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Generalization in deep network classifiers trained with the square
loss

Tomaso Poggio and Qianli Liao

Abstract

Square loss has been observed to perform well in classification tasks. However, a theoretical
justification is lacking, unlike the cross-entropy [1] case for which an asymptotic analysis has
been proposed (see [2] and [3] and references therein). Here we discuss several observations
on the dynamics of gradient flow under the square loss in ReLU networks. We show that
convergence to a solution with the absolute minimum norm is expected when normalization
techniques such as Batch Normalization[4] (BN) or Weight Normalization[5] (WN) are
used together with Weight Decay (WD). In the absence of BN+WD, good solutions for
classification may still be achieved because of the implicit bias towards small norm solutions
in the GD dynamics introduced by close-to-zero initial conditions. The main property of
the minimizers that bounds their expected error is the norm: we prove that among all
the close-to-interpolating solutions, the ones associated with smaller Frobenius norms of
the unnormalized weight matrices have better margin and better bounds on the expected
classification error. The theory yields several predictions, including the role of BN and weight
decay, aspects of Papyan, Han and Donoho’s Neural Collapse and the constraints induced by
BN on the network weights.

1 Introduction

1.1 Why square loss

We start from the assumption that an explanation of the ability of deep ReLU networks to be
predictive, requires the identification of a mechanism of complexity control at work during the
training of deep networks.

In the case of exponential-type loss functions such a mechanism has been identified in the
asymptotic margin maximization effect of minimizing exponential-type loss functions [6, 2, 7].
However, this mechanism

• cannot explain the good empirical results that have been recently demostrated using the
square loss[8];

• cannot explain the empirical evidence that convergence for cross-entropy loss minimization
depends on initialization.
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This puzzle motivates our focus in this paper on the square loss.
Here we assume commonly used GD-based normalization algorithms such such as BN (or

WN) together with weight decay (WD), since such mechanisms seem essential for reliably training
deep networks (and were used by [8])[9]. Crucially, our analysis depends on these assumptions1.

1.2 Regression and classification

In our analysis of the square loss, we need to explain when and why regression works well for
classification, since the training minimizes square loss but we are interested in good performance
in classification (for simplicity we consider here binary classification). A few preliminary remarks
are helpful for understanding. Unlike the case of linear networks we expect several global zero
square loss minima corresponding to interpolating solutions (in general degenerate, see [10] and
reference therein). Although all interpolating solutions are optimal solutions of the regression
problem, they will in general have different margins and thus different expected classification
performance. In other words, zero square loss does not imply by itself neither large margin nor
good expected classification. Why and when we expect the solutions of the regression problem to
have large margin? We will show that the bias for large margin interpolating solutions depends
on weight decay and initialization of the weights close to zero. As we will define later more
formally, the function corresponding to a deep network can be written as g(xn) = ρfn where
g(xn) is the output of the network for the training example xn, ρ is the product of the Frobenius
norms of the weight matrices of the network and fn = f(xn) is the output of the normalized
network for the input xn. Notice that if g is a zero loss solution of the regression problem,
then g(xn) = yn, ∀n. This is equivalent to ρfn = yn where fn is the margin for xn. Thus the
norm ρ of a minimizer is inversely related to its average margin (see Appendix C). In fact, for
an exact zero loss solution of the regression problem, the margin is the same for all training
data xn and it is equal to 1

ρeq
. As we will see in the next section, under the assumption of

separability (with BN and weight decay or without), if ρ is small at initialization, it will grow
monotonically under GD until a critical point of the gradient flow dynamics is reached. In other
words, starting from small initialization, GD will explore critical points with ρ growing from zero.
Thus quasi-interpolating solutions with small ρeq (corresponding to the best margin) may be
found before large ρeq quasi-interpolating solutions which have worse margin (and are likely to
be associated with the NTK regime). If the weight decay parameter is large enough, there may
be independence from initial conditions. Otherwise, a small initialization is required, as in the
case of linear networks, though the reason is quite different.

1We know that for overparametrized linear systems GD converges to the minimum norm solution if the weights
are initialized close to zero values.
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2 The dynamics of GD in ρ and Vk

2.1 Notation

We define2 a deep network with L layers with the usual coordinate-wise scalar activation functions
σ(z) : R → R as the set of functions g(W ;x) = (WLσ(WL−1 · · ·σ(W1x))), where the input is
x ∈ Rd, the weights are given by the matrices Wk, one per layer, with matching dimensions. We
sometime use the symbol W as a shorthand for the set of Wk matrices k = 1, · · · , L. There are
no bias terms: the bias is instantiated in the input layer by one of the input dimensions being a
constant. The activation nonlinearity is a ReLU, given by σ(x) = x+ = max(0, x) . Furthermore,

• we define g(x) = ρf(x) with ρ defined as the product of the Frobenius norms of the weight
matrices of the L layers of the network and f as the corresponding network with normalized
weight matrices Vk (because the ReLU is homogeneous [7]);

• in the following we use the notation fn meaning f(xn), that is the ouput of the normalized
network for the input xn;

• we assume ||x|| = 1 implying3 |f(x)| ≤ 1 at convergence;

• the following structural property of the gradient of deep ReLU networks is useful (Lemma
2.1 of [11]): ∑

i,j

∂g(W ;x)
∂W i,j

k

W i,j
k = g(W ;x); (1)

for k = 1, ·, L. Equation 1 can be rewritten as an inner product between Wk as vectors:

(Wk,
∂g(W ;x)
∂Wk

) = g(W ;x) (2)

where Wk is here the vectorized representation of the weight matrices Wk for each of the
different layers. We use this vectorized notation in a few places, hoping it will not confuse
the reader. Notice that Equation 1 must be used with care: the Wk matrix depends on x
and on the network!

• we assume that L ≥ 2. The main reason is to avoid the case of linear networks with a
unique minimizer of the square loss;

• separability is defined as correct classification for all training data, that is ynfn > 0, ∀n.
We call average separability when

∑
ynfn > 0.

2For more details about basic properties, see [7].
3Because f(x) has the form of products of matrices of norm 1 (see Equation 50.
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2.2 Gradient descent

The natural approach to training deep networks for binary classification using the square loss
is to use stochastic gradient descent to find the weights Wk that minimize L = 1

N

∑
n `

2
n =

1
N

∑N
n (g(xn)− yn)2, with y = ±1. In this note, we consider the gradient flow associated with

gradient descent.

2.3 Dynamics under normalization and weight decay

Gradient descent on a modified loss

L =
∑
n

(ρfn − yn)2 + ν
∑
k

||Vk||2 (3)

with ||Vk||2 = 1 is equivalent to “Weight Normalization”, as proved in [7], for deep networks.
This dynamics can be written as ρ̇k = V T

k Ẇk and V̇k = ρSẆk with S = I − VkV T
k . This shows

that if Wk = ρkVk then V̇k = 1
ρk
Ẇk as mentioned in [9].

The key assumption in this paper is that the dynamics above with Lagrange multipliers,
captures the key normalization property of batch normalization, though not all of its details (see
Appendix A and discussions in [7] and also [9]). Thus we assume that for network trained with
BN, following the spirit of the analysis of [9], ρk = 1, ∀k < L and ρL = ρ where L is the number
of layers. It is important to observe here that batch normalization – unlike Weight Normalization
– leads not only to normalization of the weight matrices but also to normalization of each row of
the weight matrices [7] because it normalizes separately the activity of each unit i and thus –
indirectly – the Wi,j for each i separately. This implies that each row i in (Vk)i,j is normalized
independently and thus the whole matrix Vk is normalized (assuming the normalization of each
row is the same 1 for all rows). The equations in the main text involving Vk can be read in this
way, that is restricted to each row. The normalization of each weight matrix yields, as shown in
Appendix 2.3, ν = −

∑
n(ρ2f2

n − ρynfn).
As we will show, the dynamical system associated with the gradient flow of the Lagrangian of

Equation 3 is “singular”, in the sense that normalization is not guaranteed at the critical points.
Regularization is needed, and in fact it is common to use in gradient descent not only batch
normalization but also weight decay. Weight decay (see Appendix E.1) consists of a regularization
term λ||Wk||2 added to the Lagrangian yielding

L =
∑
n

(ρfn − yn)2 + ν
∑
k

||Vk||2 + λρ2. (4)

The associate gradient flow is then the following well-defined dynamical system

ρ̇ = −2[
∑
n

ρ(fn)2 −
∑
n

fnyn]− 2λρ (5)

V̇k = 2ρ
∑
n

[(ρfn − yn)(Vkfn −
∂fn
∂Vk

)] (6)
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where the critical points ρ̇ = 0, V̇k = 0 are not singular for any arbitrarily small λ > 0. For
λ = 0 the zero loss critical point is pathological, since V̇k = 0 even when (Vkfn− ∂fn

∂Vk
) 6= 0 implying

that a un-normalized interpolating solution can satisfy the equilibrium equations. Numerical
simulations show that even for linear degenerate networks convergence is independent of initial
conditions only if λ > 0. In particular, normalization is then effective at ρeq, unlike the λ = 0
case. As a side remark, SGD, as opposed to gradient flow, may help (especially with label noise)
to counter the singularity of the λ = 0 case, even without weight decay, because of the associated
random fluctuations around the pathological critical point.

2.3.1 Equilibrium values

The equilibrium value at ρ̇k = 0 is4 (see Appendix E.1)

ρeq =
∑
n ynfn

λ+
∑
n f

2
n

. (7)

Observe that ρ̇ > 0 if ρ is smaller than ρeq and if average separability holds. Recall also that
zero loss “global” minima (in fact arbitrarily close to zero for small but positive λ) are expected
to exist and be degenerate [10].

If we assume that the loss (with the constraint ||Vk|| = 1) is a continuous function of the Vk,
then there will be at least one minimum of L at any fixed ρ, because the domain Vk is compact.
This means that for each ρ there is at least a critical point5 of the gradient flow of Vk, implying
that for each critical ρ for which ρ̇ = 0, there is at least one critical point of the dynamical system
in ρ and Vk.

Around V̇k = 0 we have

∑
n

(ρfn − yn)∂fn
∂Vk

=
∑
n

(ρfn − yn)(V eq
k fn), (8)

where the terms (ρfn − yn) will be in general different from zero if λ > 0.
In appendix D we describe the interesting dynamics associated with the unnormalized case

(when ρk are all the same ∀k, k = 1, · · · , L). If during GD (with BN), other layers, in addition
to the last, have ρk different from 1 (which happens in practice), the dynamics will show some
of the interesting properties described in appendix D, which favor small initializations to reach
solutions with greater margin. The dynamics of Equation 28 is that the smaller ρt=0 is, the
longer it takes to ρ to grow (this phenomenon becomes stronger with a larger number of layers
L). Thus ρ is constrained by the nonlinear dynamics to be very small for a transient phase T of
GD iterations (T is longer with more layers and longer with smaller initialization).

Appendix E describes a few additional properties of the dynamics of the normalized weights.
The conclusions of this analysis can be summarized in

4 Notice that ρ̇ = 0 is equivalent to
∑

`nfn = 0. Thus the two conditions together – ρ̇ = 0 and V̇k = 0 – imply∑
`n

∂fn
∂Vk

= 0.
5If Vkfn = ∂fn

∂Vk
then V̇k = 0 but this is not a critical point for the system ρ, Vk unless ρ̇ = 0.
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Observation 1 Assuming average separability, and gradient flow starting from ρ = ε with small
ε > 0, ρ grows monotonically until a minimum is reached at which ρeq =

∑
n
ynfn

λ+
∑

n
f2
n
. In the limit

λ = 0, the minimum of the square loss approaches zero, corresponding to exact interpolation of
all the training data.

and

Observation 2 Minimizers with small ρeq correspond to large average margin
∑
ynfn. In

particular, suppose that the gradient flow converges to a ρeq and V eq
k which correspond to zero

square loss. Among such minimizers the one with the smallest ρeq (typically found first, even
for λ = 0, during the GD dynamics when ρ increases from ρ = 0), corresponds to the (absolute)
minimum norm – and maximum margin – solutions.

In general, there may be several critical points of the Vk for the same ρeq and they are
typically degenerate (see references in [12]) with dimensionality W −N , where W is the number
of weights in the network may be degenerate. All of them will correspond to the same norm and
all will have the same margin for all of the training points. The dynamic leading to ρeq and V eq

k

requires an analysis not just of gradient flow but of SGD and of the associated Fokker-Planck
equation.

3 Dynamics
Consider a minimum of GD for which the square loss is close to zero and V̇k = 0. Clearly critical
points of ρ cannot exist if ρ is too small6. Since usually the maximum output of a multilayer
network is << 1, the first critical point for increasing ρ will be when ρ becomes large enough to
allow the following equation to have solutions∑

n

ynfn = ρ(λ+
∑
n

f2
n). (9)

If gradient flow starts from very small ρ and there is average separability, ρ increases
monotonically until such a minimum is found7. If ρ is large, then ρ̇ < 0 and ρ will decrease until
a minimum is found.

For large ρ and very small or zero λ, we expect several solutions under GD8. The existence
of several solutions is related to arguments showing the existence of NTK-based solutions:
intuitively the last layer is enough in an extreme case – if the last layer before the linear classifier
is overparametrized wrt training data – to provide solutions for any set of random weights in the

6 ρ ≥ 1 for a critical point to exist because the critical point with smallest possible ρ is for ρ = 1, fnyn = 1.
7This analysis is for gradient flow. A satisfactory theory requires an analysis of gradient descent along the lines

of [9]
8It is interesting to recall [10] that for SGD – unlike GD – the algorithm will stop only when `n = 0 ∀n, which

is the global minimum and corresponds to perfect interpolation. For the other critical points for which GD will
stop, SGD will never stop but may fluctuate around the critical point.
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Figure 1: ConvNet with Batch Normalization and Weight Decay Binary classification
on two classes from CIFAR-10, trained with MSE loss. The model is a very simple network
with 4 layers of fully-connected Layers. ReLU nonlinearity is used. Batch normalization is used.
The weight matrices of all layers are initialized with zero-mean normal distribution, scaled by a
constant such that the Frobenius norm of each matrix is 5. We use weight decay of 0.01. We
run SGD with batch size 128, constant learning rate 0.1 and momentum 0.9 for 1000 epochs.
No weight decay. No data augmentation. Every input to the network is scaled such that it has
Frobenius norm 1.

previous layers (for large ρ and small fi). Furthermore the intermediate layer do not need to
change much under GD in the iterations immediately after initialization. The emerging picture
is a landscape in which there are no zero-loss minima for ρ < ρmin (which, in practice, means
ρmin >> 1). With increasing ρ from ρ = 0 there will be zero square-loss degenerate (see [10])
minima with the minimizer representing an interpolating (for λ = 0) or almost interpolating
solution (for λ > 0)9. We expect, however, that if λ is sufficiently large there will be a strong
bias towards the minimum ρeq, even for large ρ initializations.

All these observations are also supported by our numerical experiments. Figure 1, 2, 3,
4 and 5 show the case of gradient descent with batch normalization and weight decay, which
corresponds to a well-posed dynamical system for gradient flow; the other figures show the same
networks and data with BN without WD and without both BN and WD. As predicted by the
analysis, the case of BN+WD is the most well-behaved, whereas the others strongly depend on
initial conditions.

4 Generalization in Deep Networks
In this section we prove formally that ρ, which is inversely related to the margin, as we discussed,
indeed controls the expected error. We use classical bounds that lead (see Appendix F) to the
following theorem

9Notice that the equilibrium value of ρ is a measure of “sparsity”: small ρ corresponds to fi being close to
either 1 or zero (ρ is in the order of 1

fi
).
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Figure 2: ConvNet with Batch Normalization and Weight Decay Dynamics of ρ from
experiments in Figure 1. First row: small initialization (0.1). Second row: medium initialization
(1). Third row: large initialization (5). A dashed rectangle denotes the previous subplot’s domain
and range in the new subplot.
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Figure 3: ConvNet with Batch Normalization and Weight Decay Dynamics of the average
of |fn| from experiments in Figure 1. First row: small initialization (0.1). Second row: medium
initialization (1). Third row: large initialization (5). A dashed rectangle denotes the previous
subplot’s domain and range in the new subplot.
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Figure 5: ConvNet with Batch Normalization and Weight Decay Margin of all training
samples.

Observation 3 With probability 1− δ

L(f) ≤ c1ρRN (F̃) + c2ε(N, δ) (10)

where c1, c2 are constants that reflect the Lipschitz constant of the loss function ( for the square
loss this requires a bound on f(x)) and the architecture of the network. The Rademacher average
RN (F̃) depends on the normalized network architecture and N . Thus for the same network and
the same data, the upper bound for the expected error of the minimizer is smaller for smaller ρ.

The theorem proves the conjecture in [13] that for deep networks, as for kernel machines,
minimum norm interpolating solutions are the most stable.

5 Predictions
• In a recent paper Papyan, Han and Donoho[14] described four empirical properties of the

terminal phase of training (TPT) deep networks, using the cross-entropy loss function. TPT
begins at the epoch where training error first vanishes. During TPT, the training error stays
effectively zero, while training loss is pushed toward zero. Direct empirical measurements
expose an inductive bias they call neural collapse (NC), involving four interconnected
phenomena. (NC1) Cross-example within-class variability of last-layer training activations
collapses to zero, as the individual activations themselves collapse to their class means.
(NC2) The class means collapse to the vertices of a simplex equiangular tight frame (ETF).
(NC3) Up to rescaling, the last-layer classifiers collapse to the class means or in other words,
to the simplex ETF (i.e., to a self-dual configuration). (NC4) For a given activation, the
classifier’s decision collapses to simply choosing whichever class has the closest train class
mean (i.e., the nearest class center [NCC] decision rule). We show in Appendix G that
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Figure 6: ConvNet with Batch Normalization but no Weight Decay Binary classification
on two classes from CIFAR-10, trained with MSE loss. The model is a very simple network
with 4 layers of convolutions. ReLU nonlinearity is used. Batch normalization is used without
parameters (affine=False in PyTorch). The weight matrices of all layers are initialized with
zero-mean normal distribution, scaled by a constant such that the Frobenius norm of each matrix
is either 0.1 or 5. We run SGD with batch size 128, constant learning rate 0.01 and momentum
0.9 for 1000 epochs. No data augmentation. Every input to the network is scaled such that it has
Frobenius norm 1. This is a single run but it is typical for the parameter values we used.

these properties of the Neural Collapse[14] seem to be predicted by the theory of this paper
for the global (that is, close-to-zero square-loss) minima, irrespectively of the value of ρeq.
We recall that the basic assumptions of the analysis are Batch Normalization and Weight
Decay. Our predictions are for the square loss but we show (in the Appendix) that they
should hold also in the case of crossnetropy, explored in [14].

• At a close to zero loss critical point of the flow, Equations 36 become (see Appendix E.3)
∇Vkf(xj) = Vkf(xj) with xj in the training set, which are powerful constraints on the
weight matrices to which training converges. A specific dependence of the matrix at each
layer on matrices at the other layers is thus required. In particular, there are specific
relations for each layer matrix Vk of the type, explained in the Appendix,

Vkf = [VLDL−1(x)VL−1 · · ·Vk+1Dk(x)]TDk−1(x)Vk−1Dk−2(x) · · ·D1(x)V1x, (11)

where the D matrices are diagonal with components either 0 or 1, depending on whether
the corresponding RELU unit is on or off.
As described in the Appendix for linear networks, a class of possible solutions to these
constraint equations are projection matrices; another one are orthogonal matrices and more
generally orthogonal Stiefel matrices on the sphere. These are sufficient but not necessary
conditions to satisfy the constraint equations. The current analysis (in Appendix H) of
the constraint equation is quite limited since it holds only for deep linear networks: a full
analysis is still missing. Interestingly, randomly initialized weight matrices (an extreme
case of the NTK regime) are approximately orthogonal.
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Figure 7: ConvNet with Batch Normalization but no Weight Decay. Dynamics of ρ from
experiments in Figure 6. Top row: small initialization (0.1). Bottom row: large initialization (5).
The plot starts with ρ(0) = 0 despite an initialization of ρk = 0 because the the scaling factor of
BN starts from 0. A dashed rectangle denotes the previous subplot’s domain and range in the
new subplot.
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Figure 8: ConvNet with Batch Normalization but no Weight Decay. Margin of all
training samples (see previous figures). If the solution were to correspond to exactly zero square
loss, the margin distribution would be an horizontal line.

6 Summary
The main results of the paper analysis can be summarized in the following

Lemma 1 If the gradient flow with normalization and weight decay converges to an interpolating
solution with near-zero square loss (for λ > 0), the following properties hold:

1. The global minima in the square loss with the smallest ρ are the global minimum norm
solutions and have the best margin and the best bound on expected error;

2. Conditions that favour convergence to such minimum norm solutions are weight decay λ
(with BN) and small initialization (small ρ);

3. The condition ∂f(xj)
∂Vk

= Vkf(xj) which holds at the critical points of the SGD dynamics that
are global minima, is key in predicting several properties of the Neural Collapse[14];

4. the same condition represents a powerful constraint on the set of weight matrices at
convergence.

6.1 Remarks

• Suppose we control ρk independently of Vk and of equation 28: can we find ρ(t) schedules
leading more reliably to good solutions independently of initial conditions?
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• The role of the Lagrange multiplier term ν
∑
k ||Vk||2 in Equation 3 is different from a

standard regularization term because ν, determined by the constraint ||Vk|| = 1 can be
positive or negative, depending on the sign of the error ν = −

∑
n(ρ2f2

n − ρynfn). Thus
the ν term acts as a regularizer when the norm of Vk is larger than 1 but has the opposite
effect for ||Vk|| < 1, thus constraing each Vk to the unit sphere. For the exponential loss
the situation is different and ν in ν

∑
k ||Vk||2 acts as a positive regularization parameter,

albeit a vanishing one (for t→∞).

• For the square loss, convergence of the gradient flow to a minimum norm solution indepen-
dently of initial conditions requires BN or WN and WD, unlike the case of linear networks.
For the exponential loss, BN is strictly not needed since minimization of the exponential loss
maximizes the margin and minimizes the norm without BN. Thus under the exponential
loss, we expect a margin maximization effect for t→∞, as shown in [3], independently of
intial conditions. Deep nets under the square loss are more likely to overfit at long times
than under exponential-type loss functions (unless weight decay is used). As a consequence,
early stopping is more likely to be effective for the square loss than for exponential-type
loss functions. Empirically, it seems that square loss reaches solutions with good test error
in multiclass CIFAR10 faster than cross-entropy. Continuing GD, however, sometime yields
overfitting for the square loss (and worse test error) but not for cross-entropy. This is
interesting because it validates the asymptotic complexity control we described in [15]. It
also suggests that in the experiments of [8], early stopping may play a role to obtain results
with the square loss case that are as good or better than cross-entropy. We conjecture that
the overfitting phenomenon is related to the singular nature of the global critical point
when the weight decay λ is zero or too small (see Equations 5 and 6).

• If there exist several almost-interpolating solutions with the same norm ρeq, they also have
the same margin for each of the training data. Though they have the same norm and the
same margin on each of the data point, they may have different ranks of the weight matrices
or of the rank of the local Jacobian ∂fn

∂Vk
(at the minimum W ∗). Notice that in deep linear

networks the GD dynamics seems to bias the solution towards small rank solutions, since
large eigenvalues converge much faster the small ones [16]. It in unclear whether the rank
has a role in our analysis of generalization.

• Small initialization ensures that ρ grows for small values thus exploring first large margin
minima – assuming that average separability is reached early, during the first iterations
of GD. Why does GD have difficulties in converging in the absence of BN, especially for
very deep networks? At the moment, the best answer is that good tuning of the learning
rate is important and BN together with weight decay was shown to provide a remarkable
autotuning [9].

• The normalization Equation 3 is a precise model of WN. Normalization of the weight
matrices Vk is also an effect of BN. However, BN is also normalizing each row of each Vk
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matrix, as we mentioned earlier10.

• Are there any implications of the theory sketched here for mechanisms of learning in
cortex? Somewhat intriguingly, some form of normalization, often described as a balance of
excitation and inhibition, has long been thought to be a key function of intracortical circuits
in cortical areas[17]. One of the first deep models of visual cortex models, HMAx, explored
the biological plausibility of specific normalization circuits with spiking and non-spiking
neurons. It is also interesting to note that the Oja rule describing synaptic plasticity in
terms of changes to the synaptic weight is the Hebb rule plus a normalization term that
corresponds to a Lagrange multiplier.

• The main problems left open by this paper are:

– The analysis is so far restricted to gradient flow. It should be exteded to gradient
descent along the lines of [9].

– The behavior of gradient descent around the global minima should be analyzed in the
limit for λ→ 0. Equation 6 contains two terms, one reflecting the normalization and
the other the regression error. Zero regression error implies that normalization fails at
the critical point for λ = 0. It is remarkable that for λ = 0 or even more surprisingly
for the case of no BN and no WD, the dynamical system still yields good results,
provided initialization is small. The case of BN+WD is the only one which seems
rather independent of initial conditions in our experiments.

– In this context, an extension of the analysis to SGD may also be critical for providing
a satisfactory analysis of convergence.
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10The normalization may change during training between each training example because of the role of the D
matrices, effectively switching on and off some weights in the network, depending on xn and on whether BN is
before or after the RELU nonlinearity (as pointed out by A. Banbuski).
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Figure 11: ConvNet, no Batch Normalization, no Weight Decay. Dynamics of ρ from
experiments in Figure 10. First row: small initialization (5). Second row: large initialization
(15). Third row: extra large initialization (30). A dashed rectangle denotes the previous subplot’s
domain and range in the new subplot. More details to be added.
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Figure 12: ConvNet, no Batch Normalization, no Weight Decay. Margin of all training
samples

A Normalization during Gradient Descent (from [7]

A.1 Weight Normalization

For each layer (for simplicity of notation and consistency with the original weight normalization
paper), weight normalization [5] defines v and g in terms of w = g v

|v| . The dynamics on g and v
is induced by the gradient dynamics of w as follows (assuming ẇ = − ∂L

∂w

ġ = vT

||v||
ẇ (12)

and

v̇ = g

||v||
Sẇ (13)

with S = I − vvT

||v||2 .
We claim that this is the same dynamics obtained from tangent gradient for p = 2. In fact,

compute the flows in ρ, v from w = ρv as

ρ̇ = ∂w

∂ρ

∂L

∂w
= vT ẇ (14)

and

v̇ = Sρẇ (15)

Clearly the dynamics of this algorithm is the same as standard weight normalization if
||v||2 = 1, because then Equations 12 and 13 become identical to Equations 14 and 15 with g
corresponding to ρ. We now observe, multiplying Equation 13 by vT , that vT v̇ = 0 because
vTS = 0, implying that ||v||2 is constant in time. Thus if ||v|| = 1 at initialization, it will not
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change (at least in the noiseless case). Thus the dynamics of Equations 12 and 13 is the same
dynamics as Equations 14 and 15. It is also easy to see that the dynamics above is not equivalent
to the standard dynamics on the w (see [7].

A.2 Batch Normalization

Batch normalization [4] for unit i in the network normalizes the input vector of activities to unit
i – that is it normalizes Xj =

∑
jW

i,jxj , where xj are the activities of the previous layer. Then
it sets the activity to be

Y j = γ · X̂j + β = γ
Xj − µB√
σ2
B + ε

+ β,

where γ, β are learned subsequently in the optimization and

µB = 1
N

N∑
n=1

Xn σ2
B = 1

N

N∑
n=1

(Xn − µB)2.

Note that both µB and σ2
B are vectors, so the division by

√
σ2
B + ε has to be understood as a

point-wise Hadamard product �(σ2
B + ε)−1/2. The gradient is taken wrt the new activations

defined by the transformation above.
Unlike Weight Normalization, the Batch Normalization equations do not include an explicit

computation of the partial derivatives of L with respect to the new variables in terms of the
standard gradient ∂L

∂w . The reason is that Batch Normalization works on an augmented network:
a BN module is added to the network and partial derivatives of L with respect to the new
variables are directly computed on its output. Thus the BN algorithm uses only the derivative of
L wrt the old variables as a function of the derivatives of L wrt new variables in order to update
the parameters below the BN module by applying the chain rule. Thus we have to estimate what
BN implies about the partial derivatives of L with the respect to the new variables as a function
of the standard gradient ∂L

∂w .
To see the nature of the dynamics implied by batch normalization we simplify the original

Equations (in the Algorithm 1 box in [4]). Neglecting µB and β and γ, we consider the
core transformation as X̂ = X

σB
which, assuming fixed inputs, becomes X̂ = X

|X| which is
mathematically identical with the transfomation considered in [7]. In a similar way the dynamics
of w = ∂L

∂w induces the following dynamics on X̂:

˙̂
X = ∂X̂

∂X
Ẋ (16)

where ẋ = ∇xL. We consider X ∈ RN×D. In the D = 1 case, we get

∂X̂

∂X
= (σ2

B + ε)−1/2
[
− 1
N
X̂X̂T + I

]
.
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In the general D-dimensional vector case, this generalizes to

∂X̂

∂X
= (σ2

B + ε)−1/2
[
− 1
N
X̂T � X̂ + I

]
.

Notice that I − X̂X̂T = S. Since x = Wxinput this shows that batch normalization is closely
related to gradient descent algorithms with unit L2 norm constraint of the tangent gradient type.
Because of the simplifications we made, there are other differences between BN and weight
normalization, some of which are described in the remarks below.

Remarks

1. Batch normalization, does not control directly the norms of W1,W2, · · · ,WK as WN does.
Instead it controls the norms

||x||, ||σ(W1x)||, ||σ(W2σ(W1x))||, · · · (17)

2. In the multilayer case, BN controls separately the norms ||Vi|| of the weights into unit i,
instead of controlling the overall Frobenius norm of the matrix of weights as WN does. Of
course control of the ||Vi|| implies control of ||V || since ||V ||2 =

∑
i ||Vi||2i .

B Gradient flow for ρ and Vk

Gradient descent on L = 1
N (
∑
n g

2
n − 2

∑
n yngn +N) (using gn = g(xn)) gives

Ẇk = − 2
N

∑
n

(gn − yn) ∂gn
∂Wk

(18)

that is

Ẇk = − ∂L

∂Wk
= − 2

N

∑
n

gn
∂gn
∂Wk

+ 2
N

∑
n

yn
∂gn
∂Wk

(19)

We now derive the dynamics of the norm and of the normalized weights. We define g(x) =
ρf(x). ρ is the product of the Frobenius norms of the weight matrices of the L layers in the
network. f is the corresponding network with normalized weight matrices (because the ReLU
is homogeneous [7]). In the following we use the notation fn meaning f(xn). We also assume
||x|| = 1 implying ||f(x)|| ≤ 1 at convergence;

B.1 Dynamics under normalization

Gradient flow on L =
∑
n(ρfn−yn)2 +ν

∑
k ||Vk||2 +λρ2 with ||Vk||2 = 1 is completely equivalent

(for λ = 0) to “Weight Normalization”[7] for deep networks.
Assuming that ρk = 1, ∀k < L and ρL = ρ, gradient flow on L wrt ρ gives,
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ρ̇ = −2
∑
n

`nfn − 2λρ (20)

Gradient flow on L wrt Vk gives

V̇k = − ∂L

∂Vk
= −2

∑
n

(ρfn − yn)ρ∂fn
∂Vk
− 2λVk. (21)

Because of the constraint imposed via Lagrange multipliers ||Vk||2 = 1, V T
k V̇k = 0, which gives

ν = −
∑
n(ρ2f2

n − ρynfn).
In summary, gradient flow on L wrt ρ and Vk gives

ρ̇ = −2[
∑
n

ρ(fn)2 −
∑
n

fnyn]− 2λρ = −2
∑
n

`nfn − 2λρ. (22)

where `n = ρfn − yn and

V̇k = 2
∑
n

[(ρfn − yn)ρ(−∂fn
∂Vk

) + 2Vkρfn(ρfn − yn)] = 2ρ
∑
n

[(ρfn − yn)(Vkfn −
∂fn
∂Vk

)] (23)

Without BN and without WD ∂gn(W )
∂Wk

= ρ
ρk

∂fn(V )
∂Vk

; with BN but without weight decay this
becomes ∂gn(W )

∂Wk
= ρ∂fn(V )

∂Vk
, ∀k < L and ∂gn(W )

∂WL
= ∂fn(V )

∂Vk
.

This dynamics – where there is a “vanishing” Lagrange multiplier ν – can also be written as
ρ̇k = V T

k Ẇk and V̇k = ρSẆk with S = I−VkV T
k . This shows that if Wk = ρkVk then V̇k = 1

ρk
Ẇk

as mentioned in [9].
Notice that ρ̇ = 0 if ynfn = 1 and ρk = 1; ρeq is a critical point for the dynamics of ρ under

GD. In the case of SGD the asymptotic value of ρ for fixed
∑
fiyi may fluctuate randomly

around the
∑

n
ynfn∑
n
f2
n
. Furthermore, the lowest possible value of ρk at equilibrium (ρ̇k = 0) is

ρk = 1 which can be achieved if ynfn is either = 1 or = 0. Values ynfn = 1, ρ = 1 are stationary
points of the dynamics of Vk given by V̇k = 0: they are minimizers with zero square loss.

C Maximum margin and minimum norm
Lemma 2 [7] The maximizer of the margin under the constraint ||Vk|| = 1 is the minimum
norm solution under the constraint ynfn ≥ 1, ∀n.

Minimum norm regression of binary labels is

min
Wk

1
2‖Wk‖2, ∀k subj. to yif(WK , · · · ,W1;xi) = 1, i = 1, . . . , N. (24)

Minimum norm binary classification is

min
Wk

1
2‖Wk‖2, ∀k subj. to yif(WK , · · · ,W1;xi) ≥ 1, i = 1, . . . , N. (25)
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Clearly classification involves minimizing over a larger class of functions than regression. The
result will be in general different.

Observation 4 Minimum norm binary classification under the square loss with margin 1 (im-
plying fV (xi) ≥ 1∀i) is not (in general) interpolation of all the data.

Notice that hard margin SVM is a case in point: the SVs interpolate their data point, but
other non-support vectors have margin greater than one. This indicates that there should be
better algorithm to train deep networks for classification than regression.

D Unnormalized GD
Here we assume gradient flow without BN (and without weight decay), assuming, for simplicity,
that at initialization all the layers have the same norm, that is ρk is the same for all k at
initialization. Because of this assumption we can use the following

Lemma 3 ∂ρ2
k

∂t is independent of k.

to claim that all ρk are the same at all times. Thus ρ = ρLk , where L is the number of layers.
Proof Consider ∂||Wk||2

∂t . The calculation follows the case for the exponential loss:

∂||Wk||2

∂t
= 2Wk

∂Wk

∂t
= 4
N

∑
n

g2
n + 4

N

∑
n

gn (26)

because of the structural lemma. Thus the time evolution of ρ2 = ||WK ||2 is independent of k.
Then we obtain the dynamical system

ρ̇k = − ∂L
∂ρk

= −2L
∑
n

(ρLk fn − yn)fnρL−1
k = −2ρL−1

k [
∑
n

ρLk (fn)2 −
∑
n

fnyn] (27)

which can be rewritten in terms of ρ = ρLk using ρ̇ =
∑
k
∂ρ
∂ρk

ρ̇k as

ρ̇ = 2Lρ
2L−2
L [

∑
n

fnyn −
∑
n

ρ(fn)2] (28)

which is an equation of the type known as differential logistic equation used for instance to model
sigmoidal population growth. It has an interesting dynamics as shown in the simulations in the
appendix (look at ρ for small initialization during the first 50 or so iterations).

The dynamics of Equation 28 is that the smaller ρt=0 is, the longer it takes to ρ to grow
(this phenomenon increases with increasing number of layers L). Thus ρ is constrained by the
nonlinear dynamics to be very small for a transient phase T of GD iterations (as we mentioned,
T is longer with more layers and longer with smaller initialization) and then to grow slowly
while fn grows towards 1 (implying that

∑
f2
n approaches

∑
ynfn). Part of this dynamics was

analyzed by Shalev-Schwartz [16] in a different context.
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If the initial conditions are ρt=0 ≈ 0, ρ(t) will eventually grow (most of the time, when it
does not go to zero), but slowly for a longish time. Part of this behavior can be explained by
the logistic equation in which the coefficients change with time, with ynfn decreasing slowly. As
a consequence, the rate of increase of ρ decreases, though the asymptotic value of ρ =

∑
ynfn∑
f2
n

increases. until a critical point of the flow is reached
Compare this with the case in which ρ is large at initialization: then ρ may decrease until

a critical point is reached. As we already noticed, there are plenty of critical points at large ρ
(stationary points for ρ and Vk) because under appropriate overparametrization, almost every
perturbations of the weights before the linear classifier at the top yields a different interpolating
solution. Of course, in the presence of significant weight decay the gradient flow may escape
these minima.

E Dynamics and equilibria for Vk and ρ

When λ > 0 the terms `n = (ρfn − yn) 6= 0 in Equation 8. It is then reasonable to assume that
αn > 0 and that V eq at the minimum can be written as

V eq
k =

N∑
αn
∂fn
∂Vk

(29)

where αn = ρfn−yn∑
n

(ρfn−yn)fn
11.

E.1 Weight decay and label noise

Adding a term λ||Wk||2 to the Lagrangian corresponding to weight decay changes the dynamics
of ρ but not the dynamics of Vk. The Equation for ρ becomes (with BN and WD) Equation 7,
that is

ρ̇ = −2[
∑
n

ρ(fn)2 −
∑
n

fnyn]− 2λρ (30)

which has an equilibrium given by

ρeq =
∑
n ynfn

λ+
∑
n f

2
n

. (31)

Notice that label noise (adding ±δ – with δ a small random real number to the labels), as
suggested by Jason Lee and coworkers[18], may play a role somewhat similar to a regularization

11

Notice that in general not all of the N terms in Equation 29 are different from zero12 or independent of each
other (an upper bound is set by the rank of Jacobian ∂fn

∂Vk
). As an example consider the degenerate linear case

when f is a linear function.
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λ by eliminating interpolation13. Both label noise and weight decay introduce a bias towards
small ρeq minima – and thus better generalization – even for large initializations.

E.2 Convergence of Linear Networks with Normalization and Regularization

Consider the separable case of a linear network (f(x) = ρvTx). The dynamics is – with
`n = e−ρynv

T xn for the exponential loss and `n = (ρvTxn − yn) for the square loss–

ρ̇ = 2
ρ

N∑
n=1

`nynv
Txn − 2λρ (32)

and

v̇ ∝
N∑
n=1

`n(xn − vvTxn). (33)

If λ > 0 it is reasonable to assume
∑N
n=1 `nyn 6= 0. Thus

v̇ ∝
N∑
j=1

αj(I − vvT )xj . (34)

If gradient flow converges to v̇ = 0, the solution v must satisfy vvTx = x, where x =
∑N
j=1 αjxj .

Assume ||x|| = 1. Then v = x. Since the operator T in v(t + 1) = Tv(t) associated with
equation 34 is not expanding [19] (because v has unit norm), there is a fixed point v = x which
is independent of initial conditions. Numerical simulation show that this is not true for λ = 0.

E.3 Convergence of Networks with Normalization

Consider

V̇k =∝ (I − VkV T
k )

N∑
n=1

(yn − ρfn)∂fn
∂Vk

. (35)

Let us define αn = (yn − ρfn) and an “average” ∂̂f
∂Vk

=
∑
j αj

∂fj
∂Vk

. If λ > 0 then αn 6= 0, ∀n.

Then (I − VkV T
k ) ∂̂f∂Vk = V̇k. If there is convergence, that is V̇k = 0, then it makes sense to assume

that in most cases

Vkf̂ = ∂f̂

∂Vk
(36)

with f̂ = V T ∂̂f
∂Vk

14.
13Label noise also makes

∑
n
fnyn smaller, decreasing the equilibrium ρ and biasing the final solution to have

larger margin
14If V Tk ∂fn

∂Vk
= fn with the same Vk for all n, then f̂ =

∑
j
αjfj . The equation provides constraints on the

weights Vk and the other layer weights at convergence.
27



(ρfn − yn)∂fn
∂Vk

= (ρfn − yn)(V eq
k fn), ∀n = 1, · · · , N. (37)

Thus, assuming λ > 0, in most cases at equilibrium the following holds

V eq
k =

∑
αn
∂fn
∂Vk

, (38)

with αn = ρfn−yn∑
(ρfn−yn)fn

. SGD with minibatches of size 1 (the argument can be extended to other
sizes < N) has stationary points given by [10]

0 = (I − VkV T
k )`(xn)∂f(xn)

∂Vk
, ∀n. (39)

which implies (for λ > 0)

∂f(xn)
∂Vk

= Vkf(xn), ∀n. (40)

F Margins, ρ and expected error
Assuming that weight decay, small initialization and λ > 0 provide a bias towards solution with
“large” margin, the next step is to use simple bounds [20] to claim better expected error (and
better stability) for those solutions.

A typical generalization bound that holds with probability at least (1− δ), ∀g ∈ G has the
form [20]:

|L(g)− L̂(g)| ≤ c1RN (G) + c2

√
ln(1

δ )
2N (41)

where L(g) = E[`gamma(g(x), y)] is the expected loss, L̂(g is the empirical loss, RN (G) is the
empirical Rademacher average of the class of functions G measuring its complexity; c1, c2 are
constants that reflect the Lipschitz constant of the loss function and the architecture of the
network. The loss function here is the ramp loss `gamma(g(x), y) defined as

`gamma(y, y′) =


1, if yy′ ≤ 0,
1− yy′

γ , if 0 ≤ yy′ ≤ γ,
0, if yy′ ≥ γ.

We define `gamma=0(y, y′) as the standard 0−1 classification error and observe that `gamma=0(y, y′) <
`gamma>0(y, y′).

We now consider two solutions with zero empirical loss of the square loss regression problem
obtained with the same ReLU deep network and corresponding to two different minima with two
different ρs. Let us call them ga(x) = ρaf

a(x) and gb(x) = ρbf
b(x). Using the notation of this
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paper, the functions fa and fb correspond to networks with normalized weight matrices at each
layer.

Let us assume that ρa < ρb.
We now use the observation that, because of homogeneity of the networks, the empirical

Rademacher complexity satisfies the property,

RN (G) = ρRN (F), (42)

where G is the space of functions of our unnormalized networks and F denotes the corresponding
normalized networks15. This observation allows us to use the bound Equation 41 and the fact that

the empirical L̂γ for both functions is the same to write L0(fa) = L0(F a) ≤ c1ρaRN (F̃)+c2

√
ln( 1

δ
)

2N

and L0(f b) = L0(F b) ≤ c1ρbRN (F̃) + c2

√
ln( 1

δ
)

2N . The bounds have the form

L0(fa) ≤ Aρa + ε (43)

and
L0(f b) ≤ Aρb + ε (44)

Thus the bound for the expected error L0(fa) is better than the bound for L0(f b).
Similar results can be obtained taking into account different L̂(f) for the normalized fa and

f b under different γ in Equation 41, that is

|L(f)− L̂(f)| ≤ c1RN (F̃) + c2

√
ln(1

δ )
2N . (45)

It is unclear whether these bounds are meaningful in practice. It is likely there exist better
ways to bound the expected error.

G Towards Predicting NC1 to NC4 (with A. Banburski)
We sketch here a proof of how our theoretical framework predicts the four properties NC1 to NC4
in the retricted case of binary classification under the square loss. In a network with L layers the
last layer activations for an input xi,c where c is the class – here we consider just two classes
c = +1 or c = −1 – are called hi,c by [14]. To conform to their notation we consider in this
section a slightly different network from the one considered in the paper. Until now, we assumed
that the network has one scalar output which is ideally ±1. Here we consider instead a network
with two outputs, one representing the positive class and the other the negative one both trained
to take the value +1 for the respective class. Thus the last layer weights are V c=+1

L = −V c=−1
L .

Convergence to a global minimum, that is V̇k = 0, ˙rho = 0, implies f c(xi,c) = 1 independently of
i, because ρfi = 1

ρeq
. The key observation is that hTi,c = ∂f(xi,c)

∂V cL
.

15Furthermore, the Rademacher complexity of the space of functions associated with normalized networks of the
same architecture is the same (see [21]).
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Corollary 4 Equations 5 and 6 imply NC1, NC2, NC3, NC4.

Proof

• NC1: since Vkfc(xi) = ∂fc(xi)
∂Vk

at convergence (see Equation 38 ) hT (xi,c) = V c
Lf

c(xi) at
convergence. Since f c(xi) does not depend on i at convergence, V c

Lf
c(xi) does not depend

on i implying that the standard deviation of hi,c wrt i converges to zero when V̇k and ρ̇
converge to zero.

• NC2: in the binary case h+1 → V T
L and h−1 → −V T

L (see above). Thus µ1 = V T and
µ2 = −V T . This is the special binary case of NC2.

• NC3: since h(xi,c) = V T
L fc(xi) and fc does not depend on i, at convergence h is proportional

to V T
L .

• NC4: the result of [22], as shown by [14], implies together with NC1 and NC2, that NC3
and NC4 hold. Since our theory (in the previous sections), implies the result of [22], it also
implies NC4.

We note that for the square loss these results apply to each global minimum, irrespectively
of its ρeq. For the exponential loss a similar argument may be used. In particular, we assume
that for a sufficiently large and fixed ρ, SGD reaches V̇k = 0 which implies Vkfn = ∂f

∂Vk
, ∀n.

We assume that this is the absolute minimum of the exponential loss for that fixed ρ. Because
of overparametrization, such global minima must be degenerate (see [10], that is such that the
minimizing network f has the same maximum margin for all training data: ynfn = y1f1, ∀n
at the minimum. The same conclusion is reached using the following argument. Consider the
gradient flow corresponding to GD under the exponential loss

ρ̇k = ρ

ρk

∑
n

e−ρynf(V ;xn)ynf(V ;xn)

V̇k = ρ
∑
n

e−ρynf(V ;xn)ynSk
∂f(V ;xn)

∂Vk
.

(46)

Without loss of generality let us assume that the training data fn are ranked at t = T0
according to increasing normalized margin, that is f1 ≤ f2 ≤ · · · ≤ fN . Let us define Bk

n =
Bk(V ;xn) = yn(∂f(V ;xn)

∂Vk
− Vkf(V ;xn)). Then the equilibrium condition becomes for each weight

matrix k
N∑
n

e−ρ(t)ynfnBk
n = 0. (47)

Equation 47 cannot be satisfied unless f1 = fi, ∀i, since ρ(t) is continuously increasing,
implying that all the fn must converge to the same asymptotic value. Thus an asymptotic
equilibrium for which V̇k = 0 implies that asymptotically f1 = fi, ∀i = 2, · · · , N : the margin
becomes the same for all training data.

30



H Remarks on Constraints on the Weight Matrices
The condition we have derived in the main theory

Vkfn = ∂fn
∂Vk

, ∀k = 1, · · · , L, ∀n (48)

imposes a strong set of constraints on the weights of the network, since ∂f
∂Vk

depends on all weight
matrices with the exception of Vk. Suppose

f(x) = (VLσ(VL−1 · · ·σ(V1x))) (49)
where σ(x) = σ′(x)x. The equation can be rewritten for each training example as

f(xj) = VLDL−1(xj)VL−1 · · · · · ·Vk+1Dk(xj)Vk · · ·D1(xj)V1xj (50)
where Dk(xj) is a diagonal matrix with 0 and 1 entries depending on whether the corresponding
RELU is active or not for the specific input xj , that is Dk−1(xj) = diag[σ′(Nk(xj)] with Nk(xj)
the input to layer k.

Call VLDL−1(x)VL−1 · · ·Vk+1Dk(x) = aT and Dk−1(x)Vk−1Dk−2(x) · · ·D1(x)V1x = b. Then
f(x) = aTVkb and ∂f

∂Vk
= abT . As sanity checks, fT = bTV T

k a = f ; furthermore, the structural
lemma Equation 1 gives ∑

i,j

∂f(V ;x)
∂V i,j

k

V i,j
k =

∑
i,j

aibjV i,j
k = f(x). (51)

Then Equation 48 becomes

Vkf = [VLDL−1(x)VL−1 · · ·Vk+1Dk(x)]TDk−1(x)Vk−1Dk−2(x) · · ·D1(x)V1x (52)
Let us now make some strong assumptions to get some intutition about the potential impact

of the constraints on the weight matrices.
Assumptions

• Let us assume that all Vk ∀k = 1, · · · (L− 1) ∈ Rp,p have the same dimensions, whereas
VL ∈ R1,p.

• We assume linear deep networks at training time, that is without RELUs. This is inspired
by the observation that if solutions Vk are found that satisfy Equation 52 then they will
also satisfy the same Equations when the matrices Dk are replaced by I, while the converse
is not true.
The intuition is that this big oversimplification may still be interesting, because the “training”
equations above have to hold for all the xn in the training set. This implies that the D
matrices at each level are likely to eventually have 1 in each position of the diagonal across
the whole of the training set. Of course, this will not hold completely and for all layers,
especially if p > N and especially for the layers at the top of the network, in which case
the presence of the Dk makes the constraint Equation 48 effectively weaker.
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Under these three assumptions, let us consider two natural types of solutions that are consistent
with Equation 48.

H.1 Vk as projection matrices

A class of solution which is consistent with the constraints represented by Equation 48 is

V1 = V2 = · · · = VL−1 (53)

and
VL = DL−1(x)VL−1 · · · · · ·Vk+1Dk(x)Vk · · ·D1(x)V1x = ∂f

∂VL
(54)

In order for this to be true, the Vk k < L matrices can be projection matrices (P is a
projection if P 2 = P ; it is an orthogonal projection if P = P T ). Then, all the weight matrices
are proportional to each other apart from the weight matrix of the last (L) layer which must be
a vector proportional to the vector of activities of the units in layer L− 1.

If we assume that feedforward networks with T layers converge to this type of solution, the
interesting prediction is that recurrent networks (therefore with weight sharing across layers)
under T iterations should be identical to forward networks with T layers (without weight sharing).

H.2 Vk as orthogonal matrices

Another possible set of solutions consists of matrices Vk (assuming the weight matrices are all
square matrices)each proportional to an orthogonal matrix. The constraint Equations 48 suggest
the structure of a group since Vk is proportional to the product of similar matrices.

A key property of orthogonal matrices is that V T
k = V −1

k . Because of this property the
constraint equations are always satisfied. For instance assume f(x) = V4V3V2V1x with the
matrices being orthogonal. Then it is easy to check that the constraint equations yield V3 ∝
∂f
∂V3

= V T
4 (V2V1)T and V2 ∝ (V4V3)T (V1)T . Together they satisfy V3 = V3.

We observe that the underlying reason for restricting this class of solutions to the orthogonal
group is BN or WN, since they are equivalent to constrained optimization with Lagrange
multipliers. As observed in [23] regularization of each weight matrix of a linear network reduces the
symmetry group of the loss function from GLp(R)) to the orthogonal group Op(R). Furthemore,
it is interesting to notice, as they do, that

• Orthogonal matrices are the determinant ±1 matrices of minimal Frobenius norm (the
squared determinant is the product of the squared singular values);

• Orthogonal matrices are the inverse matrices of minimum total squared Frobenius norm
(sum of the squared singular values);

• A square matrix is orthogonal iff A−1 = AT ;

• Orthogonal matrices diagonalize any symmetric real-valued matrix A = UΛUT .
32



There is a large number of papers (for a random one see [24] and references therein) discussing
the advantages of orhogonality for generalization in deep networks and probably as many papers
proposing regularization-like algorithms in order to impose orthogonality in the weight matrices
in a deep network. More generally, the discussion above should be extended from orthogonal
matrices to non-square matrices in an orthogonal Stiefel manifold on the sphere. As far as we
know, this appendix represents the first time that commonly used normalization algorithms, such
as BN, are shown to bias weight matrices towards being orthogonal (or projection) vectors. It
is natural to conjecture that additional properties of deep networks may be derived from the
rich structure induced by this bias. On the other hand, we cannot expect weight matrices to be
orthogonal in real networks because of the role of the RELUs, which is not taken into account in
the simplified analysis above, and because BN in practice does not exactly normalizes the weight
matrices16.

H.3 Diagonal networks (with A. Banburski)

Diagonal networks have been recently analyzed in a number of theoretical papers (see [16] and
references therein) and are particularly interesting here for two reasons which we show below:
diagonal initializations are preserved by gradient descent and the D-matrices corresponding to
the RELUs stages commute.

First, notice that gradient updates are given by

wt+1 − wt = −η
∑
n

`(f(w;xn), yn)′∇wtf(w;xn) (55)

and so an update to any off-diagonal weight will be non-zero only if ∇wtf(w;xn) for that weight
is non-zero. We trivially find that

∂f(x)
∂W ij

k

= WLDL−1(x)WL−1 · · ·W ·ik+1Dk(x)Dk−1(x)W j·
k−1Dk−2(x) · · ·D1(x)W1x. (56)

This means that a off-diagonal layer-k entry (i, j) update depends on a term in f that has an
i-th column in layer k+ 1 and j-th row in layer k− 1. But if at time t = 0 the off-diagonal terms
i 6= j vanish, then the off-diagonal gradient update also vanishes for t = 1 and similarly for all
subsequent times. Hence GD preserves diagonal initial conditions.

Assuming the same setting of square matrices as in the previous subsections, we can immedi-
ately see the usefulness of the diagonal assumption, from the simple fact that diagonal square
matrices commute, so we can write

f = VL . . . V1DL−1(x) . . . D1(x)x = VL . . . V1x̃ with x̃ = DL−1(x) . . . D1(x)x,

i.e. we can push all the nonlinearities to the end and absorb them now into a single nonlinear
transformation of the data x. This then allows us to deal with the sum over all training examples:
by defining x̂ =

∑
n αnx̃n we have f̂ = VL . . . V1x̂.

16Normalization of each row exactly to norm 1 implies normalization of the matrix to M where M is the number
of rows. However, normalization of each row to different constants does not lead to orthogonality.
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We can now write the equation at the critical point here as

∂f̂

∂V i
k

= V i
L · · ·V i

k+1V
i
k−1 · · · x̂i

and
V i
k f̂ = V i

kVL · · ·Vk+1VkVk−1 · · · x̂

where we now can label the diagonal layers with a single index i. Let us look at a specific example
of a 4-layer network now, f̂ = V4V3V2V1x̂. The equations are of the form

V i
4 f̂ = V i

3V
i

2V
i

1 x̂
i

and similarly for other layers. Solving these, we get the very interesting constraints f̂2 =
(V i

2V
i

1 x̂
i)2 = (V i

3V
i

1 x̂
i)2 = . . ., or that some V i

k = 0. This gives us that at the critical point,
V i
k = ± x̂i

f̂
or V i

k = 0.
Putting back the definitions for the different expressions, we get that at the critical points,

the normalized weights are given by

V i
k = ±

∑
n αnDL−1(xin) . . . D1(xin)xin∑

n αnf(V ;xn) , (57)

with i = 1, . . . , p being one of the input channels (and the diagonal path trhough the network).
Notice that the dependence on the layer k is only in the ± sign.

34


	Introduction
	Why square loss
	Regression and classification

	The dynamics of GD in  and Vk
	Notation
	Gradient descent
	Dynamics under normalization and weight decay
	Equilibrium values


	Dynamics
	Generalization in Deep Networks
	Predictions
	Summary
	Remarks

	Normalization during Gradient Descent (from theoryIII
	Weight Normalization
	Batch Normalization

	Gradient flow for  and Vk
	Dynamics under normalization

	Maximum margin and minimum norm
	Unnormalized GD
	Dynamics and equilibria for Vk and 
	Weight decay and label noise
	Convergence of Linear Networks with Normalization and Regularization
	Convergence of Networks with Normalization

	Margins,  and expected error
	Towards Predicting NC1 to NC4 (with A. Banburski)
	Remarks on Constraints on the Weight Matrices
	 Vk as projection matrices
	Vk as orthogonal matrices
	Diagonal networks (with A. Banburski)


