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Abstract

We propose and demonstrate an inference algorithm for the automatic segmentation of 

cerebrovascular pathologies in clinical MR images of the brain. Identifying and differentiating 

pathologies is important for understanding the underlying mechanisms and clinical outcomes of 

cerebral ischemia. Manual delineation of separate pathologies is infeasible in large studies of 

stroke that include thousands of patients. Unlike normal brain tissues and structures, the location 

and shape of the lesions vary across patients, presenting serious challenges for prior-driven 

segmentation. Our generative model captures spatial patterns and intensity properties associated 

with different cerebrovascular pathologies in stroke patients. We demonstrate the resulting 

segmentation algorithm on clinical images of a stroke patient cohort.

1 Introduction

Identifying and differentiating cerebrovascular pathologies in brain MRI is critical for 

understanding cerebral ischemia (insufficient blood flow to the brain). Unfortunately, 

different lesion types, such as leukoaraiosis (small-vessel disease) and stroke, cannot be 

distinguished purely based on intensities or location. Clinicians use anatomical and other 

medical knowledge to categorize and delineate pathology. We model intensity, shape, and 

spatial distribution of pathologies to capture this anatomical knowledge of variability of 

pathology in order to successfully annotate clinical brain scans in stroke patients.

Our work is motivated by imaging studies of stroke patients that acquire multimodal brain 

scans within 48 hours of stroke onset. To understand susceptibility to cerebral ischemia and 

associated risk factors, clinicians manually outline and analyze vascular pathologies, 

focusing on leukoaraiosis and separating it from stroke lesions. Using this approach, 

leukoaraiosis burden has been shown to be lower in patients with transient ischemic attacks 

compared to patients with more damaging cerebral infarcts [11]. Manual delineation of 

leukoaraiosis and stroke takes up to 30 minutes per patient, and large population studies 
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contain hundreds to thousands of patients. Automatic segmentation is therefore necessary. 

Here, we focus on segmenting leukoaraiosis and separating it from stroke lesions.

Variability in shape and location of lesions is one of the main challenges in automatic 

segmentation of stroke scans. Leukoaraiosis appears hyperintense in T2-FLAIR, is found 

peri-ventricularly, has a widely variable extent, and is roughly bilaterally symmetric. While 

also hyperintense, strokes can happen nearly anywhere in the brain and vary dramatically in 

size and shape. While acute stroke (stroke that occurred in the last 48 hours) is visible on 

diffusion weighted MR (DWI), the same is not true for chronic stroke (stroke that occurred a 

long time before imaging). Additionally, DWI is often not available [17]. In this paper, we 

concentrate on the more difficult task of separating leukoaraiosis from stroke, both acute and 

chronic, in T2-FLAIR. Another challenge is the low quality of images in the clinical setting 

due to the extremely limited scanning time. This results in thick slices (5-7mm) and bright 

artifacts, which hinder registration and intensity equalization of clinical images and further 

complicate automatic segmentation. Representative images and segmentations are shown in 

Figure 1, illustrating our challenge.

We introduce a generative probabilistic model of the effects of the cerebrovascular disease 

on the brain. The model integrates important aspects of each pathology, leading to an 

effective inference algorithm for segmentation and separation of different tissues in stroke 

patients. Specifically, we learn the spatial distribution and intensity profile of leukoaraiosis, 

as well as the intensity profile of stroke. We train the model on an expert-labeled dataset and 

demonstrate that our modeling choices capture notions used by clinicians, such as symmetry 

and covariation of intensity patterns. To the best of our knowledge, this is the first 

comprehensive segmentation approach for different cerebrovascular pathologies.

Our model incorporates several approaches previously proposed for segmentation of healthy 

anatomy that is consistent across individuals [3,15,16]. We combine these methods to 

accurately model pathology. Intensity-based lesion segmentation algorithms utilize tissue 

intensities to segment pathology [1,7]. Spatial priors are sometimes added in a form of 

Markov Random Fields or spatial distributions [4,12,15]. These methods are successful in 

delineating structures that are hyper- or hypointense compared to their surroundings, such as 

MS lesions or tumors. Unfortunately, these methods are not designed to differentiate 

between multiple hyperintense structures, such as leukoaraiosis, stroke, and certain artifacts, 

which share an intensity profile and can co-occur spatially. Clinicians use spatial features, 

such as the bilateral symmetry of leukoaraiosis, to tell them apart. Shape-based methods 

generally model the shape of a structure, either via an explicit [3,8,14] or implicit [5,9,10] 

representation. We utilize a shape model to capture the variability in spatial distribution of 

leukoaraiosis, which develops in a consistent pattern peri-ventricularly. In contrast, stroke 

can happen at random locations almost anywhere in the brain, and has no obvious shape or 

location profile (Figure 1). We demonstrate that combining intensity and spatial context for 

stroke and spatial distribution models for leukoaraiosis produces accurate segmentation. We 

validate the method on over 100 stroke subjects with various pathologies and artifacts.
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2 Generative Model

We use a generative model to describe the spatial distribution, shape and appearance of 

healthy tissue and cerebrovascular pathology. Figure 2 provides a graphical representation 

of our model.

We let Ω be the set of all spatial locations (voxels) in an image, and I = {Ix}x∈Ω be the 

acquired image. We assume image I is generated from a spatially varying label map C = 

{Cx}x∈Ω that represents tissue classes. For each voxel x, Cx is a length-3 binary indicator 

vector that encodes three tissue labels – leukaraiosis (L), stroke (S) and healthy tissue (H). 

We use notation Cx(c) = 1 to mean that the tissue class at voxel x is c, for c ∈ {L, S, H}. 

Otherwise, Cx(c) = 0.

Given the label map C, the intensity observations Ix are generated independently from a 

Gaussian distribution:

(1)

where  is the normal distribution parametrized by mean μ and variance σ2, 

, μ = {μL, μS, μH} and σ = {σL, σH, σS}.

The prior for the tissue classes captures our knowledge about spatial distributions and shape 

of pathology. We assume that the spatial extent of leukoaraiosis depends on a spatial 

distribution M = {Mx}x∈Ω, where Mx is a prior for leukoaraiosis for voxel x. As we describe 

later on, M will be parametrized by parameter α. If voxel x is not assigned to leukoaraiosis, 

it is assigned to be stroke with spatially varying probability βx, and to be healthy tissue with 

probability (1 − βx). To encourage spatial contiguity, we incorporate a Markov Random 

Field (MRF) as a spatial prior. Formally,

(2)

where

(3)

is a length-3 vector of prior probabilities for the three tissue classes as described above, N(x) 

is the set of voxel locations neighboring x, and the 3 × 3 matrix A is chosen to encourage 

neighboring voxels to share the same tissue label. In our implementation, the MRF term 

penalizes interactions between stroke and other tissues more than leukoaraiosis bordering 

healthy tissue, as we find that stroke is generally more spatially contiguous than 

leukoaraiosis, which is more diffuse.

Using (1), (2) and (3), we form the posterior distribution for the tissue classes:
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(4)

2.1 Spatial Distribution Prior for Leukoaraiosis

We model the spatial extent of leukoariosis with a probabilistic atlas constructed by 

applying Principal Component Analysis (PCA) to a training set of manual leukoaraiosis 

binary segmentation maps. We let  be the mean map,  be the principal 

components that correspond to the K largest eigenvalues, and αk be the weights (or 

loadings):

(5)

where Σ is the diagonal covariance matrix containing the K largest eigenvalues. Given α, the 

spatial prior M = {Mx}x∈Ω is deterministically defined:

We also experimented with LogOdds shape representation [10], often used for modeling 

normal anatomical variability. We found that the leukoaraiosis structures are in general too 

thin and variable in location to be properly captured by this representation. On the other 

hand, a simple average probability map representation fails to capture the covariation of 

leukoaraiosis distribution.

3 Inference

To obtain the segmentations, we perform MAP inference and seek

(6)

Since exact computations become infeasible whenever the MRF weight matrix A is non-

zero, we employ a variational EM approximation [6] to estimate the MAP solution. 

Specifically, we approximate the posterior distribution P(C|I; μ, σ, α, β) with the fully 

factored distribution

(7)

where wx is a vector of probabilities for the three tissue classes at voxel x. Due to space 

constraints, we omit the derivations and provide the resulting updates. Because the prior for 

the PCA loadings P(α) is not conjugate to the likelihood P(C|α), we approximate the 

corresponding E-step computation with a regularized projection:
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(8)

where U = [M1, …,Mk], and we use clipping to force the resulting values in M(α) to be 

between 0 and 1.

In the M-step, we update the parameters of the model. The updates are intuitive. The class 

mean and variance estimates are computed as weighted averages:

(9)

Given large variable intensity pathologies and severe artifacts, image inhomogeneity cannot 

be corrected through pre-processing steps. To address image inhomogeneity for the healthy 

tissue, we model the intensity mean estimate as spatially varying, and introduce a low pass 

filter GH to enforce spatial smoothness, similar to the original EM-segmentation formulation 

[16]. Specifically,

(10)

where * denotes spatial convolution. The healthy tissue prior βx is a fraction of current 

frequency estimates for stroke and healthy tissue probabilities:

(11)

Finally, the variational posterior parameters wx are weighted by their agreement with the 

neighbors:

(12)

where πx(c) is defined in (3). We iterate the updates until the parameter estimates converge.

4 Results

In this section, we present experimental results on 100 test images with manually delineated 

leukoaraiosis, and another six test volumes, each with manually delineated leukoaraiosis by 

multiple experts. Leukoaraiosis is the primary phenotype in many stroke studies, and thus its 

segmentation and delineation from stroke is our main focus in the experiments. We only run 

our algorithm inside the white matter where we expect to see most of the leukoaraiosis and 

strokes. A future direction for our work is to include healthy gray matter and cerebrospinal 

fluid classes.

In our experiments, the scans include T2-FLAIR scans (1 × 1mm in-plane, slice thickness 

5-7mm, PROPELLER sequence sometimes used if the patient moved). Acquisition TR and 
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TE varied depending on the image protocol. All subjects are registered to an atlas template 

using ANTs [2] based on T1 images acquired for each subject in the study [13].

Parameters

We trained the PCA shape model ({Mk}, Σ) on binary maps of manual leukoaraiosis 

segmentations in 42 training scans, different from the 106 test scans. The fixed parameters λ 

and A were chosen manually to optimize results in a single test example, not included in the 

results below. In particular, we use λ = 250, A(c, c) = 100 for c ∈ {L, H, S}, A(L,H) = 97, 

A(S, L) = 1, and A(S, H) = 20. This choice discourages stroke from neighbouring 

leukoaraiosis more than neighbouring healthy tissue. We initialized the posterior estimates 

using a simple threshold classifier learned from the training subjects [13].

In Figure 3, we compare the volume of leukoariosis obtained by our method against expert 

delineations. The first graph demonstrates that the automatic approach is consistently within 

the range of inter-rater variability. The second graph compares the automatically computed 

leukoaraiosis burden to that based on manual segmentations in a test set of 100 subjects. 

Visual inspection of the outlier image reveals little to no apparent leukoaraiosis and a 

possible manual over-segmentation.

Figure 4 provides example segmentation results for three subjects with leukoaraiosis and 

stroke. The first subject was used for parameter tuning (and was not included in testing), and 

includes a stroke in areas where leukoaraiosis is often found near the ventricles. The second 

subject is a typical result, where we see that most of the stroke is accurately separated from 

leukoaraiosis. The third subject is an example of an outlier result, where the separation of 

the two hyperintense pathologies is nearly impossible to define even by a clinical expert. In 

both the second and third subjects, our leukoaraiosis segmentation is conservative, which is 

likely caused by the regularized projection. This observation is consistent with the results 

shown in Figure 3.

5 Conclusions

We presented an algorithm for segmentation of separate cerebrovascular pathologies in brain 

MRI. Our algorithm is derived from a generative probabilistic model that captures experts' 

knowledge of the disease. By modeling the spatial distribution of leukoaraiosis, as well as 

the intensities of leukoaraiosis and stroke lesions, our method automatically segments 

tissues that are indistinguishable based on intensity alone. We presented our method on a 

study of stroke patients, and showed strong agreement between our results and expert 

segmentation volumes.
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Fig. 1. 
Left: T2-FLAIR axial slice. Stroke (blue outline) can appear anywhere in the brain, can vary 

dramatically in shape, and is hyperintense. Leukoaraiosis (yellow outline) is generally peri-

ventricular, has a more predictable spatial distribution than stroke lesions, and is usually 

roughly symmetric across hemispheres. We outline imaging artifacts (red) that can interfere 

with automatic segmentation of pathologies. Right: Examples of various stroke shapes and 

sizes, manually outlined in green.
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Fig. 2. 
A graphical representation of our generative model. Circles indicate random variable and 

rounded squares represent parameters. Shaded circles represent observed quantities and the 

plates indicate replication. I is the acquired image. The image intensities are generated from 

a normal distribution parametrized by μc and σc for each tissue class c in the label map C. 

Priors for the tissue classes are controlled by the weights {αk} of the K-component PCA 

shape model and spatial parameters βx that define the prior probability of stroke in non-

leukoaraiosis tissue.
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Fig. 3. 
Leukoaraiosis segmentation evaluation. Left: Volume measurements based on the automatic 

segmentation (orange) are within the range of experts (blue circles). Right: Volume 

estimates based on the automatic segmentation of leukoaraiosis against volume estimates 

based on the manual segmentations; the correlation coefficient is r = 0.82.
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Fig. 4. 
Automatic segmentation on three subjects showing stroke segmentation (blue outlines) and 

leukoaraiosis (yellow outlines): the image used to tune the parameters (left), a typical result 

of our method (center), and an example of a difficult case (right).
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