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Abstract: Transverse momentum dependent parton distributions (TMDPDFs) which ap-

pear in factorized cross sections involve infinite Wilson lines with edges on or close to the

light-cone. Since these TMDPDFs are not directly calculable with a Euclidean path in-

tegral in lattice QCD, we study the construction of quasi-TMDPDFs with finite-length

spacelike Wilson lines that are amenable to such calculations. We define an infrared con-

sistency test to determine which quasi-TMDPDF definitions are related to the TMDPDF,

by carrying out a one-loop study of infrared logarithms of transverse position bT ∼ Λ−1
QCD,

which must agree between them. This agreement is a necessary condition for the two quan-

tities to be related by perturbative matching. TMDPDFs necessarily involve combining

a hadron matrix element, which nominally depends on a single light-cone direction, with

soft matrix elements that necessarily depend on two light-cone directions. We show at one

loop that the simplest definitions of the quasi hadron matrix element, the quasi soft matrix

element, and the resulting quasi-TMDPDF all fail the infrared consistency test. Ratios of

impact parameter quasi-TMDPDFs still provide nontrivial information about the TMD-

PDFs, and are more robust since the soft matrix elements cancel. We show at one loop

that such quasi ratios can be matched to ratios of the corresponding TMDPDFs. We also

introduce a modified “bent” quasi soft matrix element which yields a quasi-TMDPDF that

passes the consistency test with the TMDPDF at one loop, and discuss potential issues at

higher orders.
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1 Introduction

Transverse momentum dependent (TMD) distributions are important ingredients for de-

scribing high-energy scatterings at low transverse momentum, such as for Drell-Yan produc-

tion at the Tevatron [1–4] or LHC [5–10] which is a benchmark observable of the Standard

Model (SM). For Higgs bosons produced in proton collisions, the transverse momentum

spectrum is also one of the primary observables describing the production kinematics and

is of great interest in LHC measurements [11–19]. TMDs also play an important role in

measuring semi-inclusive deep-inelastic scattering (SIDIS) at low energies [20–26], and in

improving our understanding of hadron structure [27, 28].

A characteristic feature of TMDs is that they depend on both the longitudinal mo-

mentum fraction x and transverse momentum qT carried by the struck parton. Currently,

TMDs are only directly calculable for the perturbative regime qT � ΛQCD, where they

can be obtained in terms of collinear parton distribution functions (PDFs). In contrast,

nonperturbative TMDs with small qT ∼ ΛQCD have only been extracted from measurement

by performing global fits to a variety of experimental data sets, see e.g. refs. [29–34]. Im-

precise knowledge of these TMDs limits the predictive power at small transverse momenta

and constitutes a significant theoretical uncertainty. At small qT the TMDs also provide a

crucial window into the structure of the proton. It is therefore desirable to find a method

to calculate them from first principles.

For nonperturbative objects, lattice QCD currently provides the only practical means

for first-principle calculations, and studies have been performed in refs. [35–39], where ratios

of x-moments of quark TMDPDFs were determined. This gets around the fact that the

x-dependence of the TMDPDFs is not directly accessible from the Euclidean lattice, since

it involves light-cone correlations which depend on the Minkowski time, in direct parallel to

the same issue for calculating the x-dependence of the longitudinal PDFs. These analyses

use Lorentz invariance to connect the TMD nucleon matrix element of interest to spatial

matrix elements that are accessible from the lattice.

In refs. [40, 41] the large momentum effective theory (LaMET) was proposed as a

method to overcome the hurdle of calculating light-cone quantities by relating them to

time-independent quasi observables in a large-momentum nucleon state. The latter can be

directly calculated on the Euclidean lattice and matched to the corresponding light-cone

quantity through a factorization theorem that is based on a systematic expansion in the

nucleon momentum. For example, the unpolarized collinear PDF of a proton moving along

the n-direction is usually defined in the MS scheme as

fi(x, µ) =

∫
db+

4π
e−i 1

2
b+(xP−)

〈
p(P )

∣∣∣∣[q̄i(b+ n̄2
)
γ−

2
W

(
b+
n̄

2
, 0

)
qi(0)

]
µ

∣∣∣∣p(P )

〉
, (1.1)

where i is the flavor index and the square bracket with subscript µ denotes that the operator

is renormalized at scale µ. For later use we introduce the lightlike reference vectors nµ =

(1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). The light-cone coordinates are defined as b± = b0 ∓ b3,

and p(P ) denotes a proton state with momentum Pµ = (E, 0, 0, P z). The path-ordered
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light-cone collinear Wilson line is

W

(
b+
n̄

2
, 0

)
= P exp

[
−ig

∫ b+/2

0
ds n̄ · A(sn̄µ)

]
. (1.2)

To calculate the PDF fi(x, µ) using LaMET, one starts from a quasi-PDF, which is defined

from equal-time correlation functions,

f̃i(x, P
z, µ̃) =

∫
dz

2π
eiz(xP z)

〈
p(P )

∣∣∣∣[q̄i(z)
Γ

2
Wz(z, 0)qi(0)

]
µ̃

∣∣∣∣p(P )

〉
, (1.3)

where the operator is renormalized with a lattice friendly renormalization scheme and µ̃

denotes a corresponding scale. The spacelike Wilson line is

Wz(z, 0) = P exp

[
ig

∫ z

0
dz′Az(z′)

]
, (1.4)

and Γ = γ0 or Γ = γ3 as they both belong to the same universality class of operators that

can be related to the PDF through an infinite Lorentz boost along the z direction [42].

Unlike the PDF fi(x, µ) that is boost invariant, the quasi-PDF f̃i(x, P
z, µ̃) depends non-

trivially on the nucleon momentum P z. When P z is large compared to ΛQCD as well as the

nucleon mass M , the quasi-PDF satisfies the following factorization theorem [40, 41, 43–45],

f̃i(x, P
z, µ̃) =

∫ 1

−1

dy

|y|Cij
(
x

y
,
µ̃

µ
,

µ

|y|P z
)
fj(y, µ) +O

(
Λ2

QCD

P 2
z

,
M2

P 2
z

)
, (1.5)

where O(Λ2
QCD/P

2
z ,M

2/P 2
z ) terms are power corrections. Here fj(y, µ) for −1 < y < 0

corresponds to the anti-quark PDF. The Cij are perturbative matching coefficients which

come from a hard region of momentum space, see refs. [43, 45] for further details.

Recently, significant progress has been made on various aspects of the LaMET proce-

dure, including the renormalization and matching [43, 45–72] of the quasi-PDF, the power

corrections [73–75], as well as the lattice calculation of the x-dependence of PDFs and

distribution amplitudes [62, 73, 76–91]. Notably, the most recent lattice results at physical

pion mass [84, 85, 87, 89, 91] and large nucleon momenta [85, 89, 91] have shown encour-

aging signs that the LaMET approach can lead to a precise determination of the PDFs.

Due to the interest in TMDPDFs it is natural to consider the extension of the LaMET

approach to transverse momentum observables. Due to the required focus on spatial ma-

trix elements for TMDPDFs, studies based on LaMET are actually related to the lattice

methods developed in refs. [37–39]. While applying LaMET to TMDPDFs might seem

straightforward, the richer structure of TMD factorization, which we review in section 2,

actually makes this quite non-trivial. In contrast to the case for collinear factorization,

TMD physics is plagued by so-called rapidity divergences and the need for combining

collinear1 proton matrix elements with soft vacuum matrix elements. Such soft matrix

elements retain a minimal amount of information about both incoming protons (their di-

rection and the color charge of the probing parton). The importance of the soft matrix

1Note that the second use of the word “collinear” here is in the context of factorized collinear and soft

fields as defined for example in SCET, not to distinguish between collinear and TMD factorization.

– 3 –
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elements to cancel the analog of rapidity divergences in the spatial matrix elements for

TMDPDFs has been discussed in ref. [92], which was aimed at constructing a new TMD

factorization theorem for the Drell-Yan process in terms of the so-called quasi-TMDPDFs

in LaMET. More recently, the matching relationship between the quasi-TMDPDF on a

finite-volume lattice and standard TMDPDF was studied at one-loop order in ref. [93],

where it was shown that the finite lattice size regulates these divergences, thus eliminating

the need to introduce a dedicated regulator in the lattice calculation. However, we argue

here that the final result of ref. [93], which agrees at one loop with one of the results stud-

ied here, cannot be used for nonperturbative bT or qT , for reasons that will be discussed

in detail.

In this work we consider the problem of constructing a quasi-TMDPDF that can be

used to study the TMDPDF for nonperturbative qT ∼ ΛQCD. Here the quasi-TMDPDF

must be chosen such that it can be calculated with lattice QCD, agrees with the physical

TMDPDF in the infrared, and differs only by short distance contributions from the ultra-

violet. This is required in order for a matching equation connecting the quasi-TMDPDF

and TMDPDF to exist, analogous to eq. (1.5), with a coefficient C that is not sensitive

to infrared physics. These requirements still leave some freedom in the construction of

a suitable quasi-TMDPDF. We therefore propose to test which quasi-TMDPDF defini-

tions are feasible by carrying out a perturbative study of the infrared logarithms of qT , or

equivalently the transverse position bT , which must agree order by order in αs with the

same logarithms in the TMDPDF. Collinear infrared divergences related to the collinear

momentum fraction x must of course also agree between TMDPDF and quasi-TMDPDF.

We construct our quasi-TMDPDFs from distinct collinear proton and soft vacuum ma-

trix elements, in direct analogy with the TMDPDF, where the quasi adjustment is made

through the form of the operators appearing in these matrix elements. We carry out our

study of infrared logarithms separately for the collinear and soft matrix elements, thus

enabling us to separately probe the form of the corresponding collinear and soft operators.

We also discuss in detail the role of rapidity divergences, which play an important role in

the construction of TMDPDFs on the light-cone, which for the quasi-TMDPDF are regu-

lated by having Wilson lines of finite length L, as required on lattice. The cancellation of

the leftover L-dependence constrains how one must combine quasi soft and quasi collinear

matrix elements.

This paper is structured as follows. In section 2, we review the TMD factorization

theorem, discussing in particular the role of rapidity divergences and regulators, and how

the TMDPDF is constructed from combining a proton matrix element and a vacuum soft

matrix element. We then discuss in section 3 the expected form of a matching relation be-

tween TMDPDF and quasi-TMDPDF, how Wilson lines of finite length naturally regulate

the analog of rapidity divergences in lattice calculations, and discuss the quasi-construction

of the matrix elements required to define the quasi-TMDPDF. In section 4, we explicitly

test the suggested quasi-TMDPDF by comparing to the TMDPDF at one loop, showing

that the simplest quasi collinear proton matrix element fails the infrared test. The simplest

attempt of constructing a quasi soft matrix element also fails this test. Finally, combining

these into the simplest quasi-TMDPDF also gives a result that fails this test. To resolve

this issue we introduce a bent quasi soft function, which leads to a quasi-TMDPDF whose

– 4 –
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infrared divergences properly match those of the TMDPDF at one-loop. Discussion of the

implications of these results are given in section 5, including issues that may still spoil the

bent quasi soft function construction at higher orders, and how the main issues can be

avoided by only studying ratios of TMDPDFs in impact parameter space. We conclude in

section 6. Further details that are important for our analysis are provided in appendices.

In appendix A we summarize our notations and conventions for light-cone coordinates

and MS, and contrast them with another popular convention used in the literature. In

appendix B we discuss different schemes for TMDPDFs that are used in the literature,

demonstrating that they all satisfy the general functional form for the TMDPDF that we

use for our analysis. In appendix C we provide details on the perturbative calculation of

the quasi proton matrix element.

2 Review of TMD factorization

A precise understanding of the TMD factorization theorem and its different formulations

in the literature is important to properly connect a lattice determination of the TMD-

PDF to the phenomenological TMDPDF. In this section, we provide a detailed review of

TMD factorization and set up a general notation for the definition of the TMDPDF that

encompasses most of the available definitions in the literature.

2.1 TMD factorization and TMDPDFs

TMD factorization was originally derived by Collins, Soper and Sterman (CSS) in refs. [94–

96]. Refs. [97–101] showed the cancellation of potentially factorization-violating Glauber

modes, and the factorization was further elaborated on and extended in refs. [100, 102–

104]. It has also been considered in the framework of Soft-Collinear Effective Theory

(SCET) [105–108] by various authors [109–115]. For a relation of the different approaches

to each other, see e.g. ref. [116], and for a historical review on TMDPDFs we refer the reader

to [100]. In appendix A we give a summary of our notation for light-cone coordinates. In

appendix B we give a comparison between different TMDPDF constructions from the

literature, and provide explicit relations to the notation we use here.

For simplicity we consider TMD factorization in the context of the production of a

color-singlet final state F in the scattering of two unpolarized energetic protons moving

along the nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) directions. Examples of such cross sections

include Drell-Yan, W , and Higgs production. Here we only measure the total four momen-

tum of F through its invariant mass Q, rapidity Y and transverse momentum ~qT , so that

we only have unpolarized TMDPDFs. In the limit qT ≡ |~qT | � Q the cross section can be

factorized as

dσ

dQdY d2~qT
=
∑
i,j

Hij(Q,µ)

∫
d2~bT e

i~bT ·~qT Bi

(
xa,~bT , µ,

ζa
ν2

)
Bj

(
xb,~bT , µ,

ζb
ν2

)
Sij(bT , µ, ν)

×
[
1 +O

(
q2
T

Q2
,
Λ2

QCD

Q2

)]
(2.1a)

=
∑
i,j

Hij(Q,µ)

∫
d2~bT e

i~bT ·~qT fTMD
i (xa,~bT , µ, ζa) f

TMD
j (xb,~bT , µ, ζb)

×
[
1 +O

(
q2
T

Q2
,
Λ2

QCD

Q2

)]
. (2.1b)

– 5 –
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The factorized cross section receives power corrections in q2
T /Q

2 and Λ2
QCD/Q

2, and

first studies of their perturbative and nonperturbative structure have been performed in

refs. [117–119]. Importantly, eq. (2.1) remains valid for nonperturbative qT ∼ ΛQCD. The

factorization is most elegantly written in impact parameter space, with ~bT being Fourier

conjugate to the measured transverse momentum ~qT . In eq. (2.1) i, j are parton indices

for quark flavors or gluons,2 which we suppress, and Hij is the hard function containing

virtual corrections to the underlying hard process ab → F . The xa,b are the fractions of

the proton momenta carried by the partons i and j participating in the hard collision, so

xa = QeY /Ecm and xb = Qe−Y /Ecm where Ecm is the center of mass energy of the pp

collision. Finally, ζa and ζb are related to the momenta of the struck partons and given by

ζa = (xaP
−
a )2e−2yn , ζb = (xbP

+
b )2e2yn , ζaζb = Q4 . (2.2)

Here Pµa = P−a
nµ

2 +
m2
P

P−a

n̄µ

2 and Pµb = P+
b
n̄µ

2 +
m2
P

P+
b

nµ

2 are the momenta of the protons, such

that P−a P
+
b = E2

cm, and yn is a parameter that encodes scheme dependence. Note that

whenever possible we neglect target mass corrections from m2
P � Q2 < E2

cm.

The small transverse momentum qT � Q of the final state is generated from soft and

collinear radiation off the incoming protons. In eq. (2.1a), the collinear and soft radiation

are described separately. Bi and Bj are collinear proton matrix elements that measure the

transverse momentum originating from energetic radiation close to the n- and n̄-collinear

protons, and to distinguish them from the final TMDPDF we will follow the language of

ref. [120] and refer to Bi and Bj as beam functions. The soft function Si ≡ Sij is a vacuum

matrix element that encodes soft exchange between the incoming partons. It only differs

for gluons, Sg ≡ Sgg, and quarks, Sq ≡ Sqq̄, but is independent of the light quark flavor.

Si tracks the direction of both incoming partons, and hence depends on both light-cone

directions n and n̄.

The different ingredients in eq. (2.1) depend on both the renormalization scale µ and

an additional rapidity renormalization scale ν.3 The latter scale arises because the matrix

elements not only suffer from UV divergences, but also from so-called rapidity divergences

that require a dedicated regulator [94, 109, 112, 115, 121–124], and we will discuss their

physical origin in more detail in section 2.2. Crucially, the regularization of these diver-

gences requires an explicit rapidity regulator, which we generically denote as τ . One can

distinguish two classes of schemes by whether introducing the rapidity regulator affects the

hard function Hij or not. The hard function describes virtual corrections to the underlying

Born process and thus carries the full process dependence (the TMDPDFs are only sensi-

tive to the hard initial state, namely qq̄ or gg), so it is simplest to consider regulators that

do not affect Hij . In the following, we will only consider such regulators, and fix the hard

function to be in the MS scheme, which then immediately fixes the scheme for the product

of the TMDPDFs. This applies to most modern regulators, but not to the formulations of

refs. [94, 121, 125] where Hij and fTMD
i depend on an additional parameter ρ.

2For gluon-induced processes, H and B also carry helicity indices even for unpolarized TMDPDFs.
3Some regulators and schemes have two distinct scales νn, νn̄ where νn appears in the n-collinear beam

function Bi, νn̄ appears in the n̄-collinear beam function Bj , and both scales appear in Sij . We suppress

this possibility in our review.

– 6 –
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For schemes considered here we can generically define UV and rapidity-renormalized

beam and soft functions as

Bi(x,~bT , µ, ζ/ν
2) = lim

ε→0
τ→0

ZiB(bT , µ, ν, ε, τ, xP
−)Bi(x,~bT , ε, τ, xP

−)

= lim
ε→0
τ→0

ZiB(bT , µ, ν, ε, τ, xP
−)
B

(unsub)
i (x,~bT , ε, τ, xP

−)

S0
i (bT , ε, τ)

, (2.3)

Si(bT , µ, ν) = lim
ε→0
τ→0

ZiS(bT , µ, ν, ε, τ )Si(bT , ε, τ) . (2.4)

Note that for simplicity we use the same notation for bare and renormalized soft functions

Si, since it will always be clear from the arguments or context which one we are discussing.

For the soft function, this is straightforward. For the beam function, we note that the

renormalized beam function depends on ζ ∝ (xP−)2, where the proportionality is scheme-

dependent, i.e. depends on the precise definition of τ . Secondly, we note that Bi is defined

to only describe collinear radiation. In practical calculations, one often encounters an

overlap with the soft function when the collinear radiation becomes soft. To avoid double

counting with the soft function, one has to subtract out this overlap from the unsubtracted

beam function B
(unsub)
i , and the subtraction factor is denoted as S0

i in eq. (2.3). (In SCET,

this is referred to as soft zero-bin subtraction [126].) Since S0
i describes soft physics, it

cannot depend on the large momentum xP−. As indicated by the notation for S0
i (bT , ε, τ),

this factor is often equivalent or closely related to the soft function Si(bT , ε, τ) itself, but

this is not always the case. In particular, one can find rapidity renormalization schemes

which (a) have no zero-bin subtraction, S0
i = 1 [115], (b) where the zero-bin is equal to the

soft function, S0
i = Si [112, 127], and (c) where the subtraction is given by a combination

of soft functions in different non-lightlike directions [100].

In practice, one often combines the beam and soft functions to yield two separate

TMDPDFs fTMD
i and fTMD

j , as used in the factorized cross section in eq. (2.1b). This can

be achieved either by combining the renormalized beam and soft functions,

fTMD
i (x,~bT , µ, ζ) = Bi

(
x,~bT , µ, ζ/ν

2
)√

Si(bT , µ, ν) , (2.5)

or by combining the bare functions and performing the UV renormalization afterwards,

fTMD
i (x,~bT , µ, ζ) = lim

ε→0
τ→0

Ziuv(µ, ζ, ε)B
(unsub)
i

(
x,~bT , ε, τ, xP

−)√Si(bT , ε, τ)

S0
i (bT , ε, τ)

≡ lim
ε→0
τ→0

Ziuv(µ, ζ, ε)B
(unsub)
i

(
x,~bT , ε, τ, xP

−)∆i
S(bT , ε, τ) . (2.6)

In eq. (2.5), the rapidity renormalization scale ν cancels between Bi and Si, leaving only a

dependence on ζ in the TMDPDF. Likewise, in eq. (2.6) the dependence on the regulator

τ cancels between Bi and Si. Note that eq. (2.6) has been written in terms of the unsub-

tracted beam function B
(unsub)
i , as is common in the literature, and for ease of notation

we have combined the zero-bin subtraction S0
i and the soft function Si to define the soft

– 7 –
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factor ∆i
S =

√
Si/S0

i . The UV renormalization factor Zuv in eq. (2.6) is trivially related

to those of Bi and Si in eqs. (2.3) and (2.4),

Zuv(µ, ζ, ε) = ZB(bT , µ, ν, ε, τ, xP
−)
√
ZS(bT , µ, ν, ε, τ ) . (2.7)

As before, the ζ scale arises as a rapidity-regulator dependent function with the general

form ζ ∝ (xP−)2.

The need to regulate (and renormalize) the rapidity divergences in the beam and soft

functions has led to several different definitions in the literature. The original derivation by

Collins and Soper used a non-lightlike axial gauge [94, 121]. Since the same non-lightlike

axial gauge has to be used in the calculation of the hard function, this regulator does not

fall in the class of rapidity regulators considered here.4 In ref. [125] rapidity divergences

are regulated by taking Wilson lines off the light cone. Since the same Wilson lines enter

the hard factor, this again falls outside the class of regulators we consider, as is explicitly

visible by a dependence of their hard function and TMDPDFs on an extra parameter ρ.

This is distinct from Collin’s new regulator [100] where again Wilson lines are taken off

the lightcone, but the lightlike limit is taken such that the hard function is independent

of the regulator. The regulators used in the SCET-based approaches are the analytic

regulator acting on eikonal propagators [128–130], the η-regulator inserted into Wilson

lines on the light-cone [115, 124], the δ-regulator which adds mass-like terms to eikonal

propagators [112, 131], and the exponential regulator inserted into the phase space [127].

The definition of the TMDPDF in terms of bare beam and soft functions, eq. (2.6), is

used in refs. [100, 112, 113, 125], where renormalized beam and soft functions were not

defined. Both the bare and renormalized forms can be used in refs. [115, 127]. In the

analytic regulator approach of refs. [109, 111], the soft function vanishes and hence one can

only define a product of rapidity-finite TMDPDFs, not individual TMDPDFs. We provide

a more detailed discussion of these regulators in appendix B, including explicit one-loop

results for the quark beam function illustrating the combination of beam and soft functions

into the TMDPDF.

In this work, we focus for simplicity only on the quark TMDPDF. For a hadron h

moving along the n direction with momentum P , the bare beam and soft function are

defined as

Bq(x,~bT , ε, τ, xP
−) =

∫
db+

4π
e−i 1

2
b+(xP−)

〈
h(P )

∣∣∣∣[q̄(bµ)W (bµ)
γ−

2
WT

(
−∞n̄;~bT ,~0T

)
×W †(0)q(0)

]
τ

∣∣∣∣h(P )

〉
, (2.8)

Sq(bT , ε, τ) =
1

Nc

〈
0
∣∣Tr
[
S†n(~bT )Sn̄(~bT )ST (−∞n̄;~bT ,~0T )

× S†n̄(~0T )Sn(~0T )S†T
(
−∞n;~bT ,~0T

)]
τ

∣∣0〉 . (2.9)

where bµ = b+n̄µ/2 + bµT . Here the bracket [· · · ]τ denotes that the operator inside is

considered by implementing the rapidity regulator τ . For the matrix element in eq. (2.8),

4Note that in their original work, the hard function was absorbed in the TMDPDFs. The separation

into process-dependent form factors and process-independent TMDPDFs was first noted in ref. [102].
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we note that diagrams that have no fields contracted with the states |h(P )〉 are excluded.

For clarity, we denote the Wilson lines in the n-collinear and soft matrix elements by W

and SX , respectively, and both are defined by path-ordered exponentials. One needs both

lines of infinite length along the light-cone,

W (xµ) = P exp

[
−ig

∫ 0

−∞
ds n̄ · A(xµ + sn̄µ)

]
,

Sn(xµ) = P exp

[
−ig

∫ 0

−∞
ds n · A(xµ + snµ)

]
, (2.10)

as well as finite-length gauge links with transverse paths,

WT (xµ;~bT ,~0T ) = P exp

[
ig

∫ ~bT

~0T

d~sT · ~AT (xµ + sµT )

]
= ST (xµ;~bT ,~0T ) . (2.11)

The Wilson paths for matrix elements in eqs. (2.8) and (2.9) are shown in the (b+, b−,~bT )

plane in figure 1. Note that the transverse gauge links at light-cone infinity create a

closed path for the soft function, and a connected path between quark fields for the beam

function, thus yielding matrix elements that are gauge invariant for both Bq and Sq. In

nonsingular gauges such as Feynman gauge where the gluon field strength vanishes at

infinity, the transverse gauge links can often be neglected, but are known to be important

in certain singular gauges, see e.g. refs. [132–135]. These gauge links are also important

for constructing the analogues of eqs. (2.8) and (2.9) on a finite-size lattice.

Note that the inclusion of a rapidity regulator can in principle spoil the gauge invariance

of the matrix elements in eqs. (2.8) and (2.9). Gauge invariance trivially holds for regulators

only affecting the Wilson line paths, as for example Collins’ regulator [100], the exponential

regulator [136], or the finite-length Wilson lines to be introduced in section 3 for lattice

calculations. Gauge invariance has been explicitly shown to hold in the τ → 0 limit for the

η regulator [115], the analytic phase space regulator of ref. [130], while it is known to be

violated in for TMDs with the analytic regulator used in ref. [109]. Gauge invariance is also

known to be more tricky for the ∆ regulator, where the limit ∆ → 0 is also required [137,

138], and individual beam function matrix elements may only be gauge invariant after

including 0-bin subtractions [131].

Lastly, note that extracting TMDPDFs from lattice QCD (or experiment) is only

necessary for nonperturbative qT ∼ b−1
T ∼ ΛQCD. For perturbative values, one can instead

perform an operator-product expansions to match the TMDPDF, or equivalently the beam

function, onto the collinear PDF [96, 139],

fTMD
i (x,~bT , µ, ζ) =

∑
j

∫ 1

x

dy

y
Cij

(
x

y
,~bT , µ, ζ

)
fj(y, µ) +O(bTΛQCD) . (2.12)

Here, Cij are perturbative matching kernels that are known to NNLO [138, 140–144], and

even to N3LO for the soft contribution [136]. The nonperturbative input is given solely by

the standard longitudinal PDFs. Throughout this work, we will limit our discussion to the

case bT ∼ Λ−1
QCD, where eq. (2.12) cannot be applied.

– 9 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
7

b⊥

t
z

q

q

b+

(a)

b⊥

t
z

(b)

Figure 1. Graphs of the Wilson line structure of the n-collinear beam function Bq (a) and the

soft function Sq (b), defined in eqs. (2.8) and (2.9). The Wilson lines (solid) extend to infinity in

the directions indicated. Adapted from ref. [127].

2.2 Rapidity divergences in TMDs

Quantum corrections to the beam and soft function defined in eqs. (2.8) and (2.9) lead

to two types of divergences: ordinary UV and IR divergences that can be regulated using

dimensional regularization (and if desired a different IR regulator), and so-called rapid-

ity divergences requiring a dedicated regulator [94, 109, 112, 115, 122–124, 126]. Rapidity

divergences arise because n- and n̄-collinear beam functions and the soft function, or equiv-

alently the collinear and soft Wilson lines, are defined to describe modes with momenta

scaling as

Bn : pn ∼ Q(λ2, 1, λ) so that p−n � pn⊥ ∼ qT � p+n ,

Bn̄ : pn̄ ∼ Q(1, λ2, λ) so that p+n̄ � pn̄⊥ ∼ qT � p−n̄ ,

S : ps ∼ Q(λ, λ, λ) so that p−s ∼ ps⊥ ∼ qT ∼ p+s , (2.13)

where we follow the usual SCET conventions, and use the light-cone notation p =

(p+, p−, pT ), see appendix A, and λ ∼ qT /Q � 1. These modes indicate approxima-

tions that are used to derive the corresponding operators and their Feynman rules. This is

illustrated in figure 2, where the orange dots denote the dominant region for the n- and n̄-

collinear modes, and the green dots denotes that for the soft modes. Hard modes mediating

the underlying hard process are shown in blue. Although these dots indicate the dominant

momentum region, in matrix elements the corresponding fields are still integrated over all

momenta. Since collinear and soft momenta have the same virtuality

p2n ∼ p2n̄ ∼ p2s ∼ q2T , (2.14)

which in figure 2 is shown by lying on the same hyperbola, the soft and collinear momentum

regions are only distinguished by their rapidity y = 1/2 ln(k−/k+). In calculations using

regulators such as dimensional regularization, which only regulate virtualities, one can
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Qλ2

Qλ

Q

Qλ2 Qλ Q

p2 = Q2

p2 = q2
T

p+

p−

Figure 2. Illustration of the collinear (orange) and soft (green) modes contribution to the ~qT
measurement. The hard modes (blue) describe offshell modes producing the energetic final state.

The dashed lines indicate that the degeneracy in p+p− has to be resolved to properly define separate

collinear and soft functions.

therefore encounter additional rapidity divergences which arise in soft and collinear matrix

elements when integrating over all y, and have to be resolved using a dedicated regulator.

This is indicated schematically by the dashed lines in figure 2 that split the hyperbola.

These divergences can also be understood as a conformal mapping from UV divergences in

soft multi-parton scatterings [145, 146],

To give a concrete example of how rapidity divergences appear in perturbative calcu-

lations, consider the following integral that appears in calculations of the soft factor,

Idiv =

∫
dk+dk−

f(k+k−)

(k+k−)1+ε
=

1

2

∫
d(k−/k+)

k−/k+

∫
d(k+k−)

f(k+k−)

(k+k−)1+ε
. (2.15)

Here the integrand only depends on the product k+k−. Singularities as k+k− → 0 or

k+k− →∞ are clearly regulated by dimensional regularization, while the integration over

k−/k+ is unconstrained, leading to a divergence that requires a separate regulator. Since

k−/k+ = e2y is directly related to the rapidity y of k, these are often referred to as

rapidity divergences that require an additional rapidity regulator. Alternatively, these are

sometimes referred to as light-cone divergences, as they can also be avoided by displacing

the light-cone propagators 1/k+ and 1/k− away from the light-cone.

To render the beam and soft functions well defined, integrals such as eq. (2.15) require

an additional regulator. A large variety of regulators has been suggested in the literature,

see refs. [94, 100, 112, 115, 119, 124, 125, 127–131]. The key idea in all rapidity regulators is

to regulate the behavior as y = 1/2 ln(k−/k+) → ±∞, which in the example of eq. (2.15)

amounts to lifting the dependence on k+k− only. For example, in the η regulator of

refs. [115, 124] one regulates the integral eq. (2.15) by inserting a factor |2kz/ν|−η, such that

Idiv =

∫
dk+dk−

f(k+k−)

(k+k−)1+ε
→
∫

dk+dk−
f(k+k−)

(k+k−)1+ε

∣∣∣∣k− − k+

ν

∣∣∣∣−η . (2.16)
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Divergences as k−/k+ → 0 or k−/k+ →∞ are thus made manifest as poles in η. Similar to

dimensional regularization, one introduces a new dimensionful scale ν to keep the regulator

scaleless, and a parameter η to be taken to zero at the end of the calculation, analogous to

the limit ε → 0. In this way, renormalized beam and soft functions acquire an additional

scale dependence, namely ν, or equivalently the bare functions entering eq. (2.6) depend on

η. The chosen rapidity regulator determines the precise form of this dependence on ν and

η, respectively. As discussed, this dependence cancels in the combination fTMD
i = Bi

√
Si,

but the cancellation leaves a residual dependence on the scale ζ. Intuitively, the definitions

of ζa and ζb in eq. (2.2) reflects how the hyperbola in figure 2 is split between soft and

collinear modes, see e.g. ref. [113] for more details.

2.3 Evolution of TMDPDFs

The cross section in eq. (2.1) must be independent of the unphysical scale µ and of the

precise choice of ζa and ζb as long as ζaζb = Q4. This induces renormalization group equa-

tions (RGEs) that encode the dependence of hard, beam and soft functions, or equivalently

hard functions and TMDPDF, on these scales. Here, we only discuss the RGEs for the

TMDPDF, which is the object of interest in this work. Details on the separate evolution

of beam and soft functions can be found e.g. in refs. [115, 147] and in appendix B.3. The

RGEs for fTMD
i read

µ
d

dµ
fTMD
i (x,~bT , µ, ζ) = γiµ(µ, ζ)fTMD

i (x,~bT , µ, ζ) ,

ζ
d

dζ
fTMD
i (x,~bT , µ, ζ) =

1

2
γiζ(µ, bT )fTMD

i (x,~bT , µ, ζ) ,

µ
d

dµ
γiζ(µ, bT ) = 2ζ

d

dζ
γiµ(µ, ζ) = −2Γicusp[αs(µ)] , (2.17)

where Γicusp[αs] is the cusp anomalous dimension. The second equation in eq. (2.17) is

known as the Collins-Soper equation [94, 95]. The subscripts µ and ζ on the anomalous

dimensions γiµ and γiζ denote the scale evolution they govern, and the superscript i = q, g

distinguishes quarks from gluons. These anomalous dimensions are defined as

γiµ(µ, ζ) =
d ln fTMD

i

d lnµ
=

d lnBi
d lnµ

+
1

2

d lnSi

d lnµ
,

γiζ(µ, bT ) = 2
d ln fTMD

i

d ln ζ
= −d lnBi

d ln ν
=

1

2

d lnSi

d ln ν
. (2.18)

Here, we used that the ν-dependence in fTMD = B
√
S cancels and that B only depends

on the combination ν2/ζ, and thus γiζ can be equivalently obtained from either fTMD or B

or S. Since the definition of S, eq. (2.9), is independent of the hadron state entering the

TMDPDF and the light quark flavor, this immediately implies that γiζ is independent of

the choice of hadron state and light quark flavor as well.
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The all-order forms of the anomalous dimensions are given by

γiµ(µ, ζ) = Γicusp[αs(µ)] ln
µ2

ζ
+ γiµ[αs(µ)] ,

γiζ(µ, bT ) = −2

∫ µ

1/bT

dµ′

µ′
Γicusp[αs(µ

′)] + γiζ [αs(1/bT )] , (2.19)

where γi[αs] denotes the noncusp piece.

Note that γiζ(µ, bT ) has an intrinsically nonperturbative component for bT ∼ Λ−1
QCD,

independently of the scale µ, as is clear from eq. (2.19). However, once it has been non-

perturbatively determined at a scale µ0 � ΛQCD, it can be perturbatively evolved to any

other scale µ� ΛQCD using

γiζ(µ, bT ) = γiζ(µ0, bT )− 2

∫ µ

µ0

dµ′

µ′
Γicusp[αs(µ

′)] . (2.20)

The boundary term γiζ(µ0, bT ) is known to three loops for perturbative bT and µ0 [127,

136, 145].

Combining the solutions to eq. (2.17), the TMDPDF can be evolved from arbitrary

initial scales (µ0, ζ0) to the desired final scales (µ, ζ) through

fTMD
i (x,~bT , µ, ζ) = fTMD

i (x,~bT , µ0, ζ0) exp

[∫ µ

µ0

dµ′

µ′
γiµ(µ′, ζ0)

]
exp

[
1

2
γiζ(µ, bT ) ln

ζ

ζ0

]
.

(2.21)

Here, we have chosen to first evolve ζ0 → ζ at fixed µ0, and then µ0 → µ. Since the evolution

must be path independent, other choices are also possible, see also refs. [115, 148] for a

discussion of this path independence. Also note that due to the bT dependence of γζ , the

TMD evolution is severely more complicated in momentum (~qT ) space [147], which is part

of the reason why the factorization is commonly written in ~bT space.

Eq. (2.21) is crucial to relate the TMDPDF at reference scales (µ0, ζ0), where they are

either measured or determined from lattice QCD, to the phenomenological scales (µ, ζ).

The boundary term fTMD
i (x,~bT , µ0, ζ0) in eq. (2.21) is by definition nonperturbative.

For perturbative bT � Λ−1
QCD, one can can match it onto the collinear PDF, see eq. (2.12),

thereby reducing all the nonperturbative input to these more well-studied PDFs. In this

case, the RG-evolved TMDPDF eq. (2.21) serves to resum large logarithms ln(µbT ) and

ln(ζb2T ), which otherwise spoil the perturbative convergence of the matching kernel Cij in

eq. (2.12).

In this paper, we are instead interested in obtaining nonperturbative TMDPDFs valid

also for the case bT ∼ Λ−1
QCD, where the boundary term fTMD

i (x,~bT , µ0, ζ0) in eq. (2.21) is

obtained from lattice QCD (or equivalently is measured from experiment). In this case,

the values µ0 and ζ0 are fixed by the lattice calculation (or measurement), and the role of

eq. (2.21) is to evolve fTMD
i (x,~bT , µ0, ζ0) to the scales (µ, ζ) required in the phenomeno-

logical application. This is completely analogous to the determination of collinear PDFs,

which are extracted at a reference scale µ0 and then evolved via the DGLAP evolution.
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Similar to the DGLAP evolution, the µ evolution of the TMDPDF encoded in the first ex-

ponential in eq. (2.21) is perturbative as long as µ0 and µ are perturbative. In contrast, the

ζ evolution intrinsically contains a nonperturbative component γiζ(µ, bT ) for bT ∼ Λ−1
QCD,

even if the TMDPDF is extracted at perturbative (µ0, ζ0). Thus one needs to determine

both fTMD
i (x,~bT , µ0, ζ0) and γζ(µ, bT ) nonperturbatively. In particular, the nonpertur-

bative determination of γζ(µ, bT ) is a phenomenologically relevant task on its own, as it

provides valuable information on its all-order structure. For example, it is known to suffer

from renormalons at large bT [149]. A dedicated discussion of the extraction of γζ(µ, bT )

from lattice QCD, exploiting some of the results discussed in this paper, has been given in

ref. [150].

3 Towards constructing quasi-TMDPDFs

The goal of this work is to define a quasi-TMDPDF f̃TMD which involves matrix elements

that are calculable with lattice QCD, and which can be matched onto the TMDPDF

fTMD that is relevant for collider phenomenology. As reviewed in section 2, TMDPDFs

are constructed from hadronic and vacuum matrix elements, namely the beam function

Bi and the soft function Si. Both of these functions are sensitive to infrared physics for

bT ∼ Λ−1
QCD. According to the LaMET approach, to calculate the TMDPDF in lattice QCD

we need to construct quasi observables with the same infrared physics, which we refer to

as a “quasi beam function” B̃i and “quasi soft function” S̃i.

In general both beam and soft functions can be rapidity divergent. On the lattice, we

will see that the analog of rapidity divergences are regulated by a finite length L of the

Wilson lines, while in the lightlike case many regulators have been suggested (see section 2

and appendix B for more details).

In principle, one could envision separately matching the quasi beam and quasi soft

functions onto the lightlike beam and lightlike soft functions, and then combining the

matched results into the physical TMDPDF. However, such individual matching results

necessarily depend on the choice of rapidity regulators, and furthermore since these reg-

ulators break boost invariance, some of them will likely spoil the boost relation between

quasi and lightlike functions. For the physical TMDPDF the choice of the rapidity regu-

lator has a significant impact on the form of the beam and soft functions, including their

infrared logarithms, so at minimum the individual matching would have to be worked out

separately for different schemes. Finally, due to the fact that L plays the role of a rapidity

regulator for quasi distributions on the lattice, there could be non-trivial L dependence

in intermediate stages of the matching result. For these reasons taking an approach of

individually matching beam and soft functions is not preferred.

As discussed in section 2.1, it is equivalent to instead combine the unrenormalized

beam and soft functions, in which case the rapidity divergences cancel, and then perform

the UV renormalization. This should hold for the quasi functions as well. Hence the more

straightforward approach, adopted here, is to combine the unrenormalized quasi beam and

quasi soft functions into a quasi-TMDPDF, in analogy to eq. (2.6). This approach also has

the advantage of canceling out all L dependence in the quasi-TMDPDF calculation, up

– 14 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
7

to power suppressed terms. Of course, if the resulting quasi-TMDPDF fails the infrared

consistency test, by not yielding infrared logarithms that are consistent with those in the

TMDPDF, then, as we will see, it will still be advantageous to examine the contributing

quasi beam and quasi soft functions to determine where the issues lie.

An additional complication in the lattice computation is the appearance of power law

divergences from Wilson line self energies that have to be subtracted. Since the self energies

are also proportional to the length of the Wilson lines, and L dependence cancels when

combining B̃i and S̃i, this gives a bz-dependent contribution to be removed by the UV

renormalization. Here bz is the Fourier transform variable to xP z. Since this contribution

is multiplicative in bz position space, it is most natural to perform the UV renormalization

in position space. We thus define the quasi-TMDPDF in the MS scheme analogous to

eq. (2.6) as

f̃TMD
i (x,~bT , µ, P

z) =

∫
dbz

2π
eibz(xP z) Z̃ ′i(b

z, µ, µ̃)Z̃iuv(bz, µ̃, a)

× B̃i(bz,~bT , a, L, P z)∆̃i
S(bT , a, L) . (3.1)

Here, B̃i ≡ B̃(unsub)
i and ∆̃i

S are the quasi beam and quasi soft function, which remain to be

constructed. They are the analogs of the unsubtracted beam function and the soft factor

in eq. (2.6). We will always consider the unsubtracted beam function and absorb the zero-

bin subtraction factor into ∆̃i
S , so for simplicity we drop the superscript “(unsub)”. Z̃uv

is the lattice renormalization constant, and Z̃ ′ converts from the lattice renormalization

scheme to the MS scheme. These schemes are typically distinct, and hence we distinguish

the lattice renormalization scale µ̃ from the MS scale µ. The finite lattice spacing a takes

the role of ε as an UV regulator. On the lattice, one also has to truncate the Wilson lines

that enter B̃i and ∆̃i
S at a finite length L. As we will discuss in section 3.2, having a

finite L regulates the analog of rapidity divergences on lattice and thus the τ dependence

is replaced by additional dependence on L. The L dependence associated with both the

rapidity regularization and finite length of Wilson lines cancels between B̃i and ∆̃i
S , and

hence f̃TMD
i does not depend on L. (In practice, there will be a finite L dependence from

power corrections that vanishes in the limit L→∞, and we suppress these in our notation.)

Finally, f̃TMD
i also depends on the proton momentum P z, which encodes short distance

ultraviolet effects like in the quasi-PDF, and in addition acts as the analog of its ζ scale.

3.1 Constraints on the matching relation

The main focus of this paper is to give constructions of B̃i and ∆̃i
S such that f̃TMD

i can

be perturbatively matched onto the TMDPDF fTMD
i . In this section we assume such a

perturbative matching exists in order to constrain the general form it has to take.

Given the physical scales present in the calculation, the matching relation is expected

to take the schematic form

f̃TMD
i (x,~bT , µ, P

z) ∼
∑
j

∫ 1

−1

dy

|y| C
TMD
ij

(
x, y, µ, P z, ζ

)
fTMD
j (y,~bT , µ, ζ)

+O
(
bT
L
,

1

bTP z
,

1

P zL

)
, (3.2)
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where i, j = q, g are the parton flavors and fTMD
j for negative y corresponds to the antiquark

distribution, fTMD
j (−y, . . .) = fTMD

j̄
(y, . . .). The precise dependence of the matching kernel

CTMD
ij on its arguments is not obvious a priori, see for example eq. (1.5) for the exact form

for collinear PDFs. In eq. (3.2) we have kept things generic and allowed for dependence

on x and y to match the parton momenta. Since we have already converted the quasi-

TMDPDF in eq. (3.1) into the MS scheme, CTMD
ij only depends on the MS scale µ and

not on the lattice renormalization scale µ̃. The kernel also depends on the finite proton

momentum P z and the ζ scale that enters the TMDPDF fTMD
j .

Given the physical picture underlying LaMET, we can also write down the expected

power corrections to the matching eq. (3.2), obtained from the assumed hierarchy of scales

bz ∼ 1

P z
� bT � L , bT ∼ Λ−1

QCD . (3.3)

This scaling is motivated as follows: first, the lattice box size should be large enough so

that the Wilson line length L is the largest length scale and finite L effects and finite

volume effects are suppressed. Second, we assume bT ∼ Λ−1
QCD to be a nonperturbative

scale of the order of the characteristic size of transverse fluctuations of constituents in the

hadron. Lastly, LaMET assumes large P z to approximate a lightlike correlator by boosting

an equal-time correlator, so 1/P z should be the smallest length scale in the system other

than the lattice spacing a. Since for power counting we take x as O(1) this also implies

that bz ∼ 1/P z is small.

Note that for a matching formula like eq. (3.2) to exist, CTMD
ij must not depend on

bT , since bT encodes infrared physics and is assumed to be a nonperturbative scale. This

immediately implies the necessary condition that in perturbation theory, the bT dependence

of both quasi-TMDPDF and TMDPDF must agree, up to power corrections, which will be

our most stringent consistency test in the one-loop study in section 4.

We can deduce further constraints on the matching relation from the Collins-Soper

equation, and thus arrive at an improved schematic form for the matching relation. To

do so we assume that ζ and xP z are independent variables, which could be achieved for

example by considering a different hadronic momentum P̃ z for the quasi-TMDPDF than

the momentum P z used for the TMDPDF. In eq. (3.2), the ζ dependence must then

cancel between CTMD
ij and fTMD

j to yield a ζ-independent quasi-TMDPDF f̃TMD
i , which

implies that

ζ
d

dζ
lnCTMD

ij

(
x, y, µ, P̃ z, ζ

) ?
= −ζ d

dζ
ln fTMD

j (y,~bT , µ, ζ) = −1

2
γjζ(µ, bT ) . (3.4)

This clearly violates the requirement that CTMD
ij must be independent of bT to carry out

short distance matching. This mismatch occurs because the rapidity evolution governed

by γjζ(µ, bT ) is also nonperturbative. To correct for this we therefore must consider the

modified matching relation

f̃TMD
i (x,~bT , µ, P̃

z) ∼
∑
j

∫ 1

−1

dy

|y| C
TMD
ij

[
x, y, µ, P̃ z, ζ̃(x, P̃ z)

]
exp

[
1

2
γjζ(µ, bT ) ln

ζ̃(x, P̃ z)

ζ

]
× fTMD

j (y,~bT , µ, ζ) , (3.5)
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where for brevity we suppress the power corrections which are the same as in eq. (3.2). In

eq. (3.5), the ζ dependence cancels between the exponential and fTMD, at the cost that

the kernel CTMD
ij now depends on the auxiliary scale ζ̃ = ζ̃(x, P̃ z). As indicated, this scale

must be fixed in terms of x and P̃ z, the relevant scales that f̃TMD depends on, and hence

does not technically add additional functional dependence to CTMD
ij .

In order to interpret eq. (3.5) as a true matching equation without any renormalization

group evolution, it must be possible to make the exponential in eq. (3.5) vanish, to yield a

purely perturbative relation between f̃TMD and fTMD. Thus, a perturbative matching can

only be possible if one can choose ζ̃(x, P̃ z) = ζ to cancel the Collins-Soper evolution to all

orders in perturbation theory. From eq. (2.2) for fTMD
j (y,~bT , µ, ζ) we have ζ = (2yP z)2

(choosing yn = 0 without loss of generality). Accounting for dimensions we see that we must

choose P̃ z ∝ P z, and since at tree level CTMD
ij [x, y, . . .] = δ(1−x/y) this fixes the constant

of proportionality so that ζ̃ = (2xP z)2. With ζ ∝ y2 and ζ̃ = ζ̃(x), the only possibility that

allows for perturbative matching is to take P̃ z = P z and have CTMD
ij [x, y, . . .] ∝ δ(1−x/y)

to all orders. (We will confirm this explicitly at one loop in section 4 below.) With this

constraint the schematic relationship between quasi-TMDPDF and TMDPDF becomes

multiplicative in x space,

f̃TMD
i (x,~bT , µ, P̃

z) =
∑
j

CTMD
ij

[
x, µ, P̃ z, ζ̃(x, P̃ z)

]
exp

[
1

2
γjζ(µ, bT ) ln

ζ̃(x, P̃ z)

ζ

]
× fTMD

j (x,~bT , µ, ζ)

+O
(
bT
L
,

1

bTP z
,

1

P zL

)
. (3.6)

To derive a perturbative formula for CTMD
ij then requires choosing P̃ z = P z and ζ =

ζ̃ = (2xP z)2. For this choice the effect of changing ζ in fTMD
j is exactly balanced by a

corresponding change of P z in f̃TMD
i . Note that the lack of an integral over y in eq. (3.6) is

analogous to the fact that no such integral appears in the renormalization group equations

for the TMDPDF, see eq. (2.17).

We will demonstrate that a quasi-TMDPDF can be defined such that the use of eq. (3.6)

and matching with a short distance CTMD
qq is fully satisfied at one loop for quark quasi-

TMDPDF and TMDPDFs. However this is not automatic, and indeed we find that the most

naive definition of a quasi-TMDPDF does not agree with eq. (3.6). An all orders derivation

of a formula like eq. (3.6) would be required to completely address this relationship, and

is left for future work.

3.2 Impact of finite-length Wilson lines

Before constructing quasi beam and soft functions, we discuss the impact of having

infinitely-long Wilson lines in the definitions eqs. (2.8) and (2.9) of the lightlike beam

and soft functions. On the lattice, the finite lattice size prevents infinitely-long Wilson

lines. Hence one has to truncate them at some finite length L, as illustrated in figure 3.

Here, it is important to include transverse gauge links as required by the factorization

theorem, which ensures gauge invariance of the soft and collinear matrix elements.
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b⊥

t
z

q

q

b+

L

(a)

b⊥

t
z

L

(b)

Figure 3. Illustration of the Wilson line structure of the n-collinear beam function B (a) and the

soft function S (b), with Wilson lines truncated at some finite length L. The corresponding Wilson

line paths with infinite-long Wilson lines is shown in figure 1.

Naively, one might assume that any effect of L is suppressed as bT /L or b+/L for

sufficiently large L. In practice, the finite L also regulates the analog of rapidity divergences

on the lattice, and hence yields divergences as L → ∞. While this has the advantage of not

having to implement a dedicated rapidity regulator in the lattice calculation, the drawback

is that one cannot easily disentangle finite-L effects from rapidity divergences.

To show that finite L is a sufficient rapidity regulator, we first note that at leading

power in q2T /Q
2, all emissions arise from Wilson lines and thus rapidity divergences can

be regulated by modifying Wilson lines alone, as is done in most regulators in the liter-

ature. (This does not hold at subleading power, where regulating Wilson lines alone is

insufficient, see [119].) Intuitively, by modifying the Wilson lines in such a way that boost

invariance is broken, for example by adjusting its geometry (taking it off the light cone or

restricting its length) or explicitly regulating the momentum flowing into the Wilson line,

one distinguishes collinear and soft modes and thus regulates the rapidity divergences. To

concretely show how this is achieved for finite L, consider the one-gluon Feynman rule for

a Wilson line of size L stretching along the n direction, compared to its L → ∞ limit,

gst
anµ 1− ein·kL

n · k
L→∞−→ gst

anµ 1

n · k + i0
. (3.7)

For n·k → 0, the limit where the emission of momentum kµ becomes collinear to the Wilson

line, i.e. it approaches infinite rapidity, is clearly regulated by exponential phase, whereas

it is unregulated for L → ∞. This pattern continues for multiple gluon emission since the

eikonal denominators are always in one-to-one correspondence with the regulating factors

involving L in the numerator. The opposite limit is regulated analogously by an n̄-collinear

Wilson of finite length. For example, in section 2 a generic example of rapidity-divergent

integral was discussed, eq. (2.15). For finite L, the example integral changes to

Idiv =

∫
dk+dk−

f(k+k−)
(k+k−)1+ε

→
∫

dk+dk−
f(k+k−)
(k+k−)ε

1− eik
+L

k+
1− e−ik−L

k−
. (3.8)
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~bT
~0T

~bT−L n̄

~bT−Ln

−L n̄

−Ln

(a)

~bT
~0T

~bT−L n̄

~bT−Ln

−L n̄

−Ln

(b)

~bT
~0T

~bT−L n̄

~bT−Ln

−L n̄

−Ln

(c)

~bT
~0T

~bT−L n̄

~bT−Ln

−L n̄

−Ln

(d)

Figure 4. One loop diagrams for the TMD soft function with finite-length Wilson lines in Feynman

gauge, up to mirror diagrams. The labels indicate the Wilson line paths in position space.

Here we see that possible divergences as either k± → 0, corresponding to the rapidity

y = 1
2 ln(k−/k+) → ±∞, are regulated by having finite L, and the leftover logarithmic

divergence as either k± →∞ is taken care of by dimensional regularization.

In our construction of the quasi functions on lattice, we will replace the lightlike Wilson

lines by spacelike Wilson lines, which affects the eikonal propagator, so the analog of

eq. (3.8) is

Ĩdiv =

∫
dk0 dkz

f(k2
0 − k2

z)

(k2
0 − k2

z)
ε

1

k2
z

→
∫

dk0 dkz
f(k2

0 − k2
z)

(k2
0 − k2

z)
ε

1− eikzL

kz
1− e−ikzL

kz
. (3.9)

Clearly, the exponentials regulate a possible divergence as kz → 0, and thus play a similar

role as in the lightlike case. However, eq. (3.9) contains a quadratic dependence on kz in the

denominator, rather than the linear dependence on k+ and k− in eq. (3.8). Thus, we can

also encounter linear divergences in L, as opposed to having only logarithmic divergences

ln(L) in the lightlike case.

3.2.1 Example: lightlike soft function at NLO

To give a concrete example of the effect of finite L, we consider in detail the lightlike soft

function, defined in eq. (2.9), at one loop. To account for the effect of finite lattice size,

the Wilson lines along the n and n̄ directions are truncated at Ln and Ln̄, respectively,

and transverse gauge links are included, as shown in figure 3(b). In Feynman gauge, there

are four relevant diagrams, shown in figure 4, of which only (a) and (b) have rapidity

divergences, while (c) and (d) do not.

Rapidity-divergent diagrams. Let us first discuss figure 4(a), where a gluon connects

the Wilson lines separated by the transverse displacement ~bT . Together with its mirror

diagram, it is given by

Sa(bT , ε, L) = 2g2CF (n · n̄)µ2ε
0

∫
ddk

(2π)d
1− ein·kL

n · k
1− e−in̄·kL

−n̄ · k e−i~bT ·~kT −i

k2 + i0

= −g
2CFµ

2ε
0

(2π)2−2ε

∫ ∞
0

dk+

∫ ∞
0

dk−
J0

(
bT
√
k+k−

)
(k+k−)ε

1− eik+L

k+

1− e−ik−L

k−

=
αsCF

2π

[
ln2 b2T

4L2
+ 2Li2

(
− b2T

4L2

)
+
π2

3

]
. (3.10)
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In the second line, one can see how keeping L <∞ regulates divergences as the light-cone

coordinates k± approach zero, thereby regulating the whole integral. In the final result,

the rapidity divergences are then reflected as a double logarithm in bT /L.

The second rapidity-divergent diagram, figure 4(b) and its mirror diagram are inde-

pendent of bT , and are given by

Sb(bT , ε, L) =
αsCF

2π

[
− 2

ε2
− 2

ε
ln
µ2L2

e−2γE
− ln2 µ2L2

e−2γE
− π2

6

]
. (3.11)

Together, we obtain

Sa+b(bT , ε, L) =
αsCF

2π

[
− 2

ε2
− 2

(
1

ε
+ ln

b2Tµ
2

b20

)
ln
µ2L2

e−2γE
+ ln2 b

2
Tµ

2

b20
+
π2

6

+ 2Li2

(
− b2T

4L2

)
︸ ︷︷ ︸

L�bT−→ 0

]
, (3.12)

where we have defined b0 = 2e−γE . The rapidity logarithms ln(µL) are manifest, while the

last term is an example of a finite-L contribution that vanishes in the limit bT � L. Let

us also compare this to the soft function using the δ regulator [113] [see also eq. (B.27)]

S(1)
(
bT , ε,

√
δ+δ−

)
=
αsCF

2π

[
− 2

ε2
− 2

(
1

ε
+ ln

b2Tµ
2

b20

)
ln

µ2

δ+δ−
+ ln2 b

2
Tµ

2

b20
+
π2

6

]
. (3.13)

The two expression agree upon identifying 1/L2 = e2γEδ+δ−, showing that for this function

the two regulators are closely related.

Diagrams involving transverse gauge links. The Feynman rule for the transverse

gauge links at offsets nL and n̄L are given by

gst
anµ⊥

1− ei~bT ·~kT

~n⊥ · ~kT
ein·kL , gst

anµ⊥
1− ei~bT ·~kT

~n⊥ · ~kT
ein̄·kL , (3.14)

where, ~n⊥ = ~bT /|~bT |. In Feynman gauge, this vertex can thus be neglected for L → ∞,

and one would not consider figure 4(c). For finite L, we instead obtain for figure 4(c)

S(L)
c =

αsCF
2π

[
2bT
L

arctan
bT
2L
− 2 ln

(
1 +

b2T
4L2

)]
. (3.15)

This result vanishes for L→∞ (or bT � L) as expected.

The situation is more intricate for figure 4(d). Again, for L → ∞ the diagram would

not be considered. For finite L instead, the L dependence drops out and one obtains

S
(L)
d = g2

sCFn
2
⊥

∫
ddk

(2π)d
−i

k2 + i0

1− e+i~bT ·~kT

~n⊥ · ~kT
ein·kL 1− e−i~bT ·~kT

−~n⊥ · ~kT
e−in·kL

=
αsCF

2π

[
2

ε
+ 2 ln

µ2b2T
b20

+ 4

]
. (3.16)
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Here, the symmetry factor 1/2 is compensated by the mirror diagram of figure 4(d). The

relative minus sign of the momentum k in the vertices arises because k is incoming into

one vertex and outgoing from the other. Due to this relative sign, the exponential factors

cancel, yielding a nonvanishing result of the diagram. In particular, it is independent of L

and thus does not vanish as L→∞.

In order to obtain a result consistent with the known L→∞ limit, where this diagram

does not contribute, the transverse self-energy has to cancel with other diagrams to not

give a physical contribution to the cross section. Indeed, when combining the unsubtracted

beam function with the soft function and zero-bin subtraction into fTMD as in eq. (2.6),

we find that these transverse self-energies will exactly cancel.

Lastly, we remark that we have explicitly checked that the diagrams with the transverse

gauge links are indeed necessary to ensure gauge invariance using a Rξ gauge, but the

calculation is otherwise not instructive and hence not presented here.

Full result. The full result for the soft function with Wilson lines of finite length L is

given by adding eqs. (3.10), (3.11), (3.15) and (3.16),

S(1)(bT , ε, L) =
αsCF

2π

[
− 2

ε2
+

2

ε
− 2

(
1

ε
+ ln

b2Tµ
2

b20

)
ln
µ2L2

e−2γE

+ ln2 b
2
Tµ

2

b20
+ 2 ln

b2Tµ
2

b20
+
π2

6
+ 4

]
. (3.17)

3.3 Construction of the quasi beam function

Recall the definition eq. (2.8) of the light-cone beam function,

Bq(x,~bT , ε, τ, xP
−) =

∫
db+

4π
e−i 1

2
b+(xP−)

〈
h(P )

∣∣∣∣[q̄(bµ)W (bµ)
γ−

2
WT

(
−∞n̄;~bT ,~0T

)
W †(0)q(0)

]
τ

∣∣∣∣h(P )

〉
, (3.18)

where bµ = b+n̄µ/2 + bµ⊥. The Wilson lines W extend to light-cone infinity, where they are

closed by WT in the transverse direction, see figure 1(a).

Following the standard LaMET procedure, we define the quasi beam function analo-

gous to the beam function by replacing the light-cone correlator with an equal-time cor-

relator, which in particular includes replacing the n-collinear Wilson lines by Wilson lines

along the ẑ direction. Due to the finite lattice size, they must also be truncated at a length

L, where one needs to include transverse Wilson lines to ensure gauge invariance. The

resulting Wilson line path is illustrated in figure 5(a). The definition of the bare quasi

beam function in position space thus reads

B̃q(b
z,~bT , a, L, P

z) =

〈
h(P )

∣∣∣∣q̄(bµ)Wẑ(b
µ;L− bz)Γ

2
WT (Lẑ;~bT ,~0T )W †ẑ (0;L)q(0)

∣∣∣∣h(P )

〉
,

(3.19)

where bµ = (0,~bT , b
z). Here, we also replaced γ− by the Dirac structure Γ, which can be

chosen as either Γ = γ0 or Γ = γz, as booth can be boosted onto γ−. The Wilson lines of
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length L are defined by

Wẑ(x
µ;L) = P exp

[
ig

∫ 0

L
dsAz(xµ + sẑ)

]
. (3.20)

The transverse gauge links are given by eq. (2.11). Again in eq. (3.19), diagrams that have

no fields contracted with the states |h(P )〉 are excluded.

A crucial feature of eq. (3.19) is that it is an equal-time correlation function, i.e.

it neither depends on the time-dependent light-cone separation b+ nor on the lightlike

directions n and n̄ as eq. (3.18), which makes it computable on lattice. The physical picture

underlying this specific Wilson line structure is that boosting a purely spatial separation

along the ẑ direction yields an almost lightlike separation. Concretely, for a Lorentz boost

along the ẑ direction with velocity v and γ = 1/
√

1− v2, one obtains

ẑ =


0

0

0

1

 → 1√
1− v2


v

0

0

1

 v→−1≈ −γn̄µ . (3.21)

This is illustrated in figure 5(b): the pure spatial separation (blue) is boosted along the

orange-dotted trajectory, thereby approaching the lightlike separation (red). Note that

regardless of whether bz is positive or negative, it is always boosted onto the same lightlike

axis n̄µ, as required for the n-collinear PDF. To boost onto nµ, one needs to reverse the

boost, v > 0, as is appropriate for the n̄-collinear PDF, since the corresponding proton is

moving into the opposite direction. It is easy to check that by applying the Lorentz boost

eq. (3.21) to eq. (3.19), one recovers the matrix element in eq. (3.18).

When evaluated in a large-momentum nucleon state, the quasi beam function defined

in eq. (3.19) is equivalent to the matrix element of an almost-lightlike correlator in a static

nucleon state. According to LaMET [40, 41], the quasi beam function is related to the

beam function in eq. (3.18) through a factorization formula which includes perturbative

matching and nonperturbative power corrections determined by the large nucleon momen-

tum. This has been proven rigorously for the collinear PDF [43, 45, 47]. For the TMDPDF

the physical boost picture shown in figure 5(b) implies a relation for the bare operators.

However we must test the extent to which this relation survives when rapidity regulators

are implemented, which we will do in section 4.2. For the TMDPDF such regulators are

known to have a significant effect, and therefore we do not expect a simple short distance

matching relation between the quasi-beam function and beam function alone. This ex-

pectation is also consistent with the known importance of the soft region in the TMD

factorization theorem.

3.4 Construction of the quasi soft function

Recall the definition eq. (2.9) of the bare TMD soft function,

Sq(bT , ε, τ) (3.22)

=
1

Nc

〈
0
∣∣Tr
[
S†n(~bT )Sn̄(~bT )ST (−∞n̄;~bT ,~0T )S†n̄(~0T )Sn(~0T )S†T

(
−∞n;~bT ,~0T

)]
τ

∣∣0〉 .
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t
z

q

q
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L

(a)

z
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nn̄
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−
γb z

n̄

γb z
n̄

(b)

Figure 5. Illustration of the Wilson line structure of the quasi beam function (a), and the behavior

of the longitudinal separation under a Lorentz boost along the z direction (b).

Note that this vacuum matrix element has no explicit time dependence, in contrast to

the collinear matrix element eq. (3.18). Time dependence only enters indirectly through

the lightlike directions of the Wilson lines Sn and Sn̄, which on its own prohibits a direct

computation on lattice. To obtain a lattice-computable quasi soft function, it thus seems

reasonable to follow the same logic as above and replace

nµ = (1, 0, 0, 1) → ẑµ , n̄µ = (1, 0, 0,−1) → −ẑµ . (3.23)

As before, the lattice computation also requires to truncate the Wilson lines at a length L,

where they are joined by transverse gauge links. The most naive attempt of constructing

a quasi version of the soft function eq. (2.9) thus takes the form

S̃q(bT , a, L) =
1

Nc

〈
0
∣∣Tr{S†

ẑ(
�bT ;L)S−ẑ(�bT ;L)ST (Lẑ;�bT ,�0T )

× S†
−ẑ(

�0T ;L)Sẑ(�0T ;L)S
†
T

(
−Lẑ;�bT ,�0T

)}∣∣0〉 , (3.24)

where the soft Wilson lines of finite length are given by

S±ẑ(x
µ;L) = P exp

[
±ig

∫ 0

−L
dsAz(xµ ± sẑµ)

]
. (3.25)

The resulting Wilson line path is illustrated in figure 6(a).

Unfortunately, the physical boost argument that allowed us to relate spatial Wilson

lines to lightlike Wilson lines in the quasi-PDF [see eq. (3.21)] does not apply to the quasi

soft function. Since the soft function involves both light-cone directions n and n̄, it is

necessary to simultaneously obtain them from boosting ±ẑ. However, this requires boosts

of opposite signs, as illustrated in figure 6(b). Note that if this were possible with a single

boost, it would directly violate the boost argument for B̃, where it is essential that both

positive and negative bz’s are boosted onto the same light-cone direction.

Despite the simple boost picture breaking down, one can still test whether the matching

for the obtained quasi-TMDPDF in the form of eq. (3.6) is possible, and we study this in the
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Figure 6. Illustration of the Wilson line structure of the naive quasi soft function (a), and the

behavior of the longitudinal separation under a Lorentz boost along the z direction (b). v > 0 and

v < 0 denote that the required Lorentz boosts have opposite signs.

next section at NLO. Indeed, we find that for the naive quasi soft function the matching

is spoiled by the structure of infrared bT dependence. In section 4.5, we will suggest a

modified quasi soft function that yields a quasi-TMDPDF which has the correct infrared

bT dependence at one loop. Given the absence of an intuitive boost relation, a rigorous all

orders proof for any such quasi-TMDPDF proposal will certainly be required before full

confidence can be obtained.

4 One loop results

In this section we present explicit one-loop results for the TMDPDF, the quasi beam and

naive quasi soft function, and their combination into the quasi-TMDPDF. Here, we work in

the MS scheme, as opposed to considering renormalization schemes appropriate for lattice

calculations as discussed in section 3, since a pure MS calculation is fully sufficient to

perturbatively test the matching relation. Furthermore, we limit ourselves to the quark

PDF and neglect mixing with gluons for simplicity, which corresponds to considering a non-

singlet flavor combination. All results are calculated by evaluating the appropriate matrix

elements for the (quasi) beam function with an on-shell external quark with momentum

Pµ = (P z, 0, 0, P z).

4.1 Lightcone TMDPDF at one loop

The unrenormalized result for the TMDPDF at one loop is given by

fTMD(1)
q (x,�bT , ε, ζ) =

αsCF

2π

[
−
(

1

εIR
+ ln

b2Tµ
2

b20

)
Pqq(x) + (1− x)

]1
+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1− x)

[
1

ε2UV

+
1

εUV

(
3

2
+ ln

µ2

ζ2

)
+

1

2
− π2

12

]
+

αsCF

2π
δ(1− x)

[
−1

2
ln2

b2Tµ
2

b20
+

3

2
ln

b2Tµ
2

b20
+ ln

b2Tµ
2

b20
ln

µ2

ζ2

]
, (4.1)
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p p

(~0T,0) (~bT,b
z)

kk

(a) Vertex diagram

p p

(~0T,0) (~bT,b
z)

k

(b) Sail topology

p p

(~0T,0) (~bT,b
z)

k

(c) Wilson line self energy (tadpole)

p p

(~0T,0) (~bT,b
z)

k

(d) Wave function renormalization

Figure 7. One-loop diagrams contributing to the quasi beam function in Feynman gauge, up to

mirror diagrams.

where Pqq(x) = (1 + x2)/(1− x) is the quark-to-quark splitting function and the subscript

“+” denotes a plus distribution such that
∫ 1

0 dx [f(x)]1+ = 0. In appendix B, we show that

eq. (4.1) agrees with the vast majority of regulators used to define TMDPDFs.

As indicated, the divergence in the first line in eq. (4.1) is of infrared origin and

matches precisely the IR divergence in the collinear PDF, which is crucial for matching the

TMDPDF onto the PDF for perturbative bT � Λ−1
QCD, see eq. (2.12). Likewise, it must be

exactly reproduced by the quasi-TMDPDF for a matching relation to exist. The second line

in eq. (4.1) contains UV poles and constants, and the last line contains the bT dependence.

Similar to the IR pole, the bT dependence must be identical in the quasi-TMDPDF in order

for a perturbative matching for bT ∼ Λ−1
QCD to exist.

4.2 Quasi beam function

We first calculate the quasi beam function defined in eq. (3.19) by evaluating the operator in

a quark state with on-shell momentum P 2 = 0. Working in pure dimensional regularization

and taking the physical limit L→∞, P z →∞, we can directly Fourier transform the result

into x space. At one loop, there are four contributions, shown in figure 7. The calculation

is quite lengthy and shown in detail in appendix C. The result is given by

B̃(1)
q (x,~bT , ε, L, P

z) =
αsCF

2π

[
−
(

1

εIR
+ ln

b2Tµ
2

b20

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x) (4.2)

+
αsCF

2π
δ(1− x)

[
7

2

1

εUV
− 1

2
ln2 b

2
Tµ

2

b20
+

9

2
ln
b2Tµ

2

b20
+

1

2
+

2πL

bT

−ln
b2Tµ

2

b20
ln

(2P z)2

µ2
− 1

2
ln2 (2P z)2

µ2
+ln

(2P z)2

µ2

]
.

As anticipated, it contains the same IR divergence as the TMDPDF, eq. (4.1). Note the

presence of a linear divergence in L/bT , which we interpret as the analog of a rapidity di-
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vergence. As discussed below eq. (3.9), these divergences appear as power-law divergences.

Thus, after regularization they yield a linear dependence on the regulator L, rather than a

logarithmic dependence ln(L/bT ). This linear L/bT term will exactly cancel with a similar

term in the quasi soft factor when combining B̃q and ∆̃q
S as in eq. (3.1).

In order to directly match this quasi beam function onto the lightlike beam function,

we require that the logarithmic bT dependence, arising from IR physics, must be equal

between them. However, the bT dependence does not agree with any beam function known

in the literature, see the results in appendix B which are summarized in table 1 below. In

particular, only in Collins’ scheme with Wilson lines off the light-cone one has the correct

double-logarithm −1
2 ln2(b2Tµ

2/b20), while in all schemes with Wilson lines on the light-cone

this double logarithm is (at least partially) contained in the soft function. Even in Collins’

scheme the single ln(b2Tµ
2/b20) does not match up with the corresponding single logarithm in

the quasi beam function.5 Hence, for all the rapidity regulators used in the literature, which

yield the same universal TMDPDF defined in section 2, none are in agreement with the

simple physical picture of relating beam function and quasi beam function. The Lorentz

boost relation is spoiled by the presence of a rapidity regulator, which by construction

is not boost invariant. Since it is well known that the choice of rapidity regulator can

modify the logarithms of bT , one may still hope to find a regulator for the beam function

which yields the same IR structure as the naive quasi beam function and thus yields a

perturbative matching that agrees with the boost relation. However, the more important

test is whether the quasi-TMDPDF can be matched to the TMDPDF, in which case the

regulator dependence cancels. This requires considering the quasi soft function.

4.3 Naive quasi soft function

Next, we calculate the naive quasi soft function defined in eq. (3.24). Working in Feynman

gauge, there are six diagrams that contribute at NLO, shown in figure 8, where double lines

represent Wilson lines and the labels denote the endpoints of the Wilson lines in position

space. For later convenience, we distinguish diagrams where the gluon is exchanged between

the +ẑ and −ẑ Wilson lines (upper row) and diagrams where the gluon is emitted between

Wilson lines of the +ẑ sector alone (lower row). The latter is identical to the result for

gluons exchanged within the −ẑ sector.

In Feynman gauge, the generic expression for a one-loop diagram in the MS scheme,

parameterized by the spatial paths γ1 and γ2 of the Wilson lines, is

S̃(1)[γ1, γ2] = −g2
sCFµ

2ε
0

∫ 1

0
ds γ′1(s)µ

∫ 1

0
dt γ′2(t)ν

∫
d4−2εk

(2π)4−2ε

−igµν
k2 + i0

e−ik·[γ1(s)−γ2(t)]

=
αsCF
π

(
µ2

b20

)εΓ(1− ε)
eεγE

∫ 1

0
ds

∫ 1

0
dt

γ′1(s) · γ′2(t)[
−(γ1(s)− γ2(t))2

]1−ε . (4.3)

Note that diagrams with the gluon attaching to the same line have an additional symmetry

factor of 1/2.

For example, for figure 8(a) one reads off the paths

γ1(s) = sLẑ , γ2(t) = (t− 1)Lẑ . (4.4)

5We have also checked that this problem is not simply due to the contribution from the transverse Wilson

line self energy diagram.
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~bT
~0T

~bT+L ẑ

~bT−L ẑ

L ẑ

−L ẑ

(a)

~bT
~0T

~bT+L ẑ

~bT−L ẑ

L ẑ

−L ẑ

(b)

~bT
~0T

~bT+L ẑ

~bT−L ẑ

L ẑ

−L ẑ

(c)

~bT
~0T

~bT+L ẑ

~bT−L ẑ

L ẑ

−L ẑ

(d)

~bT
~0T

~bT+L ẑ

~bT−L ẑ

L ẑ

−L ẑ

(e)

~bT
~0T

~bT+L ẑ

~bT−L ẑ

L ẑ

−L ẑ

(f)

Figure 8. One loop diagrams for the quasi soft function in Feynman gauge, up to mirror diagrams.

The dashed line indicates that we consider the upper part of the diagrams separate from the lower

part, such that diagrams in the top row only contains a gluon exchange from the ẑ to−ẑ sector, while

the bottom row only contains corrections within the ẑ sector. Similar diagrams for −ẑ exchanges

are now shown.

Together with its mirror diagram, this gives

S̃(1)
a (bT , ε, L) = 2

αsCF
π

(
µ2

b20

)εΓ(1− ε)
eεγE

∫ 1

0
ds

∫ 1

0
dt

(Lẑ) · (Lẑ)[
−L2(s− t+ 1)2ẑ2

]1−ε
= 2

αsCF
π

(
µ2

b20

)εΓ(1− ε)
eεγE

L2ε(2− 4ε)

2ε(2ε− 1)

=
αsCF

2π

[
−2

ε
− 2 ln

µ2L2

b20
+ 4(ln 2− 1)

]
. (4.5)

Note that this result also contains a divergence at ε = 1/2, which signals a power-law

divergence ∝ µL in dimensional regularization, which is expected for the Wilson-line self

energy. In pure dimensional regularization, these divergences are not visible when expand-

ing at ε = 0, but on the lattice they explicitly arise and have to be canceled. For this

reason, the beam function renormalization in eq. (3.1) contains a bz-dependent counter

term to absorb the divergence associated with the self energy of the Wilson-line segment of

length L−bz [see eq. (C.42)], while the other self-energies will cancel against the soft factor.

The diagrams in figures 8(b) and 8(c) yield

S̃
(1)
b (bT , ε, L) =

αsCF
2π

[
2 ln

(b2T + L2)2

b2T (b2T + 4L2)
− 8

L

bT
arctan

L

bT
+ 8

L

bT
arctan

2L

bT

]
, (4.6)

S̃(1)
c (bT , ε, L) =

αsCF
2π

[
2bT
L

arctan
bT
2L
− 2 ln

b2T + 4L2

4L2

]
. (4.7)
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Summing eqs. (4.5)–(4.7), we obtain the soft contribution from interactions between the

two collinear sectors,

S̃
(1)
z/−z(bT , ε, L) =

αsCF
2π

[
−2

ε
− 2 ln

µ2L2

b20
− 2 ln

b2T + 4L2

4L2
+ 2 ln

(b2T + L2)2

b2T (b2T + 4L2)
+ 4(ln 2−1)

+
2bT
L

arctan
bT
2L
− 8

L

bT
arctan

L

bT
+ 8

L

bT
arctan

2L

bT

]
=

αsCF
2π

[
−2

ε
− 2 ln

b2Tµ
2

b20

]
+O

(
b2T
L2

)
, (4.8)

where we have also taken the limit L � bT for illustration. Interestingly, in this limit all

dependence on L drops out, leaving only a pure logarithm in bT , the physical observable.

The three remaining diagrams in figures 8(d)–8(f) yield

S̃
(1)
d (bT , ε, L) =

αsCF
2π

[
2

ε
+ 2 ln

µ2L2

b20
+ 4

]
(4.9)

S̃(1)
e (bT , ε, L) =

αsCF
2π

[
1

ε
+ ln

b2Tµ
2

b20
+ 2

]
(4.10)

S̃
(1)
f (bT , ε, L) =

αsCF
2π

[
4L

bT
arctan

L

bT
− 2 ln

b2T + L2

b2T

]
, (4.11)

and their sum gives the contribution to the soft function from interactions within the ẑ

sector alone. The same result is obtained for the −ẑ sector, so we have

S̃
(1)
z/z(bT , ε, L) = S̃

(1)
−z/−z(bT , ε, L)

=
αsCF

2π

[
3

ε
+ 2 ln

µ2L2

b20
+ ln

µ2b2T
b20

+ 6− 2 ln
b2T + L2

b2T
+

4L

bT
arctan

L

bT

]
=
αsCF

2π

[
3

ε
+ 3 ln

b2Tµ
2

b20
+ 2 +

2πL

bT

]
+O

(
b2T
L2

)
. (4.12)

Note that this contains the same linear divergence in L/bT as the quasi beam function,

eq. (4.2). Interestingly, the logarithmic dependence on L cancels within each collinear

sector of the quasi soft function.

The full bare quasi soft function is then obtained by summing the contributions from

eqs. (4.8) and (4.12),

S̃(1)(bT , ε, L) =
αsCF

2π

[
4

ε
+ 4 ln

µ2b2T
b20

+ 8− 4 ln
b2T + 4L2

4L2

+
2bT
L

arctan
bT
2L

+ 8
L

bT
arctan

2L

bT

]
=
αsCF

2π

[
4

ε
+ 4 ln

µ2b2T
b20

+ 4 +
4πL

bT

]
+O

(
b2T
L2

)
. (4.13)

We observe that the logarithmic bT dependence of the naive quasi soft function does not

match that of any soft function in the literature, regardless of the employed rapidity regu-

lator, see the comparison made below in table 1. Here, this is not as surprising as for the

comparisons for the beam function in section 4.2, as there is no relation between soft and

quasi soft function through a Lorentz boost even at the bare level, see section 3.4.
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4.4 Failure of the naive quasi-TMDPDF

We can now attempt to combine the quasi beam and naive quasi soft function to construct

a quasi-TMDPDF in the form of eq. (3.1). To fix the form of the soft factor ∆̃q
S , we

require that all divergences in L/bT cancel when combining B̃q and ∆̃q
S , analogous to the

cancellation of rapidity divergences in the TMDPDF. Comparing the one-loop results in

eqs. (4.2) and (4.13), we deduce this to be ∆̃q
S = 1/

√
S̃q, so

f̃TMD
q (x,~bT , µ, P

z) =

∫
dbz

2π
eibz(xP z) Z̃ ′(bz, µ, µ̃)Z̃uv(bz, µ̃, a)

B̃q(b
z,~bT , a, L, P

z)√
S̃q(bT , a, L)

. (4.14)

Note that this is similar to the δ regulator for the TMDPDF, where one has ∆q
S = 1/

√
Sq.

Our result ∆̃q
S = 1/

√
S̃q for the quasi-TMDPDF is consistent with this, considering that

we showed in section 3.2.1 that the lightlike soft function using the finite-L regulator yields

the same soft function as the δ regulator.

Here, we work purely in the MS scheme and in the physical limit, where the product

Z̃ ′Z̃uv is bz-independent, so for our particular one-loop study we can equivalently work

with the longitudinal momentum space formula

f̃TMD
q (x,~bT , µ, P

z) = Z̃quv(µ, P z, ε)
B̃q
(
x,~bT , ε, L, P

z
)√

S̃q(bT , ε, L)
. (4.15)

Combining eqs. (4.2) and (4.13) according to eq. (4.15), we obtain the NLO result for the

quasi-TMDPDF evaluated in an on-shell quark state,

f̃
TMD (1)
q,P z (x,~bT , ε, P

z) = B̃(1)
q (x,~bT , ε, L, P

z)− 1

2
S̃(1)(bT , ε, L) (4.16)

=
αsCF

2π

[
−
(

1

εIR
+ ln

b2Tµ
2

b20

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1−x)

[
3

2

1

εUV
− 1

2
ln2 µ2

(2P z)2
− ln

µ2

(2P z)2
− 3

2

]
+
αsCF

2π
δ(1−x)

[
−1

2
ln2 b

2
Tµ

2

b20
+

5

2
ln
b2Tµ

2

b20
+ ln

b2Tµ
2

b20
ln

µ2

(2P z)2

]
.

Although our method of calculation is quite different, we note that our result in eq. (4.16)

fully agrees with the one loop calculation in ref. [93] (up to trivial differences in our re-

spective conventions for the MS scheme).

There is an important subtlety concerning the logarithmic dependence ln(2P z)2 in

eqs. (4.1) and (4.16), which arises from calculating matrix elements with an on-shell external

quark of momentum Pµ = (P z, 0, 0, P z). In the ratio of the actual TMDPDF evaluated in

a proton state, we have to replace this by P z → xP z, where xP z is the momentum of the
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struck parton (see also the discussion in ref. [45]), so we obtain

f̃TMD (1)
q (x,~bT , ε, P

z) =
αsCF

2π

[
−
(

1

εIR
+ ln

b2Tµ
2

b20

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1−x)

[
3

2

1

εUV
− 1

2
ln2 µ2

(2xP z)2
− ln

µ2

(2xP z)2
− 3

2

]
+
αsCF

2π
δ(1−x)

[
− 1

2
ln2 b

2
Tµ

2

b20
+

5

2
ln
b2Tµ

2

b20
+ln

b2Tµ
2

b20
ln

µ2

(2xP z)2

]
.

(4.17)

This is our final result for the quasi-TMDPDF which uses the natural quasi beam function

and the naive quasi soft function.

To test whether a perturbative matching between f̃TMD
q and fTMD

q is possible, we need

to UV renormalize both eqs. (4.1) and (4.17) and study their difference:

f̃TMD
q (x,~bT , µ, P

z)

fTMD
q (x,~bT , µ, ζ)

= 1 +
αsCF

2π

[
ln
b2Tµ

2

b20
− ln

b2Tµ
2

b20
ln

(2xP z)2

ζ
(4.18)

− 1

2
ln2 (2xP z)2

µ2
+ ln

(2xP z)2

µ2
− 2 +

π2

12

]
+O(α2

s) .

As expected, the explicit infrared poles in εIR have canceled, as they arise entirely from the

quasi beam function, which can be related to the beam function through a boost. However,

the bT dependence of f̃TMD
q and fTMD

q does not agree, leaving two uncanceled logarithms

in eq. (4.18). The second one multiplies a logarithm of ζ, and in fact is exactly the one-loop

expansion of the Collins-Soper kernel in eq. (2.21),

exp

[
1

2
ln

(2xP z)2

ζ
γζ(µ, bT )

]
= 1− αsCF

2π
ln
b2Tµ

2

b20
ln

(2xP z)2

ζ
+O(α2

s) . (4.19)

This confirms our argument in section 3.1 that the Collins-Soper equation prohibits a

perturbative matching, unless ζ is fixed in terms of P z such that the ζ-dependence of

f̃TMD
q (x,~bT , µ̃, P

z) and fTMD
q [x,~bT , µ, ζ(P z)] exactly cancel. From eq. (4.18), this is ful-

filled with

ζ = (2xP z)2 , (4.20)

as expected. This leaves

f̃TMD
q (x,~bT , µ, P

z)

fTMD
q

(
x,~bT , µ, ζ=(2xP z)2

)
= 1 +

αsCF
2π

[
ln
b2Tµ

2

b20
− 1

2
ln2 (2xP z)2

µ2
+ ln

(2xP z)2

µ2
− 2 +

π2

12

]
+O(α2

s) . (4.21)

The key problem with eq. (4.21) is that it still contains a single infrared logarithm

ln(b2Tµ
2/b20) which is not associated with the Collins-Soper evolution, and thus cannot be

eliminated in a similar fashion. Curiously, choosing ζ = (2xP z)2/e would simultaneously
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cancel both logarithms in bT in eq. (4.18), but the term involving a ln ζ is clearly related to

the Collins-Soper kernel, whereas there is no clear relationship of the term ln(b2Tµ
2/b20) with

this evolution. Therefore we deem this choice with an extra e to be something that works

at one loop by construction, but not a valid choice since it is very unlikely to continue to

work at higher loop orders (unless there happens to be some unknown deep relationship).

The presence of this extra ln(b2Tµ
2/b20) thus indicates a failure of the naive quasi-TMDPDF

to reproduce the same infrared physics at one-loop as required for the physical TMDPDF.

Our results can also be compared to those in ref. [93], where the soft factor was

not calculated separately, but immediately combined with the beam function to yield the

quasi-TMDPDF. The final result obtained was a relation between the quasi-TMDPDF and

TMDPDF at µ2 = ζ = (2xP z)2 which was given as

f̃TMD
q (x,~bT , µ = 2xP z, P z) = exp

[∫ ζ

(b0/bT )2

dµ′2

µ′2
αs(µ

′)CF
2π

](
1− αsCF

π

)
× fTMD

q

(
x,~bT , µ =

√
ζ, ζ = (2xP z)2

)
. (4.22)

If we take our result in eq. (4.18) and set µ2 = ζ = (2xP z)2, then we obtain

f̃TMD
q (x,~bT , µ =

√
ζ, P z)

fTMD
q

(
x,~bT , µ =

√
ζ, ζ=(2xP z)2

) = 1 +
αsCF

2π

[
ln
b2Tµ

2

b20
− 2 +

π2

12

]
+O(α2

s) . (4.23)

This agrees with expanding eq. (4.22) to O(αs), where the single infrared logarithm is gen-

erated by the exponential term. (There is a trivial mismatch from the constant π2/12 term

which arises because ref. [93] uses a different definition of the MS scheme, see appendix A.)

In ref. [93] eq. (4.22) was interpreted as being a valid matching formula between quasi-

TMDPDF and TMDPDF. However, for nonperturbative bT the exponential in eq. (4.22)

becomes a nonperturbative function and cannot be included in a short distance matching

coefficient, in agreement with our conclusions.

We conclude this section with an overview of the dependence of the one-loop coeffi-

cients of beam function Bq, soft subtraction ∆q
S and TMDPDF fTMD

q on the logarithm

Lb = ln(b2Tµ
2/b20) for the different regulators in the literature, as shown in table 1. The

dependence of the quasi constructions B̃q, ∆̃q
S and f̃TMD

q on Lb is also shown in the lower

part of the table. Here we only show the dependence on standalone factors of Lb (providing

references for the full expressions in the table caption). As discussed previously, the quasi

functions do not match their lightlike counterparts in any of the regulators. In particular,

the double-logarithm L2
b only agrees with Collins’ regulator. All the other regulators in-

volve Wilson lines with light-like directions, and here the double logarithm is part of the

soft function (it is split between these two in the exponential regulator).6

4.5 Quasi-TMDPDF using a bent soft function

The construction of the quasi beam function in section 3.3 was motivated by the physical

picture of boosting a spatial to a lightlike correlation function, while the (naive) quasi soft

6Note that in none of these cases does one include the transverse self energy, which would add a single

logarithm Lb to Bq and −Lb to ∆q
S = 1/

√
Sq, see eq. (3.16). Even after taking this into account, the

mismatch persists.
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Regulator Beam function Bq Soft factor ∆q
S TMDPDF fTMD

q = Bq∆
q
S

Collins [100] − 1
2L

2
b ,

5
2Lb −Lb − 1

2L
2
b ,

3
2Lb

δ regulator [112, 113] 3
2Lb − 1

2L
2
b − 1

2L
2
b ,

3
2Lb

η regulator [115, 124] 3
2Lb − 1

2L
2
b − 1

2L
2
b ,

3
2Lb

Exp. regulator [127] −L2
b ,

3
2Lb

1
2L

2
b − 1

2L
2
b ,

3
2Lb

quasi B̃q quasi ∆̃q
S quasi f̃TMD

q = B̃q∆̃
q
S

Finite L, naive ∆̃q
S − 1

2L
2
b ,

9
2Lb −2Lb − 1

2L
2
b ,

5
2Lb

Finite L, bent ∆̃q
S − 1

2L
2
b ,

9
2Lb −3Lb − 1

2L
2
b ,

3
2Lb

Table 1. Dependence of unsubtracted beam function Bq ≡ B
(unsub)
q , soft subtraction ∆q

S and

TMDPDF fTMD
q (upper part) and their quasi constructions B̃q, ∆̃q

S , f̃TMD
q (lower part) on the

logarithm Lb = ln(b2Tµ
2/b20) in various rapidity regularization schemes. Results are shown for terms

from the one loop matrix elements, pulling out an overall αs/(2π). Only pure Lb terms are shown.

The full functional form for Bq, ∆q
S , and fTMD

q can be found in appendix B for all regulators. The

corresponding results are given in eqs. (4.2), (4.13) and (4.16) for the naive quasi-TMDPDF, and

in eqs. (4.2), (4.27) and (4.29) for the quasi-TMDPDF using the bent soft function.

factor construction in section 3.4 was simply the most straightforward attempt. This lead

to a quasi-TMDPDF whose IR logarithms do not match those of the TMDPDF. However,

there is significant freedom in constructing quasi functions on lattice, so we can consider

alternate definitions with the goal of finding one which has the same infrared physics as

the TMDPDF. When the quasi beam function and quasi soft function are combined, any

dependence related to the method of regulating rapidity divergences (such as finite L)

cancels. Since it was only the presence of rapidity regulators that causes problems for the

physical boost argument for the beam function, one may infer that this issue is alleviated

when considering the matching for the quasi-TMDPDF and TMDPDF. For this reason

we will not try to adjust the definition of the quasi beam function here. However, the

quasi soft function was not constructed based on a boost argument, and hence seems like

the most likely culprit for the failure to match infrared logarithms. For the soft factors

contained in the TMDPDF there are always two different spatial directions involved in

the Wilson lines, while for our naive quasi soft factor there was only the z-direction. This

motivates us to consider in this section a different “bent” quasi soft function which involves

two spatial directions.

This need for this type of bent quasi soft function can also be motivated by studying

the failure of the naive quasi soft function to reproduce the IR physics needed for the

TMDPDF in more detail. In particular, we can split the calculation of the naive quasi soft

function into three distinct pieces, arising from gluon exchanges either within the ẑ or −ẑ
sector, or between them, as done in section 4.3,

S̃(1) = S̃
(1)
z/z + S̃

(1)
−z/−z + S̃

(1)
z/−z . (4.24)

Physically, the first term is correctly boosted towards a n/n contribution by boosting with
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P z > 0, and likewise the second term is boosted towards n̄/n̄ for P z < 0. In practice,

they are identical due to invariance under z ↔ −z. At one loop, the quasi-TMDPDF in

eq. (4.15) hence can be written as

f̃TMD(1)
q = B̃(1)

q − S̃(1)
z/z −

1

2
S̃

(1)
z/−z . (4.25)

Next, recall the Wilson line structures of quasi beam and quasi soft functions in eqs. (3.19)

and (3.24), see also figures 5(a) and 6(a). Taking the soft limit of the quasi beam function,

bz = 0, clearly gives the same Wilson lines as half of the quasi soft function, and hence

subtracting S̃
(1)
z/z exactly cancels the soft limit of the tadpole correction to the beam func-

tion. This can easily be verified by comparing eqs. (4.12) and (C.51), from which one also

sees that this subtraction cancels the divergence in L/bT . It remains to consider S̃
(1)
z/−z,

given in eq. (4.8). Its subtraction from B̃q adds a single ln(b2Tµ
2/b20), which is exactly the

leftover logarithm found in the relation between the naive quasi-TMDPDF and TMDPDF

in eq. (4.18). In conclusion, it thus appears to be precisely the interaction between the +ẑ

and −ẑ part of the naive soft function that is spoiling the matching of infrared logarithms.

With these motivations and observations we can define a bent quasi soft function

which gives a valid matching result between quasi-TMDPDF and TMDPDF at one-loop

order. Crucially, it must still cancel the L/bT divergence in the quasi beam function and

after combination with the quasi beam function produce the same logarithms in bT as the

TMDPDF. More concretely, we can demand the Wilson line structure in the z sector to

match the soft-expanded (bz = 0) structure of the naive quasi beam function to ensure

the cancellation of rapidity divergences. Given these restrictions we define the “bent” soft

function as

S̃bent(bT , a, L) =
1

Nc

〈
0
∣∣Tr
{
S†ẑ(

~bT ;L)S−n̄⊥(~bT ;L)ST (Ln̄⊥;~bT ,~0T )

× S†−n̄⊥(~0T ;L)Sẑ(~0T ;L)S†T
(
−Lẑ;~bT ,~0T

)}∣∣0〉 , (4.26)

where n̄µ⊥ is the transverse unit vector orthogonal to nµ⊥ = bµ⊥/bT and ẑ. Figure 9 illustrates

the Wilson line path in eq. (4.26) and compares it to the path for naive quasi soft function

defined in eq. (3.24).

Above we deduced that the failure of a perturbative one-loop matching between quasi-

TMDPDF and TMDPDF could be traced to soft diagrams mediating exchange between

Wilson lines along the +ẑ and −ẑ directions. These diagrams precisely vanish for the bent

soft function due to n̄⊥ · n⊥ = n̄⊥ · ẑ = 0, while all other diagrams are not affected by the

new Wilson line paths. Hence the bent soft function at one loop yields

S̃
(1)
bent(bT , ε, L) =

αsCF
2π

[
6

ε
+ 6 ln

b2Tµ
2

b20
+

4πL

bT
+ 4

]
. (4.27)

As before, it is related to the soft subtration through ∆̃q
S = 1/

√
S̃bent. This bent soft

factor has precisely the infrared logarithms that are desired at one loop.7

7A soft factor with more than one transverse directions was also used in ref. [92] where the goal was to
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b⊥

x

z

L

y

L

(a) Naive quasi soft function

b⊥

x

-z

L

y

L

(b) Bent quasi soft function

Figure 9. The bent quasi soft function. The impact parameter ~bT is aligned with the x axis.

Using eq. (4.15) to combine the bent quasi soft function from eq. (4.27) together with

the natural quasi beam function from eq. (4.2) we obtain a new quasi-TMDPDF

f̃TMD (1)
q (x,~bT , ε, P

z) =
αsCF

2π

[
−
(

1

εIR
+ ln

b2Tµ
2

b20

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1−x)

[
1

2

1

εUV
− 1

2
ln2 µ2

(2xP z)2
− ln

µ2

(2xP z)2
− 3

2

]
+
αsCF

2π
δ(1−x)

[
−1

2
ln2 b

2
Tµ

2

b20
+

3

2
ln
b2Tµ

2

b20
+ln

b2Tµ
2

b20
ln

µ2

(2xP z)2

]
.

(4.29)

Comparing this result to the TMDPDF at one loop yields

f̃TMD
q (x,~bT , µ, P

z)

fTMD
q

(
x,~bT , µ, ζ=(2xP z)2

)
= 1 +

αsCF
2π

[
−1

2
ln2 (2xP z)2

µ2
+ ln

(2xP z)2

µ2
− 2 +

π2

12

]
+O(α2

s) , (4.30)

where have again fixed ζ = (2xP z)2 as explained previously. Since there is no bT depen-

dence on the r.h.s. of eq. (4.30), we see that all infrared logarithms of the TMDPDF are

express the physical factorization theorem directly in terms of quasi objects. They define a soft factor

∆̃q JSXY
S (bT ) =

√
S̃nx,ny (bT )

S̃nx,nz (bT )S̃nz ,ny (bT )
, (4.28)

where S̃n1,n2(bT ) is the same as the result obtained from our naive quasi soft matrix element, eq. (3.24),

by replacing ẑ → n1 and −ẑ → n2 but using infinitely-long Wilson lines (L → ∞). Taking bµT = bTn
µ
x

and using instead finite Wilson lines, we have checked that the resulting combination of terms in ∆̃q
S(bT , L)

gives the same result at one-loop as that of our bent soft function.
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correctly reproduced by this quasi-TMDPDF construction at one loop. Thus this construc-

tion obeys the matching relation given in eq. (3.6) with a one loop result for the matching

coefficient that is given by

CTMD
qq′

(
µ, xP z

)
= δqq′

[
1 +

αsCF
4π

(
− ln2 (2xP z)2

µ2
+ 2 ln

(2xP z)2

µ2
− 4 +

π2

6

)
+O(α2

s)

]
.

(4.31)

Here, we ignore possible mixing of quarks with gluons. Then since mixing of quark flavors

can first arise at two loops, the one-loop coefficient is proportional to δqq′ . This result

provides a valid one-loop perturbative matching coefficient, which only depends on the

hard scale of the struck parton, xP z.

Assuming the validity of this quasi-TMDPDF construction beyond one loop, eq. (4.31)

can be used to match the lattice quasi-TMDPDF to the TMDPDF. To obtain the required

input for this result one combines lattice calculations of the natural quasi beam function

and bent quasi soft function to obtain a lattice quasi-TMDPDF, which is then converted

into the MS scheme. Results for matching in more lattice friendly renormalization schemes

should be straightforward to derive following a similar approach to the one used here (see

e.g. [57, 65]).

5 Results and outlook

In this section, we briefly summarize the impact of our calculations in the previous sections

for the matching between quasi-TMDPDF and TMDPDF, and what questions remain open

for further study. Without relying on the existence of a quasi soft function that yields the

correct infrared physics for a quasi-TMDPDF, we also discuss precisely what constraints

on TMDPDFs can still be rigorously derived from lattice calculations.

5.1 Matching relation between quasi-TMDPDF and TMDPDF

The goal of this work was to establish a matching relation between the quasi-TMDPDF

and TMDPDF analogous to the collinear PDF, where LaMET gives such a perturbative

relation. However, the physical picture for the existence of such a matching relation is much

more complicated than in the PDF case. For the beam function, the need for a non-trivial

rapidity regulator on the TMDPDF side appears to spoil the simple boost correspondence

between hadronic quasi and non-quasi matrix elements. We have confirmed that this is

the case at one loop in section 4.2 and table 1 by making comparisons of the most natural

quasi beam function with all modern TMDPDF definitions for the beam function. For the

soft function, the vacuum matrix elements that appear necessarily involve two directions,

and hence does not satisfy a simple boost relation to a quasi soft function even at the

bare level. In section 4.4 we computed the most naive quasi soft function at one loop,

and showed that it yields a quasi-TMDPDF which does not have infrared logarithms that

agree with those of the TMDPDF. Then in section 4.5 we considered a modified bent quasi

soft function at one loop, which when combined with the natural beam function gives our
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preferred quasi-TMDPDF definition. Its infrared logarithms at one loop properly agree

with those of the TMDPDF, thus leading to a consistent matching formula at one loop.

The full utility of our preferred quasi-TMDPDF definition will depend on whether the

correspondence between infrared logarithms continues to hold at higher orders in pertur-

bation theory. For example, at two loops one can recouple the −ẑ and +ŷ sectors in the

bent soft function, so these contributions will have to give contributions that match up

correctly with corresponding contribution in the two loop soft function once its combined

into the TMDPDF. Such calculations should be considered in the near future. More rigor-

ously, one needs to show that our bent quasi soft function together with the natural quasi

beam function yields a quasi-TMDPDF with the same infrared nonperturbative physics as

the lightlike soft function, either nonperturbatively or at least to all orders in perturbation

theory. This is obviously also an important avenue for future work.

With lack of further information, in order to proceed at the current time one can

do one of two things, i) make the assumption that 3our preferred quasi-TMPDF holds

nonperturbatively, or ii) assume that our bent quasi soft factor may not work to all orders,

and see if interesting constraints can still be derived. We discuss these in turn.

In the case of i) we have the matching formula derived in section 3.1, which for a

non-singlet (ns) quark flavor combination where there is no mixing reads:

f̃TMD
ns (x,~bT , µ, P̃

z) = CTMD
ns

[
x, µ, P̃ z, ζ̃(x, P̃ z)

]
exp

[
1

2
γqζ (µ, bT ) ln

ζ̃(x, P̃ z)

ζ

]
× fTMD

ns (x,~bT , µ, ζ) . (5.1)

If the infrared structure of f̃TMD
ns (x,~bT , µ, P

z) and fTMD
ns (x,~bT , µ, ζ = (2xP z)2) match to

all orders, then our one loop calculation in section 4.5 provides a valid result for CTMD
ns .

For the matching from the MS renormalized quasi-TMDPDF it gives

CTMD
ns

(
µ, xP z

)
≡ CTMD

ns

[
x, µ, P z, ζ̃(x, P z) = (2xP z)2

]
= 1 +

αsCF
4π

(
− ln2 (2xP z)2

µ2
+ 2 ln

(2xP z)2

µ2
− 4 +

π2

6

)
+O(α2

s) . (5.2)

At this order, the kernel is diagonal in the quark flavors, as flavor mixing can first appear

at two loops. Under the same assumptions one can proceed to carry out calculations for

our preferred quasi-TMDPDF on the lattice, and with suitable renormalization and scheme

changes, then use the matching relation in eq. (5.2) to obtain the physical TMDPDF for

the nonsinglet case.

In the case of ii) we assume that the matching between quasi-TMDPDF and TMDPDF

is spoiled by a mismatch between the soft factors ∆̃q
S and ∆q

S at higher orders. In this case,

although we do not have a matching relation, we can still write down a formula relating

the quasi-TMDPDF and TMDPDF. For the nonsinglet case without mixing it reads:

f̃TMD
ns (x,~bT , µ, P

z) = CTMD
ns

(
µ, xP z

)
gSq (bT , µ) exp

[
1

2
γqζ (µ, bT ) ln

(2xP z)2

ζ

]
× fTMD

ns (x,~bT , µ, ζ) . (5.3)
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Here, CTMD
ns is by definition still a perturbative function. On the other hand, the function

gSq (bT , µ) is nonperturbative and is associated with the failure of constructing a proper

quasi soft function. It corrects the mismatch in the infrared physics. Since the quasi soft

factor and soft factor which differ are flavor independent, there are at most two different

gSi (bT , µ)’s, namely for quarks i = q and gluons i = g, and only gSq shows up for the

non-singlet flavor case. Note that eq. (5.3) is also satisfied if we use the naive quasi soft

function construction. Summarizing our results obtained with the naive and bent quasi

soft functions we have

gSns(bT , µ)

∣∣∣∣
naive quasi soft

= 1 +
αsCF

2π
ln
b2Tµ

2

b20
+O(α2

s) ,

gSns(bT , µ)

∣∣∣∣
bent quasi soft

= 1 +O(α2
s) . (5.4)

Interestingly, even with the less strong assumptions present in case ii) we can still extract

non-trivial information about the TMDPDF by using ratios of distribution functions where

the gSq factors cancel out. We discuss this further in the next section.

5.2 Ratios of TMDPDFs

While the presence of the soft sector seems to prohibit a straightforward computation of

TMDPDFs on lattice, one can employ the fact that gSi (bT , µ) only differs for quarks and

gluons but otherwise is flavor blind to try to construct ratios of quasi-TMDPDFs where

gSi (bT , µ) cancels. To avoid possible mixing between quarks and gluons, here we only

consider nonsinglet quasi-TMDPDFs such as ns = u−d, where eq. (5.3) applies. The soft

factor gSq cancels in any ratio of two (quasi) TMDPDFs with the same choice of bT and µ,

so we have

f̃TMD
ns (x1,~bT , µ, P

z
1 )

f̃TMD
ns (x2,~bT , µ, P z2 )

=
CTMD

ns

(
µ, x1P

z
1

)
CTMD

ns

(
µ, x2P z2

) exp

[
1

2
γqζ (µ, bT ) ln

(
(2x1P

z
1 )2

(2x2P z2 )2

ζ2

ζ1

)]
× fTMD

ns (x1,~bT , µ, ζ1)

fTMD
ns (x2,~bT , µ, ζ2)

. (5.5)

For example, one can choose x1 = x2 and ζ1 = ζ2 to expose the Collins-Soper kernel γqζ as

f̃TMD
ns (x,~bT , µ, P

z
1 )

f̃TMD
ns (x,~bT , µ, P z2 )

=
CTMD

ns

(
µ, xP z1

)
CTMD

ns

(
µ, xP z2

) exp

[
γqζ (µ, bT ) ln

P z1
P z2

]
. (5.6)

This allows one to determine the nonperturbative bT dependence of γqζ from the ratio of

the quasi-TMDPDFs f̃TMD
ns computed in lattice QCD, and was proposed in ref. [150].8

8In the context of lattice calculations, it is also worth noting that γqζ depends on the quark masses in

the discretized action used in the computation, however, due to its independence of the hadronic state

it is independent of the valence quark masses used to construct correlation functions. We thank Phiala

Shanahan and Michael Wagman for discussions on this point.
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Without this knowledge of γqζ , one is forced to choose x1P
z
1 = x2P

z
2 and ζ1 = ζ2 in

eq. (5.5) to cancel the Collins-Soper evolution kernel,

f̃TMD
ns/h1

(x,~bT , µ, P
z)

f̃TMD
ns/h2

(x,~bT , µ, P z)
=
CTMD

ns/h1

(
µ, xP z

)
CTMD

ns/h2

(
µ, xP z

) fTMD
ns/h1

(x,~bT , µ, ζ)

fTMD
ns/h2

(x,~bT , µ, ζ)
. (5.7)

Here, h1 and h2 for example refers to TMDPDF in different hadron states (which does not

affect CTMD
ns/hi

), or TMDPDFs of different spin structures (which can affect CTMD
ns/hi

). The

latter requires both spin structures to be either T -even or T -odd, as the soft function is

not T -invariant, see e.g. ref. [100]. Using the results given in section 4, it is easy to confirm

that the infrared logarithms cancel independently at one loop on the left and right hand

sides of eq. (5.7), confirming that it indeed is a matching equation at this order.

In eqs. (5.5)–(5.7) we write ratios of quasi-TMDPDFs, which contains some choice for

the quasi soft factor that satisfies eq. (5.3). However, one can completely avoid the need

for including a quasi soft factor in such ratios by employing eq. (3.1), which yields

f̃TMD
ns (x1,~bT , µ, P

z
1 )

f̃TMD
ns (x2,~bT , µ, P z2 )

=

∫
dbz eibz(x1P z1 )Z̃ ′(bz, µ, µ̃)Z̃uv(bz, µ̃, a)B̃q(b

z,~bT , a, L, P
z
1 )∫

dbz eibz(x2P z2 )Z̃ ′(bz, µ, µ̃)Z̃uv(bz, µ̃, a)B̃q(bz,~bT , a, L, P z2 )
. (5.8)

In this ratio, the quasi soft factor cancels because it is independent of bz and P z1,2. Thus

eq. (5.8) removes the necessity to calculate a quasi soft matrix element on lattice. The

leftover divergences as L → ∞ present in the individual B̃q functions also cancel between

the numerator and denominator.

Note that our analysis of ratios of quasi-TMDPDFs here differs somewhat from that

of refs. [37–39]. In those references Lorentz invariance is used to directly relate ratios of

bT -dependent spacelike TMDPDFs to the corresponding ratios of the physical TMDPDFs,

analogous to our eq. (5.7). However this is done by considering an adjustable spatial path

for the beam functions, and taking the limit where this path approaches the light-cone.

So far the focus has been on the case with bz → 0 corresponding to integrating over x.

The relations they use do not require a non-trivial matching coefficient CTMD, but they

do require a non-trivial adjustment of the path as the light-cone limit is taken. It would

be interesting to consider a more detailed analysis of the difference between our approach

and theirs.

6 Conclusion

In this paper we have studied the possibility to obtain quark TMDPDFs from lattice QCD

using the LaMET approach. LaMET has been successfully applied to obtain collinear

PDFs using a perturbative matching relation from quasi-PDFs, which are equal-time cor-

relators evaluated in a highly-boosted hadron state. The construction of quasi-TMDPDFs

is severely complicated by the presence of rapidity divergences that require a dedicated reg-

ulator and the need to combine the beam function Bq, a collinear hadronic matrix element,

with a soft factor ∆q
S defined through a soft vacuum matrix element.
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We have first discussed why the analog of rapidity divergences do not pose a problem

for lattice calculations, as they are fully regulated by the finite length L of Wilson lines,

both in the lightlike case of TMDPDFs and the equal-time case of quasi-TMDPDFs.

We then separately discussed constructions of the quasi beam function B̃q and the quasi

soft factor ∆̃q
S . Since beam functions only depend on the flavor of the probed parton and

the direction of the struck hadron, similar to normal PDFs, there is a natural definition of

the quasi beam function as an equal-time matrix element following the LaMET procedure.

With this definition the bare operator matrix element can be boosted onto the bare beam

function operator matrix element. On the other hand, the soft function depends on the

direction of both hadrons and thus can not be obtained from boosting a purely spatial

matrix element.

We hence first studied a naive quasi soft function where one replaces the lightlike

directions by nµ → ẑµ and n̄µ → −ẑµ. Both matrix elements separately suffer from

rapidity divergences that are regulated by the length L, and we construct the naive quasi-

TMDPDF f̃TMD
q = B̃q∆̃

q
S by demanding the cancellation of the L dependence. We also

discussed implications of the Collins-Soper evolution on the matching relation between

fTMD
q and f̃TMD

q , which (if it exists) requires one to fix the Collins-Soper scale ζ in the

TMDPDF through the proton momentum P z in the quasi-TMDPDF, and for the relation

not to involve a convolution in a momentum fraction.

We have carried out a detailed one-loop calculation to study whether a perturbative

matching is feasible despite the failure of the physical boost picture. For this, we require

that all logarithmic dependence on the transverse separation bT ∼ q−1
T ∼ Λ−1

QCD, assumed

to be a nonperturbative scale, must agree between the lightlike functions and their quasi

constructions. We find that this consistency test fails for the quasi beam function, the

naive quasi soft function and the naive quasi-TMDPDF. For the quasi beam function, we

interpret this to be due the need to regulate rapidity divergences, which necessarily breaks

boost invariance and thereby invalidates the simple boost relation. Even after combining

B̃q and ∆̃S
q into the quasi-TMDPDF f̃TMD

q , in which case all regularization dependence

cancels, there is still a mismatch between TMDPDF and quasi-TMDPDF.

To fix this inconsistency we were motivated to consider a “bent” quasi soft function

which involves an equal time operator with Wilson lines on two different spatial paths. At

one loop, one can identify the diagrams that violate the boost relation in the soft function,

which motivated the precise definition of a “bent” soft function. This leads to a quasi

soft factor ∆̃q
S which gives a quasi-TMDPDF which matches the bT dependence of the

TMDPDF, establishing a perturbative matching relation at least up to one loop.

If our construction with a bent quasi soft function and the natural quasi beam function

within LaMET works beyond one loop order then it, for the first time, provides a definite

method to fully access the complete physical TMDPDF from lattice QCD computations.

Given the importance of such a construction, it is very important to further test this

relationship beyond one loop, as we have emphasized repeatedly.

Even if this construction breaks down at higher order, one can still consider ratios of

quasi-TMDPDFs, where any mismatch in the soft physics cancels. This enables one to

study ratios of TMDPDFs. For example, this allows one to nonperturbatively determine
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the Collins-Soper kernel, which has been presented in detail in ref. [150], or to study ratios

of TMDPDFs using different hadron states or spin structures as described in section 5. Such

information is potentially useful to constrain TMDPDFs and thereby aid their extraction

from experiment, particularly for TMDPDF spin structures or parameter ranges where

only limited data is available.
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A Notation and conventions

We briefly summarize the conventions used in this paper and compare them to different

conventions used in the literature.

Lightcone coordinates. We use the SCET notation based on the two reference vectors

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (A.1)

which satisfy n2 = n̄2 = 0 and n · n̄ = 2. One can decompose any fourvector as

kµ = k−
nµ

2
+ k+ n̄

µ

2
+ kµ⊥ ≡ (k+, k−, ~kT ) , (A.2)

where the plus and minus components are defined as

k+ = n · k = k0 − kz , k− = n̄ · k = k0 + kz , (A.3)

and the transverse component is orthogonal to both reference vectors, n · k⊥ = n̄ · k⊥ = 0.

The Minkowski product of two fourvectors follows to be

x · k =
1

2

(
x+k− + x−k+

)
− ~xT · ~kT . (A.4)

In particular, one has k2 = k+k− − k2
T .

Another convention often used in the literature is k± = (k0±kz)/
√

2, see e.g. ref. [100].

In that notation, the Minkowski product is x · k =
(
x+k− + x−k+

)
− ~xT · ~kT , and k2 =

2k+k−− k2
T . To translate results from this paper to that convention, replace k± →

√
2k∓.

Often, this leaves factor
√

2, that can be absorbed e.g. in integration measures.
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Position space. We often write the collinear and soft matrix elements in position space,

with the position denoted by bµ = (b0,~bT , b
z). The Fourier transform to and from momen-

tum space is defined as

f(qµ) =

∫
d4b

(2π)4
e−iq·bf(bµ) , f(bµ) =

∫
d4q eiq·bf(qµ) . (A.5)

We use the same symbol for a function in f in both spaces, as we reserve the symbol f̃

for the quasi-construction of f . In practice, we only perform the Fourier transform with

respect to b+ to obtain the momentum fraction x (bz for the quasi-TMD), while we keep

the transverse dependence in position space (often called impact parameter space), where

the canonical logarithm is given by

Lb ≡ ln
b2Tµ

2

b20
, b0 = 2e−γE ≈ 1.12291 . . . . (A.6)

Renormalization scheme. Our results are expressed in the MS scheme. The associated

renormalization scale µ ≡ µMS is related to the MS scale µ0 by

µ2 ≡ µ2
MS

=
4π

eγE
µ2

0 . (A.7)

Note that this differs from the convention used by Collins [100], where µ2 = 4πµ2
0/Γ(1− ε),

by terms of O(ε2).

B Comparison of different schemes for TMD definitions

Here, we give more details on the various rapidity regulators employed in the literature

that are compatible with the generic notation used in section 2, where the TMDPDF was

defined in eq. (2.6) as

fTMD
q (x,~bT , µ, ζ) = lim

ε→0
τ→0

Zuv(µ, ζ, ε)Bq(x,~bT , ε, τ, ζ) ∆q
S(bT , ε, τ)

≡ lim
ε→0
τ→0

Zuv(µ, ζ, ε)fTMD
q (x,~bT , ε, ζ) , (B.1)

and the Collins-Soper scale was given by eq. (2.2),

ζ = (xP−e−yn)2 = (xmP e
yP−yn)2 . (B.2)

We show how this formulation for the TMDPDF arises in the various regulators, including

Wilson lines off the light-cone, the δ regulator, the η regulator, and the exponential regu-

lator from refs. [100, 112, 115, 127] respectively. We also explicitly give one-loop results for

the individual matrix element ingredients in the TMDPDF where available. In all cases,

while the ingredients differ, the same universal result is obtained for fTMD
q . We also give

the correspondence to results for the analytic regulator of ref. [109], where only the product

of two TMDs are defined, but which also agree with this fTMD
q .
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At one-loop, the common result when evaluating the TMDPDF in an on-shell quark

state of momentum P using pure dimensional regularization is

fTMD (1)
q (x,~bT , ε, ζ) =

αsCF
2π

[
−
(

1

εIR
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x) (B.3)

+
αsCF

2π
δ(1− x)

[
1

ε2
− 1

2
L2
b +

(
1

ε
+ Lb

)(
3

2
+ ln

µ2

ζ

)
+

1

2
− π2

12

]
.

Here, Lb is defined in eq. (A.6) and Pqq(x) = (1+x2)/(1−x) is the regular part of the quark-

quark splitting function. Absorbing the UV divergences in a multiplicative counter term

Zuv(µ, ζ, ε) = 1− αsCF
2π

[
1

ε2
+

1

ε

(
3

2
+ ln

µ2

ζ

)]
+O(α2

s) , (B.4)

one obtains the renormalized TMDPDF as

fTMD (1)
q (x,~bT , µ, ζ) =

αsCF
2π

[
−
(

1

εIR
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x) (B.5)

+
αsCF

2π
δ(1− x)

[
−1

2
L2
b + Lb

(
3

2
+ ln

µ2

ζ

)
+

1

2
− π2

12

]
.

The remaining 1/εIR pole here is of infrared origin and is the same collinear divergence

that is present for the PDF. This correspondence between infrared divergences enables the

TMDPDF to be matched on to the PDF for perturbative bT .

B.1 Wilson lines off the light-cone

In the modern definition by Collins [100], the lightlike Wilson lines are replaced by spacelike

Wilson lines,

nµ → nµyA ≡ n
µ − e−2yA n̄µ ,

n̄µ → n̄µyB ≡ n̄
µ − e+2yBnµ . (B.6)

This affects both the beam function as well as the soft factor, which is now a combination of

soft matrix elements. From eq. (13.106) in ref. [100] we have for the n-collinear TMDPDF

fTMD
q (x,~bT , µ, ζ)

= lim
yA→+∞
yB→−∞

Zuv B
C
q (x,~bT , ε, yP − yB)

√
SqC(bT , ε, yA − yn)

SqC(bT , ε, yA − yB)SqC(bT , ε, yn − yB)

= lim
yB→−∞

Zuv

BC
q (x,~bT , ε, yP − yB)√
SqC(bT , ε, 2yn − 2yB)

, (B.7)

where the result in the last line was derived in ref. [151]. Here, yP is the rapidity of the

hadron (not the Wilson line direction), yB is the direction of the Wilson line as in eq. (B.6)

which acts as a rapidity regulator, and yn is a rapidity parameter that controls the split

– 42 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
7

of soft radiation into the two TMDPDFs. The ζ scale is defined as in eq. (B.2). To relate

eq. (B.7) to our notation in eq. (B.6) one identifies τ = 1/(yB − yn) and notes that

1/τ − ln
√
ζ = yB − yn − (yP − yn)− ln(xmP ) = yB − yP − ln(xmP ) , (B.8)

so that the translation of functional forms is

Bq(x,~bT , ε, τ, ζ) = BC
q (x,~bT , ε, yP − yB) ,

∆q
S(bT , ε, τ) =

1√
SqC(bT , ε, 2yn − 2yB)

, (B.9)

where BC
q ≡ f̃unsub

q is the collinear matrix element as defined in eq. (13.108) in ref. [100] and

SqC ≡ S̃(0) is the soft function as defined in eq. (13.39) therein. As usual, the dependence

on mP and ΛQCD is implicit. Note that the two Bq’s have the same number of arguments

after using the fact that only the combination 1/τ − ln
√
ζ appears in Bq.

Since ζ = (xmpe
yP−yn)2, one can obtain the Collins-Soper kernel as

γqζ (µ, bT ) = 2
d ln fTMD

q

d ln ζ
=

d lnBC
q

dyP
= −

d ln ∆S
q

dyn
, (B.10)

which is the analog of eq. (2.18). This makes clear that the Collins-Soper kernel can be

obtained as a differential equation involving fTMD, or Bq, or ∆q
S independently. This fact

is commonly exploited in the perturbative TMDPDF literature.

One-loop results. We are not aware of explicit individual one-loop results for BC
q and

SqC in the literature. Instead, in refs. [100, 152] the two functions are combined at the

integrand level before integrating over the momentum of either real or virtual emissions.

For example, in ref. [100], where the soft factor is calculated in the context of the TMD

fragmentation function, the limit yA,B → ±∞ is taken right away. The resulting divergent

integral is then directly canceled against a divergent integral in the beam function, which

for the TMDPDF then yields eq. (B.5). The same order of operations was used for the

calculation of the TMDPDF for double-parton scattering in ref. [151].

We can calculate the soft function in the Collins scheme with Wilson lines along two

spacelike vectors nA and nB. In Feynman gauge, purely virtual diagrams are scaleless and

vanish, so we only need to take real emissions into account, as shown in figure 10. The two

diagrams are given by

S
q (1)
C,a (bT , ε, yA − yB) = g2CF (nA·nB)µ2ε

0

∫
ddk

(2π)d
(2π)δ+(k2)

1

nA · k − i0

e−i~bT ·~kT

nB · k + i0

=
αsCF

2π
(yA − yB)

1 + e2(yB−yA)

1− e2(yB−yA)

(
−1

ε
− ln

b2Tµ
2

b20

)
, (B.11)

S
q (1)
C,b (bT , ε, yA) = −g2CFn

2
Aµ

2ε
0

∫
ddk

(2π)d
(2π)δ+(k2)

1

nA · k + i0

e−i~bT ·~kT

nA · k − i0

=
αsCF

2π

(
1

ε
+ ln

b2Tµ
2

b20

)
. (B.12)
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~bT
~0T

nA

nB

nA

nB

(a)

~bT
~0T

nA

nB

nA

nB

(b)

Figure 10. Real emission diagrams contributing to the soft function with two spacelike Wilson

lines at one loop, up to mirror diagrams. The dashed line indicates the cut gluon.

Note that integral in in eq. (B.12) is ill-defined due to a pinched pole singularity arising

from the opposite signs of the i0 prescription in the two eikonal vertices, and we have

evaluated it using the principal-value prescription. This is similar to the calculation in

ref. [153], where the soft function as defined in ref. [94] was calculated in an axial gauge

with v · A = 0 for a spacelike v. However, there the principal-value prescription is part

of the axial gauge, while we employ it because a corresponding regularization in terms of

Wilson lines for Feynman gauge is currently unknown, see also the discussion in appendix

A of ref. [153]. In the calculation of ref. [125], the pinched pole singularities do not pose a

problem due to employing timelike reference vectors nA and nB.

Taking the mirror diagrams into account and taking the limit |yA−yB| � 1, we obtain

SqC(bT , ε, yA − yB) = 1 +
αsCF

2π

(
1

ε
+ ln

b2Tµ
2

b20

)
(2− 2|yA − yB|) +O(α2

s) , (B.13)

which after renormalization agrees with the result for timelike Wilson lines in ref. [125].

Thus at one loop using eq. (B.9) with τ = 1/(yB − yn) we find

∆q
S(bT , ε, τ) = 1 +

αsCF
2π

(
1

ε
+ ln

b2Tµ
2

b20

)(
−2

τ
− 1

)
+O(α2

s) . (B.14)

The one-loop result for fTMD
q was calculated in ref. [152] and agrees with eq. (B.5)

after adjusting for the difference in definitions of the MS scheme, see appendix A. Hence

we can also deduce the bare beam function in this scheme, using

BC(1)
q (x,~bT , ε, yP − yB) = fTMD (1)

q (x,~bT , ε, ζ)− δ(1− x)∆
q (1)
S (bT , ε, τ)

=
αsCF

2π

[
−
(

1

εIR
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1− x)

[
1

ε2
− 1

2
L2
b +

(
1

ε
+ Lb

)(
5

2
+ ln

µ2

ζ
+

2

τ

)
+

1

2
− π2

12

]
. (B.15)

Using eq. (B.8), one can see that this result only depends on yP − yB.
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B.2 δ regulator

The δ regulator was originally introduced in ref. [112] and then modified in refs. [137, 138] to

be applicable for NNLO calculations. Note that their notation for the light-cone momenta

x± are related to our notation by x± ↔ x∓. For consistency of this paper, we convert

results for the δ regulator in the literature to our notation.

Here, we follow the definition of the TMDPDF as presented in ref. [113], which gen-

eralizes the definition in ref. [112]. At one loop, the δ regulator amounts to modifying

propagators in the full theory as

i

(p+ k)2 + i0
→ i

(p+ k)2 + i∆+
,

i

(p̄+ k)2 + i0
→ i

(p̄+ k)2 + i∆−
, (B.16)

where

pµ = p−
nµ

2
= QeY

nµ

2
, p̄µ = p̄+ n̄

µ

2
= Qe−Y

n̄µ

2
(B.17)

are the momenta of the struck quark in the n-collinear and n̄-collinear proton, respectively.

One can equivalently modify the eikonal propagators as

i

k+ + i0
→ i

k+ + iδ+
,

i

k− + i0
→ i

k− + iδ−
. (B.18)

(Additional integer m > 0 multiplicative factors, k±+imδ±, appear at higher loop orders).

The regulators are related by

δ+ =
∆+

p−
, δ− =

∆−

p̄+
. (B.19)

When working with ∆± as arising in the full theory, the soft function can be written as [113]

lnSqEIS = Rs1(αs, Lb) +Rs2(αs, Lb) ln
∆+∆−

Q2µ2
. (B.20)

However, the Q2 dependence appearing in S here is artificial, as it is the δ± regulators that

are the fundamental Wilson line regulators. Using eq. (B.19) together with p̄+p− = Q2,

one can equivalently write this as

lnSqEIS

(
bT , ε,

√
δ+δ−

)
= Rs1(αs, Lb) +Rs2(αs, Lb) ln

δ+δ−

µ2
(B.21)

= Rs1(αs, Lb) +Rs2(αs, Lb) ln
δ−e−yn

µ
+Rs2(αs, Lb) ln

δ+e+yn

µ
,

where yn is an arbitrary parameter that cancels between the two logarithms. Eq. (B.21)

allows one to split the soft function into a “left-moving” and “right-moving” component,9

SqEIS

(
bT , ε,

√
δ+δ−

)
=
√
SqEIS(bT , ε, δ−e−yn)

√
SqEIS(bT , ε, δ+e+yn) , (B.23)

9Eq. (B.23) might seem to differ from eq. (16) in ref. [113], where the soft function is expressed as

S

(
bT ,

∆−

p+
,

∆+

p̄−

)
=

√
S

(
bT ,

∆−

p̄+
, α

∆−

p−

)√
S

(
bT ,

1

α

∆+

p̄+
,

∆+

p−

)
. (B.22)

Since S only depends on the product of the last two arguments, one can identify α = e2Y−2yn and use that

α(∆−)2/Q2 = α(δ−e−Y )2 = (δ−e−yn)2 and (∆+)2/(αQ2) = (δ+eY )2/α = (δ+eyn)2 to show that eq. (B.22)

is equivalent to our eq. (B.23).
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and it is this form of SqEIS that was used in NNLO calculations in refs. [137, 138, 144]. The

two factors in eq. (B.23) are then combined with the n-collinear and n̄-collinear matrix

elements, respectively. Since with the δ regulator the soft zero-bin subtractions on the two

beam functions are identical to dividing by the original soft function, the soft subtraction

amounts to dividing by
√
S. For the n-collinear case, one identifies

1/τ = ln(δ−e−yn) ,

Bq(x,~bT , ε, τ, ζ) = BEIS
q

(
x,~bT , ε,∆

−/Q2
)

= BEIS
q (x,~bT , ε, δ

−/(xP−)
)
,

∆q
S(bT , ε, τ) =

1√
SqEIS

(
bT , ε, δ−e−yn

) , (B.24)

where BEIS
q ≡ Jn appears in eq. (12) in ref. [113]. Once again, only the combination

1/τ − ln
√
ζ = ln(δ− e−yn)− ln(xP−e−yn) = ln

[
δ−/(xP−)

]
(B.25)

arises in Bq, such that the functional dependence of Bq and Jn in eq. (B.24) agree.

One-loop results. The unsubtracted beam function has first been calculated in ref. [112],

where the δ regulator also acts as an IR regulator. The corresponding result with dimen-

sional regularization as the IR regulator can be extracted from ref. [144],

J (1)
n (x,~bT , ε, δ

−/p−) =
αsCF

2π

[
−
(

1

ε
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1− x)

[(
1

ε
+ Lb

)(
3

2
+ 2 ln

δ−

p−

)
+

1

2

]
. (B.26)

The one-loop soft function is given by [113]

S
q (1)
EIS

(
bT , ε, δ

−e−yn
)

=
αsCF

2π

[
− 2

ε2
− 2

(
1

ε
+ Lb

)
ln

µ2

(δ−e−yn)2
+ L2

b +
π2

6

]
. (B.27)

According to eqs. (B.24) and (B.1), the TMDPDF at NLO follows as

fTMD (1)
q (x,~bT , µ, ζ) = J (1)

n (x,~bT , ε, δ
−/p−)− 1

2
S
q (1)
EIS

(
bT , ε, δ

−e−yn
)
, (B.28)

which reproduces the result in eq. (B.3) with ζ as given in eq. (B.2).

B.3 η regulator

The η regulator [115, 124] modifies collinear and soft Wilson lines in momentum space as

W =
∑

perms

exp

[
−gsw2 |n̄ · Pg|−η

ν−η
n̄ ·An
n̄ · P

]
, (B.29)

Sn =
∑

perms

exp

[
−gsw

|2Pg3|−η/2
ν−η/2

n ·As
n · P

]
, (B.30)
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where the momentum operator P picks up the momentum of the gluon fields A, and η is

the rapidity regulator with an associated rapidity scale ν. While the authors of ref. [115]

separately renormalize the beam and soft functions in η, one can trivially define a TMDPDF

in the form of eq. (B.1) by combining the bare beam and soft functions, in which case the

dependence on η and ν cancels,

fTMD
q (x,~bT , µ, xP

−) = lim
ε→0
η→0

Zuv(µ, xP−, ε)Bq(x,~bT , ε, η, xP−)
√
Sq(bT , ε, η) , (B.31)

where Bq ≡ BCJNR
q and Sq ≡ SqCJNR are the beam and soft function as defined in ref. [115].

For this regulator, the soft zero-bin subtractions vanish, so ∆q
S =

√
SqCJNR only involves a

√
Sq in the numerator. For this regulator the correspondence with our notation is

η = τ , ζ = (xP−)2 , yn = 0 . (B.32)

The choice of fixing yn = 0 arises because of the symmetric treatment of the two beam

functions, but can be relaxed as in the other definitions if so desired.

In eq. (B.31), we combined bare beam and soft functions as usual for TMDPDFs.

However, in practice the η regulator is often used to define rapidity-renormalized beam

and soft functions by first expanding them individually about η → 0 and ε → 0 and then

absorbing poles in η and ε through separate MS counterterms [115],

BCJNR
q (x,~bT , µ, xP

−/ν) = ZCJNR
B (bT , µ, ν, ε, η, xP

−)BCJNR
q (x,~bT , ε, η, xP

−) ,

SqCJNR(bT , µ, ν) = ZCJNR
S (bT , µ, ν, ε, η)SqCJNR(bT , ε, η) . (B.33)

When combined these counterterms give

ZCJNR
B (bT , µ, ν, ε, η, xP

−)
√
ZCJNR
S (bT , µ, ν, ε, η) = Zuv(µ, xP−, ε) . (B.34)

Using the fact the bare BCJNR
q and SqCJNR are µ and ν independent yields the µ RGEs

µ
d

dµ
BCJNR
q (x,~bT , µ, xP

−/ν) = γqB(µ, xP−)BCJNR
q (x,~bT , µ, xP

−/ν) ,

µ
d

dµ
SqCJNR(bT , µ, ν) = γqS(µ, ν)SqCJNR(bT , µ, ν) , (B.35)

and the rapidity RGEs

ν
d

dν
BCJNR
q (x,~bT , µ, xP

−/ν) = −1

2
γqν(µ, bT )BCJNR

q (x,~bT , µ, xP
−/ν) ,

ν
d

dν
SqCJNR(bT , µ, ν) = γqν(µ, bT )SqCJNR(bT , µ, ν) . (B.36)

Using eqs. (B.31), (B.33) and (B.34) gives the renormalized TMDPDF in terms of the

renormalized beam and soft functions as

fTMD
q (x,~bT , µ, ζ) = BCJNR

q

(
x,~bT , µ,

√
ζ/ν
)√

SqCJNR(bT , µ, ν) , (B.37)
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where the ν independence cancels on the right hand side, and we remind the reader that

here ζ = (xP−)2. Since BCJNR
q only depends on the ratio xP−/ν, the Collins-Soper kernel

can be extracted as

γqζ = 2
d ln fTMD

q

d ln ζ
= 2

d lnBCJNR
q

d ln ζ
= −

d lnBCJNR
q

d ln ν
=

1

2

d lnSqCJNR

d ln ν
. (B.38)

This also shows that the rapidity anomalous dimension of ref. [115] is related to the Collins-

Soper kernel by γqν(µ, bT ) = 2γqζ (µ, bT ).

One-loop results. The bare quark-quark matrix element for the beam function is not

explicitly given in the literature, but can easily be calculated analogous to the gluon beam

function in ref. [115]. We find

BCJNR (1)
q (x,~bT , ε, η) =

αsCF
2π

[
−
(

1

ε
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1− x)

[(
1

ε
+ Lb

)(
2

η
+

3

2
− 2 ln

xP−

ν

)
+

1

2

]
. (B.39)

The NLO soft function using this regulator can be found in refs. [115, 143],

S
q (1)
CJNR(bT , ε, η) =

αsCF
2π

[
2

ε2
+ 4

(
1

ε
+ Lb

)(
−1

η
+ ln

µ

ν

)
− L2

b −
π2

6

]
. (B.40)

Combining the bare functions as in eq. (B.31) gives the NLO TMDPDF as

fTMD (1)
q (x,~bT , µ, ζ) = BCJNR (1)

q (x,~bT , ε, η) +
1

2
SCJNR (1)
q (bT , ε, η) , (B.41)

which yields eq. (B.3) with ζ = (xP−)2. Here, the poles in η manifestly cancel.

Alternatively, one can separately UV and rapidity renormalize beam and soft functions

by absorbing the poles in η and ε in separate counterterms. The renormalized functions

are given by

BCJNR (1)
q

(
x,~bT , µ, xP

−/ν
)

=
αsCF

2π

[
−
(

1

ε
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1− x)

[
Lb

(
3

2
− 2 ln

xP−

ν

)
+

1

2

]
, (B.42)

S
q (1)
CJNR(bT , µ, ν) =

αsCF
2π

[
−L2

b + 4Lb ln
µ

ν
− π2

6

]
, (B.43)

where the remaining 1/ε pole in eq. (B.42) is of infrared origin. Combining these as in

eq. (B.37) yields the UV-renormalized TMDPDF eq. (B.5) with ζ = (xP−)2.

B.4 Exponential regulator

The exponential regulator [127] has been designed to connect the TMD soft function to the

threshold soft function, which enabled it to be calculated up to O(α3
s) [136]. The regulator

introduces a factor

exp

[
−k0τe−γE

]
(B.44)
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into the phase space of real emissions. One then takes the τ → 0 limit, keeping only

divergent terms. Identifying τ = ν−1, one can connect this to the η regulator shown above.

Here, we will keep τ for clarity.

Similar to the η regulator, in the exponential regulator one typically combines UV-

and rapidity-renormalized beam and soft functions. A key difference is that the exponen-

tial regulator requires a zero-bin subtraction, which is equivalent to dividing by the soft

function. Thus identifying

∆q
S(bT , ε, τ) =

1√
SqLNZ(bT , ε, τ)

, (B.45)

one obtains the TMDPDF. Similar to our discussion for the η regulator this can be done

either by first combining and then renormalizing the bare matrix elements, or by combining

renormalized beam and soft functions.

One-loop results. The beam function is only given after UV renormalization in

ref. [154],

BLNZ (1)
q (x,~bT , µ, νQ) =

αsCF
2π

[
−
(

1

ε
+ Lb

)
Pqq(x) + (1− x)

]1

+

Θ(1− x)Θ(x)

+
αsCF

2π
δ(1− x)

[
−L2

b + Lb

(
3

2
− ln

Q2ν2

µ4

)
+

1

2
− π2

6

]
. (B.46)

The renormalized NLO soft function in this scheme is given by [127]

S
(1)
LNZ(bT , µ, ν) =

αsCF
2π

[
−L2

b + 2Lb ln
µ2

ν2
− π2

6

]
. (B.47)

Combining the renormalized functions gives the NLO TMDPDF as

fTMD (1)
q (x,~bT , µ, ζ) = BLNZ (1)

q (x,~bT , µ, νQ)− 1

2
S

(1)
LNZ(bT , µ, ν) , (B.48)

which reproduces eq. (B.5) with ζ = Q2.

B.5 Analytic regulator

The analytic regulator as introduced in ref. [109] for TMDs raises propagators including n

and n̄-collinear momenta to a power,10

n−collinear :
1

−(p− k)2
→ ν2α

1

[−(p− k)2]1+α
, (B.49)

n̄−collinear :
1

−(p− k)2
→ ν2β

2

[−(p− k)2]1+β
, (B.50)

where α and β are distinct parameters. One then has to consistently expand first in

β → 0 and then in α → 0, or vice versa. Since this breaks the n ↔ n̄ symmetry, it

10In practice, one can also introduce a factor (ν/n · k)α for each unresolved final-state parton with

momentum k, as suggested in ref. [130] and employed in the NNLO calculation in ref. [142].

– 49 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
7

regulates all rapidity divergences. However, the regulator does not act symmetrically in

the n and n̄-collinear beam function and thus yields two distinct bare quantities BBN
q n and

BBN
q n̄ . Following ref. [109], we give all results for expanding first in β → 0 and then in

α→ 0, such that rapidity divergences are regulated by α alone.

A particular feature of this regulator is that the soft function is unity all orders,

SBN
q (bT , ε, α) ≡ 1 , (B.51)

as all loop corrections are scaleless and vanish. This implies that rapidity divergences, i.e.

poles in 1/α, cannot cancel between a single beam function and the soft factor, and hence

one cannot define a rapidity-finite TMDPDF as in eq. (B.1). Instead, divergences in α only

cancel in the product, so one has to define the TMDPDFs through the limit

lim
ε→0
α→0

[
BBN
q n (x1,~bT , ε, α)BBN

q n̄ (x2,~bT , ε, α)SBN
q (bT , ε, α)

]
=

(
b2TQ

2

b20

)−Fqq̄(µ,bT )

BBN
q n (x1,~bT , µ)BBN

q n̄ (x2,~bT , µ) . (B.52)

Here, Fqq̄(µ, bT ) = −γqζ (µ, bT ) is the so-called collinear anomaly coefficient [109], which

exponentiates the rapidity logarithms. Note that the TMDPDFs on the right hand side of

eq. (B.52) do not have an explicit ζ dependence, as ζa = ζb = Q has already been chosen

to fully exponentiate all rapidity logarithms.

One-loop results. The one-loop beam functions have been calculated in [109]. As dis-

cussed, the n and n̄-collinear functions take different forms due to the regulator breaking

the n↔ n̄ symmetry. The one-loop result for the matrix element in an on-shell quark state

can be extracted from ref. [109] in the form

BBN (1)
q n (x1,~bT , ε, α) =

αsCF
2π

[
−
(

1

ε
+ Lb

)
Pqq(x1) + (1− x1)

]1

+

Θ(1− x1)Θ(x1)

+
αsCF

2π
δ(1− x1)

[
2

ε2
−
(

1

ε
+ Lb

)(
−3

2
+

2

α
− 2 ln

µ2

ν2

)
− L2

b −
π2

6
+

1

2

]
, (B.53)

BBN (1)
q n̄ (x2,~bT , ε, α) =

αsCF
2π

[
−
(

1

ε
+ Lb

)
Pqq(x2) + (1− x2)

]1

+

Θ(1− x2)Θ(x2)

+
αsCF

2π
δ(1−x2)

[
−
(

1

ε
+ Lb

)(
−3

2
− 2

α
+ 2 ln

Q2

ν2

)
+

1

2

]
. (B.54)

Only the product of the two beam functions is meaningful, as the poles in α and the ν

dependence cancel, and one obtains the product of the two TMDPDFs,[
BBN (1)
q n (x1,~bT , ε, α)BBN (1)

q n̄ (x2,~bT , ε, α)
]
O(αs)

=
αsCF

2π

{
δ(1− x2)

[
−
(

1

ε
+ Lb

)
Pqq(x1) + (1− x1)

]1

+

Θ(1− x1)Θ(x1) + (x1 ↔ x2)

}
+
αsCF

2π
δ(1− x1)δ(1− x2)

[
2

ε2
+

(
1

ε
+ Lb

)(
3 + 2 ln

µ2

Q2

)
− L2

b + 1− π2

6

]
. (B.55)
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One can easily check that the same is obtained for fTMD
q (x1,~bT , ε, ζa)f

TMD
q (x2,~bT , ε, ζb)

using the result in eq. (B.3) together with ζaζb = Q4.

C Calculation of the quasi beam function

We calculate the spin-averaged quasi beam function by evaluating eq. (3.19) with an on-

shell quark with momentum Pµ = (P z, 0, 0, P z), and carry out the Fourier transform to

momentum space only for the z momentum, while the transverse component is kept in

position space,

q̃n(x,~bT , P
z) =

∫
dbz

2π
ei(xP z)bz 1

2

∑
spins

〈
q(P )

∣∣∣∣q̄(bµ)P exp

[
ig

∫
γ

d~s · A(~s )

]
γλ

2
q(0)

∣∣∣∣q(P )

〉
,

(C.1)

where for compactness we suppress the dependence of q̃n on ε and L. Here λ = 0 or λ = 3,

and the path ordered exponential represents the Wilson line stretching along the path γ,

as illustrated in figure 5. The explicit parameterization is given by three segments

γ1(s) =

 0
~0T
Ls

 , γ2(s) =

 0

s~bT
L

 , γ3(s) =

 0
~bT

L+ s(bz − L)

 , s ∈ [0, 1] . (C.2)

In Feynman gauge, there are four topologies contributing to the one-loop beam function,

shown in figure 11. The sail and wave function diagram each have a mirror diagram.

Since we work in pure dimensional regularization with on-shell quarks, the wave function

renormalization diagram is scaleless and vanishes. In practice, it converts IR poles into UV

poles, which is crucial for the renormalization of the beam function.

The general strategy of the NLO calculation is as follows. First, we write down the in-

tegral fully in momentum space and introduce Feynman parameters. The resulting integral

over the loop momentum q can then be reduced to a set of master integrals, defined as

I0(l) =

∫
ddq

(2π)d
e−i~qT ·~bT

(q2 + i0)2
δ(qz − l) =

i

16π3
(2π)

1
2

+εK 1
2

+ε(bT |l|)
(
bT
|l|

) 1
2

+ε

, (C.3)

I1(l) =

∫
ddq

(2π)d
δ(qz − l)
(q2 + i0)2

=
i

16π2

(4π)ε√
π

Γ

(
1

2
+ ε

)
|l|−1−2ε , (C.4)

I2(l) =

∫
ddq

(2π)d
e−i~qT ·~bT

(q2 + i0)2
=

i

16π2
(b2Tπ)εΓ(−ε) . (C.5)

Here, Kn(x) is the modified Bessel function of the second kind. We need only the following

integrals over the Feynman parameter y,

µ2ε
0 I

a
0 =

∫ 1

0
dy I0[(x− y)P z]

=
−i

16π2

1

P z

[(
1

ε
+ ln

b2Tµ
2

b20

)
Θ(1− x)Θ(x)

+ sgn(x)Γ
(
0, bTP

z|x|
)

+ sgn(1− x)Γ
(
0, bTP

z|1− x|
)]
, (C.6)
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µ2ε
0 I

b
0 =

∫ 1

0
dy (x− y)I0[(x− y)P z] =

−i

16π2

1

P z
e−bTP

z |x| − e−bTP z |1−x|
bTP z

, (C.7)

µ2ε
0 I

a
1 =

∫ 1

0
dy I1[(x− y)P z]

=
−i

16π2

1

P z

{(
1

ε
+ ln

b2Tµ
2

b20

)
Θ(1− x)Θ(x)− sgn(x)

[
γE + ln(bTP

z|x|)
]

− sgn(1− x)

[
γE + ln(bTP

z|1− x|)
]}

, (C.8)

µ2ε
0 I

b
1 =

∫ 1

0
dy (x− y)I1[(x− y)P z] =

−i

16π2

1

P z
(
|1− x| − |x|

)
, (C.9)

where µ0 is the MS scale and µ is the MS scale, and x is the momentum fraction carried

by the parton, not a Feynman parameter. Finally, we introduce plus distributions taking

into account that prior to taking the physical limit, the quasi beam function has support

x ∈ [−∞,∞], rather than the physical support x ∈ [0, 1]. For the calculation, it is most

convenient to define the plus distribution such that the integral over all x vanishes,[
h(x)

]±∞
+

= h(x) , x 6= 1 ,∫ ∞
−∞

dx

[
h(x)

]±∞
+

= 0 . (C.10)

For functions with physical support x ∈ [0, 1], this naturally reduces to the standard plus

distribution. Any integrable expression h(x) can be written as a distribution using

h(x) =

[
h(x)

]±∞
+

+ δ(1− x)

∫ ∞
−∞

dx′ h(x′) . (C.11)

C.1 Vertex correction

The vertex correction figure 11(a) is given by

q̃(a)
n (bµ) = −ig2CFµ

2ε
0

1

2

∑
S

ūS(P )

[∫
ddk

(2π)d
γµ/kγλ/kγµ

2k4(P − k)2
e−i~k·~b

]
uS(P )

= −ig2CFµ
2ε
0 (d− 2)

∫
ddk

(2π)d

[
P λ − kλ
k2(P − k)2

+
kλ

k4

]
e−i~k·~b . (C.12)

Note that the second term in square brackets vanishes for λ = 0, as the integrand is odd

in k0. The Fourier transform w.r.t. bz can be carried out trivially,

q̃(a)
n (x,~bT , P

z) = −ig2CFµ
2ε
0 (d− 2)

∫
ddk

(2π)d

[
P λ − kλ
k2(P − k)2

+
kλ

k4

]
e−i~kT ·~bT δ(xP z − kz) .

(C.13)

Introducing Feynman parameters, we obtain

q̃(a)
n (x,~bT , P

z) = −ig2CFµ
2ε
0 (d− 2)

∫ 1

0
dy

∫
ddq

(2π)d
e−i~qT ·~bT

q4

{
(1− y)P λδ

[
(x− y)P z − qz

]
+ δλzqz

[
δ(xP z − qz)− δ

[
(x− y)P z − qz

]]}
. (C.14)
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p p

(~0T,0) (~bT,b
z)

kk

(a) Vertex diagram

p p

(~0T,0) (~bT,b
z)

k

(b) Sail topology

p p

(~0T,0) (~bT,b
z)

k

(c) Wilson line self energy (tadpole)

p p

(~0T,0) (~bT,b
z)

k

(d) Wave function renormalization

Figure 11. One-loop diagrams contributing to the quasi TMD beam function in Feynman gauge,

up to mirror diagrams. The double line represents the Wilson line.

Using eqs. (C.6) and (C.7), this can be expressed in terms of the master integrals,

q̃(a)
n (x,~bT , P

z) = −ig2CFµ
2ε
0 (d− 2)P z

[
(1− x)Ia0 + (1− δλz)Ib0 + δλz xI0(xP z)

]
. (C.15)

Next we use eq. (C.11) to rewrite eq. (C.15) in terms of a plus distribution. Note that the

integral of the second line in eq. (C.14) vanishes when integrated over all x and thus does

not yield a boundary term. We obtain

q̃(a)
n (x,~bT , P

z) =− ig2CFµ
2ε
0 (d− 2)P z

[
(1− x)Ia0 + (1− δλz)Ib0 + δλz xI0(xP z)

]±∞
+

− ig2CFµ
2ε
0 (d− 2)δ(1− x)

I2

2
. (C.16)

Plugging in the master formulas and expanding in ε gives the final result

q̃(a)
n (x,~bT , P

z) =
αsCF

4π

(
1

ε
+ ln

b2Tµ
2

b20
− 1

){[
2(x− 1)Θ(1− x)Θ(x)

]1

+

− δ(1− x)

}
+ ∆q̃(a)

n (x,~bT , P
z) , (C.17)

where we singled out the terms with physical support x ∈ [0, 1]. These will be crucial to

recover the collinear singularity of the standard PDF. The contribution with unphysical

support x ∈ [−∞,∞] is given by

∆q̃(a)
n (x,~bT , P

z) = −αsCF
2π

[
(1− δλz)e

−bTP z |x| − e−bTP z |1−x|
bTP z

+ |1− x|Γ
(
0, bTP

z|1− x|
)
− |x|Γ

(
0, bTP

z|x|
)

+ sgn(x)Γ
(
0, bTP

z|x|
)
− δλzsgn(x)e−bTP

z |x|
]±∞

+

. (C.18)
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Figure 12. Sail diagrams contributing to the quasi beam function at NLO.

The first line in eq. (C.18) is clearly suppressed for bTP
z � 1. The second line in eq. (C.18)

also vanishes in this limit, because the incomplete Gamma function behaves as

Γ(0, z)
z→0≈ − ln(z)− γE , Γ(0, z)

z→∞≈ 1

z
e−z , (C.19)

and the logarithmic enhancement for small arguments is compensated by the prefactor.

The third line of eq. (C.18) yields a power-suppressed contribution when convoluted with

the TMDPDF, see appendix C.4.

C.2 Sail diagrams

The two sail diagrams are shown in figure 12. The Feynman rule for the Wilson line

following from eq. (C.1) is given by

igta
∫ 1

0
ds γ′ν(s)e−ik·γ(s) , (C.20)

where k is the momentum flowing into the Wilson line and γ the Wilson line path, given

in eq. (C.2). The two diagrams prior to Fourier transforming are given by

q̃(b)
n (bµ) =− g2CFµ

2ε
0

1

2

∑
S

∫ 1

0
ds γ′(s)µ

∫
ddk

(2π)d
ūS(P )

γλ/kγµ

2k2(P − k)2
uS(P ) eiP ·b−i(P−k)·γ(s)

− g2CFµ
2ε
0

1

2

∑
S

∫ 1

0
ds γ′(s)µ

∫
ddk

(2π)d
ūS(P )

γµ/kγλ

2k2(P − k)2
uS(P ) eik·b+i(P−k)·γ(s) .

(C.21)

After averaging over spin, they can be combined into

q̃(b)
n (bµ) = − g2CFµ

2ε
0

∫
ddk

(2π)d
P λkµ − (P · k)gλµ + Pµkλ

k2(P − k)2

×
∫ 1

0
ds γ′(s)µ

[
eiP ·b−i(P−k)·γ(s) + eik·b+i(P−k)·γ(s)

]
. (C.22)

For both λ = 0 and λ = z, the numerator can be simplified to

P λkµ − (P · k)gλµ + Pµkλ = P z
[
kµ + kzgµ0 − k0gµz

]
→ P z(kµ − k0gµz) , (C.23)
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where the last step employs that the gµ0 piece vanishes when contracted with the spatial

path γ′(s)µ. Introducing Feynman parameters and dropping the terms linear in q0 gives

q̃(b)
n (bµ) = −g2CFµ

2ε
0 P

z

∫ 1

0
dy

∫
ddq

(2π)d
qµ − 2yP zgµz

q4

∫ 1

0
ds γ′(s)µ

×
[
eiP ·bei[q−P (1−y)]·γ(s) + ei(q+yP )·be−i[q−P (1−y)]·γ(s)

]
. (C.24)

Next, we use the relation

[q · γ′(s)] e±i[q−P (1−y)]·γ(s) =

(
∓i

d

ds
+ (1− y)[P · γ′(s)]

)
e±i[q−P (1−y)]·γ(s) (C.25)

to replace the qµ piece in the numerator,

q̃(b)
n (bµ) = ig2CFµ

2ε
0 P

z

∫ 1

0
dy

∫
ddq

(2π)d
1

q4

[
eiP ·bei[q−P (1−y)]·γ(s) − ei(q+yP )·be−i[q−P (1−y)]·γ(s)

]s=1

s=0

+ g2CFµ
2ε
0 (P z)2

∫ 1

0
dy

∫
ddq

(2π)d
1 + y

q4

∫ 1

0
ds γ′(s)z

×
[
eiP ·bei[q−P (1−y)]·γ(s) + ei(q+yP )·be−i[q−P (1−y)]·γ(s)

]
≡ q̃(b,1)

n (bµ) + q̃(b,2)
n (bµ) . (C.26)

Since the first line in eq. (C.26) is much simpler than the second line, we have split q̃
(b)
n

accordingly. Note that the second line in eq. (C.26) only involves γ′(s)z. All contributions

from the transverse gauge link are thus fully captured in the first line, which becomes

q̃(b,1)
n (bµ) = 2ig2CFµ

2ε
0 P

z

∫ 1

0
dy

∫
ddq

(2π)d
1

q4
e−i~qT ·~bT−i(qz+yP z)bz . (C.27)

Taking the Fourier transform of this and pulling it inside a plus distribution yields

q̃(b,1)
n (x,~bT , P

z) = 2ig2CFµ
2ε
0 P

z
[
Ia0

]±∞
+

+ 2ig2CFµ
2ε
0 δ(1− x)I2 . (C.28)

The second contribution to eq. (C.26) is more involved. We first simplify the exponentials

by letting y → 1− y and then q → q + yP ,

q̃(b,2)
n (bµ) = g2CFµ

2ε
0 (P z)2

∫ 1

0
dy

∫
ddq

(2π)d
2− y

(q + yP )4

∫ 1

0
ds γ′(s)zeiP ·b

[
eiq·γ(s) + eiq·be−iq·γ(s)

]
.

(C.29)

To proceed, we need the explicit parameterizations for the Wilson line path γ, eq. (C.2).

Evaluating all line integrals and taking the Fourier transform w.r.t. bz, eq. (C.29) yields

q̃(b,2)
n (x,~bT , P

z) = −ig2CFµ
2ε
0 (P z)2

∫ 1

0
dy

∫
ddq

(2π)d
2− y

(q + yP )4

×
[
δ[P z(1− x)]

2− e−iqzL(1− e−i~qT ·~bT )

qz

− δ[qz + P z(1− x)]
2− eiqzL(1− ei~qT ·~bT )

qz
e−i~qT ·~bT

]
. (C.30)
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The first term in brackets has a singularity at qz = 0. However, when integrating over x,

the singularity cancels with the second line, so it can be regulated by introducing the plus

distribution prior to evaluating the q integration,

q̃(b,2)
n (x,~bT , P

z) =
[
q̃(b,2)
n (x 6= 1,~bT , P

z)
]±∞

+
+ δ(1− x)

∫
dx′ q̃(b,2)

n (x′,~bT , P z) . (C.31)

For x 6= 1, this can be expressed using our master integrals,

q̃(b,2)
n (x 6= 1,~bT , P

z) = −2ig2CFµ
2ε
0 P

z

[
1 + x

1− xI
a
0 −

Ib0
1− x

]
+ ig2CFµ

2ε
0 P

z e
−iP zL(1−x)

1− x
[
(1 + x)(Ia0 − Ia1 )− (Ib0 − Ib1)

]
. (C.32)

The δ(1− x) term is fixed by integrating q̃
(b,2)
n (x,~bT , P

z) over x,

∫
dx q̃(b,2)

n (x,~bT , P
z) = −ig2CFµ

2ε
0 P

z

∫ 1

0
dy

∫
ddq

(2π)d
2− y

(q + yP )4
(1− e−i~qT ·~bT )

× 2− e−iqzL − eiqzL

qz
. (C.33)

Here, the finite L terms are crucial to regulate the integral at qz = 0, which makes the

integral IR finite. Note that due to the factor 1/qz, the above integral is UV finite, so we

can evaluate the integral in d = 4 dimensions, which after some manipulations yields

∫
dx q̃(b,2)

n (x,~bT , P
z) =

g2CF
8π2

∫ LP z

0
dv ln

(
1 +

b2T (P z)2

v2

)
sin(v) + v[cos(v)− 2]

v2
. (C.34)

We have not been able to obtain a closed form for this integral. However, it is clearly

convergent for v → 0 and v → ∞, so we can take the LP z → ∞ limit first. To cleanly

extract the logarithmic dependence on P z, take∫
dx q̃(b,2)

n (x,~bT , P
z)

=
g2CF
8π2

∫ LP z

0
dv

∫ 1

0
dy (y − 2) ln

(
1 +

b2TP
2

v2

)
sin(vy)

≈ g2CF
bTP

z

16π3/2

∫ 1

0
dy (y − 2)G2,2

2,4

(
1

4
b2TP

zy2

∣∣∣∣ 1
2 ,

1
2

1
2 ,

1
2 ,−1

2 , 0

)

= g2CF
bTP

z

16π3/2

[
2

b2T (P z)2
G2,2

2,4

(
b2TP

2
z

4

∣∣∣∣ 3
2 ,

3
2

3
2 ,

3
2 , 0,

1
2

)
−G2,3

3,5

(
b2TP

2
z

4

∣∣∣∣ 1
2 ,

1
2 ,

1
2

1
2 ,

1
2 ,−1

2 ,−1
2 , 0

)]

=
−g2CF
16π2

[(
ln
b2Tµ

2

b20
+ ln

(2P z)2

µ2

)2

− 2 ln
b2Tµ

2

b20
− 2 ln

(2P z)2

µ2
+ 4

]
. (C.35)
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The full expression for the sail diagram, eq. (C.26), is obtained by adding eqs. (C.28)

and (C.31),

q̃(b)
n (x,~bT , P

z) = ig2CFµ
2ε
0 P

z

[−4xIa0
1− x +

2Ib0
1− x

+
e−iP zL(1−x)

1− x
[
(1 + x)(Ia0 − Ia1 )− (Ib0 − Ib1)

] ]±∞
+

+ 2ig2CFµ
2ε
0 δ(1− x)I2 + δ(1− x)

∫
dx q̃(b,2)

n (x,~bT , P
z) . (C.36)

Using the approximate result eq. (C.35), but keeping all master integrals exact, we obtain

q̃(b)
n (x,~bT , P

z) =
αsCF

2π

[ −2x

1− x

(
1

ε
+ ln

b2Tµ
2

b20

)
Θ(1− x)Θ(x)

]1

+

+
αsCF

2π
δ(1− x)

[
1

ε
− 1

2
ln2 b

2
Tµ

2

b20
− ln

b2Tµ
2

b20
ln

(2P z)2

µ2
+ 2 ln

b2Tµ
2

b20

− 1

2
ln2 (2P z)2

µ2
+ ln

(2P z)2

µ2
− 2

]
+ ∆q̃(b)

n (x,~bT , P
z) , (C.37)

where we have singled out the terms with unphysical support x ∈ [−∞,∞],

∆q̃(b)
n (x,~bT , P

z)

= − αsCF
2π

[
2|x|

1− xΓ
(
0, bTP

z|x|
)

+
2x

|1− x|Γ
(
0, bTP

z|1− x|
)]±∞

+

+
αsCF

2π

[
e−bTP

z |x| − e−bTP z |1−x|
bTP z(1− x)

(
1− 1

2
e−iP zL(1−x)

)]±∞
+

+
αsCF

4π

[
e−iP zL(1−x) 1 + x

1− xsgn(x)

(
Γ(0, bTP

z|x|) + γE + ln(P zbT |x|)
)]±∞

+

+
αsCF

4π

[
e−iP zL(1−x) 1 + x

|1− x|

(
Γ(0, bTP

z|1− x|) + γE + ln(P zbT |1− x|)
)]±∞

+

− αsCF
4π

[
e−iP zL(1−x)

1− x
(
|x| − |1− x|

)]±∞
+

. (C.38)

C.3 Wilson line self energy

The general expression for the Wilson line self energy, figure 11(c), in position space is

given by

q̃(c)
n (bµ) = ig2CFP

ze−ibzP z × 1

2

∫ 1

0
ds

∫ 1

0
dt [γ′(s) · γ′(t)]× µ2ε

0

∫
ddk

(2π)d
eik·[γ(s)−γ(t)]

k2 + i0

=
αsCF

2π
P ze−ibzP z µ2ε

0 π
εΓ(1− ε)

∫ 1

0
ds

∫ 1

0
dt γ′(s) · γ′(t)

[
−[γ(s)− γ(t)]2

]−1+ε

,

(C.39)
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(~bT,L)(~bT,b
z)

(~0T,L)(~0T,0)

(a)

(~bT,L)(~bT,b
z)

(~0T,L)(~0T,0)

(b)

(~bT,L)(~bT,b
z)

(~0T,L)(~0T,0)

(c)

(~bT,L)(~bT,b
z)

(~0T,L)(~0T,0)

(d)

Figure 13. Diagrams contributing to the Wilson line self energy correction to the quasi beam

function. The coordinates illustrate the path in position space. Only diagrams (c) and (d) are

sensitive to the vertex position bz and thus give a nontrivial contribution to the Fourier transform.

where a symmetry factor 1/2 is included and γ is the path of the Wilson line. Since γ

can be split into three straight lines, see figure 5, there are four distinct contributions in

Feynman gauge, shown in figure 13.

Diagrams (a) and (b). are independent of bz, so the Fourier transform w.r.t. bz is trivial

and one can directly evaluate the line integrals similar to the soft function calculation shown

in section 4.3, obtaining

q̃(c,1)
n (x,~bT , P

z) =
αsCF

2π
δ(1− x)

[
1

ε
+ ln

L2µ2

b20
+ 2

]
, (C.40)

q̃(c,2)
n (x,~bT , P

z) =
αsCF

2π
δ(1− x)

[
1

ε
+ ln

b2Tµ
2

b20
+ 2

]
. (C.41)

Diagram (c). depends on bz, so care has to be taken with the Fourier transform. The

position space result is

q̃(c,3)
n (bµ) = −αsCF

2π
P ze−ibzP z (bz − L)2εµ2ε

0 π
εΓ(1− ε) 1

ε(2ε− 1)

=
αsCF

2π
P ze−ibzP z

[
1

ε
+ ln

(bz − L)2µ2

b20
+ 2

]
+O(ε) . (C.42)

The Fourier transform can be obtained using [45]∫
dbz

2π
eibz(x−1)P z(bz − L)2ε =

4εΓ(1/2 + ε)√
πΓ(−ε)(P z)1+2ε

e−iP zL(1−x)

|1− x|1+2ε
(C.43)

as

q̃(c,3)
n (x,~bT , P

z) = −αsCF
2π

[
e−iP zL(1−x)

|1− x|

]±∞
+

+
αsCF

2π
δ(1− x)

[
1

ε
+ ln

µ2L2

b20
+ 2

]
. (C.44)
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As shown in appendix C.4, when convoluted with the TMDPDF the phase term will be

power suppressed. Note that if one were to expand eq. (C.42) in bz � L prior to Fourier

transforming, one would instead obtain

q̃(c,3)
n (x,~bT , P

z)
bz�L

=

∫
dbz

2π
eibzxP z αsCF

2π
P ze−ibzP z

[
1

ε
+ ln

L2µ2

b20
+ 2

]
=

αsCF
2π

δ(1− x)

[
1

ε
+ ln

L2µ2

b20
+ 2

]
, (C.45)

so dropping the phase in eq. (C.44) is equivalent to performing a small-distance expansion

bz � L in position space.

Diagram (d). gives rise to a factor 2 to lift the symmetry factor. Due to the finite

separation ~bT , it is UV finite, so we can let ε→ 0. In position space, we obtain

q̃(c,4)
n (bµ) =

αsCF
2π

P ze−ibzP z
[
−2

bz

bT
arctan

bz

bT
+ 2

L

bT
arctan

L

bT
+ 2

L− bz
bT

arctan
L− bz
bT

− ln
[b2T + L2][b2T + (L− bz)2]

b2T [b2T + (bz)2]

]
. (C.46)

Here, it is quite difficult to take the Fourier transform while keeping the exact bz depen-

dence. It is easier to use the first line of eq. (C.39) and leave the kz integration until

the end,

q̃(c,4)
n (x,~bT , P

z)

= ig2CFP
zµ2ε

0

∫
dbz

2π
ei(x−1)P zbzL(L− bz)

×
∫ 1

0
ds

∫ 1

0
dt

∫
d4k

(2π)4

e−i~kT ·~bT−ikz [L(1−s−t)+tbz ]

k2 + i0

=
αsCF

2π

P z

bT

∫
dbz

2π
ei(x−1)P zbz

∫
dkz e−bT |k

z | (1− eikzL)(e−ibzkz − e−ikzL)

k2
z

=
αsCF

2π

P z

bT

∫
dkz e−bT |k

z | 1− eikzL

k2
z

[
δ[(x− 1)P z − kz]− δ[(x− 1)P z]e−ikzL

]
. (C.47)

While the second line is manifestly finite as kz → 0, the last line has an apparent singularity,

which is as usual treated as a plus distribution,

q̃(c,4)
n (x,~bT , P

z) =

[
q̃(c,4)
n (x 6= 1,~bT , P

z)

]±∞
+

+ δ(1− x)

∫
dx′ q̃(c,4)

n (x′,~bT , P z)

=
αsCF

2π

[
e−bTP

z |1−x|

bTP z
1− e−iP zL(1−x)

(1− x)2

]±∞
+

+
αsCF

2π
δ(1− x)

[
−2 ln

b2T + L2

b2T
+ 4

L

bT
arctan

L

bT

]
. (C.48)

For comparison, the bz � L limit of eq. (C.46) is given by

q̃(c,4)
n (bµ)

bz�L
=

αsCF
2π

P ze−ibzP z
[
−2

bz

bT
arctan

bz

bT
+ 4

L

bT
arctan

L

bT
− ln

(b2T + L2)2

b2T [b2T + (bz)2]

]
.

(C.49)
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This still has a nontrivial bz dependence, so in order to obtain the δ(1−x) term in eq. (C.48)

we further need to expand in bz � bT , giving

q̃(c,4)
n (bµ)

bz�L,bT=
αsCF

2π
P ze−ibzP z

[
4
L

bT
arctan

L

bT
− 2 ln

b2T + L2

b2T

]
=

αsCF
2π

δ(1− x)

[
4
L

bT
arctan

L

bT
− 2 ln

b2T + L2

b2T

]
. (C.50)

Hence dropping the phase term in eq. (C.48) corresponds to a small-distance expansion

bz � L and bz � bT .

Combined result. Combining eqs. (C.40), (C.44) and (C.48), we obtain the full exact

tadpole diagram as

q̃(c)
n (x,~bT , P

z) =
αsCF

2π
δ(1− x)

[
3

ε
+ 3 ln

b2Tµ
2

b20
+ 2 +

2πL

bT

]
+ ∆q̃(c)

n (x,~bT , P
z) , (C.51)

where the terms suppressed for bz � bT � L are

∆q̃(c)
n (x,~bT , P

z) = −αsCF
2π

[
e−iP zL(1−x)

|1− x|

]±∞
+

+
αsCF

2π

[
e−bTP

z |1−x|

bTP z
1− e−iP zL(1−x)

(1− x)2

]±∞
+

+
αsCF

2π
δ(1− x)

[
−2 ln

b2T + L2

L2
+ 4

L

bT

(
arctan

L

bT
− π

2

)
+ 4

]
. (C.52)

C.4 Power-suppressed contributions to the matching kernel

The unphysical contributions eqs. (C.18), (C.38) and (C.52) contain fastly oscillating phases

∼ e−iP zL(1−x), and one may thus expect that these give vanishing contributions as LP z →
∞. However, these phases vanish as x → 1, and furthermore can be associated with

divergences in 1/(1 − x), so they can contribute nontrivially to the quasi beam function.

Thus, in order to neglect them, one has to show that they do not contribute to the matched

TMDPDF in the limit LP z →∞.

The unphysical terms cannot yield a multiplicative matching with the TMDPDF, as

the support of quasi-TMD and TMD do not match. Given our discussion in section 3.1, this

provides a direct indication for the fact that they are power suppressed, and we will show

that this is consistent. Assuming that their contributions satisfy a convolution structure

as in eq. (3.2), then the unphysical part of the matching is given by

∆f̃TMD
i (x,~bT , µ, P

z) =

∫ 1

−1

dy

|y|

[
∆q̃

(
x

y
,~bT , P

z

)]±∞
+

fTMD
i (y,~bT , µ, ζ) ,

∆q̃(x,~bT , P
z) = ∆q̃(a)

n (x,~bT , P
z) + ∆q̃(b)

n (x,~bT , P
z) + ∆q̃(c)

n (x,~bT , P
z) . (C.53)

In the following, we suppress all arguments except x and y as well as all superscripts and

subscripts and the flavor indices for brevity. We also extend the integral in eq. (C.53) to

infinity by implicitly assuming that fTMD(y) = 0 for |y| ≥ 1. Changing the integration

variable in eq. (C.53) from y to x/y, we obtain

∆f̃(x) =

∫ ∞
−∞

dy

|y|
[
∆q̃(y)

]±∞
+

f

(
x

y

)
. (C.54)

– 60 –



J
H
E
P
0
9
(
2
0
1
9
)
0
3
7

Next note that ∆q̃(y) is entirely given as a plus distribution, so we can rewrite eq. (C.54) as

∆f̃(x) =

∫ ∞
−∞

dy
[
∆q̃(y)

]±∞
+

[
1

|y|f
(
x

y

)
− f(x)

]
+ f(x)

∫ ∞
−∞

dy
[
∆q̃(y)

]±∞
+

=

∫ ∞
−∞

dy∆q̃(y)

[
1

|y|f
(
x

y

)
− f(x)

]
, (C.55)

where we can drop the plus prescription from now on, as the term in square bracket cancels

an overall 1/(1− y) divergence.

Let us now consider the case where ∆q̃ is given by an exponential phase factor, a

regular function r(y) and potentially a divergence as y → 1,

[
∆q̃(y)

]±∞
+
∼
[
e−iP zL(1−y) r(y)

1− y

]±∞
+

. (C.56)

For this case, eq. (C.55) becomes

∆f̃(x) ∼ e−iP zL

∫ ∞
−∞

dy eiP zLy r(y)
|y|−1f(x/y)− f(x)

1− y

≡ e−iP zL

∫ ∞
−∞

dy eiP zLy h(y) . (C.57)

The function h(y) is by construction regular as z → 1 due to the subtraction term.

Without giving an exact proof for all functions h(y) appearing at one loop, we can give

strong arguments that eq. (C.57) vanishes as P zL→∞ for all relevant functions h(y). The

strongest criterion to prove this behavior is for functions h that satisfy
∫

dy |h(y)| < ∞,

in which case the Riemann-Lebesgue lemma applies. Typically, this is too restrictive, as

for example h(x) = ln |x| is not integrable, but its Fourier transform is known to vanish as

1/(P zL). A less restrictive and more intuitive argument is that as long as h(y) is sufficiently

smooth such that P zL� |h′(y)|, then the rapid oscillation of the Fourier kernel suppresses

the integral. This holds for all (1 − y)P zL & 1, and thus the contribution of the integral

not suppressed by the exponential phase must be of order 1/(P zL).

All other functions appearing in eqs. (C.18), (C.38) and (C.52) have an explicit suppres-

sion in bTP
z →∞. While they may contain divergences in 1/(1−y), they can be regulated

the same way as the above, after which the result is clearly suppressed by positive powers

of 1/(bTP
z) relative to the physical terms in the matching calculation.

Since all terms in eqs. (C.18), (C.38) and (C.52) give power-suppressed contributions to

the matching, they can be dropped in the final result for the unsubtracted beam function.

Upon adding only the physical contributions from eqs. (C.17), (C.37) and (C.51), one then

obtains eq. (4.2).
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