 25

(c) Manipulation of dimension 41

Figure 8: We visualize the effect of manipulating individual dimensions in the intermediate represen-
tation of neural program executor. For example, dimension 27 corresponds to the height of primitives,
dimension 25 to the radius of primitives, and dimension 41 to the times of primitive repetition.

executor. Experiments on ShapeNet show that our model successfully explains shapes as programs
and generalizes to shapes outside training categories. Further experiments on Pix3D show our model
can be extended to infer shape programs and reconstruct 3D shapes directly from color images. We
now discuss key design choices and future work.

Analyzing the neural program executor. We look deep into the intermediate representation of
the neural program executor, which is a 64-dimensional vector output by the LSTM (see Figure 3).
We manipulate individual dimensions and visualize the generated voxels. Figure 8 shows that these
dimensions capture interpretable geometric features (e.g., height, radius, and number of repetitions).

Design of the DSL. Our design of the DSL for shape programs makes certain semantic commit-
ments. A DSL with these semantics has advantages and disadvantages: it naturally supports semantic
correspondences across shapes and enables better in-class reconstructions; on the other hand, it may
limit the ability to generalize to shapes outside training classes. Our current instantiation focuses
on the semantics of furniture (a superclass, whose subclasses share similar semantics). Within this
superclass, our model generalizes well: trained on chairs and tables, it generalizes to new furniture
categories such as beds. In future work, we are interested in learning a library of shape primitives
directly from data, which will allow our approach to adapt automatically to new superclasses or
domains of shape.

Structure search vs. amortized inference. For our program synthesis task, we use neural nets
for amortized inference rather than structure search, due to the large search space and our desire to
return a shape interpretation nearly instantaneously, effectively trading neural net training time for
fast inference at test time. Our model takes 5 ms to infer a shape program with a Titan X GPU. We
also considered various possible approaches for structured search over the space of shape programs,
but decided that these would most likely be too our slow for our goals.
One approach to structured search is constraint solving. Ellis et al. (2015) used the performant Z3 SMT
solver (De Moura & Bjørner, 2008) to infer 2D graphics programs, taking 5-20 minutes for problems
arguably simpler than our 3D shape programs. Other approaches could be based on stochastic search,
such as MCMC in the space of programs. For the related problem of inverse graphics from 2D
images, MCMC, like constraint solving, takes too long for perception at a glance (Kulkarni et al.,
2015b). Efficient integration of discrete search and amortized inference, however, is a promising
future research direction.

Acknowledgments. We thank Keyulu Xu and Xiuming Zhang for insightful discussions and
anonymous reviewers for their feedback. This work is supported by the Center for Brains, Minds and
Machines (NSF #1231216), NSF #1447476, ONR MURI N00014-16-1-2007, and Facebook.
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A.1 DEFINED PROGRAMS

The details of semantics and shape primitives in our experimental setting for furniture are shown
in Table 5. Due to the semantic nature of objects, while a few semantics are category specific, e.g.,
“ChairBeam”, other semantics are shared across different shape categories, e.g., “Leg” and “Top”.

Semantics

Leg Chair leg, table leg, etc. Usually long and used jointly for support

Top Seat top, table top, etc. Usually a broad and flat surface

Layer Shelf embedded in table, cabinet shelf etc. Usually a flat surface
between other similar shapes

Support Chair support, table support etc. A monolithic object used to
raise things off the ground

Base Base of an sofa, table etc. Usually a flat surface on the ground to
help with stability

Sideboard Sideboard of a cabinet, table etc. A vertical, flat surface on the
bottom half of an object

Horizontal Bar Horizontal bar of a chair etc. A thin bar used for structural
integrity

Vertical Board Vertical board of a arm rest etc. A vertical, flat surface used by
humans for arm support

Locker Table drawer etc. A boxy object used to put things in

Back Chair back, Sofa back etc. A surface used for resting backs on

Back support Office chair back support beam etc. A beam used to support a
back rest

ChairBeam Arm rest support beam in chairs, benches etc. A long object used
to support an arm rest

Shapes

Cylinder (Cyl) P = (x, y, z), G = (t, r), draw a cylinder at (x, y, z) with sizes
(t, r)

Cuboid (Cub) P = (x, y, z), G = (t, r1, r2, [ang]), draw a cuboid at (x, y, z)
with sizes (t, r1, r2) and optional ang of tilt along front/back

Circle (Cir) P = (x, y, z), G = (t, r), draw a circle at (x, y, z) with sizes
(t, r), t is usually small

Square (Sqr) P = (x, y, z), G = (t, r), draw a square at (x, y, z) with sizes
(t, r), t is usually small

Rectangle (Rect) P = (x, y, z), G = (t, r1, r2), draw a rectangle at (x, y, z) with
sizes (t, r1, r2), t is usually small

Line (Line) P = (x1, y1, z1), G = (x2, y2, z2), draw a line from P to G

Table 5: The list of semantics and shapes, as well as associated parameters used by our model

A.2 ARCHITECTURE DETAILS

Program Generator. The program executor contains a 3D ConvNet and two LSTMS. (1) 3D
ConvNet. This 3D ConvNet is the first part of the program generator model. It consists of 8 3D
convolutional layers. The kernel size of each layer is 3 except for the first one whose kernel size is 5.
The number of output channels are (8,16,16,32,32,64,64,64), respectively. The output of the last layer
is averaged over the spatial resolution, which gives a 64-dimension embedding. (2) Block LSTM and
Step LSTM. These two LSTMs share similar structure. Both are one-layer LSTMs. The dimensions
of the input and hidden state are both 64.
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(a) 10 templates for synthetic dataset (b) Raw and reconstructed shapes on ShapeNeT

Raw

Rec

Figure A1: (a) shows random samples from all of our 10 table templates for synthetic dataset
(b) shows raw and reconstructed tables on ShapeNet

Program Executor. The program executor contains an LSTM and a 3D DeConvNet. (1) LSTM.
This LSTM aggregates a block-level programs into a 64-dimensional vector. The dimension of the
hidden state is also 64. The input of each time step is the concatenation of category distribution over
programs and the corresponding parameters retrieved from the parameter matrix. (2) 3D DeConvNet.
It consists of 7 layers. TransposedConv layer with kernel size 4 and Conv layer with kernel size 3 are
alternating. The number of output channels are (64, 64, 16, 16, 4, 4, 2), respectively. The output of
the last layer is fed into a sigmoid function to generate the 3D voxel shape.

End-to-end differentiability. The end-to-end differentiability is obtained via our design of the
neural program executor. The output of the program inference model is actually continuous. A real
execution engine (not the neural executor) actually contains two steps: (1) discretize such output, and
(2) execute the discretized program to generate the voxel. Our neural executor is learned to jointly
approximate both steps, thus the whole pipeline can be differentiable in an end-to-end manner.

A.3 SYNTHETIC TEMPLATES V.S. SHAPENET

ShapeNet was proposed to be the ImageNet of shapes; it is therefore highly diverse and intrinsically
challenging. Our synthetic dataset were designed to provide minimal, simple guidance to the network.
In Figure A1, (a) shows sampled shapes from all of our 10 table templates, while (b) shows the
ground truth and reconstructed tables in ShapeNet, which are siginificantly more complex. Such
disparity of complexity explains why we saw a dramatic drop of IoU when we directly tested on
ShapeNet with model only pretrained on synthetic dataset. Our guided adaptation further adapt the
pre-trained model.

A.4 ADDITIONAL RESULTS

In Figure A2 through Figure A8, we show the generated shape and programs using a network that
is only pretrained jointly on synthetic “table” and “chair” objects, and a network that is pretrained
then further enhanced by guided adaptation on ShapeNet data. Figure A2 and Figure A3 correspond
to “chairs”, Figure A4 to “tables”, Figure A5 to “benches”, Figure A6 to “couches”, Figure A7 to
“cabinets”, and Figure A8 to “beds”. In Figure A2, Figure A3, and Figure A4, even though “chair”
and “table” have been seen in the synthetic dataset, we still note improvements in program inference
and shape reconstruction on ShapeNet after guided adaptation. This is because our synthetic data
is simpler than ShapeNet data. When directly using a model pretrained on synthetic “chairs” and
“tables” to other classes, it is not surprised some shapes are interpreted as tables or chairs. However,
such mispredictions dramatically drop after our guided adaptation.
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(a) (b)

(f)

draw('Top','Rect',P=(5,0,0),G=(1,8,10))

for(i<2,'Trans',u=(0,0,16))

draw('Sideboard', 'Rect',P=(-8,1,-8)+ 

(i×u),G=(13,8,1))

draw('Layer','Rect',P=(-5,0,0),G=(1,7,8))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(0,0,0),G=(2,8,9))

for(i<2,'Trans',u1=(0,0,14))

for(j<2,'Trans',u2=(0,12,0))

draw('Leg','Cub',P=(-11,-7,-8)

+(j×u2)+(i×u1),G=(14,3,1))

draw('TiltBack','Cub',P=(1,5,-7),

G=(10,2,15,11))

for(i<2,'Trans',u=(0,0,15))

draw('HoriBar','Cub',P=(5,-8,-9)

+(i×u),G=(2,14,2))

draw('Top','Sqr',P=(1,0,0),G=(3,6))

for(i<2,'Trans',u1=(0,0,7))

for(j<2,'Trans',u2=(0,9,0))

draw('Leg','Cub',P=(-11,-6,-5)

+(j×u2)+(i×u1),G=(14,2,3))

draw('Base','Sqr',P=(-8,0,0),G=(2,5))

draw('TiltBack','Cub',P=(2,3,-5),G=(10,3,10,6))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Sqr',P=(-3,0,0),G=(3,5))

for(i<2,'Trans',u1=(0,0,7))

for(j<2,'Trans',u2=(0,9,0))

draw('Leg','Cub',P=(-11,-6,-5) 

+(j×u2)+(i×u1),G=(13,2,3))

draw('TiltBack','Cub',P=(1,2,-5),G=(10,3,10,6))

for(i<2,'Trans',u=(0,0,7))

draw('ChairBeam','Cub',P=(1,-6,-5)

+(i×u),G=(3,1,2))

for(i<2,'Trans',u=(0,0,6))

draw('HoriBar','Cub',P=(3,-6,-5)+(i×u),G=(1,9,3))

draw('Top','Cir',P=(-1,-1,0),G=(2,8))

draw('Support','Cyl',P=(-11,-1,0),G=(10,2))

for(i<4,'Rot', θrot=90,ax=(-12,-1,0))

draw('Base','Line',P=(-12,-1,0),G=(-12,-7,-4), 

θrot×i,ax)

draw('TiltBack','Cub',P=(0,3,-5),G=(12,2,11,5))

for(i<2,'Trans',u=(0,0,13))

draw('ChairBeam','Cub',P=(0,-3,-7 +(i×u),G=(3,1,1))

for(i<2,'Trans',u=(0,0,13))

draw('HoriBar','Cub',P=(3,-3,-7)

+(i×u),,G=(2,7,1))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Cir',P=(-2,-1,0),G=(2,7))

draw('Support','Cyl',P=(-11,-1,0),G=(11,1))

for(i<5,'Rot',θrot=72,ax=(-11,-1,0))

draw('Base','Line',P=(-11,-1,0),G=(-11,-7,-4),

θrot×i,ax)

draw('TiltBack','Cub',P=(-1,3,-5),G=(12,2,10,5))

for(i<2,'Trans',u=(0,0,12))

draw('ChairBeam','Cub',P=(0,-2,-7)

+(i×u),G=(4,2,2))

for(i<2,'Trans',u=(0,0,12))

draw('HoriBar','Cub',P=(4,-2,-7)

+(i×u),G=(2,6,2))

(e)

draw('Top','Rect',P=(5,-1,0),G=(1,11,12))

for(i<2,'Trans',u1=(0,0,22))

for(j<2,'Trans',u2=(0,20,0))

draw('Leg','Cub',P=(-7,-11,-12) 

+(j×u2)+(i×u1),G=(14,2,1))

for(i<2,'Trans',u=(0,0,23))

draw('HoriBar','Cub',P=(-6,-10,-12) 

+(i×u),G=(1,21,1))

draw('HoriBar','Cub',P=(-5,-2,-13)

+(i×u),G=(1,3,25))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-1,-1,0),G=(2,10,11))

for(i<2,'Trans',u1=(0,0,22))

for(j<2,'Trans',u2=(0,19,0))

draw('Leg','Cub',P=(-11,-11,-12) 

+(j×u2)+(i×u1),G=(12,2,2))

for(i<2,'Trans',u1=(0,0,22))

draw('HoriBar','Cub',P=(-10,-11,-12) 

+(i×u),G=(2,20,2))

draw('BackSupp','Cub',P=(1,6,-4),G=(3,1,8))

draw('TiltBack','Cub',P=(3,6,-12),G=(7,2,23,30))

for(i<2,'Trans',u=(0,0,18))

draw('ChairBeam','Cub',P=(1,-11,-10) 

+(i×u),G=(4,1,3))

for(i<2,'Trans',u=(0,0,18))

draw('HoriBar','Cub',P=(5,-11,-11)

+(i×u),G=(2,18,3))

draw('Top','Cir',P=(3,0,0),G=(3,12))

for(i<2,'Trans',u1=(0,0,16))

for(j<2,'Trans',u2=(0,16,0))

draw('Leg','Cub',P=(-6,-9,-9)

+(j×u2)+(i×u1),G=(13,2,2))

for(i<2,'Trans',u=(0,0,16))

draw('HoriBar','Cub',P=(-5,-10,-9)

+(i×u),G=(1,19,2))

draw('HoriBar','Cub',P=(-4,-2,-9),G=(1,3,18))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Cir',P=(-1,-1,0),G=(3,11))

for(i<2,'Trans',u1=(0,0,15))

for(j<2,'Trans',u2=(0,15,0))

draw('Leg','Cub',P=(-11,-9,-8)

+(j×u2)+(i×u1),G=(13,1,1))

for(i<2,'Trans',u=(0,0,15))

draw('HoriBar','Cub',P=(-11,-10,-8)

+(i×u),G=(1,17,1))

draw('TiltBack','Cub',P=(2,5,-9),G=(8,3,17,21))

for(i<2,'Trans',u=(0,0,18))

draw('Sideboard', 'Rect',P=(3,-1,-10) 

+(i×u),G=(5,7,2))

(c) (d)

Reconstruction before adaption

Input Reconstruction after adaption

draw('Top',‘Rect', P=(-5,-2,0),G=(4,7,9))

draw('Support','Cyl',P=(-11,-2,0),G=(10,2))

draw('Base',‘Cir',P=(-12,2,0),G=(1,6))

draw('TiltBack','Cub',P=(-2,4,-8),G=(13,3,15,17)

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(-2,0,11)

+(i×u),G=(4,5,1))

draw('Top',‘Rect',P=(-6,-1,0),G=(5,8,9))

draw('Support','Cyl',P=(-11,-2,0),G=(10,2))

for(i<4,'Rot',θrot=90,ax=(-12,-2,0))

draw('Base','Line',P=(-12,-2,0),G=(-12,-9,-7),

θrot×i,ax)

draw('TiltBack','Cub',P=(-2,3,-

7),G=(13,4,15,17))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(-2,0,-12)

+(i×u),G=(3,6,3))

Figure A2: (a) to (f) show the generated shapes and programs for ShapeNet chairs
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(a) (b)

(c) (d)

(f)(e)

draw('Top','Rect',P=(2,0,0),G=(4,9,11))

for(i<2,'Trans',u1=(0,0,15))

for(j<2,'Trans',u2=(0,16,0))

draw('Leg','Cub',P=(-8,-10,-9) 

+(j×u2)+(i×u1),G=(15,2,3))

for(i<2,'Trans',u=(0,0,16))

draw('HoriBar','Cub',P=(-8,-10,-9) 

+(i×u),G=(1,19,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-3,0,0),G=(5,9,10))

for(i<2,'Trans',u1=(0,0,13))

for(j<2,'Trans',u2=(0,17,0))

draw('Leg','Cub',P=(-12,-10,-8) 

+(j×u2)+(i×u1),G=(14,1,2))

for(i<2,'Trans',u=(0,0,13))

draw('HoriBar','Cub',P=(-11,-10,-7) 

+(i×u),G=(2,18,2))

draw('TiltBack','Cub',P=(2,4,-7),G=(9,3,14,24))

for(i<2,'Trans',u1=(0,0,18))

draw('Sideboard', 'Rect',P=(2,-3,-10)

+(i×u),G=(3,5,2))

draw('Top','Rect',P=(-4,-2,0),G=(4,7,8))

draw('Support','Cyl',P=(-11,-2,0),G=(10,2))

for(i<2,'Trans',u=(0,0,10))

draw('HoriBar','Cub',P=(-11,-7,-6)

+(i×u), G=(1,12,2))

draw('TiltBack','Cub',P=(0,4,-8),G=(12,3,16,9))

for(i<2,'Trans',u=(0,0,16))

draw('Sideboard', 'Rect',P=(-1,-2,-9) 

+(i×u),G=(2,5,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Cir',P=(-5,-2,0),G=(4,8))

draw('Support','Cyl',P=(-11,-1,0),G=(9,1))

for(i<4,'Rot',θrot=90,ax=(-11,-2,0))

draw('Base','Line',P=(-11,-2,0),G=(-11,-7,-6), 

θrot×i,ax)

draw('TiltBack','Cub',P=(-2,3,-8),G=(12,3,15,14))

for(i<2,'Trans',u=(0,0,15))

draw('Sideboard', 'Rect',P=(-1,-1,-

8)+(i×u),G=(3,5,2))

draw('Top','Rect',P=(-2,-2,0),G=(1,8,10))

draw('VertBoard',P=(-10,-10,-10),G=(11,1,21))

draw('Base','Sqr',P=(-10,-1,0),G=(1,9))

draw('TiltBack','Cub',P=(1,6,-7),G=(10,1,14,17)

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-1,-2,0),G=(2,7,9))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(-11,-2,-11) 

+(i×u),G=(11,9,3))

draw('Base','Sqr',P=(-10,-2,0),G=(1,8))

draw('TiltBack','Cub',P=(0,5,-7),G=(10,1,13,17))

draw('Top','Rect',P=(3,0,0),G=(3,12,13))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(-7,0,-11) 

+(i×u),G=(10,10,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-6,0,0),G=(6,10,11))

for(i<2,'Trans',u1=(0,0,18))

for(j<2,'Trans',u2=(0,13,0))

draw('Leg','Cub',P=(-11,-9,-11) 

+(j×u2)+(i×u1),G=(11,2,2))

draw('TiltBack','Cub',P=(0,5,-10),G=(10,3,20,6))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(1,-1,-11)

+(i×u),G=(6,9,1))

draw('Top','Rect',P=(-2,-1,0),G=(4,6,8))

draw('Support','Cyl',P=(-11,-1,0),G=(12,3))

for(i<4,'Rot',θrot=90,ax=(-12,-2,0))

draw('Base','Line',P=(-12,-2,0),G=(-12,-7,-5),

θrot×i,ax)

draw('TiltBack','Cub',P=(0,4,-7),G=(11,3,13,10))

for(i<2,'Trans',u=(0,0,14))

draw('ChairBeam','Cub',P=(1,-6,-8)+(i×u),G=(2,1,2))

for(i<2,'Trans',u=(0,0,14))

draw('HoriBar','Cub',P=(3,-6,-8)+(i×u),G=(1,9,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-3,-1,0),G=(4,6,6))

draw('Support','Cyl',P=(-11,-1,0),G=(11,2))

for(i<5,'Rot',θrot=72,ax=(-11,-2,0))

draw('Base','Line',P=(-11,-2,0),G=(-12,-8,-4),

θrot×i,ax)

draw('TiltBack','Cub',P=(0,3,-6),G=(11,3,12,10))

for(i<2,'Trans',u=(0,0,13))

draw('ChairBeam','Cub',P=(1,-5,-7)+(i×u),G=(3,1,2))

for(i<2,'Trans',u=(0,0,13))

draw('HoriBar','Cub',P=(3,-4,-7)+(i×u),G=(2,9,2))

draw('Top','Rect',P=(2,-1,0),G=(5,9,11))

draw('Support','Cyl',P=(-8,-2,0),G=(13,5))

Input

Reconstruction before adaption

Reconstruction after adaption

draw('Top','Cir',P=(-5,-2,0),G=(5,10))

for(i<2,'Trans',u1=(0,0,12))

for(j<2,'Trans',u2=(0,14,0))

draw('Leg','Cub',P=(-10,-8,-8)

+(j×u2)+(i×u1),G=(11,2,3))

draw('TiltBack','Cub',P=(0,3,-8),G=(10,3,15,22))

for(i<2,'Trans',u=(0,0,18))

draw('Sideboard', 'Rect',P=(1,0,-10)

+(i×u),G=(5,5,2))

Figure A3: (a) to (f) show the generated shapes and programs for ShapeNet chairs
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(a) (b)

(c) (d)

(f)(e)

draw('Top','Sqr',P=(0,-1,0),G=(2,5))

draw('Support','Cyl',P=(-13,0,0),G=(16,2))

for(i<5,'Rot',θrot=72,ax=(-13,-1,0))

draw('Base','Line',P=(-13,-1,0),G=(-15,-5,-5),

θrot×i,ax)

draw('BackSupp','Cub',P=(1,2,-2),G=(4,1,3))

draw('TiltBack','Cub',P=(4,1,-4),G=(10,2,8,11))

Input

Reconstruction before adaption

Reconstruction after adaption

draw('Top','Sqr',P=(9,0,0),G=(1,5))

draw('Support','Cyl',P=(-11,0,0),G=(22,2))

draw('Base','Sqr',P=(-12,0,0),G=(2,5))

draw('Locker','Cub',P=(-4,-3,-9),G=(10,5,2))

draw('Top','Rect',P=(-6,-1,0),G=(4,5,8))

draw('VertBoard',P=(-14,-5,-10),G=(18,2,20))

draw('Layer','Rect',P=(-5,0,0),G=(2,3,11))

draw('Layer','Rect',P=(-2,0,0),G=(3,2,10))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(4,0,0),G=(4,3,12))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(-9,0,-12)

+(i×u),G=(12,3,2))

draw('Layer','Rect',P=(-8,0,0),G=(3,3,11))

draw('Locker','Cub',P=(-8,-3,-7),G=(12,5,4))

draw('Top','Cir',P=(9,0,0),G=(2,13))

draw('Support','Cyl',P=(-11,0,0),G=(23,1))

for(i<5,'Rot',θrot=72,ax=(-11,0,0))

draw('Base','Line',P=(-11,0,0),G=(-11,-8,-5),

θrot×i,ax)

Input

Reconstruction before adaption

Reconstruction after adaption

draw('Top','Sqr',P=(10,0,0),G=(1,11))

draw('Support','Cyl',P=(-11,0,0),G=(22,2))

for(i<4,'Rot',θrot=90,ax=(-11,0,0))

draw('Base','Line',P=(-11,0,0),G=(-11,0,-10),

θrot×i,ax)

draw('Top','Rect',P=(4,0,0),G=(2,10,11))

for(i<2,'Trans',u1=(0,0,11))

for(j<2,'Trans',u2=(0,13,0))

draw('Leg','Cub',P=(-6,-8,-7) 

+(j×u2)+(i×u1),G=(13,2,3))

for(i<2,'Trans',u=(0,0,11))

draw('HoriBar','Cub',P=(-7,-7,-6)

+(i×u),G=(2,13,2))

draw('HoriBar','Cub',P=(-6,2,-7),G=(2,2,14))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(4,0,0),G=(2,10,12))

for(i<2,'Trans',u1=(0,0,12))

for(j<2,'Trans',u2=(0,10,0))

draw('Leg','Cub',P=(-6,-6,-7)

+(j×u2)+(i×u1),G=(12,2,2))

for(i<2,'Trans',u=(0,0,12))

draw('HoriBar','Cub',P=(-5,-8,-7)

+(i×u),G=(2,16,2))

draw('HoriBar','Cub',P=(-6,-1,-7),G=(2,2,14))

draw('Top','Rect',P=(0,0,0),G=(3,5,10))

for(i<2,'Trans',u=(0,0,21))

draw('Leg','Cub',P=(-8,-5,-12)+(i×u),G=(10,2,2))

for(i<2,'Trans',u=(0,1,21))

draw('HoriBar','Cub',P=(-8,-5,-11)

+(i×u),G=(1,8,2))

for(i<2,'Trans',u1=(0,0,20))

draw('HoriBar','Cub',P=(-3,-5,-11)

+(i×u),G=(1,8,3))

draw('HoriBar','Cub',P=(-3,4,-12),G=(1,1,23))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(3,0,0),G=(2,4,12))

for(i<2,'Trans',u=(0,0,22))

draw('Sideboard', 'Rect',P=(-5,0,-12)

+(i×u),G=(7,4,2))

draw('VertBoard',P=(-3,3,-11),G=(6,1,23))

for(i<2,'Trans',u=(0,0,15))

draw('Locker','Cub',P=(-3,-3,-10)+(i×u),G=(6,7,5))

draw('Top','Rect',P=(5,0,0),G=(1,10,11))

for(i<2,'Trans',u1=(0,0,17))

for(j<2,'Trans',u2=(0,19,0))

draw('Leg','Cub',P=(-6,-11,-10)

+(j×u2)+(i×u1),G=(13,4,3))

for(i<2,'Trans',u=(0,0,16))

draw('HoriBar','Cub',P=(-5,-9,-10)

+(i×u),G=(2,19,3))

draw('HoriBar','Cub',P=(-2,-6,-11),G=(2,5,20))

draw('Top','Rect',P=(4,0,0),G=(2,9,11))

for(i<2,'Trans',u=(0,0,16))

draw('Sideboard', 'Rect',P=(-6,0,-9)

+(i×u),G=(10,9,1))

for(i<2,'Trans',u=(0,18,2))

draw('HoriBar','Cub',P=(-1,-11,-11)

+(i×u),G=(1,3,20))

Reconstruction before adaption

Input
Reconstruction after adaption

Figure A4: (a) to (f) show the generated shapes and programs for ShapeNet tables
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draw('Top','Rect',P=(-1,-1,0),G=(3,7,11))

for(i<2,'Trans',u1=(0,0,21))

for(j<2,'Trans',u2=(0,9,0))

draw('Leg','Cub',P=(-10,-6,-11) 

+(j×u2)+(i×u1),G=(13,3,1))

for(i<2,'Trans',u=(0,0,20))

draw('HoriBar','Cub',P=(-5,-5,-11)

+(i×u),G=(2,8,1))

draw('TiltBack','Cub',P=(3,4,-10),G=(8,3,20,7))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-2,-1,0),G=(2,4,12))

for(i<2,'Trans',u1=(1,0,21))

for(j<2,'Trans',u2=(0,8,0))

draw('Leg','Cub',P=(-8,-5,-12)

+(j×u2)+(i×u1),G=(11,1,2))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(-4,0,-12)

+(i×u),G=(5,3,2))

draw('TiltBack','Cub',P=(2,2,-9),G=(7,2,19,16))

for(i<2,'Trans',u1=(1,0,21))

draw('HoriBar','Cub',P=(3,-4,-11),G=(1,7,1))

draw('Top','Rect',P=(-1,0,0),G=(2,8,11))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(-9,-1,-11) 

+(i×u),G=(10,6,1))

draw('TiltBack','Cub',P=(1,5,-10),G=(9,3,21,0))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(0,2,-12) 

+(i×u),G=(4,6,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-1,0,0),G=(1,4,11))

for(i<2,'Trans',u1=(1,0,21))

for(j<2,'Trans',u2=(0,6,0))

draw('Leg','Cub',P=(-8,-5,-12)+(j×u2)

+(i×u1),G=(10,2,1))

for(i<2,'Trans',u=(1,0,21))

draw('Sideboard', 'Rect',P=(-5,0,-12)

+(i×u),G=(5,3,1))

draw('TiltBack','Cub',P=(2,2,-10),G=(8,1,20,7))

for(i<2,'Trans',u=(1,0,22))

draw('Sideboard', 'Rect',P=(1,-1,-12)

+(i×u),G=(2,3,1))

draw('Top','Rect',P=(-2,-1,0),G=(4,7,11))

for(i<2,'Trans',u=(0,0,18))

draw('Sideboard', 'Rect',P=(-10,-2,-10)

+(i×u),G=(11,6,1))

draw('TiltBack','Cub',P=(2,3,-10),G=(8,3,20,0)

for(i<2,'Trans',u=(0,0,15))

draw('HoriBar','Cub',P=(2,-3,-9)+(i×u),G=(2,9,2))

for(i<2,'Trans',u=(0,0,16))

draw('HoriBar','Cub',P=(5,-3,-9)+(i×u),G=(1,7,1))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-3,-1,0),G=(4,5,12))

for(i<2,'Trans',u1=(0,0,17))

for(j<2,'Trans',u2=(0,7,0))

draw('Leg','Cub',P=(-9,-5,-10)

+(j×u2)+(i×u1),G=(10,1,2))

draw('TiltBack','Cub',P=(1,2,-9),G=(8,2,18,14))

draw('TiltBack','Cub',P=(2,4,-9),G=(8,2,19,7))

draw('Top','Rect',P=(1,-1,0),G=(3,6,11))

for(i<2,'Trans',u=(0,0,14))

draw('HoriBar','Cub',P=(-5,-3,-8)+(i×u),G=(2,7,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-1,0,0),G=(3,4,12))

for(i<2,'Trans',u=(0,0,16))

draw('Leg','Cub',P=(-6,-2,-9)+(i×u),G=(9,1,2))

for(i<2,'Trans',u=(0,0,10))

draw('ChairBeam','Cub',P=(2,-2,-6)+(i×u),G=(2,1,2))

for(i<2,'Trans',u1=(0,0,10))

for(j<2,'Trans',u2=(0,3,0))

draw('ChairBeam','Cub',P=(2,-3,-6) 

+(j×u2)+(i×u1),G=(3,1,2))

for(i<2,'Trans',u=(0,0,11))

draw('HoriBar','Cub',P=(5,-2,-6)+(i×u),G=(1,5,2))

draw('Top','Rect',P=(4,0,0),G=(1,8,11))

for(i<2,'Trans',u1=(0,0,20))

for(j<2,'Trans',u2=(0,12,0))

draw('Leg','Cub',P=(-5,-7,-11) 

+(j×u2)+(i×u1),G=(11,2,2))

draw('Layer','Rect',P=(0,0,0),G=(1,7,11))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(0,0,0),G=(1,5,11))

for(i<2,'Trans',u1=(1,0,21))

for(j<2,'Trans',u2=(0,9,0))

draw('Leg','Cub',P=(-6,-5,-11)

+(j×u2)+(i×u1),G=(10,2,1))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(0,1,-11)

+(i×u),G=(3,6,2))

for(i<2,'Trans',u=(0,0,19))

draw('Sideboard', 'Rect',P=(3,1,-11)

+(i×u),G=(2,5,2))

draw('Top','Rect',P=(0,0,0),G=(3,7,10))

for(i<2,'Trans',u=(0,0,19))

draw('Sideboard', 'Rect',P=(-9,0,-10)

+(i×u),G=(12,5,1))

draw('Locker','Cub',P=(-3,-3,2),G=(7,4,4))

for(i<2,'Trans',u=(0,0,15))

draw('Sideboard', 'Rect',P=(1,0,-9)

+(i×u),G=(4,3,2))

Input

Reconstruction after adaption
draw('Top','Rect',P=(-1,0,0),G=(2,3,11))

for(i<2,'Trans',u1=(0,0,19))

for(j<2,'Trans',u2=(0,6,0))

draw('Leg','Cub',P=(-6,-3,-10)

+(j×u2)+(i×u1),G=(10,2,1))

draw('TiltBack','Cub',P=(2,3,-8),G=(7,2,17,0))

for(i<2,'Trans',u=(1,0,20))

draw('Sideboard', 'Rect',P=(2,1,-11)

+(i×u),G=(3,2,1))

Reconstruction before adaption

(a) (b)

(c) (d)

(f)(e)

Figure A5: (a) to (f) show the generated shapes and programs for ShapeNet benches
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draw('Top','Rect',P=(0,-1,0),G=(3,7,11))

draw('Layer','Rect',P=(-3,0,0),G=(1,5,10))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-3,0,0),G=(5,5,12))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(-6,0,-11)

+(i×u),G=(9,5,1))

draw('TiltBack','Cub',P=(-1,2,-11),G=(8,2,20,3,21))

for(i<2,'Trans',u=(0,0,19))

draw('Sideboard', 'Rect',P=(1,0,-11)

+(i×u),G=(3,5,2))

draw('Top','Rect',P=(2,0,0),G=(3,7,11))

draw('Layer','Rect',P=(-2,0,0),G=(3,5,11))

Input

Reconstruction after adaption
draw('Top','Rect',P=(-5,0,0),G=(6,6,12))

for(i<2,'Trans',u1=(0,0,22))

for(j<2,'Trans',u2=(0,10,0))

draw('Leg','Cub',P=(-7,-6,-11)

+(j×u2)+(i×u1),G=(10,2,2))

draw('TiltBack','Cub',P=(-2,1,-12),

G=(8,2,22,27))

for(i<2,'Trans',u1=(0,0,22))

for(j<2,'Trans',u2=(0,8,0))

draw('ChairBeam','Cub',P=(1,-6,-13)

+(j×u2)+(i×u1) ,G=(2,2,2))

for(i<2,'Trans',u=(0,0,22))

draw('HoriBar','Cub',P=(2,-5,-12)

+(i×u),G=(1,9,2))

Reconstruction before adaption

draw('Top','Rect',P=(3,0,0),G=(2,7,11))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(-7,0,-12)

+(i×u),G=(8,7,3))

draw('Layer','Rect',P=(-4,0,0),G=(4,7,10))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-6,0,0),G=(7,6,12))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(-5,1,-12)

+(i×u),G=(9,5,3))

draw('TiltBack','Cub',P=(-1,1,-11),

G=(7,3,20,23))

for(i<2,'Trans',u1=(0,0,20))

for(j<2,'Trans',u2=(0,6,0))

draw('ChairBeam','Cub',P=(1,-5,-12)

+(j×u2)+(i×u1),G=(2,2,2))

draw('Top','Rect',P=(-4,-1,0),G=(4,7,10))

draw('TiltBack','Cub',P=(0,4,-10),

G=(11,3,19,5))

for(i<2,'Trans',u=(0,0,19))

draw('Sideboard', 'Rect',P=(1,1,-11)

+(i×u),G=(4,4,2))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-5,0,0),G=(6,5,12))

for(i<2,'Trans',u1=(0,0,22))

for(j<2,'Trans',u2=(0,8,0))

draw('Leg','Cub',P=(-7,-5,-11)

+(j×u2)+(i×u1),G=(9,2,1))

draw('TiltBack','Cub',P=(-2,1,-12),G=(8,2,21,21))

for(i<2,'Trans',u1=(0,1,19))

for(j<2,'Trans',u2=(0,5,1))

draw('ChairBeam','Cub',P=(0,-4,-12)

+(j×u2)+(i×u1),G=(2,1,3))

for(i<2,'Trans',u=(0,0,20))

draw('HoriBar','Cub',P=(2,-3,-12)

+(i×u),G=(1,7,2))

draw('Top','Rect',P=(2,0,0),G=(2,9,12))

for(i<2,'Trans',u=(0,0,20))

draw('Sideboard', 'Rect',P=(-9,0,-11)

+(i×u),G=(9,9,2))

draw('Layer','Rect',P=(-3,0,0),G=(3,8,10))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-6,0,0),G=(7,7,12))

for(i<2,'Trans',u=(0,1,20))

draw('Sideboard', 'Rect',P=(-5,0,-11)

+(i×u),G=(9,6,2))

draw('TiltBack','Cub',P=(-1,2,-11),G=(8,3,20,4))

for(i<2,'Trans',u=(0,0,22))

draw('Sideboard', 'Rect',P=(0,0,-12)

+(i×u),G=(3,6,1))

draw('Top','Rect',P=(2,0,0),G=(2,9,11))

draw('Layer','Rect',P=(-1,0,0),G=(2,8,11))

Input

Reconstruction after adaption
draw('Top','Rect',P=(0,0,0),G=(4,7,12))

for(i<2,'Trans',u1=(0,0,23))

for(j<2,'Trans',u2=(0,12,0))

draw('Leg','Cub',P=(-4,-7,-12)

+(j×u2)+(i×u1),G=(8,3,3))

draw('Layer','Rect',P=(-3,0,0),G=(3,8,13))

Reconstruction before adaption

(a) (b)

(c) (d)

(f)(e)

Figure A6: (a) to (f) show the generated shapes and programs for ShapeNet couches
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draw('Top','Rect',P=(5,0,0),G=(3,6,12))

draw('Support','Sqr',P=(-9,1,0),G=(18,6))

draw('Layer','Rect',P=(-3,0,0),G=(3,4,12))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(2,0,0),G=(7,5,12))

for(i<2,'Trans',u1=(-1,0,20))

for(j<2,'Trans',u2=(0,7,-1))

draw('Leg','Cub',P=(-8,-5,-12)

+(j×u2)+(i×u1),G=(16,3,4))

draw('Layer','Rect',P=(-4,0,0),G=(6,5,12))

draw('Top','Rect',P=(7,0,0),G=(3,5,13))

for(i<2,'Trans',u=(0,0,21))

draw('Sideboard', 'Rect',P=(-10,0,-11)

+(i×u),G=(19,4,2))

draw('VertBoard',P=(-7,6,-12),G=(15,1,23))

draw('Locker','Cub',P=(-7,-5,-5),G=(15,7,6))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(4,0,0),G=(7,3,13))

for(i<2,'Trans',u1=(0,0,17))

for(j<2,'Trans',u2=(0,2,-1))

draw('Leg','Cub',P=(-10,-3,-12)

+(j×u2)+(i×u1),G=(21,3,7))

draw('Layer','Rect',P=(-5,0,0),G=(6,4,12))

draw('HoriBar','Cub',P=(-7,-6,-12),G=(2,2,22))

draw('Top','Sqr',P=(8,0,0),G=(2,7))

draw('Support','Sqr',P=(-11,0,0),G=(22,4))

draw('Base','Sqr',P=(-8,-1,0),G=(2,7))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Sqr',P=(7,0,0),G=(5,6))

draw('Support','Sqr',P=(-11,0,0),G=(22,5))

draw('Layer','Rect',P=(-1,0,0),G=(3,7,7))

draw('Top','Rect',P=(7,0,0),G=(1,5,12))

for(i<2,'Trans',u1=(0,0,22))

for(j<2,'Trans',u2=(0,4,0))

draw('Leg','Cub',P=(-8,-2,-12)

+(j×u2)+(i×u1),G=(15,1,2))

for(i<2,'Trans',u=(0,0,19))

draw('HoriBar','Cub',P=(-8,-3,-12)

+(i×u),G=(1,7,4))

draw('HoriBar','Cub',P=(-8,-2,-11),G=(1,1,22))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(5,0,0),G=(4,3,12))

for(i<2,'Trans',u1=(-1,0,20))

for(j<2,'Trans',u2=(0,1,-1))

draw('Leg','Cub',P=(-8,-2,-12)

+(j×u2)+(i×u1),G=(16,2,4))

draw('VertBoard',P=(-8,0,-12),G=(12,2,25))

draw('HoriBar','Cub',P=(-9,-3,-12),G=(2,1,22))

(a) (b)

(c) (d)

Figure A7: (a) to (d) show the generated shapes and programs for ShapeNet cabinets

draw('Top','Rect',P=(-4,-1,0),G=(4,10,12))

draw('VertBoard',P=(-10,-9,-11),G=(10,1,21))

draw('TiltBack','Cub',P=(0,9,-10),

G=(10,2,21,0))

Input

Reconstruction before adaption

Reconstruction after adaption
draw('Top','Rect',P=(-5,0,0),G=(5,12,10))

for(i<2,'Trans',u1=(0,0,18))

for(j<2,'Trans',u2=(0,20,0))

draw('Leg','Cub',P=(-8,-12,-10)

+(j×u2)+(i×u1),G=(3,2,2))

draw('TiltBack','Cub',P=(-3,9,-11),

G=(11,2,20,10))

draw('Top','Sqr',P=(-4,-1,0),G=(4,10))

for(i<2,'Trans',u1=(0,0,18))

draw('Sideboard', 'Rect',P=(-11,-1,-9)

+(i×u),G=(10,8,1))

draw('TiltBack','Cub',P=(0,9,-9),G=(10,2,17,-2))

Input

Reconstruction after adaption

draw('Top','Sqr',P=(-4,0,0),G=(5,11))

draw('TiltBack','Cub',P=(-3,11,-9),G=(12,1,16,0))

draw('TiltBack','Cub',P=(0,9,-9),G=(10,1,16,6))

Reconstruction before adaption

(a) (b)

Figure A8: (a) and (b) show the generated shapes and programs for ShapeNet beds
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