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ABSTRACT

Generative Adversarial Networks (GANs) have recently achieved impressive results
for many real-world applications, and many GAN variants have emerged with
improvements in sample quality and training stability. However, they have not
been well visualized or understood. How does a GAN represent our visual world
internally? What causes the artifacts in GAN results? How do architectural choices
affect GAN learning? Answering such questions could enable us to develop new
insights and better models.

In this work, we present an analytic framework to visualize and understand GANs
at the unit-, object-, and scene-level. We first identify a group of interpretable units
that are closely related to object concepts using a segmentation-based network
dissection method. Then, we quantify the causal effect of interpretable units
by measuring the ability of interventions to control objects in the output. We
examine the contextual relationship between these units and their surroundings by
inserting the discovered object concepts into new images. We show several practical
applications enabled by our framework, from comparing internal representations
across different layers, models, and datasets, to improving GANs by locating and
removing artifact-causing units, to interactively manipulating objects in a scene.
We provide open source interpretation tools to help researchers and practitioners
better understand their GAN models.

1 INTRODUCTION

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have been able to produce
photorealistic images, often indistinguishable from real images. This remarkable ability has pow-
ered many real-world applications ranging from visual recognition (Wang et al., 2017), to image
manipulation (Isola et al., 2017; Zhu et al., 2017), to video prediction (Mathieu et al., 2016). Since
their invention in 2014, many GAN variants have been proposed (Radford et al., 2016; Zhang et al.,
2018a), often producing more realistic and diverse samples with better training stability.

Despite this tremendous success, many questions remain to be answered. For example, to produce a
church image (Figure 1a), what knowledge does a GAN need to learn? Alternatively, when a GAN
sometimes produces terribly unrealistic images (Figure 1f), what causes the mistakes? Why does one
GAN variant work better than another? What fundamental differences are encoded in their weights?

In this work, we study the internal representations of GANs. To a human observer, a well-trained
GAN appears to have learned facts about the objects in the image: for example, a door can appear on
a building but not on a tree. We wish to understand how a GAN represents such structure. Do the
objects emerge as pure pixel patterns without any explicit representation of objects such as doors and
trees, or does the GAN contain internal variables that correspond to the objects that humans perceive?
If the GAN does contain variables for doors and trees, do those variables cause the generation of
those objects, or do they merely correlate? How are relationships between objects represented?
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(a) Generate images of churches

(b) Identify GAN units that match trees

(c) Ablating units removes trees

(d) Activating units adds trees (g) Ablating “artifact” units improves results

(e) Identify GAN units that cause artifacts

(f) Bedroom images with artifacts

Figure 1: Overview: (a) Realistic outdoor church images generated by Progressive GANs (Karras
et al., 2018). (b) Given a pre-trained GAN model, we identify a set of interpretable units whose
featuremap is correlated to an object class across different images. For example, one unit in layer4
localizes tree regions with diverse visual appearance. (c) We force the activation of the units to be
zero and quantify the average casual effect of the ablation. Here we successfully remove trees from
church images. (d) We activate tree causal units in other locations. These same units synthesize new
trees, visually compatible with their surrounding context. In addition, our method can diagnose and
improve GANs by identifying artifact-causing units (e). We can remove the artifacts that appear (f)
and significantly improve the results by ablating the “artifact” units (g). Please see our demo video.

We present a general method for visualizing and understanding GANs at different levels of abstraction,
from each neuron, to each object, to the contextual relationship between different objects. We first
identify a group of interpretable units that are related to object concepts (Figure 1b). These units’
featuremaps closely match the semantic segmentation of a particular object class (e.g., trees). Second,
we directly intervene within the network to identify sets of units that cause a type of objects to
disappear (Figure 1c) or appear (Figure 1d). We quantify the causal effect of these units using a
standard causality metric. Finally, we examine the contextual relationship between these causal object
units and the background. We study where we can insert object concepts in new images and how
this intervention interacts with other objects in the image (Figure 1d). To our knowledge, our work
provides the first systematic analysis for understanding the internal representations of GANs.

Finally, we show several practical applications enabled by this analytic framework, from compar-
ing internal representations across different layers, GAN variants and datasets; to debugging and
improving GANs by locating and ablating “artifact” units (Figure 1e); to understanding contextual
relationships between objects in scenes; to manipulating images with interactive object-level control.

2 RELATED WORK

Generative Adversarial Networks. The quality and diversity of results from GANs (Goodfellow
et al., 2014) has continued to improve, from generating simple digits and faces (Goodfellow et al.,
2014), to synthesizing natural scene images (Radford et al., 2016; Denton et al., 2015), to generating
1k photorealistic portraits (Karras et al., 2018), to producing one thousand object classes (Miyato et al.,
2018; Zhang et al., 2018a). GANs have also enabled applications such as visual recognition (Wang
et al., 2017; Hoffman et al., 2018), image manipulation (Isola et al., 2017; Zhu et al., 2017), and
video generation (Mathieu et al., 2016; Wang et al., 2018). Despite the successes, little work has been
done to visualize what GANs have learned. Prior work (Radford et al., 2016; Zhu et al., 2016; Brock
et al., 2017) manipulates latent vectors and observes how the results change accordingly.
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Figure 2: Measuring the relationship between representation units and trees in the output using (a)
dissection and (b) intervention. Dissection measures agreement between a unit u and a concept c by
comparing its thresholded upsampled heatmap with a semantic segmentation of the generated image
sc(x). Intervention measures the causal effect of a set of units U on a concept c by comparing the
effect of forcing these units on (unit insertion) and off (unit ablation). The segmentation sc reveals
that trees increase after insertion and decrease after ablation. The average difference in the tree pixels
measures the average causal effect. In this figure, interventions are applied to the entire featuremap P,
but insertions and ablations can also apply to any subset of pixels P ⊂ P.

Visualizing deep neural networks. A CNN can be visualized by reconstructing salient image
features (Simonyan et al., 2014; Mahendran & Vedaldi, 2015) or by mining patches that maximize
hidden layers’ activations (Zeiler & Fergus, 2014); or we can synthesize input images to invert
a feature layer (Dosovitskiy & Brox, 2016). Alternately, we can identify the semantics of each
unit (Zhou et al., 2015; Bau et al., 2017; Zhou et al., 2018a) by measuring agreement between unit
activations and object segmentation masks, or by training a network to increase interpretability of
such units (Zhang et al., 2018b). Visualization of an RNN has also revealed interpretable units that
track long-range dependencies (Karpathy et al., 2016; Strobelt et al., 2018). Most previous work
on network visualization has focused on networks trained for classification; our work explores deep
generative models trained for image generation.

Understanding neural representation in biology. Studies of biological neural networks find evi-
dence of both local representations in which individual neurons are selective for meaningful con-
cepts (Quiroga, 2012), as well as distributed representations in which individual neurons are essen-
tially meaningless (Yuste, 2015). Computational models of biological learning (Bowers et al., 2016;
Dasgupta et al., 2018) find sparse and local representations can aid generalization to novel stimuli.

Explaining the decisions of deep neural networks. Individual network decisions can be explained
using informative heatmaps (Zhou et al., 2018b; 2016; Selvaraju et al., 2017) or by scoring salience (Si-
monyan et al., 2014; Bach et al., 2015; Sundararajan et al., 2017; Lundberg & Lee, 2017). Such
analyses reveals which inputs contribute most to a categorical prediction by a network. Recent work
has also studied the contribution of feature vectors (Kim et al., 2017; Zhou et al., 2018b) or individual
channels (Olah et al., 2018) to a final prediction, and Morcos et al. (2018) has examined the effect
of individual units by ablating them. Those methods explain discriminative classifiers. Our method
aims to explain how an image can be generated by a network, which is much less explored.

3 METHOD

Our goal is to analyze how objects such as trees are encoded by the internal representations of a
GAN generator G : z→ x. Here z ∈ R|z| denotes a latent vector sampled from a low-dimensional
distribution, and x ∈ RH×W×3 denotes an H ×W generated image. We use representation to
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Thresholding unit #65 layer 3 of a dining room generator matches ‘table’ segmentations with IoU=0.34.

Thresholding unit #37 layer 4 of a living room generator matches ‘sofa’ segmentations with IoU=0.29.

Figure 3: Visualizing the activations of individual units in two GANs. Top ten activating images
are shown, and IoU is measured over a sample of 1000 images. In each image, the unit feature is
upsampled and thresholded as described in Eqn. 2.

describe the tensor r output from a particular layer of the generator G, where the generator creates an
image x from random z through a composition of layers: r = h(z) and x = f(r) = f(h(z)) = G(z).

Since r has all the data necessary to produce the image x = f(r), r certainly contains the information
to deduce the presence of any visible class c in the image. Therefore the question we ask is not
whether information about c is present in r — it is — but how such information is encoded in r. In
particular, for any class from a universe of concepts c ∈ C, we seek to understand whether r explicitly
represents c in some way where it is possible to factor r at locations P into two components

rU,P = (rU,P, rU,P), (1)

where the generation of the object c at locations P depends mainly on the units rU,P, and is insensitive
to the other units rU,P. Here we refer to each channel of the featuremap as a unit: U denotes the set of
unit indices of interest and U is its complement; we will write U and P to refer to the entire set of
units and featuremap pixels in r. We study the structure of r in two phases:

• Dissection: starting with a large dictionary of object classes, we identify the classes that
have an explicit representation in r by measuring the agreement between individual units of
r and every class c (Figure 1b).
• Intervention: for the represented classes identified through dissection, we identify causal

sets of units and measure causal effects between units and object classes by forcing sets of
units on and off (Figure 1c,d).

3.1 CHARACTERIZING UNITS BY DISSECTION

We first focus on individual units of the representation. Recall that ru,P is the one-channel h × w
featuremap of unit u in a convolutional generator, where h× w is typically smaller than the image
size. We want to know if a specific unit ru,P encodes a semantic class such as a “tree”. For image
classification networks, Bau et al. (2017) has observed that many units can approximately locate
emergent object classes when the units are upsampled and thresholded. In that spirit, we select a
universe of concepts c ∈ C for which we have a semantic segmentation sc(x) for each class. Then
we quantify the spatial agreement between the unit u’s thresholded featuremap and a concept c’s
segmentation with the following intersection-over-union (IoU) measure:

IoUu,c ≡
Ez

∣∣∣(r↑u,P > tu,c) ∧ sc(x)
∣∣∣

Ez

∣∣∣(r↑u,P > tu,c) ∨ sc(x)
∣∣∣ ,where tu,c = argmax

t

I(r↑u,P > t; sc(x))

H(r↑u,P > t, sc(x))
, (2)

where ∧ and ∨ denote intersection and union operations, and x = G(z) denotes the image generated
from z. The one-channel feature map ru,P slices the entire featuremap r = h(z) at unit u. As shown
in Figure 2a, we upsample ru,P to the output image resolution as r↑u,P. (r↑u,P > tu,c) produces a binary
mask by thresholding the r↑u,P at a fixed level tu,c. sc(x) is a binary mask where each pixel indicates
the presence of class c in the generated image x. The threshold tu,c is chosen to be informative as
possible by maximizing the information quality ratio I/H (using a separate validation set), that is, it
maximizes the portion of the joint entropy H which is mutual information I (Wijaya et al., 2017).

We can use IoUu,c to rank the concepts related to each unit and label each unit with the concept that
matches it best. Figure 3 shows examples of interpretable units with high IoUu,c. They are not the
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Number of tree units ablated

0 5 10 20

Figure 4: Ablating successively larger sets of tree-causal units from a GAN trained on LSUN outdoor
church images, showing that the more units are removed, the more trees are reduced, while buildings
remain. The choice of units to ablate is specific to the tree class and does not depend on the image.
At right, the causal effect of removing successively more tree units is plotted, comparing units chosen
to optimize the average causal effect (ACE) and units chosen with the highest IoU for trees.

only units to match tables and sofas: layer3 of the dining room generator has 31 units (of 512) that
match tables and table parts, and layer4 of the living room generator has 65 (of 512) sofa units.

Once we have identified an object class that a set of units match closely, we next ask: which units are
responsible for triggering the rendering of that object? A unit that correlates highly with an output
object might not actually cause that output. Furthermore, any output will jointly depend on several
parts of the representation. We need a way to identify combinations of units that cause an object.

3.2 MEASURING CAUSAL RELATIONSHIPS USING INTERVENTION

To answer the above question about causality, we probe the network using interventions: we test
whether a set of units U in r cause the generation of c by forcing the units of U on and off.

Recall that rU,P denotes the featuremap r at units U and locations P. We ablate those units by forcing
rU,P = 0. Similarly, we insert those units by forcing rU,P = k, where k is a per-class constant, as
described in Section S-6.4. We decompose the featuremap r into two parts (rU,P, rU,P), where rU,P
are unforced components of r:

Original image : x = G(z) ≡ f(r) ≡ f(rU,P, rU,P) (3)

Image with U ablated at pixels P : xa = f(0, rU,P)

Image with U inserted at pixels P : xi = f(k, rU,P)

An object is caused by U if the object appears in xi and disappears from xa. Figure 1c demonstrates
the ablation of units that remove trees, and Figure 1d demonstrates insertion of units at specific
locations to make trees appear. This causality can be quantified by comparing the presence of trees in
xi and xa and averaging effects over all locations and images. Following prior work (Holland, 1988;
Pearl, 2009), we define the average causal effect (ACE) of units U on the generation of on class c as:

δU→c ≡ Ez,P[sc(xi)]− Ez,P[sc(xa)], (4)

where sc(x) denotes a segmentation indicating the presence of class c in the image x at P. To
permit comparisons of δU→c between classes c which are rare, we normalize our segmentation sc by
Ez,P[sc(x)]. While these measures can be applied to a single unit, we have found that objects tend to
depend on more than one unit. Thus we wish to identify a set of units U that maximize the average
causal effect δU→c for an object class c.

Finding sets of units with high ACE. Given a representation r with d units, exhaustively searching
for a fixed-size set U with high δU→c is prohibitive as it has

(
d
|U|
)

subsets. Instead, we optimize a
continuous intervention α ∈ [0, 1]d, where each dimension αu indicates the degree of intervention
for a unit u. We maximize the following average causal effect formulation δα→c:

Image with partial ablation at pixels P : x′a = f((1−α)� rU,P, rU,P) (5)

Image with partial insertion at pixels P : x′i = f(α� k+ (1−α)� rU,P, rU,P)

Objective : δα→c = Ez,P [sc(x
′
i)]− Ez,P [sc(x

′
a)] ,

where rU,P denotes the all-channel featuremap at locations P, rU,P denotes the all-channel featuremap
at other locations P, and� applies a per-channel scaling vector α to the featuremap rU,P. We optimize
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α over the following loss with an L2 regularization:

α∗ = argmin
α

(−δα→c + λ||α||2), (6)

where λ controls the relative importance of each term. We add the L2 loss as we seek a minimal set
of casual units. We optimize using stochastic gradient descent, sampling over both z and featuremap
locations P and clamping the coefficient α within the range [0, 1]d at each step (d is the total number
of units). More details of this optimization are discussed in Section S-6.4. Finally, we can rank units
by α∗u and achieve a stronger causal effect (i.e., removing trees) when ablating successively larger
sets of tree-causing units as shown in Figure 4.

4 RESULTS

We study three variants of Progressive GANs (Karras et al., 2018) trained on LSUN scene datasets (Yu
et al., 2015). To segment the generated images, we use a recent model (Xiao et al., 2018) trained
on the ADE20K scene dataset (Zhou et al., 2017). The model can segment the input image into 336
object classes, 29 parts of large objects, and 25 materials. To further identify units that specialize in
object parts, we expand each object class c into additional object part classes c-t, c-b, c-l, and c-r,
which denote the top, bottom, left, or right half of the bounding box of a connected component.

Below, we use dissection for analyzing and comparing units across datasets, layers, and models
(Section 4.1), and locating artifact units (Section 4.2). Then, we start with a set of dominant object
classes and use intervention to locate causal units that can remove and insert objects in different
images (Section 4.3 and 4.4). In addition, our video demonstrates our interactive tool.

4.1 COMPARING UNITS ACROSS DATASETS, LAYERS, AND MODELS

Emergence of individual unit object detectors We are particularly interested in any units that are
correlated with instances of an object class with diverse visual appearances; these would suggest
that GANs generate those objects using similar abstractions as humans. Figure 3 illustrates two such
units. In the dining room dataset, a unit emerges to match dining table regions. More interestingly,
the matched tables have different colors, materials, geometry, viewpoints, and levels of clutter: the
only obvious commonality among these regions is the concept of a table. This unit’s featuremap
correlates to the fully supervised segmentation model (Xiao et al., 2018) with a high IoU of 0.34.

Interpretable units for different scene categories The set of all object classes matched by the
units of a GAN provides a map of what a GAN has learned about the data. Figure 5 examines units
from GANs trained on four LSUN scene categories (Yu et al., 2015). The units that emerge are object
classes appropriate to the scene type: for example, when we examine a GAN trained on kitchen
scenes, we find units that match stoves, cabinets, and the legs of tall kitchen stools. Another striking
phenomenon is that many units represent parts of objects: for example, the conference room GAN
contains separate units for the body and head of a person.

Interpretable units for different network layers. In classifier networks, the type of information
explicitly represented changes from layer to layer (Zeiler & Fergus, 2014). We find a similar
phenomenon in a GAN. Figure 6 compares early, middle, and late layers of a progressive GAN with
14 internal convolutional layers. The output of the first convolutional layer, one step away from the
input z, remains entangled: individual units do not correlate well with any object classes except for
two units that are biased towards the ceiling of the room. Mid-level layers 4 to 7 have many units that
match semantic objects and object parts. Units in layers 10 and beyond match local pixel patterns
such as materials, edges and colors. All layers are shown in Section S-6.7.

Interpretable units for different GAN models. Interpretable units can provide insights about how
GAN architecture choices affect the structures learned inside a GAN. Figure 7 compares three models
from Karras et al. (2018): a baseline Progressive GANs, a modification that introduces minibatch
stddev statistics, and a further modification that adds pixelwise normalization. By examining unit
semantics, we confirm that providing minibatch stddev statistics to the discriminator increases not
only the realism of results, but also the diversity of concepts represented by units: the number of
types of objects, parts, and materials matching units increases by more than 40%. The pixelwise
normalization increases the number of units that match semantic classes by 19%.
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  Units in scene generator   Unit class distribution
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Figure 5: Comparing representations learned by progressive GANs trained on different scene types.
The units that emerge match objects that commonly appear in the scene type: seats in conference
rooms and stoves in kitchens. Units from layer4 are shown. A unit is counted as a class predictor
if it matches a supervised segmentation class with pixel accuracy > 0.75 and IoU > 0.05 when
upsampled and thresholded. The distribution of units over classes is shown in the right column.
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Figure 6: Comparing layers of a progressive GAN trained to generate LSUN living room images.
The output of the first convolutional layer has almost no units that match semantic objects, but many
objects emerge at layers 4-7. Later layers are dominated by low-level materials, edges and colors.

4.2 DIAGNOSING AND IMPROVING GANS

While our framework can reveal how GANs succeed in producing realistic images, it can also analyze
the causes of failures in their results. Figure 8a shows several annotated units that are responsible for
typical artifacts consistently appearing across different images. We can identify these units efficiently
by human annotation: out of a sample of 1000 images, we visualize the top ten highest activating
images for each unit, and we manually identify units with noticeable artifacts in this set. It typically
takes 10 minutes to locate 20 artifact-causing units out of 512 units in layer4.

More importantly, we can fix these errors by ablating the above 20 artifact-causing units. Figure 8b
shows that artifacts are successfully removed, and the artifact-free pixels stay the same, improving
the generated results. In Table 1 we report two standard metrics, comparing our improved images
to both the original artifact images and a simple baseline that ablates 20 randomly chosen units.
First, we compute the widely used Fréchet Inception Distance (Heusel et al., 2017) between the
generated images and real images. We use 50, 000 real images and generate 10, 000 images with high
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Figure 7: Comparing layer4 representations learned by different training variations. Sliced
Wasserstein Distance (SWD) is a GAN quality metric suggested by Karras et al. (2018): lower SWD
indicates more realistic image statistics. Note that as the quality of the model improves, the number
of interpretable units also rises. Progressive GANs apply several innovations including making the
discriminator aware of minibatch statistics, and pixelwise normalization at each layer. We can see
batch awareness increases the number of object classes matched by units, and pixel norm (applied in
addition to batch stddev) increases the number of units matching objects.

(a) Example artifact-causing units (c) Ablating “artifact” units improves results

(b) Bedroom images with artifacts

Unit#231
Unit#63

Figure 8: (a) We show two example units that are responsible for visual artifacts in GAN results.
There are 20 units in total. By ablating these units, we can fix the artifacts in (b) and significantly
improve the visual quality as shown in (c).

activations on these units. Second, we score 1, 000 images per method on Amazon MTurk, collecting
20, 000 human annotations regarding whether the modified image looks more realistic compared to
the original. Both metrics show significant improvements. Strikingly, this simple manual change to
a network beats state-of-the-art GANs models. The manual identification of “artifact” units can be
approximated by an automatic scoring of the realism of each unit, as detailed in Section S-6.1.

4.3 LOCATING CAUSAL UNITS WITH ABLATION

Errors are not the only type of output that can be affected by directly intervening in a GAN. A variety
of specific object types can also be removed from GAN output by ablating a set of units in a GAN. In
Figure 9 we apply the method in Section 3.2 to identify sets of 20 units that have causal effects on
common object classes in conference rooms scenes. We find that, by turning off these small sets of
units, most of the output of people, curtains, and windows can be removed from the generated scenes.
However, not every object can be erased: tables and chairs cannot be removed. Ablating those units
will reduce the size and density of these objects, but will rarely eliminate them.

The ease of object removal depends on the scene type. Figure 10 shows that, while windows can
be removed well from conference rooms, they are more difficult to remove from other scenes. In
particular, windows are just as difficult to remove from a bedroom as tables and chairs from a
conference room. We hypothesize that the difficulty of removal reflects the level of choice that a
GAN has learned for a concept: a conference room is defined by the presence of chairs, so they
cannot be altered. And modern building codes mandate that all bedrooms must have windows; the
GAN seems to have caught on to that pattern.
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Table 1: We compare generated images before and after ablating 20 “artifacts” units. We also report
a simple baseline that ablates 20 randomly chosen units.

Fréchet Inception Distance (FID)

original images 43.16
“artifacts” units ablated (ours) 27.14

random units ablated 43.17

Human preference score original images

“artifacts” units ablated (ours) 72.4%
random units ablated 49.9%

ablate person units ablate curtain units

ablate table unitsablate window units ablate chair units

Figure 9: Measuring the effect of ablating units in a GAN trained on conference room images. Five
different sets of units have been ablated related to a specific object class. In each case, 20 (out of
512) units are ablated from the same GAN model. The 20 units are specific to the object class and
independent of the image. The average causal effect is reported as the portion of pixels that are
removed in 1 000 randomly generated images. We observe that some object classes are easier to
remove cleanly than others: a small ablation can erase most pixels for people, curtains, and windows,
whereas a similar ablation for tables and chairs only reduces object sizes without deleting them.

4.4 CHARACTERIZING CONTEXTUAL RELATIONSHIPS VIA INSERTION

We can also learn about the operation of a GAN by forcing units on and inserting these features into
specific locations in scenes. Figure 11 shows the effect of inserting 20 layer4 causal door units in
church scenes. In this experiment, we insert these units by setting their activation to the fixed mean
value for doors (further details in Section S-6.4). Although this intervention is the same in each case,
the effects vary widely depending on the objects’ surrounding context. For example, the doors added
to the five buildings in Figure 11 appear with a diversity of visual attributes, each with an orientation,
size, material, and style that matches the building.

We also observe that doors cannot be added in most locations. The locations where a door can be
added are highlighted by a yellow box. The bar chart in Figure 11 shows average causal effects of
insertions of door units, conditioned on the background object class at the location of the intervention.
We find that the GAN allows doors to be added in buildings, particularly in plausible locations such
as where a window is present, or where bricks are present. Conversely, it is not possible to trigger
a door in the sky or on trees. Interventions provide insight on how a GAN enforces relationships
between objects. Even if we try to add a door in layer4, that choice can be vetoed later if the object
is not appropriate for the context. These downstream effects are further explored in Section S-6.5.

5 DISCUSSION

By carefully examining representation units, we have found that many parts of GAN representations
can be interpreted, not only as signals that correlate with object concepts but as variables that have
a causal effect on the synthesis of objects in the output. These interpretable effects can be used to
compare, debug, modify, and reason about a GAN model. Our method can be potentially applied to
other generative models such as VAEs (Kingma & Welling, 2014) and RealNVP (Dinh et al., 2017).

We have focused on the generator rather than the discriminator (as did in Radford et al. (2016)) because
the generator must represent all the information necessary to approximate the target distribution, while
the discriminator only learns to capture the difference between real and fake images. Alternatively, we
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conference room church

living roomkitchen bedroom

Figure 10: Comparing the effect of ablating 20 window-causal units in GANs trained on five scene
categories. In each case, the 20 ablated units are specific to the class and the generator and independent
of the image. In some scenes, windows are reduced in size or number rather than eliminated, or
replaced by visually similar objects such as paintings.

(a) (b)

(d)(c) (e)

Figure 11: Inserting door units by setting 20 causal units to a fixed high value at one pixel in the
representation. Whether the door units can cause the generation of doors is dependent on its local
context: we highlight every location that is responsive to insertions of door units on top of the original
image, including two separate locations in (b) (we intervene at left). The same units are inserted
in every case, but the door that appears has a size, alignment, and color appropriate to the location.
Emphasizing a door that is already present results in a larger door (d). The chart summarizes the
causal effect of inserting door units at one pixel with different contexts.

can train an encoder to invert the generator (Donahue et al., 2017; Dumoulin et al., 2017). However,
this incurs additional complexity and errors. Many GANs also do not have an encoder.

Our method is not designed to compare the quality of GANs to one another, and it is not intended
as a replacement for well-studied GAN metrics such as FID, which estimate realism by measuring
the distance between the generated distribution of images and the true distribution (Borji (2018)
surveys these methods). Instead, our goal has been to identify the interpretable structure and provide
a window into the internal mechanisms of a GAN.

Prior visualization methods (Zeiler & Fergus, 2014; Bau et al., 2017; Karpathy et al., 2016) have
brought new insights into CNN and RNN research. Motivated by that, in this work we have taken
a small step towards understanding the internal representations of a GAN, and we have uncovered
many questions that we cannot yet answer with the current method. For example: why can a door not
be inserted in the sky? How does the GAN suppress the signal in the later layers? Further work will
be needed to understand the relationships between layers of a GAN. Nevertheless, we hope that our
work can help researchers and practitioners better analyze and develop their own GANs.
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Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7), 2015. 3

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations. In CVPR, 2017. 3, 4, 10

Ali Borji. Pros and cons of gan evaluation measures. arXiv preprint arXiv:1802.03446, 2018. 10

Jeffrey S Bowers, Ivan I Vankov, Markus F Damian, and Colin J Davis. Why do some neurons
in cortex respond to information in a selective manner? insights from artificial neural networks.
Cognition, 148:47–63, 2016. 3

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Neural photo editing with
introspective adversarial networks. In ICLR, 2017. 2

Sanjoy Dasgupta, Timothy C Sheehan, Charles F Stevens, and Saket Navlakha. A neural data structure
for novelty detection. Proceedings of the National Academy of Sciences, 115(51):13093–13098,
2018. 3

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. In NIPS, 2015. 2

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. In ICLR,
2017. 9
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(a) unit 435, FID=13.35

 
(b) unit 224, FID=30.80

 
(c) unit 231, FID=46.29

Figure 12: At left, visualizations of the highest-activating image patches (from a sample of 1000) for
three units. (a) the lowest-FID unit that is manually flagged as showing artifacts (b) the highest-FID
unit that is not manually flagged (c) the highest-FID unit overall, which is also manually flagged. At
right, the precision-recall curve for unit FID as a predictor of the manually flagged artifact units. A
FID threshold selecting the top 20 FID units will identify 10 (of 20) of the manually flagged units.

(a) original generated images without ablation

(b) ablating the 20 highest-FID units.

(b) ablating the 20 manually-identified untis.

Figure 13: The effects of ablating high-FID units compared to manually-flagged units: (a) generated
images with artifacts, without intervention; (b) those images generated after ablating the 20-highest
FID units; (c) those images generated after ablating the 20 manually-chosen artifact units.

S-6 SUPPLEMENTARY MATERIAL

S-6.1 AUTOMATIC IDENTIFICATION OF ARTIFACT UNITS

In Section 4.2, we have improved GANs by manually identifying and ablating artifact-causing units.
Now we describe an automatic procedure to identify artifact units using unit-specific FID scores.

To compute the FID score (Heusel et al., 2017) for a unit u, we generate 200, 000 images and select the
10, 000 images that maximize the activation of unit u, and this subset of 10, 000 images is compared
to the true distribution (50, 000 real images) using FID. Although every such unit-maximizing subset
of images represents a skewed distribution, we find that the per-unit FID scores fall in a wide range,
with most units scoring well in FID while a few units stand out with bad FID scores: many of them
were also manually flagged by humans, as they tend to activate on images with clear visible artifacts.

Figure 12 shows the performance of FID scores as a predictor of manually flagged artifact units. The
per-unit FID scores can achieve 50% precision and 50% recall. That is, of the 20 worst-FID units,
10 are also among the 20 units manually judged to have the most noticeable artifacts. Furthermore,
repairing the model by ablating the highest-FID units works: qualitative results are shown in Figure 13
and quantitative results are shown in Table 2.
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Table 2: We compare generated images before and after ablating “artifact” units. The “artifacts” units
are found either manually, automatically, or both. We also report a simple baseline that ablates 20
randomly chosen units.

Fréchet Inception Distance (FID)

original images 43.16
manually chosen “artifact” units ablated (as in Section 4.2) 27.14
highest-20 FID units ablated 27.6
union of manual and highest FID (30 total) units ablated 26.1
20 random units ablated 43.17

(a) unit118 in layer4

(b) unit11 in layer4

Figure 14: Two examples of generator units that our dissection method labels differently from humans.
Both units are taken from layer4 of a Progressive GAN of living room model. In (a), human label
the unit as ‘sofa’ based on viewing the top-20 activating images, and our method labels as ‘ceiling’.
In this case, our method counts many ceiling activations in a sample of 1000 images beyond the top
20. In (b), the dissection method has no confident label prediction even though the unit consistently
triggers on white letterbox shapes at the top and bottom of the image. The segmentation model we
use has no label for such abstract shapes.

S-6.2 HUMAN EVALUATION OF DISSECTION

As a sanity check, we evaluate the gap between human labeling of object concepts correlated with
units and our automatic segmentation-based labeling, for one model, as follows.

For each of 512 units of layer4 of a “living room” Progressive GAN, 5 to 9 human annotations
were collected (3728 labels in total). In each case, an AMT worker is asked to provide one or two
words describing the highlighted patches in a set of top-activating images for a unit. Of the 512 units,
201 units were described by the same consistent word (such as ”sofa”, ”fireplace” or ”wicker”) in
50% or more of the human labels. These units are interpretable to humans.

Applying our segmentation-based dissection method, 154/201 of these units are also labeled with
a confident label with IoU > 0.05 by dissection. In 104/154 cases, the segmentation-based model
gave the same label word as the human annotators, and most others are slight shifts in specificity. For
example, the segmentation labels “ottoman” or “curtain” or “painting” when a person labels “sofa”
or “window” or “picture,” respectively. A second AMT evaluation was done to rate the accuracy
of both segmentation-derived and human-derived labels. Human-derived labels scored 100% (of
the 201 human-labeled units, all of the labels were rated as consistent by most raters). Of the 154
segmentation-generated labels, 149 (96%) were rated by most AMT raters as accurate as well.

The five failure cases (where the segmentation is confident but rated as inaccurate by humans) arise
from situations in which human evaluators saw one concept after observing only 20 top-activating
images, while the algorithm, in evaluating 1000 images, counted a different concept as dominant.
Figure 14a shows one example: in the top images, mostly sofas are highlighted and few ceilings,
whereas in the larger sample, mostly ceilings are triggered.

There are also 47/201 cases where the segmenter is not confident while humans have consensus. Some
of these are due to missing concepts in the segmenter. Figure 14b shows a typical example, where a
unit is devoted to letterboxing (white stripes at the top and bottom of images), but the segmentation
has no confident label to assign to these. We expect that as future semantic segmentation models are
developed to be able to identify more concepts such as abstract shapes, more of these units can be
automatically identified.
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(a) Unit 154, FID 63.8, "Floor" with IoU 0.20.

(b) Unit 371, FID 58.3, "Swimming Pool" with IoU 0.02.

Figure 15: Two examples of units that correlate with unrealistic images that confuse a semantic
segmentation network. Both units are taken from a WGAN-GP for LSUN bedrooms.
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  Interpretable units   Unit class distribution
WGANGP (FID<55) 
512 units total

62 object units 
60 part units 
2 material units 
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Figure 16: Comparing a dissection of units for a WGAN-GP trained on LSUN bedrooms, considering
all units (at left) and considering only “realistic” units with FID < 55 (at right). Filtering units by
FID scores removes spurious detected concepts such as ‘sky’, ‘ground’, and ‘building’.

S-6.3 PROTECTING SEGMENTATION MODEL AGAINST UNREALISTIC IMAGES

Our method relies on having a segmentation function sc(x) that identifies pixels of class c in the
output x. However, the segmentation model sc can perform poorly in the cases where x does not
resemble the original training set of sc. This phenomenon is visible when analyzing earlier GAN
models. For example, Figure 15 visualizes two units from a WGAN-GP model (Gulrajani et al.,
2017) for LSUN bedrooms (this model was trained by Karras et al. (2018) as a baseline in the original
paper). For these two units, the segmentation network seems to be confused by the distorted images.

To protect against such spurious segmentation labels, we can use a technique similar to that described
in Section S-6.1: automatically identify units that produce unrealistic images, and omit those
“unrealistic” units from semantic segmentation. An appropriate threshold to apply will depend on
the distribution being modeled: in Figure 16, we show how applying a filter, ignoring segmentation
on units with FID 55 or higher, affects the analysis of this base WGAN model. In general, fewer
irrelevant labels are associated with units.

S-6.4 COMPUTING CAUSAL UNITS

In this section we provide more details about the ACE optimization described in Section 3.2.

Specifying the per-class positive intervention constant k. In Eqn. 3, the negative intervention is
defined as zeroing the intervened units, and a positive intervention is defined as setting the intervened
units to some big class-specific constant k. For interventions for class c, we set k to be mean
featuremap activation conditioned on the presence of class c at that location in the output, with each
pixel weighted by the portion of the featuremap locations that are covered by the class c. Setting all
units at a pixel to k will tend to strongly cause the target class. The goal of the optimization is to find
the subset of units that is causal for c.

Sampling c-relevant locations P. When optimizing the causal objective (Eqn. 5), the intervention
locations P are sampled from individual featuremap locations. When the class c is rare, most
featuremap locations are uninformative: for example, when class c is a door in church scenes, most
regions of the sky, grass, and trees are locations where doors will not appear. Therefore, we focus the
optimization as follows: during training, minibatches are formed by sampling locations P that are
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Figure 17: Tracing the effect of inserting door units on downstream layers. An identical ”door”
intervention at layer4 of each pixel in the featuremap has a different effect on later feature layers,
depending on the location of the intervention. In the heatmap, brighter colors indicate a stronger
effect on the layer14 feature. A request for a door has a larger effect in locations of a building,
and a smaller effect near trees and sky. At right, the magnitude of feature effects at every layer is
shown, measured by the changes of mean-normalized features. In the line plot, feature changes for
interventions that result in human-visible changes are separated from interventions that do not result
in noticeable changes in the output.

relevant to class c by including locations where the class c is present in the output (and are therefore
candidates for removal by ablating a subset of units), and an equal portion of locations where class c
is not present at P, but it would be present if all the units are set to the constant k (candidate locations
for insertion with a subset of units). During the evaluation, causal effects are evaluated using uniform
samples: the region P is set to the entire image when measuring ablations, and to uniformly sampled
pixels P when measuring single-pixel insertions.

Initializing α with IoU. When optimizing causal α for class c, we initialize with

αu =
IoUu,c

maxv IoUv,c
(7)

That is, we set the initial α so that the largest component corresponds to the unit with the largest IoU
for class c, and we normalize the components so that this largest component is 1.

Applying a learned intervention α When applying the interventions, we clip α by keeping only
its top n components and zeroing the remainder. To compare the interventions of different classes an
different models on an equal basis, we examine interventions where we set n = 20.

S-6.5 TRACING THE EFFECT OF AN INTERVENTION

To investigate the mechanism for suppressing the visible effects of some interventions seen in
Section 4.4, in this section we insert 20 door-causal units on a sample of individual featuremap
locations at layer4 and measure the changes caused in later layers.

To quantify effects on downstream features, the change in each feature channel is normalized by that
channel’s mean L1 magnitude, and we examine the mean change in these normalized featuremaps
at each layer. In Figure 17, these effects that propagate to layer14 are visualized as a heatmap:
brighter colors indicate a stronger effect on the final feature layer when the door intervention is in the
neighborhood of a building instead of trees or sky. Furthermore, we plot the average effect on every
layer at right in Figure 17, separating interventions that have a visible effect from those that do not. A
small identical intervention at layer4 is amplified to larger changes up to a peak at layer12.

S-6.6 MONITORING GAN UNITS DURING TRAINING

Dissection can also be used to monitor the progress of training by quantifying the emergence,
diversity, and quality of interpretable units. For example, in Figure 18 we show dissections of
layer4 representations of a Progressive GAN model trained on bedrooms, captured at a sequence
of checkpoints during training. As training proceeds, the number of units matching objects increases,
as does the number of object classes with matching units, and the quality of object detectors as
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cloud 0.01 buildingb 0.10 glass 0.04 floor 0.11

wallb 0.13 floort 0.09 glass 0.14 wood 0.14

ceiling 0.01 bedt 0.10 window 0.18 painting 0.08

lamp 0.05 bedt 0.17 window 0.25 painting 0.11

lamp 0.05 bedt 0.20 window 0.30 painting 0.10

lamp 0.05 bedt 0.19 window 0.32 painting 0.11

lamp 0.05 bedt 0.23 window 0.30 painting 0.12
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Iteration 8000
65 object units 
146 part units 
10 material units 
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Iteration 15009
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11 material units 
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Iteration 17413
87 object units 
184 part units 
12 material units 
IoU avg 0.086
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Figure 18: The evolution of layer4 of a Progressive GAN bedroom generator as training proceeds.
The number and quality of interpretable units increases during training. Note that in early iterations,
Progressive GAN generates images at a low resolution. The top-activating images for the same four
selected units is shown for each iteration, along with the IoU and the matched concept for each unit
at that checkpoint.

measured by average IoU over units increases. During this successful training, dissection suggests
that the model is gradually learning the structure of a bedroom, as increasingly units converge to
meaningful bedroom concepts.

S-6.7 ALL LAYERS OF A GAN

In Section 4.1 we show a small selection of layers of a GAN; in Figure 19 we show a complete listing
of all the internal convolutional layers of that model (a Progressive GAN trained on LSUN living
room images). As can be seen, the diversity of units matching high-level object concepts peaks at
layer4-layer6, then declines in later layers, with the later layers dominated by textures, colors,
and shapes.
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  Units in layer   Unit class distribution
layer1 
512 units total

0 object units 
2 part units 
0 material units 

 

iou=0.10ceilingt layer1 #457 iou=0.07ceilingt layer1 #194

 
layer2 
512 units total

97 object units 
63 part units 
5 material units 

 

iou=0.23window layer2 #70 iou=0.25floor layer2 #315

 
layer3 
512 units total

86 object units 
121 part units 
10 material units 

 

iou=0.27window layer3 #305 iou=0.24sofat layer3 #55

 
layer4 
512 units total

86 object units 
149 part units 
10 material units 

 

iou=0.28sofa layer4 #37 iou=0.15fireplace layer4 #23

 
layer5 
512 units total

75 object units 
153 part units 
19 material units 

 

iou=0.29sofat layer5 #190 iou=0.15paintingb layer5 #133

 
layer6 
512 units total

72 object units 
129 part units 
16 material units 

 

iou=0.31window layer6 #393 iou=0.04bookcase layer6 #308

 
layer7 
256 units total

59 object units 
48 part units 
9 material units 

 

iou=0.23painting layer7 #15 iou=0.07coffee tablet #247

 
layer8 
256 units total

51 object units 
52 part units 
12 material units 

 

iou=0.17curtain layer8 #186 iou=0.17foliage layer8 #234

 
layer9 
128 units total

26 object units 
17 part units 
9 material units 

 

iou=0.16window layer9 #89 iou=0.23wood layer9 #78

 
layer10 
128 units total

19 object units 
8 part units 
11 material units 

 

iou=0.14carpet layer10 #53 iou=0.21glass layer10 #126

 
layer11 
64 units total

9 object units 
1 part units 
7 material units 

 

iou=0.06sky layer11 #14 iou=0.11ceiling layer11 #49

 
layer12 
64 units total

8 object units 
1 part units 
4 material units 

 

iou=0.23wood layer12 #26 iou=0.04sky layer12 #19

 
layer13 
32 units total

6 object units 
0 part units 
3 material units 

 

iou=0.12carpet layer13 #13 iou=0.17wood layer13 #23
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Figure 19: All layers of a Progressive GAN trained to generate LSUN living room images.
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