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I. INTRODUCTION

The original problem that finally led to the
present investigation was the problem of the transi-
tion from laminar to turbulent motion of a free jet
of fluid immersed in a surrounding fluid. The problem,
in original form, was very complex and certain simpli-
fications haé to pe made before a successrul analy-
tical approach could be accomplished and methods
evolved for dealing with the full problemn.

The first simplification of the problem was to
assume that the jet and the surrounding fluid were
composed of the same fluid medium. It was then as-
sumed that the fluid medium was incompressible.
Finally, the problem of a jet with rotational sym-
metry was simplified to the corresponding two dimen-
sional problem of two parallel streams both of semi-
infinite extent contacting each other beginning at a
point fixed in space.

Tt was considered that, under certain circum-
stances, the type of flow that would result between
parallel streams would be ot the "pboundary layer"
variety. The poinﬁdof transition of flow in the
boundary layer from laminar to turbulent would occur
somewhere after the laminar flow configuration be-
came unstable; the measure of stability being whether
or not small disturbances introduced into the flow

field would die out or become magnified with time.



In its present form, it is the object of this in-
vestigation to study the stability of the laminar, free
boundary layer between two parallel streams of fluid
in plane rlow. First, it will be shown how the case of
a jet with rotational symmetry reduces, in the first
approximztion, to the case of plane flow. The two ai-
mensional problem of the free boundary layer between
parallel streams will then be considered in detail.
After the flow contfiguration of the laminar boundary
layer is determined, the stavility of seid configuration
will be investigated by considering the behavior (in
relation to time) of small disturbances in the flow
fiela. The investigation of stability will be carried
out for only one cace of flow, tne case where one of the
moving streams is considered at rest. Throughout the
treatment of the vroblem, the fluid will be considered

incompressinole.
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II. ABSTRACT

The problem of the stability of the surface of dis-
continuity between parallel streams has long been of
much concern to mathematicians and physicists. 1In the
latter part of the nineteenth century, Helmholtz and
Rayleigh: suggested it as a prize problem. Helmboltz
conducted a few investigaﬁions of his own on the prob-
lem, but no positive results other than instability
were forthcoming. It was because of the powerful mathe-
matical tools and calcwlating machines such as the ane-
logue and digital computers that were develéped since
the time of the early investigators that a direct attack
on the problem with minimum approximation was made pos-
sible at this time.

The present investigation deals with the stability
of the laminar boundary layer formed between uniform
parallel stréams flowing at different velocities. The
streams are assumed to be semi-infinite in extent and to
meet starting at a point fixed in space. The present
problem differs mathematically from previous investiga-
tions in the stability of parallel flows in that the
boundary conditions. of the equations of motion for the
present investigation cén only be expressed for points
at infinity (the boundary conditions are asymptotic in
character). In previous investigations, Couette,
Poiseuille, and Blasius type flows were investigated for

stability. In Couette and Poiseuille flows, the boundary
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conditions are expressed for finite points. Blasius-
type flow has a boundary condition at a finite point
and also one at infinity. Although the problem with
boundary conditions at infinity would seem to be more
complicated than previous protlems, the analysis 1is, in
some respects simplified.

The méthod of attack used in the analysis of the
stability of the "free" boundary layer was to consider
the effect of small disturbances superimposed on the
steady-state incompressible laminar flow configuration.
From these considerations, an equation for the distur-
bance is obtained and contained in this equation are
paremeters representing the velocity of propagation of
the disturbance, its wave number, and the viscosity of the
fluid medium. It is possible to demonstrate a necessary
functional relationship between the parameters of the
disturbance equation so that the boundary conditions
imposed on the disturbance are satisfied; the problem
then resolves itself into developing a method for solving
for the relationship between the parameters. Throughout
the treatment of Ehe problem, the magnitude of the dis-
turbances is considered small compared to the magnitude
of the steady-staté velocities, and, as a consequence,
the disturbance equation can be linearized.

Before the stability equation can be solved, how-
ever, it is necessary to solve for the "gteady-state" flow

configuration. Although a certain amount of work was done



in this direction by Gdrtler and Keulegan using approxi-
mate methods, it was considered advantageous to solve
the boundary layer equation using the differential ana-
lyser to obtain continuous results especially in the
higher derivatives of the velocity profile.

The results obtained include a full family of
velocity préfiles for the case of the boundary layer be-
tween parallel streams. A process for the solution of
the eigenvalue problem of the disturbance equation is
then developed and the calculations are cerried forward
for one case.

The conclusions arrived at from the results indicate
that at large Reynolds numbers (small effect of viscosity)
instability occurs with disturbance wave numbers (X))
that are 1esé than .4 approximately. In general the ef-
fect of Reynolds number on instability is smell and the
flow is highly unstable. The existence of a minimum
Reynolds number for instability cen, however, be demon-
strated.

The differential-analyser proved useful in solving
for the steady-sta?e flow configuration and the first
approximation of éhe solution of the disturbance equa-
tion. However, the-differential analyser proved inade-
quate for complete solution of the problem. In the near
future, therefore, more detailed and refined calculations
will be performed on this problem with a digital=-type

computing machine.
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In the course of investigating the disturbance
equation, the details of integrating it over the complex-
plane with a computing machine were developed and are
herein presented.

As suggestions for further ﬁork in this general
field, the author presents the following:-

1. Exéerimental exploration of the stability
problem for the case under consideration using air at
low ﬂach numbers as a working fluid and utilizing hot-
wire measuring techniques. Either a vibrating ribbon
or strong sound waves can be used to introduce controlled
disturbances into the boundary layer.

2. Theoretical and experimental exploration of
the stability problem of the boundary layer between
parallel streams consisting of dissimilar incompressible
fluids.

3. Theoretical and experimental exploration of the
stability problem of the boundary layer between parallel

streams consisting of compressible fluid.



I1T. HISTORICAL SURVEY OF RELATED INVESTIGATIONS

The Stability of Laminar Flow

The problem of the stability of laminar motion was

38) and, by the

first studied by Helmholtz and Reynolds(
end of the nineteenth century, had already attracted
considerable a%tention from the leading investigators

of that time. Since then, not only have specialists in
hydrodynamics been deeply interested in the problem but
also a host of mathematicians and physicists.

From the outset, there seemed to be two distinct
schools of thought concerning the cause of transition
from steady to turbulent flow. One school of thought
believed that the cause of the transition was that the
flow configuration was definitely unstable, that infini-
tesimal disturbances would grow exponentially. The
other school believed that the flow configuration was,
in most cases, stable for infinitesimal disturbances,
but that either suitable disturbances of a finite mag-
nitude or a sufficiently large pressure gradient or a
combination of both caused the transition to turbulence.
However, both schoolsﬂagreed that the fluid medium could
be considered as incomﬁressible and that the motion of
the fluid was described by the Navier-Stokes equations
of motion.

The formulation of the theory of finite disturbances

was first due to Reynolds(za) and Kelvin(lG). Further

=1



developments were due to Schiller, Taylor and others.
Since the solution of the non-linear equations satis-
fied by the finite disturbance is extremely difficult,
mathematical considerations of the theory of finite dis-
turbances are usually based on energy or disturbance
vorticity considerations.

The deveiopment of the theory of infinitesimal uis-
turbances proceeded in two directions. One method con-
sisted of a consideration of the energy and the vorticity
of the disturbance. The development of this line of

(29) (23)

thought can be traced from Orr through Lorentz

von Karman(ls), Synge(46)(47)

and others. It is at present
recognized that this method of approach can only yield
sufficient conditions for stability. Since in this analy-
sis all kinds of disturbances are allowed including dis-
turbances that do not satisy the hydrodynamics equstions
of motion, a larger viscous decay is regquired to insure
stability than when the nature of the disturbance is
limited to one in which the equations of motion are satis-
fied. As a consequence of this, the limit of stability

as obtained by these conditions is always much lower than
is obtained by experiment. However, from the foregoing

(46)

considerations, Synge has arrived at a convenientv form

of a sufficient condition for stapility of two-dimensional

parallel flows with respect to two dimensional aisturbances.

The calculation of the neutral curve by Synge's criterion

will be included in the present investigation.
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In order to arrive at something more specific than
the sufficient conditions for stability, it is necessary
to solve the linearized equations satisfied by the dis-
turbance. This line of attack was satisfactorily carried
out by Taylor(ég) for the specific case of Couette-type‘
flow between concentric cylinde;s. Experimental veri-
fications”of Taylor's results wére carried out by himself
and others. Mathematical proof of a sufficient condition

for stability of Couette flow was given by Synge(éa).

Taylor's work was later extended by Gﬁrtler(v)(a) to
cover the case of boundary layer flow over a curved
wall. It should be noted that generally in curved flows
of this type centrifugal force plays a dominant role.

The most extensive investigation of hydrodynamic
stability of laminar flows deals with the solution of
the eigenvalue problem associated with the linearized
equations goverﬁing the disturbance. This line of de-
velopment can be traced in the work of Helmholtﬁand
(35) (36) right on through Orr(zg), Sommerfeld
(24)(25) f(lZ)’ prandt1 | 33) (53)’
(10)

, Tollmein(%4-58) ' scniichting

Rayleigh (44),
Tietjens

Lin(Zl)(zz). Other contributors were Noether(28),

(45), Goldstein(s), Pekeris(Sl)(sz), and others.

von Mises , HOp

Heisenberg

Squire
The theory of infinitesimal aisturbances deals

mainly with two-dimensional wavy disturbances propagated

along the direction of the main flow. Squire!%d)
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demonstrated that two dimensional infinitesimal dis-
turbances are more destablizing than thrée dimensional
disturbances in an incompressible tluid. Most of the

work before Squire was based on two dimensional disturb-
ances, but Squire proved the vaiidity of this assumption. -

(22) is also

The latest work in this field by C. C. Lin
based on”the validity of the assumption of a two dimen-
sional infinitesimal disturbance for an incompressible
fluid.

The earliest study of two-dimensional hydrodynamic
stability seems‘to have been made by Helmholtz who de-
monstrated the instability of wavy disturbances over the
surface of discontinuity of two parallel streams having

(35) extended

different velocities. Later, Lord Rayleigh
the analysis of Helmholtz to include continuous velocity
distributions. Rayleigh approximated a continuous vel-
ocity profile by substituting in its stead a number of
straight line velocity profiles joined end to end. It
should be noted that since the vorticity is a constant
for each straight line segment of the velocity profile,
the vorticity distribution over the entire profile is
discontinuous in nature. Rayleigh also investigated
continuous vorticity distributions. All of this work
was pased on the assumption that the fluid medium was
inviscid and incompressible. Rayleigh's investigations

resulted in two important conclusions: (1) that in-

stability (in an inviscid fluid) can only occur with
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velocity profiles having a point of inflection, (2) and
that broken linear velocity profiles approximating actual
velocity distributions having a point of inflection are
also unstable. Ra&leigh obtained an approximate condi-

tion determining stability as follows:

Ya ,
4y _ _ 9
(w-c)2
where
w(y) - velocity distribution
Y172 - coordinates of solid poundaries
¢ - constant
The nature of ¢ is that the real part of c¢ represents
the wave velocity whereas the imaginary part of c¢ de-
termines whether or not the aisturbance is damped or
amplified.
Investigations of linear velocity distributions in-

cluding viscosity effects were carried out by von Mises(24)(25),

£(12) (36)

Hop and Rayleigh , the results of which indicated

that only the condition of stability could exist., Prandtl

and Tietjens(SB)

carg;ed out an investigation on the
stability of the bouﬁdgry layer using Rayleigh's approxi-
nate method and jincluding the effect of viscosity, bpbut
due to the fact that the analysis was inadequate, the
results were inconclusive.

The first successriul study of the stability of a

variable continuous vorticity distribution was carried out



by Heisenberg(lo) vho studied plane Poiseuille flow in
particular. At the same time, Heisenberg critically
examined Rayleigh's approximate method using broken
linear profiles and showed it to be erroneous as an ap-
proximation of a continuous velocity distribution.
Heisenberg's theory was not generally accepted. Later,

Tollmien.énd Schlicting studied the cases of Blasius(54)

(39) flow using Heisenberg's theory.

and pluge Couette
Heisenberg used the asymptotic expansions of the Orr-

Sommerfeld equation to obtain his results. The general

form of the differential equation that he dealt with was

4

2
ol 4=3). 2 EE (2-k) _
;EE a,y Do+ N - b,y =0

j=0
where aj, bk are analy#ic functions of the complex vari-
able x, A is a large cémplex parameter with constant
argument, a, = } and bO has a zero of first order at
some point at say x = Xy Since the above equation is
of the rourth order, there exists a fundamental system
of ur fndependent solutions that form the complete
solution of the eguation. Two of the solutions may be
obtained by the asymptotic expansion

ﬂ .

Y.

= EE i
v 21
i=0

The other two solutions are of the form

Y = exp (/ gdx)

ﬁw‘ﬂ‘



Lin in his investigations of Poiseuille and Blasius flow -
in particular used this approach, the validity of which

was recently demonstrated by Wasow(57).

(55) rigorously

In his investigations Tollmien
proved the instability of velocity distributions having
a point of inflection for inviscid fluids. For a vis-
cous fluiﬁ, Lin(Zl)(zz) demonstrated that instability
depended on the general class of velocity distribution
rather than on a point of inflection.

The most recent investigations in the field of

stability of fluid flows have been performed bty Lin(ls)

(19) and have been concerned with the stability

and Lees
of the boundary layer in a compressible fluid.

Up to this point, the historical development of the
theoretical aspecfs of the stability of laminar flows
have been discussed. Experimental investigations in the
early nineteen-thirties failed to uncover any evidence
of amplified disturbances of certain wave lengths in
certain regions as predicted by the theory of infinitesi-
mal disturbances. Hence, the view shared by the experi-
meters was one unfavq;able to the instability theory.

In 1940 a program of research was undertaken at the
Bureau of Standards to study transition of Blasius type
flow in a low turbulence level wind tunnel. In the course of
this research, Schubauer and Skramstad obtained records
of velocity flﬁctuations in the boundary layer by means

of a hot wire anemometer. The frequency of these fluctu-
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ations agreed quite well with the values predicted in the
calculations of Tollmien and Schlichting using Heisen-
berg's theory. The reason why these fluctuations had
not been observed before was because the high turbulence
level prevalent in the previous tests had obscured the
self-excited oscillations. Other tests were then per-
formed by Schubauer and Skramstad to produce waves in
the laminar boundary layer under controlled conditions.
They observed where oscillations of a given wave length
were neither demped noremplified and so could determine
a curve of neutral stability of wave length versus Rey-.
nolds number.

After the completion of the experimental investi-

(21)(22) undertook & complete reorgani-

gation, C. C. Lin
zation and revision of the stability theory (infinitesimal
disturbances) of two-dimensional parallel flows. His -

results agreed rémarkably well with experimental data.

The Laminar Boundary Layer

ghe concept of the boundary layer was introduced
by Prandtl in 1904. It states that there is a narrow
region adjacent to the surface of a body immersed in a
fluid stream (the fluid being of small viscosity) in
which the velocity of the fluid relative to the immersed
body varies from zero at the surface of the body ‘to the
velocity that wbuld have existed had the flow been

frictionless.



The voundary layer type flow was first calculated
for a flat plate in a uniform stream with no adverse
pressure gradient. This first case was investigated
by Blasius(l). Later, flow over curved plates and with
pressure gradients in the direction of flow were studied.

The concept of the boundary layer can be extended
to the narrow transition region between two streans of
different velocity contacting each other. The boundary
layer can then be conceived as veing "free" (without any
solid boundary). One case of this type of flow was
solved by Gﬁrtler(g) when he solved the turbulent mixing
problem between parallel streams using a constant ex-
change coefficient. The assumption of a constant ex-
change coefficient made the problem mathematica:ly anala-
gous to the laminar boundary layer. An experimental
check of Gdrtler's work was performed by Liepmann(zo).
Another important contribution to the field of laminar
boundary layer flow was the work done by Keulegan(l7)
who recently solved for the flow configuration atv the
interface of two different liquids. In the present in-
vestigation the free lAminar boundary layer between two
parallel streams will be solved for all cases of velocity

ratio between the two streams.
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IV. THEORETICAL AWNALYSIS

Rotationally Symmetrical Flow (Jet in Surrounding Fluid)

First, we will show that under certain conditions,
the problem of rotational syﬁmetry can be approximated
by a corresponding plane flow.

The symbols used in the following discussion are:

X . positional coordinate in axial direction

N positional coordinate in radial direction (radial
distance)

t time

u velocity component in x-direction

v velocity component in y-direction

/0 density

M absolute viscosity

y =:£} kinematic viscosity

If we leave, out of our consideration the body forces
in the x and y directions, the Navier-Stokes equations

for rotationally symmetric incompressible flow can be

stated as follows:

U ., 9u du S 9’y J"u I
ot +“D"+”eg *’)‘53%=”[,; =]

2" o 3

” v ﬂ J (1.0)
U uUT I3 v _ |
9t+uéx+u-éc:‘ Psﬁ [_ 9&1+‘d > j,_u]

The equation of continuity is

au JU" v
_—— e =
Ix Ay Y o
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Let us now consider the direction of flow of the
parallel streams to be in the x-direction and the char-
acteristic measure of boundary layer thickness, 5 s
between the parallel flows to be in the y-direction (see
Figure 1). Ve now specify that the velocity of the jet
or inner stream is U, and the velocity of the surround-
ing fluid or outer stream is Ug.

At this point, we can define a Reynolds number, R,

such that

.-t

v
Let us now introduce dimensionless variables as

follows:

x = x'd u = u'Ul

y=yd v = V'

=tv.% p=9pu,"

We can now rewrite the Navier-Stokes equations (1.0)

in terms of the new variables.

ou’ 0’ ISR U J '
o — U A
> Y 3% - th +_j2 [Qx' 2yt ‘j éo.j]
(-0
R LTS LN [T v’ 1
Al A vhe 3y g SE L 3]

oy 343 S
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Let us now expand our dependent variables in terms

of a power series in y' such that
o
u' = Z u'. Y' -i

i=0 1
= i
t = ' r =
v EE; v, ¥
i=0
. -l ’ i
= 1 v
= Z ply
i=0

Substituting the powers series expansions above
into the dimensionless Navier-Stokes equations (1.1) and
equating terms in like powers of y', we obtain the tollow-

ing set of equations for the first approximatione..

Q)uo D U—.)u. ° = L J___Q._._)
K MW "'5%’ &5 Jq* el

(2

duz’ vz’ | ,ou;
Ue U2
Qt ot %' Ix' " 'j Q:’ be" J%'LJ

;hJ; ;DLQ
c)X' * ;'j'

=0

However, the above equations are the Navier-Stokes
equations of an incomgressible fluid in two-dimensional
flow. This first apprdximation of flow with rotational
Symmetry will be good at large values of y' or large
values of radius comvared to boundary layer thickness.

The Laminar Boundary Layer Flow

Let us now limit our consideration to the first
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approximation of flow with rotational symmetry; the case
of plane flow. Dropping all subscripts, the dimension-
less equations of two-dimensional viscous incompressible

flow are:

SR VAR [ ML I A g‘q']
ox'

ot :E: aﬁj L —~—. .klgtfl
S PP TN +°2B L D"u"] @.0)
dt ax' Qlj J"j Qx"’ -j"'

du!  du’

" 3?5 =©

Let us now transform the equations (2.0) to new

variables E;VV' such that
—1/2

-1/2

vyt = R
v = WwR

The Navier-Stokes equations then become:

1Y RUUIN TT AR TR 1V %
+U +w ==J- “ Juw
It Ix' Qz Ix' R et Jut
Lodw' L yrow! ow' d4' L, 2, 2.1
K()t.‘+ M4—-«1gl)1--:):5._.__LE‘-Q_.;.:_.,._k]_%.)__.,,_,_1 (2.1)
z.
Q;__W_,,%/‘___Q
an ‘)El

,AJ

Now, we expand our dependent variables in terms of power

series in R such that

.‘.
1

u' =
1

. r“h
iﬁ

[
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o
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Then, substituting the above series into the iransformed
equations (2.1) and equating like powers of R, we obtain
for the initial or boundary layer approximation

ii.é-ﬁ-u' Us | o e 4 oe - Vs
Jt- Jx Ji. Jx Ja.z

1,
=0 @.2)
J’
s L dw,
+ T 0
Qx‘ az'

The initial, or boundary layer approximation, will
in fact be very close to the true state of affairs if
the value of Reynolds number, R, is large. If we then
specify that only flows with large Reynolds numbers
will be under consideration, we can limit discussion to
the boundary layer approximation.

Transforming equations (2.2) back to the original

dimensional variables, we obtain the boundary layer

equations.

M, LY M L1 *u
+Q + U= 4 y=2
It A x ‘J;j j’:?i. ‘;32.

- 95‘&. = O (2‘3)
J

du U _

e\x*‘s:j =

At this point, we specify that there is steady
motion and that the pressure o#er the flow rield is con-

stant. The fiﬁal boundary layer equations therefore are:



xgx &(j &3"
(2.4)
X e)‘j

From continuity considerations, we can now intro-

duce a stream function, \.P , as follows:

u=9°¢

Y
U=-9¢
dX

The stream function, LP , can in turn be det'ined

in terms of a new variable, 7 , Ssuch that

P = JrxU, 'F(7)

J

T em—
VX
U,

From the above, we can now calculcte the various

quantities in the boundary layer equations in terms of

the new variable.

A =-"-U| 'Fi'?)
W=Ji\’)¥ (Yf'—'f)

Oy
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Substituting the preceding gquantities into equa-
tion (2.4) we obtain
1
L ) U?" " ' U "
Yoot e S pf - f) =22 f
22X 7{{ PR ¢ (7 ) 2x
And simplitying, we obtain the well known boundary layer

equation in terms of 7 as independent variable.

ff* + 2fm = 0 (2.5)

Equation (2.5) is a non-linear, third order ordinary
Cifferential equation, and, from a well known theorem in
the theory of ordinary differential equations, three
independent boundary conditions are necessary in order
to completely determine tvhe sclution. In order to as-
certain the poundary conditions for our problem, we must
now refer directly to a pictufe of the physical arrange-
ment (see Figure 2).

Along the positive y axis

u = U1 or fr =1

when ? 0



Along the negative y axis

Ug
= Ug or L' = =—
Uy

-0

when 7

So far, we have only two boundary conditions for
equation (2.b). Let us arbitrarily establish the third
boundary éondition as

r=20

7 =0 (See Figure 3)

Let us now investigate where the boundary between
the parallel streams- lies.

We can consider a line of 7 = constant to be the
boundary between the streams if the direction of flow at
the line 7 = constant is in the direction of the line.

Or stated mathematically

g'z = X (206)
(dx)7 = constant |

However, from the original definition of 7

dy -0 L A

ax 7= constant dx? Uy 2 VU x
Also l uU A

v ( 7:f' "

u Ul

Substituting into equation (2.6)

AR VAT
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Since f' will always have a tinite value, the
equation will hold only if £ = 0. The boundary between

the two streams is therefore where f = O.

The Stability of the Flow Configuration

After simplification of the rotationally symmetrical
flow and consideration of the free, laminar boundary
layer, we can now investigate the stability of the lami-
nar flow configuration. The flow will be considered
stable if a small periodic disturbance introduced into
the flow field is damped out with time. If, however,
the disuvurbance grows with time, the flow will be con-
sidered as unstable. Should the aisturbance remain un-
changed with time, the flow would then be considered
as neutrally stable.

Let us now eliminate the pressure term from the di-
mensionless two-dimensional Navier-Stokes equations (2.0)
and introduce a stream function,q) , in the usual manner.

The resulting equation is

2 (é_‘i,_+;‘ ( L v ( 3
ot )j‘ .)x Y Jv —:3) Q; Jj
=k (93% +aé-‘1:-3§ 34_{,) (>0)
It will now be assumed that since v<{ u in the steady-
state laminar flow configuration, the effect of a steady-
state v can be left out of the stability relations for

all practical considerations. We can therefore specify
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a stream function of the form .
i (X'~ t
P=bp + 0T @)

where ¢ <<§ . The form of ¢ is such that it implies
that the steady-state flow is parallel to the x axis.
The perturbation stream function @y)@ a(xt-ct) is
of two-dimensional form. The use of a two-dimensional
perturbation stream function of this form for two-
dimensional parailel flows has been justified by Squire.

If we insert the stream function, equation (3.1),
into equation (3.U) we obtain
~incg e -<t) +isPcpe i lxi=et)

+ [§ . ?. eiu(f-c"-')][k ?- eu(x'—ct.)_ l'.daq’ eld.(x'-d-')]
. w(x'-ct) t wt (x"=ct)
_“‘feu {_i"'? es«(! < ) ?e (X-c ]
- .-é EZ“‘?‘ cut(x ‘~ct) §w o wa(xet) ), fe“(x--ct')]

3.2)

The equation of the steady-state terms alone in
equation (3.2) will be satisfied. We can therefore
eliminate all steady-state terms from equation (3.2).
Eliminating all terms quadratic in the disturbance and
simplifying, we obtaiﬁ the Orr-Sommerfeld equation for
the disturbance in an incompressible parallel flow of

fluid.
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If we choose & , the characteristic length in the

y' direction, properly, we can arrange matters so that
! =
9 =7

7 being defined by the following relationship with

dimensional x and y:

3

=
{ =
U,
We can therefore rewrite the Orr-Sommerfeld equa-

tion in terms of functions of 7 .

('F'-C.)(q""dt?) —Fm? = -;‘E‘E(?'V_Zdt?h*dd-?)
| (2.4

1]

where T

f(7)
?=2(p)

¢ = dimensionless velocity of propagation of
disturbance
% = dimensionless phase velocity, wavelength ='%%

(wave number)
& will always be taken as real and positive.

¢ may be complex.
From equation (3.1) it can easily be seen that the flow
configuration will be unstable to small perturbations if the

imaginary part of ¢ is positive. If the imaginary part of ¢ is
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negative, the flow will be stable whereas if the imagi-
nary part of ¢ 1s equal to zero, the flow configuration
will be neutrally stable.

There remains to solve the characteristic or eigen-
value problem of equation (3.4). If equation (3.4) is
to satisfy ce?tain boundary conditions, there must be
some functional relationship between the parameters, c,e,
and R. This functional relationship can be demonstrated
as foliows.

Since equation (3.4) is of fourth order, there
exists a fundamental set of four solutions of equation
(3.4) that are analytic functions of the variable 7 and
the paremeters c, « , and R.

P = Czucf% +’<:LCP2.‘*'(:3‘P§ '*'C:ac?a- 'y @5)
where C,, Cg, C3, C, are constants.

Let us now specify boundary conditions on Cr
C(’c7.) =0 CP( ”) =0
’ [}
Qlpy =0 P (pu=0

Substituting the boundery conditions into equation
(3.5) we obtain

Cppr G+ G@aqa + CePacu=0
CQuupa + Caup+ G @y gy + Coutpa=0
C Qg + S ?;(7.) G Pilon +Cy Pelpy=0
C.cp'.c-?a *Cagitp) + <y ?;(7,.) +Co 1)4,( 7:)=0
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If the constants C,, Cg, C; and C4 are not all
identically zero, then the following relation: must

exist. .
|P4)  Pu 7»’ () Palnd
‘P.'( P 7‘) ?3'( ™ ?“11’ "F(C)"‘ ) R)=0
L LN VR (CA IR oo
‘?:‘71) ‘f;,( 7!) (P;(?)) (P.',(pl‘_)

We thusly obtain a necessary relationship between

the parameters ¢, o , and R so that the boundary condi-
tions will be satisfied.

The remaining problem is to solve the elgenvalue
problem of equation (3.4) with boundary conditions as
follows:~

when 7=__.°° 7 = oD

¢ =0 <P=-o

Equation ('3.4) is a fourth order equation and there-
fore four boundary conditions are necessary to completely
determine the soltuion. Only two boundary conditions
have been specified above. A discussion of the other
two boundary conditigns will be included in the solu-
tion of equations (2.5) and (3.4). The eigenvalue prob-
lem for the above boundary conditions will also be
formulated later in the discussion of the solution of

the Orr-Sommerfeld equation.



V.

SOLUTION OF THE BOUNDARY LAYER AND STABILITY EQUATIONS

In order to accomplish as much es possible and to
arrive most direétly and painlessly at solutions, it
was decided to utilize the differential analyser(g) to
carry out as mu?h of the calculations as it could. The
proper technique of utilizing the analyser for some of
these computations had to be developed before any re-

sults were forthcoming.

Solution of the Boundary Layer Equations

Before the stability or Orr-Sommerfeld equation
can be solved, it is first necessary to solve for the
flow configuration. Therefore, the first equation to
be considered is the boundary-layer equation (equation

2.5) which is restated herewith.

£ £+ 2fm =0
where f = f(7 )

The boundary conditions for this equation are

7-—00 7=o 7.-..--0
{'eg_:.: =0 ..['_—_-.|

Since equation (2.5) is of the third order, the
three boundary conditions stated above are sufficient
to mathematically determine the solution. It is unfor-
tunate, however, that the differential analyser cannot

utilize boundary conditions at infinity. For analyser

&

1
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solution, it is necessary to specify all of the boundary
conditions at a finite point. The procedure then to be
followed is to guess at values of f' and f" where 7 = 0
until the boundary conditions at 7 = + o«» are satisfied.

Plan of trial and error solution of boundary layer

equation on differential analysecr:-

1. At 7:= 0, £ = 0, find values of f' for fixed
values of f" such that the boundary)condition fr =1
at 7 = 00 1g satisfied. These points will form a curve
in the f',f" plane (see Figure 4).

Ug
2. TFind the values of =— satisfied when 7 = =

U
by points along the f',f" curie satisfying the condition
' =1 at l7 =o@ ., Plot these values of ;f versus "
(see Figure 4). Corresponding values of f" can now be
obtained for any desired ratio of ;? .

3. TFrom Figure 4, corresponding values of f' can
be obtained for the previously obtained values of f".
4. Since the boundary conditions of £, f*, and f»

Ug
are now all known at 7 = 0 for a given ratio of T

the solutions can be run off on the differential aialyser
(see Figure 5 and tablds 1 to 10).

So far, the solution of the boundary layer equa-
tion has been considered in the real domain. There are,
however, complex solutions of the boundary layer equa-

tion and these are defined by analytic continuation of

the real solution into the complex plane. Tt is



advantageous at this point to reintegrate the original
equation over the complex ;'plane.
Consider therefore
f " + 2f'" =0
£(g )
and § = +1if
'

f, f', f* and f™ can be brcken into real and imaginary

where f

parts as follows:

f=1f + 1fi

r
f+ =1 + 1if
I 1
= fr 4+ ifn'
T i
fn! = fm + ifm .
r 1

The boundary layer equation can therefore be re-
written frfgf- fifg.+ lfrf"i+ lfif3'+ mer + 12f"'i = 0.

The toregoing equation can be separated into two
real equations by considering real and imaginary parts
separately.

Therefore;

|
Q

Tpfip = I3y + 2 =

it
o

frf3_+ fif%ﬂ + 2fmi
It must be remembered that when integrating in the

7 direction

o= [emay £ /fv.wid7
f'r = /fnr d? fli /fni d7

£, = ]f'rd.{ £ [f'id7
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and when integrating in the ig direction,
f"r= - ;fmidg f"i= [f"'rdj
= - Jeriaf = f8
£, = -If'idj £, = /f'rdj
The equation can be integrated in the foregoing
manner over thé’complex plane 1rom a point on the real
axis where the real parts of f, f', f" are known and

the imaginary parts of f, f', f" are zero.

Solution of the Orr-Sommerfeld Equation

Let us now consider equation (3.4). Dividing through

by (f'- ¢) we obtain

P )? .ez(f-(_\‘f"'“‘f*'“ 2

@.1)
If we expand 1) in terms of a power series in « R as

follows

cp > P o

K=0Q

we obtain the following set of equations:

‘Pi: ‘(0‘ t""‘_';f::;’?x == ";-.—éz C‘?::-c —2d ‘cr:—l + d“rx-n)

Let us first consider the solution of (4.1) when

@.2)

dR—200 (the "inviscidn solution). Let us examine in
particular the nature of the inviseid solution in the
region of \7]—-—-’“’ In this region f"—»0 and f'—w constant

and 1f the limiting value of f' does not equal ¢ then



%-,.{.'.'16—-0 w{1en |7| —eet

We can now consider the equation
?“—ez"cf =0 “.2)
The solutions of equation (4.3%) can be stated as

follows:
‘ -t
? =C, ed? + C &€ 7

It can therefore be seen that the solution of equa-
tion (4.1) where « R—»o0 and I" o0 is exponential
in nature. If we ask that T also be asymptotic tc zero

when |7l"ob then the nature of the solution must be

cPuc:.e7 when 7—+—°°

?‘ CLC"7 7 —b 4=c0

Let us now reexamine equation (4.1) with « R —> 00
but with no restriction on 7 . The equavion is of the
form .u

?> - (o@ '+' )CF =0 Q¢!L)
where °‘s and ¢ are eigenvalues of  and ¢ corresvond-
ing vo infinite.R. Thi value of Cq has peen showmn by
Rayleigh and Tollmien to be equal to the tlow velocity
at a point of inflection in the velocity profile. There
remains obut to find the value ot X such that the
boundary conditions are satisfied. These boundary condi-

S

tions are ? — 0 and ?—-9.."‘5? when 7——».,. . o _can

then be round oy a trial and error process on the

X
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differential analyser by starting at a large negative
value of 7 and testing whether or not the boundary con-
ditions are satisfied at a large positive value of 7 .
One value of e{s comes out equal to zero in which case
?:P (f£r- cs). The other value Of;ds is .397. For a
qualitatiYe pioture oI‘T see figure 6.

It should be noted that the integration along the
real 7 axis is permissible only if there are no singular-
ities along the path of integration. In the case of the
inviscid solution

fn' O

i

]

when f! c

S

and ——gg— is bounded.
This, howeve?, is not generally true in the case of
finite R: there is usually a singularity at the point
where f' = ¢. 1In order to avoid the singularity in the
integration of the Orr-Sommerfeld equation, the inte-

gration is carried out along a path through the complex

plane (see Figure 7). Before this can be done, it is

fnf
I-c

can be accomplished by integrating the boundary layer

necessary to evaluate along this curve. This

equation along the same'path.
. L]
Let us now‘denote-frgLa— by A and wri-.» out equation

(4.2) for k = O.

Pop + i @ui=(4"+Ar) Pu + AL - (AL~ LAr Qoi =0



&b

where Q. ‘?o v . ‘?.L

?.=0|'+'L?‘;'
A=Ar + LA'.-

separating real and imeginary quantities, we obtaln

(? "‘(cl -PAr)?.p + Al ?vt =O

, @.5)
Qi - At d.r - Ar o =0

The foregoing are the equations for the first ap-
proximation. The equations for the second approxima-
tion (k=1) are

q>:" '_(dt*'A")?w S o A;Tﬁ. = Bor

Pl — At — Argi = Boi @-.¢)
where . e
Bk (-2t ) = Bour 1B

By evaluating as many terms in the power series expan-
sion of ? as are éonvergent,tr can be obtained with any
degree of accuracy up to the accuracy of the methods of
computation and the degree of convergence of the expan-
sion.

It should here be.moted that in regions where A is
negligible compared to«(?,q% will be exponential in
character and B will equal zero. Using these facts, it
is possible to solve the eigenfunction problem partly
with the differential analyser.

The plan of solution is therefore as follows:



1. With a fixed value of c, integrate equations
(4.5) along the proposed path through the complex plane
starting at a large negative value of 7 where A is small
compared to dt; for various values of & . At the start-

ing point the boundary conditions should be

(?‘,,- any constrant
P = <.

2. .From the solution of equation (4.5), B can now
be evaluated. Now integrate equation(&.GJthrough the
complex plane along the same path as step 1 from the
same starting point and with the same starting condi-
tions.

Where 7 has a large positive value, the solution
must satisfy the following conditions.

i

Having evaluated the first two terms of an expan-
sion of<? , we can now write out the following approxi-
mate relation

CPO Q_I-:_ -(dcf, -o-_fﬁ_)

or solving for R
E i|+°( Eer
< & Qe
R will generally be complex. If we limit our in-
vestigation to real ¢ and reale , we will obtain the
eigenvalue of & along the neutral curve when R comes

out real.



In this manner we can obtain the neutral curve in a
point by point manner to as great an accuracy as the dif-
ferential analyser and the asymptotic expansion will

permit.

Discussion of Solution of Orr-Sommerfeld Equation

+

It ié to be noted here that the asymptotic expan-
sion presented represents only two of the four independ-
ent solutions of the Orr-Sormerfeld equation. The reason
for this is that the parameter of the expansion, ;%§,
occurs with the highest derivative of the Orr-Sommerfeld
equation and therefore, in evaluating successive approxi-
mations to the solution, the order of the equation solved
is that of the next highest term not multiplied by -}ﬁ.
Thus, since the order of the next:highest term is two,
the number of independent solutions of the equation is
two, when expandéd in the toregoing manner.

In the interest of completeness, let us now discuss
the nature of the other two independent solutions. If
we set @ = exp[fg d7] where g = g 7) and transform

the Orr-Sommerfeld equations accordingly, we obtain
' 2 0 ] e ; . PP X " -
(f-ol@+a1-w*]-+"= £ 9% ¢9's'+35"+ 499" g
~24(g"+q") +d‘] @.7)

The solution of eqflation (4.7) can be expanded in terms

of a power series as follows.

93=2 CRTgup *.8)

<=0
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Substituting equation (4.8) into equation (4.v),

tne following set of equations are obtained.
(f'-c)ge = —< qfF
C§- C)(3;+2_3.3.) = -‘:-(4—3';‘3.-’-63:‘3,')

from which we can obtalin the successive approximations

without integration. Thusly,

9o =% Ji($'-<)
q. 9. 4-.2)
Fe

i

-5
3

— S —

However, if (4.9) is substituted into (4.8),

two remaining asymptotic solutions are obtained.

T%(y) (4:-¢) CWW’Y: ’r J;qi:(f ~c) ‘AT]
(P#(Y) = (‘F "“-) exP [_‘"‘ f J:;(R(f -c) dr]

where 7& is that value of 7 where f' = c.

At this point, it should be noted that when W —> +0,
‘])4'—"’" énd when ?M - ?3———”:0 . If the boundary
conditions

¢ —o when v —> Too

are to be satisfied, then Cz and C, of equation (3.5)
must both be equal to zero.

We can therefore leave out of our consideration the
solutions (Pa and c&_ of the Orr-Sommerfeld equ;ation for

our particular boundary conditions.



The eigenvalue problem of equation (3.4) for the
boundary conditions under consideration can, therefore,
be formulated as follows:-

Since

CP = C.(P, + C;_?,_

P =4 Qe =

and

(2 Cro) +al (?(,'0--0)':0

therefore
19.'(--°)—41>.c-eo) N

' 1 - F(CHIR ) =0
@, (o) 4et @, (+) Prl+0) +ai Py (o)
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VI. RESULTS, CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The first of the results obtained are the solutions
of the boundary layer equation (2.5) for various ratios
of Ug/U,. These solutions are presented in Tables 1-10
and are plotted in Fig. 5. Secondly, the eigenvalues of
the stability equation for the case of inviscid flow are
obtaine& and these ére as follows:

R —= oo

Cs = ,35873

g = 997

The boundary layer and disturbance equations were
then successfully integrated over the complex plane and
zero order solutions of the Orr-Sommerfeld equation were
obtained. However, the differential analyser was not
sufficiently flexible or accurate to permit solution of
the first order approximetion to the disturbance func-
tions. 1It, therefore, was impossible to identify a cor-
responding Reynolds number with sets of eigenvalues of
wave number and velocity of wave propagation.

The dependence of R on the other parameters can be
investigated by considering the nature of the disturbance
function q). As seen previously, the highly oscillating
solutions,CP3 and <P4, were demonstrated to be physically
impossible for boundary conditions at infinity. The
effect of viscosity, though, is most pronounced on these

solutions. The solutions of q)l and <P3, however, have

4



only a lower order dependence on viscosity since the ef-
fect of Reynolds number first enters into the second term
of the power serlies expansion of the disturbance function.
It is, therefore, reasonable to arrive at the conclusion
that < does not depend greatly on R except for low
values of R and that the solution is highly unstable.

The existencé of some minimum Reynolds number for in-
stability has already been demonstrated by Synge.

It is concluded that the process developed in this
investigation can successfully be utilized to explore
the eigenvalue problem of the Orr-Sommerfeld equation
provided that sufficient accuracy is maintained through-
out the computations. The necessary computations, how-
ever, are so extensive that anything but high-speed
digital machine computing can be ccnsidered futile.

Until the present time, only the surface of this
intgresting and important field has been touched. The
priﬂcipal analytical researches have been concerned
with a very few cases of the classical types of flow
and most of the work has been concerned with the incom-
pressible fluid flow. It is, therefore, important that
future investigatoréiwork along lines that are broader
in nature and scope.

It is very important, at this point, to improve
experimental techniques so that the highly philosophi-
cal results achieved in analytical research be fortified

by actual fact. The analyst must, of necessity, make

4t

e

i



many simplifying assumptions in order po render even
the simplest problem solvable that many times he finally
solves a problem that is quite different from the physi-
‘cal situation that he started with. Not only must the
cohsistancy of his reasoning be checked, therefore, but
also the nature and validity of his simplifying assump-
tions. J

In the present problem, it is suggested that some
way be'devised to bring two parallel streams together
with no initial boundary layer between them. A promis-
ing method for doing this has been suggested by Profes-
sor E. S. Taylor, who proposes that the two streams
flow along opposite sides of a thin wedge and that the
boundary layer formed against the wedge be removed by
suction into the wedge before the streams contact each
other. The next step is to introduce a controlled dis-
turbance into the boundary layer either by an oscillat-
ing ribvon or by intense sound waves. The resulting
disturbance characteristics in the boundary layer can
then be studied by means of a hot wire anemometer; it
is suggested that the working fluid be air at low Mach
numbers. d

Another problem‘of interest is the theoretical
and experimental investigation of the laminar boundary
layer between parallel streams consisting of different
fluids. Other problems that suggest themselves are the

stability considerations of jets and wakes.
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The author has arrenged to have extensive compu-
tations performed by a high-speed, digital computing
machine on his present problem. After these are com=-
pleted, he hopes to extend the analysis to the case
of the compressible boundary layer for the same type

of flow.
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VIII. APPENDIX

Solutions of the Boundary Layer Equation

Presented herein in Tables 1-10 are solutions of
the boundary layer equation (2.5) for the boundary con-
ditions as epumerated in section IV-B.

The equation is hereby restated:

1] (]
f'rof"=0
f ‘f(7)
= 4
J’e‘i"
U,

The boundary conditions are
7~—,-¢> 7 —® o6 7.:
f— & +'— f

where-
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= = .100
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fr 7 1f f
.001 -7.0 -1.647 .00l
9002 —605 ‘10596 clU4
.002 -6.0 -1.543 .108
. 003 -5.5 =1l.488 .1l13
.003 -5.0 -1.429 .l21
. 004 -4.5 -1.366 .133
0006 -4.0 "lc 296 ° 14:9
. 007 -3.5 -1.216 .1l71
.009 -3.0 -1.123 .201
.012 -2.5 =-1.013 .24l
.015 -2.0 -0.900 .293
.019 -1.5 =-0.718 .357
0024 -loo -9- 521 0433
. 050 -Oo 5 "O . 283 . 520 f"
.038 0.0 0.000 .613 .189
.047 0.5 0.330 .706
.059 1.0 0.706 .793
.Q72 1.5 1.121 .865
.088 2.0 1.568 .919
.106 2.9 2.037 .956
.126 3.0 2.522 .979
.. 147 3.5 %.014 .991
167 4.0 3.512 .997
.184 4.5 4,011 .999
.196

.200

.195
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.158

.129

.098

.070

.046

-088

.016
009

.005
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TABLE IIT. TABLE IV.
. 0 2 3500
—=-20 ——=03
Uy Uy
y £ £ 7 £ £

_7.0 -2.154 .201 7.0 -2.694 .301

-6.5 -2.054 .202 -6.5 -2.545 .301

~6.0 -1.954 .203 -6.0 -2.396 .302

-5.5 -1.852 .205 _5.5 -2.246 .303

_5.0 -1.748 .210 _5.0 -2.095 .305

_4.5 -l.641 .218 _4.5 -1.942 .310

~4.0 -1.530 .230 ~4.0 -1.786 .318

_3.5 -1.410 .248 _3.5 -1.625 .330

-3.0 -1.281 .272 _3.0 -1.455 .350

_2.5 -1.136 .306 _2.5 -1.273 .378

-2.0 -0.972 .352 _2.0 -1.075 .417

-1.5 -0.782 .409 , _1.5 -0.854 .468

-1.0 -0.561 .479 -1.0 -0.605 .531

~0.5 -0.301 .560 £ -0.5 -0.321 .603 "

0.0 0.000 .646 .175 0.0 0.000 .682 .160

0.5 0.345 .733 0.5 0.361 .761

1.0 0.731 .sl2 1.0 0.760 .833

1.5 1.155 .878 1.5 1.192 .893

2.0 1.607 .928 2.0 1.650 .937

5.5 2.079 .961 5.5 2.127 .967

3.0 2.565 .981 2.0 2.615 .984

3.5 3.05¢ .091 3.5 3.110 .993

4.0 3.556 .996 4.0 3.608 .998

4.5  4.055 .999 4.5 4.107 .999

(2
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TABIE V. TABLE VI.
U U
U-f - .400 ﬁf - .500
1 1

f i 7 il il
-2.863 .401 -6.0 =-3.358 .501
-2.665 .401 -5.5 =-3%.109 .501
-2.465 .402 -5.0 -2.860 .502
-2.2865 =405 -4,5 -2.610 .504
-2.062 ..410 -4,0 -2.360 .506
-1.8586 .41¢9 -3.,5 -2.106 .513
-lt 645 ° 454: "'30 O -lo 848 . 525
-1.422 .456 -2.5 -1.583 .540
-1.186 .488 -2.0 -1.307 .566
-0.931 .532 -1l.5 =-1.016 .602
-0.652 .587 -1.0 -0.704 .648
-0.343 .651 fn -0.5 =0.366 .703 fn
2.000 .721 .142 0.0 0.000 .763 .123
0.378 .791 0.5 0.397 .824
0.790 .855 1.0 0.823 .878
1.2%1 .907 1.5 l.274 .923
1.695 .946 2.0 1l.744  .956
2.175 .972 2.9 2.228 .977
2.664 .987 3.0 2.720 .989
3.159 .995 3.5 3.216 .996
3.0657 .999 4.0 4,214 .999
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TABLE VII. TABLE VIII.

U U
= = 600 = = 700
1 1
T il 7 f £
-3.269 .601 -5.0 -3.696 .701
-2.970 .601 -4.,5 -3.346 .702
-2.670 .602 -4.0 -2.995 .702
-2.368 - 607 -3.5 -2.644 .704
-2.063 .614 -3.0 -2.291 .709
-1.754 .626 -2.5 =1.935 .718
-1.436 .646 -2.0 -1.572 .732
-1.106 .875 -1l.5 -1.201 .753
-0.759 .713 -1.0 -0.817 .782
-0.392 .738 m -0.5 =0.418 .817 ™
0.000 .808 .101 0.0 0.000 .855 .078
0.417 .858 0.5 0.437 .894
0.857 .903 1.0 0.893 .929
1.319 .940 1.5 1.364 .956
1.796 .966 2.0 1.846 .976
2.283 .983 2.0 2.337 .987
2.777 .993 3.0 2.833 .995
3.275 .997 3.9 3.331 .998
3.775 .999 4.0 3.830 .999
. TABLE IX. TABLE X.
U Ug
- - 0800 Tm— = 0900
Uy U
f ' 7 T il
—4 122 -801 "500 "‘4. 556 0901
-3.723 .801 -4.,5 -4.106 .901
-3.323 .802 -4,0 -3.657 .901
-2.922 .803 -3.5 =3.207 .902
-2- 521 -805 -500 "20 757 -902
-20117 0810 —205 -20 306 0904
-1.710 .819 ¢ -2.0 -1.853 .908
-1.297 .833 -1.5 -1.398 .915
-0.876 .852 : -1.0 -0.938 .925
-0.445 .876 v -0.5 -0.425 .939 b
0.000 .902 .054 0.0 0.000 .951 .028
0.463 .928 0.5 0.479 .964
0.933 .952 1.0 0.965 .975
1.415 .971 1.5 1.460 .985
1.904 .984 2.0 1.951 .992
2.399 .992 2.9 2.449 .996
2.897 .997 3.0 2,949 .998
3.397 .999 3.9 3.449 .999



Method of Solution of Orr-Sommerfeld Equation with Digital-
Type Computing Machine

In the course of this investigation, it was found
impracticable to solve the complete eigenvalue problem
on the differential analyser. However, the digital-
type computer was found to be satisfactory for this pur-
pose and the problem is hereby rearranged for solution
on that type of machine.

Let us restate the boundary layer equation (A) and
the first two equations in the power series expansion of
the Orr-Sommerfeld equation (B) (C) in the form suitable

for complex integration.

‘F"{r. - £ F(""'?_‘F:‘O

)
‘Fr{&. + £i ‘fr- +2f =0

CFrmcX Qo @)~ FL (@l ~L'ped = Fv Pur+F L ui =0 =)
(oo ui) + il Qe ')~ Frui =i or =0
(Fr-c)Qur=4"Pir) "-Fa(f.'; ~pi) - f:?., +f7 Pui=
- (o ~20"i +e* ) ©
(X Py p) +H: Py - *qur)=F i £ T qu, =
= (Qay =28 Pup + & Qor)
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The digital computer can most advantageously be
utilized in integrating these equations if the path of
integration chosen is a semi-circle through the complex
g -plane.

The general rules of integration to be followed for
integration along a circular path through the complex
Z -plane are as follows:-

e [Pz = [F™dre’®) = (R [F e ®de
FO = Qi——— FY o« L F™

Fbﬂ) - F—hﬂ) . F—‘!\-&\)

R = radius of curvature of circular path of integration.

., F-(n)r=_.R[fF(n:) sn0 doe + S’Fh:e)cosadel

F"(mc =K [_.(F(M: cos8de— (F @?05‘"6493

where

The rules for differentiation along the circular

path can also be stated as follows:-

(ney) Ft" ;Fu
F '=-é<%_§ s — 4056)

F('W‘) = ( (n) (..O <O — ;F«:
Je

The procedure than to be followed, in solving the

eigenvalue problem on the digital computer would be &as
follows.

(1) Solve equations (A) along the path of integra-
tion and store the solution in the machine.

(2) Using the solution obtained from step (1), solve



b

equations (B) and (C) simultaneously for various values
of ¢ and &« that give real values of R. (The procedure

is similar to that described in Part V.)
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