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Talk Resource-Efficiently to Me:

Optimal Communication Planning for Distributed Loop Closure Detection

Matthew Giamou† Kasra Khosoussi† Jonathan P. How

Abstract— Due to the distributed nature of cooperative simul-
taneous localization and mapping (CSLAM), detecting inter-
robot loop closures necessitates sharing sensory data with other
robots. A naı̈ve approach to data sharing can easily lead to
a waste of mission-critical resources. This paper investigates
the logistical aspects of CSLAM. Particularly, we present a
general resource-efficient communication planning framework
that takes into account both the total amount of exchanged data
and the induced division of labor between the participating
robots. Compared to other state-of-the-art approaches, our
framework is able to verify the same set of potential inter-
robot loop closures while exchanging considerably less data
and influencing the induced workloads. We develop a fast
algorithm for finding globally optimal communication policies,
and present theoretical analysis to characterize the necessary
and sufficient conditions under which simpler strategies are
optimal. The proposed framework is extensively evaluated with
data from the KITTI odometry benchmark datasets.

I. INTRODUCTION

Multi-robot, or cooperative, simultaneous localization and

mapping (CSLAM) is an active area of research with a

wide spectrum of applications that span from robotic search

and rescue in challenging environments to navigating fleets

of autonomous cars; see [1]–[3] for recent surveys. Com-

munication is a crucial aspect of the approach, without

which CSLAM would simply reduce to decoupled copies

of conventional SLAM. In applications without pre-existing

infrastructure, ad-hoc wireless communication is subject to

many shortcomings, including energy constraints, bandwidth,

and range limitations; see, e.g., [2], [4]. Overlooking these

challenges could lead to impractical solutions. Ensuring

that agents are able to effectively and resource-efficiently

communicate with one another is one of the most challenging

problems facing distributed CSLAM architectures [2].

Communication is an essential prerequisite for establishing

loop closures between different robots’ trajectories and maps.

To search for inter-robot loop closures, robots need to

compare and match the data acquired throughout each of

their individual trajectories. However, each robot initially

has access only to the data collected by its own onboard

sensors. As a result, robots need to frequently share data

among themselves. State-of-the-art techniques either employ

a centralized architecture, or simply require each robot to

broadcast a down-sampled history of its sensory readings;

see, e.g., [5] and [6]–[9], respectively. A naı̈ve approach

to the data sharing problem can easily lead to a waste of
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mission-critical resources including battery, wireless band-

width, and CPU time.

We present a general communication planning framework

for resource-efficient data exchange in the search for inter-

robot loop closures in distributed CSLAM front-ends. Our

framework has several appealing features:

⋄ A guarantee to be lossless in the sense that, for any given

set of candidate matches, the proposed framework allows

for a complete search of all inter-robot loop closures that

exist within that set.

⋄ Efficient algorithms for finding optimal exchange policies

with respect to the total amount of data transmission with

minimal computational overhead.

⋄ Providing a mechanism through which one can retain com-

munication efficiency while influencing the final induced

division of labor between the robots. This allows the team

to balance the resulting induced workloads based on the

distribution of computational resources among the robots.

⋄ Applicability to systems that use measurements and maps

composed of any data type, including dense 3D laser scans

and local image features, e.g., BRIEF [10].

A. Related Work

In a series of papers, Indelman et al. and Dong et al. [6]–

[8] develop a pose-graph CSLAM framework based on

Expectation-Maximization. From the perspective of data ex-

change efficiency, in [6]–[8] robots broadcast a downsampled

subset of their (informative) raw measurements (e.g., laser

scans) with each other. Our work can be employed alongside

these and similar systems to provide an alternative resource-

efficient communication plan.

Cieslewski and Scaramuzza [11] investigate the scalability

of decentralized visual place recognition—in terms of the

amount of exchanged data per place recognition query—

in large teams of robots. In particular, they propose a

decentralized approach whose scalability is comparable to

that of centralized architectures and significantly better than

the existing decentralized approaches. In [11] it is empirically

shown that their heuristic approximation only suffers a mild

reduction in place recognition recall. The core idea in [11]

is to send partial queries to every other robot, assess the

returned image similarity scores, and send the full query only

to the robot with the most likely candidate match. Unlike

the online (frame-query) flavour of the problem addressed

in [11], our work considers a batch formulation that arises

in occasional, but larger, data exchanges. The batch setting

is especially well suited to applications in which multiple

http://arxiv.org/abs/1709.06675v4
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Fig. 1: An overview of distributed sensory data exchange approaches in CSLAM. Figure 1a illustrates a monolog (unidirectional policy),
in which one robot sends all of its scans to the other. In some of the state-of-the-art techniques, this process happens also in the opposite
direction (both robots share all of their scans with each other); see, e.g., [6]. In addition to the sensory data, robots also need to transmit
a smaller amount of information (“metadata” M) to help identify potential loop closures (e.g., compact bag-of-words (BoW) vectors for
visual place recognition or sparse trajectories). Figures 1b, 1c, and 1d illustrate the proposed approach. Contrary to Figure 1a, here robots
engage in a dialog, and each shares a subset of its sensory data with the other robot. We demonstrate that this process can significantly
reduce the total amount of exchanged data. In our approach, robots still need to exchange metadata. The broker (T) then solves the
optimal data exchange problem and sends the optimal exchange policy π⋆ for execution to the robots.

robots are distributed to cover a large space, and communi-

cation is only possible during rendezvous. In such settings,

rendezvous are seen as short-lived valuable opportunities that

can be leveraged to better achieve the mission objective.

Furthermore, while [11] concerns fleet-wide communication

efficiency in detecting potential inter-robot loop closures,

here we focus on local (pairwise) efficiency in exchanging

sensory data. Despite these differences, an extension of our

framework to n-way data exchanges can use the idea behind

[11] to improve the communication efficiency of its metadata

exchange phase (see Section II).

Sharing compressed beliefs and graphs constitutes another

type of information exchange that arises in CSLAM. State-

of-the-art techniques often marginalize out unnecessary in-

termediate poses from the belief to reduce the amount of

exchanged data; see, e.g., [4], [12]. The resulting information

matrix, however, is generally dense. This has led to the study

of approximate sparisfication techniques to “compress” the

reduced beliefs. Paull et al. [4] investigate CSLAM with

acoustic communication in the context of autonomous un-

derwater vehicles. They propose a consistent (conservative)

sparsification scheme based on Kullback-Leibler divergence.

Lazaro et al. [9] propose to transmit a reduced representation

of robots’ graphs (“condensed graphs”), as well as the most

recent laser scans. Sharing only the most recent laser scans

comes at the cost of losing potential loop closures in the

regions that robots had explored separately prior to the

encounter (i.e., before establishing a communication link).

Cunningham et al. [12] propose a fast RANSAC-based data

association scheme for CSLAM. The communication module

in [12] shares the reduced beliefs (“condensed maps”) with

a bounded number of robots within communication range.

In contrast to our work, [12] considers a feature-based

formulation with purely geometric (point) features. In that

setting, each landmark measurement consists of a pair of

range and bearing values, which is typically too lightweight

to necessitate a communication planning framework.

Forster et al. [5] propose a centralized framework, in

which the base station aggregates all visual information

and establishes inter-robot and intra-robot loop closures; see

[2] for more centralized CSLAM approaches. Centralized

approaches have limited applications and, compared to our

work, leave no room for communication efficiency.

Montijano et al. [13] and Leonardos et al. [14] explore el-

egant formulations and algorithms for solving the distributed

data association problem with an emphasis on maintaining

association consistency across the communication graph.

Unlike [13], [14], our paper takes a step back and investigates

the logistics of distributed data association through exchang-

ing data between pairs of robots. Our approach is orthogonal

to such techniques and can be employed alongside distributed

solvers.

In summary, our framework neither tells the agents what

to say to each other—a question that is partly a system-

dependant design choice, partly addressed by belief compres-

sion methods, see e.g., [4], [9], [15], and partly addressed

by measurement selection schemes, e.g., see [16], [17]—nor

does it tell them what to do with the exchanged data—i.e.,

how to solve the data association or the resulting inference

problem, which is addressed by works such as [7], [12]–[14]

among others; it rather advises them on how to communicate

more effectively and efficiently.

B. Contribution

This paper addresses the data exchange problem, a key

prerequisite for realizing resource-efficient distributed inter-

robot loop closure detection and place recognition. We for-

malize the problem, provide a theoretical analysis, and shed

light on its connection to the weighed minimum bipartite

vertex cover problem. These insights ultimately lead to a

fast algorithm for finding globally optimal communication

plans based on linear programming. Additionally, we ex-

perimentally validate the proposed framework based on real

benchmark datasets.

Notation

Bold lower-case and upper-case letters are reserved for

vectors and matrices, respectively. 1 and 0 denote, respec-

tively, the column vectors of all ones and all zeros. Sets are

shown by upper-case letters. |A| denotes the cardinality of



set A. The disjoint set union operator is denoted by ⊎ such

that A ⊎ B = A ∪ B and implies that A ∩ B = ∅. For any

two vertices u and v in a given graph, u ∼ v means that

there is an edge connecting u to v. Finally, for any set of

vertices S, N (S) is the neighbourhood of S in the graph.

II. OPTIMAL DATA EXCHANGE

This section proposes a resource-efficient framework to

facilitate the search for inter-robot loop closures in CSLAM

via exchanging collected sensory data (collectively called

“scans” in this paper). Each exchange operation is mod-

erated by an exchange broker, which can be a trusted

hardware/software component located at one of the two

participating robots (Figure 1d), or a trusted third party (e.g.,

another robot or a base station)—see Figures 1b and 1c. The

broker has the duty of initiating, planning, and executing the

operation. Unlike the servers in centralized approaches, the

exchange brokers are not meant to aggregate scans, but rather

to advise robots on the “optimal” exchange policy. Although

only one broker is needed per exchange process, the total

number of (potential) brokers in a team may vary between 1
(a central broker) and the number of robots (each robot can

act as a broker if necessary), as long as the broker is able

to communicate with the two participating robots during an

exchange.

A. Initiating an Exchange

The exchange process can be initiated between two robots

when they are within communication range. First, the broker

has to form the exchange graph G.

Definition 1 (Exchange Graph). An exchange graph is an

undirected bipartite graph G = (V1 ⊎ V2,L) whose vertices

correspond to the two robots’ poses involved in the data

exchange problem, and V1 ∋ u ∼ v ∈ V2 iff there is a “po-

tential” inter-robot loop closure between their corresponding

poses.

Without loss of generality and for convenience, we assume

the degree of each vertex in the exchange graph is at

least one. L is a set of plausible inter-robot loop closure

candidates, determined based on geometry (e.g., trajectory

estimates and sensor characteristics such as field of view and

range) and/or appearance (e.g., visual place recognition sys-

tems). Visual place recognition techniques like the DBoW2

system of [18] can be used to form elements of L using only

information local to individual measurements. In the case

of DBoW2, this information is vocabulary labels of BRIEF

[10] features extracted from query images. In both cases,

G is populated without sharing the entirety of the robots’

measurement data. Instead, L is formed using a compact

representation of the sensory data (hereafter, “metadata”),

e.g., a collection of bag-of-words (BoW) vectors. Robots

cooperate with the broker (by, e.g., providing information

about their beliefs over their trajectories or BoW vectors)

to form L. In practice, a considerable number of potential

edges are not plausible given the available information. This

often makes G far less dense than the complete bipartite

Algorithm 1 Execute a DEP

1: for v ∈ V do

2: if π(v) = 1 then

3: Share Sv (corresponding sensory data).

graph. The structure of G ultimately depends on a variety

of factors, including the particular sensors and perception

models utilized, the level of uncertainty in the robots’ beliefs,

and perceptual aliasing.

B. Optimal Data Exchange

The optimal data exchange problem is now formally

defined.

Definition 2 (Data Exchange Policy). A data exchange

policy (DEP) is a vertex labeling that specifies which “scans”

should be exchanged between a pair of robots. Formally, we

call π : V → {0,1} a DEP over V , V1 ⊎ V2 in which

π(v) = 1 (resp., π(v) = 0) indicates that the scan collected

at vertex v should (resp., should not) be sent to the other

robot.

Based on the above definition, π can be executed simply

by scanning the labels and transmitting the scans marked

with “1” (i.e., to be sent); see Algorithm 1.

Definition 3 (Admissible Policy). A DEP is called admissi-

ble iff it allows for a complete search; i.e., finding all possible

loop closures in L. This can be achieved iff, for each edge in

the exchange graph, at least one robot shares its associated

scan with the other robot. Formally, π is admissible iff for

all u ∼ v, π(u) + π(v) ≥ 1.

Definition 4 (Monolog). Let Vsource ∈ {V1,V2}. An exchange

policy π : V → {0,1} is called a monolog if

π : v 7→

{

1 v ∈ Vsource,

0 otherwise.
(1)

Lemma 1. Every monolog is admissible.

The broker can guarantee the completeness of search by

proposing an admissible policy—but which one of them?

Two primitive objectives are considered in this work:

1) Communication: The first objective quantifies the commu-

nication cost incurred during the execution of an exchange

policy—mainly due to bandwidth and energy consumption.

The communication cost is measured by the total amount

of exchanged data. From this perspective, π is preferred

over π′ iff it can conduct a complete search by exchanging

less data between the two robots. More precisely, let ws :
V → R≥0 be a weight function defined over V such that

ws(v) quantifies the “size” of scan Sv collected at the

corresponding pose. Then, the communication cost incurred

as a result of executing policy π can be modelled as

fO(π) ,
∑

v∈V

ws(v)π(v). (2)

In the special case of uniform weights, fO reflects the number

of exchanges made by π (up to a constant).
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Fig. 2: A simple data exchange problem between two robots. Each vertex corresponds to a robot pose, and each edge represents a potential
loop closure between the corresponding robot poses. There is a “scan” associated with each robot pose. To verify a potential inter-robot
loop closure between two connected vertices, at least one robot needs to share its scan with the other robot. (a) A simple exchange
graph. (b) An admissible exchange policy in which each robot shares the sensory data collected at its red vertex with the other robot.
The orientation of each edge signifies the direction of exchange (i.e., vertex label). (c) The workload induced by π: ð

2
is responsible for

searching for loop closures among the green candidates, ð
1

will search among the blue candidates. Note that the thick candidate edge
will be screened by both robots.

2) Induced Division of Labor: Upon executing an exchange

policy, each robot has to perform sensor registration on a

subset of L. The exchange policy implicitly determines the

distribution of the workload between the robots. The second

objective captures this induced workload. To quantify this

workload, first note that any admissible policy π divides the

initial candidate set into L = Lπ
1 ∪ Lπ

2 in which Lπ
1 (resp.,

Lπ
2 ) is the set of edges incident to V2 (resp., V1) at a vertex

v such that π(v) = 1. These sets can be empty (monolog)

and are not necessarily disjoint: Lπ
12 , Lπ

1 ∩ Lπ
2 is the set

of edges like {u,v} ∈ L such that π(u) = π(v) = 1 (see

Figure 2b). Lπ
1 \L

π
2 (resp., Lπ

2 \L
π
1 ) can only be searched by

the first (resp., second) robot. On the contrary, in principle

both robots can screen the candidates in Lπ
12. We can either

divide the burden of searching in Lπ
12 between the robots,

or simply let each robot screen it on its own. The latter

is preferred due to the following advantages. First, from

a robustness perspective, verifying Lπ
12 separately on each

robot creates a desirable redundancy in case robots are unable

to exchange their newly discovered loop closures due to

problems like communication failure. Furthermore, the cost

of post-exchange communication will be slightly reduced

since we do not need to exchange the loop closures found

in Lπ
12 (Section II-D). Finally, as we will see shortly, this

choice leads to tractable optimization problems.

Suppose the computational cost of verifying candidate

inter-robot loop closure {u,v} is quantified by cuv ≥ 0. The

total computational cost due to sensor registration induced

by exchange policy π on robot i ∈ {1,2} is given by

ℓπ
i
=

∑

v∈V\Vi

∑

u∼v

cuvπ(v). (3)

Note that under uniform {cuv}u∼v, ℓπ
i

is proportional to the

number of potential loop closures that must be verified by

robot i as a result of exchange policy π. Let α1 and α2 be

non-negative parameters that control the induced workload

balance between the two robots, such that, e.g., increasing

αi will shift the balance in favor of robot i. For example,

in a heterogeneous data exchange between a typical robot

and a tactical supercomputer, one may seek to choose an

admissible policy such that most of the induced workload is

redirected toward the tactical supercomputer. This narrative

results in

f¤(π;α1,α2) , α1ℓ
π

1 + α2ℓ
π

2 (4)

=
∑

v∈V

wℓ(v)π(v), (5)

in which

wℓ : v 7→

{

α2

∑

u∼v
cuv v ∈ V1,

α1

∑

u∼v
cuv v ∈ V2.

(6)

Problem 1 (Optimal Data Exchange Problems (ODEP)).

minimize
π

f¤(π;α1,α2)

subject to π is admissible.
(P1)

minimize
π

fO(π)

subject to π is admissible.
(P2)

minimize
π

f•(π;α1,α2,ω)

subject to π is admissible.
(P3)

f•(π;α1,α2,ω) , fO(π) + ωf¤(π;α1,α2) (7)

=
∑

v∈V

w•(v)π(v), (8)

in which w• : v 7→ ws(v) + ωwℓ(v).

C. Solving the Optimal Data Exchange Problem

It is easy to see that P1:3 are all instances of the weighted

minimum bipartite vertex cover problem.1 To see this, first

note that the admissibility constraint needed for guaranteeing

the completeness of search is identical to the constraint

in vertex cover. Translating an instance of one of these

narratives to an equivalent instance of the other (i.e., mapping

a lossless exchange policy to an equivalent vertex cover

π 7→ Π and vice versa) is trivial: Π ,
{

v ∈ V : π(v) = 1
}

and π : v 7→ 1Π(v) where

1Π(v) ,

{

1 if v ∈ Π,

0 if v ∈ V \Π.
(9)

1Finding a subset of vertices in a vertex-weighted bipartite graph with
the minimum sum of vertex weights such that it covers every edge.



Finally, note that the cost of π (in ODEP) is equal to that

of Π in the weighted minimum bipartite vertex cover, and

vice versa. Consequently P1:3 can all be solved using the

same machinery. Furthermore, this result characterizes the

communication cost incurred in the search for inter-robot

loop closures and the induced workload balance in terms of

the graph topology and vertex/edge weights through a well-

understood graph invariant.

Algorithm

Although the weighted minimum vertex cover problem is

NP-hard in general, it can be solved efficiently in bipartite

graphs; see, e.g., [19]. Therefore, by virtue of the above-

mentioned observation, we can solve any ODEP efficiently

by casting it as a weighted minimum bipartite vertex cover

problem. Moreover, Algorithm 1 can be slightly restructured

to execute the vertex cover translation of an optimal policy—

see Algorithm 2. It remains to describe an algorithm based

on linear programming (LP) for efficiently solving ODEP.

Let w ∈ {wℓ, ws, w•}. The corresponding ODEP can then

be formulated as the following integer linear program (ILP):

minimize
π

∑

v∈V

w(v)π(v)

subject to π(u) + π(v) ≥ 1 u ∼ v,

π(u) ∈ {0,1} u ∈ V .

(PILP)

The admissibility constraint in PILP can be compactly written

as A
⊤
π ≥ 1, in which A is the unoriented incidence matrix

of the exchange graph, and π is the stacked vector of values

π(u) for u ∈ V . Let w be the stacked vector of vertex

weights. PILP admits a natural LP relaxation by expanding its

feasible set FILP into FLP , {π : A⊤
π ≥ 1,π ≥ 0} ⊃ FILP:

minimize
π

w
⊤
π

subject to π ∈ FLP.
(PLP)

It is well known that A is totally unimodular, and therefore

FLP is integral; i.e., PLP has an integral solution that can be

found using the simplex algorithm (see, e.g., [19, Ch. 18]).

Any integral solution corresponds to an optimal exchange

policy for Problem 1. In the special case of uniform weights,

we can construct the optimal policy directly from the maxi-

mum bipartite matching in G; see König’s theorem [19].

Optimality Conditions for Monologs

ODEP is built on the presumption that exploiting bidi-

rectional communication can lead to more resource-efficient

strategies. While this is generally true, in some special cases,

monologs may perform optimally as well. The following

theorem offers the necessary and sufficient condition for the

most general form of P1:3 under which a monolog is optimal.

Theorem 1. Consider a vertex-weighted exchange graph G
with non-negative weights assigned by w : V → R≥0. Let

V◦ ∈ {V1,V2}. The monolog π defined as

π◦ : v 7→

{

1 v ∈ V◦,

0 otherwise,
(10)

minimizes the cost function

f(π) ,
∑

v∈V

w(v)π(v) (11)

among all admissible policies if and only if G satisfies what

we call the generalized Hall’s condition (GHC):

∀S ⊆ V◦ :
∑

v∈S

w(v) ≤
∑

v∈N (S)

w(v). (GHC)

Proof. [⇒] We show the contrapositive. Suppose there exists

a S ⊆ V◦ that violates GHC. Consider,

π∗ : v 7→

{

1 v ∈ (V◦ \ S) ⊎ N (S)

0 otherwise.
(12)

π∗ is admissible since the vertices in V◦ \S cover the edges

that are not incident to S, while those in N (S) cover every

edge incident to S. Now since S violates GHC we have,

f(π∗) =
∑

v∈V◦\S

w(v) +
∑

v∈N (S)

w(v) (13)

<
∑

v∈V◦\S

w(v) +
∑

v∈S

w(v) (14)

=
∑

v∈V◦

w(v) (15)

= f(π◦). (16)

[⇐] Now we show GHC is sufficient. Suppose GHC holds

and let π⋆ be the optimal admissible policy. For simplicity

and without loss of generality let us assume V◦ = V1. Define

Π⋆ , {v ∈ V : π⋆(v) = 1} and Π⋆
i
, Π⋆ ∩ Vi (i = 1,2).

If Π⋆
2 is empty, π⋆ = π◦. Furthermore, based on GHC, Π⋆

1

cannot be empty unless V1 and V2 have equal costs, which

also implies that π⋆ = π◦. Thus we can assume both are

non-empty. Since π⋆ is admissible, there must be no edges

between V1 \Π
⋆
1 and V2 \Π

⋆
2. Therefore, N (V1 \Π

⋆
1) ⊆ Π⋆

2.

From GHC and the fact that vertex weights are non-negative

we have,
∑

v∈V1\Π
⋆

1

w(v) ≤
∑

v∈N (V1\Π
⋆

1
)

w(v) (17)

≤
∑

v∈Π⋆

2

w(v). (18)

Consequently,

f(π⋆) =
∑

v∈Π⋆

1

w(v) +
∑

v∈Π⋆

2

w(v) (19)

≥
∑

v∈Π⋆

1

w(v) +
∑

V1\Π
⋆

1

w(v) (20)

=
∑

v∈V◦

w(v) (21)

= f(π◦). (22)

This concludes the proof.

Remark 1. Theorem 1 states that π◦ is optimal iff, for any

subset of vertices in V◦, the amount of data that needs to



Algorithm 2 Execute a DEP via Vertex Cover Π

1: for v ∈ Π do

2: Send Sv to the other robot.

be transmitted from V◦ to the other robot is not greater than

the amount of data needs to be transmitted in the opposite

direction. Although this result is intuitive, the fact that the

GHC is both necessary and sufficient is non-trivial.

Corollary 1. Let Vmax ∈ {V1,V2} be the vertex set with the

larger αi. The monolog π1 defined as

π1 : v 7→

{

1 v ∈ Vmax,

0 otherwise.
(23)

is optimal with respect to P1.

Corollary 1 implies that P1 always has a trivial optimal

monolog solution. Nonetheless note that P3 still allows us

influence the induced division of labor based while retaining

communication efficiency. Moreover, Corollary 1 also im-

plies that the two objective functions f¤ and fO blended

together in P3 are competing with each other to shift the

structure of the optimal policy towards monologs (ideal

workload balance) and dialogs (communication efficiency),

respectively.

Corollary 2. Let Vmin ∈ {V1,V2} be the vertex set with

smaller cardinality. The monolog π2 defined as

π2 : v 7→

{

1 v ∈ Vmin,

0 otherwise,
(24)

is optimal with respect to P2 under uniform weights iff G
satisfies Hall’s condition (HC): ∀S ⊆ Vmin : |S| ≤ |N (S)|.

Corollary 2 states the necessary and sufficient condition

under which the monolog π2 is optimal. This result also

follows directly from Hall’s marriage theorem and König’s

theorem [19]. As an example, consider the case of k-regular

bipartite graphs.1 A well-known application of Hall’s mar-

riage theorem implies that k-regular bipartite graphs satisfy

HC [19]. Similarly, it is easy to check that HC holds in the

complete bipartite graph. Corollary 3 follows from this result

and Corollary 2.

Corollary 3. The monolog π2 is optimal with respect to P2

under uniform weights in k-regular, and in complete bipartite

graphs.

D. Post-Exchange Protocol

After executing the optimal policy π⋆, each robot has to

verify the potential loop closures in a subset of L (Lπ
1 and

Lπ
2 ; see Section II-B) via sensor registration. Examining the

candidates will lead to a set of inter-robot loop closures

L⊞ ⊆ L. Because of the admissibility constraint, we know

that L⊞
1 ∪ L⊞

2 = L⊞ in which L⊞
i

is the set of loop

closures discovered by robot i ∈ {1,2} after executing an

admissible exchange policy (i.e., the search is guaranteed to

1A graph is called k-regular if all of its vertices have degree k ≥ 1.

Algorithm 3 Optimal Data Exchange

1: Robots: Send the essential metadata to the broker

2: Broker: Form G (w/ dynamic pricing)

3: Broker: Form and solve ODEP via LP relaxation

4: Robots: Execute π⋆ — exchange scans

5: Robots: Search for loop closures in Lπ
1 and Lπ

2

6: Robots: Exchange the discovered loop closures: L⊞
i
\L⊞

12

be complete). At this point, each robot is aware of its own

set of newly discovered inter-robot loop closures; these sets

will have a non-empty overlap iff Lπ
⋆

12 ∩ L⊞ is non-empty.

If the communication channel is still available, robots can

immediately share their newly discovered positive matches

with each other by transmitting L⊞
i
\ L⊞

12 (i = 1,2). The

exchange process ends here. At this stage, robots are able to

closely examine every potential candidate, perform geometric

verification, solve the sensor registration and data association

problems, and establish relative measurements; see, e.g., [8],

[13], [14], [20].

E. Exchange Inertia and Dynamic Pricing

In Problem 1, vertex weights quantify quantities such as

the size of a scan, computational cost of sensor registration

for the corresponding potential loop closures, and the desired

workload balance. From a broader perspective, the weights

can be interpreted as the exchange inertia, such that a smaller

weight signifies more desire to share the associated scan

with other robots, and vice versa. This broader interpretation

allows us to incorporate a wider spectrum of objectives and

constraints using the same underlying framework. In partic-

ular, robots and/or the broker may utilize a dynamic pricing

strategy driven by various internal/external incentives. For

example, these dynamic pricing schemes may depend on the

specific role of a robot in the team, its capabilities, clearance

level, privacy restrictions, and the available mission-critical

resources.

III. EXPERIMENTS

Algorithm 3 summarises the entire ODEP process. This

section presents results obtained using the KITTI dataset [21]

to formulate realistic ODEP instances. KITTI was chosen

for its long, data-rich trajectories, and accurate ground truth.

ODEP instances are solved with the Gurobi LP solver.2

Solving ODEP takes about 0.41 seconds in one of the largest

exchange graphs encountered in our datasets (with more than

2 × 103 vertices and 96 × 103 edges) on an Intel Core i7-

6820HQ CPU operating at 2.70 GHz. The runtime in realistic

settings and using DBoW2 with α = 0.3 (see Section III-B)

is about 0.03 seconds. Due to space limitation, in this section

we focus mainly on P2.

A. Trajectory Geometry Experiments

In order to create instances of ODEP with the KITTI

dataset, we chose sequences of the odometry benchmark

that contained considerable amounts of self-intersection and

re-tracing in their ground truth trajectory. Each sequence is

2http://www.gurobi.com

http://www.gurobi.com


divided into two parts corresponding to two distinct robots.

For each pose in the trajectory, Oriented FAST and Rotated

BRIEF (ORB) features [22] exceeding a variable FAST

detection threshold are extracted from the associated color

camera image. Since this set of features can be used to

detect and compute loop closures between poses as part

of a SLAM system [20], the number of extracted features

determines the vertex weight ws(v) for the pose at vertex

v. In regions with greater environmental detail, a greater

number of ORB features are extracted. The KITTI dataset’s

odometry ground truth is then used to form edges between

nearby poses associated with each robot. This process results

in an exchange graph G with weights ws(v) that depends on

a number of parameters:

1) FAST threshold kF used to detect ORB features,

2) Data rate or measurement frequency f (KITTI data is

provided at 10 Hz),

3) Maximum distance dmax between poses that are candidate

matches (i.e. u ∼ v),

4) Minimum fraction η of range limited camera field of view

(FOV) between poses that are candidate matches.

Varying these parameters leads to different structures in G
and variable communication savings when using ODEP. In

practice, different sensors and varying confidence in robot

trajectory estimates would permit empirical modelling of

exchange graph formation. In this paper, we analyze ranges

of the above parameters to capture a variety of problem

instances. For example, large values of dmax correspond to

scenarios where each robot’s trajectory estimate is highly

uncertain and, therefore, a greater range of nearby poses need

to be considered loop-closure candidates. Figure 3 displays

edges of L in green for a particular set of parameters on

KITTI odometry sequence 0 and sequence 6. Figure 4a and

4d display the communication savings of the optimal policy

relative to monolog policies for sequences 0 and 6 when L is

formed between poses within a variable dmax. Figures 4b and

4e report similar results when L is formed with a variable

minimum FOV overlap η. The abrupt jumps in cost seen

in Figures 4d and 4e are caused by sequence 6’s particular

trajectory. Figure 3b displays the simple elongated loop that

sequence 6 follows, along with some candidate edges formed

by the field of view threshold of η = 0.4. These settings lead

to candidate edges across the thin loop which vanish for

shorter values of dmax and higher values of η, reducing the

required communication cost.

Figure 4 demonstrates that solving ODEP enables the

robots to reduce the amount of data to be exchanged by

up to 5 MB over some monologs. Note that in some of the

state-of-the-art systems, full bidirectional communication of

measurements is utilized by default, resulting in at least the

sum of the communication costs of both monologs (red and

green curves) in Figures 4a-4f [6]. For a typical 11 Mb/s ad

hoc WiFi network tested in our laboratory, 5 MB corresponds

to approximately 5 seconds of transmission time. Thus, in

addition to reducing use of network bandwidth and battery

usage, communication reduction could potentially help to
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Fig. 3: Ground truth for KITTI odometry dataset sequences 0 and
6 with parameters f = 2 Hz, η = 0.4, dmax = 30m between robot 1
(blue) and robot 2’s (red) for edges (green). The edges and weights
formed with ORB feature counts produce the exchange graph G.

significantly shorten robot rendezvous periods in time-critical

missions.

B. Place Recognition Experiments

An appearance-based place recognition system like

DBoW2 [18] can also be used for inter-robot loop closure

detection and to generate the candidate edge set L. In a

situation where robots do not have an accurate estimate

of the transformation between their trajectories’ frames of

reference, place recognition must be leveraged instead of

viewpoint proximity to find potential loop closures. To facil-

itate place recognition, DBoW2 only needs the “word” in the

bag-of-words vocabulary describing each ORB feature [18].

This word can typically be described in 3 or fewer bytes,

which is less than one tenth of the size the standard 32

byte BRIEF descriptor used in ORB. Thus, an inexpensive

exchange of vocabulary vectors (i.e., metadata) allows robots

to search for promising candidates and form an exchange

graph G for ODEP.

In our experiments, we trained a DBoW2 vocabulary

with parameters kw = 10 and Lw = 6 on ORB features

from 5 KITTI odometry benchmark sequences. The two

candidate edges with the highest normalized score exceeding

threshold α [18] were used to form candidate edges in

L. Communication savings from ODEP instances produced

with KITTI odometry sequences 0 and 6 are displayed in

Figures 4c and 4f. Although the structure of exchange graphs

resulting from appearance based methods were very different

from the geometric methods of the previous section, the cost

of communication can still be significantly reduced using our

method. For low α thresholds, the optimal policy affords

significant savings of around 5-10 MB over the monolog

policies in sequence 0 (Figure 4c). In the smaller sequence

6, the net communication savings are smaller because there

are fewer candidates, but the optimal policy is still almost

10% more efficient than the best monolog policies at α

thresholds in the range of 0.2 to 0.4. It is also worth noting
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Fig. 4: Communication cost for KITTI odometry sequences 0 and 6 with kF = 100, f = 10 Hz, and varying dmax, η, or α (x-axes).
Figures 4a and 4d form the candidate edge graph L using maximum Euclidean distance dmax between poses from KITTI groundtruth data,
whereas Figures 4b and 4e use the fraction of overlapping fields of view η to determine candidates. Figures 4c and 4f form the candidate
graph using the candidates with the 2 best DBoW2 scores greater than threshold α.

that relying on a single communication direction (i.e. using

only one fixed monolog policy) throughout a mission is a

poor communication heuristic that could produce arbitrarily

bad and inconsistent results. This is illustrated in Figures 4f

and 4b where depending on the value of α or η, the better

choice of monolog and its performance penalty relative to

the optimal policy changes drastically.

IV. CONCLUSION AND FUTURE WORK

Given the limitations of onboard resources, it is essential

that robots communicate wisely. State-of-the-art techniques

often have to sacrifice content by down-sampling the ex-

changed data, e.g., [6]–[8], [11]. This comes at the risk of

losing potential valuable inter-robot loop closures which are

the essence of cooperative localization and mapping. This

paper addressed this challenge by investigating the logistical

aspect of sensory data sharing in distributed CSLAM front-

ends. First, we formalized the optimal data exchange prob-

lem that encompasses a wide range of sensing modalities

(e.g., vision, 2D and 3D lasers). This led to a resource-

efficient and provably lossless (i.e., ensuring a complete

search) communication planning framework. The proposed

framework takes into account both the quantity of exchanged

data, and the resulting division of labor induced by the

executed exchange policy. This allows us to design efficient

communication plans while distributing the induced work-

load based on, for example, the distribution of computational

resources among robots. Additionally, ODEP can seamlessly

incorporate privacy and security constraints through the con-

cept of exchange inertia and dynamic pricing schemes. Our

approach benefits greatly from several fundamental results in

graph theory and combinatorial optimization. In particular,

these results lead to a fast and provably tight LP relaxation

scheme to find the globally optimal exchange polices. In

addition, our theoretical analysis characterized the necessary

and sufficient conditions under which simpler unidirectional

exchange policies are optimal. Finally, we experimentally

validated geometric and appearance-based realizations of the

proposed framework using the KITTI odometry benchmark

datasets.

In retrospect, several crucial insights played major roles

in the success of our approach. First and foremost, iden-

tifying plausible inter-robot loop-closure candidates before

transmitting the bulk of sensory data is what makes commu-

nication planning possible. Forming the exchange graph and

exploiting its unique structure (topology and the vertex/edge

weights) allowed us to identify more efficient, yet lossless,

exchange policies—often emerging as natural dialogs. Al-

though this requires exchanging “metadata”, the incurred

cost is often not comparable to the that of the actual data

exchange. For example, visual place recognition systems like

DBoW2 form loop closure candidates with sparse feature

vectors that use an order of magnitude less data than the

full descriptors used for subsequent loop closure verification.

In our experiments where robots found candidate edges by

exchanging pose graphs, poses are described by SE(2) or



SE(3) objects that are much smaller than hundreds of visual

descriptors. Furthermore, we exploited the sparsity pattern

of the graph in our implementation to solve the resulting LP

even faster.

This paper provides a solid foundation for optimal com-

munication planning in distributed CSLAM front-ends. Our

approach is able to find the optimal exchange policy between

a pair of robots during pairwise encounters. n-way (n > 2)

scan exchange problems naturally arise in robotic networks

with denser communication graphs. Although the proposed

approach can still be used in these cases, it may not necessar-

ily lead to the optimal strategy. Addressing the sensory data

exchange between more than two robots requires exploring

new mechanisms such as data caching and routing. The

optimal n-way data exchange problem is our next challenge.
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