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Abstract

Genetic prediction based on either identity by state (IBS) sharing or pedigree information has been

investigated extensively using Best Linear Unbiased Prediction (BLUP) methods. Such methods

were pioneered in the plant and animal breeding literature and have since been applied to predict

human traits with the aim of eventual clinical utility. However, methods to combine IBS sharing

and pedigree information for genetic prediction in humans have not been explored. We introduce a

two variance component model for genetic prediction: one component for IBS sharing and one for

approximate pedigree structure, both estimated using genetic markers. In simulations using real

genotypes from CARe and FHS family cohorts, we demonstrate that the two variance component

model achieves gains in prediction r2 over standard BLUP at current sample sizes, and we project

based on simulations that these gains will continue to hold at larger sample sizes. Accordingly, in

analyses of four quantitative phenotypes from CARe and two quantitative phenotypes from FHS,

the two variance component model significantly improves prediction r2 in each case, with up to a

20% relative improvement. We also find that standard mixed model association tests can produce

inflated test statistics in data sets with related individuals, whereas the two variance component

model corrects for inflation.

Author Summary

Genetic prediction has been well-studied in plant and animal breeding and has generated con-

siderable recent interest in human genetics, both in family data sets and in population cohorts.

Many prediction studies are based on the widely used Best Linear Unbiased Prediction (BLUP)

approach, which performs a mixed model analysis using a genetic relationship matrix that is either

estimated from genotype data—thus measuring identity-by-state (IBS) sharing—or obtained from

family pedigree information. We show here that a substantial improvement in prediction accuracy

in family data sets can be obtained by jointly modeling both IBS sharing and approximate pedigree

structure, both estimated using genetic markers, using separate variance components within a two

variance component mixed model. We demonstrate the performance of this model in simulations

and real data sets. We also show that previous mixed model association methods suffer from in-
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flated test statistics in family data sets due to their failure to account for the different heritability

parameters corresponding to IBS sharing vs. pedigree relatedness. Our two variance component

model provides a solution to this problem without compromising statistical power.

Introduction

Mixed linear models (MLM) are widely used for genetic prediction and association testing in

genome-wide association studies (GWAS). In prediction, MLM produce best linear unbiased pre-

dictions; BLUP and its extensions were first developed in agricultural genetics [1–4] and have

since been applied to human genetics [5–10]. In association testing, MLM model relatedness and

population stratification, correcting for confounding and increasing power over linear regression

(essentially by testing association of the residual from BLUP prediction) [11–16]. Mixed model

methods harness information from either genetic markers (IBS sharing) or known pedigree rela-

tionships. Recent work on estimating components of heritability [17] has demonstrated the advan-

tages of a model with two variance components: one component for IBS sharing (corresponding

to SNP-heritability h2

g [18, 19]) and one for approximate pedigree structure, estimated via IBS

sharing above a threshold (corresponding to total narrow-sense heritability h2 [20]). However, the

potential advantages of this model for genetic prediction (or mixed model association) have not

been explored.

Through systematic simulations and analyses of quantitative phenotypes in the Candidate-gene

Association Resource (CARe) [21] and Framingham Heart Study (FHS) [22,23] cohorts, we show

that the two variance component model improves prediction r2 over single variance component

(standard BLUP) methods. Our simulations demonstrate that this improvement is achieved both at

current sample sizes and for larger samples, and our analyses of real CARe and FHS phenotypes

confirm relative improvements in prediction r2 of up to 20%. We also consider the situation in

which phenotypes are available for ungenotyped individuals that are related to the genotyped co-

hort (e.g., family history [24, 25]) and show that leveraging this additional information for genetic

prediction within a two variance component model achieves similar gains.

Additionally, we investigate the utility of the two variance component model for association

testing. We evaluate the standard prospective MLM association statistic [15] in the context of
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familial relatedness and observe inflation of test statistics over a range of simulation parameters,

contrary to previous findings [11, 13–15, 26]. We show that the two variance component model

substantially reduces the inflation in simulations and in GWAS of CARe and FHS phenotypes.

Results

Overview of Methods

We use the two variance component model described in previous work on estimating components

of heritability [17]. The first variance component is the usual genetic relationship matrix (GRM)

computed from genetic markers (corresponding to h2

g) [18]. The second variance component is a

thresholded version of the GRM in which pairwise relationship estimates smaller than a threshold

t are set to zero, the idea being to capture strong relatedness structure similar to a pedigree rela-

tionship matrix. Explicitly modeling relatedness in this way allows the two variance component

mixed model to capture additional heritability from untyped SNPs (corresponding to h2−h2

g) [17].

We used the two variance component model to compute genetic predictions via BLUP and test as-

sociations using a Wald statistic [1,11,27]. (We note that best linear unbiased prediction, BLUP, is

a general method for prediction that can be applied once a covariance model has been established,

whether from one or many variance components. We will therefore use “standard BLUP” to refer

to BLUP using the GRM as a single variance component, and we will use “BLUP” to more gen-

erally refer to BLUP with any number of variance components.) We further developed methods to

treat the case in which phenotypes for ungenotyped relatives are available; briefly, our approach

uses pedigree information to impute the missing information [28]. Full details are provided in

Materials and Methods and Text S1.

Genetic prediction: simulations

To analyze the predictive power of the two variance component model, we simulated phenotypes

based on genotypes from the CARe and FHS data sets as described in Materials and Methods. In

each simulation, we used the following procedure to measure prediction accuracy of BLUP using

the standard GRM as a single variance component, BLUP using the thresholded GRM as a single
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variance component, and BLUP using the two variance component model. First, we randomly split

the data set, setting aside 90% of the individuals for training and 10% for testing. We then used each

BLUP method to predict held-out test phenotypes using the training samples to estimate genetic

effects, and we calculated r2 between the predicted phenotypes and the true genetic components

of the simulated phenotypes (i.e., eliminating the added noise) on the test samples. (We chose to

compute r2 as it is a very widely used metric for assessing prediction accuracy [2–4, 6, 7, 9]; how-

ever, other metrics such as mean square error are also sometimes used [5].) We call this quantity

“prediction r2(g)”; on average, prediction r2(g) is 1/h2 times as large as standard prediction r2,

i.e., r2 computed to simulated phenotypes that include both genetic and noise components. Rela-

tive performance of prediction methods is the same (on average) whether measured with prediction

r2 or prediction r2(g).

The two variance component model provided significant increases in r2(g) over both stan-

dard BLUP and BLUP using the thresholded GRM alone (Table 1), and the improvements were

consistent across simulation replicates (Fig. S1). We observed much larger prediction r2(g) val-

ues (across all methods) for the FHS simulations than the CARe simulations, as expected given the

much greater number of close relatives in the FHS data set (18,415 pairs of individuals with genetic

relatedness >0.2 among 7,476 FHS individuals vs. 4,954 pairs among 8,367 CARe individuals).

However, the relative improvements achieved by the two variance component model were fairly

similar in these two distinct pedigree structures, and importantly, increasing values of N/M (mim-

icking larger sample sizes) also yielded similar relative improvements (Table 1). We also observed

that the heritability parameter estimated by the standard mixed model was intermediate to h2

g and

h2, whereas the two variance component model accurately estimated h2

g and h2−h2

g (Table S1), as

expected in samples with related individuals [17].

Finally, we assessed the potential performance of the two variance component approach at

very large values of N/M (up to 100) by simulating both genotypes and phenotypes (Materials

and Methods). (We note that human genotyping arrays typically contain ≈60,000 independent

SNPs [15, 29], so N/M=8 in this simulation corresponds to a data set the size of UK Biobank,

N=500,000; see Web Resources.) In these simulations, we continued to observe gains using the

two variance components approach; two variance component prediction r2 exceeded h2

g for very

large N , whereas standard BLUP prediction r2 was limited to less than h2

g (Fig. S2).
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Genetic prediction: real phenotypes

Next, we evaluated the prediction accuracy of each method on CARe phenotypes—body mass in-

dex (BMI), height, low density lipoprotein cholesterol (LDL), and high density lipoprotein choles-

terol (HDL)—and for FHS phenotypes—height and BMI. We adjusted phenotypes for age, sex,

study center (for CARe phenotypes), and the top 5 principal components. (The complexities of

the impact of ancestry on genetic prediction are discussed in ref. [30].) To measure performance,

we created 100 independent random 90/10 splits of the data set as before and calculated r2 be-

tween predicted and true phenotypes on the test samples of each split. We observed that for all

phenotypes, the two variance component model increased prediction accuracy over both single

variance component BLUP approaches, with a maximum relative improvement of 20% for height

(Table 2a,b); this improvement was consistent across different train/test splits (Figure S3). As in

our simulations, we observed larger absolute prediction r2 in FHS than CARe due to strong relat-

edness (consistent with ref. [6]), and we observed that the heritability parameter estimated by the

standard mixed model was intermediate to the heritability parameters ĥ2

g and ĥ2 estimated by the

two variance component model (Table S2).

For phenotypes with a small number of large effect loci, methods that explicitly model a non-

infinitesimal genetic architecture can have substantially better prediction accuracy than standard

BLUP [2]. A two variance component approach could be combined with such models, and as an

initial exploration of this approach, we examined a non-infinitesimal extension of two variance

component BLUP in which we included large-effect loci as fixed effect covariates [8]. Explicitly,

we first identified genome-wide-significant SNPs (p < 5 × 10−8) according to a two variance

component mixed model association statistic. (As we show below, the standard MLM statistic is

miscalibrated in scenarios with pervasive relatedness, precluding its use.) We then added these

SNPs as fixed effect covariates in all of the models we previously compared and recomputed pre-

dictions (Table 2c,d). Including large-effect loci resulted in substantial improvements in prediction

r2 achieved by each model for the CARe HDL and LDL phenotypes (Table 2c), both of which are

known to have several large-effect loci [31]. As before, for all phenotypes, we observed an increase

in r2 when using the two variance component model. We expect that the two variance component

model will provide similar improvements in prediction r2 if incorporated in more sophisticated
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non-infinitesimal models (e.g., [3, 5]).

Additionally, we explored the scenario in which some phenotypes are available for ungeno-

typed relatives of genotyped individuals. We simulated data with ungenotyped individuals by

randomly masking the genotypes of 25% of the training individuals. Results on simulated and real

phenotypes using this masking are broadly consistent with results reported above with all individ-

uals typed (Tables S3–S6).

Association testing

We next compared mixed model association testing using the two variance component approach to

standard MLM association testing [12,15] in data sets with related individuals, measuring calibra-

tion and power for each method. We began by running a suite of tests using simulated genotypes

and phenotypes, systematically varying the number of related individuals, the degree of related-

ness, the number of markers in the genome, and the heritability of the simulated trait (see Materials

and Methods). Each simulation included both causal SNPs and “null SNPs,” i.e., SNPs with no

phenotypic effect. For null SNPs, Wald statistics computed by mixed model association tests fol-

low a 1 d.o.f. chi-squared distribution assuming the mixed model accurately models the phenotypic

covariance. If the mixed model does not accurately model the covariance, as we expect for pheno-

types with h2

g < h2 in data sets containing relatedness, then the distribution of association statistics

at null SNPs is miscalibrated, i.e., approximately follows a scaled 1 d.o.f. chi-squared [32]. We

therefore measured calibration of MLM association methods by computing the mean Wald statistic

over null SNPs. We measured power by dividing the mean Wald statistic over causal SNPs by the

mean Wald statistic over null SNPs. Computing the ratio in the latter benchmark ensured that all

methods, including those susceptible to inflation of test statistics, were equally calibrated before

comparing power.

Contrary to previous work suggesting that mixed models fully correct for relatedness [11, 13–

15, 26], we found that for many parameter settings, standard MLM association analysis produced

significantly inflated test statistics (up to 11% inflation, increasing with trait heritability, sample

size, and extent of relatedness; Figure 1). In contrast, introducing a second variance component—

either the thresholded GRM (Figure 1) or the true pedigree (Fig. S4)—nearly eliminated the infla-
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tion. For all parameter settings, we observed that the two variance component model maintained

or slightly increased power compared to standard MLM association (Fig. S4).

Next, we simulated phenotypes based on genotypes from the CARe and FHS data sets (Materi-

als and Methods). Consistent with the previous simulations, standard MLM association produced

inflated statistics whereas the two variance component model alleviated inflation (Tables 3 and S7).

Importantly, these results suggest that the levels of relatedness that are required for inflation are

present in real data sets.

Finally, we analyzed MLM association statistics for the CARe and FHS phenotypes (adjusted

for covariates as before). Because we do not know the identity of causal and null SNPs in this

case, we calculated the average Wald statistic over all SNPs using leave-one-chromosome-out

analysis [15, 33], noting that we expect the statistics to be slightly larger than 1 due to polygenic-

ity [15,29]. Consistent with simulations, the average Wald statistics were higher for standard MLM

association than the two variance component method, suggesting that standard MLM statistics are

slightly inflated, with an up to 1.05-fold inflation in FHS data (Table 4).

Discussion

We have shown that a mixed model with two variance components, one modeling genetic effects

of typed SNPs and the other modeling phenotypic covariance from close relatives, offers increased

prediction accuracy over standard BLUP and corrects miscalibration of standard mixed model

association analysis in human data sets containing strong relatedness. For current sample sizes

and levels of relatedness, the absolute increase in prediction accuracy is modest (similar to other

recent work on improving prediction accuracy for human complex traits [5, 7–10], in contrast to

agricultural traits [2–4]) and the inflation of standard mixed model test statistics is small. However,

our simulations suggest that for larger sample sizes, the effects of relatedness will become more

pronounced, so we expect the two variance component model to become increasingly relevant as

sample sizes increase.

While we are not aware of prior work in human genetics using two variance components to

model effects of typed SNPs as well as additional phenotypic covariance from close relatives,

other methods for combining these two sources of information for prediction have been proposed;
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however, these methods either use only a limited number of genome-wide significant SNPs [24]

or use only limited information about family history [25]. Separately, several studies have applied

different multiple variance component models to improve mixed model prediction and association

in other ways. Widmer et al. [26] recently proposed a two variance component model that uses

the standard GRM along with a GRM created from selected SNPs (as in FaST-LMM-Select [34])

that improves association power and calibration in family studies. (We note that while Widmer et

al. observe that standard mixed model association is properly calibrated in their simulated family

data sets, their simulations do not include untyped causal SNPs.) In another direction, Speed et

al. [7] recently proposed a multiple variance component model that partitions SNPs into contigu-

ous blocks, each used in a distinct variance component, and showed that this approach improves

prediction accuracy. Incorporating a variance component modeling relatedness—either from pedi-

gree, thresholding the GRM, or other approaches [35]—into these methods or recently proposed

non-infinitesimal models for genetic prediction (e.g., weighted G-BLUP [6], BayesR [3, 10] and

BSLMM [5]) is a possible direction for future research.

A challenge facing all genetic prediction methods is the very large sample sizes that will be

required to achieve clinically relevant prediction accuracy [25, 36]. Indeed, in absolute terms,

the prediction accuracy we achieved on real data sets of up to 8,000 samples was low, similar to

other methods when applied to traits without large-effect loci [5,6,10]. Our simulations show that

the two variance component approach we have proposed will maintain its relative improvement

over standard BLUP as sample sizes increase; however, both of these methods face computational

barriers at large N . A straightforward implementation of our two variance component method for

prediction requires O(N2) memory and O(N3) time per REML iteration when estimating variance

parameters as well as when computing predictions. These limitations could be overcome using a

combination of rapid relationship inference [37], fast multiple variance component analysis (e.g.,

as implemented in BOLT-REML [38]), and iterative solution of the mixed model equations [39,40].

Similarly, the computational challenge of large-scale two variance component association analy-

sis could potentially be addressed by extending fast iterative methods for mixed model associa-

tion [16]. An alternative, computationally simple solution to inflation of association test statistics

is LD Score regression [41]; however, this approach may incur slight deflation due to attenuation

bias [16, 41].
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We also note three additional limitations of our two variance component approach. First, the

method is only applicable to data sets with related individuals for which genotypes are available for

analysis; however, large human data sets of this type are now being generated (e.g., deCODE [42],

23andMe [43], and UK Biobank; see Web Resources). Second, the improved predictive perfor-

mance of the two variance component approach is a function of the relatedness structure. Our

parallel work in cattle has reported improved prediction accuracy using a two variance component

model incorporating exact pedigree information [44] or breed information [45]; however, the two

variance component model did not produce an improvement in analyses of Holstein dairy cattle

(Table S8), perhaps due to the very small effective population size of this breed [46]. Third, our

approach does not address case-control ascertainment. While many large family data sets are not

ascertained for phenotype, investigating whether techniques employed by methods that do model

ascertainment [8] can be integrated into our two variance component approach is a possible avenue

for future work.

Materials and Methods

Standard mixed model for prediction

We begin by establishing notation and reviewing standard formulas for mixed model prediction

(i.e., standard BLUP) and association testing using one variance component [1, 11, 27]. Let N

be the number of individuals in the study and M be the number of genotyped SNPs. Denote

phenotypes by y, fixed effect covariates by X , and normalized genotypes by W , all of which are

mean-centered. We normalize each genotype by dividing by
√

2p̂(1− p̂), where p̂ is the empirical

minor allele frequency [18]. We model phenotypes using the following mixed model:

y = Xb+ g + ǫ, (1)

where g ∼ N(0,Σg) is a random effect term modeling genetic effects, ǫ ∼ N(0, σ2

eI) is a random

effect modeling noise, and b is a vector of coefficients for the fixed effects. In the standard marker-

based mixed model, we assume g = Wα is a linear combination of genotyped SNPs, where α is
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an M-vector of iid normal SNP effect sizes (the infinitesimal model), so that

y = Xb+Wα+ ǫ. (2)

Then the genetic covariance satisfies Σg = σ2

gWW T/M , where WW T/M is the genetic relation-

ship matrix and σ2

g and σ2

e are variance parameters typically estimated using restricted maximum

likelihood (REML) [47]. In pedigree-based models that do not use marker information, Σg = σ2

hΘ,

where Θ is the pedigree relationship matrix; again, σ2

h and σ2

e are estimated using REML.

These models naturally yield formulas for standard BLUP prediction [1]. Explicitly, if we

denote training individuals (i.e., those with observed phenotypes) using subscript −i and denote

test individuals (i.e., those with phenotypes to be predicted) using subscript i, predictions are given

by

ŷi = σ2

gWiW
T
−i(σ

2

gW−iW
T
−i + σ2

eI)
−1(y

−i −X
−ib) +Xib. (3)

Standard mixed model association test

To test a candidate SNP w for association with the phenotype y, we augment the marker-based

model by including w as an additional fixed effect covariate:

y = wβ +Xb+Wα + ǫ, (4)

where β is the coefficient for the SNP w and we wish to test whether β 6= 0. To do so, we estimate

the variance parameters (σ2

g , σ2

e ) using REML and estimate the fixed effect coefficients (β, b) using

maximum likelihood [27]. We may then compute the Wald statistic for testing β 6= 0 as follows.

Let

V = σ̂2
gWW T/M + σ̂2

eI (5)

denote the total phenotypic covariance and let Q = [w;X ] denote the combined fixed effects.

Then β̂ is equal to the first entry of (QTV −1Q)−1QTV −1y and var(β̂) is equal to the first entry of
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(QTV −1Q)−1. The Wald test statistic is given by

Wald =
β̂2

var(β̂)
(6)

and is asymptotically χ2 distributed with 1 degree of freedom under the null distribution.

We make one slight modification to the above association test to avoid proximal contamination

(i.e., masking of the association signal by SNPs included in the random effects term that are in

linkage disequilibrium with the SNP being tested). Specifically, we use a leave-one-chromosome-

out procedure in which when testing SNP w, we exclude all SNPs on the same chromosome as

w from the genotype matrix W used to model random genetic effects [15, 33, 34]. Additionally,

to save computation time, we fit variance parameters only once per left-out chromosome, reusing

variance parameters from the null model [13] when computing approximate test statistics at all

SNPs on the left-out chromosome [15, 16].

Two variance component mixed model

Our use of a two variance component mixed model is motivated by the idea that in a sample

containing related individuals, the pedigree relationship matrix (or an approximation thereof) can

model additional heritable variance explained by untyped SNPs [17]. More precisely, consider

expanding the marker-based model (2) to

y = Xb+Wα + Uγ + ǫ, (7)

where Uγ is the analog of Wα for untyped SNPs U , so that the total genetic effect g = Wα+Uγ.

Ideally, we would use this model and its augmentation for prediction and association testing, but

U is unobserved. Because the BLUP and Wald statistic formulas only require UUT , however, we

can still improve upon the standard model (2) by using an approximation of UUT . Letting Mh

denote the number of untyped SNPs, the matrix UUT /Mh is the realized relationship matrix from

untyped SNPs. Assuming a fixed pedigree relationship matrix Θ, we have

E[UUT /Mh] = Θ, (8)
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where the expectation is over possible realizations of genotypes passed down by descent (e.g.,

siblings share half their of genomes on average). When the study samples include close relatives,

off-diagonal entries of Θ can be large, in which case these entries are good approximations of the

corresponding entries of UUT /Mh and hold additional information not fully harnessed by models

that use only the usual GRM WW T/M from typed SNPs. Substituting Θ for UUT /Mh gives the

model

y ∼ N(Xb, σ2

gWW T/M + σ2

hΘ+ σ2

eI). (9)

In our case, the pedigree relationship matrix Θ is also unavailable, so we need to make a further

approximation in which we replace Θ with the estimator

Θ ≈ (WW T/M)>t (10)

obtained from the usual GRM by keeping only those entries larger than a threshold t and setting

all other entries to zero [17]. This approximation gives the model

y ∼ N(Xb, σ2

gWW T/M + σ2

h(WW T/M)>t + σ2

eI). (11)

In theory, the optimal threshold t depends on M,N , and the amount of relatedness in the data

set, but in our genetic prediction analyses using human data sets, we found that the results were

robust to the choice of t, so we set t = 0.05. For association testing, we found t = 0.05 to gen-

erally be robust (and we expect this choice to be appropriate in human genetics settings), but in

more extreme simulation scenarios in which we built the GRM from only a few chromosomes, we

observed that higher thresholds were required to model relatedness accurately enough to produce

well-calibrated statistics. We therefore optimize t in all association analyses (all of which we con-

duct using a leave-one-chromosome-out procedure [15, 33, 34]) using the following approach. For

each chromosome c in turn, we choose t to minimize the deviation between the thresholded GRM

(W
−cW

T
−c/M−c)>t computed using all chromosomes but c and the GRM WcW

T
c /Mc computed on

the left-out chromosome c. We measure this deviation with the Frobenius norm

||WcW
T
c /Mc − (W

−cW
T
−c/M−c)>t||22, (12)
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i.e., the sum of squared differences between matrix entries. Prediction and association testing pro-

ceed as before once the threshold t has been set: we estimate σ2

g , σ
2

h, and σ2

e by REML to enable

calculation of BLUP predictions, and for association testing, we again introduce an additional fixed

effect term wβ for the SNP being tested and construct a Wald statistic. (Again, for computational

efficiency, we apply a leave-one-chromosome-out procedure within which we reuse variance pa-

rameters fitted once per left-out chromosome.) We note that the computation of predictions ŷ can

no longer be expressed as a simple matrix-vector product between genotypes of testing individuals

and a vector (β̂) of SNP weights, as is the case for standard (one variance component) genomic

BLUP. Instead, the formula for ŷ (given in Text S1) involves two terms, only one of which has the

above form. We have not investigated the performance of prediction using the first term alone, as

we expect that such a procedure, though computationally efficient, would yield suboptimal results.

CARe and FHS data sets

We analyzed 8,367 African-American CARe samples from the ARIC, CARDIA, CFS, JHS and

MESA cohorts with high-quality genotypes at 770,390 SNPs from an Affymetrix 6.0 array; the

CARe data set and QC procedures used to obtain the sample and SNP sets we analyzed are de-

scribed in refs. [21, 48]. We analyzed all samples in analyses of simulated phenotypes (using real

genotypes); in analyses of real CARe phenotypes—BMI, height, HDL, and LDL, each available

for 5,000–8,000 samples—we removed outlier individuals with phenotype values in the top or bot-

tom 0.1%, individuals with age <18, and individuals with missing age or sex; we then applied

a Box-Cox transformation to remove skewness. We analyzed 7,476 FHS SHARe samples with

high-quality genotypes at 413,943 SNPs from an Affymetrix 500K array and with BMI and height

phenotypes available; the FHS data set and QC procedures are described in refs. [22, 23, 49].

Genetic prediction: simulations with real genotypes

To assess the accuracy of genetic prediction methods, we simulated phenotypes based on geno-

types from the CARe and FHS data sets, both of which are family studies containing many close

relatives. Because the CARe individuals are admixed, we projected out the first 5 principal compo-

nents (equivalent to including them as fixed effect covariates [47]) from genotypes and phenotypes
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in all analyses of both CARe and FHS data to avoid confounding from population structure [50].

We simulated phenotypes by generating causal effects for two subsets of SNPs: a set of M “ob-

served SNPs,” which we used for both phenotype simulation and BLUP prediction, and a set of

Mh “untyped SNPs,” which we used for phenotype simulation but did not provide to prediction

methods. In this simulation framework, the standard GRM built by MLM methods accurately

models variation due to observed SNPs, but direct or inferred pedigree information is necessary

to capture variation due to untyped SNPs. We generated effect sizes for observed and untyped

SNPs from independent normal distributions N(0, h2

g/M) and N(0, (h2 − h2

g)/Mh), respectively,

where h2

g denotes heritability explained by observed SNPs and h2 denotes total narrow-sense her-

itability. To build phenotypes, we multiplied the simulated effect sizes with the genotypes and

added random noise ∼ N(0, (1 − h2)). We used SNPs on chromosome 1 as untyped SNPs and

used SNPs on varying subsets of chromosomes 2–22 as observed SNPs so as to simulate different

values of N/M (which is a key quantity affecting performance of mixed model prediction [51] and

association [15]) and thereby estimate projected performance at larger N . We used h2

g = 0.25 and

h2 = 0.5 as typical values of these parameters [52].

We note that under the above setup, untyped SNPs are completely untagged by typed SNPs,

whereas in real data, untyped SNPs may be partially tagged by typed SNPs. In either case, the

phenotype can be written as a sum of “genetic value explained by typed SNPs,” “remaining genetic

value,” and “environmental value” (with variance parameters h2

g, h2−h2

g, and 1−h2 corresponding

to the same covariance structures in either case), so we expect that our results are insensitive to this

distinction (as evidenced by the fact that improvements in prediction accuracy in these simulations

were corroborated by similar improvements in prediction accuracy on real phenotypes).

Genetic prediction: simulations with simulated genotypes

To assess the potential performance of genetic prediction methods at extremely large sample

sizes, we also simulated genotypes for sets of sib-pairs (relatedness = 0.5) with M=100 SNPs

and N/M=10,20,. . . ,100. We generated unlinked markers for simplicity by randomly generating

minor allele frequencies uniformly in [0.05, 0.5] and sampling genotypes of unrelated individuals

from a binomial distribution with the generated MAF. For sib-pairs, with probability 0.5, the pair
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shared an allele drawn randomly; otherwise, the alleles for the pair were drawn independently. (We

ran this procedure twice per SNP to create diploid genotypes.) We simulated phenotypes as above.

Genetic prediction: assessing performance on real phenotypes

To compare the predictive performance of the two variance component model versus standard

BLUP on real phenotypes, we performed cross-validation studies in which we repeatedly selected

10% of the phenotyped samples (either CARe or FHS) as test data and used the remaining 90%

of samples to train each predictor. For each train/test split s, we thus obtained a pair of observed

prediction r2 values, (r22VC,s, r
2

BLUP,s). We then computed the relative improvement of the two

variance component model over BLUP as

rel. r22VC vs. r2BLUP =
mean(r22VC,s − r2BLUP,s)

mean(r2BLUP,s)
, (13)

where the means are taken over the random splits s. We estimated the standard error of this quantity

with the following expression:

s.e.(rel. r22VC vs. r2BLUP) ≈
std(r22VC,s − r2BLUP,s)/

√
10

mean(r2BLUP,s)
. (14)

The numerator is the standard deviation of the per-split differences in r2 (across random 10%

test sets s), which measures the variability in observed performance differences between the two

methods when assessed on 10% of the data. We then divide by
√
10 to account for the 10x larger

sample size of the full data set, and finally, we normalize by the performance of BLUP to convert to

the relative performance scale. This estimate is approximate due to the complexities of estimating

variance under cross-validation (specifically, the slight overlap among different 10% test sets); in

general, unbiased estimators of variance under cross-validation do not exist [53].

Association testing: simulations with simulated genotypes

We conducted a suite of mixed model association simulations using genotypes simulated in a

similar manner as above. We systematically varied the number of related individuals, the degree

of relatedness, the number of markers M in the genome, and the SNP heritability h2

g and total
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heritability h2 of the simulated trait. Specifically, we simulated sets of N = 1000 diploid individuals

in which N rel = 50, 125, 250, or 500 pairs of individuals were related and the rest were unrelated

(leaving 900, 750, 500, or 0 unrelated individuals, respectively). Each pair of individuals shared a

proportion p = 0, 0.1, 0.2, 0.3, 0.4, or 0.5 of their genomes in expectation. Additionally, we varied

the number of markers M = 1,000, 5,000, 10,000, or 20,000. We generated unlinked markers as

above; for pairs of related individuals, with probability equal to the relatedness p, the pair shared

an allele drawn randomly; otherwise, the alleles for the pair were drawn independently. (As above,

we ran this procedure twice per SNP to create diploid genotypes.) We further generated 100

additional candidate causal SNPs and 500 candidate null SNPs (at which to compute association

test statistics) in the same way. We used an infinitesimal model to generate the phenotype: that is,

we generated effect sizes for the observed SNPs from N(0, h2

g/M). We also generated effect sizes

for the candidate causal SNPs from N(0, (h2 − h2

g)/100). Because these SNPs are distinct from

the M SNPs used for model-building, they effectively served as untyped causal loci. Finally, we

formed the phenotype by multiplying the effect sizes with the genotypes and adding independent

noise distributed as N(0, (1− h2)I).

Association testing: simulations with real genotypes

We also assessed mixed model association methods in simulation studies using simulated phe-

notypes based on genotypes from the CARe and FHS data sets. To avoid proximal contamina-

tion [15, 33, 34], we tested SNPs on chromosomes 1–2 for association and used M “observed

SNPs” on subsets of chromosomes 3–22 to compute GRMs, varying the number of chromosomes

used to vary N/M . We generated quantitative phenotypes in which observed SNPs collectively

explained 25% of variance and 250 causal SNPs from chromosome 1 explained another 25% of

variance; all SNPs on chromosome 2 were null SNPs.

Web Resources

UK Biobank, http://www.ukbiobank.ac.uk/

17

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/016618doi: bioRxiv preprint first posted online Mar. 17, 2015; 

http://dx.doi.org/10.1101/016618
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments

We are grateful to N. Zaitlen, B. Vilhjalmsson, S. Rosset, and H. Johnsen for helpful discussions.

This research was supported by NIH grants R01 HG006399 and R01 GM105857 and NIH fellow-

ship F32 HG007805.

18

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/016618doi: bioRxiv preprint first posted online Mar. 17, 2015; 

http://dx.doi.org/10.1101/016618
http://creativecommons.org/licenses/by-nc-nd/4.0/


References

1. Henderson CR. Best linear unbiased estimation and prediction under a selection model.

Biometrics. 1975;31:423–447.

2. Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value using genome-wide

dense marker maps. Genetics. 2001;157(4):1819–1829.

3. Erbe M, Hayes B, Matukumalli L, Goswami S, Bowman P, Reich C, et al. Improv-

ing accuracy of genomic predictions within and between dairy cattle breeds with im-

puted high-density single nucleotide polymorphism panels. Journal of Dairy Science.

2012;95(7):4114–4129.

4. Habier D, Fernando RL, Garrick DJ. Genomic BLUP decoded: a look into the black box of

genomic prediction. Genetics. 2013;194(3):597–607.

5. Zhou X, Carbonetto P, Stephens M. Polygenic modeling with Bayesian sparse linear mixed

models. PLOS Genetics. 2013;9(2):e1003264.

6. de los Campos G, Vazquez AI, Fernando R, Klimentidis YC, Sorensen D. Prediction of

complex human traits using the genomic best linear unbiased predictor. PLOS Genetics.

2013;9(7):e1003608.

7. Speed D, Balding DJ. MultiBLUP: improved SNP-based prediction for complex traits.

Genome Research. 2014;early online.

8. Golan D, Rosset S. Effective Genetic-Risk Prediction Using Mixed Models. American

Journal of Human Genetics. 2014;95(4):383–393.

9. Maier R, Moser G, Chen GB, Ripke S, Coryell W, Potash JB, et al. Joint analysis of psychi-

atric disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and

major depressive disorder. American Journal of Human Genetics. 2015;96(2):283–294.

10. Moser G, Lee SH, Hayes BJ, Goddard ME, Wray NR, Visscher PM. Simultaneous Dis-

covery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture

Model. PLOS Genetics. 2015;11(4):e1004969.

19

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/016618doi: bioRxiv preprint first posted online Mar. 17, 2015; 

http://dx.doi.org/10.1101/016618
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, et al. A unified mixed-model

method for association mapping that accounts for multiple levels of relatedness. Nature

Genetics. 2006;38(2):203–208.

12. Chen WM, Abecasis GR. Family-based association tests for genomewide association scans.

American Journal of Human Genetics. 2007;81(5):913–926.

13. Kang HM, Sul JH, Zaitlen NA, Kong Sy, Freimer NB, Sabatti C, et al. Variance component

model to account for sample structure in genome-wide association studies. Nature Genetics.

2010;42(4):348–354.

14. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies.

Nature Genetics. 2012;44(7):821–824.

15. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the

application of mixed-model association methods. Nature Genetics. 2014;46(2):100–106.

16. Loh PR, Tucker G, Bulik-Sullivan B, Vilhjálmsson B, Finucane H, Chasman D, et al. Effi-
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Figure 1. Calibration of standard and two-variance-component mixed model association

statistics on simulated genotypes and phenotypes. We computed mean Wald statistics over null

SNPs using the standard mixed model association test (MLM) and a two variance component

model (2 var. comp. MLM) using GRM and thresholded GRM (i.e., approximate pedigree)

components. Each panel shows results from a set of simulations with selected values of the

simulation parameters N/M , h2, and h2

g. The set of simulations contained within each panel

varies one additional parameter, NS, which measures the amount of relatedness in the simulated

data. (S denotes the average squared off-diagonal entry of the pedigree relationship matrix.)

Plotted values are mean Wald statistics and s.e.m. over 100 simulations.
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Table 1. Prediction accuracy for simulations using CARe and FHS genotypes

(a) CARe genotypes

Prediction r2(g)
Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

Chrom. 2 - 22 0.062 (0.002) 0.061 (0.002) 0.071 (0.002)

Chrom. 3 - 6 0.084 (0.002) 0.063 (0.002) 0.094 (0.002)

Chrom. 3 - 4 0.098 (0.002) 0.059 (0.002) 0.108 (0.002)

(b) FHS genotypes

Prediction r2(g)
Observed SNPs BLUP BLUP w/ thresh. 2 VC BLUP

Chrom. 2 - 22 0.225 (0.003) 0.225 (0.003) 0.238 (0.003)

Chrom. 3 - 6 0.246 (0.003) 0.230 (0.003) 0.269 (0.003)

Chrom. 3 - 4 0.263 (0.003) 0.231 (0.003) 0.291 (0.003)

Phenotypes were simulated to have h2 = 0.5, h2

g = 0.25, and prediction r2(g) was measured using

a random 90% of samples as training data and the remaining 10% as test data. Reported values

are mean prediction r2(g) and s.e.m. over 100 independent simulations (in which phenotypes

were re-simulated and train/test splits resampled). BLUP w/ thresh. denotes BLUP prediction

using the thresholded relationship matrix instead of the standard approach of using the GRM

(denoted simply “BLUP”). Prediction r2(g) denotes r2 between predicted phenotypes and true

genetic components of the simulated phenotypes.
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Table 2. Prediction accuracy for CARe and FHS phenotypes

(a) CARe prediction

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.023 0.027 0.029 +14% (9%) +18% (5%)

height 0.063 0.067 0.079 +5% (5%) +20% (3%)

LDL 0.017 0.017 0.019 +2% (15%) +11% (5%)

HDL 0.034 0.032 0.038 -7% (10%) +11% (4%)

(b) FHS prediction

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.103 0.104 0.107 +1.0% (2.3%) +3.5% (1.2%)

height 0.344 0.342 0.354 -0.7% (1.1%) +2.9% (0.5%)

(c) CARe prediction using genome-wide significant SNPs as fixed effect covariates

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.023 0.026 0.028 +14% (9%) +19% (5%)

height 0.063 0.066 0.078 +5% (5%) +20% (3%)

LDL 0.038 0.039 0.041 +3% (6%) +6% (2%)

HDL 0.051 0.049 0.055 -4% (6%) +7% (3%)

(d) FHS prediction using genome-wide significant SNPs as fixed effect covariates

Prediction r2 Prediction r2 relative to BLUP (s.e.)

Phenotype BLUP BLUP w/ thresh. 2 VC BLUP BLUP w/ thresh. 2 VC BLUP

BMI 0.105 0.107 0.109 +1.2% (2.3%) +3.5% (1.2%)

height 0.344 0.341 0.354 -0.8% (1.1%) +2.8% (0.5%)

Prediction r2 values are means over 100 random 90/10 train/test data splits. Relative performance

values reported are ratios of means minus 1; standard errors are estimated as standard deviations

of per-split differences in r2 (over the random 10% test sets) divided by
√
10 (to account for the

10x larger sample size of the full data set; see Materials and Methods). BLUP w/ thresh. denotes

BLUP prediction using the thresholded relationship matrix instead of the standard approach of

using the GRM (denoted simply “BLUP”).
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Table 3. Calibration of standard and two-variance-component mixed model association

statistics in CARe and FHS simulations

(a) CARe genotypes

Observed SNPs # of SNPs Standard mixed model Two variance components

(M) Mean Wald Mean Wald Threshold (t)
Chrom. 3 - 22 615,445 1.013 (0.002) 1.000 (0.002) 0.024

Chrom. 3 - 6 195,333 1.024 (0.002) 1.002 (0.002) 0.051

Chrom. 3 - 4 99,690 1.028 (0.002) 1.003 (0.002) 0.081

Chrom. 22 9,713 1.036 (0.002) 1.014 (0.002) 0.387

(b) FHS genotypes

Observed SNPs # of SNPs Standard mixed model Two variance components

(M) Mean Wald Mean Wald Threshold (t)
Chrom. 3 - 22 346,005 1.032 (0.003) 1.003 (0.003) 0.021

Chrom. 3 - 6 110,203 1.071 (0.003) 1.008 (0.003) 0.040

Chrom. 3 - 4 55,480 1.097 (0.003) 1.014 (0.003) 0.055

Chrom. 22 5,277 1.189 (0.004) 1.055 (0.003) 0.258

Mean Wald statistics on candidate null SNPs for simulations with CARe or FHS genotypes and a

trait with h2 = 0.5, h2

g = 0.25. Reported values are means and s.e.m. over 100 simulations. The

two variance component model selected the specified threshold (t) to estimate the relatedness

matrix. In simulations using only SNPs on chromosome 22 to compute GRMs, we observed

slight inflation using the two variance component model; given the large thresholds (t > 0.25)

chosen by the model in these scenarios, we hypothesize that the number of SNPs was too small to

distinguish relatedness from noise in the GRM, causing an incomplete correction. For

corresponding Type I error at different α levels, see Table S7.
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Table 4. Calibration of standard and two-variance-component mixed model association

statistics for CARe and FHS phenotypes

(a) CARe phenotypes

Phenotype N Standard mixed model Two variance components

Mean Wald ĥ2

g Mean Wald ĥ2

g ĥ2

BMI 7987 1.044 0.35 1.029 0.17 0.46

height 7988 1.110 0.73 1.080 0.38 0.95

LDL 4965 1.030 0.32 1.021 0.18 0.44

HDL 5184 1.054 0.50 1.037 0.26 0.66

(b) FHS phenotypes

Phenotype N Standard mixed model Two variance components

Mean Wald ĥ2

g Mean Wald ĥ2

g ĥ2

BMI 7476 1.060 0.43 1.032 0.21 0.47

height 7476 1.126 0.81 1.070 0.39 0.87

We report the number of individuals N phenotyped for each trait and the mean Wald statistics and

heritability parameters computed by the standard and two-variance-component mixed models

(averaged over 22 leave-one-chromosome-out runs).
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