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Abstract—We consider the problem of sequential manipulation
and tool-use planning in domains that include physical interac-
tions such as hitting and throwing. The approach integrates a
Task And Motion Planning formulation with primitives that ei-
ther impose stable kinematic constraints or differentiable dynam-
ical and impulse exchange constraints at the path optimization
level. We demonstrate our approach on a variety of physical
puzzles that involve tool use and dynamic interactions. We then
compare manipulation sequences generated by our approach to
human actions on analogous tasks, suggesting future directions
and illuminating current limitations.

I. INTRODUCTION

In this paper we address manipulation planning problems
that involve sequencing constrained interactions such as stable
pushes with a tool or sliding an object along a wall, as
well as dynamic interactions such as hitting a ball in the
air. These creative manipulation capabilities are a hallmark of
intelligence. Betty the Crow (see Fig. 1 top-left) demonstrated
the ability to use a sequence of hooks to retrieve a piece
of food [33], and Koehler’s apes stacked crates to reach a
hanging bunch of bananas (bottom-left) [12]. Humans easily
perform such sequential manipulation planning tasks naturally
and flexibly (bottom-right).

Evidence from cognitive science suggests that people have
an “intuitive physics engine” [2] which can be used to simulate
the outcome of an action or tool manipulation [22], and
have dedicated neural architectures near the motor cortex for
implementing this capability [8]. But a typical physics engine
only predicts outcomes for an action, not how to choose those
actions.

Consider if we had a precise and efficiently invertible
physical simulator available. Candidates for this were proposed
in terms of fully (auto-) differentiable physical simulations
[29, 7], which have the potential to embed control synthesis
and planning within end-to-end trainable systems [28]. Invert-
ing a simulation means that we can in principle formulate
any objectives or constraints on the end result or trajectory
of the simulation and solve for the inputs (control signals of
an embedded robot, or parameters of the scene or kinematics)
that render the desired constraints true. For instance, if we
could efficiently invert a correct physical simulation, we could
constrain the end result to be a cleaned-up kitchen and solve
for the motor inputs that make a PR2 reach this state starting
from a messy kitchen.

Fig. 1. From left to right: A crow solving a sequential hook problem [33],
classical intelligence test with apes [12], our solver using a stick to hit a flying
blue ball to get it into the green area, using a hook to get a second hook to
reach for the red ball, a human subject on the same task.

Unfortunately, efficient general inversion of a physical sim-
ulator is implausible as it defies what we know about the
fundamental complexities of task and path level planning [15],
as well as control synthesis. The complexity of inverting a
physical simulator is implicit in the non-unimodality of the
resulting optimization problem. In sequential manipulation, the
underlying structure is determined by contacts or—on a higher
level—by decisions on which object is manipulated and how.
Both imply discontinuities in the physical effects and local
optima w.r.t. the global inverse problem. Our approach is to
explicitly model such structure:



Approach 1: Use logic to express the combinatorics of
possible physical interactions and respective local optima.
This follows the paradigm of Mixed-Integer Program (MIP)
formulations in hybrid control synthesis [5]. However, it ex-
tends this to 1st-order logic, leveraging the strong generaliza-
tion over objects of classical AI formulations. It also follows
the standard task and motion planning (TAMP) approach of
using logic to describe the task level, but now describes the
combinatorics of possible physical interactions.

In addition, a precise physical simulation is very powerful
as it can predict many kinds of interactions, including high
frequencies of contact switches. Eventually, we are not in-
terested in modeling anything possible, but rather in modeling
interactions that are useful for goal-directed manipulation. The
classical manipulation literature emphasizes the importance
of stable interaction modes and funnels [19, 17, 3]. A mode
can mean that contact activities are phase-wise constant [21],
but also that the relative transformation between objects is
held constant, allowing for a kinematic abstraction of the
interaction. We adopt this view in our approach:

Approach 2: Restrict the solutions to a sequence of modes;
consider these as action primitives and explicitly describe the
kinematic and dynamic constraints of such modes. This dras-
tically reduces the frequency of contact switches or kinematic
switches to search over, and thereby the depth of the logic
search problem. It also introduces a symbolic action level
following the standard TAMP approach, but grounds these
actions to be modes w.r.t. the fundamental underlying hybrid
dynamics of contacts.

Combining the two approaches, the core of our method is to
introduce explicit predicates and logical rules that flexibly de-
scribe possible sequences of modes, mixing modes that relate
to physical dynamics for some objects and stable kinematic
relations for others. All predicates are grounded as smooth and
differentiable constraints on the system dynamics. Leveraging
an optimization-based TAMP method, this enables efficient
reasoning across a spectrum of manipulation problems. We
demonstrate our approach on physical puzzles that involve
tool use and dynamic interactions such as inertial throwing or
hitting. We also collected data of humans solving analogous
trials, helping us to discuss prospects and limitations of the
proposed approach.

II. RELATED WORK

Differentiable Physics & Contact-Invariant Optimization:
[7] have recently observed that a standard physical simula-
tion, which iterates solving the linear complementary problem
(LCP), is differentiable and can be embedded in PyTorch. On
toy problems it was shown that, using gradient-based optimiza-
tion, one can infer controls or scene parameters conditional to
observations or desired effects. Earlier, Todorov introduced a
novel invertible contact model [29] that laid the foundation for
MoJuCo [30], a differentiable physics engine that allows for
inverse physical dynamics. Closely related, contact-invariant
optimization (CIO) [21] proposes a simplified differentiable
contact model that relaxes the discrete contact structure to

allow for smooth optimization, but still implies a combina-
torics of local optima of the general inverse problem. CIO
gave impressive demonstrations of complex human motions,
including typical locomotion optimization and manipulation
tasks. CIO also followed the approach of phase-wise contact
invariance, where the (continuous-valued) activity of a contact
interaction is constrained to be constant during a phase.

These methods have not yet been demonstrated to bridge
to higher-level tool-use or task planning, and have not been
integrated in AI planning or TAMP approaches. They reduce
the overall problem to a single (differentiable) non-linear
program, which seems promising only when the underlying
problem does not generate a combinatorics of local optima.

Mixed-Integer Programming in Hybrid Control: In control
synthesis the structure of hybrid contact processes is typically
described explicitly [5] (see also [23] for a critical discussion).
The resulting problems are MIP that can be addressed with
standard optimizers that typically involve branch-and-bound.
Our approach is similar, except that we use logic rules to
describe the discrete structure of the problem, leading to a
non-linear program with discrete 1st order decision variables
(in a sense a “Mixed-Logic Program”). The solver we use [32]
is very similar to branch-and-bound MIP solvers, but leverages
several bounds approximations for computational efficiency.

Posa et al. [23] criticize explicitly introducing discrete
decision variables and instead propose non-linear programs
without discrete variables for the overall path optimization
problem (using LCP-type terms). This follows CIO in avoiding
discrete structure, but also raises the question of local optima
in task-level domains.

None of the above control approaches have yet been demon-
strated to bridge to higher-level task-planning and tool-use.

Task and Motion Planning: Typical TAMP approaches rely
on a discretization of the configuration space or action/skeleton
parameter spaces to leverage constraint satisfaction methods
[16, 13, 14], and/or combine a standard sample-based path
planner with a task planner [27, 4, 1]. To our knowledge,
no prior work exists that aims to integrate dynamic physical
interaction or sequential tool use in TAMP methods. Comput-
ing physical paths in a high-dimensional configuration space
(our robot will be 14D) is hard to address using sample-
based planners. Toussaint and Lopes [31, 32] proposed an
optimization-based TAMP approach that combines a logic
task-level description with a non-linear programming formu-
lation of the resulting path optimization problem. We extend
this framework to include physical primitives.

Exploitation of Contacts in Manipulation: Exploiting rather
than avoiding contacts is a core concept for dexterous robot
manipulation [19]. Stable pushes [17] and sequences of stable
grasps [3] have been shown to enable robust manipulation
strategies. Eppner et al. [6] studied in detail how humans
exploit contacts in manipulation. The idea that exploitation-
of-contact-modes should be part of a manipulation planner
underlies previous work on sequential manipulation planning
[26, 10]. Sieverling et al. [25] further developed the idea
towards sequencing modes to reduce uncertainty via funneling.



Our approach draws great inspiration from these works, aiming
to incorporate such ideas in an AI- and optimization-based
planning approach.

III. PROBLEM FORMULATION AND LGP FORM

Consider the configuration space X = Rn × SE(3)m of
an n-dimensional robot and m rigid objects, in an initial
configuration x0 ∈ X. We aim to find a path x : [0, T ]→ X

min
x

∫ T

0

fpath(x̄(t)) dt+ fgoal(x(T ))

s.t. x(0) = x0, hgoal(x(T )) = 0, ggoal(x(T )) ≤ 0 ,

∀t ∈ [0, T ] : hpath(x̄(t)) = 0, gpath(x̄(t)) ≤ 0 . (1)

Here, (h, g)path define path constraints which depend on
x̄(t) = (x(t), ẋ(t), ẍ(t)) and describe what is physically and
kinematically feasible. The function fpath defines control costs,
which in our experiments we choose as sum-of-squares of joint
accelerations. And (f, h, g)goal specify arbitrary objectives or
constraints on the final configuration. In our experiments this
will be a single equality constraint expressing contact between
an object and a target.

Following our approach, we now introduce more structure to
the problem. We assume that 1) feasible mode transitions are
described by first order logic action operators, 2) in a given
mode the path constraints (h, g)path are smooth, and 3) at a
mode transition the path constraints are smooth functions of
x̂ = (x, ẋ, ẋ′), where ẋ is the velocity before, and ẋ′ is the
velocity after an (optional) instantaneous impulse exchange.
Under these assumptions, the problem takes the form of a
Logic-Geometric Program (LGP) [31, 32],

min
x,a1:K ,s1:K

∫ T

0

fpath(x̄(t)) dt+ fgoal(x(T ))

s.t. x(0) = x0, hgoal(x(T )) = 0, ggoal(x(T )) ≤ 0,

∀t ∈ [0, T ] : hpath(x̄(t), sk(t)) = 0,

gpath(x̄(t), sk(t)) ≤ 0

∀k ∈ {1, ..,K} : hswitch(x̂(tk), ak) = 0,

gswitch(x̂(tk), ak) ≤ 0,

sk ∈ succ(sk-1, ak) . (2)

The key difference to the unstructured problem (1) is that
the path and switch constraints (h, g)path and (h, g)switch are
smooth and differentiable functions for a fixed mode sk or
switch ak. We assume that the logic level involves only
discrete variables (in contrast to recent TAMP approaches
that introduce continuous logic variables to represent belief
or geometry dependent preconditions [16]). All ak and sk
are therefore discrete. We call the sequence a1:K a skeleton,
which in the TAMP context refers to the sequence of dis-
crete decisions excluding all continuous action parameters. In
TAMP, given a skeleton, one needs to find action parameters
(e.g. grasp poses) that render the skeleton feasible. In our
formulation, we use the notation P(a1:K) to denote the path
optimization problem (2) for a given skeleton. As (h, g)path
and (h, g)switch are smooth, all objectives and constraints in

P(a1:K) are smooth and our implementations are differentiable
to provide constraint Jacobians and pseudo-Hessians when the
costs fpath,goal are sum-of-squares terms. Solving P(a1:K) im-
plicitly solves for all action parameters jointly and optimally:
E.g. when the sequence involves a grasp first, a hit second, and
a placement third, then all parameters of these actions (grasp
pose, hitting angle, placement pose) are jointly optimized to
yield the overall optimal manipulation path.

The LGP formulation can be viewed as an instance of MIP,
as it is classically used to formulate control problems in hybrid
systems [5]. It replaces integers by a first order logic state sk
which indicates the mode, and thereby allows us to tie the
notion of high-level actions of a classical TAMP formulation
to modes in the path optimization problem. In contrast to CIO
it explicitly introduces a logic process description of mode
transitions that bears a discrete search problem. It thereby
explicates the structure of local optima that is otherwise
implicit in the relaxation.

Comparing 2 to the previous formulation [32], the path
constraints within a mode are now functions of x̄, rather than
only (x, ẋ), as they need to describe inertial motion, and the
switch constraints are functions of x̂ to account for impulse
exchanges. We also explicitly refer to the action decision ak
rather than only pairs of consecutive modes (sk-1, sk) to define
switch constraints. To motivate these additions, consider a
flying ball which is hit with a tool in the air. The modes
before and after the hit are identical; there were no kinematic
switches or stable contacts created. However, the interaction
calls for an equality constraint on the path that models contact
and impulse exchange.

In practice, to ensure applicability of the solver, we assume
that each object has a sphere-swept convex geometry (which
makes distance computation convex, and ensures distance
normals to be differentiable).

A. The Notion of Modes
The previous section defined a specific notion of mode in

terms of properties of the path constraints. To better relate to
previous work we briefly discuss highly related notions.

A contact mode is a phase of the path where contact
activations are constant (cf. CIO [21]). In classical con-
strained optimization and LCP formulations, contact activation
is boolean and indicates a non-zero Lagrange parameter or
non-zero interaction force; in CIO contact activity is relaxed to
a continuous number, which is kept constant within a contact
mode.

A kinematic mode is a phase of the path during which
path feasibility (including physical correctness) is defined
by smooth constraint functions hpath, gpath. To relate to [26,
10, 32], the path constraints define the piece-wise smooth
manifolds of feasible paths with local tangent spaces TzX =
{ẋ(t) | x(t) = z, x feasible} at configuration z ∈ X; a
kinematic mode is a phase during which the path stays within
a smooth manifold. Transitioning to another mode implies a
non-smooth change of tangent space.

A stable mode is a phase of a feasible path in which the
relative transformation between two objects is constant. This



refers to resting objects, but also to stable pushes [17, 3] and
grasps.

In the case of a physical domain, feasible paths are smooth
exactly when contact activity does not alter, and therefore the
two notions of contact mode and kinematic mode coincide. A
stable mode is a special case of a kinematic mode, which
excludes sliding, relative rotation, and impulse exchange.
However, the manipulation literature suggests that many ma-
nipulation strategies are composed of stable modes, which mo-
tivates us to explicitly account for stable modes. Stable modes
offer transitions between kinematic and dynamic descriptions
of the path constraints by, for example, introducing a joint
between two objects that is constrained to zero velocity. Note
that in CIO [21], all contacts were in fact assumed to be stable
modes.

The core of our approach is to introduce predicates and
logical rules that flexibly describe possible sequences of
modes, mixing modes that relate to physical dynamics for
some objects and stable kinematic relations for others.

IV. INCORPORATING PHYSICS IN LGP

Table I lists the predicates we use to impose constraints on
the path optimization. These relate the logic level to the path
optimization level, and appear only in the effects of action
operators. We will first describe these predicates, and then the
action operators that control them.

A. Resting and Stable Relations

In typical scenes, most objects are resting in a stable
position or in a grasp. Including their degrees of freedom in
the optimization and solving for the contact interactions in
each time step—only to describe zero motion—is inefficient.
Typical game engines therefore treat resting objects differently
from dynamic objects.

We follow this intuition and exclude objects resting on
another object or in a grasp from physical dynamics. These
objects are treated kinematically, as in previous work. Namely,
operator effects create a static joint between the object and
its parent. For our experiments, it was sufficient to consider
only two types of static joints: static free (represented as
7D translation-quaternion joints) for grasping, (staFree X Y),
and static “on” (represented as 3D xyφ-translation-orientation
joints) for an object resting on another, (staOn X Y).

As in typical path optimization methods we use a (gener-
alized) coordinate vector q(t) ∈ Rd(t) to represent the world
configuration x(t) ∈ Rn×SE(3)m. While x(t) is of constant
dimensionality, q(t) changes dimensionality with t. When all
objects are initially at rest, q(0) has the dimensionality of
the articulated robot. When action operators create stable or
dynamic joints their degrees-of-freedom (DOFs) are added to
the configuration vector. The static joints are introduced as
DOFs, but are constrained to have zero velocity. Thereby they
represent action parameters (e.g. grasp poses) that are fully
embedded as decision variables in the joint path optimization.

TABLE I
PREDICATES TO IMPOSE CONSTRAINTS ON THE PATH OPTIMIZATION.

(touch X Y) distance between X and Y equal 0
[impulse X Y] ImpulseExchange eq & skip smoothness con-

straints on X Y
(staFree X Y) create stable (constrained to zero velocity) free

(7D) joint from X to Y
(staOn X Y) create stable 3D xyφ joint from X to Y
(dynFree X) create dynamic (constrained to gravitational iner-

tial motion) free joint from world to X
(dynOn X Y) create dynamic 3D xyφ joint from X to Y
(inside X Y) point X is inside object Y → inequalities
(above X Y) Y supports X to not fall → inequalities
(push X Y Z) (see text)

B. Inertial Motion

To describe objects following inertial motion, operator ef-
fects create a dynamic joint between the object and world (for
unconstrained flight) or supporting objects (e.g., for inertial
sliding on a table). In our experiments we consider two types
of dynamic joints: 7D free for free flight, (dynFree X), and
xyφ for one object sliding on another, (dynOn X Y). For the
set qd of dynamic joints we have the Euler-Lagrange equations
M(q)q̈d + F (q, q̇) = 0 (assuming kinematically articulated
and stable joints to be rigid), which are imposed as equality
constraints on the path. In the time discretized path optimiza-
tion, care must be taken in deciding when to start and stop
imposing these constraints when dynamic joints are created
or destroyed. In the time slice when a joint switches, we
generally impose zero acceleration constraints directly on the
switching object (except on impulse exchange); the dynamics
constraints start a time step later and end one time step earlier.
The acceleration q̈d is defined by finite differences from three
consecutive configurations. The dynamics constraint is trivially
differentiable w.r.t. these configurations, assuming M and F
are approximately constant.

C. Impulse Exchange

To model impulse exchange we introduce an [impulse X Y]
predicate, where the bracket notation indicates that it is non-
persistent. Unlike in the standard frame assumption, this literal
is automatically deleted after one time step. It thereby adds
constraints to the path optimization only at a single time slice
(but is a function of 3 consecutive configurations). We adopt
the classical impulse exchange model of Moore and Wilhelms
[20]. Let v1 and v2 be the change in velocities of object 1 and
2 across one time slice, and ω1 and ω2 the angular velocity
changes. We define the exchanged impulse as R = m2v2.
(If (3) holds, we could equivalently define R = −m1v1.)
Further let c be the shortest distance or penetration unit normal
vector between the two convex objects, and p1 and p2 the
object center to collision point vectors for each object. In the



unconstrained case we impose

m1v1 +m2v2 = 0 (3)
I1ω1 − p1 ×R = 0 (4)
I2ω2 + p2 ×R = 0 (5)

(I − cc>)R = 0 (6)

where the last line constrains the exchanged impulse to
align with the contact normal. In an inelastic collision we
additionally impose zero relative velocity along the contact
normal, which we drop to allow for elastic collisions. When
the dynamics of one object is constrained to an xyφ slide after
the impulse exchange, we project the first equation using the
projection matrix P = I − zz> where z is the plane normal.
This means that the impulse is not propagated through the
joint to the supporting object (typically table).

To ensure differentiability of this constraint we extend
implementations of Gilbert-Johnson-Keerthif and Minkowski
Portal Refinement to return simplex information from which
the correct Jacobian for the distance or penetration normal
vector is computed. As our objects are modeled as sphere-
swept convex shapes, these Jacobians are stable and smooth
at distance 0. Therefore the full impulse exchange constraint
is smoothly differentiable.

D. Geometric Predicates

We additionally introduce three geometric predicates (touch
X Y), (inside X Y), and (above X Y) to model constraints of
transitioning into a mode. A touch is modeled by constraining
the differentiable distance or penetration function to zero. The
inside constraint means that a grasp center X is constrained
to be inside the object Y (by a fixed margin of 2cm). When
Y is a box, these are six inequality constraints, one for each
face of the box. The above constraint requires the center of
mass of X to be horizontally inside the convex support the
object Y (by a fixed margin of 2cm). When the supporting
object is a table, these are four inequality constraints, one for
each edge of the table. Finally, the (push X Y Z) predicate
is designed specifically to impose geometric constraints for a
straight-line push. It is modeled kinematically by introducing
a static xyφ-joint and an actuated translational x-joint created
between table Z and object Y, which allows the object to move
along a straight line. Further, the pushing object X and Y touch
and the touch normal is aligned with the straight line.

In summary, the predicates we introduced allow us to
distinguish and switch between dynamic and kinematic han-
dling of objects. Modeling stable relations explicitly allows
us to include abstractions such as stable grasping or stable
resting. The geometric predicates allow us to define necessary
geometric constraints to transition between modes.

E. Action Operators

Table II lists all action operators and those effect predicates
that translate to path constraints. We briefly discuss each
action:

A grasp creates a 7D static gripper-object joint and imposes
the grasp center to be inside the object. The inside constraint

TABLE II
ACTION OPERATORS AND THE PATH CONSTRAINTS THEY IMPLY.

grasp(X Y) [inside X Y] (staFree X Y)
handover(X Y Z) [inside Z Y] (staFree Z Y)

place(X Y Z) [above Y Z] (staOn Z Y)
throw(X Y) (dynFree Y)

hit(X Y) [touch X Y] [impulse X Y] (dynFree Y)
hitSlide(X Y Z) [touch X Y] [impulse X Y] (above Y Z) (dynOn Y Z)

hitSlideSit(X Y Z) “hitSlide(X Y Z)” “place(X Z)”
push(X, Y, Z) komo(push X Y Z)

could be set as a persistent predicate implying continuous in-
equality constraints for the duration of the grasp. However, as
a static transformation between gripper and object is created,
it is sufficient to set this constraint only once, at the creation
of the grasp. The non-persistent literal [inside X Y] has this
effect.

A handover is, from the perspective of the path optimiza-
tion, nothing but a grasp. However, we introduce a separate
action operator which has the additional effect that the gripper
X is free to grasp other objects after the handover.

A place is analogous to a grasp of the object by a table or
supporting object, except that the static DOFs (action param-
eters) are the xyφ position and orientation of the placement,
and the object Y needs to be above Z.

A throw is the creation of a dynamic free joint for the object.
The smoothness constraint on the object motion will imply that
the object starts with its previous position and velocity (e.g.,
when attached to the gripper).

A hit is like a throw, but allowing for an additional touch and
impulse exchange between X and Y at the time of the hit (non-
persistent predicates). Note that this rule equally describes
hitting a previously free flying object, or hitting out of the
gripper, or from a resting position.

A hitSlide is like a hit, but attaches the object Y dynamically
to slide planar over the table or object Z, and persistently
constrains Y to stay above Z. Note that the impulse exchange
constraint knows Y is constrained to slide over Z and accounts
for this in the impulse exchange equation.

A hitSlideSit is an instantaneous sequence of two mode
transitions: the (typically flying) object X hits Y to slide on
Z, and X itself comes to rest on Z. This pinpoints a limitation
of the current approach: we only allow for a single action to
happen in a single time instance. The combination of a hitSlide
and a simultaneous sit currently needs to be represented as a
new action.

A push is kinematically modeled as a straight line push:
there is a static xyφ-joint and an actuated translational x-joint
created between table Z and object Y, which allows the object
to move along a straight line. Further, the pushing object X
and Y touch and the touch normal is aligned with the straight
line.

In addition, the STRIPS rules we used1 to define the full ac-
tion operators involve the additional predicates object, gripper,

1Please see demo/fol.g in the source code.



held, busy, animate, on, and table to express the preconditions
of action operators. For instance, a grasp is an abstraction that
only holds for a gripper, not other objects. animate states that
an object is currently (kinematically or dynamically) moving
and is a precondition for that object to hit or push another; on
is an effect of place and a precondition for push.

V. SOLVER USED

We use the existing Multi-Bound Tree Search (MBTS)
method to solve the resulting LGP problem [32]. This solver
does best-first search w.r.t. multiple bounds that can be evalu-
ated for a given skeleton. More precisely, the logic described
above defines a decision tree. Every node in this decision
tree is associated with a skeleton a1:K which defines the
conditional path optimization problem P(a1:K). This non-
linear program is expensive to solve. To guide tree search,
MBTS exploits multiple levels of simplified versions of this
non-linear program, each of which is a bound (optimistic w.r.t.
feasibility and cost) of the next. Namely P1(a1:K) evaluates
cost and feasibility of only the last pose associated with the
skeleton. This is an inverse kinematics problem that relies on
projecting the potential effects of all previous actions into
a final configuration of “effective kinematics”. The bound
P2(a1:K) evaluates cost and feasibility of a coarser time
discretization of the path which uses two time frames per
action; one just before the action and a second just after the
action. This is a powerful approach for checking the geometric
feasibility of action sequences. The bound P3(a1:K) is the
fine path optimization problem P(a1:K) discretized in time.
As detailed in [32], we note that the path and sequential pose
optimization includes jointly optimizing all action parameters
along the whole skeleton. This means that the pose in which an
object is initially grasped is optimal w.r.t. all following events
involving this object. Therefore, the method can optimize
grasping a hook in order to later reach for a ball with this
hook. (Cf. the end-state comfort effect in human manipulation
[24].)

MBTS is a best-first search on all bound levels and therefore
guarantees optimality iff the computed bounds are “correct”.
In our domains, computing these bounds means optimizing a
smooth but non-convex non-linear program (NLP). We employ
a Gauss-Newton solver within an Augmented Lagrangian
(Method of Multipliers) iteration to handle the constraints.
This converges only to local optima of the NLP, and only
approximately, so we lose strict optimality guarantees. For
instance, evaluation of the coarsest bound P1 might return an
infeasibility of an action only because a single run got stuck in
a local optimum. Since this is assumed to be a strict bound for
P2 and P3, and generalizes to other branches in the tree with
the same action, a whole sub-tree might be tagged infeasible
and lost.

In our experience, P1 and P2 rarely suffer from convergence
to local optima or false infeasibility. The full path optimization
P3 is less robust and compromises the optimality guarantee
of our method, but still frequently converges to the same
optimum. We will empirically investigate the consistency of

Fig. 2. In the 6 investigated problems the goal is to reach for the red ball
or get the blue ball in the green area. Solutions involve using a hook to pull
a desired object, push-sliding a ball along a wall, pushing a ball onto a strip
of paper to then pull it closer, hitting a ball with a stick, throwing a box at a
ball, and using a hook to reach for another hook to reach a ball.

problem 1 2 3 4 5 6
tree size 12916 34564 7312 12242 12242 3386
branching 10.66 13.63 9.25 10.52 10.52 7.63

Fig. 3. Size of decision trees of depth 4, and branching factor estimate (4th
root). For problem 6 we had to limit the logic to exclude dynamic interactions,
otherwise the tree size would have been 349252 with branching factor 24.31.

optimization convergence in the next section. The aim of
explicitly modeling modes was to capture the multi-modal
complexity of the overall manipulation planning problem.
Convergence consistency of our bound evaluations is an in-
dicator for how this modeling leaves a simpler structured
problem for the conditional path optimization.

VI. EXPERIMENTS

The source code2 and a supplementary video3 for our
experiments are available for reference.

We investigated our method on 6 problems as illustrated
and described in Fig. 2. The problems were designed to cover
a spectrum of types of interactions, including the need to
use tools, hit objects, or throw objects in order to reach
the goal. The accompanying video illustrates the problems,
and the source code includes the precise scene descriptions.
The video displays the computed paths x, not a simulation
of their execution. The solver surprised us in finding much
larger varieties of solutions than anticipated. For instance, in
problem 1 a natural solution is grasping the hook, pulling the
ball, and grasping it. Our method also found solutions that
involve hitting the ball, or sliding the hook to the ball to hit
it. Handovers are much more frequent than anticipated. The
solver exploited the combinatorics of manipulations that are
possible with the given primitives beyond what we had in mind
when designing the problems.

2https://github.com/MarcToussaint/18-RSS-PhysicalManipulation
3https://www.youtube.com/watch?v=-L4tCIGXKBE

https://github.com/MarcToussaint/18-RSS-PhysicalManipulation
https://www.youtube.com/watch?v=-L4tCIGXKBE


Fig. 4. For 5 runs for each problem we display cost of the best solution
found, for bounds P2 (dotted) and P3 (solid), over time.

To get an idea of the branching factor (which varies over
the tree depth) Fig. 3 provides the tree size for skeletons of
length 4 (3 is the minimum, most found solutions are of length
4-6). Clearly, cutting the tree search as proposed by MBTS is
essential for efficient search in such trees.

The solver is an anytime method. For each problem we
ran it until 12 solutions (with different skeletons) were found
or 400 seconds were exceeded. The solver then presents and
ranks solutions by their cost. Fig. 4 displays traces of runs
for each problem, i.e., the cost of the best found solution over
time, descending as a step function whenever a better solution
is found, and the total number of solutions found. While the
dotted line displays the cost of the lower bound P2 for the
best solution, the solid line displays the full path costs P3.
All runs reliably found solutions at around 50 seconds, except
for problem 6. This problem is special in that it only affords
one stereotypical solution: grasp first hook, pull second, grasp
second, pull ball, grasp ball, and somewhere in between place
a hook down to allow for the final grasp. The depth of this
solution required around 150 seconds. The variance in the cost
of the best solution found shows that not all optimizations
converge to the global optimum (each Pi is non-convex).

Fig. 5 displays the mean run times of the Gauss-Newton
methods for solving the bounds P1,P2,P3, where P3 is the
full path. We display these separating runs that turned out as
feasible vs infeasible. The optimization times increase with
the depth of the manipulation sequence, as well as with the

Fig. 5. Mean run times for the computation of the different bounds (solving
P1,P2,P3), depending on feasibility and infeasibility.

bound level. Interestingly, especially for the coarse bounds
P1 and P2, the run times are significantly shorter for feasible
solutions. This also holds for the full path optimization P3, but
less so. A major part of the computation time is spent on trying
to solve infeasible problems. Therefore, reliable indicators or
classifiers to predict infeasibility earlier could significantly
speed up the solver.

For problem 1 we investigated convergence consistency
across 10 runs: whenever a specific skeleton was evaluated
more than 5 times for a particular bound across all trials, we
investigated whether the evaluations converged to consistent
optima. Concerning bounds P1 and P2, we found 100%
consistency in terms of feasibility (all runs agreed on the feasi-
ble/infeasible label for a skeleton) except for a single skeleton
which bound P1 labeled feasible only 4 out of 5 times. The
corresponding cost estimates were equally consistent, with a
mean variance of only 0.00133 for P1 and 0.0080 for P2

for a skeleton. The full path evaluation P3 converges less
consistently to the same optima. For 11 out of 24 skeletons the
runs were 100% consistent with very low cost variance; for the
remaining skeletons the consistency was mixed. This explains
the variance of best solutions found in Fig. 4. Nevertheless,
all runs consistently found good solutions.

We also performed a study of 5 human subjects on problems
analogous to our problems 1, 3, and 6, see Fig. 6. The
right column displays frequencies of action primitives used
along the skeleton for our method (solid) and the humans
(striped). While we do not want to claim our method is a
model for human decision making, it is interesting to compare
to. In particular, we mention differences and limitations of
our method in view of human execution. The first striking
difference when watching the videos is the frequency of “re-
initiations” of primitives executed by humans in a reactive
manner, e.g. a frequent re-positioning of the tool to re-initiate
pushing the same object. In the planned solutions, such re-
initiations of the same interaction mode are largely missing
as they would be considered sub-optimal. This underlines that
our method only addresses a planning problem, rather than
the problem of reactive and adaptive execution of such plans.
Second, our method currently does not assume a fixed “true”
friction coefficient between objects; instead, when the skeleton
includes an inertial slide, the object slides nearly friction-



Problem 3
P
ro

p
o
rt

io
n
s

Problem 1

P
ro

p
o
rt

io
n
s

Problem 6

P
ro

p
o
rt

io
n
s

Steps

Fig. 6. 5 subjects were studied on 4 tasks analogous to our problems 1, 3,
and 6 (where for problem 1 we tested also a high-friction puck replacing the
ball).

less, and if the skeleton includes a push, the object resides
stably at the pushing object. To solve problem 1, our method
generates about equal numbers of solutions with inertial ball
motions as well as with stable pushes. The human decisions
depend on their perceptual estimate of the friction of the
puck or ball. On problem 4, humans exploited the wall to
slide along considerably more often than our algorithm. Our
algorithm occasionally finds the slide-along-the-wall manip-
ulation sequence (see video), it also finds shorter sequences
that are preferred by the method but not by humans. Finally,
especially in problem 5, the planner generates throw-box-to-
hit-ball sequences that fulfill the impulse exchange equations
but include extremely flat angles of impact (as in billiards),
which are too precise for a human to accurately replicate. This
shows a deficit of assuming deterministic physics for making
such dynamic manipulation decisions.

VII. CONCLUSIONS

Our approach is, to our knowledge, the first to embed dy-
namic physical manipulations in a TAMP framework, combin-
ing a discrete logic level for sequences of possible interaction
modes with a continuous path optimization level. We tackled
sequential manipulation and tool-use planning problems, a

hallmark of intelligent behavior. While this work focuses on
the technical formulation, it also serves as a foundation for
future work on modeling animal and human behavior on such
problems, which need to address the limitations discussed
above.

We already mentioned several limitations when comparing
to the human execution of manipulation tasks. We emphasize
that the proposed method is only a planner, not a framework
for executing such plans. As our method generates several
alternative plans, reactive execution could leverage sample-
efficient reinforcement learning mechanisms to select and
switch between plans on the fly, depending on their success.

We believe that the predicates and logic rules of physical in-
teractions can be reduced in future work to a more fundamental
set, in particular by using a factored representation. This could
address the inefficiencies we mentioned in the context of
the hitSlideSit operator. We also note that the efficiency of
the solver could be improved by combining LGP with more
efficient AI planners [11, 9]. Particularly interesting is the idea
in angelic semantics [18] to not only leverage lower bounds
but also higher (pessimistic) bounds. Exploiting a hierarchy
of bounds will remain crucial for efficiency. New bounds
could be formulated specifically for physical reasoning, for
instance an efficiently computable bound that only includes
touch constraints — as this is a highly discriminative indicator
of the feasibility of physical interactions.
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Marianne Maertens, and Oliver Brock. Exploitation of
environmental constraints in human and robotic grasping.
The International Journal of Robotics Research, 34:
1021–1038, 2015.

[7] Filipe de Avila Belbute-Peres and J. Zico Kolter. A
Modular Differentiable Rigid Body Physics Engine. In
Neural Information Processing Systems (NIPS’17), 2017.

[8] Jason Fischer, John G Mikhael, Joshua B Tenenbaum,
and Nancy Kanwisher. Functional neuroanatomy of
intuitive physical inference. Proceedings of the national
academy of sciences, 113:E5072–E5081, 2016.

[9] CR Garrett, T Lozano-Prez, and LP Kaelbling. STRIP-
Stream: Integrating Symbolic Planners and Blackbox
Samplers. e-Print arxiv.org:1802.08705, 2018.

[10] Kris Hauser and Jean-Claude Latombe. Multi-modal mo-
tion planning in non-expansive spaces. The International
Journal of Robotics Research, 29:897–915, 2010.

[11] Leslie Pack Kaelbling and Tomás Lozano-Pérez. Hierar-
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