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SHOCK FORMATION IN SOLUTIONS TO THE 2D COMPRESSIBLE
EULER EQUATIONS IN THE PRESENCE OF NON-ZERO VORTICITY

JONATHAN LUK* AND JARED SPECK**t

ABSTRACT. We study the Cauchy problem for the compressible Euler equations in two spa-
tial dimensions under any physical barotropic equation of state except that of a Chaplygin
gas. We prove that the well-known phenomenon of shock formation in simple plane wave
solutions, starting from smooth initial conditions, is stable under perturbations that break
the plane symmetry. Moreover, we provide a sharp asymptotic description of the singularity
formation. The new feature of our work is that the perturbed solutions are allowed to have
small but non-zero vorticity, even at the location of the shock. Thus, our results provide the
first constructive description of the vorticity near a singularity formed from compression:
relative to a system of geometric coordinates adapted to the acoustic characteristics, the
vorticity remains many times differentiable, all the way up to the shock. In addition, rela-
tive to the Cartesian coordinates, the vorticity remains bounded, and the specific vorticity
remains uniformly Lipschitz, up to the shock.

To control the vorticity, we rely on a coalition of new geometric and analytic insights
that complement the ones used by Christodoulou in his groundbreaking, sharp proof of
shock formation in vorticity-free regions. In particular, we rely on a new formulation of
the compressible Euler equations (derived in a companion article) exhibiting remarkable
structures. To derive estimates, we construct an eikonal function adapted to the acoustic
characteristics (which correspond to sound wave propagation) and a related set of geometric
coordinates and differential operators. Thanks to the remarkable structure of the equations,
the same set of coordinates and differential operators can be used to analyze the vorticity,
whose characteristics are transversal to the acoustic characteristics. In particular, our work
provides the first constructive description of shock formation without symmetry assumptions
in a system with multiple speeds.
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1. INTRODUCTION

In two spatial dimensions, the isentropic compressible Euler equations are evolution equa-
tions for the velocity v : R x ¥ — R? and the density p : R x ¥ — [0,00), where ¥ is the
(two-dimensional) space manifold, which we assume throughout to be ¥ = R x T. Here and
throughout, T := [0, 1) (with the endpoints identified) denotes the standard one-dimensional
torus. We now fix a constant p > 0 corresponding to a constant background densityH Under

a barotropi equation of state and in terms of the logarithmic density p := In (@ , the

equations takeﬂ the following form relative to the usual Cartesian coordinates (1=1,2):
Bp = —0,v°, (1.0.1a)
Bv' = —c260,p, (1.0.1b)

where B = 0; + v*0, is the material derivative vectorfield (see (3.3.9)) and ¢s = c¢4(p) is
the speed of sound, which depends on the equation of state (see (3.3.3))). Throughout this
paper, we assume the normalization conditionﬂ

cs(0) =1, (1.0.2)

which simplifies some aspects of the analysis and presentation.

n this paper, we will study solutions with density close to p.

2A barotropic equation of state is one in which the pressure p can be expressed as a function of the density
p alone.

3Throughout, if V is a vectorfield and f is a function, then V f := V8, f denotes the derivative of f in the
direction V. Lower case Latin indices correspond to the Cartesian spatial coordinates and lower case Greek
indices correspond to the Cartesian spacetime coordinates. We also use Einstein’s summation convention.

“Throughout, {x®} are the usual Cartesian coordinates with corresponding partial derivative vectorfields
Oy i= Py We also set ¢ := 2% and 9, := 9.

x
5As we explain in Sect. [3] this can always be achieved by a change of variables.
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As has been known since the foundational work of Riemann [27] in one spatial dimension,
initially smooth solutions to the compressible Euler equations can form shock singularities
in finite time, even though the solutions enjoy a conserved energyﬁ We recall that a shock
singularity is such that the velocity and density remain bounded while some first partial
derivative of these quantities with respect to the Cartesian coordinates blows up in finite
time. This phenomenon is also known in the literature as wave breaking. Our main result is a
proof of finite-time shock formation for solutions generated by an open set of regular Sobolev-
class initial data in two spatial dimensions verifying suitable relative smallness assumptions.
The solutions that we study here are perturbations of simple plane wave solutions that are
close, as measured by suitable Sobolev norms, to constant state solutions; see Subsect. [I.2] for
further discussion. The main new feature of our work is that the vorticity of the perturbed
solutions[] defined to be w := dv? — dyv', is allowed to be non-zero in the region where
the shock forms. Actually, in our analysis, it is more convenient to work with the specific
vorticity w, defined by

w :=w/exp(p),

since it satisfies a simpler evolution equation and better estimates. As we describe in more
detail later in this section, our proof applies in particular to data such that the solution’s
vorticity is provably non-zero at the location of the first shock singularity. Therefore, to close
the proof, we in particular have to control the vorticity (and, as it turns out, many of its
derivatives) in a past neighborhood of the first singularity. To this end, we rely on a new
formulation of the compressible Euler equations (see Prop. , which we describe below in
detail.

We now provide a rough summary of our main results. We plan to extend our results to
the case of three spatial dimensions in forthcoming work [24]. As we briefly describe below,
the case of three spatial dimensions requires substantial new technical innovations compared
to the case of two spatial dimensions. The new innovations are tied to the need to derive,
in three spatial dimensions, elliptic estimates to control the vorticity at the top order. In
contrast, elliptic estimates are not necessary in two spatial dimensions; see [25] for a more
substantial overview of this issue.

Theorem 1.1 (Rough version). For any physical equation of state except that of the
Chaplygin gasﬁ there exists an open set of reqular initial data, with elements close to the data
of a subset of simple plane wave solutions, that leads to stable finite-time shock formation.
The specific vorticity, which is provably non-vanishing at the shock for some of our solutions,
remains uniformly Lipschitz relative to the Cartesian coordinates, all the way up to the shock.
Moreover, the dynamics are “well-described” by the irrotational Euler equations.

6More precisely, solutions to the compressible Euler equations (1.0.1a])-(1.0.1b|) enjoy the conserved energy

1
/z: pe + ipéabvavb d*x, (1.0.3)

where e, the specific internal energy, is given by e = h — E, where p is the pressure and the enthalpy h is as

in Subsect. However, the energy (1.0.3)) is far too weak to prevent the formation of singularities. For
this reason, it plays no role in our analysis.
"Plane symmetric solutions have vanishing vorticity.

8 The equation of state of a Chaplygin gas is p = p(p) =Co — %, where Cy € R and C; > 0; see (3.3.4).
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Remark 1.1 (Assumption on the spatial manifold). Our assumption that ¥ =R x T
is mainly for technical convenience and is not of fundamental importance. For instance,
the case ¥ = R? could be treated with a similar approach, though the set of initial data
to which our methods apply might be quite different (see also the discussion at the end of

Subsect. [1.2)).

Remark 1.2 (Maximal classical development). Our main results provide information
about the solution only up to the constant-time hypersurface of first blowup. However,
thanks to the sharp estimates of Theorem [16.1] our results could in principle be extended
to give a detailed description of a portion of the maximal classical developmentﬂ of the
data corresponding to times up to approximately twice the timeEG] of first blowup, including
the shape of the boundary and the behavior of the solution along it. More precisely, the
estimates that we prove are similar to the ones used by Christodoulou in his work [6, Ch. 15],
in which he revealed the structure of a large irrotational portion of the maximal classical
development of solutions to the relativistic Euler equations; see also [9] for a similar picture
of an irrotational portion of the maximal classical development for solutions to the non-
relativistic compressible Euler equations. However, for the sake of brevity, we have chosen
not to carry out those arguments. We clarify that in obtaining their sharp picture of the
boundary of the maximal classical development, the authors of [6,9] relied on technical non-
degeneracy assumptions on the behavior of the solution at the boundary; we would have to
make similar non-degeneracy assumptions if we were to study the boundary of the maximal
classical development in regions with vorticity.

We will give a precise version of Theorem in Theorem [16.1] The estimates in Theo-
rem give a precise sense in which the dynamics are “well-described” by the irrotational
Euler equations. In particular, our proof shows thaﬂ some of the quantities {0;v'}; j=123

blow up, while {v'},—1 2, In <B , and w remain uniformly bounded, all the way up to the
p

shock. Another important part of our proof is that the specific vorticity and vorticity are
more regular than the velocity estimates would suggest, both in terms of Cartesian coor-
dinates and geometricE] coordinates. In particular, to close our estimates, we must show
that relative to the geometric coordinates, the specific vorticity and vorticity are exactly as
differentiable as the velocity and density, which represents a gain of one derivative compared
to viewing vorticity as a first derivative of velocity.

Remark 1.3 (Assumption on spatial dimensions and the regularity of the vor-
ticity). In our proof, we rely on the assumption of two spatial dimensions to control the
specific vorticity and the top-order derivatives of the eikonal function (see Subsubsect.

9Roughly, the maximal classical development is the largest possible classical solution that is uniquely
determined by the data; see, for example, [281|32] for further discussion.

10Roughly7 we could propagate our bootstrap assumptions for this amount of time.

We note here that in the irrotational case, Christodoulou—Miao have already proved [9] that the quan-

tities {9;v"}i j=1,2,3 blow up, while {v'};—; » and In (%) remain uniformly bounded, all the way up to the
shock.

2In order to capture the geometry of shock formation, we define geometric coordinates similar to the
ones used by Christodoulou in [6]; see Subsect. [2.1
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for its definition). In particular, in two spatial dimensions, the specific vorticity equation
is homogeneous (see (3.3.11¢))), which allows for a relatively straightforward proof that the
specific vorticity gains regularity. In three spatial dimensions, the specific vorticity equa-
tion contains an additional “vorticity stretching” term, which introduces significant technical
complications into the analysis. As we overviewed in our companion article [25], the vor-
ticity stretching term can be controlled using additional elliptic estimatesB and a similar
gain in regularity for the specific vorticity with respect to the geometric coordinates can be
achieved; we will treat this in detail in a future work. Nevertheless, since the case of two
spatial dimensions already requires substantial new ideas, of interest in themselves, we have
chosen to treat it separately here.

We also note that the gain in regularity for the vorticity is familiar to the community of
researchers who have proved well-posedness results for the compressible Euler equations in
the presence of a physical vacuum boundary; see, for example, [11-13,|16/17]. However, in
those works, the proof of the gain in regularity relied on the special properties of Lagrangian
coordinate partial derivative vectorfields. In the study of shock formation, Lagrangian co-
ordinates are entirely inadequate for measuring regularity since they are not adapted to the
acoustic characteristics (which we describe in detail later on), whose intersection corresponds
to the singularity. For this reason, in three spatial dimensions, we need to rely on a different
approach, tied to our new formulation of the equations (see below and Prop. , which
allows us to realize the gain in regularity relative to vectorfields adapted to the acoustic
characteristics. In fact, if regularity were the only consideration, then our approach for gain-
ing a derivative in the vorticity could be implemented with any sufficiently smooth spanning
set of vectorfields, not just the geometric ones (described in Subsect. [1.2)) that we use to
study shock formation.

The aforementioned results [6,9] on shock formation for compressible fluids, though foun-
dational, crucially relied on the assumption that the fluid is irrotational, at least in a neigh-
borhood near the shockE In the irrotational case, the dynamics are completely determined
by a fluid potential ® and the Euler equations can be written as a single quasilinear scalar
wave equation; this is a big simplification compared to the structure of the compressible
Euler equations with vorticity. Moreover, we note that the assumption of irrotationality
is very restrictive from a physical point of view. In particular, irrotational data constitute
only a very small (infinite co-dimension with empty interior!) subset of all initial data. It
is therefore of interest to prove, at the very least, that previous shock formation results still
hold under perturbations with small vorticity. As we explain below, substantial new ideas
are needed to accommodate the presence of even small amounts of vorticity near the sin-
gularity. In this context, let us note that accommodating vorticity is particularly relevant

IBWe also note that one encounters other new technical difficulties in three spatial dimensions compared
to the case of two spatial dimensions. In particular, in three spatial dimensions, one must also derive elliptic
estimates, distinct from those mentioned above for the specific vorticity, to control the top-order derivatives
of the eikonal function. However, an approach to implementing the elliptic estimates for the eikonal function
in three spatial dimensions has been well understood since the Christodoulou—Klainerman proof [7] of the
stability of Minkowski spacetime, and, in the context of shock formation, since Christodoulou’s work [6].

145 vorticity-free region near the shock can be achieved, for instance, in the small data dispersive setting
by exploiting the fact that the characteristic speed for the vorticity is slower than the sound speed. See also
the discussions in Subsect. [1.4
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when one is interested in extending the solution (in a weak sense) after the shock is formed.
The reason is that even if the fluid is initially irrotational, vorticity may be generated after
a shock has formed [6].

Moreover, in the larger context of the study of singularity formation for evolution partial
differential equations, our theorem appears to be the first shock formation result in more than
one spatial dimension that involves a system of quasilinear wave equations coupled to another
quasilinear evolution equation with a different characteristic speed. More precisely, in the
presence of vorticity, the Euler equations exhibit the following two kinds of characteristics:
acoustic characteristics (corresponding to the propagation of sound waves) and the integral
curves of the material derivative vectorfield (corresponding to the transporting of vorticity).
We hope that the techniques introduced here will be relevant to other problems featuring
multiple characteristic speeds.

As we have alluded to above, the starting point of our proof is a new formulation of the
compressible Euler equations as a coupled system of covariant wave and transport equations.
The new formulation, which we derived in the companion article [25], is a consequence
of (1.0.1a})-(1.0.1b)), obtained by differentiating the equations with suitable operators and
observing remarkable cancellations. One key advantage of the new formulation, stated below
as Prop. (3.1} is that the inhomogeneous terms exhibit surprisingly good null structures that
are preserved under commutations with well-constructed geometric vectorfields, adapted to
the acoustic characteristics. The good null structure, which we referred to as the “strong null
condition” in [25], signifies the complete nonlinear absence of certain quadratic and higher-
order interactions that we would not be able to control near the shock. The new formulation
also allows for the aforementioned gain of regularity in the specific vorticity, both in terms of
Cartesian and geometric coordinates, which is central to closing the proof. We will further
discuss this in Subsect. [L.3

1.0.1. Organization of Sect. [1. We have organized the remainder of Sect. [I] as follows: In
Subsect. [I.I} we describe the setup of the problem, noting in particular that we will only
study the solution in the causal future of a portion of the initial data. In Subsect. [I.2]
we describe the solution regime that we study and the size parameters that we use in the
analysis. In Subsect. [[.3] we describe some new ideas in the proof of our main theorem
(although we will postpone a more detailed discussion of the main ideas to Sect. . Finally,
in Subsect. [1.4] we close the introduction with a discussion on relevant previous works.

1.1. Setup of the problem. Instead of studying the solution in the entire spacetime R x 32,
we study only the future portion of the solution that is completely determined by the portion
of the data lying in the subset ng 0 C ¥y of thickness Uy (as measured by the eikonal function
u, described below) and on the curved null hyperplane portion P¢; see Figure .
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F1GURE 1. The spacetime region under study.

The set ¥, is the level set of constant Cartesian time. Moreover, here and throughout,
0 <t <281 where b, > 0 is a data-dependent parameter (see Def. } connected to the

* )

expected time of first shock formation, and
0<Up<1 (1.1.1)

is a parameter, fixed until Theorem [16.1] (our main theorem). The data that we treat are
such that 8, is large relative to other parameters that control various seminorms of the data.
That is, 5. > 0 can be arbitrary, but another parameter must be appropriately small; see
Subsect. for further discussion. We assume that the “interesting, relatively large” (in a
sense that we explain below) portion of the data lies in E(I{ o, Moreover, we assume that the

data are “very small” on 7336* 1, though the vorticity is allowed to be non-zero everywhere
there.

More precisely, in our main theorem, we consider perturbations of simple outgoingE] plane
wave solutions. We focus our attention on perturbations of the subset of these plane wave so-
lutions that have data supported in ¥} and that satisfy the relative size condition mentioned
above. Domain of dependence considerations imply that such plane wave solutions com-

21
pletely vanish along P2% . Thus, “very small” (not necessarily symmetric) perturbations of
their data on Xy, which we now allow to have large spatial support, induceﬁ] “very small”

21 21
data along P> such that the data on $5° U P> is a perturbation of that of the simple
plane wave solution. Moreover, it can be easily arranged that the vorticity is non-vanishing

5Here and throughout, outgoing simply means right-moving as is indicated in Figure
21

I6Notice that while in principle one can attempt to directly prescribe data on the null hypersurface P02 o ,
in practice, this involves solving a rather complicated system of constraint equations, which can be difficult
to implement.



10 Shock Formation in the Presence of Non-Zero Vorticity

21
on EOU oy 7335* ; since the specific vorticity is transported by the material derivative vector-
field (see the one-dimensional curves in Figure [3| for a depiction of the integral curves of the

material derivative vectorfield), if the vorticity is everywhere non-zero along Ef{ U 7335;1,
then it will be non-zero at the location of the first shock.

To summarize, the dynamic region of interes lies in between EOU ® and the curved null
hyperplane portions Py, and P§, where 0 < ¢ < 2571, We rigorously define these sets in
Def.[3.9 but let us say a few words about them here and, at the same time, about some other
important spacetime subsets depicted in Figure 2l The definitions of these sets refer to an
eikonal function u, whose level sets are acoustic characteristics; we postpone our extensive
discussion of u until later. For now, we simply note that the level sets of u are denoted
by P, or, when they are truncated at time ¢, by P.. We refer to the P, and P! as “null
hypersurfaces,” “null hyperplanes,” “characteristics,” or “acoustic characteristics.” We use
the notation M, to denote the open-at-the-top region trapped in between g, ¥;, P¢, and
PL. We refer to the portion of ¥, trapped in between P} and P! as ¥¥. The trace of the level
sets of u along ¥ are chosen (see condition (3.6.2))) to be straight lines, which we denote
by {y.. For t > 0, the trace of the level sets of u along ¥; are (typically) curveﬁ by We
restrict our attention to spacetime regions with 0 < u < U,.

F1GURE 2. The spacetime region and various subsets.

1.2. Further description of the data and the solution regime. We now provide more
details about the data and solutions that we study. They are close to plane symmetric
solutions with data supported in the z! interval [0, 1] such that one Riemann invariant
(R_:=0'— fapzo cs(p) dp) completely vanishes, while the other one (R := v+ fﬁpzo cs(p) dp)

"Notice that by domain of dependence considerations, the solution in this region indeed depends only on

-1
the initial data on Eg" U 7358*
B\ ore precisely, the ¢, ,, are diffeomorphic to the torus T.
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is initially small but with relatively largelﬂ spatial derivatives. Using the approach taken by
Riemann in his famous work [27] (in which he invented Riemann invariants), one may show
that ;R experiences a Riccati-type blowup along a characteristic curve while R, remains
bounded; we stress that these phenomena occur while R_ remains identically zero. Such
a solution is known as a simple plane wave and arguably represents the simplest kind of
symmetric shock-forming solution that one can study in a perturbative sense. It is for this
reason that our main results apply to neighborhoods of a subclass of simple plane waves.

To further describe the class of data and solutions under study, we need to introduce
the geometric vectorfields L, Y and X , which are depicted in Figure |3| below, and also the
parameters 5*, 8, and € describing the sizes of different quantities. At this point, let us just
note that the vectorfields L and Y are chosen to be tangential to the acoustic characteristics,
while X is transversal to them. Moreover, we use L, X , and Y to commute the equations
and obtain estimates for the solution’s derivatives. We refer the readers to Subsect. B.7 for
rigorous definitions of these vectorfields and proofs of their basic properties. The parameters
5, and & are not necessarily small, but we require € to be relatively small in a sense explained
in Subsect. 8.6, With the help of these parameters, we can now further describe the data
and solutions under study (where it may be seen that some of the conditions below are
redundant):

e (Nearly plane symmetric perturbations of constant states) The initial data and so-
lution are € close in L™ to the constant state (p,v!',v?) = (0,0,0). By a “plane
symmetric” solution, we mean one such that, relative to the standard Cartesian co-
ordinates, we have p = p(t,z!), v! = v!(t,2'), and v? = 0. The factor T in the
Cauchy hypersurface ¥y ~ R x T corresponds to the direction of symmetry for the
simple plane symmetric waves that we are perturbing. Thus, “nearly plane symmet-
ric” means, roughly, small dependence in the T direction.

e (Finite-time shock formation occurs) 5, is defined so that 6 !is the expected blowup
time, up to O(€) error. 5. is tied to the size of the (81gned part of) X! lt=0; see
for the precise definition.

e (Boundedness of the transversal derivatives) 0 < 8 < 0o bounds the initial size of the
X (and XX and XXX, etc.) derivatives of (p,v!, v?). In addition, we make smallness
assumptions on the derivatives of p — v* and v?, consistent with the behavior of the
simple plane symmetric waves that we are perturbing; see the next item.

o (Nearly simple outgoing) Initially[Y the L and Y derivatives of (p,v!,v?) are é-small
at all derivative levels in appropriate norms. The same holds true for higher-order
derivatives in terms of L, Y and X , where at least one of the derivatives is L or Y.
Moreover, we assume that the first-order X derivatives of p — v! and all directional
derivatives of v? are of size €. Roughly, these conditions correspond to a solution
whose dynamics are well-described by an outgoing (that is, moving in the direction
of increasing z') and nearly simple.

1981R+ is allowed to be initially small in an absolute sense, as long as R is restricted to be even smaller.

20Notice that only the initial data for (p,v!,v?) can be prescribed and that we cannot prescribe their time
derivatives. Nevertheless, for perturbations of appropriate simple plane wave solutions, the desired smallness
can be achieved.
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p
e (Smallness of the Riemann invariant R _) Initially, R_ := v’ — / cs(p) dp and all of

5=0
its directional derivatives up to top-order are initially € small ii’l appropriate norms.
This represents a perturbation of the complete vanishing of R_, which, in view of
the above discussion, therefore corresponds to a perturbation of a simple outgoing
plane symmetric wave.

e (Small vorticity) This means that d;v%—0d,v! and all of its derivatives up to top-order,
in all directions, are initially € small in appropriate norms.

e (Near-acoustic regime) In this regime, the compressible Euler equations are well-
approximated by transport equations along appropriately scaled nul]Er] generators L
of the acoustic characteristics P,. This corresponds to a flow that is dominated by
sound wave propagation.

Of course, one of our main tasks in our proof is showing that the smallness conditions stated
above, at first only assumed for the initial data, are propagated by the flow. Actually, as
we explain below in great detail, one of the main difficulties in the proof is that near the
top-order, the smallness can only be understood in terms of some singular norms. By this,
we mean that the best estimates we are able to prove allow for the possibility that the
high-order energies might blow up.

The solution regime described above is not the only one for which we could prove a shock
formation result. However, it is perhaps the simplest one allowing for non-zero vorticity. In
particular, because the solutions are nearly plane symmetric, there is no wave dispersion and
hence no decay. Therefore, powers of ¢ and r do not play a role in our analysis. We expect
that a similar shock formation result could be proved for small, nearly radially symmetric
quickly decayingE] data on R?. In this case, the analysis would involve factors of ¢ and/or
r, which would capture the dispersive decay (that one expects to occur until close to the
shock). Moreover, one would have to assume that the vorticity is initially very small, so that
it and its derivatives are not able to become large by the time that the shock forms.

1.3. New ideas for the proof. To prove our main theorem, we rely on the full strength of
the technology developed in the works of Christodoulou [6] and Speck—Holzegel-Luk—Wong
[30]. In particular, the same size parameters S*, S, and €, which are featured in the proof
(and discussed in Subsect. , are also present in [30]. We therefore postpone a detailed
discussion of our proof until Sect. 2| where we review the works [6,[30]. Here, we will simply
highlight a few key new high-level ideas (see Subsect. for a discussion of more technical
new ideas):

(1) In Prop. , we reformulate the equations as a system of coupled wave and transport
equations with remarkable geometric features, including the good null structures
mentioned above.

(2) We prove that the transport part of the system “interacts well” with the wave part of
the system. More precisely, one can commute geometric vectorfields adapted to the
acoustic characteristics P, through an appropriately weighted version of the material

21By null, we mean relative to the acoustical metric of Def.
22By decaying, we mean in the Euclidean radial coordinate r, towards the data of a non-vacuum constant
state.
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derivative vectorfield, which is the principal part of the transport equation for the
specific vorticity.

(3) We show that the specific vorticity is uniformly Lipschitz with respect to Cartesian
coordinates up to the formation of the first shock, which is a much stronger estimate
than what follows from simply viewing the specific vorticity as first derivatives of v
divided by p.

(4) We prove that the specific vorticity is “one derivative better” with respect to geo-
metrically defined vectorfields than one naively expects, thus avoiding an apparent
loss of derivatives in the new formulation of the equations.

Our reformulation of the compressible Euler equations was derived in [25] in the case of
three spatial dimensions but can be easily modified so as to apply in two spatial dimensions.
We present the two-space-dimensional version in Prop. below. In two spatial dimensions,
the new formulation can be modeled by the following wave-transport system in the scalar
unknowns ¥ (which models v* and p) and w (which models the specific vorticity, defined
above as w = w/ exp(p)):

Dg(\p)qf = 8w, (1.3.1)
Ow = 0. (1.3.2)

In (1.3.1)), g = g(V) is a Lorentzian metric whose Cartesian components g,g are assumed to
be explicit smooth functions of W, [y is the covariant wave operatoﬂ of g(¥), and dw
schematically denotes first-order Cartesian coordinate partial derivatives of w. In our study
of the compressible Euler equations, g is the acoustical metric (see Def. corresponding to
the propagation of sound waves. In Cartesian coordinates, the expression [V contains
(quasilinear) principal terms of the schematic form f(¥)0?¥ and semilinear terms of the
form f(0)(OW)?. The precise structures of both the quasilinear and the semilinear terms are
important for our analysis. Equation models the transporting of specific vorticity.
In writing down —, we have omitted the quadratic inhomogeneous terms from
Prop. [3.1] all of which have a good null structure and remain negligible, all the way up the
shock. The presence of this null structure, which is available thanks to the special form of
the equations stated in Prop. [3.1] is fundamental for our proof; see Remark for further
discussion.

We also note the following aesthetically appealing feature of the formulation: the principal
parts of the system are a wave operator and a transport operator. Thus, the two kinds of
propagation phenomena present in the compressible Euler equations, namely the propagation
of sound waves and the transporting of vorticity, become manifest. This stands in contrast
to the usual first-order formulation ((1.0.1a))-([1.0.1bf), where the presence of the two kinds of
propagation phenomena are not easily visible at the level of the equations.

Previous shock formation results, which we review in Sects. and 2], apply to quasilinear
wave equations. In contrast, in the model problem ([1.3.1)) and (|1.3.2)), we need to handle
an extra transport equation and also additional inhomogeneous terms in the wave equation.
In previous works on shock formation in quasilinear wave equations, starting from [2-4}6],
a crucial insight was to use geometric vectorfields that are adapted to the characteristics
P, and that, in directions transversal to the characteristics, are appropriately degenerate

23Relative to arbitrary coordinates, Oy f = ﬁ@a (\/detg(g_l)o‘ﬂagf).
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(with respect to the Cartesian coordinate vectorfields) near the shock. Morally, this is
equivalent to deriving estimates relative to a system of geometric coordinates adapted to
the characteristics. To accommodate the term dw on RHS , it is therefore important
when dealing with the coupled system to ensure that the derivatives of the specific vorticity
with respect to the same geometric vectorfields can be controlled. To achieve this, we rely on
the fact that the transport operator is a first-order differential operator and therefore, upon
multiplying by a degeneration factor p (explained below in great detail), that commuting the
transport equation with the geometric vectorfields generates only controllable error terms.

Next, we note that RHS involves a Cartesian coordinate partial derivative of w,
which is therefore singular with respect to the geometric vectorﬁelds.[?] However, the follow-
ing crucial geometric fact is available in our formulation of the compressible Euler equations:
the transport equation has a strictly smaller speed compared to the characteristic wave speed
corresponding to the operator Ll,. For this reason, in the actual problem under study, we
can use the transport equation to express the transversal (to the acoustic characteristics of
g) derivatives of w in terms of the non-degenerate tangential derivatives of w. This can be
used to show, among other things, that w is in fact uniformly Lipschitz up to the shock.
The difference in the characteristic speeds for the transport operator and the wave operator
is also important in that it leads to the availability of non-degenerate energies for w along
the acoustic characteristics corresponding to g; see the last term on RHS .

Finally, we discuss the basic regularity of the solution variables, highlighting the role of
the source term dw on the right-hand side of the wave equation (1.3.1)). In the case of the
compressible Euler equations, vorticity can be viewed as the first derivatives of the velocity
and hence, in the context of the regularity of solutions to the model problem, one might
be tempted to think of Jw as corresponding to the second derivatives of W. However, this
perspective is insufficient from the point of view of regularity since energy estimates for the
wave equation (without commutation) yield control of only one derivative of W. Hence, this
perspective leads to an apparent loss of a derivative. However, since is a homogeneous
transport equation, one expects to gain a derivative — this is indeed obvious{f] if one takes
Cartesian coordinate partial derivatives of equation . What is less obvious is that in
fact, the loss of derivatives can also be avoided if one differentiates the transport equation
with the geometric vectorfields which, as it turns out, depend on ¥. We note that while it is
indeed possible to carry out commutations the transport equation with geometric derivatives,
one encounters some singular terms tied to the degenerate top-order behavior of ¥ and the
acoustic geometry, which we will discuss in detail in Sect. [2]

1.4. History of the problem. The study of the formation of shocks for the compressible
Euler equations has a long history which traces back to the aforementioned foundational
work of Riemann [27]. He introduced the Riemann invariants for the Euler equations in one
spatial dimension and showed that shocks often form in finite time. In the one-dimensional
case, the theory, at least in the small BV regime, is fairly complete. In particular, it is known

24This singularity is actually unimportant just from the point of view of the lower-order energy estimates.
This is, however, of crucial importance at the top-order; see discussions in Sect.

Z5From this point of view, the model system is oversimplified in that one can control an arbitrarily large
number of Cartesian coordinate partial derivatives of w. In the actual system, since the transport operator
depends also on the Cartesian components (v', v?), only one derivative can be gained.
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that there exist unique global weak solutions in the BV class. This theory in particular
incorporates formation and interaction of shocks. We refer the readers to [5,[14] for surveys
on the one-dimensional case.

Let us mention that the theory of finite-time blowup for solutions to hyperbolic systems in
one spatial dimension has been developed way beyond the theory of the compressible Euler
equations. For example, for general 2 x 2 genuinely nonlinear hyperbolic systems, finite-time
blowup has been proven by Lax [22]. For n x n genuinely nonlinear hyperbolic systems,
even though Riemann invariants are not available, John [18] has obtained a shock formation
result in which the waves are simple by the time a shock forms.

In two or three spatial dimensions (without symmetry assumptions), the problem becomes
considerably harder. The first general breakdown result for the compressible Euler equations
in three spatial dimensions was achieved by Sideris [29] for a polytropic gaﬂ with adiabatic
index v > 1. In particular, he exhibited an open set of small and regular initial data for
which the corresponding solutions cease to be C! in finite time. However, his methods did
not provide any information on the nature of the breakdown.

In a different direction, Alinhac studied the two-dimensional compressible isentropic Euler
equations in radial symmetry [1]. He showed that a large class of small radially symmetric
data (with potentially non-vanishing Vorticity@ lead to a finite time blow up. While this
result only applies to radial initial data, it gives a precise estimate on the blow up time (at
least as the size of the data tends to 0).

Alinhac later achieved [2-4] important breakthroughs regarding shock formation. His
works, which addressed solutions to a large class of quasilinear wave equations, were the first
instances of proofs of shock formation for solutions to quasilinear equations in more than one
spatial dimension that did not rely on any symmetry assumptions. In particular, his work
yielded a precise description of the singularity and tied its formation to the intersection of
the characteristics. While he did not explicitly study the compressible Euler equations, his
works provided all of the main insights needed to extend the result to the irrotational Euler
equations. More precisely, for all quasilinear wave equations (g71)**(0®)0,0;® = 0 that
fail to satisfy the null condition, Alinhac exhibited a set of initial data leading to finite-time
shock formation. As we will discuss in Subsect. 2.3 under the irrotationality assumption,
the compressible Euler equations can be written as a quasilinear wave equation in the above
form. Moreover, the null condition is violated whenever the equation of state is not that
of a Chaplygin gas. The data in Alinhac’s works were small and satisfied a non-degeneracy
condition. For this class of data, he gave precise estimates of the solution up to the first
singular time. In his proof, he recognized the importance of deriving estimates relative to
a geometric coordinate system tied to an eikonal function, which captures the geometry of
shock formation. However, Alinhac’s approach to deriving energy estimates was based on a
Nash—Moser iteration scheme featuring a free boundary, and the iteration scheme relied in
a fundamental way on his non-degeneracy condition on the initial data.

26That is, the equation of state is given by p(p) = kp? for constants k and v with k& > 0. Actually,
Sideris allowed for the presence of non-constant entropy; his breakdown result holds for the equations of
state p(p) = kp” exp(s), where s, the specific entropy, verifies the evolution equation Bs = 0.
However, since the initial vorticity is required to be compactly supported and the speed of the vorticity
is much slower than the sound speed, the vorticity in Alinhac’s solutions vanishes in a neighborhood to the
past of the first singularity.
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In a monumental work in 2007, Christodoulou [6] studied shock formation for alP wave
equations of irrotational relativistic fluid mechanicsﬁ] Christodoulou proved that a large
class of small initial data give rise to shock formation and he gave a precise description of
a portion of the boundary of the maximal classical development of the data. Compared to
the work of Alinhac, Christodoulou introduced a fully geometric framework such that the
breakdown of the solution is completely described in terms of the vanishing of the inverse
foliation density p (see definition ) of the acoustic characteristics. As a consequence,
his work applied to an open neighborhood of solutions whose data are small and compactly
supported perturbations of the non-vacuum constant states. In particular, for data that are
small as measured by a high-order Sobolev norm, he showed that (at least outside the causal
future of a compact set) shocks are the only possible singularities. Moreover, he exhibited
an open condition on the data that guarantees that a shock will form in finite timeF_U]

The geometric framework introduced in |6] has proven to be useful for studying shock
formation in other settings. Most relevant to our current work is the aforementioned work of
Christodoulou-Miao |9], which used the geometric insights of [6] to study shock formation
for small and compactly supported perturbations of non-vacuum constant state solutions to
the non-relativistic compressible Euler equations. In particularE] the results of [9] provided
a precise picture of the singularity formation exhibited by Sideris in [29].

While the shock formation result of |6] was proved in irrotational regions of spacetime,
the result also applies to initial data with non-vanishing vorticity which satisfies appropriate
conditions on its (compact) support. This is because for such initial data, using that the
vorticity and sound travel with different speeds, one can show that in the complement of
the causal future of an appropriate compact set, the vorticity vanishes. In particular, in the
small-data regime, the vorticity travels with small speed and hence completely vanishes in
the acoustic wave zone, where the shock forms. A similar result could be proved for the
non-relativistic compressible Euler equations using the techniques of [9], even though such a
result was not stated there. However, we stress that the approach of [6,9] is not sufficient,
in itself, for controlling solutions with non-vanishing at the first shock singularity; for this,
one seems to need all of the new structural features afforded by Prop.|3.1]

The seminal work of Christodoulou also inspired some recent developments on shock for-
mation for quasilinear wave equations in more than one spatial dimension. See [15}26,|31]
for a sample of such results. The work [31] in particular generalized the results in [6] to a

2BAC‘Bually, there is one exceptional equation of state such that the null condition is satisfied, in which case
the corresponding wave equation admits small data global solutions [23]; see [6] for further discussion. The
exceptional equation of state corresponds to the equation of state of a Chaplygin gas in the non-relativistic
case, for which our main shock formation results do not apply.

29Roughly speaking, these equations form a subclass of the equations studied by Alinhac and enjoy
special additional properties, such as an Euler-Lagrange structure and invariance under the Poincaré group.
However, as is shown in [31], the insights introduced in [6] can be applied to a much larger class of quasilinear
wave equations.

30Given Christodoulou’s result that shocks are the only possible singularities, there remains a possibility
of some non-trivial global solutions arising from small data.

31Note that Sideris’ proof of blowup by contradiction [29] applies only to adiabatic equations of state with
index bigger than one, while the work [9] allows for an arbitrary barotropic equation of state (except that
of the Chaplygin gas).
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much larger class of quasilinear wave equations. We refer the readers also to [8,/10] for some
recent developments in symmetry-reduced problems motivated by [6].

1.5. Outline of the paper. In Sect. [2] we describe the main ideas behind our proof. Al-
though we need many new ideas to treat the vorticity, we extensively rely on the framework
developed by Christodoulou [6] in his proof of shock formation in irrotational regions and on
the methods of Speck—Holzegel-Luk—Wong, who proved [30] shock formation for perturba-
tions of simple outgoing plane waves for general classes of quasilinear wave equations. Hence,
we review the relevant aspects of those works in detail. Readers who are familiar with those
works might prefer to skip to Subsect. [2.4] where we overview the main new ideas needed to
handle the presence of vorticity at the shock.

Starting in Sect. [3| we give detailed proofs. Specifically, in Sects. [3}{7], we construct all
of the geometric quantities that we need to study the solution. In Sect. [§| we describe our
assumptions on the data and formulate suitable L>-type bootstrap assumptions. In Sects. [0}
and [I4] we use the bootstrap assumptions to derive L> and pointwise estimates for the
solution. In Sect. we construct the L?-type quantities that we later bound with energy
estimates. In Sect. [13] we provide a geometric Sobolev embedding theorem, which we will
use to recover the L> bootstrap assumptions from energy estimates. Sect. is the most
important part of the paper. There we use the previous estimates to derive a priori energy
estimates for the L2-type quantities mentioned above. In Sect. , we prove our main shock
formation theorem, including recovering the bootstrap assumptions and showing that the
shock forms. The theorem is relatively easy to prove given the estimates from the prior
sections.

2. IDEAS OF THE PROOF

In this section, we describe the ideas of the proof of our main theorem. While the main
novelty in this paper is that we allow for non-vanishing vorticity all the way up to shock
formation, in order to describe our proof, we nonetheless have to recall some of the main
points in the work of Christodoulou [6] and the work of Speck—Holzegel-Luk—Wong [30]. In
particular, in the present work, we will work with a solution regime similar to that in [30].

We have organized Sect. [2 as follows: In Subsect. , we review the work [6], emphasizing
the geometric insights that are relevant to our present work. In Subsect. [2.2] we review the
work [30]. In Subsect. we discuss how the work [30] can be applied to the compressible
Euler equations and how [30] is related to our present work. Finally, in Subsect. , we
discuss the main new ingredients that we use to prove our main theorem, which requires
controlling the interaction between sound waves and vorticity up to the first singularity
caused by compression.

2.1. Review of Christodoulou’s work. We begin with a review of the main ideas in [6].
However, in this subsection, we will not restrict ourselves to discussing the small-data regime
in 1+ 3 dimensions as in [6]. Instead, we focus on general principles regarding the geometric
structure of shock formation for quasilinear wave equations, which can be applied to settings
beyond the original work [6], for example in different solution regimes and for more general
equations; see [9,[15,26,31] and also a more thorough discussion in the survey article [15] in
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the case of small compactly supported data on R3. In particular, in this subsection, we will
suppress discussion of the precise estimates that are specific to each problem.lﬂ

In this subsection, we will consider (1 + 2) dimensiona]lﬂ covariant (see Footnote [23)
quasilinear wave equations of the formf*]

Oy =0 (2.1.1)

for real-valued scalar functions ¥ with regular initial data. By assumption, the metric g(V)
is a Lorentzian metric that we will refer to as the acoustic metric since, in the context of
the Euler equations, the wave equations correspond to the propagation of sound waves. As
in Subsect. , we assume that the Cartesian components g,p are explicit smooth functions
of . We require the nonlinearity in to obey certain conditions so that a shock can
form for appropriate initial conditions; see Footnote

2.1.1. Identification of the blowup-mechanism. In the work [6], Christodoulou studied the
formation of shocks by introducing a geometric framework tied to an eikonal function wu,
which is a solution to the eikonal equation (a hyperbolic PDE)

(97" (¥)Daudsu = 0, B > 0, (2.1.2)

supplemented with appropriate initial conditions. The level sets of u are null hypersurfaces
(also known as characteristics) relative to g(¥), which we denoted above by P,. The char-
acteristics provide a foliation of the spacetime that is essential for understanding the shock.
The most important quantity in the study of shock formation is the inverse foliation density
i > 0, defined as

1
T T ) () 0at0su”

where ¢ is the Cartesian time coordinate. 1/p is a measure, relative to the constant time
slices ¥, of how “densely packed” the characteristics are. That is, u = 0 corresponds to
infinite density, the intersection of characteristics, and the formation of a shock. One of the
key features of Christodoulou’s work [6] is his proof that for small data, the only possible
blowup in a certain solution regime is the formation of shocks. That is, he showed that the
regularity of the solution is completely determined by w and that, for a class of data, one has

(2.1.3)

32In particular, when studying shock formation in a particular solution regime, it is important to track
the “smallness” in the problem. This plays a crucial role in [6], which specifically considers the small-data
regime in 1+ 3 dimensions for the irrotational relativistic Euler equations. We will completely suppress this
discussion in this subsection, but in later subsections, we will emphasize the importance of the role of certain
kinds of smallness present in the solution regime that we consider in the present paper.

33The work [6] was carried out in (1 4 3) dimensions. However, since the rest of our present paper is
in (1 4 2) dimensions, we will discuss the ideas of [6] as adapted to that case instead. Notice that the
(1+2) dimensional case already requires almost all of the new ideas introduced in [6], with the exception of
top-order elliptic estimates for the eikonal function.

34In [6], the equations were in fact a subclass of equations, derivable from a Lagrangian, which take
the form (¢g=1)*?(0®)0,03® = 0. In particular, the metric depends on the first derivative of the unknown.
However, by differentiation, the equation can be transformed into a system of scalar equations of type
that can be studied using essentially the same techniques needed for proving shock formation in solutions to
; see the survey article |15] for further discussion. For this reason, we focus here on equation .
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very good control on how w — 0. In particular, he proved the following facts for solutions
generated by an open setF’_B] of data.

e The solution remains regular at time ¢ if w,(t) > 0, where w,(¢) := infy, p.

e Given appropriate initial conditions (consistent with the assumptions for the solution
regime), p, — 0 in finite time.

e [t can be justiﬁed@ that w, approaches 0 linearly, a fact which turns out to be crucial
for deriving energy estimates.

The blowup-mechanism described above already suggests that the estimates proven for the
solutions must take into account appropriate weights of w and p,. The precise estimates,
however, requires further geometric inputs, which we will explain in the next subsubsection.

2.1.2. The geometric coordinates and the geometric vectorfields. A second key feature of
Christodoulou’s proof, which was also found in Alinhac’s works [2-4], is that relative to
a geometric coordinate system (t,u,?), the solution and its low-order partial derivatives
remain bounded. That is, relative to the geometric coordinates, one does not see the shock
“singularity.” This suggests the main paradigm for approaching the problem: to the extent
possible, prove “long-time-existence-type” estimates for the solution relative to the geometric
coordinates and then recover the formation of the shock singularity as a degeneration between
the geometric coordinates and the Cartesian ones. Above, t is the Cartesian time coordinate,
u is the eikonal function, and ¢ is a geometrically defined coordinate that satisfies the
transport equation (g~1)*?(¥)9,udzd = 0; we will downplay the role of ¥ here since it is
better to avoid the use of coordinates in most of the analysis.

It turns out that deriving the regularity of the solution relative to the geometric coordi-
nates is equivalent to proving that appropriately p-rescaled derivatives of various quantities
remain bounded. That is, one may insert factors of u into various estimates in such a way
that the vanishing of p exactly compensates for the singularity. One might say that many
quantities featured in the problem “blow up like 1/p.” More specifically, the tangential
(to the characteristics) derivatives of W remain bounded without any factor of u while for
the transversal derivative X (see the next paragraph for further discussions), the X = uX
derivatives of ¥ remain bounded. Furthermore, it was shown that |)Z' U] is bounded from
below, strictly away from 0, when p becomes 0. Hence, at those points, X ¥ blows up and
the solution cannot be extended classically.

To prove that the above picture regarding shock formation holds, Christodoulou introduced
an extensive geometric setup, tied to the eikonal function, which we now adapt to the context
of the present article: the case of two space dimensions for solutions with approximate plane
symmetry. In addition to the geometric coordinates described above, he also introduced
geometric vectorfields L, Y and X adapted to the characteristics. L is defined to be tangential
to the null generators of the P,, normalized such that Lt = 1. Specifically, we have L* =

0
—u(g~H*?(¥)dsu and moreover, L = g relative to the geometric coordinates. Let ¢,

35By open, we mean relative to a high-order Sobolev topology.
36T his justification of course relies on a full bootstrap argument, for which the bounds for p, have to be
obtained simultaneously with all the other estimates.
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be the intersectionﬂ 3t N P,. Then Y is the g-orthogonal projection oﬁ 0y to 4y, The
vectorfield Y is a replacementﬁ for the geometric coordinate partial derivative vectorfield

0 y
29 Finally, define X to be tangential to ¥; and g-orthogonal to ¢;,, normalized such that

. y 0
Xu=1. That is, X = 0 plus a small error vectorfield that is tangent to ¢;,. Importantly,
u

X becomes degenerate (with respect to the Cartesian coordinate vectorfields) as p — 0.
That is, the Cartesian components X vanish precisely at the points where u = 0. On the
other hand, the vectorfield X = u_l)? remains non-degenerate, all the way up to the shock.
See Figure 3 for a depiction of these vectorfields.

FIGURE 3. The dynamic vectorfield frame at two distinct points in P! and
the integral curves of B

Once these geometric vectorfields have been defined, the problem can be reduced to the
following steps:

(1) Prove that ¥ and its lower-order derivatives with respect to the geometric vectorfields
L, Y and X are appropriately bounded, with estimates that are independent of how
small p is.

37Note that ¥ as defined above is a local coordinate on by
38Recall that s is a Cartesian coordinate partial derivative vectorfield.

0
391t turns out that Y has better regularity properties than —, which are essential for closing the energy

v’

estimates.



J. Luk and J. Speck 21

(2) Prove that the higher-order derivatives of ¥ with respect to the geometric vectorfields
are not too singulaﬂ in terms of .. Moreover, show that these not-too-singular esti-
mates can be used to derive the non-singular estimates for the lower-order derivatives
of U (as described in point (1) above).

(3) Justify the transport equationﬂ (where G, depends on g and ¥ (cf. Def. and
the extra terms are small error terms by Step (1))

1 "
L},L: §GLLX\I/—|—...

and prove that G, 1 XU can be precisely controlled in terms of its initial value. Hence,
under appropriate negativity assumptions on G X V|,—o, one can guarantee that p
approaches 0 within the time for which the solution is controlled.

2.1.3. Degenerate energy estimates and the coercive spacetime bulk term. In carrying out
Step (1) of Subsubsect. , the most crucial estimates are of course L?-based energy esti-
mates. It turns out that in order to handle the shock, one needs to incorporate degenerate
weights in the energies. To obtain suitable degenerate energy estimates, we apply the vec-
torfield multiplier method with the help of the energy-momentum tensor (see (4.2.1])) and
the vectorfield multiplier 7" = (1 + 2u)L + 2X. T has the property that it becomes null
and tangential to the characteristics P, as p vanishes. Moreover, the degeneration is chosen
precisely so that the energy controls the following quantities ¥, hypersurfaces (truncated at
eikonal function value u):

/u ((?\5‘1’)2 +u((Lw)? + (Y\II)Q)) dv du. (2.1.4)

In particular, only the estimate for XU is non-degenerate, by which we mean the energy
becomes very weak in LW and YW along ¥; when p is small. On the other hand, the energy
identities also yield control over the following quantities on the characteristics P! (truncated
at time t):

/ (LY)* + n(Y'¥)?) dvdt, (2.1.5)
P
i.e., one obtains a non-degenerate control for LW if one considers the energy flux on constant-
u hypersurfaces. Notice that in both and , the control for YV is degenerate.
Naively, one might expect that in deriving energy estimates, one encounters terms that are
not controllable by the energy itself. This is because proving degenerate energy estimates
corresponds to putting p weights in the “standard” energy estimates, and the weights are
differentiated during integration by parts. If the weights were small with large derivatives of
an unfavorable sign, then this would lead to potentially insurmountable obstacles to closing
the estimates. However, it turns out that by obtaining detailed information about the
way that p behaves along the integral curves of L, one can suitably control the geometric

40As it turns out, the scheme in [6] does not show that the high-order derivatives of ¥ with respect to the
geometric vectorfields are bounded. Of course, as we will explain in great detail below, the possible blowup
of the solution’s high-order derivatives is the source of many difficulties in the problem.

U order to guarantee that shock forms, we need G # 0. This can be viewed as a condition on the
Cartesian components g.g, viewed as a function of W.
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derivatives of the pu weights in the energy. Moreover, as was first observed by Christodoulou
in his work [6], one of the spacetime terms in the energy identities in fact has a good sign
and is bounded below by

/ [Lu]_(YU)?dV dudt. (2.1.6)
My

It can be proven that when p is sufficiently small, then the negative part [Lp|_ is bounded
below and the integrated term above is non-degenerate and coercive. That is, one can
quantify the following heuristic statement for the solution regime under consideration: the
only way that p can become small is for Ly to be sufficiently negative. It is this crucial
observation that allows YW to be controlled without degeneration.

One must also obtain similar energy estimates for the higher-order derivatives of W. In
order to prove estimates consistent with the expected shock formation picture, only the
geometric vectorfields can be used as commutators to derive higher-order estimates; the
Cartesian coordinate partial derivative vectorfields would generate uncontrollable error terms
if they were used to commute the wave equation since they are generally transversal to the
P. and are not p-weighted. The main technical difficulty that one encounters is that some
of the commutator error terms are exceptionally difficulty to control. The reason is that the
commutator terms depend on the derivatives of the vectorfields and thus, in view of their
connection to the characteristics, on the derivatives of the eikonal function. As we describe
in the next subsubsection, it turns out that one must work hard to avoid losing derivatives in
the most difficult of these terms and, crucially, that avoiding the derivative loss comes with
a price: it introduces a dangerous factor of 1/u into the energy identities, which leads to
energy estimates that are allowed to blow up in terms of powers of u; ! as the shock forms.

2.1.4. Top-order estimates for the eikonal function. While the use of tensorfields adapted the
characteristics, especially geometric commutation vectorfields, is necessary to prove shock
formation, a naive implementation of this framework leads to a loss of derivatives that
threatens to obstruct the closure of the energy estimates. The difficulty is that the commu-
tator o:lf‘-_zl ull, and the geometric vectorfields generates error terms that depend on the third
derivatives of the eikonal function u, which, as is suggested by the eikonal equation ([2.1.2)),
can be controlled only by obtaining control over three derivatives of ¥. On the other hand,
after one commutation of the wave equation uJ;¥ = 0 with the geometric vectorfields, only
two derivatives of ¥ can be estimated. Nevertheless, as is known since the workg™| [7}20],
one can exploit the fact that the Cartesian components of the metric g(¥) also satisfy a
wave equationﬁ to gain a derivative for certain special combinations of third derivatives of
u and second derivatives of W. The gain is tensorial in nature, and it is a happy fact that
the vectorfields L, X , and Y generate only commutation error terms featuring those special
combinations.

421t turns out that in our proof, we must commute the weighted operator puJ, in order to avoid generating
uncontrollable error terms.

43The work |7] exploited this gain of a derivative in the specific case of the Einstein vacuum equations,
for which this structure is more easily seen. Nevertheless, the ideas in [7] already serve as a blueprint for
gaining the derivative in the context of more general quasilinear wave equations.

44This claim is a simple consequence of the chain rule applied to the component functions Gap(P).
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One example (in fact, the most important example in the problem) of a controllable error
term depending on the eikonal function is the null mean curvature tryx of the characteristics
P.. It turns out that after commuting the wave equation one time with geometric vectorfields,
one encounters the first derivatives of tryx, which, as we alluded to above, we must carefully
treat to avoid losing a derivative. We now explain how to avoid this derivative loss. For
convenience, instead of addressing this difficulty at the level of one commutation of the wave
equation, we consider the analogous difficulty at the level of zero commutations. That is,
we explain how to control the undifferentiated quantity trsx in terms of one derivative of ¥
(which is the allowed regularity for ¥ without commuting). The source of the difficulty is
that tryx depends on two derivatives of the eikonal function w. This seems to be incompatible
with the available regularity of ¥ since a general second derivative of u has to be estimated
by two derivatives of the metric (and hence two derivatives of ¥). However, tryX is a special
combination of two derivatives of the eikonal function u and one can “gain” in derivatives
with the following procedure. First, one derives the following transport equation for tryx
(well-known in general relativity as the Raychaudhuri equation):

wLtryx = (Lptrgx — w(tyx)® — pRicpr, (2.1.7)

where Ricyy, is the LL-component of the spacetime Ricci curvature of g. The second main
observation is that Ricy is equal to a sum of terms controllable by only one derivative of W
and a term which can be written as LX, where X can be expressed in terms of at most one
derivative of W. That this can be achieved crucially depends on the wave equation for W.
More precisely, using the wave equation ulJ,¥ = 0, one can replace the second derivative
ter WAV, which appears in the expression of uRicyy, with L(WLW + 2X U) (and lower-
order terms). As a consequence, instead of directly studying tryx, we can instead study the
modified quantity utryx + X. The key point is that the right hand side of the transport
equation L(ptryx + X) now depends on at most one derivative of W. In total, this procedure
allows us to control tryx using estimates for one derivative of ¥ only, which is better than
what one would naively expect.

On the other hand, as the shock is approached, this procedure of gaining derivatives is
coupled with the difficulty oﬁ i, — 0. This is because the modified quantity is ptryx + X,
where X is merely bounded. Hence, to recover estimates for (the higher-order derivatives of)
tryx from estimates for (the higher-order derivatives of) the modified quantity, one faces the
critical difficulty of a discrepancy factor of 1/u; this discrepancy is central to most of the
difficulties that one faces in closing the problem.

We now illustrate how this difficulty enters into the top-order energy estimates for ¥ by
keeping one of the most significant termsﬂ This leads to an estimate of the following form
for the top-order energy E,, on :

=t
Eop(t, u) < Data + sz‘:c/ <Sup

t'=0 X

L
TMD By (t', u) dt + ..., (2.1.8)

45Here7 A denotes the Laplacian with respect to the Riemannian metric induced by g(T)on by, = E;NP,y.

46Recall that i, is the minimum of p on a constant-¢ hypersurface.

4TNotice that there are other terms which are of the same strength (from the point of view of the singu-
larity) as the term that is shown.
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Wherﬂ Ctiz > 01is a fized constant independent of how many derivatives we choose to be
the “top level”. To proceed, one needs very precise estimates for p and Lp and to show that
i, tends to 0 linearly. This impliesﬂ via a difficult analog of Gronwall’s inequality that
relies on the sharp information for u,, the estimatﬂ

Etop(t, u) < Data x p, 7™ (t, u), (2.1.9)

for some universal constant cg;,; > 0 that is independent of the structure of the nonlinearities.

2.1.5. Energy hierarchy and the descent scheme. In the previous subsubsection, we saw that
in order not to lose derivatives, the top level energy estimates must degenerate in terms of .
To finish the argument, Christodoulou introduced a descent scheme in which he showed that
for every order below the top-order, the degeneration can be improved by a fixed amount.
In particular, at some sufficiently low-order of derivatives, the energy can be shown to be
bounded. This then also yields, by a geometric Sobolev embedding estimate, the necessary
low-order L* estimates that allow the argument to be closed.

Let us describdﬂ the relevant numerology in the adaption of [6] to the present paper. One
proves estimates of the type

VEi5:k (t,u) < Céuy EH9 (¢t ), (0< K <5), (2.1.10a)
VEnN(t,u) < CE, (1< N < 14), (2.1.10b)

where Ey(t,u) denotes the energy on ¥ after N commutations. Here, Eq is the top-order
energy, and it can be controlled using the approach described in the previous subsubsection.
On the other hand, when controlling E;9, one can control the highest order (that is, 19")
derivative of tryx appearing in the energy estimates by [y instead of Ei9. Put differently,
below-top-order, one can simply allow the loss of a derivative and avoid using the modified
version of tryx. In this way, one avoids introducing an explicit singular factor of 1/p into
the below-top-order energy estimates, at the expense of introducing a coupling to the energy
at one higher level. A key point, which was exploited by Christodoulou in controlling the
energies at all derivative levels, is that p, — 0 at worst linearly (with precise estimates).
This in particular allows one to show that every integration in ¢ reduces the strength of the
singularity by a power of .. These “descent estimates,” though exceptionally technical to
implement, are nothing other than a “quasilinear version” of the estimate fst:() s70ds <tth
(for b > 1), where s = 0 represents the “vanishing” of w,.

To be more concrete, let us consider the most difficult inhomogeneous term on the right-
hand side of the equation pOyw)Y ¥ = ... which modulo bounded factors is the term

4811 the proof of our main theorem, C;, will in fact be an explicit numerical constant.

49We also note that in closing the top-order energy estimates, one must perform some crucially important
integrations-by-parts in time that lead to singular boundary terms that must be controlled. We will suppress
this technical difficulty here in order to keep the discussion short, instead referring readers to Subsect.
for details regarding this estimate.

50To obtain some heuristic understanding of why follows from (2.1.8]), one may replace pu and p,
with 1 — ¢ and Ly with —1. Then the standard Gronwall inequality yield with ciz = Cfig.

51We do not directly describe the numerology of [6] here as it is slightly different from that of the present
paper and doing so might create some confusion. On the other hand, the main ideas can be traced back to
[6].
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1
(LYW)(Y¥trgx). Since the control for LYW on a constant t-hypersurface in B2, is 12
degenerate (recall (2.1.4)), these considerations lead to the estimate

b1
Eig(t,u) < Data+/ t 2By (¢, w) [V x| 2y dt + ..
0

To estimate Y'%tryx, one can again use ([2.1.7)), but this time directly controlling Ricyy,. Since
1
EZ, again has a nz degeneration for the Y derivative, integrating (2.1.7) yields

tll:t/

11
[V trgx]| 2w < Data + / e 2E2 (¢ u) dt” + ... (2.1.11)
=0
Substituting this back into the estimate for Eg gives
b1 =t 4 4
Eig(t,u) < Data+/ Ly 2E129(t’,u)/ we 2EZ (7 ) dt"dt' + . .. (2.1.12)
0 =0

Now since p, tends to 0 at worst linearly, we have the following estimate, which we alluded
to above: for every b > 1, we have

t'=t
/ W) dt < Cust(e). (2.1.13)
t/

=0

Therefore, (2.1.12)) is indeed consistenﬂ with the reduced blowup-rate for [E;9 compared to
(2.1.10a))

[Eqp, as stated in . One can continue the descent and show that the blowup-rates for
the energies continues to improve as the number of derivatives is reduced, until one actually
obtains boundedness of the lower-order energies.

As we can see from the above scheme, the number of derivatives that is needed for this
descent scheme depends on the strength of the top-order singularity, represented by the
constant ¢y, in . In turn, ¢y, depends on the constant in Cp;, in (2.1.8)).

2.1.6. Formation of shocks. Once one closes all the estimates, the formation of shocks follows
easily. Indeed, with the estimates at hand, it is easy to conclude the solution remains regular
relative to bothﬁ geometric and Cartesian coordinates as long as @ > 0 and that u — 0
corresponds indeed to a shock. Moreover, the non-degenerate low-level energy estimates
imply, via Sobolev embedding, non-degenerate low-level L> estimates that lead to

1 o
L}l: §GLLX\IJ+,

where ... denotes small error terms and also that G, XV is essentially transported along
the integral curves of L. Therefore with appropriate negativity assumptions on Gpp XV |;—o,
it is easy to prove that p goes to 0 in finite time.

5270 actually close the estimates, one needs to derive a Gronwall estimate for a coupled system featuring
Ei9 and Eoy. We refer the readers to Subsect. for the relevant details in the context of the present
article.

53ndeed, the change of variables map from geometric to Cartesian coordinates is a diffeomorphism when
pn> 0.
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2.2. Review of the stability of shock formation for nearly simple outgoing plane
symmetric solutions to quasilinear wave equations. Together with Holzegel and Wong,
we proved [30] stable shock formation for “nearly simple outgoing plane symmetric” solu-
tions tﬂ a class of quasilinear wave equations in two spatial dimensions. In this paper, we
study a similar regime of nearly simple outgoing plane symmetric solutions. More precisely,
we extend the results of [30] to the compressible Euler’s equations without the irrotationality
assumption

We now describe the case of ezract simple outgoing plane symmetric solutions. We first
recall that (14 1)-dimensional quasilinear wave equations can be greatly simplified using the
conformal invariance of O, and the fact that (1 + 1)-dimensional Lorentzian manifolds are
(locally) conformally flat. Indeed, defining appropriate null functions u and w satisfying the
eikonal equation

(g *P0udsu = (g71)* Oqwdsw = 0,

it is easy to show the quasilinear wave equation Uy g)¥ = 0 is equivalent to

00,V = 0.

Note that the equation is still quasilinear as © and w depend on ¥. We say that a solution
U is a simple outgomgm if 0,¥ = 0. When expressed in terms of ¥ alone, 9,¥ = 0 can be
viewed as a Burger’s-type equation.

In [30], the authors studied (14 2)-dimensional quasilinear wave equations. The equations
admit plane symmetric solutions which do not depend on the Cartesian spatial coordinate
x?. Analogous to the (1 + 1)-dimensional case, they can be written as

00,V =N,

where N' = N (¥, 0V¥)0,¥ -0,V is a null form relative to g, and a solution is said to be simple
outgoing if 0, ¥ = 0. It is not difficult to see that under a condition of genuine nonlinearity,
there exist simple outgoing solutions for which shocks form in finite time. The main result
of [30] is that a subclass of such shock-forming solutions to equation is stable under
non-symmetric perturbations. Proving this result requires, in addition to the ideas of [6]
described in the previous subsection, a method to propagate smallness parameters relevant
to this solution reglmeﬂ

In order to achieve this, the authors 1ntroduced the parameter‘ s, 5 and é to describe
the relative sizes of the derivatives of W. Here, 5, and & are not necessarily small: 8 descrlbes
the size of the transversal (to the characteristics) derivatives of the data of ¥ and 6* Lis the

541 fact, similar methods could be used to show that the solutions are stable under non-symmetric
perturbations in three spatial dimensions; see the discussion in [30].

5See Subsect. for discussion on the relation between the class of equations discussed here and the
compressible Euler equations.

56We use the term ¢ outgomg to mean that the solution travels towards the “right.” That is, we have used
the convention that 1n1t1a11y > 0. Of course, the restriction to outgoing waves is merely for notational
convenience, as the analysis remains identical if we instead consider “incoming” solutions.

5Tn particular, this is in contrast to [6], where dispersion was crucially used to propagate smallness.
The lack of dispersion in [30] requires the introduction of the 8,-& size hierarchy of the initial data (to be
described below), but it turns out that to propagate that smallness is slightly less involved than that in [6].

®8These parameters are closely related to those introduced in Subsect. See Subsect. [2.3] for further
discussion.
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“expected the blow up time”, which depends on the first transversal derivative of ¥ at time 0
(compare with Definition E On the other hand, €, which, roughly speaking, describes the
size of the initial L> norm of ¥ as well as its 1n1t1a1 outgoing derivatives and its derivatives
in the direction 0, is required to be small compared to 8. and 5. In order to more precisely
describe the smallness of the initial data, we will again use the geometric vectorfields L, Y
and X described in the previous subsection. In [30], the geometric derivatives of ¥ at time
0 are required to be €-small whenever at least one of the differentiations is in the direction of
L or Y. It is straightforward to show that this initial smallness follows whenever the initial
data are é-perturbations of simple outgoing plane symmetric solutions.

In order to control the solution, we do not need to explicitly subtract the simple outgoing
plane symmetric solution from the full nonlinear solution. Instead, we show that the solution
remains nearly plane symmetric and nearly simple outgoing up to the time of first shock
formation in the sense that

For the derivatives of ¥ with respect to the geometric vectorfields, if at least

one of the vectorfields is L or Y, then the quantity in an appropriate norm
is O(&) small, all the way up to the shock["]

In other words, the smallness of the P!-tangential derivatives of ¥, which is originally as-
sumed for the initial data, is propagated by the flow. Notice that in this process, not only
do we use the geometric vectorfields L, Y and X to capture the formation of shocks, we
also use them to track the smallness in the problem. The following geometric and analytic
properties are crucial in order to achieve this:

(1) (Commutation properties of the geometric vectorfields) We stress that we have cru-
cially used the property that even if ¥ is X -differentiated, as long it is also hit with
one or more L or Y derivatives (for instance for the quantities LXV, XLLU, etc),
then the quantity is still O(€) small. That this holds of course relies on good commu-
tation properties of the geometric vectorfields, in particular that the commutator of
any two of {L, X, Y'} is tangential to the characteristics P, (in fact, the commutators
may be seen to be tangent to {;, = X; N P,)!

(2) (Null structure of the nonlinear terms when decomposed with respect to geometric
vectorfields) The wave equation is equivalent to (see Proposition

— L(uLV 4 2X0) + uAT = N, (2.2.1)

where N denotes nonlinear terms with at most one factor transversal to P, that is,
with at most one factor equal to XU. Consequently, under appropriate bootstrap
assumptions, the term N can be shown to be O(é)—small.lﬂ Notice that this smallness
partly comes from the geometry associated to the problem. For instance, one of the
terms in N is trgjxX U (where as before, trgx is the null mean curvature of the P,).

% Here, one could think of L as an analogue of d,, in the exact plane symmetric case and Y as in the
direction 0.

60We recall from the previous subsection that some higher-order norms are allowed to blow up. Therefore,
the O(€) “smallness” of the higher-order energies must be carefully interpreted as smallness relative to
singular norms.

61The implicit constants are allowed to depend on 5.
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It was shown that trzx is O(€)-small, which is a consequence of approximate plane
symmetry the solutlonﬂ

(3) (Commutation properties between the geometric vectorfields and puld,) )In order to
prove size O(¢€) estimates for the (higher-order) L and Y derivatives of ¥, we rely
on the fact that the commutators termﬂ (ud,, L|¥ and [puO,, YU are O(€)-small.
Moreover, we also use the fact that [u,, L)W and [u,, Y]¥ do not generate X X ¥
terms@ These can be viewed as a consequence of the commutation properties de-
scribed in the first point above.

Using the above properties, we carry out our estimates as follows:

(1) (Higher-order energy estimates) For the energy estimates, we only use L and Y as
commutators. We also only carry out the energy estimates after at least one com-
mutation. Notice that this is sufficient from the point of view of regularity since
[ud,, L] and [ud,, Y] do not generate X X terms! Moreover, the energy correspond-
ing to commuting the wave equation with one or more factors of L or Y is initially
O(&?)-small, which is convenien® for deriving estimates.

(2) (Estimates for the eikonal function) The estimates for the eikonal function u up to
the highest order are intimately tied to the energy estimates. For example, we show
that trzx (and its higher-order L and Y derivatives) inherits the O(€) smallness from
the energy estimates, as is expected since the solution is nearly outgoing simple plane
symmetric/ Note that in order to implement steps (1) and (2), it is important that
one can close the energy estimates and the estimates for the eikonal function (which,
as we described above, are highly coupled!) by commuting only with L and Y.

(3) (Lower-order estimates for XU, XLU, XX¥, XXX, etc.) Since we only derive
energy estimates after commuting with at least one factor of L or Y, our energies
cannot be directly combined with Sobolev embedding to yield pointwise control of
)Z' \IJ To obtain pointwise control of X U, we use the wave equation in the form
as a transport equation in the unknown XU, The pointwise estimates for
X L\IJ XXW, XXX Psi, etc. are obtained in a similar manner, after commuting the
wave equation. Notice that some of these terms, for instance XU, are of relatively
large size 6 but this size can be propagated since the error terms in are all of
smaller size O(€). In other words, in the nonlinear error terms, we never encounter,
say, quadratic terms of size 52.

62Notice also that this smallness is tied to our foliation of spacetime by the nearly flat characteristics
Pu. One might say that we made an “educated” guess about how to construct a foliation that allows us to
propagate the smallness.

63The factor of | generates important cancellations.

64Dimensional considerations imply that these terms, if present, would be multiplied by an uncontrollable
factor of 1/u. Furthermore, the absence of these terms in the commutators is also useful for the higher-order
energy estimates; see point (1) below.

65The energy of the non-commuted equation is lower-bounded by the square of the L? norm of X U, which
can be of a relatively large size 52,

66Note that for exact outgoing simple plane symmetric solutions, we have tryx = 0.
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(4) (Sharp control of n) Using the smallness above, we show that p satisfies the transport
equation

1 u

where G is a function of ¥ depending on the Cartesian components g,z. This

equation, together with a precise estimate for G, 1 X U, are crucial for obtaining
sharp contro]ﬂ of wand Ly and for showing that a shock indeed forms in finite time.

2.3. Nearly simple outgoing plane symmetric solutions to irrotational Euler equa-
tions. As was already discussed in the paper [30] on quasilinear wave equations of the type
Oy ¥ = 0, with very few modifications, the same methods can be used to prove shock
formation in solutions to quasilinear equations of the form

(g71)**(09)0,05® = 0. (2.3.1)

This can be seen by considering the vector U = (V))y=012 := (0,P)y=0,1,2, differentiating
and deriving the system of equations

Dg(\f,)\lf,, = Q(0V,0V,), (2.3.2)
where Dg(\f,) is to be understood as acting on scalar functions and the inhomogeneous terms
Q are quadratic null forms (relative to g). Both the vectorial nature of the unknown and the
additional nonlinear terms pose almost no additional challenge and can be treated
with essentially the same methods as the scalar equation ([2.1.1). This in particular crucially
relies on the structure of the null forms, which have only a negligible influence on the solution,
all the way up to the shock.

To handle the equation (2.3.1), Speck—Holzegel-Luk-Wong [30] considered initial data
such that each of the components ¥, (which are viewed as scalar functions) obey the &-5
size estimates as described in Subsect. . Notice that, in view of the identity 0,V 3 = 03V,
these assumptions imply smallness estimates for the X derivative of certain combinations of
the ¥,. We note that the result in [30] can be applied to the irrotational compressible Euler
equationsﬁ More precisely, by introducing a potential function ® for the flow, we obtain an
equation of the form .

Let us clarify the connection between the Riemann invariants (see Subsect. [L.2)), our as-
sumption that we are studying perturbations of simple plane waves, and the size assumptions
on the potential ® described in the previous two paragraphs. We first note that in the non-
relativistic case, we have, relative to the Cartesian spatial coordinates,

&(P = —Ui.

Next, we note that in one spatial dimension, we have (see [9])

&@—%@@f:h, (2.3.3)

67Let us recall from the previous subsection that we crucially need to show that p — 0 at worst linearly
and also to prove that [Lp]_ is bounded from below whenever p is sufficiently small.

68There is an explicit justification of this fact in [30] for the relativistic Euler equations. It can easily be
seen that this also applies to the non-relativistic case.
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2
where h is the enthalpy, defined such that dh = s dp = c2dp. The assumption (stated in
p

the previous paragraph) that LW, should initially be of small size O(€) (where ¥, := 0,P)
can be stated as Lpiane)¥1 = O(€) where, in one spatial dimension, Laney = L = 0; +
(v + ¢)01 is the outgoing null vectorfield with Laneyt = 1. This smallness assumption

o
implies, via (2.3.3) and the formula R_ = v' — / cs(p) dp, that, at time 0, we have
5=0

P
—@R_=a<ﬂmﬁ/ qmﬁﬁ:@%+%@p:£®+qwm=aﬁ+g%w@—
5=0
c; 1(0,9)02d = cs_lL(plane)‘Ifl = O(€). Therefore, the smallness assumption implies that the
derivatives of the Riemann invariant R_ are initially small, which is a perturbation of the
simple plane wave case R_ = 0 described in Subsect. [1.2]

Finally, recalling the discussions of the initial data in Subsect. we see that the data
considered in this paper are a generalization of that considered in [30] such that in this paper,
the vorticity is not required to vanish identically.

2.4. New ideas in the case of non-vanishing vorticity. We are now ready to discuss the
main new ideas in the present paper, which are needed to handle the interaction between
the vorticity and the sound waves. We recall that we described our assumptions on the
initial data in Subsect. [I.2 In this paper, we also need all of the ideas as described in
Subsects. and although for the sake of brevity we will often not repeat them. In
particular, we mostly suppress in this subsection the issue of propagating L*>-type smallness
at the low derivative levels; most of the ideas in that regard are similar to those discussed
in Subsect. 2.2] Instead, we focus on the crucially important issue of closing the energy
estimates.

As we mentioned earlier, the starting point of our proof is the following reformulation of
the compressible Euler equations, valid in two spatial dimensions:

ud,v" = —[ia)(exp p)c(ud,w) + 2[ia](exp p)w(nBv®) + pn2', (2.4.1a)
ubgp = p2, (2.4.1Db)
uBw = 0. (2.4.1c)

Here, B = 0; + vd, (as before), g is the acoustical metric depending on v and p (see
Definition [3.3| for the precise definition), w = (v — dav')/ exp(p) is the specific vorticity,
and 2 and 2° are null forms relative to g (which we sometimes refer to as g-null forms); see
Proposition for precise definitions. It turns out that the g-null form structure is crucially
important. In contrast to a g-null form, a typical quadratic term could severely distort the
dynamics near the shock and could in principle prevent it from forming; see Remark for
further comments. Thus, under this new formulation, we need to consider a coupled system
of three quasilinear wave equations and one transport equatioan]

Remark 2.1 (Avoiding vacuum regions). In this article, we show that the solutions
under study have densities that are from bounded from below, strictly away from 0. We

69Notice that this system is in principle over-determined, but its local-in-time well-posedness follows from

that of the Euler equations ([1.0.1a)-(1.0.1b]).
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therefore avoid the difficult problem of studying the dynamics of a fluid containing vacuum
regions and hence there is no difficulty in dividing by the density to form the specific vorticity.

Our approach is to treat the wave part of the system using the ideas from [30] and to handle
the additional terms involving the specific vorticity within the same geometric framework.
In particular, we prove estimates for the geometric vectorfield derivatives of the specific
vorticity. The following are the main tasks that we must accomplish:

e Make sure that we can control all terms at a consistent level of derivatives (that is,
without derivative loss). As we have mentioned, as part of this scheme, we must show
that the specific vorticity has the same differentiability as the velocity and density,
representing a gain of one derivative.

e Understand the expected blowup-rate of the L? norms of all quantities at all orders
in terms of powers of u;!; see Subsubsect. for a summary of the blowup-rates.
As before, we must distinguish between the top-order and the below-top-order energy
estimates. An notable feature of the present work is that the top-order derivatives
of the specific vorticity are allowed to blow up at a worse rate than any of the terms
that arise in the irrotational case; see (2.4.13D). However, in the coupling to the
wave equation, the top-derivatives of the specific vorticity appear as a source term
multiplied by a critically important factor of p (see the term pd,w on RHS (2.4.1a))).
This factor of u turns out to be enough to compensate for the especially singular
behavior of the top-order derivatives of w. We also note that we must ensure the
viability of the energy descent scheme (see Subsubsect. so that, in particular,
we can obtain non-degenerate energy and L estimates at the low derivative levels.

Remark 2.2 (An alternate approach to controlling the top-order derivatives
of w). Although we do not use it in the present article, there is alternate approach
to controlling the top-order derivatives of w. Specifically, one could differentiate the
transport equation Bw = 0 with the spatial Cartesian coordinate partial derivative
vectorfields 0; to obtain the evolution equation Bo;w = —(9;v*)d,w. One could then
think of the quantities 0;w as new variables that need to be controlled, in addition
to w. Although this approach would involve some additional analysis compared to
analysis carried out here, the advantage would be that we could close the transport
equation energy estimates by commuting the transport equations only up to 20 times
with geometric vectorfields, as opposed to the approach of the present article, which
relies on commuting the equation Bw = 0 up to 21 times. In carrying out this
alternate strategy, one would avoid generating error terms in the transport equations
that depend on the top-order derivatives of the eikonal function. In particular, this
would allow us to avoid the most singular terms and to therefore derive less degenerate
estimates for w at the top-order compared to the estimates that we obtain in this
article. In our forthcoming work [24] on shock formation with vorticity in three spatial
dimensions, it turns out that we are forced to employ a closely related strategy and,
as we mentioned earlier, to complement it with elliptic estimates. The reason is
that in three spatial dimensions, the evolution equation verified by w is no longer
homogeneous, but rather Bw® = w®d,v’ (recall that in three spatial dimensions, w is
a Y;-tangent vectorfield). Thus, the simplified approach of the present article, which
is based on commuting the homogeneous transport equation for w up to top-order
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with geometric derivative vectorfields, would result in the loss of a derivative in three
spatial dimensions (coming from the term generated when all derivatives fall on the
factor d,v° in the product wd,v").

e Make sure that the expected blowup-rates are consistent in the sense that the coupling
does not spoil the expectation. By coupling, we mean coupling between the “wave
variables” v* and p, the specific vorticity w, and the acoustic geometry (that is, the
eikonal function), which enters into the analysis in particular through the term tryx.

e Go beyond “consistency” by actually closing the energy estimates. For this, it is im-
portant to exploit various kinds of smallness in the problem (in addition to those that
are already present in the irrotational case). For instance, in the energy estimates
for the specific vorticity, the wave variables and the acoustic geometry enter with
an extra smallness constant €2 (see (2 and (2.4.7)) so that the latter variables
couple only Weaklym to the specific Vort1c1ty This allows the energy estimates for the
specific vorticity to be closed semi-independently with the help of appropriate boot-
strap assumptions for the behavior of the wave variables and the acoustic geometry.
Another useful but more subtle source of smallness is tied to the fact that we are
treating perturbations of simple outgoing (that is, right-moving) plane waves. For
example, X (v! — p) is O(&) small even though Xv' and Xp are not. This smallness
allows us to exploit effective decoupling between different solution variables, which
turns out to be important for minimizing the size of certain key coefficients and
therefore minimizingjﬂ the number of derivatives needed to close the problem; see

the discussion in Subsubsect. [2.4.6

In order to close the estimates, we will commute the wave equations with up to 20 geo-
metric vectorfields and the transport equation with 21 geometric Vectorﬁeldsﬂ see, however,
Remark . As we described above, since w is at the level of one derivative of v, this rep-
resents a gain of one derivative for w. Deﬁnelﬁ

W

to be the energy norm for v* and p corresponding to N commutations of the wave equations
with geometric vectorfields, where we requlrﬁ N > 1 and allow at most one of them to be
X. Moreover, the case of a single pure X commutation is excluded. Notice that for technical
reasonsﬂ we have slightly modified the approach to commuting the wave equations taken
in [30]. In particular, unlike in [30], we now commute with up to one X (recall that in
Subsect. only L and Y were used as commutators). We also note the energy includes a

"OThis is a big difference from the case of three spatial dimensions, where the coupling is much stronger.
We will discuss this issue in our forthcoming work [24] in the three spatial dimensional case.

"IThe size of the coefficients is tied to the blowup-rate of the top-order energies which is in turn tied to
the number of derivatives needed to close; see, for example, the “6” on RHS ( m

2With additional effort, we could slightly reduce the number of derivatives that we need to close.

"3In the proof, we will denote the boundary energy norms by Qu and the bulk spacetime norm by Ky .
In this subsection, in order to simplify the exposition, we will not make this distinction.

"Note that N =1 corresponds to controlling two derivatives of v* and p.

"Sn commuting the specific Vort1c1ty equation, we encounter a new term that forces us to commute the
wave equations with one copy of X, namely the terms XY N~ Ytryx on RHSs (14.2.3a)-(14.2.3b). We will
downplay this issue here.
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term on XY (cf. (2.1.4)), a term on the characteristics P! (cf. (2.1.5)) and a spacetime bulk
term (cf. (2.1.6)). Our choice of the structure of the strings of commutation vectorfields
ensures that the energy is O(é)-small[™

To control the specific vorticity w, we will use an energy norm V, which we define below
(see ) Since w satisfies a homogeneous transport equation, the main challenge is to
control the commutators of the weighted transport operator uB and the geometric commu-
tation fields, which are adapted to the acoustic characteristics. In order to minimize the
number of X commutators needed to control the “wave variables” (v',v% p) (which satisfy
the wave equations) and tryx, we commute the transport equation only with the P,-tangent
vectorfields L and Y. Because the material derivative vectorfield is transversal’llto the acous-
tic characteristics P,, this is sufficient for obtaining estimates for all directional derivatives
of w and closing the argument.

In the next few subsubsections, we will discuss the various energy estimates needed to
control the specific vorticity, the eikonal function and the wave variables. Let us already
note at this point that the main difficulty comes in the top-order derivative, where the
singular behaviors of the wave variables, the specific vorticity, and the geometry of the null
hypersurfaces are all coupled.

2.4.1. Lower-order energy estimates for the specific vorticity. The energy norm that we use
to control the specific vorticity at the lowest order is

V(t,u) ::/ udeﬁdUA—/ w? dv dt. (2.4.2)
s Pt

In other words, the energy for w on a constant-t hypersurface ¥} is “degenerate” in p, while
that for w on a constant-u hypersurface P! is “non—degenerate”m

In deriving energy estimates, we also control the derivatives of w with respect to L and
Y and use the notation Vy (¢, u) to denote the corresponding energy norm after N commu-
tations. In particular, for NV sufficiently large, the non-degenerate control of Vg, ---, Vy
on the acoustic characteristics P, when combined with Sobolev embedding, gives rise t
pointwise control of w and its lower-order L and Y derivatives.

While w itself satisfies a homogeneous transport equation (see ), to control its
derivatives, we need to bound the commutator terms and derive estimates for solutions to
inhomogeneous transport equations. For the general inhomogeneous equation pBw = §, we

"6Recall that the derivatives of (v!,v2, p) are small if at least one of the geometric vectorfields is L or Y.

""The transversality follows from a simple geometric fact: in all solution regimes, B is a g-timelike
vectorfield (that is, g(B, B) < 0); thus, B cannot be tangent to any g-null hypersurface. In fact, we have
B = L 4+ X and hence the X component of B is bounded below all the way up to the shock. This then
allows us to use equation to algebraically express Xw = —Lw. Similarly, higher X derivatives of
Xw can be expressed in terms of derivatives tangential to the g-null hypersurfaces.

"8The energies for V(t,u) are in fact very natural. If one changes variables and expresses the forms pdi du
and dv dt relative to the Cartesian coordinates, then one sees that, up to O(1) multiplicative factors, these
forms agree with the usual forms induced on the corresponding hypersurfaces by the Euclidean metric on
R!*2,

™Let us note that pointwise control can alternatively be derived directly using the transport equation
itself.
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have the following estimate (see Proposition 4.4)):

/ nw? do du + / w? dY dt < Data + 2 dv du dt. (2.4.3)
b3 PL Miu

Both of the commutators [uB, L] and [uB,Y] generate controllable error terms that are
regular with respect to p; this of course is the main reason to commute the geometric
vectorfields with uB (instead of, say, B). The following equation exhibits a typical difficult
inhomogeneous term that we have to control after N commutations:

uBYYw = (Yw) XYV 2ty + .. ., (2.4.4)

where ... denotes terms that are easier to handle. Therefore, except for the top-order case
N = 21, one can control the term (Y w)XYN"?tryx by first showin that Yw is O(€)-small

in L>° and that XYN‘2tr¢X can be controlled by an analogue of (2.1.11)). Using ([2.4.3)), this
roughly yields the following inequality for N < 21:

=0 s=0

t t 1 1 2
Va(t,u) < &2+ éZ/ ( e 2 (s, u)WZ (s, u) ds) at' + .. .. (2.4.5)
t/

As we will see, the coupling with Wy in equation is quite weak. More precisely, due
to the small factor €2 and the large number of time integrations on RHS , the influence
of RHS on Vy is easy to control.

On the other hand, for N = 21, one does not have the luxury of using the W5, norm
on the right hand side, since Wy is top-order. Hence, as we will later see, at the top-
order, we have to take a different approach to controlling certain terms in the top-order
inhomogeneous transport equation, an approach which avoids relying on Wy;. The different
approach forces us to confront the most singular terms in the 21-times-commuted transport
equation: X Y ¥tryx and Y*tryx. Specifically, we have to account for the singular behavior

of the L? norms of )V(Ylgtrgjx and Y?tryx in terms of powers of u;'. Note that, as we
described in Subsubsect. , the singular behavior of the top-order derivatives of tryx,
which is tied to the necessity of using modified quantities to avoid derivative loss, is already
present in the irrotational case as the primary source of degeneracy.

2.4.2. Top-order estimates for the eikonal function. Before we discuss the top-order esti-
mates for w, it makes sense to first consider the top-order derivatives of the eikonal function
(in particular the top-order derivatives of the mean curvature tryx of P,), as they are the
main source terms in the vorticity estimates (see equation ) In our setting, we again
need to use modified quantities as described in Subsubsect. in order to obtain sufficient
top-order estimates for tryx. However, since the “gain of a derivative” that one achieves
with modified quantities relies on the wave equations satisfied by the Cartesian metric com-
ponentsﬂ which feature source terms depending on the specific vorticity, this procedure is
now coupled with the estimates for the specific vorticity. As a consequence, at the top-order,
the specific vorticity is directly coupled to the evolution of trgx. Indeed, we recall from the

80 Actually, the smallness of Y w is one of our bootstrap assumptions.
81By (3.3.104)), the Cartesian metric components depend on v', v? and p.
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discussionﬁ in Subsubsect. m that in order to use to gain a derivative for tryx, we
need to use the wave equation to exchange pAv’ with an exact L-derivative. Since the wave
equation features the inhomogeneous terms pdw and pwadp, these terms will couple into the
estimates for tryx. In the next paragraph, we describe the effect of this Couplingﬂ

Let us focus on the term pdw in equation since the second term pwdp, though
it gives rise to some singular estimates, is easier to handle. A crucial observation, which we
already made in Footnote [77], is that by algebraically using the transport equation for w,
one can express LOw as linear combinations of uLw and pY w. As a consequence, the Vy
norms sufficd| to control these terms and we obtain the following bound for the top-ordeif
derivatives of tryx:
t

g 1 1
XY P trgx | 2o ([0Y 2 trgxl 2 S Wi, + / Va5 (¢ u)dt + .. (2.4.6)
#=0
where ... are similar or less singular terms. We stress that the time integral term on

RHS (2.4.6)) is exactly the term that accounts for the influence of the top-order derivatives
of the specific vorticity on the acoustic geometry.

2.4.3. Top-order energy estimates for the specific vorticity. We now return to the discussions
for the estimates for w, but this time at the top-order derivative. According to (2.4.3]) and

([2.4.4), at the top-order, we need to boun X Y ¥tryx and Y tryx in a suitable spacetime

L? norm. With the help of the estimate (2.4.6) for XY Ytrgx and Y?°trgy, we can obtain
the following top-order estimate (see Prop. [15.4] for the details):

t

¢ v 2
w2 Woo (¢, u) dt’ +/ w2 () (/ V3, (s, u) ds) at' | +...
t'=0 s=0

Vi o

Vgl(t, u) 5 é2 /
t/

=0

(2.4.7)

Notice that VT, features the singular factor u? and a total of three time integrations.
Since p, — 0 at worst linearly (as we described in Subsubsect. , as long as we are
willing to settle for proving a sufficiently singular boundﬂ the term V'T; can be treated
with a Gronwall-type argument. On the other hand, as we will later see, the term V1

821 et us note that while in Subsubsect. we were dealing with a scalar equation, the system case can
be dealt with similarly. We discuss here only the estimates involving v? (as it is slightly harder) and suppress
those involving the wave equation for p.

83Note that at the same time, equation shows that the top-order derivatives of tryx couple into the
top-order transport equation for w. However, we will postpone the discussion of the effect of the top-order
derivatives of tryx on the top-order derivatives of w until Subsubsect.

84Recall that by definition, the norms V control only the L and Y derivatives of w.

85The top-order derivatives of tryx involving at least one L differentiation are much easier to control since
one can directly bound it by estimating the RHS of and hence does not need to use the modified
quantities of Subsect. to handle them.

86T here is in fact a similar term which features Yzotr¢X that we have suppressed in . It is as difficult

as the term featuring X Y19trjx, although in view of (2.4.6)), it can be estimated in a similar manner.
87That is, as long as we are proving that Va;(¢,u) is bounded from above by some negative powers of p,.
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determines the blowup-rate of V,; in terms of negative powers of w,. We now recall a crucial
feature of the estimate mentioned earlier, namely that the coupling to X Y ¥tryx and
Y 2tryx is weak in that there is a small factor €2 on RHS (2.4.7)). For this reason, one can
actually derive sufficient estimates for Vo (¢, u) using only bootstrap assumptions for the
energy norms, based on having a good guess for the blowup-rates of all quantities. One is
aided in this endeavor by the fact, justified later on, that Wy, blows up at the same rate
as in the irrotational case. This basic fact allows one to control the specific vorticity in a
relatively straightforward fashion.

2.4.4. Lower-order energy estimates for the wave variables. To close the argument, we need
to derive estimates for the “wave variables” v!, v?, and p, that is, for solutions to the wave
equations ([2.4.1al)-(2.4.1b)), and in particular to estimate the vorticity terms arising on the
right hand side of equation (2.4.1a)). When we are bounding the below-top-order derivatives
of the wave variables, we do not need to rely on modified quantities to control the eikonal
function. For this reason, the below-top-order estimates are relatively easy to derive, as we
now describe. For this discussion, we suppress most of the terms that do not involve w
except for one that is analogous to the term on RHS ; we denote this analogous term
by W L; below in . The inhomogeneous terms not involving w can be bounded by
using the same arguments as in the irrotational case, so we do not discuss them in detail. By
equation , the terms in the equation pd,0* = - - - involving w can be expressed in the
for uLw, uYw or w(pLo' + X v'). Since the terms wLw and pY w contain factors of w,
when estimating Wy, these terms can be controlled by the degenerate energy on constant-¢
hypersurfaces (that is, the analog of the first term on RHS ) On the other hand,
since there are no extra factors of w in the product wX v, the w factor cannot be bounded
by the degenerate energy. Instead, we control it using the non-degenerate flux on P! (that
is, the analog of the second term on RHS ) Since the factor w is not top-order, when
estimating Wy, one needs only to use Vy to control its up-to-order N derivatives. In total,
we roughly obtain the following estimate for N < 20:

b1 1 U=t
Wy (t, u) SData + / e 2W2(t u) / e PWR L (87 w) dt”dt!
0 ¢

=0

J/

t e (2.4.8)
+/ VNH(t’,u) dt’—i—/ VN(t,u') du +. ...
t'=0 u'=0
V;ZQ V;ES

The key point here is that the W L, term has a time integration and thus one can gainf a
power of W,. Such gain cannot be achieved in W L3, but on the other hand, the term only
features the lower-order Vy norm and no singular factor of u_?!.

2.4.5. Top-order estimates for the wave variables. In deriving estimates for the top derivative
norm Wy, we again encounter terms that are analogous to the terms W Ly, and W L3 from

88Here, we have used the observation discussed in Footnote namely that by using the transport
equation for w, the term X w can expressed as —pLw.
89 et us recall again that u, goes to 0 at worst linearly and that (2.1.13]) holds.
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(2.4.8), which are respectively denoted by WT; and W'T5 below in (2.4.9)). There are also

additional terms involving the top derivatives of tryx, which cannot be treated like the

term WL, from (2.4.8). These additional terms are in fact precisely the ones described

in Subsubsect. 2.1.4] which need to be bounded with the help of modified quantities. We

stated an estimate for them in (2.4.6). To proceed, we use the estimate , but this
1

time carefully tracking the precise numerical coefficient of the W3, term. These give rise to
WTain and WTy in (2.4.9) below. In total, we obtain the following estimate (see Prop.[15.3
for the details):

t L
Woo(t, u) <Data + Cfix/ (su THD Wao(t', w) dt’

t'=0 Z;*,
Wj?;ain
t u
/ / ! !
‘|‘\C/t/:0V21(t ,u) dt +\C’/U/ZQV20(t’U)duj (2.4.9)
V[;E—‘l %2

t 3 iy t

W3, (t 1

+C M/ V2, (s,u)dsdt' + . ...
veo M(t'u) Jozo B

WTs

Notice that the term WT,,.;, is analogous to the term in (2.1.8)) and is the main term driving
the blowup-rate of Wag (¢, u). As we described in Sects. [2.1.4] and [2.1.5] the constant C;, in
W, ain is intimately tied to the number of derivatives needed to close the proof.

2.4.6. Independent bounds for the “good” components. The next ingredient of the proof is to
derive independent estimates for v? and v! — p. This is crucial for obtaining a good estimate
for the constant CY;, in . More precisely, we show that v? and v! — p obey better
bounds than either v! or p and that all geometric derivatives of v? and v! — p, including their
X derivatives, are small. This is of course tied to the assumption that the solution is nearly
simple outgoing plane symmetric. Indeed, for plane symmetric solutions, we have v? = 0.
Moreover, for the simple outgoing plane symmetric solutions described in Subsect. 2.3 we
have 0 = R_ = v! — ;:0 cs(p’) dp’. Hence, it follows that under our assumed normalization
condition ¢s(p = 0) = 1 from and the L°-smallness conditions for p and v!, all
geometric derivatives of v' — p are small for the perturbations of simple outgoing plane
symmetric solutions under study.

In our proof, we take advantage of this smallness as follows. First, we explicitly prove that
X (p — ') and Xv? are O(€)-small in the L*™ sense; in the next paragraph, it will become
clear why this is important. Next, we derive independent estimates for the top-order energy
norms of v? and v! — p. Let us momentarily®™| denote the top-order energy norms of v and
vl — p by Wégamal) in order to distinguish it from the energy norm Wy, (which controls all
three of v', v? and p).

901 the proof of the main theorem, we define Qéﬁ”“al) and Kéﬁ”““” in an analogous manner to respec-

tively denote the boundary terms and the bulk terms in the energy norms.
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Roughly speaking, if we just track the W71}, 4, term in (2.4.9)), then we obtain the following
system of energy inequalities:

¢
Woo(t,u) <(6 + C’é)/ <sup
/=0

_D Wao(t',u) dt’

D F )y WL (¢ ) dt + | (2.4.10)

>W20t u)dt +

+C. (sup
tl

t
W(Partml ( 7U) SC&/ (sup
t/

=0

where C is a possibly large constant that, unlike C';,, depends on the equation of state. A

crucial feature of the above system is that the main term in the inequality for W(Partwo (t,u)
is multiplied by a small factor €, which is available thanks to the L estimates mentloned
in the previous paragraph. This small factor limits the contribution of the main term to the
blowup-rate for W(Pamal (t,u), which in turn allows us to obtain semi-independent control of

L

does not significantly influence the blowup rate of Wy (£, u). In total, this structure allows
us to show that the constant C;, in is essentially 6. This fact, together with similar
estimates for a few other related terms that we have suppressed, determmes the total number
of derivatives that we need in the argument. We clarify that if we did not split the energies
into Wy, and W, Pmmz) , then the constant C, could in principle increase the blowup-rate
of Wy, which Would in turn increase number of derivatives we need to close the problem.
Thanks to the splitting, we are able to close the estimates by differentiating v and p up to@
22 times.

) t
Wéﬁamal) and thus show that the product C, / (sup
t'=0 \ %

2.4.7. Putting everything together. We now combine the estimates discussed in the previous
subsubsections and show, at least heuristically, that they can close. The detailed proof is
based on a lengthy Gronwall argument that is located in Subsects. [15.15] and [15.16] As is
already clear from the discussions above, the estimates for the lower-order derivatives and
for the top derivatives are rather different and the most difficult terms are found in the
estimates for the top-order energies.

We first consider the lower-order estimates, where the blowup-rates are determined by
and . Recall the discussions of the descent scheme in Subsubsect. : For
every order of descent, one gains two powers of W, until one shows that the energy is bounded.
Moreover, we recall that the descent scheme is based mainly on the fact that each time
integration reduces the power of the singularity by one:

t
/ (s ) ds < Wbt u), for b 1. (2.4.11)
s=0

91Note that we take up to 21 derivatives of w, which corresponds to up to 22 derivatives of v and 21
derivatives of p.



J. Luk and J. Speck 39

For this reason, inequality ([2.4.5)) suggests that when Wy is sufficiently singular, one can
prove that Vy is less singular than Wy by a factor of u2. This suggests proving the following
estimates{]

Below-top-order energy hierarchy

VWi (tu) < Cep; F9(t ), (0< K <4),
VW (t,u) < Ce, (0< N < 14)

VVieir (tu) < Cep, T (1 u), (0< K <4),
VVn(tu) < Cé (0< N < 15).

Notice that the above hierarchy is consistent in the following sense: when one substitutes
the hierarchy estimates for V., and Vy into the terms W L, and W L3 on RHS and
uses , one finds that these terms contribute to the blowup-rate for the term Wy on
the LHS in a manner that is compatible with the estimates for Wy stated in the hierarchy.
In fact, there is even extra room in these estimates.

Finally, we consider the top-order estimates, which are determined by and ,
modulo the discussion surrounding equation (2.4.10). As in Christodoulou’s work [6], the
top-order blowup-rate is determined mainly by the term WT,,,;, on RHS . As we
mentioned in the previous subsubsection, the blowup-rate of the top-order energies depend
on the constant C';,, which can be precisely estimated, independent of the equation of state
see also Footnote B0l

To see how the top-order estimates for Wy, and Vo; couple, we combine and
to see that Wy is better than Vg, by a single factor of w,. Notice that such an estimate
is borderline in the sense that if either the term V71j in or the term W17 in
involved a slightly worse power of p_!, then the estimates could not close. We are therefore
led to prove the following estimate (see Subsect. for the precise details concerning the
blowup-rates in (2.4.13a)-(2.4.13b))):

Top-order energy estimates

VW (t,u) < Céu > (t, u), (2.4.13a)
V' Vo (t,u) < Céu % (t,u). (2.4.13b)

We clarify that (2.4.13al) should be viewed as the main estimate determining the blowup-
rates of not only for v, v?, and p, but also tryx (in view of the discussion of Subsubsect. [2.1.4]

92Here, we emphasize the relative singularity between different norms. The precise absolute strength of
the singularity depends on the estimates at the top level, which we will discuss immediately below.

9Let us emphasize again that this is a slight simplification, as the strength of the singularity in fact
depends on the constant in front of all of the singular terms, only one of which is written in .

91y particular, for all equations of state other than that of the Chaplygin gas, the estimates can be closed
with a total of 22 derivatives of v* and 21 derivatives of p. On the other hand, the relative smallness that is
required for € does depend on the equation of state.
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where we described how to control tryx at the top-order by using modified quantities). More
precisely, one can trace through the above logic to discover that the blowup-rate u_>9(¢, u)
on RHS (2.4.13a)), if taken as given, controls the blowup-rates of all other energy quantities.
We also note that (2.4.13a)-(2.4.13b)) are consistent for the terms VT, and WT5, neither of
which are borderline. This concludes our discussion of the main ideas of the proof.

3. GEOMETRIC SETUP

In this section, we construct most of the geometric objects that we use to the shock
formation and exhibit their basic properties. We postpone our construction of energies
and the corresponding integration measures until Sect. [, We postpone our construction of
modified quantities, which are needed for top-order energy estimates, until Sect. [7]

3.1. Notational conventions and shorthand notation. We start by summarizing some
of our notational conventions; the precise definitions of some of the concepts referred to here
are provided later in the article.

e Lowercase Greek spacetime indices «a, (3, etc. correspond to the Cartesian spacetime
coordinates defined in Sect. and vary over 0, 1,2. Lowercase Latin spatial indices
a,b, etc. correspond to the Cartesian spatial coordinates and vary over 1,2. All
lowercase Greek indices are lowered and raised with the spacetime metric g and its
inverse ¢g~', and not with the Minkowski metric.

e We sometimes use - to denote the natural contraction between two tensors (and
thus raising or lowering indices with a metric is not needed). For example, if £ is a
spacetime one-form and V' is a spacetime vectorfield, then £ - V := £, V7.

o If ¢ is an {;,-tangent one-form (as defined in Sect. , then ¢# denotes its g-dual
vectorfield, where ¢ is the Riemannian metric induced on ¢;,, by g. Similarly, if £ is
a symmetric type (g) ¢, ,-tangent tensor, then £# denotes the type (}) ?; ,~tangent
tensor formed by raising one index with ¢~ and £## denotes the type (g) ?; ,~tangent
tensor formed by raising both indices with ¢!

e Unless otherwise indicated, all quantities in our estimates that are not explicitly
under an integral are viewed as functions of the geometric coordinates (¢, u,d) of
Def. B.11] Unless otherwise indicated, quantities under integrals have the functional
dependence established below in Def. [.1]

o If @)1 and @) are two operators, then [Q1, Q2] = Q102 — Q2Q1 denotes their commu-

tator.

A < B means that there exists C' > 0 such that A < CB.

A~ B means that A < B and B < A.

A = O(B) means that |A| < |B|.

Constants such as C' and c are free to vary from line to line. Explicit and implicit

constants are allowed to depend in an increasing, continuous fashion on

the data-size parameters 5 and S*_l from Sect. . However, the constants
can be chosen to be independent of the parameters ¢ and ¢ whenever ¢

and ¢ are sufficiently small relative to 51 and 6*

e || and [-] respectively denote the floor and ceiling functions.
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3.2. A caveat on citations. We often cite [30] for equations and identities We now point
out some minor discrepancies between the work [30] and the present work; we will not
explicitly comment on them again, even though they occur throughout our work. Some of
the concepts referred to here are defined later in the article.

e In citing 30|, we sometimes adjust the formulas involving Cartesian metric compo-
nents to take into account the explicit form of g,5 and (g7')** stated in Def. .

e In [30], the metric components g, were functions of a scalar-valued function VU, as
opposed to the array v (defined in Def. . For this reason, we must make minor
adjustments to many of the formulas from [30] to account for the fact that in the
present article, U is an array. In all cases, our minor adjustments can easily be
verified by examining the corresponding proof in [30].

e In [30], the array y (see definition (3.19.1))) was defined to contain the entry p — 1
rather than p. However, that difference is not important and in particular does not
affect the validity of any of the schematic formulas that we cite from [30].

3.3. Formulation of the equations. We now formulate the evolution equations, the main
result being Prop.[3.1] As we mentioned at the beginning, we assume that the space manifold,
on which the equations are posed, is

D:=RxT, (3.3.1)

where R corresponds to time and ¥ to space. We fix a standard Cartesian coordinate system
{2°}a=012 on Rx X, where z° € R is the time coordinate and (2!, 2?) € R x T are the spatial
coordinates. The coordinate 22 corresponds to perturbations away from plane symmetry. We

denote the corresponding Cartesian coordinate partial derivative vectorfields by 9, := ——.
x
The coordinate 22 is only locally defined even though 9, can be extended to a globally defined
vectorfield on T. We often use the alternate notation ¢ = z° and 9, = 9.
The compressible Euler equations are evolution equations for the velocity v : R x 3 — R?
and the density p: R x ¥ — [0,00). To close the system, we assume a barotropic equation
of state

p=7p(p), (3.3.2)

where p is the pressure. To the equation of state, we associate the quantity ¢y, known as the

speed of sound
dp
s = 4] —. 3.3.3
% =\a (3.3.3)

Physical equations of state are such that

e c, > 0.
e ¢, > 0 when p > 0.

We study solutions with p > 0, which, under the above assumptions, ensures the hyperbol-
icity of the system. In particular, we avoid the study of fluid-vacuum boundaries, which is
accompanied by technical difficulties tied to the degeneracy of the hyperbolicity along the
boundary.
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Our shock formation results apply to all equations of state except for those corresponding
to a Chaplygin gas, which are of the form

p=Co— — (3.3.4)
for constants Cy € R and C; > 0.

3.3.1. Vorticity, modified variables, the speed of sound and its derivative with respect to p.
In two spatial dimensions, the vorticity w is the scalar-valued function

w = 01v° — Oy (3.3.5)

Although w is an auxiliary variable, it plays a fundamental role in our analysis.
Rather than directly studying the density and the vorticity, we find it convenient to instead
study the logarithmic density and the specific vorticity.

Definition 3.1 (Modified variables). We define the logarithmic density p and the specific
vorticity w as follows:
w w

p:=Inp, w:=— = . 3.3.6
p > owp (3.3.6)
From now on, we view c,, defined in (3.3.3]), as a function of p:
cs = cs(p). (3.3.7)
Moreover, we set
d
¢, =c(p) = d—pcs(p). (3.3.8)

3.3.2. Geometric tensorfields associated to the flow. To derive our main results, we rely on
a geometric formulation of the Euler equations, derived in the companion article |25, which
exhibit remarkable structures. Before stating the equations, we define some tensorfields that
lie at the heart of our analysis.

We start by defining the material derivative vectorfield, which transports the specific
vorticity.

Definition 3.2 (Material derivative vectorfield). The material derivative vectorfield B
is defined as follows relative to the Cartesian coordinates:

B := 0y +v*0,. (3.3.9)

Next, we define the acoustical metric g. It is the Lorentzian spacetime metric correspond-
ing to the propagation of sounds waves.

Definition 3.3 (The acoustical metric and its inverse). We define the acoustical metric
g and the inverse acoustical metric g—! relative to the Cartesian coordinates as follows:
2
g = —dt@dt +¢;* (da® — v*dt) @ (da® — v dt), (3.3.10a)

a=1

2
g ' =-B®B+c)» 0,80, (3.3.10b)
a=1
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Remark 3.1. It is straightforward to verify that ¢! is the matrix inverse of g, that is, we
have (g 1)#*g,, = 0¥, where " is the standard Kronecker delta.

3.3.3. Statement of the geometric form of the equations. We now state the form of the equa-
tions that we use to analyze solutions. The equations were essentially derived in [25], up to
the following three remarks: i) We have multiplied the equations by a weight p > 0 that
we explain in great detail below. The reason is that the p-weighted equations have bet-
ter commutation properties with various differential operators compared to the unweighted
equations. ii) In [25], the equations were derived in three space dimensions, in which case
the specific vorticity is a vectorfield. In that context, the analog of equation is a
vector equation for the Cartesian components w?, (i = 1,2,3). The equation features the
non-zero “vorticity stretching” source term 22:1 w?9,v'. In 2D, this source term vanishes,
as we now explain. We may view the 2D Euler equations as a special case of the 3D Euler
equations in which v3 = 0, 930" = 0, and the vectorfield w is proportional to (90 — d3v?)0s.
It follows that 22:1 w?d,v" = 01in 2D, that is, the vorticity stretching term vanishes. Hence,
in the remainder of the article, we view w to be the scalar-valued function in ([3.3.6)). iii)
In [25], an additional term —c;1c.(g71)*?0,pdsv" appeared on the analog of RHS (3.3.12al)
and the coefficient of the first product of the analog of RHS was —3 instead of —2.
The reason for the discrepancy is that relative to Cartesian coordinates, detg = ¢, ® in three
space dimensions while detg = ¢, in the present case of two space dimensions; in view of
this fact and Footnote [23] we see that the form of J, relative to the Cartesian coordinates
depends on the number of spatial dimensions. In turn, this affects the coefficients of the
semilinear terms present on the RHS of the wave equations. However, this is a minor point
that has no substantial bearing on the analysis; the products under discussion are null forms
and thus have only a negligible effect on the dynamics; see Remark [3.2]

Proposition 3.1 (The geometric wave-transport formulation of the compressible
Euler equations). Let O, denote the covariant wave operator of the acoustic metric g
defined by (3.3.10a)). In two spatial dimensions, classical solutions to the compressible Euler
equations (1.0.1a)-(1.0.1b)) verify the following equations, where the Cartesian components

v', (1 =1,2), are viewed as scalar-valued functions under covariant dzﬁer@ntmtwn[ﬂ

ud,o' = —[ia](exp p)c2 (ud,w) + 2[ia](exp p)w (LBv®) + pn2’, (3.3.11a)
ulyp = n2, (3.3.11Db)
nBw = 0. (3.3.11c)
In (3.3.11a)-(3.3.11d), 2° and 2 are the null forms relative to g, defined by
9= —(g71)*0,p0s0", (3.3.12a)
2 = —2¢;'d(g7")*P0apsp + 2 {010 O20* — Do 0107} . (3.3.12b)

Remark 3.2 (The importance of the null forms relative to g). For the proof of our
main theorem, it is critically important that 2° and 2 are null forms relative to g. The
reason is that, due to their special structure, p.2° and .2 remain uniformly small, all the way
up to the shock. Thus, they do not interfere with the singularity formation mechanisms. In
contrast, a general quadratic term pn(dv, dp) - (Ov, dp) could become large near the expected

9Here, we use the square bracket [[] to denote the anti-symmetrization of the indices.
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singularity and dominate the dynamics; had such a term been present in the equations, it
would have completely obstructed our approach.

3.4. Constant state background solutions and the array of solution variables. We
will study perturbations of the following constant state background solution to the system
(3.3.11a})-(3.3.11c)):

(p,v', 0%, w) = (0,0,0,0). (3.4.1)

The solution (3.4.1]) corresponds to a motionless fluid of constant density p, where p > 0 is
a constant. Note that a more general constant state (p,v!, v w) = (0,2',9%0), the o' are
constants, may be brought into the form (3.4.1)) via a Galilean transformation{”| Let

G = ¢s(p = 0) (3.4.2)

denote the speed of sound ([3.3.3)) evaluated at the background solution (3.4.1)). Without loss
of generality, we assumd’/| that

G =1 (3.4.3)

The advantage of the assumption (3.4.3)) is that it simplifies many of our formulas.
Many of our estimates will apply uniformly to the “wave variables” p, v!, and v2. For this
reason, we collect them into an array.

Definition 3.4 (The array U of wave variables).
U = (Uy, Uy, Uy) == (p, v}, 0?). (3.4.4)
Since we are studying perturbations of the solution (3.4.1f), we may think of U as small.
However, for the solutions under study, some of the derivatives of W are relatively large.

Remark 3.3 (\fl is not a tensor). Throughout, we view U to be an array of scalar-valued
functions; we will not attribute any tensorial structure to the labeling index of W, besides
simple contractions, denoted by ¢, corresponding to the chain rule; see Def. 3.5

3.5. The metric components and their derivatives with respect to the solution.
Throughout the paper, we often view the Cartesian metric component functions g,z (see

3.3.10a))) to be (explicitly known) functions of ¥: gus = gas(¥). From the expression
3.3.10a)) and the assumption (3.4.3)), it follows that we can decompose

9as(T) = mag + g5 (), (a,8=0,1,2), (3.5.1)

~ . ) ) L . 0
96By this, we mean the change of coordinates ¢ := t and &’ := 2’ — #'t, which implies that 5 =0y + 10,

and —— = 9;. Note that the expression 2* — 5°t should be interpreted as the translation of the point 2> € T

ox
by the flow of of the vectorfield —%0, for ¢ units of time.

9"We can always ensure the condition (3.4.3) by making the following changes of variables:
i
7=, t = ¢, g=¢’g, &=
Cs Cs
These changes of variables leave the expressions (3.3.10a))-(3.3.10b])) and the Euler equations (|1.0.1a))-(1.0.1b])
invariant and are such that the desired normalization ¢;(p = 0) = 1 holds.
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where
mas = diag(—1,1,1) (3.5.2)
is the standard Minkowski metric and g(sm“ll)(\f/) is a smooth function of ¥ with
g (@) = 0. (3.5.3)
Specifically, we have the formula
2 2 2
g(Smald) Z c2(v*)?dt @ dt — ¢ Z vidt ® dz® — ¢ Z vz @ dt (3.5.4)
a=1 a=1 i=1

2
+{c;? -1} dea ® dx”.
a=1

The following quantities arise in many of the equations that we study.

Definition 3.5 (Derivatives of g,3 with respect to \I_}) Fora,5=0,1,2and,7)=0,1,2,
we define

0

L(0) = 3. ——0a5(¥), (3.5.5a)

Gog = Gup(0) = (Gaﬂ( ), Gaﬁ(\ﬂ),agﬁ(@)) , (3.5.5b)
HY,(0) = 8?11 a?p Gas (D), (3.5.5¢)

Ho = Hop(¥) 1= (H(T), HOH(D). -  H(T)) (35.54)

For 2 = 0, 1,2, we think of the {G} 5}a,5=0,1,2, as the Cartesian components of a spacetime
tensorfield. Similarly, we think of {éaﬁ}a75:07172 as the Cartesian components of an array-

valued spacetime tensorfield. Similar remarks apply to Hgﬁ and ﬁa[g.
The following operators naturally arise in our analysis of solutions.

Definition 3.6 (Operators involving the array \ff) Let U,V,U;, Uy, Vi, Vo be vector-
fields. We define

—

VU= (vqfo, VU, V), (3.5.6a)
Guu, o VU = ZG SURURVY,, (3.5.6b)
1=0
2
Hy,p, 0 o(ViW)VoW0 := Y~ HL,UMUS (Vi 0,)V, 0, (3.5.6¢)
2,9=0

We use similar notation with other differential operators in place of vectorfield differenti-

ation. For example, Gy, 0 A := 32 G“aﬁUf‘UQBA\IIZ.
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3.6. The eikonal function and related constructions. To track the solution all the way
to the shock, we construct a new set of geometric coordinates, one of which is the eikonal
function.

Definition 3.7 (Eikonal function). The eikonal function u solves the eikonal equation
initial value problem

(9P 0udsu = 0, Oyu > 0,
uls, =1 — ',
where ¥y is the hypersurface of constant Cartesian time 0.

Using u, we can construct many geometric quantities that can be used to derive sharp
information about the solution. We start by defining the most important quantity in the
study of shock formation: the inverse foliation density.

Definition 3.8 (Inverse foliation density). We define the inverse foliation density p as
follows:
—1

= >0
(g71)*P(¥)0atOpu
where ¢ is the Cartesian time coordinate. We note that the identity (3.7.14) below implies

1
that u = B’ where B is the material derivative vectorfield defined in (3.3.9)).
u

The quantity 1/pu measures the density of the level sets of u relative to the constant-time
hypersurfaces ;. When p becomes 0, the density becomes infinite and the level sets of u
intersect. For the initial data under consideration, p starts out near unity. It turns out that
the formation of the shock, the blowup of the eikonal function’s first Cartesian coordinate
partial derivatives, and the blowup of the first derivatives of v and p with respect to the
Cartesian coordinate partial derivatives are all simultaneously tied to the vanishing of n. We
also note that the vanishing of pu is equivalent to the blowup of Bu.

We now define the spacetime subsets on which we analyze solutions. They are depicted

in Fig. 2] on pg. [10]

Definition 3.9 (Subsets of spacetime). For 1 < ¢ and 0 < u < Up, we define the
following subsets of spacetime:

= (3.6.3)

Yo ={(t,z",2*) ERxRx T |t=1t}, (3.6.4a)
Yo {2t 2?) eRxRXT |t =1, 0<u(taz! z?) <u'}, (3.6.4b)
Plo={(t,z",2*) e Rx RxT|1<t<t, ult,z",2?) =u'}, (3.6.4c)
by i=PLNSY ={(t,z",2?) e Rx Rx T |t =1, u(t,z', 2%) = u'}, (3.6.4d)
My = UyepPL N {(t, 21, 2?) e RxRxT | 1<t <t} (3.6.4¢)

We refer to the 2, and X! as “constant time slices,” the P! as “null hyperplanes,” and the
Ui, as “curves” or “tori.” We sometimes use the notation P, in place of P. when we are not
concerned with the truncation time ¢. Note that M,, is “open at the top” by construction.

We now construct a local coordinate function on the tori ¢, .
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Definition 3.10 (Geometric torus coordinate). We define the geometric torus coordi-
nate ¢ to be the solution to the following transport equation:

(g1 0,udp0 = 0, (3.6.5)
Vg, = 7. (3.6.6)

Definition 3.11 (Geometric coordinates and partial derivatives). We refer to (t, u, 9)
as the geometric coordinates, where ¢ is the Cartesian time coordinate. We denote the
corresponding geometric coordinate partial derivative vectorfields by

g 0 0

Remark 3.4. © is globally defined even though ¥ is only locally defined along ¢, ,,.

Definition 3.12. We define T : [0,T) x [0,Uy] x T — Mz, Y(t,u,9) := (¢, 2, 2?), to be
the change of variables map from geometric to Cartesian coordinates.

Remark 3.5 (C'-equivalent differential structures until shock formation). We often
identify spacetime regions of the form My, (see (3.6.4¢)) with the region [0,¢) x [0, Up] x T
corresponding to the geometric coordinates. This identification is justified by the fact that
during the classical lifespan of the solutions under consideration, the differential structure
on M, y, corresponding to the geometric coordinates is C'-equivalent to the differential
structure on My, corresponding to the Cartesian coordinates. The reason is that T is
C' with a C" inverse until a shock forms; this fact was proved in [30, Theorem 15.1] and
is revisited in limited form in the proof of Theorem [I6.1} In contrast, at points where p
vanishes, the partial derivatives of p and v! with respect to the Cartesian coordinates blow
up, the inverse map T~! becomes singular, and the equivalence of the differential structures
breaks down.

3.7. Important vectorfields, the rescaled frame, and the unit frame. In this section,
we define some vectorfields that we use in our analysis and exhibit their basic properties.
We start by defining the (negative) gradient vectorfield associated to the eikonal function:

LI(GGO) = —(g_l)yaaau. (371)
It is easy to see that L(geo) is future—directed@ with
9(L(Geo), L(Geo)) = gaﬁL‘("Geo)L(BGw) =0, (3.7.2)

that is, L(geo) is g-null. Moreover, we can differentiate the eikonal equation with 2" :=
(g71)"*9, and use the torsion-free property of the connection 2 to deduce that 0 =
(Y DD D"u = — D uDaLigey = L‘E‘Gw).@aL(”Gw). That is, L(geo) is geodesic:

Doy ey = 0. (3.7.3)

In addition, since Lgeo) is proportional to the metric dual of the one-form du, which is
co-normal to the level sets P, of the eikonal function, it follows that Lgeo) is g-orthogonal
to P,. Hence, the P, have null normals. Such hypersurfaces are known as null hypersurfaces

9BHere and throughout, a vectorfield V is “future-directed” if its Cartesian component V9 is positive.
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or characteristics. Our analysis will show that the Cartesian components of L(geo) blow up
when the shock forms.

In our analysis, we work with a rescaled version of Lge,) that we denote by L. Our proof
reveals that the Cartesian components of L remain near those of Lpjq) 1= 0y + 0y all the
way up to the shock.

Definition 3.13 (Rescaled null vectorfield). We define the rescaled null (see (3.7.2)))
vectorfield L as follows:

L= P-L(Geo)' (374)
Note that L is g-null since L(geo) is. We also note that by (3.6.5]), we have
L9 = 0. (3.7.5)

We now define the vectorfields X and X , which are transversal to the characteristics P,,.
It is critically important for our work that X is rescaled by a factor of w.

Definition 3.14 (X and X). We define X to be the unique vectorfield that is ¥,-tangent,
g-orthogonal to the ¢, ,, and normalized by

g(L, X)=-1. (3.7.6)
We define
X = pX. (3.7.7)

We use the following two vectorfield frames in our analysis.

Definition 3.15 (Two frames). We define, respectively, the rescaled frame and the non-
rescaled frame as follows:

{L,X, 0}, Rescaled frame, (3.7.8a)
{L, X, 0}, Non-rescaled frame. (3.7.8b)

In the next lemma, we exhibit the basic properties of some of the vectorfields that we have
defined.

Lemma 3.2 (Basic properties of X, )u(, L, and B). The following identities hold:

Lu =0, Lt=1"=1, (3.7.9a)
Xu=1, Xt=X"=0, (3.7.9b)
g X, X)=1, g(X,X)=2 (3.7.10a)
g(L,X)=-1, g(L,X)=—pn (3.7.10b)
Moreover, relative to the geometric coordinates, we have
0
L=— (3.7.11)

ot
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In addition, there ezists an ly,-tangent vectorfield = = &O (where & is a scalar-valued

function) such that
. 0 0
X=2 =22 %o (3.7.12)

The material derivative vectorfield B defined in (3.3.9) is future-directed, g-orthogonal to
Yt and is normalized by

g(B,B) = —1. (3.7.13)
In addition, relative to Cartesian coordinates, we have (for v =0,1,2):
B = —(¢g71)™. (3.7.14)
Moreover, we have
B=L+X. (3.7.15)
Finally, the following identities hold relative to the Cartesian coordinates (for v =10,1,2):
X,=-L,—¢, XY =-L"— (g7 "%, (3.7.16)

where 82 is the standard Kronecker delta.

Proof. The identity (13.7.14)) follows trivially from (3.3.10b)). The remaining statements in
the lemmas were proved in |30, Lemma 2.1], where the vectorfield B was denoted by N. O

3.8. Projection tensorfields, Cj(pmme), and projected Lie derivatives. Many of our
constructions involve projections onto X, and ¢, .

Definition 3.16 (Projection tensorfields). We define the ¥; projection tensorfield I and
the ¢;,, projection tensorfield JI relative to Cartesian coordinates as follows:

Or:=06t—B,B"=6/+6"L"+6°X" (3.8.1a)
VL =6+ X, L' + L,(L* + X*) = 6§, —6,°LF + L, X" (3.8.1b)
In (3.8.1a)-(3.8.1b)), §,* is the standard Kronecker delta.

Definition 3.17 (Projections of tensorfields). Given any spacetime tensorfield &, we
define its ¥; projection II¢ and its ¢;, projection JI¢ as follows:

@)ty =Lt LI - IG5 (3.8.22)
(it o= Wt P e PG (3.8.25)

We say that a spacetime tensorfield £ is ¥;-tangent (respectively ¢; ,-tangent) if 11§ = ¢
(respectively if JI€ = €). Alternatively, we say that £ is a ; tensor (respectively ¢;,, tensor).

Definition 3.18 (¢, projection notation). If £ is a spacetime tensor, then we define
¢ =TI (3.8.3)

If £ is a symmetric type (g) spacetime tensor and V' is a spacetime vectorfield, then we
define

v = HW(&v), (3.8.4)

where &y is the spacetime one-form with Cartesian components &,,V*, (v =0, 1, 2).
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Throughout, L& denotes the Lie derivative of the tensorfield ¢ with respect to the vec-
torfield V. We often use the Lie bracket notation [V, W] := LyW when V and W are
vectorfields.

In our analysis, we will apply the Leibniz rule for Lie derivatives to contractions of tensor
products of ¢;,-tensorfields. Due in part to the special properties (such as (3.13.5))) of the
vectorfields that we use to differentiate, the non-¢;, components of the differentiated factor
in the products typically cancel. This motivates the following definition.

Definition 3.19 (¢;, and >;-projected Lie derivatives). Given a tensorfield £ and a
vectorfield V', we define the ¥;-projected Lie derivative £,/ of £ and the ¢, ,-projected Lie
derivative £,,¢ of £ as follows:

L€ :=1Ly¢E, £€ = NLyE. (3.8.5)

Definition 3.20 (Components of G and H relative to the non-rescaled frame). We
define

é(mee) = {éLLvéLXv@La@X ) @} ) ﬁ(mee) = {ﬁLL; ﬁLx, ﬁL,ﬁX ,ﬁ} (3.8.6)

to be the arrays of components of the tensorfield arrays (3.5.5b)) and (3.5.5d|) relative the
non-rescaled frame ((3.7.8h)).

We adopt the convention that when we differentiate é( Frame) OT H (Frame), We by definition
form a new array consisting of the differentiated components. For example,

£,Girrame) = {L@LL>, L(Grx) £y(G ) £ (G ) £,6} (3.87)
where L(éLL> = {L(G%L (GLL } £.( @X {¢L GX ‘¢L($X> ¢L($X)} ; ete.

3.9. First and second fundamental forms and covariant differential operators.

Definition 3.21 (First fundamental forms). We define the first fundamental form g of
¥; and the first fundamental form ¢ of 4;, as follows:

g:=Ug,  ¢:=Wy (3.9.1)
We define the inverse first fundamental forms by raising the indices with g=!
(gfl)uu — (gfl),uoz(gfl)zxﬁgaﬁ7 (ﬁfl),uz/ — (gil)”a(gfl)"ﬁgéa,g. (3.9.2>

Note that g is the Riemannian metric on %; induced by g and that g is the Riemannian
metric on fy, induced by g. Moreover, simple calculations yield (g~ )“O‘gw = II/ and
(41" Jor = W1
Remark 3.6. Because the /,, are one-dimensional manifolds, it follows that symmetric
type (g) ly,~tangent tensorfields & satisfy & = (try€)g, where try := ¢~' - & This simple
fact simplifies some of our formulas compared to the case of higher space dimensions. In the
remainder of the article, we often use this fact without explicitly mentioning it.

Definition 3.22 (Differential operators associated to the metrics). We use the fol-
lowing notation for various differential operators associated to the spacetime metric g and
the Riemannian metric ¢ induced on £ ,,.
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e 2 denotes the Levi-Civita connection of the acoustical metric g.

e ¥ denotes the Levi-Civita connection of ¢.

e If ¢ is an /; ,~tangent one-form, then dif¢ is the scalar-valued function dig¢ := ¢~*-V¢.

e Similarly, if V' is an ¢, ,-tangent vectorfield, then difV := ¢! - ¥V,, where V} is the
one-form ¢-dual to V.

o If £ is a symmetric type (g) {; ,-tangent tensorfield, then dif¢ is the ¢;,-tangent one-
form dif¢ := ¢~ - W&, where the two contraction indices in ¥¢ correspond to the
operator ¥ and the first index of &.

o A:=¢ ' Y denotes the covariant Laplacian corresponding to ¢.

Definition 3.23 (Geometric torus differential). If f is a scalar-valued function on ¢,
then df := YVf =WMZf, where Zf is the gradient one-form associated to f.

Def. allows us to avoid potentially confusing notation such as ¥L* by instead writing
dL?; the latter notation signifies to view L' as a scalar function under differentiation.

Definition 3.24 (Second fundamental forms). We define the second fundamental form
k of ¥4, by

k= ~Lyg. (3.9.3)

N | —

We define the null second fundamental form x of ¢;, by

X e %mj. (3.9.4)

As was shown in [30, Subsection 2.6], we have the following alternate expressions:

1 1

Lemma 3.3. [30, Lemma 2.3; Alternate expressions for the second fundamental
forms| We have the following identities:

Xoeoe = g(@@La @)7 lé)(@ = g(@@L7X) (396)

Lemma 3.4. [30, Lemma 2.13; Decompositions of some /;, tensorfields into p'-
singular and p~'-regular pieces| Let C be the {; ,-tangent one-form defined by (see (3.9.6)) )

Co = Fxo = 9(Zol, X) = ug(ZoL, X). (3.9.7)

Then we can decompose the frame components of the £y, -tangent tensorfields f and C into

wl-singular and w=t-reqular pieces as follows:

C _ u—lc(Trans—‘lj) + C(Ta"—‘l_})’ (398&)
}é _ l/L_1}/;(Tmns—‘lf) + }é(Tﬂm—‘I’)’ (3.9.8b)
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where
. 1o oo
C(Trans—\ll) — _§$L OX\I/, (399&)
IP S
k(Trans ) = §$<>X\I/’ (399b)
(Tanf‘lj) 1~ T L5 U 15 U

(Tan—¥) 1. > 1 o - 1 50 o 1o o - 1 50 o
3.10. Pointwise norms. We always measure the magnitude of ¢,, tensors using the Rie-

mannian metric ¢, as is captured by the following definition.

Definition 3.25 (Pointwise norms). If 44 is a type (') {;, tensor, then we define
the norm |£] > 0 by

12 = s+ G ()7 - ()Pt g, (3.10.1)
In (3.10.1)), ¢ is the Riemannian metric on ¢;, induced by g, as given by Def.

3.11. Expressions for the metrics.

1

Lemma 3.5. [30, Lemma 2.4; Expressions for g and ¢~' in terms of the non-rescaled

frame| We have the following identities:

G = —LuLy — (L, X, + XuLy) + s (3.11.1a)
(g—l);w — MLV — (L#XV + X#L”) + (g_l)‘“’, (3.11.1b)

The following scalar-valued function captures the ¢;,, part of g.
Definition 3.26 (The metric component v). We define the function v > 0 by
v? = g(0,0) = ¢(6,0). (3.11.2)
It follows that relative to the geometric coordinates, we have ¢! = v 20 ® ©.

Lemma 3.6. [30, Corollary 2.6; The geometric volume form factors of g and g] The
following identity is verified by the acoustcial metric g:

|detg| = u?o?, (3.11.3)

where the determinant on the LHS is taken relative to the geometric coordinates (t,u, ).
Furthermore, the following identity is verified by the first fundamental form g of »lo.

detg| vy = w?o?, (3.11.4)

where the determinant on the LHS is taken relative to the geometric coordinates (u, V) induced
on X
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3.12. Commutation vectorfields. To derive estimates for the solution’s higher-order deriva-
tives, we commute the equations with the elements of {L, X, Y}, where Y is the ¢, ,-tangent
vectorfield given in the next definition. We use Y rather than © because commuting ©
through U, seems to produce error terms that are uncontrollable because they lose a deriv-
ative.

Definition 3.27 (The vectorfields Y(Fiar) and Y). We define the Cartesian components
of the ¥;-tangent vectorfields Y and Y as follows (i = 1,2):

Y rtar) = 05, (3.12.1)
Y= Maiy(afwat) = 171;} (3.12.2)
where JI is the ¢;, projection tensorfield defined in .
When commuting the equations, we use elements of the commutation sets 2 and &.

Definition 3.28 (Commutation vectorfields). We define the commutation set 2 as
follows:

% :={L,X,Y}, (3.12.3)
where L, X, and Y are respectively defined by (13.7.4), (3.7.7), and (3.12.2)).

We define the P,-tangent commutation set & as follows:
P ={L,Y}. (3.12.4)

The Cartesian spatial components of L, X, and Y deviate from their flat values by a small
amount that we denote by L’('Sma”), Xz'sma”), and Y(isma”).

Definition 3.29 (Perturbed part of various vectorfields). For i = 1,2, we define the
following scalar-valued functions:

mall)

Lemma 3.7 (Identity connecting LéSmall)’ XéSmall)’ and v'). The following identity holds:

X(iSmall) = _LéSmall) + Ui' (3126)
Proof. The identity (3.12.6]) follows from (3.5.1)), (3.5.3), (3.7.16)), (3.12.5)), and the fact that
(g~1)% = —oi. -

In the next lemma, we characterize the discrepancy between Y| gqy) and Y.

Lemma 3.8. [30, Lemma 2.8; Decomposition of Y g We can decompose Y piar) into
an {y,,-tangent vectorfield and a vectorfield parallel to X as follows: since Y is {;,-tangent,
there exists a scalar-valued function y such that

Yipin = Y' +yX', (3.12.7a)
Moreover, we have

Y= g(}/(Flat)7 X) = gab)/((%lat)Xb = g2aXa - _Cs_2X(2$mall)' (3128)
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3.13. Deformation tensors and basic vectorfield commutator properties. In this
section, we recall the standard definition of the deformation of a vectorfield V. We then
provide some simple commutator lemmas.

Definition 3.30 (Deformation tensor of a vectorfield V). If V' is a spacetime vectorfield,
then its deformation tensor (V)7 (relative to g) is the symmetric type (g) tensorfield

(v)ﬂ'aﬁ = ,Cvgaﬁ = @avb + 951/&, (3.13.1)
where the second equality follows from the torsion-free property of Z.

Lemma 3.9 (Basic vectorfield commutator properties). The vectorfields [L, X], [L, Y],
and [X,Y] are l;,-tangent, and the following identities hold:

LX) =%, [Ly]="f (X Y]=0t (3.13.2)

In addition, we have

[uB, L] = —(Lw)L + “L, (3.13.3a)

[uB,Y] = —(YWL+ u gy + O, (3.13.3b)
Furthermore, if Z € %, then

L4=D% L =T (3.13.4)
Finally, if V' is an {;,-tangent vectorfield, then

[L,V] and [X,V] are l;, — tangent. (3.13.5)

Proof. All aspects of the proposition except for (3.13.3a))-(3.13.3b) were derived in [30]
Lemma 2.9]. The identities (3.13.3a))-(3.13.3b)) are straightforward consequences of the de-

composition (3.7.15)) and the identities in (3.13.2]). O

Lemma 3.10. [30, Lemma 2.10; L, X, Y commute with d] If V € {L,X,Y} and f is a
scalar-valued function, then

Lodf = dVf. (3.13.6)

3.14. Transport equations for the eikonal function quantities. We now provide trans-
port equations verified by the scalar-valued functions p and LéSmall)' These are the main
equations we use to estimate the eikonal function quantities below-top-order. For top-order
estimates, we use the modified quantities of Sect. [7}

Lemma 3.11. (30, Lemma 2.12; The transport equations verified by p and L] The
inverse foliation density w defined in (3.6.3) verifies the following transport equation:

1o wo 1 = L .
L},L: §GLL<>X\I/—é}lGLLOL\P—},LGLXOL\P. (3141)

The scalar-valued Cartesian component functions Lésmall), (i = 1,2), defined in (3.12.5)),
verify the following transport equation:

. 1= R 1= R
LLigmany = _QGLL o (LW)L" + §GLL o (LW)v' (3.14.2)

G o (L) (') + JCrs o () - o
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3.15. Calculations connected to the failure of the null condition. Many of our most
important estimates are tied to the coefficients Gpr. In the next lemma, we derive expressions
for them. Then, in the subsequent lemma, we derive an expression for the product %é LLoX .
This presence of this product is tied to the failure of Klainerman’s null condition [19] and
thus one expects that the product must be non-zero for shocks to form; this is explained in
the survey article [15] in a slightly different context.

Lemma 3.12 (Formula for G} ;). Let G5 be as in Def. . Then fori = 1,2, we have
Ghp = —2¢;'¢, (3.15.1a)
b =260 = L) = 2¢.°X". (3.15.1b)

Proof. We first prove (3.15.1h]). From the formula (3.3.10a}), Defs. and , the fact that
L = 1, the identity (3.7.16)), and the fact that L' + X* = v’ (see (3.3.9) and ([3.7.15))), we

compute the desired identity as follows:

L= (%gaﬁ) LeL? (%gaﬁ) LoLP = 2¢;%0"(L°)% — 2¢,2L°L (3.15.2)

=2c;'(v' = L") = 2¢;2 X"

We now prove (3.15.1a). Since g,sL°LP = 0, it suffices to prove ((%(cggagw Lol =

—2¢,c,. Since, among the components {c2g.s}a.5=0.1.2, only c2goo depends on p (see (3.3.10al)),
the desired identity is a simple consequence of the fact that L° = 1.

O

Lemma 3.13 (Formula for %éLLo)v(\I_}). For solutions to the compressible Euler equations
(1.0.1al)-(1.0.1b)) the following identity holds for the first product on RHS (3.14.1):

1~ .- y
§GLL o XU =c*{c;'d, + 1} 6 X X" + pe;°c, 8o Lo X°. (3.15.3)

Proof. Using Lemma , we deduce %éLL o XU = —c;' X + 26,4, XX 0P, Contract-
ing (1.0.1b)) against d;; X7 and inserting the resulting identity into the first product in the
previous expression, we can rewrite it as ¢;3¢,0,4Bv*X° + ¢; 20,4 X*Xv°. Using (3.7.15) to

v

substitute L + X for B in the previous expression and recalling that X = pu.X, we conclude
(13.15.3). O

Note that for the equation of state p = Cy — Cy exp(—p) of a Chaplygin gas, we have
c;'d,+1 = 0. For such a gas, the product %é 11 © XU vanishes and our main shock
formation results do not apply. In fact, even in the plane symmetric case, it is not known
whether shocks form in Chaplygin gas. In that case, only a very different type of singularity
(where in particular the density itself blows up) is known to form [21]. Moreover, in the
case of the Chaplygin gas without vorticity, the wave equations (3.3.11a})-(3.3.11b)) verify
Klainerman’s null condition. While it is not directly related to the regime we study, we
point out that in that case small-data global existence is known@ [23] when the data are
given on the Cauchy hypersurface R2.

99Note that the equation for the irrotational Chaplygin gas is equivalent to that of a Minkowskian minimal
surface equation, which is treated in |23].



56 Shock Formation in the Presence of Non-Zero Vorticity

3.16. Deformation tensor calculations. In the next lemma, we provide explicit expres-
sions for the frame components of the deformation tensors of the commutation vectorfields.

Lemma 3.14. [30, Lemma 2.18; The frame components of (“)| The following identities

are verified by the deformation tensors (see Def. of the elements of % (see (3.12.3)) ):

XL =0, (X)W;(X =2Xp, (X)WL;( = —Xu, (3.16.1a)

(X)#L — _du - 2c(T7“ansf‘I/) o 2uc(Tan7\I/)’ (X)¢X — O, (3161b)

X — —outryxg + 2k T 4o Ten—1) (3.16.1c)

B =0, (L)WXX =2Lu, (L)ﬂ'LX = —Lu, (3.16.2a)

(L)ﬁL =0, (L)#X _ dl’t + 2&(Transf‘l/) + QHC(Tanf\I!)’ (3162b)

Bt = 2tryxd, (3.16.2c)

Mg =0, ey =2Y1, M, ¢ = —Yu, (3.16.3a)
1 = - — —

Mg, = —tiyxY; + S(FY) o LU +yy o LU (3.16.3b)

1 = - - - 1 5 -
+ 5 (@ V) ol —yGrx o gl — SyGix o gV,

—_

Wity = wtigxY, + ydn + yGiy o XU — SpyGyy o d¥ (3.16.3¢)
1 = g - =g — -
- EH(G Y)o LU + (G - Y) o d¥ + uw(@y -Y) o dV¥,
1 Ll L

0% = 2ytryxd + 5 (@ V) @ A0 + S0 & (F-Y)—yfoLT (3.16.3d)

— <& — - O = — <& - - O -
Ty, @AV +ydV @ G + yfry @ 4V + yd¥ @ ¢y .
The scalar-valued function y from above is as in Lemma while the l; ,-tangent tensorfields

x, ((Trans=¥) [é(Tm”S_\fj), ((Tan=9)  gnd ]é(T‘m_\fj) from above are as in (3.9.4), (3.9.9a)),

2
(3.9.9b), (3.9.9¢), and (3.9.9¢). In (3.16.3d)), @L ® AV = ZQJLZ ® dV,, and similarly for
1=0

the other terms involving é)

3.17. Useful expressions for the null second fundamental form. The next lemma
provides explicit formulas for X, tryx, and LInwv.

Lemma 3.15. |30, Lemma 2.15; Identities involving x| Let x be the {;,, tensorfield defined
in (3.9.4) and let v be the metric component from Def. . We have the following identities:
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1. =
X = gab(AL") ® da’ + SFoLY, (3.17.1a)

1 L
tryX = gapd " {(ALY) @ dz®} + 554*1 Fo LV, (3.17.1D)
Llnv = tryx. (3.17.1c)

3.18. Decomposition of differential operators. We start by decomposing u[lg(\f,) rela-
tive to the rescaled frame. The factor of u is important for our decompositions.

Proposition 3.16 (Frame decomposition of uDg(\f,)f). Let f be a scalar-valued function.
Then u[lg(\f,)f can be expressed in either of the following two forms:

MOy f = —L(WLf +2X f) + uf — tiyx X f — ntrgk Lf —2u* - df, (3.18.1a)
= — (WL + 2X)(Lf) + A f — tigx X f — (L) Lf + 2ul® - df + 2(d% ) - df,
(3.18.1b)

where the {;,-tangent tensorfields x, ¢, and f can be expressed via (3.17.1al), (3.9.8a)), and
(3.9.8D)).

Lemma 3.17 (Expression for 0, in terms of geometric vectorfields). We can express

the Cartesian coordinate partial derivative vectorfields in terms of L, X, and Y as follows,
(1=1,2):

a0
8 = L — (gaoL®)X + <%) Y, (3.18.2a)
a gaiYa
@ = (gaiX )X + W Y. (318213)

Proof. We expand 0; = o, X + ;Y for scalar-valued functions «; and (3;. Taking the g-
inner product of each side with respect to X, we obtain o; = g(X, ;) = g X! = gu;i X2
Similarly, we take the inner product with respect to Y to deduce B;g.qY Y% = ¢,;Y®. Using
these identities to substitute for «; and f3;, we conclude . A similar argument yields
, though in this case we must use an expansion of the form 9, = «L + X + vY;
we omit the details. 0

With the help of Lemma|3.17, we can now express the products on RHS ([3.3.11a)) involving
Jd,w in terms of P,-tangent geometric derivatives of w.

Corollary 3.18 (Decomposition of the vorticity derivatives in equation (3.3.11a))).
We have the following identity for the vorticity derivative-involving product on RHS (3.3.11a]):

—[ia] (exp p)2(1Buw) = [ia]u(exp p)2(gurX") Lav (3.18.3)

apY”
— [ia]u(exp p)c? (%) Yw.

Proof. We first use the formula (3.18.2b)) to express the factor d,w on LHS (3.18.3)) in terms
of Xw and Yw. We then use (3.3.11c|) and (3.7.15]) to replace X w with —Lw. 0
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3.19. Arrays of fundamental unknowns and schematic notation. In Lemma(3.19| we
show that many scalar-valued functions and tensorfields that we have introduced depend
on just a handful of more fundamental functions and tensorfields. This simplifies various
aspects of our analysis. We start by introducing some convenient shorthand notation.

Definition 3.31 (Shorthand notation for the unknowns). We define the following
arrays 'y and 'y of scalar-valued functions:

Y = <lI]7 L%Small)v L%Small)) P I = (\I] W, L(Small L (Small > (3191)

Remark 3.7 (Schematic functional dependence). Throughout, f({u1),&2), -, &m))
schematically denotes an expression (often tensorial and involving contractions) that depends
smoothly on the ¢, ,-tangent tensorfields &), {2y, -+ ,&(m)- In general, we have f(0) # 0. We
sometimes use the notation 7 := (z!,2?) and d7 := (dz', dx?) in our schematic depictions.

Lemma 3.19 (Schematic structure of various tensorfields). We have the following
schematic relations for scalar-valued functions:

o> (97 (g7, as, (471, ’ag’ HY M L XY e = f(y), (3.19.2a)
1 Gixs Gy x, Hp, Hi e, HY . = (), (3.19.2b)

Sma” mﬁ — 020, Y Smatys X (smany: ¥ = £(v)v, (3.19.2¢)

X =f(y). (3.19.2d)

Moreover, we have the following schematic relations for ¢ ,-tangent tensorfields:

4. Gy G G H R HY = (v, ), (3.19.3a)
Y = f(y, 47", d7), (3.19.3b)

((Tan=9) g Tan=0) _ gy g7\ P, (3.19.3¢)
kTrens=9) _ gy 47 XD, (3.19.3d)

¢(Trans=0) — (X, 47)y, (3.19.3¢)

x = f(v, dz) Py, (3.19.3f)

trgx = (v, ¢~ 47) Py. (3.19.3g)

Finally, the null forms 2° and 2 defined by (3.3.12a) and ([3.3.121), upon being multiplied

by u, have the following schematic structure:
w2 12 = f(y, XU, PU)PV. (3.19.4)

Proof. Except for (3.19.4)), the desired relations Were proved as [30, Lemma 2.19]. We now
prove (3.19.4). The desired result for the term c;1c.(g71)*?0,p05p on RHS m is a

1
simple consequence of the identity ¢ ™' = - L®L—-L® X — X @ L+ WY ® Y, which
Gab @

is easy to verify by contracting each side against the g-duals of the elements of {L, X,Y}.
We now consider the quadratic term 9;v' 002 — Gov'9;1v? on RHS ([3.3.12b]). Similar remarks
apply to the quadratic term —(g=1)*#9,pdsv" on RHS (B.3.12a)). We use (3.18.2b) to write
the Cartesian coordinate partial derivatives in the previous expression in terms of X and
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Y derivatives. In view of the antisymmetry of the expression in v! and v?, we see that the

terms proportional to (Xv!)Xv? cancel (although it is not important for the main results of
this paper, we note that the terms proportional to (Yv!)Yv? also cancel). Multiplying by w,
we conclude that the quadratic term under consideration is of the form RHS (3.19.4). O

3.20. Geometric decompositions involving Y. In this section, we express various ¢,
tensorfields and operators in terms of Y. This allows for a simplified approach to deriving
various formulas and estimates.

Lemma 3.20 (Formula for ¢! in terms of Y). Let ¢! be the inverse of the first

fundamental form ¢ from Def. and let'Y be the l;,-tangent vectorfield from Def. .
We have the following identity:

gt = e Y)Y®Y. (3.20.1)

Proof. Since the /;, are one-dimensional, ¢! must be a multiple of Y ® Y. Contracting

(3.20.1]) against Y,®Y,, we easily obtain that the correct proportionality factor is vy
gir,

Lemma 3.21 (£ in terms of try). Let Y be the {,,-tangent vectorfield from Def. .
We have the following identity, valid for symmetric type (g) Uiy tensorfields &:

1
€= try &Y, ® Y. (3.20.2
g(V,Y) )
Proof. Since ¢;,, is one-dimensional, we have £ = AY, ® Y, for some scalar-valued function
1
A. Taking the g-trace of this equation, we find that A = % Y)t% as desired. O
g\r,

4. AREA AND VOLUME ForMS AND ENERCY-NULL FLUX IDENTITIES

In this section, we first define geometric area and volume forms and corresponding in-
tegrals. Using these, we construct the energies and null fluxes that we use to control the
solution and its derivatives in L?. We then exhibit the basic coercive properties of the en-
ergies and null fluxes and provide the fundamental energy identities that we use to derive a
priori estimates. There are two identities: one for wave equations, which we use to control v
(see Prop. [4.2), and one for transport equations, which we use to control w (see Prop. .

4.1. Area and volume forms and geometric integrals. We define our geometric inte-
grals in terms of length, area, and volume forms that remain non-degenerate throughout the
evolution, all the way up to the shock.

Definition 4.1 (Non-degenerate forms and related integrals). We define the length
form dAy on {;,,, the area form dw on Xy, the area form d@ on P}, and the volume form dw
on M,,, as follows (relative to the geometric coordinates):

dAy = dNy(t,u, V) := v(t,u,v) d, dw = dw(t,u', V) := dA(t, v, 9)du, (4.1.1)
dw =dw(t',u, V) == dA\g(t',u,0)dt’,  dw =dw(t' o', J) = d\(t' 0 )dudt,

where v is the scalar-valued function from Def. [3.26]
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If f is a scalar-valued function, then we define

/ Fang = [ F(tu,9)o(t, u,0)do, (4.1.22)
liu JeT
fdm ::/ ft, ' 9) vt o', 9)dddu, (4.1.2b)
sy w'=0 J9eT
t
fdm = / FEu,0) ot u, 9)dddt (4.1.2¢)
Pt t'=0 JYET
t u
fdw ::/ / FE W 0) ot o, 9)didu'dt’. (4.1.2d)
M =0 Juw=0 Joer

Remark 4.1. The canonical forms associated to g and g are respectively pdw and pdew.

4.2. Basic ingredients and the definitions of the energies and null fluxes. We con-
struct our fundamental energies and null fluxes for scalar-valued functions ¥ with the help
of the energy-momentum tensor

Quv = QY] :== 2,99,V — %gw(g—l)aﬂ_@a@_@ﬁw. (4.2.1)
We construct our energies and null fluxes for U by contracting the following multiplier
vectorfield T' against Q).
Definition 4.2 (The timelike multiplier vectorfield 7'). We define
T:=(1+2u)L + 2X. (4.2.2)
Note that ¢(T,T) = —4u(1 + 1) < 0. This property leads to coercive energy identities.

Definition 4.3 (Energies and null fluxes). In terms of the non-degenerate forms of
Def. we define the energy functional E("®®)[.] and null flux functional FWave)[.] as
follows:

EW o) () (¢, u) = / WQpr[V]dw,  FW™I[)(t,u) := N Qrrl¥]dw,  (4.2.3)

i

where B and T are the vectorfields defined in (3.3.9)) and (4.2.2).

We define the energy functional E(Vo9[.] and null flux functional FVo)[.] as follows:
EYVorD w](t, u) == / nw? dow, FVord[w](t,u) == / w? de. (4.2.4)
i Pl

Lemma 4.1. [30, Lemma 3.4; Coerciveness of the energy and null flux| The energy
EWave) (W) and null flux FWVe) U] from Def. engjoy the following coerciveness properties:

. . g 1
EV o) (0] (¢, u) = / 5 (1+ 20)(LW)” + 2u(LW)XW + 2(XW)* + (1 + 2u)uld V] dez,

(4.2.5a)

FWVave) g (¢, u) = /P 1+ W) (LW)? + p|dV|? dzo. (4.2.5b)
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4.3. The main energy-null flux identities for wave and transport equations. We
now provide the fundamental energy-null flux identity for solutions to plJ g(\f,)\lf =3.

Remark 4.2 (Picture of the regions of integration for the energy identities). See
Fig. [ on pg. [10] for a picture of the regions of integration. Note that the (unlabeled) front
and back boundaries in that figure should be identified.

Proposition 4.2. [30, Proposition 3.5; Fundamental energy-null flux identity for the
wave equation| For scalar-valued functions W that solve the covariant wave equation

H, ¥ =,

the following identity involving the energy and null flux from Def. [4.5 holds for t > 1 and
u € [O, Uo] N

EW O[] (t, u) + FV W]t u) = EY I [W](0, u) + FO I [w)(t, 0) (4.3.1)

_ /M {0+2m)(Lw) + 250} Fdw

1

- 5/ uQP W) s deo.
Mt,u

Furthermore, with fy = max{f,0} and f_ := max{—f,0}, we have

5

B e DL L (L)
=1
where

DR ) [V] = (LW)? {—%Lu + Xp— %Mtrgx — pagp Troms=0) _ utryj}é(T“”‘“f’)} ., (4.3.3a)
D) [0] 1= —(LO)(XW) { e + 20y T 2ppngp T (4.3.3b)

DR o) [ W] := p|dw|? {%% + X—u“ + 2Ly — %trgjx — trgh Treme D g k(Tanfu)} 7
(4.3.3¢)
Do) (0] 1= (L) (@) - { (1 = 20+ 207D o opgTenD (4.3.3d)
D95 [0] 1= —2(X W) (* W) - {4 207D oo (4.3.3¢)

The tensorfields X, ((Trans—0) }é(Tm”S_\I'), ((Tan=9) " 4nq }é(T‘m_\p) from above are as in

(3.9.4), (3.9.94), (3:9.91), (3.9.9), and (3.9.9d).

In the next proposition, we provide the fundamental energy-null flux identity for solutions
to the transport equation pBw = §. The proof relies on the following divergence identity.

Lemma 4.3. [30, Lemma 4.3; Spacetime divergence in terms of derivatives of frame
components| Let _Z be a spacetime vectorfield. Let u ¢ = —u F1L— FvL— 1 X+p g
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be its decomposition relative to the rescaled frame, where 71 = #%L,, Zx = /a)?a, and

F =W 7. Then
W0 f = —L(n 1) = L(Fx) = X( L) + dif (nf) — wtrgh 7 — tygx Fx,  (4.34)
where where the ;,,-tangent tensorfields f andx can be expressed via (3.9.8b)) and (3.17.1a)).

Proposition 4.4 (Energy-null flux identity for the specific vorticity). For scalar-
valued functions w that solve the transport equation

nBw = §, (4.3.5)

the following identity involving the energy and null flux from Def. [{.5 holds for t > 1 and
u € [O, Uo] N

EVor ] (¢, u) + FYo ] (¢, u) = Vo] (0, u) + FYo[w] 2, 0) (4.3.6)

+ 2 / wg dw
Mt,u

—l—/ {Lp+ ptrgf } w? dew.
Mt,u

Proof. We define the vectorfield J := w?B = w?L + w?X and note that J, = —w?,
Jx = Jo = 0. Thus, using Lemma and equation (4.3.5)), we compute that
HP,J* = (Lp)w” + ptrgh w’ + 2wg. (4.3.7)

0 v 0
Next, using the identities L = 5 and X = 8__E (see (3.7.12))) and the relations J; = —w?,
u

Jx = Jo = 0 obtained above, we obtain the following decomposition from straightforward

0 0

computations: J = Jt—t + J'=— + J®O, where J* = w?, J* = p'w?. Next, we note

u,
the following formula, which is the standard identity for the divergence of a vectorfield
expressed relative to a coordinate frame (here the geometric coordinates) and the formula
(3.11.3), which implies that |detg|'/? = pv (where the determinant is taken relative to the
0 0 0
geometric coordinates): pvZ,J* = — (pvJ') + Em (Lo J*) + Er (que). Integrating this
U

ot
identity over M, with respect to dt’' du’ dv and referring to Def. .1, we obtain

e _ ' b 9 2 9 2 9 © ! /
/Mt,uu%J dw_/t/o/u/o/ﬁeTE(”wHa—u(wH&_ﬁ(W} ) dt’' du’ do.

(4.3.8)
The desired identity (4.3.6) now follows from (4.3.7), (4.3.8)), definition (4.2.4]), Fubini’s
theorem, and the fact that the integral of the last term (qu @) over T vanishes. 0

4.4. Additional integration by parts identities. In this section, we provide, for future
use, some integration by parts identities. We highlight here the identity (4.4.2]), which plays
a critical role in our top-order energy estimates; see equation ({15.14.4)) and just below it.
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Lemma 4.5. [30, Lemma 3.6; Identities connected to integration by parts| The fol-
lowing identities hold for scalar-valued functions f:

0

— fd}\sf = / {Lf + trgxf} d}\ﬂ, (4.4.1a)
at Zt,u Et,u

4 vro Lo

iy = | X+ 2ty Opr L dg (4.4.1b)
811, U 2 2

In addition, the following integration by parts identity holds for scalar-valued functions W
and 1 (see Sect. regarding the vectorfield operator notation):

/ (14 2w)(XO)(LZY=10)Y 1 dw (4.4.2)
Mt,u
_ / (1 + 20)(X0) (Y ZN<10) I dew

Mt u

— /u(l +2p) (X 0) (Y 2V =10)n dew + / (1+20) (X W) (Y 2N ="0)n dew

u
t EO

+/ Error; [2,V='0; 7] der/ Errory[ 2.V =1W; 1] dw—/ Errory[ 22NV <1; 1] dw,
Mt,u Zy

2

where

Error; [ 2V 510 n) = 2(Lp) (X W) (Y ZV 51000 + (14 20)(LXO) (Y ZV510)n (4.4.3a)
+ (14 20) (XU (V] - g2V + (1+ 20) (X )ty (Y 2" 0)n
+2(Y ) (X0)(ZN=10) In + (14 20) (Y X 0)(2510) I

+ %(1 +2p) (X W)y V(2N Iy

+ ALY W) (X ) (2100 + 2(Y ) (LX) (21w

+ 2(V ) (X W)ty (221 0)m + (L) (X )ty (21 0)n

+ (1 +2u) (LY XU) (2N =100 + (14 2u) (X ) (Ytrgx) (27" 0)n

+ (14 20) (Y X 0)tigx (2,71 0)n + %(1 + 2u) (LX), H( 2NV <10)n

y ' _ 1 y .
+ (1 + 2w (X W) (dig V) (2N=10)n + S+ 210) (X W) trgxtry V(2N <10,
Errory[ 2V m) i= —2(Y u)(X0)(ZV =100 — (14 20) (Y X 0)(ZN=10)n (4.4.3b)

1 § .
- 5142w (X W)t V(2N =M.

5. THE COMMUTATOR OF THE COVARIANT WAVE OPERATOR AND A VECTORFIELD

In this section, we provide expressions for the commutators [HDQ(@), Z| for vectorfields Z

belonging to the commutation set 2 defined in (3.12.3). The following lemma provides a
first decomposition. In Prop. 5.2, we further decompose the main term from the lemma.
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Lemma 5.1. |30, Lemma 4.2; Vectorfield-covariant wave operator commutator iden-
tity| For Z € & (see Def. , we have the following commutation identity for scalar
functions W, where tr, D = (g71)*P @ 4

1 1
},LDg(g,)(Z\I/) = H-@a {(Z)WO‘B@/Q\I/ - 51}1‘9(2)71'@&\11} + Z(MDQ(@)‘I/) + Qtrg(z)ﬁ(uljg(\p)\lf).
(5.0.1)
We now decompose the first term on RHS (5.0.1)) relative to the rescaled frame.
Proposition 5.2. [30, Proposition 4.4; Frame decomposition of the divergence of the

main inhomogeneous term in the commuted wave equation] For vectorfields Z € %,
we have the following identity for the first term on RHS (5.0.1)):

w7, {<Z>wa5%xy - %trg(Z)W@a\I/} = K pngen 9] (5.0.2)

%ffzm o]+ A ) Y]

*%/(Tr Less Dangerous)[ ]"’% —Good) (V]

+ ) 10 + A, 1)
where

Ji/(T(er)Danger)[\Il] = _(di/’(z)ﬁé)j(q’» (5.0.3a)
A )= { X0 P = i % — utif Dt | L, (5.0.30)
A et V) = { L O+ Oy |- 40, (5.0.3¢)
H P s Dangerons 0] = (e ) g, (5.0.3)
A W) 1= (L PRI 4 (L, ) L0+ (DOme )L (5.030)

+ 5 (L PHXY — (g, DfE) - 4v — (£, F) - g,
xﬁﬂ@y:{%mﬁw%+ﬂ@mj+imga}LL@ (5.0.4)

+ tr, O LX W
_ QH(Z)ﬁﬁ AL — Q(Z)ﬂ%( ALY — Q(Z)ﬁf AX

1
+ D, o AV + §utrg<z>¢m,
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1 1
%/((LZOL) [¥] = {§(Lu)tf¢(z)7f + §ut1"¢ktf¢(z)7f +trgx D7y g + trgx P — O - du} LY
(5.0.5)

1 v
+ §trﬂxtr¢ (Z)ﬁX\If

+ {—(Lu)(z)ﬁ — ptrgh T — g DR + g D+ trgjxuc#} .

In the above expressions, the ly,-tangent tensorfields x, ¢, and f, are as in (3.17.1a)),

EI5a). and EIS).

6. NORMS AND STRINGS OF COMMUTATION VECTORFIELDS

In this section, we define various norms and seminorms. We also introduce schematic
notation that succinctly captures the most important properties of strings of commutation
vectorfields.

6.1. Norms. We now define some norms that we use in our analysis. We recall that we
defined the pointwise norm of ¢ ,-tensors (relative to ¢) in Subsect. [3.10]

6.1.1. Lebesgue norms.

Definition 6.1 (L? and L™ norms). In terms of the non-degenerate forms of Def. [4.1]
we define the following norms for ¢, ,-tangent tensorfields:

60 = [ P 1€l = [ 16 (6.1.12)

2
Hf”m(m) 3:/ €]? dw,
P

”é-”Loo(fz,u) = 88 Supﬁé'ﬂ‘|§|<t7 u, 19)7 H§||L°°(Ey) ‘= ess Sup(u’,ﬁ)E[O,u]XT|§|(t7 ula 19)7
(6.1.1b)
||§’|Loo(7:5) = ess Sup(t’,ﬁ)e[O,t]xT|§|(tlvUa V).
Remark 6.1 (Subset norms). In our analysis below, we occasionally use norms || - || z2(q)
and || - ||z (), where Q is a subset of ¥}. These norms are defined by replacing 3} with €

in (6.1.1a)) and (6.1.1b)).

6.1.2. Norms of arrays. We define the norms of the arrays Cj(pmme) and ]:T(mee) from
Def. to be the sums of the norms of their ¢, }-indexed entries. For example,

(@(mee> = ’éu‘ + )éLx‘ + (@L ) + ‘@’X ‘ + ‘@’ : (6.1.2)
where éLL‘ =32 |G, ‘@X ’ =32 ||, etc. We similarly define Hé(pmme) L)
and || H (Frame) ) and similarly for other norms.
Loo(Sy
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6.2. Strings of commutation vectorfields and vectorfield seminorms. The following
shorthand notation captures the important structural features of various differential opera-
tors corresponding to repeated differentiation with respect to the commutation vectorfields.
The notation allows us to schematically depict identities and estimates.

Definition 6.2 (Strings of commutation vectorfields and vectorfield seminorms).

o ZNM f denotes an arbitrary string of N commutation vectorfields in 2 (see (3.12.3))
applied to f, where the string contains precisely M factors of the Pj-transversal
vectorfield X. We also set 290 := f. Similarly, we write ZV:<M f when the string
is allowed to contain < M factors of X.

o 2% f denotes an arbitrary string of N commutation vectorfields in & (see )
applied to f.

e For N > 1, ZNM f denotes an arbitrary string of N commutation vectorfields in 2
applied to f where the string contains at least one P,-tangent factor and precisely
M factors of X. We also set Z%0f = f. Similarly, we write 2 Ni<M £ when the
string is allowed to contain < M factors of X.

e For N > 1, ZN:M f denotes an arbitrary string of N commutation vectorfields in 2
applied to f, where the string contains at least two factors of L or at least one factor
of Y and precisely M factors of X. Similarly, we write 2= f when the string is
allowed to contain < M factors of X.

e For /, ,-tangent tensorfields £, we similarly define strings of ¢, ,-projected Lie deriva-
tives such as £,"¢.

We also define pointwise seminorms constructed out of sums of strings of vectorfields:

o |ZNM f| simply denotes the magnitude of one of the 2V f as defined above (there
ZN=M f| denotes the magnitude of one of the ZN:<M f

is no summation). Similarly,
as defined above.

o |Z=NMf| s the sum over all terms of the form | ZNM f| with N/ < N.

° QPSN;SMf‘ is the sum over all terms of the form |QFN/§M/f| with N/ < N and
M < M.

o |ZWNEM f|is the sum over all terms of the form |2°VM f| with 1 < N’ < N.

o |ZINESM £ s the sum over all terms of the form |27V f| with 1 < N’ < N and
M < M.

e Quantities such as |2V f|, | ZNMf| and | ZL=Mf| are defined analo-
gously (without summation).

e Sums such as |@§Nf‘, ‘gz[l,N] *[I,N];M *[i,N];Mf ’ [1 NJ; <Mf)
[Y=NF|, and ’X’“’N]f are defined analogously. For example, ‘X[l’N} ‘ = |Xf| +

N copies
oo ~
IXXf]l 4+ + | XX--- X f].
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Remark 6.2 (Operators decorated with x or xx). The purpose of the symbols * and xx
in Def. is to highlight the presence of special structures in vectorfield operators, which
helps us track smallness in the estimates. That is, in our analysis, we typically display
operators decorated with a * and *% when they lead to quantities that are initially@ of
small size O(€), where € is the data-size parameter defined in Sect. 8 We note here that the
quantities ZViMy and 2V ;MI are always initially small, while 2 ?MX may not be. The
reason that 2V:M Y may not be small is: for the solutions under consideration, L and its X
derivatives are large quantities. We also note that the notation % and *x is not importan@
for treating the specific vorticity variable w because our initial conditions are such that all
directional derivatives of the specific vorticity are initially small.

7. MODIFIED QUANTITIES

In this section, we define the modified quantities that allow us to avoid losing a derivative
at the top-order. We also define the partially modified quantities that allow us to avoid
some top-order error integrals with magnitudes that are too large for us to control. We then
provide transport-type evolution equations for these quantities.

7.1. Curvature tensors and the key Ricci component identity. We use use curvature
tensors of g to help us organize the calculations in this section.

Definition 7.1 (Curvature tensors of g). The Riemann curvature tensor Z,p. of the

spacetime metric g is the type (2) spacetime tensorfield defined by

(Do W = B2y W, Z) = —R(U,V, W, 2), (7.1.1)

where U, V, W, and Z are arbitrary spacetime vectors. In (7.1.1)), 22, W := UV’ 9, Z;W .

The Ricci curvature tensor Ric,g of g is the following type (g) tensorfield:

Ricas = (7)™ Parpa- (7.1.2)
The next lemma lies at the heart of the construction of the modified quantities.

Lemma 7.1 (The key identity verified by uRicyr). Assume that the entries of U =
(p, v, v?) verify the geometric wave equation system (3.3.11a)-(3.3.110). Then the following
identity holds for the Ricci curvature component Ricry = RicagLaLﬁ :

= ~ = 1 red g 1 - =g —
},LRiCLL =1L {_GLL o XW — 5}1131%@0[/\1[ — EHGLL o LV + }l@f < d\IJ} + Q[, (713)

where A has the following schematic structure:
A=y, ¢, 47, X T, PU) PV + pf(y) Pw + wi(y) X ¥ + pwi(y) PY. (7.1.4)
Furthermore, without assuming that equations (3.3.11a})-(3.3.11b)) hold, we have

L 1 . . 1. B} 1. 3
Ricy = ( uu>trﬁx+L{—§trg$<>L\Il — §GLL<>L\I’ —F@de\If} — §GLL<>4A\I’ + ‘B,
(7.1.5)

100A¢t the high derivative levels, the “initially small” quantities are allowed to blow up like &(miny; T i
for some power P as the shock forms.
101We use it nonetheless for consistency.
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where B has the following schematic structure:
B = f(y, ¢!, d7)(PT)Py. (7.1.6)
Sketch of proof. The identities ) and - were essentially proved in |30, Lemma 6.1]

using calculations along the hnes of those in [6, Chapter 8]. The only new feature in the
present work is that RHS ([7.1.3) depends on the inhomogeneous terms on the right-hand
sides of the wave equations (3.3.11a))-(3.3.11b|), which were absent in the previous works.
The inhomogeneous terms appear because at the key point in the proof, one uses
and the wave equations (3.3.11al)-(3.3.11b)) to express

1 = - 1 - - g o 1 = o o
—SGLL o AT = —2L {GLL o (LT + QXIII)} — StixGry o XU (7.1.7)
+ Inhom
- - LU -
G%Frame)ﬁ ' }{ T Ly
+ i XU d‘f’ ,
(Frame) Hd\f[

where the last line of RHS is schematically depicted and term Inhom on RHS ([7.1.7
denotes the inhomogeneous terms on RHSs (3.3.11a])-(3.3.11b)). The first term on RHS ([7.1.7
is incorporated into the perfect L derivative term on the first line of RHS (7.1.3)). It is
straightforward to see that the term Inhom is of the form of RHS (7.1.4)): we use (3.19.4)
to decompose the null forms on RHSs (3.3.11al)-(3.3.11b)), Cor. to decompose the prod-
uct on RHS ((3.3.11a)) depending on the first Cartesian coordinate partial derivatives of w,
(3.7.15)) to decompose the material derivative vectorfield on RHS (3.3.11a), and Lemma
In a detalled proof (see [30, Lemma 6.1]), one would find that the term ——trngLL o XU on
RHS ( is canceled by another term and hence does not appear on RHS - This
completes our proof sketch of the lemma. O

7.2. The definitions of the modified quantities and their transport equations.

Definition 7.2 (Modified versions of the derivatives of tryx). Let ZV=! be an N
order commutation Vectorﬁeld operator (see Sect. 6.2/ regarding the notation). We define the

fully modified function (% D2 as follows:
EINY = p NSy + ZVER, (7.2.1a)
— [ 1 — — 1 — — —
= ~Grro XU - Spirg@io LU — JuGroo LT + ud@ o 4. (7.2.1b)
We define the partially modified function (% N2 as follows:
(NG = NSl + (TR, (7.2.2a)

g NS ; T 1 8l ) U 7 i U
(2V50% = _§trg$ O LZNET — SC1 o LENSIT + G o dZNST. (1.2.2D)

We also define the following “0**-order” version of ([7.2.2h)):

1 = = 1 = g = =g
X 1= —styfo LT — SGro LT + G o g0, (7.2.3)
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Proposition 7.2. [30, Proposition 6.2; The transport equation for the fully modified
version of ZV:=ltr x| Assume that the entries of U = (p,v', v?) verify the geometric wave
equation system (3.3.11a))-(3.3.11b). Let ZN=! be an N™ order commutation vectorfield

operator (see Sect. regarding the notation) and let (Y and X be the corresponding
quantities defined in (7.2.1a) and (7.2.1b)). Then the fully modified quantity (£ =g verifies

the following transport equation:

LE=hg (QL—H> (@ Ng = WL, ZN Sty — 2utryx 20N =X — (QL—H> Ny
" " (7.2.4)
+ [L, ZVENE [, 2855 Ltgx + (20051 Lt
— {2 (nltyx)?) — 2utryx 25 trgx f — 20051,
where the term 2A on the last line of RHS 15 the one appearing in —.

Proposition 7.3. |30, Proposition 6.3; The transport equation for the partially mod-
ified version of 2" V=ltryx] Let ZN 1<t be an (N — 1) order commutation vectorfield

operator (see Sect. regarding the notation) and let (N9 e the corresponding par-
tially modified quantity defined in (7.2.2al). Then (&= hy verifies the following transport

equation:

(EZ;*NA;Q) ~

1 = = % —Li>
L 7 = 5Cuu 0 pZNTIEG + (27D, (7.2.5)

N-1;
5

where the inhomogeneous term ( DB s given by

(fé‘lelél)sB _ _%N—l;gl% . QiN_l;Sl(trst)Q (726)
1 - A .1 L - 1
+ 5[%]\[_1517 Gri] o AU + §GLL[«%N FEL Ao W+ (L, 2N
e T2 (Lo PR

B is defined in (T.1.6), (%" DX is defined in (T:2.20), and X is defined in (7.2.3).

7.3. Some identities connected to curvature. We now show that )u(trjx and Ap are
equal up to simple error terms. This fact allows for a simplified approach to various estimates
appearing later in the paper.

Lemma 7.4. [30, Lemma 11.4; Connection between )z'trgx and Ay] Xtrﬁx can be ex-
pressed as follows, where the term Ap on RHS (7.3.1) and f(---) is schematic:

Xtrgx = A+ £y, ¢4, d7)PX T + f(y, 4, d7) PPT (7.3.1)
+1(v, XU, Py, ¢ ", dz) Py.

Discussion of proof. Lemma was essentially proved as [30, Lemma 11.4] and is based on
an analysis of the Riemann curvature component try%y ;. We remark that in the identity

provided by [30, Lemma 11.4], one finds a term proportional to WQf. However, using (9.1.1b))
with f = 2' and Lemma we can write Y’Z = f(y, d) Py, and thus the corresponding
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error terms are part of the last term on RHS (7.3.1). This completes our discussion of the
lemma. We remark that similar calculations are presented in [6, Chapter 4]. U

8. ASSUMPTIONS ON THE INITIAL STATE OF THE SOLUTION AND BOOTSTRAP
ASSUMPTIONS

In this section, we introduce our Sobolev norm assumptions on the data for \fl, w, and
the eikonal function quantities. We also state the bootstrap assumptions that we use in
analyzing solutions. By data, we mean the state of the solution along ¥} and a large potion
of the outgoing null hypersurface Py. Our assumptions involve several size parameters, and
in Sect. [8.6, we describe our assumptions on their relative sizes. In Subsubsect. [8.7 we show
that there exists an open set of nearly plane symmetric data verifying the size assumptions.

8.1. Assumptions on the initial state of the fluid variables.

8.1.1. The quantity that controls the blowup-time. We start by introducing the data-dependent
number d,, which is of crucial importance. Our main theorem shows that if € (defined just
below) is sufficiently small, then the time of first shock formation is (1 + O(€))5;!

Definition 8.1 (The quantity that controls the blowup-time). We define

o 1
O, 1= — sup
21

Zgz X ] , (8.1.1)

1=0

Remark 8.1 (Significance of 6*) Equation (3.14.1)) and the estimates of Props. and
10.1] can be used to show that there exist u, € [0, Up] and 9, € T such that for ¢ > 1, we have

Lu(t, uy, ¥,) = —b, 4 Error, where (under suitable assumptions on the data) Error is small
compared to §,. That is, the maximal shrinking rate of p along the integral curves of L is
determined by 5.. It is for this reason that 6 1'is connected to the time of shock formation.

8.1.2. Size assumptions for the fluid variables. We make the following size assumptions along
21
¥y and 7335* (see Sect. regarding the vectorfield operator notation).

L? assumptions along X}.

X(p—v)

L*(35)

(@§21

Hff@ <2xp‘ <é (8.1.2)

L2y’ wHLQ(E}))

X10.2],2 ‘

L2(35)



J. Luk and J. Speck 71

L>* assumptions along %[.

ngs <1\I,H 7 ‘ =12 <2\I,H 7 (8.1.3a)
Leo(5h) Lo (3b)
X(p—v'
Rl FTR R
RCr Ly
Lo (33)
|25 ]|y < &
Lo | <. (8.1.3b)
Lo (Xg)
L? assumptions along 7338:1.
| 0l |27 ey < € (8.1.4)
L2<7D§5*1) ) H 12 (7)35* ) >
L assumptions along 77267 .
z <19 o
- = -1\ < €. 1.
H . (79025*1) 5 H@ wHLoo (P§5*1> S € (8 1 5)
L? assumptions along Uy 4.
X(p—v")
|zzmg po | 2], <e 616)
12(01,) HXU2‘ ’ 12(61) = € o
L2(£1 )
L?* assumptions along /; .
<20;<1) <20 o
R PR e an

Remark 8.2 (A concise summary of the effect of the size assumptions). The assump-
tions — will allow us to prove that among \17, w and their relevant derivatives,
the only relatively large (in all relevant norms) quantities in our analysis are X131yl and
X3l along 2. Moreover, even X (p — v') is small along %¥, and Xv! and Xp are small

along 730 . This division into small and large quantities is fundamental for our analysis.

To prove our main theorem, we make assumptions on the relative sizes of the above
parameters; see Sect. [8.6]

8.2. Assumptions on the initial conditions of the eikonal function quantities. We
now state our size assumptions for the initial conditions of the eikonal function quantities
(see Sect. regarding the vectorfield operator notation).
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L? assumptions along ¥}. We assume that there exist (implicit) constants, depending on
S, such that

<21;<2 o
HQP L(Small HLQ(E(I)) 5 €, (821&)
<1 8.2.1b
oy =1 (8.2.1b)
1,21];<1 °
[ 2525 | ey S € (82:20)
HLXWﬂ@ HX”QL‘ HXLX ’ (02 ‘ <1 (8.2.2b)
2(sh)’ (%) L2(zh) L2(%h)
L> assumptions along X}.
<11;27i 0
H'ﬁi_ L(Small)HLoo(E(l)) 5 €, (823)
g2 H <1, 8.2.4
(Small) Lo (s) ~ ( )
Hu - 1HL°° El HQPEJH;SluHLw Zl) < é? (825&)
HLszuH HXmqu‘ HXLX‘H ,<X0ﬂ)) <1, (8.2.5h)
Lo (3}) Lo (xd) Lo (s}) L= (2))
<IB<3(@l i) °

[ Z=15(0" = 03) | o) S € (8.2.6)
ESiaci e (8.2.7)

L*>° assumptions along Pgé_ )
lu—1 o Se. (8.2.8)

Le(Pe ) ™

8.3. T(Boot)s the positivity of u, and the diffeomorphism property of T. We now
state some basic bootstrap assumptions. We start by fixing a real number T go.) with

0 < T(Boory < 2671 (8.3.1)
We assume that on the spacetime domain Mz, . v, (see (3.6.4¢))), we have
n> 0. (BAp > 0)

Inequality (BAp > 0) implies that no shocks are present in Mr, . v,
We also assume that

The change of variables map YT from Def. is a C! diffeomorphism from (8.3.2)
[0, T(Boot)) * [0,Us] x T onto its image.
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8.4. Fundamental L*> bootstrap assumptions. Our fundamental bootstrap assump-
tions for ¥ and w are that the following inequalities hold on My, . v, (see Sect.
regarding the vectorfield operator notation):

ngqs <1\Ij” == (BAT)

HLoo(z;;) =

<e, (BAw)

Leo (%)

=

wHLOO(Et“)
where ¢ is a small positive bootstrap parameter whose smallness we describe in Sect. [8.6]
8.5. Auxiliary L* bootstrap assumptions. In deriving pointwise estimates, we find it

convenient to make the following auxiliary bootstrap assumptions. In Prop. [9.12] we will
derive strict improvements of these assumptions.

Auxiliary bootstrap assumptions for small quantities. We assume that the following
inequalities hold on M, v

< e, (AUXUSMALL)

Lo (%)

stu;sap

H g<11 <2Lz( < 51/2, (AUXL(Small)SMALL)

Small) HL°° (Zw) —

1,11];1 1/2
[ 2L | ey < 72 (AUXuSMALL)
<15;<1 <10;<2 ‘ < el2 AUXy
’ z ‘Loo(zy)’ ‘ z Leo(sy) — ( )

Auxiliary bootstrap assumptions for quantities that are allowed to be large. We
assume that the following inequalities hold on ./\/lT( BooryUo TOr M =1,2:

HXM H 42, (AUXpLARGE)

Lo (SY) Los(5Y)

H HXM 1H 4l (AUXv'LARGE)
Leo(5%) Loo(S4)

We assume that the following inequalities hold on My, . v, for M =0, 1:

HLXMuH <z HXM {éLLoX\TJ}H + el (AUXLp)
Loo(S) 2 Lo (3Y)

HXM”H 4287 HXM{GLLOX\IJ}H L2 (AUXp)

Leo(ZY)

l'LHLOO u) Loo(3Y)

We assume that the following inequalities hold on My, . v, for M =1,2:

H‘XVYML%SmaZZ) H HXMLZSma”) H + 51/2- (AUXL(Sma”)LARGE)

Loo(S) Lo (SY)
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8.6. Smallness assumptions. For the remainder of the article, when we say that “A is
small relative to B,” we mean that there exists a continuous increasing function f : [0, 00) —
(0,00) such that A < f(B). In principle, the functions f could always be chosen to be poly-
nomials with positive coefficients or exponential functionsFE] However, to avoid lengthening
the paper, we typically do not specify the form of f.

Throughout the rest of the paper, we make the following relative smallness assumptions.
We continually adjust the required smallness in order to close our estimates.

e ¢ is small relative to 5’1, where § is the data-size parameter from (8.1.3b)).

e ¢ is small relative to the data-size parameter 8, from .
The first assumption will allow us to control error terms that, roughly speaking, are of
size 8% for some integer £ > 0. The second assumption is relevant because the expected
blowup-time is approximately S*_l, and the assumption will allow us to show that various
error products featuring a small factor € remain small for ¢ < 28*_ ! which is plenty of time
for us to show that a shock forms.

Finally, we assume that
S <e<e, (8.6.1)
where € is the data smallness parameter from Sects. and

Remark 8.3 (Relationship between ¢ and € in the proof of our main theorem). In
the proof of our main theorem, we will set ¢ = C’€, where C’ > 1 is chosen to be sufficiently
large and € is assumed to be sufficiently small. This is compatible with (8.6.1)).

8.7. The existence of initial data verifying the size assumptions. In this section,
we show that there exists an open set of data verifying the size the assumptions of Sub-
sects. B.1][8.2, and [8.6] By “open,” we mean open relative to the Sobolev topologies corre-
sponding to the size assumptions stated in those subsections. By Cauchy stabilityfff] it is
enough to exhibit smooth plane symmetric data that are compactly supported in 3} (which
can be identified here with the unit z! interval [0, 1]) and that verify the size assumptions.
By a plane symmetric solution, we mean that p = p(t,z'), v! = v!(t,2'), and v*> = 0. The
data that we exhibit launch simple plane symmetric solutions. By “simple,” we mean that
one Riemann invariant completely vanishes.

Remark 8.4 (Strictly non-zero vorticity along ¥} and 7?35;1). Once we have exhibited
the plane symmetric data described above, it is easy to perturb it so that the vorticity is
everywhere non-zero along 2} and 7336:1. One can simply leave the data for p and v' along
Yo unchanged and set v?|s, = f(z'), where A > 0 is small and f is smooth with f > 0 in
an interval I of length |I| > 28*_1 containing the origin. Then w will be small but non-zero
on I x T C ¥y. Hence, using the transport equation , it is easy to show@ (under
suitable smallness assumptions) that the corresponding solution “induces” data for w along

28" . 951
Py such that w is everywhere non-zero along P, .

102 exponential functions appear, for example, in our energy estimates, during our Gronwall argument;

see the proof of Prop. m given in Sect. [15.16
103Here we mean continuous dependence of the solution on the data.

1041 the solution regime under consideration, equation (3.3.11c)) reads d;w = Quadratically small error
terms.
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We remind the reader (see (3.6.2)) that the initial condition for the eikonal function is
uly, := 1 —z'. Our discussion rehes on the following simple lemma.

Lemma 8.1. [30, Lemma 7.2; Algebraic identities along ¥,| Consider a solution launched

by data given along Xo. Assume that the datum for the eikonal function is ulg, := 1 — .
Then the following identities hold along ¥o (for i =1,2):
1 ) ) . . ) .
w=—, Ligmany = (¢s — 1)6" + 07, = =0, 0" =5, (8.7.1)
Cs

where = s the {, ,-tangent vectorfield from (13.7.12)).

We now turn to the construction of plane symmetric initial data that lead to the desired
size assumptions. Our approach is based on Riemann’s method of Riemann invariants [27].
The results that we present here are standard. Hence, for brevity, we do not provide detailed
proofs. In plane symmetry, in terms of the Riemann invariants

R+ =0v" £ F(p), (8.7.2)
the compressible Euler equations (|1.0.1a])-(1.0.1b]) are equivalent to the system
LR_ =0, LR, =0, (8.7.3)
where
L:=uL, (8.7.4)
L=0,+ (v' +¢,)0, L =20+ (v'—¢)o, (8.7.5)

and L coincides with the vectorfield defined in Def. The function F' in (8.7.3]) solves

the following initial value problem in p:

where F(p = 0) = 0 is just a convenient normalization condition. It is straightforward to
show that

L=1L+2X, (8.7.7)
X = —¢401, (8.7.8)
where X coincides with the vectorfield defined in Def. . Then by , we have
Xlg, = —0. (8.7.9)
Hence, by , we have
L=pL+2uX = uL + 2X. (8.7.10)

The desired initial data can be constructed by simply taking smooth data (R_ |2(1) , R+\E(1))
for the system (8.7.3)) that are supported in ¥ such that R |1 = 0, S |XM Rl peo(myy <
O, and ||R|| e (=) < &, where & and & verify the same relative size assumptions as the

parameters é and & described in Subsect. . As we now outline, this leads to the desired
size assumptions stated in Subsects. [8.1][8.2] and. 8.6, where the smallness of € is induced by
the smallness of €' and the relative largeness of b is tied to the relative largeness of 5.
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We first note that the support assumption on the data implies that the solution completely
vanishes along Py, consistent with the data assumptions made in Subsects. [8.1] and We
next note that the first evolution equation in (8.7.3) implies that R_ = 0. One can derive

estimates for the mixed derivatives of R+|E(1] with respect to L and X by commuting the

second evolution equation in (8.7.3). In view of the simple commutation relation [L, X] =0,
valid in plane symmetry, we obtain that LMX MR, = 0if M; > 1, from which it easily
follows (see equation (3.14.1))) that if M; > 1, then LLM XMy = 0.

From these facts, one can show that all of the data assumptions stated in Subsects.
and are verified if €’ is sufficiently small. We do not give a the full proof here because
it is straightforward but tedious; instead, we prove four representative estimates. First,
using , (8:7.2), Taylor expansions, and the fact that R_ = 0, we obtain X' —
p) = XR +(1—¢)Xp = O(RL)XR,. Hence, using the above estimates, we obtain
1X (v — p)|| sty S €, which is consistent with the smallness assumption for the
first entry of the second term on the LHS. As a second example, we note that with the
help of (8.7.1)), we have u|21 = 14 O(R,). Hence, using the above estimates, we obtain
I =1l poermyy S € (consrstent with the smallness assumption (8.2.5a)) for the first term on

the LHS) and ||XM},L||LOO = S 8 < 1for M = 1,2, consistent with the assumptions stated
n (8.2.5b) for the last term on the LHS. As a third example, we note that with the help
of (8.7.1)), it is easy to show thadTEl = =0 and @Z = 05 in the maximal development of
the data, which in particular is consistent with - As a last example, we note
that w = 0 in plane symmetry, which is consustent Wlth the smallness assumptions (8 ,

B-13), and (B17) for w.

9. PRELIMINARY POINTWISE ESTIMATES

In this section, we derive preliminary pointwise estimates for the simplest error terms that
appear in the commuted equations. Our arguments rely on the data-size assumptions and
bootstrap assumptions stated in Sect. [§| and are tedious to carry out but not too difficult.

In the remainder of the article, we schematically express many equations and inequalities
by stating them in terms of the arrays y and y from Def.|3.31} We also remind the reader that
we often use the abbreviations introduced Sect. to schematically indicate the structure
of various differential operators.

9.1. Differential operator comparison estimates. In this section, we provide quantita-
tive comparison estimates relating various differential operators on ¢ .

We start by providing a simple lemma in which we express Af and Y2f in terms of
derivatives with respect to the vectorfield Y.

105Here we are viewing plane symmetric solutions to be solutions on R x R x T.
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Lemma 9.1 (A and Y in terms of Y derivatives). Let Y be the {,,-tangent vectorfield
defined in Def.[3.27. We have the following differential operator identities, valid for scalar-
valued functions f defined on £,

1 1
) 1 1
= - S In . 1.1b
P = YN O - s (Vg Y)Y S (9.1.1b)
Proof. Using (3.20.1)), we obtain
1 1
Af = Wyyf - W(WYY> “df. (9.1.2)

Since Y, Y is ¢, ,-tangent, it must be a scalar-valued function multiple, denoted by M, of
Y: MY = Y, Y. Taking the inner product of this identity with Y, we obtain Mg(Y,Y) =

gV, YY) = 2V, {g(V,Y)} = 3Y {g(Y,Y)}. Solving for M and substituting into (9.1.2),
Brm)

we conclude (

(9.1.1b)) then follows from ({9.1.1al) and the identity (3.20.2) with £ = X72f

O

The next lemma shows that the pointwise norms of ¢, , tensors are controlled by contrac-
tions against Y.

Lemma 9.2 (The norm of /;,-tangent tensors can be measured via Y contrac-

tions). Let &40, be a type (2) Uy -tangent tensor with n > 1 and let Y be the {;,,-tangent
vectorfield defined in Def.[3.27 Under the data-size and bootstrap assumptions of Sects. [8.1-
and the smallness assumptions of Sect. we have

€] = {1+ 0"} evvyl. (9.1.3)

The same result holds if |y y...y| is replaced with |Ey-|, |Eyy.|, ete., where &y is the type (nﬂl)
tensor with components Y '€y 050, and similarly for Eyy., ete.

Proof. (9.1.3) is easy to derive relative to Cartesian coordinates by using the decomposition
(g1 = L5Y?Y7 (see (3.20.1])) and the estimate |Y| = 14 O(e'/?), which follows from the

Y
identity [Y]? = gupY Y = (043 + g((lfma”))@g - Y(%mall))((sg + Y(Ifgma”)), the schematic relations
g((lfmall)7 Y(Cg mall) = f(y)y (see Lemma [3.19)), and the bootstrap assumptions. O

We now establish some comparison estimates for various differential operators on ¢, .

Lemma 9.3 (Controlling Y derivatives in terms of Y derivatives). Let f be a scalar-
valued function on ly,. Under the data-size and bootstrap assumptions of Sects.
and the smallness assumptions of Sect. the following comparison estimates hold on

MT(Boot) ,Uo 3

dfl < A+ CE2)YFL VI < (L4 CE2) AY )] + Celdf|- (9.1.4)
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Proof. The first inequality in (9.1.4) follows directly from Lemma [0.2] To prove the second,
we first use Lemma , the identity Yoy f = Y - d(Yf) — ¥, Y - df, and the estimate
Y] =1+ O(¢/?) noted in the proof of Lemma [9.2] to deduce

VS < (14 CeV2)|Wyy f] < (L+ CEP2)AY )] + [V YIdS - (9.1.5)

Next, we use Lemma and the identity Yy = Y, (4(Y,Y)) = Y(9Y?Y?) to deduce
that

|X7YY| S |9(WYY7 Y)| < ‘(Y)ﬁyyl S ’Y(Qabyayb)‘ . (9.1.6)
Since Lemma implies that g,,Y?Y? = f(y) with f smooth, the bootstrap assumptions
yield that RHS (0.1.6) < [Yy| < €'/2. The desired estimate for |¥° f| now follows from this

estimate, ((9.1.5)), and (9.1.6)). O

Lemma 9.4 (Controlling £,, and Y derivatives in terms of £, derivatives). Let
Eayay, bE a type (2) Ui -tangent tensor with n > 1 and let V' be an l;,-tangent vectorfield.
Under the data-size and bootstrap assumptions of Sects. and the smallness assump-
tions of Sect. the following comparison estimates hold on Mr,, . vy:

1L,€l S IVIEyE]+ €Ly VI + 1YY €]V (9.1.7)
SIVIIELL+ €L V] + 2|V,
Ve < |2yl + 1Y Y]] (9.1.8)

Sy El +e2lel.

Proof. To prove (9.1.7)), we use the schematic Lie derivative identity £, = ¥, + > &-VV
and Lemma [9.2] to deduce

1ZyEl S IVIVEL+ €TV VL (9.1.9)
Next, we note that the torsion-free property of ¥ implies that ¥,V = £,V + ¥,,Y. Hence,
using Lemma , (9.1.6), and the estimate |V, Y| < |Yy| < €2 shown in the proof of
Lemma [9.3] we find that
M VIS L VI VIV S I VI + VIR Y LS Uy VI Y]V (9.1.10)
S VI + V).

Similarly, we have

Vi€l S 12yE] +€21€). (9.1.11)

The desired estimate (9.1.7) now follows from ((9.1.9)), (9.1.10)), and (9.1.11]).
The estimate (9.1.8) follows from applying Lemma to Y¢ and using (9.1.11]). O

9.2. Basic facts and estimates that we use silently. For the reader’s convenience, we
present here some basic facts and estimates that we silently use throughout the rest of the
paper when deriving estimates.

(1) All quantities that we estimate can be controlled in terms of y = {\f!, W, L%Sma”), L?Sma”)}
and the specific vorticity w.
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(2) We typically use the Leibniz rule for the operators £, and ¥ when deriving pointwise
estimates for the £, and ¥ derivatives of tensor products of the schematic form
H?;l v;, where the v; are scalar functions or ¢;,-tangent tensors. Our derivative
counts are such that all v; except at most one are uniformly bounded in L*® on
./\/lT( Booty,Uo- L 1US, our pointwise estimates often explicitly feature (on the right-hand
sides) only one factor with many derivatives on it, multiplied by a constant that
uniformly bounds the other factors. In some estimates, the right-hand sides also gain
a smallness factor, such as £'/2, generated by the remaining v’s.

(3) The operators £, commute through ¢, as shown by Lemma

(4) As differential operators acting on scalar functions, we have Y = (1+ O(y))d =
(14 O(e'/?))d, a fact which follows from Lemma (9-4:24), and the bootstrap

assumptions. Hence, for scalar functions f, we sometimes schematically depict df
as (14+O(y))Pf or (1+0(y)) ZLf, or alternatively as Pf or Z1°f when the
factor 1 + O(y) is not important. Similarly, by Lemma we can depict Af by
f(2<0y, g 2Lt (or 200 F when the factor f(2<ly, ¢~1) is not important).
Similarly, by Lemma , for type (2) ¢, ,-tangent tensorfields &, we can depict Y&
by (2=, gL € (or £5,€ when the factor f(22='y, ") is not important).

(5) We remind the reader that all constants are allowed to depend on the data-size
parameters 5 and 5 L.

9.3. Pointwise estimates for the Cartesian coordinates and the Cartesian compo-
nents of some vectorfields.

Lemma 9.5 (Pointwise estimates for z* and the Cartesian components of several
vectorfields). Assume thaf®] 1 < N < 20, 0 < M < min{N,2}, and V € {L,X,Y}.
Let x* = 2'(t,u,9) denote the Cartesian spatial coordinate function and let ' = &'(u,?) :=
2'(0,u,9). Under the data-size and bootstrap assumptions of Sects. and the smallness
assumptions of Sect. the following pointwise estimates hold on Mr,,, . vy, for i =1,2
(see Sect. regarding the vectorfield operator notation):

Vi <1+, (9.3.1a)
|g[1,N};MVz‘} < |g[17N];SMY| 7 (9.3.1b)
|QZ[I,N};MVZ'} < |D@i[LN];SMY| . (9.3.1c)

106 hroughout, we use the convention that terms in our formulas and estimates involving operators that
do not make sense are absent. %! is an example of such an operator.
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Similarly, if 1 < N <20 and 0 < M < min{N, 1}, then

(X <1+, (9.3.2a)
FWNM X < | g LNESMy | (9.3.2b)
FINEM X < | g NEEMy | (9.3.2¢)
o . [LN];SM
ZLNMX S ( ?{i,N]KMI > ‘ : (9.3.2d)
. Y
Moreover, if 1 < N <20 and 0 < M < min{N, 2}, then
|2’ — &' S 1, (9.3.3a)
'] S 1+ 1yl (9.3.3b)
" FINE
‘dg[l,NLMI ‘ S ( g[l,N];SM L . (933C)
* Y
Finally, if 0 < N <20 and 0 < M < min{N, 2}, then
‘gN;MYv(Z;S’mall)l 5 |gSN;§MY‘ ) (9343)
‘%N;My(fsmall)l 5 |%§N;§M‘Y‘ . (934b)

In the case i = 2 at fized u,v, LHS (9.3.3a]) is to be interpreted as the Euclidean distance
traveled by the point a2 in the flat universal covering space R of T along the corresponding
integral curve of L over the time interval [0, t].

Proof. See Sect. for some comments on the analysis. Lemma [3.19] implies that for V' €
{L,X,Y}, the component V? = V' verifies V' = f(y) with f smooth. Similarly, }/(%S‘mall)

verifies Y(isma”) — f(y)y with f smooth and Xz = X' verifies X' = uf(y) with f smooth.
The estimates of the lemma therefore follow easily from the bootstrap assumptions, except
for the estimates (9.3.3a)-(9.3.3c). To obtain (9.3.3a)), we first argue as above to deduce
|Lz'| = |L'| = |f(y)] S 1. Since L = £, we may integrate along the integral curves of L
starting from time 1 to deduce, via the fundamental theorem of calculus, that

t
o' (t,u,9) = 2°(0,u,9) + / La'(s,u, V) ds. (9.3.5)
s=0

Taking the absolute value of ((12.3.11) and using the estimate |Lz*| < 1 to bound the time
integral by <t < 1, we conclude (9.3.3a)). To derive , we use 1_} with f = 2" to

deduce |dz'| < [Vl = \YZ| = f(y)| S 1+ |y| as desn"ed The proof of (9.3.3d) is s1m11ar
but we also use Lemma [3.10| to commute vectorfields under ¢

9.4. Pointwise estimates for various /¢, ,-tensorfields.

Lemma 9.6 (Crude pointwise estimates for the Lie derivatives of ¢ and ¢~'). As-
sume that 1 < N <20 and 0 < M < min{N,2}. Under the data-size and bootstrap assump-
tions of Sects. and the smallness assumptions of Sect. the following pointwise
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estimates hold on Mr,,, ., v, (see Sect. regarding the vectorfield operator notation):

‘ N;Mg‘ ‘ﬁN;M -1] < ( %E’N} Y‘ > (9.4.10)
z 9 |Fz N o
e[LN]; <M,y|
LN v‘
25V |5 5 ) (9.4.1b)
Moreover, if 0 < N <20 and 0 < M < min{N, 2}, then
ff[l N+1;<(M—1)4 ‘
25X |2 M ] S - (9.4.1c)

gu N+1];<M ‘

Proof. See Sect. for some comments on the analysis. By Lemma [3.19] we have ¢ =
f(y, d). The desired estimates for £,/*¢ and ¢§M¢ thus follow from Lemma [9.5/ and the

bootstrap assumptions. The desired estimates for £ ¢! and N'Mg—l then follow from

repeated use of the second identity in (3.13.4)) and the estimates for g and gj The

estimates for 4/: P My and ZN:M tryx follow from the estimates for NH M ¢ an ¢N +LM g1

since X ~ £pg (see (3.9.4)) and tryx ~ ¢~ - £p4.

Lemma 9.7 (Pointwise estimates for the Lie derivatives of ¥ and some deforma-
tion tensor components). Assume that 1 < N < 20 and 0 < M < min{N,2}. Under
the data-size and bootstrap assumptions of Sects. and the smallness assumptions of
Sect. the following pointwise estimates hold on Mr,,, . v, (see Sect. regarding the

vectorfield operator notation):

V-1 <Clyl, (9.4.2a)
[1,N];<(M—1)4
N; M %* Y
25y < c‘( Forsiny, © )’ (9.4.2b)
LN =1 (M-1), ty
)= e ( g, )| (9.4.2¢)
Similarly, if 0 < N <20 and 0 < M < min{N, 2}, then we have
| FNEOD
‘ﬁgf"M(Y)#ﬂ S ( ILNHISM, iR (9.4.3a)
In addition, if 0 < N <20 and 0 < M < min{N, 1}, then we have
: N %E,NH];SM
M;M VAL M(Y)ﬁf‘ S - '( D@PSN+1;§MYZ ) (9.4.4a)

and if 1 < N <20 and 0 < M <min{N — 1,1}, then

N;M (X)) #
‘Q‘;()#Lv

NM(Y?f#‘ < ‘féplN-ﬁ-l <M+1\I/‘ I

NA+1);<M
( i N;}<Ml> S (94.4)
x Y
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Moreover, if 0 < N <20 and 0 < M < min{N, 2}, then we have
1LV} (M1,
N:M N:M Y Y
‘ﬁg (L)ﬁ‘ 7 ‘4‘;@0 (Y)ﬁ‘ < ( D@p[LNH};SMY £ )‘ . (9.4.5)

In addition, if 0 < N <20 and 0 < M < min{N, 1}, then we have

7N > M—
NM(X)y| < | geLNHISM AL "%‘E = 1)+I 9.4.6
ﬁff T S + Qp[l,NH];gMY ) (9.4.6a)

and if 1 < N <20 and 0 < M <min{N — 1,1}, then we have

N;M X) [1 N+1]'<M+1 - %[i,N];S(M_1)+Y
‘455; ( %‘ S ‘ff;’ = \If‘ + gl © )| (9.4.6b)

Proof. See Sect.[9.2| for some comments on the analysis. To prove (9.4.3al), we first note that
by Lemma |3.19| and ([3.16.3b|), we have (Y);sz = f(y, g7, d¥) Py. We now apply ﬁ;M to the
previous relation. We bound the derivatives of ¢! and dz with Lemmas and Also
using the bootstrap assumptions, we conclude the desired result.

Since Lemma implies that Y = f(y, ¢!, d%), similar reasoning yields (9.4.2D)-(9.4.2d).
9.4.22)

Inequality (9.4.2a)) follows from the slightly more precise arguments already given in the
proof of Lemma 9.2}

The proofs of (9.4.4a))-(9.4.4b|) for (Y)ﬁf{ are similar and are based on the observation that
by Lemma [3.19 and (3.16.3¢)), we have

O =t(y, ¢, dZ) Py + f(y, ¢, 47, X )y + f(y, ).
The proofs of (9.4.4a))-(0.4.4H)) for ¢ )ﬁf are similar and are based on the observation that
by Lemma |3.19| (3.9.8a)), and (3.16.1b]), we have
L =y g ADPU + 8y, 7 47, X D)y + 4
The proof of (9.4.5)) is similar and is based on the fact that by Lemma [3.19} (3.16.2¢)), and

(3.16.3d)), we have (Dt Ot = f(y, g1, ) Py.
The proofs of ([9.4.6a)-(0.4.6b) are similar and are based on the fact that by Lemma [3.19]

and (3.16.1d), we have XVt = f(y, ¢~1, d@) Py + f(y, d7) X V. 0

9.5. Multi-indices and commutator estimates. In this section, we establish some com-
mutator estimates.

We start by defining some sets of multi-indices corresponding to repeated differentiation
with respect to the commutation vectorfields.

Definition 9.1 (Sets of multi-indices). We define
VM (9.5.1)

to be the set of 2 multi-indices I with the following properties:
o | f| = N.
o %7 contains at least one factor belonging to & = {L,Y}.
o 77 contains precisely M factors of X.
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We define
TN=M (9.5.2)

in the same way, except the last condition above is replaced with the following one:

e 7 contains no more than M factors of X.
We now provide two preliminary lemmas from [30].

Lemma 9.8. [30, Lemma 5.1; Preliminary identities for commuting 7 € 2 with Y/

For each 2 -multi-index I and integer n > 1, the following commutator identity, correct up
to constant factors, holds for all type (2) Uy y-tangent tensorfields &:

) i )
V. £216=) Yo Y ) (¢IM 'g) (VL §)(£5 De). (953)

M=1 [, oi.4T =T
Dt =t absent when M = 1
|I,|>1 for 1<a<Mm

Moreover, with dif denoting the torus divergence operator from Def. for each % -

multi-index f, the following commutator identity, correct up to constant factors, holds for all
symmetric type (g) Uy -tangent tensorfields &:

7]

dif, £51¢ -X X X @y () ) (LT
| |1;1 ft)iMl;l: gI M

absent when h=M=1

(9.5.4)
Finally, for each 2 -multi-index I and each commutation vectorfield Z € %, the following
commutator identity, correct up to constant factors, holds for all scalar-valued functions f:
I d I T
2 - 1
W, £51F = > ()Y (L) (¢ ;') (VL AL f), (95.59)

M=1 Foysfor =T
Dt =1 absent when M = 1
|I,|>1 for 1<a<m

I

r ezl = > Y > (9.5.5b)

i1tie=l M=1 4. +I]M+1:f
|I.|>1 for 1<a<m

G ) ) (PR T T,

absent when hW=M=1

In (9.5.3))-(9.5.5b)), we have omitted all tensorial contractions to condense the presentation.

Lemma 9.9. [30, Lemma 5.2; Preliminary Lie derivative commutation identities| Let
I'= (11,19, -+ ,ty) be an N -order 2 multi-indez, let f be a scalar-valued function, and let
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& be a type (’:) Uy -tangent tensorfield with m+mn > 1. Let i1,19, -+ ,in be any permutation
of 1,2,--- , N and let I = (Liysliny® s lin). Then, up to omitted constant factors, we have
I gl _ N (Z, ) # ) I
{#7-2"} - > gyl A2 S (95.6a)

D+ Do+, =T
Z(Lkl )E{sz}: Z(Lkg)e{X’Y}v Z(Lk1)7£Z(Lk2)

I I - I
(£, -2h}e= > Loy, £ (95.6D)
Lo . Ly 217
Ii+1Ia+ugy gy =1 (thy)
Z(Lkl)G{L,XL Z(LkQ)G{X7Y}7 21 ) F (1)

In (9.5.6a)-(9.5.6D)), L+ 1L+ by + iy = I means that I, = (Lhgs bhgs " "+ 5 LKy, ), AN L =
(Lkm+1,bkm+2,--~ Jlky ), Where ky, ko, -+ ky is a permutation of 1,2,---  N. In particular,
|11|—|-|[2|— — 2.

We now provide the main estimates of this section.

Lemma 9.10 (Commutator estimates). Assume that 1 < N < 20 and 0 < M <
min{2, N}. Let I be a multi-index belonging to the set IN5M from Def. and let I'

be any permutation of I. Let f be a scalar-valued function. Under the data-size and boot-
strap assumptions of Sects. and the smallness assumptions of Sect. the following
commutator estimates hold on Mr,,, . v, (see Sect. regarding the vectorfield operator
notation):

FTp— 2T f <

FLIV/LSI-Dy s .
LN/ | 2= |2 fl(9.5.7a)

Absent sz =0

9

[1,N/2];<M [1N (=0 Ty
+ "62’;*7 -
| N S,

) ) LN =1
2Tf - 27 | 5 |2 |2 N/2“<Mf\\(gw% I)' (957

where (M — 1), := max{0, M — 1}.
Moreover, if 1 < N < 19 and 0 < M < min{2, N}, then the following commutator
estimates hold:

2 ANM [L,N];< M [L[N/2]):<M LNl
‘[W ’ﬁfé‘” ]f‘ 5 {%*7 T f’ + |°@i*’ i fl 1N+1] <]\4‘y - y (958&)

N-M [1,N+1;<M [L,[N/2]);<M %[i,NHL,(M 1)+y
Hﬁy 0 ]ﬂ |-ff f‘ + !ff f| D@p[l,Nﬂ};gMy - . (9,5,8b)
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Finally, if £ 1s an ¢, ,-tangent one-form or a type (g) 4y -tangent tensorfield, 1 < N < 19,
0< M <min{2,N}, and I € TN then the following commutator estimates hold:

I I [1 N] <M <|'N/2 1;<M (LNHLS(M =1+ Ty
[1L,N+1];<(M—1)
NiM [1N ;<M <[N/2 T<M Ty
)[W, 7 €S 5’ 5‘ ( NNt T ) . (9.5.9b)
Y
Ni<M [1 N] <M <[N/2 1i<M A AR
‘[d)(/ 6| < 5‘ §‘ ‘( LN+ - ) . (9.5.9¢)

Proof. See Sect. [0.2] for some comments on the analysis.
Proof of (9.5.7a): We consider the commutation formula (9.5.6a). We will bound the

products ﬁ{@lp(z(‘kz’))yfﬁ(% - d,,@”gf on RHS (9.5.6a) on a case by case basis. Let M’ be the
1

number of factors of X in 2. Note that M’ < M in view of the summation constraint
L+ I+ g, +ty, = I on RHS | (9.5.64).
Case i): M' = M and || € [[N/2],N —1]. Clearly we have ‘dffbf ‘Q’;L}’N];SMf‘.

To bound the remaining factor ﬁf@ﬂ( (ks )7fz< ,» where 11| € [0, [ (N —1)/2]], we note that
Lkl

since M" = M, it must be that ﬁ;ﬂ comprises only Pi-tangent vectorfield factors and that
(Zry)s Ziuny)) = (L,Y). Hence, with the help of (9.4.3a)), we see that the remaining factor

[N, ;
,@’;E [ /2”0}/
1,[N/2]];0 :

Az L f under consideration is bounded in magni-

under consideration is bounded in magnitude by <

SLIN-1)/2] #
SR

In particular, the product ﬁh( ko ))?fz :
‘k

tude by < the first product on RHS (9.5.74)).
Case ii): M' = M and |I_;| € [0, |[N/2] — 1]. Clearly we have ’dfé”;f <

To bound the remaining factor ¢£L(Z“k2))7f§< . where |I;| € [[N/2],N — 1], we note that
Lkl

‘%g,w/zu;wf‘.

since M’ = M, it must be that 4/:{;; comprises only P!-tangent vectorfield factors and
(Z(,)» Ziny) = (L,Y). Hence, with the help of (9.4.3a), we see that the remaining factor

In

under consideration is bounded in magnitude by < ﬁj;N_l(Y)ﬁﬂ <

N
%E }Oz
1,N+1]:0 .
LN Y

particular, the product fé,(z“kﬁ);;f?( : A Iz f under consideration is bounded in magnitude
Lk

by < the last product on RHS ((9.5.7al).
We note that we have now proved inequality (9.5.7al) in the case M = 0, and it holds
without the second term on the RHS (as is indicated in (9.5.7al)).

Case @i): 1 < M < 2, M' < M —1 and || € [|[N/2],N —1]. Clearly we have
)dfffzf < ‘%E,N};SMﬂf _

Since |I1] € [0, (N —1)/2]], we may bound the remaining factor
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I (Za, )
57t
of Lemma [9.7] and the bootstrap assumptions. We note that in view of the summation

constraint I; + [2 + gy + ok, = I and the assumption M < 2, we do not encounter terms

in the norm || - [|zeo(sx) by < 1 with the help of the pointwise estimates

of the form ﬁéﬁ' 2 (L ﬁs ¢|§| 2y 7@#{, which would contain factors involving derivatives of
XXp or XXXW, which we are not able to control in L> based on the current bootstrap
assumptions)'®” In total, we find that the product ¢{%£(Z(%z))7f§( : -dZ"2 f under consideration
Lk
is bounded in magnitude by < the second term on RHS ((9.5.74)).
Case iv): 1 < M <2, M'< M —1, || € [0, N/2] —1], and 1 < N < 4. Clearly we

have dﬁff?f’ < ’%[i’LN/QJ];SMflf . Since 1 < N < 4, we may bound the remaining factor

Il (Ziry) ﬁZ( in the norm || - ||zeo(zyy by S 1, as in Case iii). It follows that the product

h (Zier,) 7f A I f under consideration is bounded in magnitude by < the second term
Z(e)) ~

on RHS (19.5.74)).
Casev): 1 <M <2, M' < M—1, |I5] € [0,|N/2] —1], and 5 < N < 20. Clearly we have

)dﬁﬁf?f‘ < ‘%E’LN/MSM_lf‘. We now bound the remaining factor 4@0(2“’“2))7@(% . starting
with the sub-case in which either Z(Lkl) = X or Z(%) = X. In view of the sumrriation con-
straint I+ Io+ug, +tr, = I, we see that it suffices to bound ‘ﬁ'f;‘éM*l(Y)yffﬁ‘ , ‘ﬁgj'éM*l(X)yff :
Since N > 5, and |I1] € [[N/2],N — 1], we have |I;| > 3. Thus, since M < 2, at least 2
vectorfield factors in the operator ¢§|SM_1 must be Pl-tangent. That is, ¢|;1|;SM_1 =

gﬁ‘;SM_l. We may therefore use (9.4.4b) with M — 1 in the role of M to deduce that

1,N|;<M-1
¢\Il| i <SM-1(X % ‘ < %[* ) Y
Ll ~ 1,N;<M :
g[LN] v
11 (Z(gy) 7fZ(L | ﬂf‘f’z f under consideration is bounded in magnitude by < the last prod-

uct on RHS (9.5.7a) as desired. Finally, we address the remaining sub-case in which
(Zy)s Ziny)) = (L,Y). Thus, using (9.4.3a), we see that the factor ﬁ%(z(bkz’)ﬁﬁ(%) is

%EvN*l]?SM*lX
1L,N|;<M .
Y

the product ﬁgp(z(%))#ﬁ( . Az I f under consideration is bounded in magnitude by < the
‘k
last product on RHS ((9.5.7al) as desired. We have thus proved (9.5.7al).

Proof of (9.5.7b)): The estimate (9.5.7b)) is a simplified version of ((9.5.7a)) that follows as a
simple consequence of (9.5.7a)) and the bootstrap assumptions.

Proof of (9.5.8a) and ((9.5.8b)): The proofs of these estimates are similar to the proof of

(9.5.7a)) and are based on the commutation identities ((9.5.5a})-(9.5.5b]), the estimates (9.4.1a)
and (9.4.1bf), and Lemma ; we omit the details.

¢£|;SM71(Y)7F# It follows that the product

It follows that

SNfl;SM(Y)ﬁ#‘ <

bounded in magnitude by < |£7 Ll ~

107gee, however, Sect.
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Proof of (9.5.9a)), (9.5.9b) and (9.5.9¢): The proofs of these estimates are similar to the

proof of (9.5.7al) and are based on the commutation identities (9.5.3))-(9.5.4)) and (9.5.6b)), the
estimates (9.4.1a]) and ([9.4.1b)), and Lemma . We omit the details, noting only that the

right-hand side of ([9.5.9a)) involves one more derivative of y and 'y compared to the estimates
(9.5.7a)-(9.5.7bl); the reason is that we use the estimate (9.1.7) when bounding the terms on

RHS (9.5.6b)), which leads to the presence of one additional derivative on (Z(”@));@E

(Lkl).

Corollary 9.11. Assume that 1 < N <20 and 0 < M < min{2, N}. Let ¥ € {p, vt v?}.
Under the data-size and bootstrap assumptions of Sects. 8.5 and the smallness assump-
tions of Sect. |8.0, the following estimates hold on Mz, . v, (see Sect. regarding the

vectorfield operator notation):
%[j,N];S(M—1)+I
%[lvN];SMV

Proof. See Sect. for some comments on the analysis. We decompose AWV = AZN LMy
[ZN-LM X)W, The first term in the decomposition is bounded in magnitude by < the first
term on RHS (9.5.10). To obtain |[ZN~*" AJ¥ < RHS (9.5.10)|, we use the commutator
estimate ((9.5.8b) with f = ¥ and N — 1 in the role of N and the bootstrap assumptions.
O

| 2N A < }%[:,NH];SM\IJ‘ + (9.5.10)

9.6. Transport inequalities and improvements of the auxiliary bootstrap assump-
tions. In the next proposition, we use the previous estimates to derive transport inequalities
for the eikonal function quantities and improvements of the auxiliary bootstrap assumptions.
The transport inequalities form the starting point for our derivation of L? estimates for the
below-top-order derivatives of the eikonal function quantities (see Sect. . In proving the
proposition, we must propagate the smallness of the é-sized quantities even though some
terms in their evolution equations involve the relatively large 8-sized quantities.

Proposition 9.12 (Transport inequalities and improvements of the auxiliary boot-
strap assumptions). Under the data-size and bootstrap assumptions of Sects. 8.5 and
the smallness assumptions of Sect. |8.6, the following estimates hold on Mg, . v, (see
Sect. regarding the vectorfield operator notation).

Transport inequalities for the eikonal function quantities.

e Transport inequalities for . The following pointwise estimate holds:
1Lyl < ‘ﬁfﬁl\ff’. (9.6.1a)
Moreover, for 1 < N <20 and 0 < M < min{l, N — 1} the following pointwise estimates

hold:
] %[ij]ySM
|LZ My (D@ﬂu,N];SMI : (9.6.1Db)
* Y

+

Y

Q@F;N;MLH‘ < ‘%[1,N+1];§M+1\I‘}
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e Transport inequalities for Lé Small)

the following pointwise estimates hold:

LQFN MLESmall) QFN MLL;Small
LZN-EMyr,x ZNEM Ltrgx

)' S) )%[l,NJrl]%SM\I_}‘ +

gelLNE<M

py and trygx. For0 < N <20 and 0 < M < min{2, N},

%[j,N];S(M*IMX
£ Y

Absent w;;en N=0

L> estimates for U and the eikonal function quantities.

o[> estimates for U. The following estimates hold for M = 1,2:

< (e,
()

+ Ce,
Loo(SH)

(E“)

+ Ce,

HXM 1

*(=) Lee(Xg)

< Ce.

H <122y
: Loo(sy)

Moreover,

Y

X(p—2o") s < Ce.

o [>° estimates for w. The following estimates hold for M =0, 1:

},LH HXM —f-é;l XM {C_;;LLOX\I_}}H +C€,
L= (%) L= (3Y) L (3Y)
o], = s [ {Go x| o
1,11];<1
|z t= LLHLoo(zg) < Ce.

Moreover, we have

I =1l 0 < O

o[> estimates for L%Small and x. The following estimates hold for M =1,2:

H.ﬁp<11 <2LlSmall)HLoo nY) < 067
Mori M T
HX L Sm“”)HLw s HX Lisman HL“’(EB‘) e
<1052 <10;<2 #H <1024y < Ce.
|5 ‘ng)’ 7| g | X[l ey <

L> estimates for w. The following estimates hold:

| s <ce.

wHLoo(zg)

(9.6.2)

(9.6.3a)
(9.6.3b)
(9.6.3¢)

(9.6.3d)

(9.6.4)

(9.6.5a)

(9.6.5b)

(9.6.5¢)

(9.6.6)

(9.6.72)

(9.6.7b)

(9.6.8)

(9.6.9)
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Proof. See Sect. for some comments on the analysis. Throughout the proof, we use the
phrase “conditions on the data” to refer to the assumptions stated in Sects. and [8.2
Also, we often silently use inequality (8.6.1]).

) : <12 . :
Proof of . The estimate for H@;Z 1w|| Leo(ny) 18 @ direct consequence of the
bootstrap assumptions. To prove for Hf— ’ wHLm(E?), we first note that by (3.7.15]),
equation (3.3.11d) is equivalent to Xw = —uLw. Applying 2= to this equation and using

the bootstrap assumptions, we deduce that H<@<11Xw’ < e. Next, for 2 < K < 12,
Lo (SY)

we repeatedly use the commutator estimate (9.5.7b)) and the bootstrap assumptions to deduce
| 2=Fw| < ‘@[LK—”Xw( + |2 w]. (9.6.10)

We have already shown that the first term on RHS (9.6.10) is < e, while the bootstrap
assumptions imply that the second term is < e. In total, we have shown that we can
permute the vectorfield factors in 22" Xw up to O(e) errors, which yields the desired
bound || 2<% 1wHL°°(E“) e. To prove (9.6.9) for H(,@pglmu)”]:oo sy We first apply 22<10X

to the equation Xw = —pLw and use the already proven bound HQKU <1wHLoo g,

) ~
and the bootstrap assumptions to deduce H@SlOXXwH - < e. Using this bound, the
Loo(Sy

. <12;<1 : ' i =
estimate Hﬁ”— w”Loo(zy) < ¢, the commutator estimate (9.5.7b]) with M = 2, and the
bootstrap assumptions, we may use an argument similar to the one given just below (9.6.10))
in order to permute the vectorfield factors in 21X Xw up to O(e) errors. In total, we

have shown that ||(,@€512?2w||Loo =) < &, which completes the proof of (9.6.9).

Proof of and : The estimate is a simple consequence of the evo-
lution equatlon Lu = f(y )P\If + f(y) XU (see equatlon (3.14.1) and Lemma [3.19)) and the
bootstrap assumptions.

We now prove (9.6.15). We show only how to obtain the estimates for |L2¥:™ | since the
estimates for ‘EX;N M [u| are simpler because they do not involve commutations. To proceed,
for 1 < N <20 and min{1, N — 1}, we commute the evolution equation from the previous
paragraph with Z7V™ to deduce the schematic identity

LZNMu = [L, VM w+ 25 {fmm + f@)P\f’} ‘ (9.6:11)

To bound the magnitude of the second term on RHS (9.6.11)) by < RHS (9.6.1b)), we use the
bootstrap assumptions. To derive { , M u‘ < RHS m we use the commutator
estimate (9.5.7b)) with f = p and the bootstrap assumptions. We have thus proved m
Proof of (0.6.2) for LZ": MLl gmany and ZNMLLL 0 We first write the evolution

equation (3.14.2) in the schematic form LLig,,,; = f(y, 4=, dZ)PT. For 0 < N < 20 and
0 < M < min{2, N}, we commute this evolution equation with 2V to obtain

QFN MLZ(Small [L D@FN ] Small) + féﬁ {f(‘Ya g—l’ df)qu} : (9612)
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To bound the magnitude of the second term on RHS (9.6.12) by < RHS (9.6.2)), we use
the estimates (9.3.3b)-(9.3.3¢) and (9.4.1af)-(9.4.1b) and the bootstrap assumptions. To

deduce ’[L, QFN?M]L’tSma”)‘ < RHS (9.6.2) we use the commutator estimate (9.5.7b)) with

f= L%Small) and the bootstrap assumptions.

Proof of (9.6.2) for LZN-"Mtryx and ZN~'MLtryx: We first apply L to equation

3.17.1b]) and use the schematic identity £,47" = (¢7')"*x = f(v, ¢, dZ) Py (see (3.13.4),
3.16.2c), and Lemma [3.19)) to deduce that Ltryx = {(y, ¢, dZ) PLy + l.o.t., where l.o.t. :=

{f(gﬂglv,ﬁi}g*l, dt@glf)} Py. Applying ZN-5M to this identity and using Lemmas
and ! and the bootstrap assumptions, we find that | 2"V =5M Ltrgx| < S22 | ENAM

(Small)
RHS (9.6.2), where the operator Z V1M acting on Lé Smayyy CONtains a factor of L. By arguing
as in our proof of the bound for the commutator term on RHS (9.6.12)), we may commute the

factor of L to the front (so that L acts last), thereby obtaining that 37| ‘Q’;N M L Srmany ‘ <

~Y

’Lff N;M LéSmall)‘ + RHS (9.6.2). Moreover, we already showed in the previous paragraph

that ‘LD@” N;M LZ('Small)‘ < RHS (9.6.2)), which completes our proof of the estimate (9.6.2)) for

}Q?N’I?MLtr‘jx . To obtain the same estimate for |L.,@FN’1;Mtr¢x , we use the commutator
estimate (9.5.7b) with f = trgx, (9.4.1c), and the bootstrap assumptions to deduce that

FNEMD
5’,:5 Nji<M = ||. The desired bound (9.6.2)) for
Y

}Lff N-L;M trﬁ(! now follows from this estimate and the one we established just above for
}QpN*l;MLtr‘jX‘.

}LfN_l?Mtrﬁﬂ < ‘f}’fN_l;MLtrgx| +

Proof of an intermediate estimate: As an intermediate step, we now show that

‘ ( %EJH;OM

_ tou,9) < e. 9.6.13
%SILSI(L%SmaZZ)’ L%Small)) ) ' ( ) ( )

0
We first recall that L = Erh Hence, we can use ((9.6.1b])-(9.6.2) and the bootstrap assumptions
and integrate along the integral curves of L as in ({9.3.5)) to deduce

QP[L”];SOH
21 t,u, v 9.6.14
' ( Qa*gngl(L%Small)’ L%Small)) ) ‘ ( ) ( )

[1,11];0
(o
)

Qf;ﬁll;ﬁl (L%Small) ) L%Small

‘|'C/t ( %[21’1111-];01u 1 2 )

s=0 Z=s <L(Small)7L(Small))

where the Ce term on RHS (9.6.14) comes from the terms %[1’12}51\17’ (which are < e

in view of the bootstrap assumptions) on RHS (9.6.1b) and RHS (9.6.2)). The conditions
9.6.14

on the data imply that the first term on RHS (9.6.14)) is < Ce. Hence, from Gronwall’s

(s,u,v)ds + Ce,

+
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‘94[1,11];%L .
S t,u,9) < eexp(Cd1) < e, which
( Qp*gngl(L%Small)’ L%Small)) ) ‘ ( ) ( )

inequality, we conclude

yields ((9.6.13]).

Proof of (9.6.3d): Using (3.18.1al), (3.7.15]), Cor. |3.18, Lemma the identity (9.1.1a)),
and the schematic relation Ly = f(y)PV¥ + f(y) XV (which follows from Lemmas [3.14.1

and [3.19)), we write the wave equations ([3.3.11al)-(3.3.11b]) verified by ¥ € {p,v!,v?} in the
following schematic form:

LXV = f(y, ¢ 47, Z='0) P20 + {(y, ¢, 47, Z="T) Py (9.6.15)
+ iy, Z5'0) 2w,

We now show that

‘Lgi[l,n]n)z—q,‘ < ‘%[1,11};1)2'\1;‘ +e. (9.6.16)

To derive (9.6.16)), we first apply ML ¢ (9.6.15)). Using the bootstrap assumptions
and the already proven estimates and (9.6.13) (to bound the derivatives of the
terms L%Sma”) and L%Small) found in the factor Py on RHS (9.6.15))), we deduce the esti-

mate H%H’l”;lRHS 9.6.15H =) < e. To finish the proof of (9.6.16)), we consider the
Lo (54

term 2 LX W obtained by applying W 6 LHS (19.6.15)). We use the commutator
estimate (9.5.7b) with f = XU, 1 < N < 11, and M = 1 and the bootstrap assump-

[1,11];1

tions to arbitrarily permute the vectorfield factors in 2 L up to error terms that are

< ‘%E’ll}él)\f\ﬂ < %[:,11];15(\1/‘ + ¢, where we bounded the last factor on RHS (9.5.7b)
gL,
as follows: f;ﬁ 1T < 1. We have therefore proved (9.6.16). We now integrate
Y

inequality (9.6.16)) along the integral curves of L as in (9.3.5)), use the conditions on the
data, and apply Gronwall’s inequality to deduce

’%1711%1)“(\11’ <e (9.6.17)

Using (9.6.17)), the commutator estimate ((9.5.7b)) with M = 2, and the bootstrap assump-
tions (including HQ’;[I’IQ];SI\II

‘ < €), we use a commutator argument similar to the one
L= (Z})

surrounding equation j9.6.10), which allows us to arbitrarily permute the vectorfield factors
in the operator WX on LHS (9.6.17)) up to O(e) errors. In total, we have obtained the

desired bound H%[I’IQ];Q\I/H : < &, which completes the proof of (9.6.3d]).

Lo (Sy

Proof of (9.6.5¢), (9.6.7a)), and (9.6.8)): We first prove (9.6.5¢) and (9.6.7a). Much like
in our proof of (9.6.13), we may use (9.6.1b))-(9.6.2)) and the bootstrap assumptions and
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integrate along the integral curves of L to deduce

'( g[illll];zlul 2 )
QP (L(Small) L(Small))

241 11] <1H
< kk
<C ‘ ( Q”<11 <2(L1 y L?Sma”)) ) ‘ (07 u, 79)

(Small
t
e
s=0

gl Ist
( "@’;SH;SQ(L%Small)’L%Small)) )

where the C'e term on RHS (9.6.18]) comes from the terms ’QALH];Q@‘ (Which are S € in view

of the already proven estimate ((9.6.3d))) on RHS (9.6.1b)) and RHS . The conditions

-

on the data imply that the first term on RHS (9.6.18) is < Ce. Hence from Gronwall’s
g1t
( QP*SH;SZ(Llsma” ’L2Small)

(t, u, 9) (9.6.18)

(s,u,9)ds + Ce,

inequality, we conclude

) )‘ (t,u,9) < eexp(Cd;Y) < e, which
(

yields (9.6.5c)) and (9.6.7a)). The estimate ((9.6.8]) then follows as a consequence of inequality
(9.4.1c) and the estimates (9.6.3d)), (9.6.5¢]), and (9.6.7al).
Proof of (0.6.6): The estimate is a trivial consequence of (8.2.8)) and (8.6.1).

Proof of (9.6.3al), (9.6.3b)), (9.6.3c)), (9.6.4]), (9.6.5a)), (9.6.5b|), and (9.6.7b)): We first prove
(9.6.3al), (9.6.3b)), (9.6.3c)), and (9.6.4)). We note that a special case of (9.6.3d)) is the estimate

LXMy ‘ ( < g, valid for M = 1,2. Hence, we can integrate along the integral curves
Lo (SY)

of L as in ((9.3.5) and use this estimate to obtain ‘XM@‘ (t,u,v) = ‘XM\I_}‘ (0,u,9) + O(e)

and

X(p— vl)‘ (t,u,¥) = ‘)u((p — 1)) (0,u,9) + O(e). Using the conditions on the data,

we arrive at the desired four estimates (note that our assumptions on the data and (8.6.1))

Y [0,2],,2

v < ¢ and the non-small

imply the smallness bounds HX p—ol)
L=(sy)’

<1 and HX[O 2yl ” <1).
Loo(5h) Le(2h)
Inequality (9.6.7b)) follows in a similar fashlon from the already proven estimate ([9.6.7al).
We now prove (9.6.5b)). From the evolution equation (3.14.1]), Lemma |3.19, the commu-
tator estimate (9.5.7b) with f = p, the estimates (9.6.3d)) (9.6.7al), and (9.6.5¢)) and the

bootstrap assumptions, we see that for M = 0,1, we have

Lo (2h)
bounds HX“ H

LXMy = XM {éLL oX\IJ} XM {f(z)P\fJ} L, XM (9.6.19)

Moreover, from the schematic identity (3.19.2b)), the estimates (9.6.3d)) and (9.6.7a)) and

the bootstrap assumptions, we deduce LXM G Lo X \17} = O(e). Integrating this esti-
mate along the integral curves of L as in , we find that HXM {GLL o X\If} H =

Loo(5)

HXM {GLL OX\II}H + O(e). From this estimate and (9.6.19)), we conclude (9.6.5b).

L= (3Y)
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Finally, we prove (9.6.5a)). We first integrate along the integral curves of L as in ((9.3.5)
to deduce the following inequality, valid for M = 0, 1: ‘XM}L’ (t,u,9) < ‘XMu‘ (0,u,9) +

ft

u‘ s,u,¥)ds. We now use m ) to bound the time integral in the previous

inequality by < 6 L xM {GLL oX\IJ}H + Ce, where we have used the assumption
Loo(SY)
t < 26* . The desired bound (9.6.5a]) now readily follows from these estimates. 0J

10. L* ESTIMATES INVOLVING HIGHER TRANSVERSAL DERIVATIVES

In Sect. we derive sharp pointwise estimates for i and some of its derivative, estimates
which play a crucial role in the energy estimates. The proofs of some of the estimates of

Sect. rely on the bound HX X H ( < 1. In this section, we derive this bound and
Loo(3Y)

some related ones, some of which are needed to prove it.

10.1. Auxiliary bootstrap assumptions. We will use auxiliary bootstrap assumptions to
simplify the analysis. In Prop. [10.1, we derive strict improvements of the assumptions.

Our auxiliary bootstrap assumptions are that following inequalities hold on M, . ;.
where ¢ is the small positive bootstrap parameter from Sect. [8.4]
Auxiliary bootstrap assumptions involving three transversal derivatives of 0. For
U e {p,v!,v?}, we have

HXXX@H ( HXXX@H pel?, (AUXX X XD)
Lo Eu Lo ( E“

Auxiliary bootstrap assumptions involving two transversal derivatives of L.

JEEEIRES

Loo(Be)

+el/?, (AUXLX Xp)

XX {C_;;LLOX\I_}}H
Leo(5Y)
XX{GMOXWH‘ L2 (AUXX Xp)

Lo (3y)

+ 257"
Loo(5)

Loo( zu)

10.2. The main estimates involving higher-order transversal derivatives. In the
next proposition, we provide the main estimates of Sect. [I0] The proposition yields, in
particular, strict improvements of the bootstrap assumptions of Sect. [10.1}

Proposition 10.1 (L* estimates involving higher-order transversal derivatives).
Under the data-size and bootstrap assumptions of Sects. 8.4l and Sect. and the small-
ness assumptions of Sect. the following estimates hold on Mr, . ;-

L> estimates involving three transversal derivatives of V.

HLXXX@H < Ce. (10.2.1)

Lee(zy)

Moreover, for ¥ € {p,v!,v?*}, we have

HXXX@H HXXXWH +Ce. (10.2.22)

Loo(5) Loe(SY)
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L> estimates involving two transversal derivatives of L.

IZECIRNES

Loo(5)

{GLL o XU} H + O, (10.2.3a)

Lo (2Y)

+5t

XX G0 X0} H L Ce (10.2.3b)
Loo(zu Loo(3%) Loo(34)
Sharp pointwise estimates involving the critical factor Grr. Moreover, if 0 < M <

2 and 0 < s <t < T(Boot), then we have the following estimates:

()?MéLL(t,u, 9) — XMGyp(s,u, 19)‘ <Ce(t—s),  (10.2.4)

H)U(M (éLLOXQ7>} (t,u, ) — {)U(M (éLLOXQ7>} (s,u,ﬁ)’ < Ce(t —s). (10.2.5)

Furthermore, we have

|GLLl| oo sy < C (10.2.6)
d
Finally, with ¢,/ = d—pcs(p =0), we have
Lu(t,u,9) = —(&' + )Xo (t,u,9) + O(e). (10.2.7)

Proof of Prop.|10.1. See Sect. for some comments on the analysis. We must derive the
estimates in a viable order. Throughout this proof, we use the data-size assumptions of
Sects. and |8 n and the assumption (8 without explicitly mentioning them each time.

We refer to these as “conditions on the data

Proof of (10.2.1)-(10.2.2a)): By (9.6.15)), for ¥ € {p,v!, v?}, we have
LXV = {(y, ¢, d7, PU, X V) PPU +f(y, ¢ ", 47, PV, X V) Py (10.2.8)
+f(y, Z50) 2w

Commuting ((10.2.8)) with XX and using Lemmasand , the L>™ estimates of Prop.[9.12]
and the auxiliary bootstrap assumptions of Sect. [10.1], we find that

‘LXXX\I/‘ < ‘LXXX\IJ - XXLX\I/‘ + ‘XXLX\I/‘ (10.2.9)
< \Lx;zm _ ;‘zmm\ +e
Using in addition the commutator estimate (9.5.7b) with f = X V. we obtain the bound

)LXXX\P — XXLX@’ < e as well. We have therefore proved ((10.2.1)). The estimates

(10.2.2a)) then follow from integrating along the integral curves of L as in (9.3.5) and using
the estimate ((10.2.1) and the conditions on the data.

Proof of (10.2.4)-(10.2.5)): It suffices to prove that for M = 0,1,2 and » = 0, 1,2, we have
)LX’MG’LL‘, ‘LXMX%

<e, (10.2.10)

(XMGZLL( , (10.2.11)
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once we have shown ([10.2.10)-(10.2.11)), we can obtain the desired estimates by integrating

along the integral curves of L from time s to ¢ (in analogy with ((9.3.5))) and using (10.2.10))-
(10.2.11). The estimate for the second term on LHS (|10.2.10) follows from (9.6.3d)) and
ZLL )

(10.2.1)). To prove the desired bound ((10.2.11]) for ‘LXMG we first use Lemma [3.19| to

deduce that G = f(y). Differentiating this identity with LX™ and using the L™ estimates
of Prop. we obtain the desired bound. The estimate ((10.2.11]) is a simple consequence
of the relation Gpj, = f(y), the L* estimates of Prop.|9.12] and the estimates (10.2.2a)).

Proof of (10.2.6): From (3.15.1b), the fact that X? = X{, . (see Def. 3.29), and
Lemma [3.19, we see that G3;, = f(y)y. The desired estimate (10.2.6) now follows as a
simple consequence of the L* estimates of Prop.

Proof of (10.2.7): From the evolution equation (3.14.1)), (3.12.5)), the identities (3.15.1al)-
(3.15.1b)), Lemma [3.19, and the assumption ¢; = 1, we deduce that

1
]_ V] ]_ Y] 1 ~ =
Lu= > Gy X!+ 5G1LX (0 —v') + SGL X0 + f(y) PU (10.2.12)
1=0

= —(&/ + 1)Xv' + {(y)X(p — v") + £y, X T)y + f(y) PV.

The desired estimate (10.2.7)) now follows from ((10.2.12)) and the L* estimates of Prop.(9.12
(see especially (9.6.4))).

Proof of (|10.2.3a))-(10.2.3b)): With the help of the L> estimates of Prop. and the
bootstrap assumptions, we can use the same argument that we used to prove (9.6.19)) in
order to conclude that also holds with M = 2. The remainder of the proof of
(10.2.3a)-({10.2.3b|) now proceeds as in the proof of (9.6.5al)-(9.6.5b) (which is given just
below (9.6.19)), thanks to the availability of the already proven estimates ((10.2.4))-(10.2.5))
in the case M = 2.

O

11. SHARP ESTIMATES FOR W

In this section, we derive sharp pointwise estimates for u and some of its derivatives.
These estimates provide much more information than the crude estimates we obtained in
Sects. [9 and The sharp estimates play an essential role in our derivation a priori energy
estimates (see Sect. . The reason is that in order to obtain the energy estimates, we must
know exactly how p Vanisheslﬂ and how certain ratios with u in the denominator behave.
This is the main information that we derive in this section.

Many results derived in this section are based on a posteriori estimates. By this, we mean
estimates for quantities at times 0 < s < t that depend on the behavior of other quantities
at the “late time” ¢, where t < T{poo). For this reason, some of our analysis involves
functions ¢ = ¢(s, u, 9J; t), which we view to be functions of the geometric coordinates (s, u, )
that depend on the “late time parameter” ¢. When we state and derive estimates for such
quantities, s is the “moving” time variable verifying 0 < s <.

10814 vanishes linearly; see (11.2.5a]). This fact is of fundamental importance for our a priori energy
estimates.
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11.1. Definitions and preliminary ingredients in the analysis.

Definition 11.1 (Auxiliary quantities used to analyze p). We define the following
quantities, where 0 < s <t for those quantities that depend on both s and ¢ :

s'=t

M(s,u,v;t) := / {Lu(t,u,¥) — Lu(s',u,9)} ds, (11.1.1a)
i, 9) == (s = 0,u,9), (11.1.1b)
—~ M (s,u,9;t)
M i) = 11.1.1
(5150 ) — 20w 050) —

Ly(t,u, )
u, ) — M(0,u,9;t)

The following quantity p, captures the worst-case smallness of p along ¥¥. Our high-order
energies are allowed to blow up like a positive power of u_ .

Definition 11.2 (Definition of ). We define
i (t, u) := min{1, Héin (. (11.1.2)

s+ M(s, u,9; t). (11.1.1d)

H(Approx S,U,ﬁ;t =1+
(Approz) ( ) i

The next lemma provides basic pointwise estimates for the auxiliary quantities.

Lemma 11.1 (First estimates for the auxiliary quantities). Under the data-size and
bootstrap assumptions of Sects. and the smallness assumptions of Sect. the fol-
lowing estimates hold for (t,u,9) € [0, T(Boot)) % [0,Up] x T and 0 < s < t:

(u,d) =1+ 0O(e), (11.1.3)
((u,?) =1+ M(0,u,9;t) + O(e). (11.1.4)
In addition, the following pointwise estimates hold:
|Lu(t, u,9) — Lu(s,u, )| Se(t —s), (11.1.5)
|M (s, u, 9;8)|, |M (s, u,9; )| < et — s)?, (11.1.6)
w(s,u,¥) = (14 O(€))Uiapproz) (s, u, Vs t). (11.1.7)

Proof. (11.1.3)) follows from (8.2.5a)) and (8.6.1)). The estimate (11.1.5) follows from the
mean value theorem and the estimate |LLu| < e, which is a special case of (9.6.5c|). The
H

estimate (11.1.4)) and the estimate (11.1.6|) for M then follow from definition (11.1.1a)) and
the estimates (11.1.3)) and (11.1.5). The estimate (11.1.6) for M follows from definition
(11.1.1c|), the estimate (11.1.6) for M, and (11.1.4). To prove (11.1.7), we first note the

following identity, which is a straightforward consequence of Def.
wis,u,¥) = {f(u,d) — M(0,u, ;) } Wapproz)(s, u, 3 t). (11.1.8)
The desired estimate ((11.1.7)) now follows from ((11.1.8)) and (11.1.4)).

O

To derive some of the estimates of this section, it is convenient to partition various subsets
of spacetime into regions where Ly < 0 (and hence p is decaying) and regions where Ly > 0
(and hence p is not decaying). This motivates the sets given in the next definition.
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Definition 11.3 (Regions of distinct u behavior). For each ¢t € [0, T(poot)), s € [0, 1],
and u € [0, Up], we partition

0,u] x T = Pyry e, (11.1.9a)
zv =My, uOsy, (11.1.9b)
where
Lu(t,u', )
®ypu .= d (0 T _ > 11.1.1
Vt {(U, ) € [O,U] X | ﬁL(U’,"&) . M(O,Ul,'ﬂ,t) - 0 ) ( Oa)
_ Lu(t,u', )
e = (! T il 11.1.1
Vi {(u,ﬁ) €[0,u] xT| a(uf 79)_ VIR <0}, ( 0b)
vo={(s,u,0) € XY | (W, 9) € DV}, (11.1.10c)
) zgt = {(s,u/,9) € £¥ | (W, ) € DIV}, (11.1.10d)

Remark 11.1 (The role of the denominators in ((11.1.10af)-(11.1.10b)). Note that
implies that the denominator [i(u',9) — M(0,u',9;¢) in (11.1.10a)-(11.1.10bf) re-
mains strictly positive all the way up to the shock. We include the denominator in the
definitions ({11.1.10a))-(11.1.10b]) because it helps to clarify the connection between the pa-
rameter k defined in (11.2.4) and the sets DV and Ve,

11.2. Sharp pointwise estimates for u and its derivatives. In the next proposition,
we provide the sharp pointwise estimates for p that we use to close our energy estimates.

Proposition 11.2 (Sharp pointwise estimates for u, Lu, and Xu) Under the data-
size and bootstrap assumptions of Sects. and the smallness assumptions of Sect.
the following estimates hold for (t,u,) € [0, T(Boot)) % [0,Up] x T and 0 < s < ¢.

L
Upper bound for [ H]+'
L
H[ W+ <. (11.2.1)
Koz
Small 1 implies Ly 1s negative.
1 1.
w(s,u,d) < 1= Lu(s,u,v) < —16*, (11.2.2)
where 8, > 0 is defined in (8.1.1).
X
Upper bound for [ H]+.
i
X
[Xuds << (11.2.3)
[ Loo(Sw) T(Boot) — S
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Sharp spatially uniform estimates. Consider a time interval s € [0,t] and define the
(t,u-dependent) constant K by

Lyl _(t,u, 0
B T O T i
and note that k > 0 in view of the estimate (11.1.4]). Then
He(s,u) = {14+ O(e)} {1 — ks}, (11.2.5a)
nmwmm@@—{&gggw}“zﬁijé (11.25b)
Furthermore, we have
kK < {1+0(e)} b, (11.2.6a)
Moreover, when u = 1, we have
k={1+0()}5s.. (11.2.6b)

Sharp estimates when (u',9) € V. We recall that the set DV is defined in (11.1.10al).
If 0 < 51 < 89 <'t, then the following estimate holds:

/
9
sup }‘L(S% u, )

(w,9)eH)yp }’L(Sla u', 19)

In addition, if s € [0,t] and VS, is as defined in (11.1.10d), then

<C. (11.2.7)

inf u>1-_Ce. (11.2.8)
(+>zg;t
In addition, if s € [0,t] and (+)EZ¢ is as defined in (11.1.10c|), then
Lyu|_
HLEL < . (11.2.9)
B ooz

Sharp estimates when (u/,9) € V¥, Assume that the set V" defined in (11.1.10D)) is

non-empty, and consider a time interval s € [0,t]. Let k > 0 be as in (11.2.4). Then the
following estimate holds:

H(527U/ﬂ9)
su ——= <1+ Ce. 11.2.10
ogslgigt w(sy, v, 9) ( )
(w9 ey
Furthermore, if s € [0,t] and )XY, is as defined in (11.1.10d)), then
LR oo g,y < C (11.2.11)

Finally, there exists a constant C' > 0 such that if 0 < s < t, then

{1+ Ce2}k, if k>,

Ly _ |l scioyyu y < 11.2.12
H[M|u(uaﬂ_{cé@ A (1121
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Approzimate time-monotonicity of 1, (s,u). There exists a constant C' > 0 such that
if 0 < 51 < s9 <t then

Wt (s, u) < (1+ Ce)pg (g, u). (11.2.13)
Proof. See Sect. for some comments on the analysis.
[Lp(t, u, )]

Proof of (11.2.1)): Clearly it suffices to show that (4w, 0) + < Cfor 0 <t < T(Boot),
}‘L 7u7

u € [0,Up], and ¥ € T. We may assume that Lu(t,u,d) > 0 since otherwise is
trivial. Then by , for 0 < s’ <5 <t < Tigooty < 25*_1, we have that Lu(s’,u,9) >
Lu(s,u,v) — Ce(s — ') > —Ce. Integrating this estimate with respect to s’ starting from
s’ = 0 and using (11.1.3)), we find that p(s,u, ) > 1—Ces > 1 — Ce and thus 1/p(s, u, ) <
1 + Ce. Also using the bound |Lu(s,u, )| < C proved in (9.6.5b)), we conclude the desired
estimate.

Proof of (11.2.2)): By (11.1.5), for 0 < s <t < T(goot) < 251, we have that Lu(s,u,?) =
Lu(0,u,9) + O(e). Integrating this estimate with respect to s starting from s = 0 and
using ([11.1.3]), we find that w(s,u,v) = 1+ O(e) + sLu(0,u, ). It follows that whenever

w(s,u,¥) < 1/4, we have Lu(0,u,?) < —%&(3/4 + O(e)) = _gé* + O(e). Again using
11.1.5) to deduce that Lu(s,u,v) = Lu(0,u,9) + O(e), we arrive at the desired estimate
11.2.2

Proof of (11.2.6a)) and (11.2.6b): We prove only (11.2.6a)) since (11.2.6b) follows from

nearly identical arguments. From the first line of ((10.2.12)), (11.1.4), (11.1.5), and the L*>
estimates of Prop.[9.12, we have

Ly(t,u,9)

From this estimate and definitions (8.1.1) and (11.2.4), we conclude that k < &, + O(¢) =
(14 O(e))d,, which yields the desired bound ([11.2.6al).

Proof of (11.2.5a) and ([11.2.13]): We first prove ({11.2.5a). We start by establishing the

following preliminary estimate for the crucial quantity k = k(¢,u) (see (11.2.4)):
tk < 1. (11.2.14)

To proceed, we use (11.1.1dJ), (11.1.8), (11.1.4), and (11.1.6) to deduce that the following
estimate holds for (s,u’,d) € [0,¢] x [0,u] x T:

w(s, o', 9) = (14 O(e)) {1 + ﬁ(u/’;;p:(t],\/q;;,oi’?i -~

Setting s = t in equation ([11.2.15)), taking the min of both sides over (v, %) € [0,u] x T, and
appealing to definitions 111.1.2‘ and ([11.2.4)), we deduce that w,(t,u) = (1 + O(e))(1 — «t).
Since p,(t,u) > 0 by (BAp > 0), we conclude ((11.2.14)).

Having established the preliminary estimate, we now take the min of both sides of

over (u',9) € [0,u] x T and appeal to definitions (11.1.2)) and (11.2.4]) to obtain:

. / _ _ _ )2
(u,’ﬁ?el[lg’lu]w u(s,u’,0) = (1+0(e)) {1 — ks + O(e)(t — 5)*}. (11.2.16)

1

— Lu(0,u,9) + O(c) = % S (6L, X01](0,u,9) + O).

1=0

3+O(€)(t—s)2}. (11.2.15)
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We will show that the terms in braces on RHS ([11.2.16|) verify

1—ks+0()(t—s)?=(1+f(s,u;t)) {1 — ks}, (11.2.17)
where
f(s,u;t) = O(e). (11.2.18)
The desired estimate (11.2.5a) then follows easily from (11.2.16)-(11.2.18) and definition
(11.1.2)). To prove (11.2.18)), we first use (11.2.17)) to solve for f(s,u;t):
t—s)? t—s)?
f(s,ust) = QENE= ) OE)E=s) (11.2.19)
1 —ks 1 —«kt+k(t—s)

We start by considering the case k < (1/4)6* Since 0 < 5 <t < T(oot)y < 25;1, the
denominator in the middle expression in (11.2.19)) is > 1/2, and the desired estimate (11.2.18))
follows easily whenever ¢ is sufficiently small. In remaining case, we have k > (1/4)0,. Using
1 o
(11.2.14), we deduce that RHS (I1.2.19) < ~O(e)(t — s) < Ced.? < ¢ as desired.
K

Inequality (11.2.13)) then follows as a simple consequence of ((11.2.5al).

Proof of and : To prove , we first use to deduce that for
0<s5<t<T(Boot) < 2571 and (v, 9) € [0,u] x T, we have Lu(s, v/, 9) = Lu(t, o', 9) +O(e).
Appealing to definition and using the estimate (11.1.4), we find that ||[Lp]— | oo sy =
K+ O(e). If /e < k, we see that as long as ¢ is sufficiently small, we have the desired bound
K+ O(e) = (14 O(e'/?))k. On the other hand, if k < /¢, then similar reasoning yields that

[Lu] =[50y = K+ O(g) = O(y/e) as desired. We have thus proved (11.2.5b)).

The estimate (|11.2.12)) can be proved via a similar argument and we omit the details.
Proof of ((11.2.3): We fix times s and ¢ with 0 < s <t < T(poe) and a point p € XY with
geometric coordinates (s,%,19). Let ¢ : [0,u] — ¥ be the integral curve of X that passes

through p and that is parametrized by the values ' of the eikonal function. We set

) = wouldl),  Flu) = - F(u) = (Xp) o.4(u)

X F(u e
We must bound &\p = % We may assume that F'(u) > 0 since otherwise the
u
desired estimate is trivial. We now set
H:= sup XX L.

MT(Boot) Vo

1
If F(u) > 3 then the desired estimate is a simple consequence of (9.6.5a) with M = 1. We

- 1 o :
may therefore also assume that F'(u) < 5 Then in view of the estimate ||u — 1 ||LOO <PT( Boot)) <
0

¢ along POT(BD‘”) (see (9.6.6)), we deduce that there exists a u” € [0,u] such that Fu") < 0.
Considering also the assumption F'(u) > 0, we see that H > 0. Moreover, by (10.2.3b)),
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we have H < C. Furthermore, by continuity, there exists a smallest u, € [0, ] such that
F(u') >0 for v € [u,,u]. We also set

i (5,00') = i ). 11.2.20
M(arin) (8, ) (u,,ﬁg[l&mu(s u”, ) ( )

The two main steps in the proof are showing that

Xu(s,u,9 1
Xus 0 ppp. L (11.2.21)
w(s, u, ) /H(ain (5, 1)
and that for 0 < s <t < T{poor), we have
H(ariny (s, u) > max {(1 — Ce)k(t — s), (1 — Ce)(1 —ks)}, (11.2.22)

where k = k(t,u) is defined in (11.2.4). Once we have obtained (11.2.21)-(11.2.22) (see
below), we split the remainder of the proof (which is relatively easy) into the two cases

1e le 1e 1e 1
K < 4_16* and kK > 15*. In the first case k < 16*, we have 1 — ks > 1 — Zé*T(Boot) > 3

% o~
and the desired bound M <0< 1% < ¢ < RHS (|11.2.3)) follows
w(s, w, ) T T(Boot) — 5

(Boot)

easily from (|11.2.21)) and the second term in the min on RHS ((11.2.22)). In the remaining

1 1
case K > 16*, we have — < () and using the first term in the min on RHS ([11.2.22)), we
K

[(Xu(s, @,9)] .. C
uis,u,d)  Vi—s

uniform constant C'; we conclude ([11.2.3)) in this case.
We now prove ((11.2.21]). To this end, we will show that

deduce that

Since this estimate holds for all ¢ < T{p,,) With a

% ~ 8727,19 - in 876
Mgggm\/”( )~ bonm (5, 9) (11.2.23)

w(s, u, ) w(s, w, )

Then viewing RHS ((11.2.21)) as a function of the real variable p(s,w,) (with all other

parameters fixed) on the domain [W(rn)(s, %), 00), we carry out a simple calculus exercise

to find that RHS (11.2.21) < Hl/Qﬁ, which yields (T1.2.21). We now prove
H(Min)\S, U

(11.2.23). For any u' € [u.,u|, we use the mean value theorem to obtain

F@) - Fu') < H@@ —), Fu)— F{') > m[in ]F(u")(ﬂ—u'). (11.2.24)
u €fu’u
. _ 1F®@W) . . ,
Setting u; := u — ST we find from the first estimate in (11.2.24)) that for v’ € [uq, U], we
. 1.
have F'(u') > EF(ﬂ) Using also the second estimate in (11.2.24)), we find that for v’ € [uy, @],
N 1. 1 F2(0) , .
we have F(u) — F(uy) > -F(u)(u —uy) = — . Noting that the definition of Wiz

-2 4 H
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implies that F'(uy) > Wiasin (s, u), we deduce that

o ~

1 [Xu(s, 0, 9)]3

4 H '
Taking the square root of ((11.2.25)), rearranging, and dividing by u(s,u,9), we conclude the
desired estimate ((11.2.23)).

It remains for us to prove (11.2.22)). Reasoning as in the proof of (11.2.15)-(11.2.18)) and
using (11.2.14)), we find that for 0 < s < ¢ < T(goe) and v’ € [0, u], we have pirr(s,u’) >
(1 —-Ce){l —ks} > (1 — Ce)k(t — s). From these two inequalities, we conclude .
Proof of ((11.2.10): A straightforward modification of the proof of , based on
equation ((11.2.15)) and on replacing k in (11.2.16))-(11.2.17)) with Lu(¢,«',9) (without taking
the min on the LHS of the analog of (11.2.16])), yields that for 0 < s <t < T(ee) and
(u',9) € TV we have u(s, v/, 9) = {1+ O(e)} {1 — |Lu(t,u’,9)| s}. The estimate (11.2.10)
then follows as a simple consequence.

Proof of (11.2.7), (11.2.8), and (11.2.9): By (I1.1.5), if (v/,9) € VP and 0 < s < t <

T(Boot), then [Lp]_(s,u,v) < Ce and Lu(s,u,) > —Ce. Integrating the latter estimate
with respect to s from 0 to ¢ and using , we find that p(s,v',9) > 1—Ces > 1—Ce.
Moreover, from ([9.6.5a) with M = 0, we have the crude bound p(s,u’,9) < C. The desired
bounds ((11.2.7)), (11.2.8]), and now readily follow from these estimates.

Proof of (11.2.11): By (I1.1.5), if (v, 9) € TV and 0 < s < t < T(poor), then [Lply (s, ', 9) =
[Lu]4(t,u',9) + O(e) = O(e). The desired bound (11.2.11]) thus follows.

w(s, @, 0) — tarim (s, 7) > (11.2.25)

O

11.3. Sharp time-integral estimates involving . Some error integrals appearing in our
top-order energy identities contain a dangerous factor of 1/p. This forces us, in our Gronwall
argument for a priori energy estimates, to derive estimates for time integrals involving various
powers of u . In Prop. we derive estimates for these time integrals. The estimates
of Prop. directly influence the blowup-exponents P featured in our high-order energy
estimates, which are allowed to blow up like u_¥. In particular, when controlling the size
of the blowup-exponents, we will use the fact that the estimates (11.3.1)) and (11.3.2)) have
coefficient factors 1 + C'\/e on the right-hand sides; larger coefficient factors would lead to
larger blowup-exponents.

Proposition 11.3 (Fundamental estimates for time integrals involving u™'). Let

W (t,u) be as defined in (11.1.2). Let
b>1
be a real number. Under the data-size and bootstrap assumptions of Sects. and the

smallness assumptions of Sect. the following estimates hold for (t,u) € [0,T(Boot)] X
[0, Up.

Estimates relevant for borderline top-order spacetime integrals. There exists a con-
stant C' > 0 such that if b\/e < 1, then

CEM- sy . 14 CyE
) dg < V7 1=y . 11.3.1
/ e R E R (11.3.1)
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Estimates relevant for borderline top-order hypersurface integrals. There exists
a constant C' > 0 such that

K 1 1+Cye
L] oo o5 ———ds < ————ul (¢, u). 11.3.2
Eblomey |y s € e (113.2)

Estimates relevant for less dangerous top-order spacetime integrals. There exists
a constant C' > 0 such that if by\/e < 1, then

t
t/ L dsgcj{f4-g%7};¢%muy (11.3.3)

=0 H&(Su u)

Estimates for integrals that lead to only In ;' degeneracy. There exists a constant
C > 0 such that

E L~ || oo (su

/ It Ny < (14 CVE) Inp;  (tu) + CVE. (11.3.4)
s=0 IJ.*(S,U>
In addition, there exists a constant C' > 0 such that
t
1

ds < C{lnpu ' (t,u)+1}. 11.3.5
Joairm =€ e 1) (1183

Estimates for integrals that break the p,' degeneracy. There exists a constant C >
0 such that

t 1
/ —— ds<C. (11.3.6)

=0 w2 (s,u)

Proof. Proof of (11.3.1)), (11.3.2)), and (11.3.4)): To prove (11.3.1]), we first consider the case
K > /e in (11.2.5b)). Using (11.2.5a]) and (11.2.5b]), we deduce that

E L[] foe s !
/ i E}v(s”Lu)(ZS)d8:<1+0(€1/2))/ (1_'18)6(13 (11.3.7)
5=0 %\ s=0 -
1+0EY?) 1 1+ 0EY?) |
< =
e E = W ()

as desired. We now consider the remaining case k < /¢ in (11.2.5b)). Using ([11.2.5a) and
(11.2.5b)) and the fact that 0 < s <t < T{goor) < 25!, we see that for e sufficiently small

— * )

relative to 0., we have

t L] ||} sersou ! 1

/ i l I (ZS)dSSC&?l/Q/ - ds (11.3.8)
sm0  Mi(s,u) =0 (1 —xs)

1

<
1— k)t = b—1

< Cel? w (¢, w)

as desired. We have thus proved (|11.3.1])).
Inequality (11.3.4) can be proved using similar arguments and we omit the details.
i 2

Inequality (11.3.2) can be proved using similar arguments with the help of the estimate
(11.2.12)) and we omit the details.
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Proof of ((11.3.3)), (11.3.5)), and (11.3.6)): To prove (|11.3.3)), we first use ([11.2.5a)) to deduce

t 1 t 1
ds < C —d 11.3.9
/ () S / =y ™ (11.3.9)

1o
where k = k(t,u) is defined in (11.2.4). We first assume that k < 15*. Then since 0 < t <
o 1
T(Booty < 20, we see from (11.2.5a]) that p,(s,u) > 1 for 0 < s <t and that RHS (11.3.9)

o 1-
< C2°t < 028 < €20 < C2°ul (¢, u) as desired. In the remaining case, we have k > 16*,

1
and we can use (|11.2.5a)) and the estimate — < C' to bound RHS (|11.3.9)) by
K

<C 1 1 < C
T kb—1(1—xkt)"t T b-1

wi =l (t, u) (11.3.10)

as desired.

Inequalities (11.3.5)) and (11.3.6)) can be proved in a similar fashion. We omit the details,
aside from remarking that the last step of the proof of ((11.3.6)) relies on the trivial estimate
(1 —kt)/10 <1,

O

12. THE FUNDAMENTAL L?-CONTROLLING QUANTITIES

In this section, we define the “fundamental L?-controlling quantities” that we use to control
U, w, and their derivatives in L?. We also exhibit their coerciveness properties. These are
the quantities that, in Sect. [I5] we will estimate using a Gronwall-type inequality.

12.1. Definitions of the fundamental L?-controlling quantities.

Definition 12.1 (The main coercive quantities used for controlling the solution
and its derivatives in L?). In terms of the energy-null flux quantities of Def. and the
multi-index set ZV:=! of Def. [9.5.1, we define

Qn(t,u) =  max sup {]E<Wave>[gfxp](t',u')+F<Wm>[yfxp](t',u')},
TeZNist (¢ /) €[0,4] x[0,u]
ve{p—vl vl v?}

(12.1.1a)
QE\I;artiaZ) (t, ’LL) ‘= max sup {E(Wave)[,ﬁ”flll] (t/7 u/) + F(Wave)[ﬁpf\ll] (t/, u/)} :
IeINist (¢ u/)€[0,t] x [0,u]
ve{p—vlw2}
(12.1.1b)
Vn(t,u) == max sup {]E(VOTt)[(@fw](t', u') + F(V"”)[wa] (t, u')} ,

HI=N (t',u)€[0,¢]x[0,u]
(12.1.1¢)
Q[l,N](tau) = 1?11\?%(1\/ QM(t>u)a (1211d)
Ven(t,u) == max Vy(t,u). (12.1.1e)

0<M<N
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Remark 12.1 (Carefully note what is controlled by Qy and Q{*"*). Note that

Qu directly controls the derivatives of p — v!, v!', and v?, while control of derivatives of

-

p in terms of Qu (and thus for all three entries of the array W) can be achieved via the

triangle inequality. Similarly, 55‘"“'“” directly controls the derivatives of p — v and v2

The quantity @55‘"“'“” might seem to be unnecessary, but it plays an important role in

our energy estimates. The reason is that the most degenerate error terms in the energy
(Partial)

estimates for Q) are multiplied by a small factor ¢; see (15.2.2). This is important
because Qg\]:amal) appears as a large coefficient (denoted by C,) source term in the energy

estimates for Qu; see (15.2.1af). The smallness of € compensates for the largeness of C, and
allows us to close our energy estimates; see also the discussion in Subsubsect. Similar
remarks apply to the integrals of Def. [12.2]

The following spacetime integrals are indispensable for controlling the geometric torus
derivatives of U. Their key property is that they are strong in regions where p is small; see
Lemma [12.4] Recall that these spacetime integrals are featured in the basic energy identity
for solutions to the wave equation; see .

Definition 12.2 (Key coercive spacetime integrals). Let ZV:=! be the multi-index set
from Def. . We associate the following integrals to W, where [Ly|_ = |Lu| when Lp < 0
and [Lp]_ =0 when Lu > 0:

1
KWt 1) = 5/ Lyl |42 deo, (12.1.22)
Mt,u
Ky(tu):= max  K[ZTU|(t u), (12.1.2b)
IeIN:<1
e{p—vl vt w2}
Kyt w) = 1%%§NKM@’U)’ (12.1.2¢)
Kg{;arm”(t,u) = max K[Q?flll](t,u), (12.1.2d)
fezns<t
Ue{p—vl w2}
Partial Partial
Kt u) = IQ%VK& fal) (4 ). (12.1.2¢)

12.2. Comparison of area forms and estimates for the L2- norm of time integrals.
We now provide some preliminary lemmas that we will use in our L? analysis.

Lemma 12.1 (Pointwise estimates for v). Let v be the metric component from Def.[3.26,
Under the data-size and bootstrap assumptions of Sects. 8.4 and the smallness assump-
tions of Sect. the following estimate holds on M, .\ vy

v=1+0(e). (12.2.1)
Proof. See Se for some comments on the analysis. Using the identity (3.17.1c|) and
9.6.8)

the estimate ( , we deduce that Llnv = O(e). Integrating this estimate along the

integral curves of L as in (9.3.5)), we find that Inv(t,u,d) = Inv(0,u,d) + O(e). From
this estimate and the small-data bound v(0,u,?¥) = 1 4+ O(¢e), which we derive just below,
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we conclude the desired bound ([12.2.1). To derive the small-data bound, we use (3.5.1))-
(3.5.3), the small-data bound (8.2.6)), and the bootstrap assumptions (BAWY| to obtain
V2 |i=0 = 9(0, 0) =0 = gazi=0 + O(€) = 1 + O(e), which implies the desired bound. O

Lemma 12.2 (Comparison of the forms dA; and dv). Let p = p(¥) be a non-negative
function of 9. Then the following estimates hold for (t,u) € [0, T(gooty) % [0, Up):

(1-— C’s)/ p(9)dY < / P(0)dA gt < (14 Ce)/ p(¥)dd, (12.2.2)
YeT L 9eT
where di denotes the standard integration measure on T.
Furthermore, let p = p(u',9) be a non-negative function of (u',9) € [0,u] x T that does
not depend on t. Then for s,t € [0,T(poot)) and u € [0, Up], we have:

(1-— Ce)/ pdw < / pdw < (1+ Ca)/ pdw. (12.2.3)

D 2y 4
Proof. See Sect. for some comments on the analysis. From (4.1.1]) and inequality ((12.2.1]),
we deduce that dAy = (1+O(e)) dv, which yields ((12.2.2)). (12.2.3) then follows from ((12.2.2)
and the fact that dw = dAjq,.9)du’ along . O

Lemma 12.3 (Estimate for the norm || - ||z2(sv) of time-integrated functions). Let f
be a scalar-valued function on M, . v, and let

t

F(t,u,?) ::/ f(t' u,9)dt. (12.2.4)
=0

Under the data-size and bootstrap assumptions of Sects. 8.4 and the smallness assump-

tions of Sect. the following estimate holds for (t,u) € [0, T(Boor)) % [0, Uo]:

t

|F Loy < (14 C2) /

t'=

1f L2y dt'. (12.2.5)
0

. 1/2
Proof. Recall that || F'|| 2 (zuy := {f J,  F2(t,u,9) dAy du’} . Using the estimate ((12.2.2)),

u'=0
we may replace dAy4 in the previous formula with the standard integration measure dv up to
an overall multiplicative error factor of 14+ O(e). The desired estimate ((12.2.5]) follows from
this estimate and from applying Minkowski’s inequality for integrals to equation (12.2.4). [

12.3. The coerciveness of the fundamental square-integral controlling quantities.
In this section, we quantify the coercive nature of the fundamental L2-controlling quantities.
We start by quantifying the coercive nature of the spacetime integrals of Def. [12.2]

Lemma 12.4 (Strength of the coercive spacetime integral). Let 1{,<1/4y denote the
characteristic function of the spacetime subset {(t,u,) € [1,00) x [0,1] x T | w(t,u,?) <
1/4}. Under the data-size and bootstrap assumptions of Sects. and the smallness
assumptions of Sect. the following lower bound holds for (t,u) € [0, T(poot)) % [0, Up):

1o
K[W)(t, u) > gé*/ Li<i/ay |49 deo. (12.3.1)

t,u

Proof. Inequality (12.3.1)) follows from definition ((12.1.2a}) and the estimate (|11.2.2)). 0
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We now quantify the coercivity of the fundamental L2-controlling quantities from Def. [12.1]

Lemma 12.5 (The coercivity of the fundamental controlling quantities). Assume
that 1 < N <20 and 0 < M < min{N — 1,1}. Under the assumptions of Lemma the
following lower bounds hold for (t,u) € [0,T{(Boot)) < [0, Up]:

2

SIVELZY M0 [ 22

1 .
g IRz
(12.3.2a)

Qn(t,u) >

max {
Tef{p—vl vl w2} L2(zy

L2202 VRAZ 0 0 )

1 . 1« , 2
Qn(t,u) > max{g H\/ﬁLfé’;f\[’MpHQLQ(E?)7 1 X%N’Mp‘

1 .
) ) g ||\/ﬁd%N7MPHiQ(2g) )
(12.3.2b)

L2(sy

1 . 1 ;
120y 7 IVRAZ Yl

(Partial) 1 NiM g, ||2 o NM ||
QU ) > | max {5 VRLZNME g, (| X2

1 .
vz,
(12.3.3)

sy’

|2,

VAL

L)’
In addition, if N < 21, then
Vit u) = max { [VEPV | Ly s |27 0] 1o, |- (12.3.4)

Moreover, if 1 < N <20 and 0 < M <1, then

L2
H\If < C& 1 OOt u), (12.3.50)
L2(sp)
5112 5112
H,,%N?M\If , zN2Mw‘ < C& 4 CQu(t,u), (12.3.5b)
12(sy) 12(60,0)
o =2 o 112
XU <C||XWU + C&* + CQu(t,u), (12.3.5¢)
L2(sp) 12(sy)
o v =2 oo o112
XX <C XX\I/H L O+ CQy(tu).  (12.3.5d)
L2(sp) L2(3y)
Finally, of N < 20, then
||32§NwH2LQ(& ) S CE+CVanp(tu). (12.3.6)

2

and the term
L2 ()

% “ﬁd%N;M@||i2(zu) on RHS ([12.3.2a)) influence the blowup-rate of our top-order energy
t
estimates. In turn, this affects the number of derivatives that we need to close our estimates.

Remark 12.2. The constants 1 and % in front of the term HX’E&N;M\D‘
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Proof of Lemma[12.5. The estimates stated in (12.3.4]) follow easily from Defs. and [4.3]
The estimates stated in ((12.3.2a)) follow easily from Lemma Def. {12.1] and Young’s

inequality.

The estimates stated in ([12.3.3) follow easily from (12.3.24) and the triangle inequality.
We now prove (12.3.5b). We first note that the estimates for || 2" My

follow easily
L2(2Y)

) with respect to u. Hence, it suffices to
L etu

prove the estimates for H%N M H L2t Our proof is based on the identity . To
proceed, we first use , the estimate and the L> estimates of Prop. to
bound the factor (1/2)tr¢(5{)7f in as follows: (1/2) ‘trg(j();zf S
estimate, the identity with f = (ZNM¥)? and Young’s inequality, we deduce that

N M\If‘

from integrating the estimates for

du’

L2 Zt u’)

20 < N2+ [ [

(12.3.7)

u

N;M /
vo [ e \DHWW i,
From m the smallness assumption (8 , and Gronwall’s inequality, we deduce
|22, < eE+ eC“/ HX,SZ’NM\PH | (12.3.8)
’ u'=0

cu 2 + C€Cu

XffNM\D(

<ceyC HX%NM\D(

L2(Y) L2(sy)

The desired bound for ||.§p N;M \IJHz2 now follows from ((12.3.8) and the already proven
estimate ((12.3.2al) for XQFNM\IJ‘
L2(ZY)
We now prove ([12.3.6). We first use 1 4.4.1a) with f = (2N w)?, the estimate (9.6.8)), and

Young’s inequality to deduce

0
ot H‘@N‘”H;(zt,u) < HL‘@NC‘)H;(Q,H) +C H‘@N‘”HH(&,“)' (12.3.9)

Integrating ((12.3.9) from the initial time 0 to time ¢, using Gronwall’s inequality, and using
the small data assumption ({8.1.6]), we obtain the desired bound ([12.3.6)) as follows:

t
[2Y s, SN2 0l [ LY ds < &+ Vi), (12310

To prove (12.3.5a)), we first use the fundamental theorem of calculus to express

U(t,u, ) = U(0,u,9) + [ LU(t,0,9)dt'. (12.3.11)

=0
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From (12.3.11]), (12.2.5)), and the estimate HL\I/‘ L) < Qi (t, u)+ € (which is a particular

case of the already proven bound ( m we deduce

19 oy < B0, ) 2y + /

-
< H‘IJ ‘LQ oY) / \/ t U dt +€

From (12.2.3)) with s = 0 and the smallness assumption (8.1.2)), we deduce that || (0, Mezee S
[kl P2y < €. Moreover, using the fact that @Q; is increasing in its arguments, we deduce

that VQiI(t,u)dt" < @1/2( u) . Inserting the above estimates into RHS ((12.3.12)), we

t/
arrive at the desired bound ([12.3.5al).
The remaining estimates ({12.3.5¢|) and ({12.3.5d]) follow from arguments similar to the ones

we used to prove (|12.3.5a)) and we omit those details. 0

t

dt (12.3.12)

13. SOBOLEV EMBEDDING

Our main goal in this section is to prove Cor. which is the Sobolev embedding result
that we will use to improve the fundamental bootstrap assumptions (BAY|)-(BA w)).

Lemma 13.1 (Sobolev embedding along ¢;,). Under the data-size and bootstrap assump-
tions of Sects. 8.4 and the smallness assumptions of Sect. the following estimate holds
for scalar-valued functions f defined on Ly, for (t,u) € [0, T(Boot)) % [0, Us]:

HfHLoo () = =C HY<1fHL2 (€t ,u) (13.0.13)

Proof. Standard Sobolev embedding yields that || f|| () < C @<1 il L2y where the inte-

gration measure defining || - [|f2(r) is d). From Def. [3.26] (9.4.2a), Lemma[12.1} and the L>
estimates of Prop [9.12] we ﬁnd that Ostfl=(1+0O(¢ ))]Y<1f| From these estimates and

Lemma ., we conclude the desired estimate ((13.0.13)).

O

Corollary 13.2 (L* bounds for ¥ and w in terms of the fundamental controlling
quantities). Under the assumptions of Lemmal13.1], the following estimates hold for (t,u) €
[07 T(Boot)) X [07 UO] ;

H,,@N?’“xpu SQ2 () &, (13.0.14a)

Loo(SY)

|2 @]y S VEi5(E ) + & (13.0.14b)

S
Lo (5Y)
@[11/ ? y(t, u) + € follows from (12.3.5b) and Lemma |13.1} This estimate implies in particular

the pointwise bound ‘L\If

Proof. See Sect. for some comments on the analysis. The bound H,@i[l’lg]él ]

< Qll/ i 4 (t,u) + €. Integrating along the integral curves of L as in
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(9.3.5) and using this bound and the small-data assumption H@H - < € (see (8.1.3a)),
Lo (3
we deduce that ”lle < CcQY? (t,u) + Ceé. We have thus proved ((13.0.14a)).

LOO(E") - [1714}

The estimate (|13.0.14b)) is a direct consequence of Lemma and inequality ((12.3.6). O

14. POINTWISE ESTIMATES FOR THE ERROR INTEGRANDS

In order to derive a priori estimates for the fundamental L2-controlling quantities of
Defs. and [12.2] we must first obtain pointwise estimates for the error terms in the en-
ergy identities corresponding to the wave equations verified by 2%t (p— 1), M2yt
25512 and the transport equations verified by 2<% w. By “energy identities,” we mean
the ones provided by Props. and In this section, we derive these pointwise estimates.
The error terms consist of the following three types, ordered in increasing difficulty: i) Error
terms generated by differentiating the inhomogeneous terms on RHSs (3.3.11al)-(3.3.11b));
ii) Error terms corresponding to the last integral on RHS ; ii’) Error terms corre-
sponding to the deformation tensor of the multiplier vectorfields, which correspond to the
last integral on RHS ; and iii) Error terms generated by the commutator terms of the
form [, ZV=!¥ and [uB, 22V |w and their derivatives up to top-order.

We prove the two main propositions in Sects. [14.9/and [14.10, The rest of Sect. [14] consists
of preliminary estimates.

14.1. Harmless terms. We start by defining error terms of type H armless(gvf,vave), which

appear in the energy estimates for the wave variables, and of type H armless(g‘f\g ) which
appear in the energy estimates for the specific vorticity. These terms have a negligible effect
on the dynamics, even near the shock. Most error terms that we encounter are of these

types.

Definition 14.1 (Harmless terms). Harmless(gvf,vave) and Harmless(gvj\;t) denote any terms
such that under the data-size and bootstrap assumptions of Sects. [8.1 and the smallness
assumptions of Sect. |8.6, the following bound holds on M7, . 1;,, where 1 < N < 20 in

(14.1.1a) and N < 21 in (14.1.1Db)) (see Sect. regarding the vectorfield operator notation):

‘Harmless(gmj,vave) < ‘%[1,N+1];§2¢; | ZNERy | g | NSy | 4| 2 SNSl| | (14.1.10)
[Harmtessil | < e[ 2092+ |20 sty 4 o | 223 bty 4 | 95V

(14.1.1b)

By definition, the first three terms on RHS (14.1.1h]) are absent when N = 0 and the second
and third terms on RHS ({14.1.1b)) are absent when N = 1.

Remark 14.1 (The role of the factors ¢). The smallness factors e on RHS ((14.1.1b))
allow us to derive (see Lemma [15.21]), via a bootstrap argument, energy estimates for w

without having to simultaneously derive energy estimates for U. This allows us to obtain
energy estimates for w in a much simpler way compared to the energy estimates for W.
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14.2. Identification of the difficult error terms in the commuted equations. In
the next proposition, which we prove in Sect. [I4.9] we identify the main error terms in the
inhomogeneous wave equations verified by the higher-order versions of p—v!, v!, and v2. The

main terms will require careful treatment in the energy estimates, while the terms denoted

by H armless(gvf,vave) will be easy to control.

Proposition 14.1 (Identification of the key difficult error term factors in the
commuted wave equations). Assume that 1 < N < 20 and recall that y is the scalar-
valued appearing in Lemma[3.8. Under the data-size and bootstrap assumptions of Sects. 8.1
and the smallness assumptions of Sect. the following pointwise estimates hold for
1=1,2 on MT(Boot)vUO (see Sect. regarding the vectorfield operator notation):

w0, (YN ILo') = (0™ 0') - (udy NV trgx) (14.2.1a)
+ [ia]u(exp p) (g X ) YN LLw

apY”

— [ia]u(exp p)c? (%) YN LY w
Ged ¢

<N

+ Harmless(wwe),
RO (Y Y0) = (X0')Y Vergx + y(d#o") - (Y™ trg) (14.2.1b)
+ [ia]p(exp p)c3 (9an X )Y Law

Y’
lalutexp )t (L) i
Ged

<N

+ Harmless(wwe).

Moreover, if 2 < N < 20, then

uO, (YN 1X0') = (X0 )YV X tigx — (nd™ o) - (udY N tryx) (14.2.1c)
— [ia]u®(exp p) (g XO) YN LLw
WY’
e P e R
Ged

<N
+ Harmless(wave).
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Moreover, if 2 < N < 20 and ZN~Y contains ezactly one factor of X with all other

factors equal to Y, then we have
O (2N L) = (470" - (Y V2 X trgx)
— [ia]u®(exp p) (g X)) YN 2 LLLw

+ [ia]u? (exp p)c? gaY”_ YN LLw
S gchch
<N

+ Harmless(wave),
(2N ') = (Xo") YV Ktrgx + y(dF o) - (udy ¥ Xtyx)
— [ia]u?(exp p) (g X ) YN LLw

. Yb
+ [ia]pu? (exp p)c? (gb—) YV Lw
GedY ¢
<N
+ Harmless(wave).

Furthermore, if 1 < N < 20 and 2N~1 contains a factor of L, then
ud, (2N ') = +iau(exp p)c (g X ") PN 2PN LLw

ne
— [ia]pu(exp p)c? (ggz;_) PN 2PN LY w
cd

<N
+ Harmless(wave).

Likewise, if 1 < N < 20 and ZN~1! contains one or more factors of L, then
uO, (2N "5 Loty = —[ia]u? (exp p) 2 (g X") PN 2 LLLw

gabe

N—-2

+ [ia]u*(exp p)c; (

<N

+ Harmless(wwe).

Similarly, if 1 < N <20 and 2N=1 contains one or more factors of L, then

w0, (2N 1 Xv') = —[ia]u® (exp p)2(gupX*) PN LLw

+ [ia]w? (exp p)c? gLYb PNY Lw
s gchch

<N
+ Harmless(wave).
In addition, if 1 < N < 20 and ZN~Y contains one or more factors of L, then

u, (ZN 151y = —lia]u? (exp p) (g X ") 2V 2V LLw

102 2 GarY” N-2
+ [ia]p*(expp)cs | ——+= | & °YY Lw
Yed

<N

+ Harmless(wm)e).

(14.2.1d)

(14.2.1e)

(14.2.2a)

(14.2.2b)

(14.2.2¢)

(14.2.2d)
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L werifies similar estimates according to the following prescription:

Finally, p —v
in (14.2.1a)-(14.2.2d)) with i =1, (14.2.2¢)

we may replace the explicit factors of v* on the LHSs and RHSs with p — v?

as long as we change the sign of all explicit w-containing products on the RHSS.

The next proposition, which we prove in Sect. is an analog of Prop. for w.
Specifically, the proposition identifies the main error terms in the inhomogeneous transport
equations verified by the higher-order versions of w.

Proposition 14.2 (Identification of the key difficult error term factors in the com-
muted transport equation). Assume that 1 < N < 20. Under the data-size and bootstrap
assumptions of Sects. and the smallness assumptions of Sect. the following point-
wise estimates hold on MT(BM),UO (see Sect. regarding the vectorfield operator notation):

uBYYLw = (Yw)YN~ 1Xtr¢x + Harmlessg N+; (14.2.3a)

WBY M w = —g(V, V) (Lw)Y N Xtrgx + y(Yw)Y V' Xtrgx + Harmless3h,,), (14.2.3b)

ort)’
where y is the scalar-valued function from (3.12.8)).
Furthermore, if 1 < N < 20 and PNt is any (N + 1) order P,-tangent operator except

for YNL or YN then

uBPNtw = Harmless(vojft; (14.2.4)

Finally, of P € &, then
uBPw = Harmless Vort): (14.2.5)

14.3. Technical estimates involving the eikonal function quantities. In this section,
we provide two technical lemmas that will allow us to reduce the analysis of the top-order
derivatives of u to those of tryx. This is mainly for convenience.

We start with a lemma in which we obtain higher-order analogs of Lemma [7.4]

Lemma 14.3 (Estimate connecting prtr¢X to A@j ). Assume that 1 < N < 20.
Let I € TN where the multi-index set TN is defined in Def . Let J be any multi-
index formed by deleting the one entry in I correspondmg to the single X differentiation and
by possibly permuting the remaining entries (and thus |J| N — 1 and the corresponding

operator s c_@j). Under the data-size and bootstrap assumptions of Sects. and the
smallness assumptions of Sect. the following estimate holds on Mr,, . v, (see Sect.

regarding the vectorfield operator notation):
NJ;
gﬁ Nii% . (14.3.1)
'gjk ) > Y

Proof. See Sect.[9.2]for some comments on the analysis. First, using the commutator estimate
(9.5.7b) with f = tryx, N in the role of N + 1, and M = 1, the estimate (9.4.1c), and the

L estimates of Prop. [9.12 we write 2 2 tryx = PTX tryx plus error terms with magnitudes
< RHS ([14.3.1]). Next, we apply 27 to (7.3.1). Using the estimates (9.3.3b])-(9.3.3c) and

)prtrgx _ 4&@]11’ < }gg;[l,NH];QM n
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and the L estimates of Prop. , we write 227X tryx = 27 A plus error terms
with magnitudes < RHS . Finally, we use the commutator estimate with
f=n, N —1in the role of N, and M = 0 and the L estimates of Prop. to write
PTAu = AP plus error terms with magnitudes < RHS . Combining the above

estimates, we conclude (|14.3.1]). U

Lemma 14.4 (Connecting derivatives of p to derivatives of tryx up to error terms).
Assume that 1 < N < 20. Under the data-size and bootstrap assumptions of Sects.
and the smallness assumptions of Sect. the following estimates hold on MT(BM),UO (see
Sect. regarding the vectorfield operator notation):

‘YNHH — g(V, Y)YV Xtryx

|y — (YN—l)“(trgX)Y] (14.3.2)

N
20y
1,N];<T :
%[ ] N
Proof. See Sect. for some comments on the analysis. We start by proving ({14.3.2) for the
first term on the LHS. Using ((9.1.1a) with f = Y¥~!u, we obtain

YV U =gV, Y)AYY 4+ {YIng(Y, V) YV (14.3.3)

Using (14.3.1) and |Y| = 1 4+ O(¢e) (which is a simple consequence of (9.4.2a) and the L*>
estimates of Prop. 9.12), we deduce that ¢(Y,Y)AYY'u = g(V, Y)YV Xtryx plus error

terms that are bounded in magnitude by < RHS . Next, we use Lemma and

the L* estimates of Prop. to deduce that |YIng(Y,Y)| = [Y{(y)| < e. It follows that

the last product on RHS is bounded in magnitude by < |.,@i[*1 ’N];Oz|. We have thus
obtained the desired estimate.

We now prove for ‘d#YNp, — (YN_lXtrgx)Y‘. By (3.20.1)), we have YNy =

1

< ’ff{l,NH];Sl\fj I

(YY1 )Y, The desired estimate is therefore a simple consequence of the estimates

g(Y,Y)
we obtained above for ‘YNH},L —g(Y, Y)YN*1Xtrﬂx) and the estimate |Y| = 1+ O(e) noted
above. O

14.4. Pointwise estimates for the deformation tensors of the commutation vec-
torfields. In the next lemma, we identify the main terms in various derivatives of the frame
components of the deformation tensors of the commutation vectorfields defined in .
The main terms are located on the left-hand sides of the estimates stated in the lemma,
while the right-hand sides of the estimates contain simple error terms that will be easy to
bound in the energy estimates. The main terms involve top-order derivatives of the eikonal
function quantities and are difficult to control in the energy estimates.

Lemma 14.5 (Identification of the important terms in “r, X1, and Mr). Assume
that 1 < N < 20. Under the data-size and bootstrap assumptions of Sects. and the
smallness assumptions of Sect. the following estimates hold on Mr,, . v, (see Sect.

regarding the vectorfield operator notation).
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Important terms in the derivatives of Ur. For M = 0,1, we have

[1,N];<1
‘ff]v M Xy, (D — 9\ N~ IMM‘ < ‘QF[IN+1] =2y 4 ( §T§N} <o % ) ', (14.4.1a)
’¢N 1; Md#(L)WL)Z" 7 D@pN—thW(L)#?{ _ ANy ’ ‘¢N 1; Md#trg(L)¢ _ 2d#f&pN—1;Mtr¢X
(14.4.1b)
) %EvN}vSly
Important terms in the derivatives of X7, We have
‘ Nl Ot Ot 4 212N Xty (14.4.22)

< ‘Qi[l,NH];qu,‘ + ¥1,

%EvN];Slz
1,N];<2
%[ ] v
‘,@Nfldw()?)ﬁ + QN*IXtrgx‘ , (14.4.2D)

257 O g 2N K | P O o 20 2V g
g[l NJ; <1Y
( e [LN; <2Y :

Important terms in the derivatives of Y. For M = 0,1, we have

O A R T

%[:7N};§1I
%[I’NL§2'Y

‘Qp[l N1 <2qj‘ +

“EM X, O — oy A NEM Yy (14.4.3a)

< ’%[1,1\/“]52\1,’ +

)

_1;Mdi)</(Y)7f§ _ {HYQPN—l;Mtrgx 4 yAgN—l;Mu}’ ’

(14.4.3b)

~1,M g #

YO (AN MY | BT O — 2y 2N

%EJ\”;SII
%[I,N},SQY

< |D@€*[LN+1};S2\I;‘ +
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Moreover, we have
Wy OfF + w0 [ |8 - () )Y - ud*Y | (14.4.4)

. [1,N];0
S
Y

Y

Y

NI _ gy Ny | < | g N+ Z N0y
A I B v+ L. (14.4.5)

i@[LN}y

Above, within a given inequality, the symbol ZN=1M on the LHS always denotes the same
order N — 1 vectorfield operator, and similarly for the symbol LPN-1.

Proof. See Sect. for some comments on the analysis. The main point of the proof is to
identity the products featuring the top-order derivatives of the eikonal function quantities,
which we place on the LHS of the estimates. More precisely, we aim to identify the products
containing a factor with NV + 1 derivatives on u or N derivatives on tryX, with none of the
derivatives being in the L direction; all other terms are error terms that can be shown to be
bounded in magnitude by < the RHSs of the inequalities (including top-order derivatives of
p or tryx involving an L derivative, which we bound with the estimates (9.6.1b]) and (9.6.2))).

We start by proving (14.4.2al) for the first term g{lﬁx(x)ﬁf + d#X@N’lu on the LHS.

We apply £5, " £ to the g-dual of the equation for (X)ny. By Lemma the ¢-
dual of the terms —2¢Trans=¥) _ 9y, ¢(Tan—¥) i of the form f(¢ 1, 17, XU)y+f(y, ¢~ d7) PU.
Hence, using the estimates ((9.3.3b)-(9.3.3c|) and and the L™ estimates of Prop.[0.12]
we find that the £, ' £ derivative of these terms are bounded in magnitude by < RHS
as desired. It remains for us to consider the terms —£5 ' Lod® 1w = —£5 " Lo (47" - du)

generated by the first term on the RHS of the equation (3.16.1b|) for (X)ny. We first use
(9.4.1a) and the L* estimates of Prop. to deduce that all terms in the Leibniz ex-

pansion of — f;‘l@(gj—l - du) are bounded in magnitude by < RHS (|14.4.2a)) except for

the top-order-in-p term —¢g=! - g[l;l)v(dp.. To handle this term, we use the commutator

estimate (9.5.9a)) with € = du, N — 1 in the role of N, and M = 1 and the L*> estimates

of Prop. to express —g ! - %ﬁlﬁgdu = —d#X@N”u plus error terms that are in

magnitude < RHS ((14.4.2a)). We then bring the top-order term d#)“( PN over to the left,
14.4.24)

as is indicated on LHS ((14.4.2a)), which completes the proof of the desired estimate.

The proof of (14.4.2a]) for the second term @N_l)?trsj()?)yf + QuWN_l)v(trgx on the LHS
is based on the formula (3.16.1c|) but is otherwise similar. We omit the details, noting only
that the top-order eikonal function term occurs when all derivatives fall on the tryx factor in
the first product on RHS , that we use the estimate (9.4.1c|) to bound the below-top-
order derivatives of trsx, and that we use the commutator estimate ((9.5.7b)) with f = tryx
to commute derivatives on tryx (rather than the commutator estimate |D used above).

All three estimates in (14.4.2b)) can be proved using essentially the same ideas with the
help of the formulas (3.16.1a)), (3.16.1D)), and (3.16.1d). More precisely, in the case of the
first term on LHS ((14.4.2b)), we use two new ingredients i) the commutator estimate

with & = (X);/fL (to commute the operator V=1 through the operator dif in the term
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PN-1Qif O = gpN-1 {g_l : W(X);sz}) and ii) we use Lemma [14.3[to replace, up to error
terms bounded in magnitude by < RHS , the top-order eikonal function quantity
term —A PV (generated by the first term on RHS (3.16.1b])) with the term — PN Xty
(which we then bring over to LHS ((14.4.2h))).

The estimates ((14.4.1al)-(14.4.1b)) can be proved with the help of (3.16.2al)-(3.16.2c) and
are based on the same ideas plus one new ingredient: to bound the top derivatives of the
quantities Ly in equation , we use the estimate (and the resulting terms
are bounded in magnitude by < RHS ([14.4.1b))) as desired; we omit the remaining details.

The proofs of (14.4.3a))-(14.4.3b)) are based on (3.16.3a)-(3.16.3d|) and require no new

ingredients beyond the ones we used above; we therefore omit the details. The same remarks
apply to the estimates ({14.4.4)-(14.4.5)) (except to obtain (14.4.5)), we rely on (3.16.2b))). O

The next lemma complements Lemma by providing bounds for the derivatives of
the deformation tensor frame components when an L differentiation is involved or when the
number of derivatives is below-top-order. In contrast with Lemma (14.5] no difficult terms
appear in the estimates.

Lemma 14.6 (Pointwise estimates for the negligible derivatives of (U7 and 7).
Assume that N =20 and let P € & = {L,Y}. Under the data-size and bootstrap assump-
tions of Sects. and the smallness assumptions of Sect. the following estimates
hold on Mz, v, (see Sect. regarding the vectorfield operator notation,).

First, if ZN:<t contains a factor of L, then
EXd <1tr¢ |2V P ] | 2N P ] (14.4.6)

’ N;<1(P

N<1(P ﬁ#‘

%E’N};Slz .
%[17N];§1‘Y

In addition, if 2V contains a factor of L, then

S ‘%[1,N+1];§2\P‘ +

V] o g[LN],Sl‘Y
)c@Ntrg(X)ﬁ : ;(X)h#‘ < ‘QP*[LNJA];SQ\IJ} + 5;[11\7151; ) (14.4.7a)
. . QP[I,N],SI
lﬁw(mﬂm 7 (X)W)?X‘ < ‘%{LN—%—I];SQ\IJ} + &;‘[’iﬁN];S% . (14.4.7b)

Moreover, for1 < N < 20, the following below-top-order estimates hold, where the operator
ZN-E=Y does not necessarily contain any factor of L:

{fépN—l;gltTg(P)ﬁ}, }QPN—I;SI(P)T‘_LX 7 Dg&pN—l;gl(P)ﬂ_X N L<1(P 7f#

N—-1;<
x| £y

(14.4.8a)
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In addition, for 1 < N < 20, we have the following below-top-order estimates:
B R P I A S Vel MVt

%‘E’nglz
%[LNhgly
Proof. See Sect. for some comments on the analysis. We first prove (14.4.6). From
Prop. [3.14] equation (3.14.1)), and Lemma [3.19, we see that the deformation tensor compo-

(14.4.8b)

Y

S ’%[LN}SSQ\I}’ + +1

nents trﬁ(P)yf, P sy oo (P)yzf}%( on LHS (|14.4.6) are schematically of the form
fy, ¢, 42)PT + f(y, ¢, dB) X + £(v, ¢, ) trgx + f(y, ¢, dF)du.
We now apply ﬁéﬁvél. Recall that 27V=! contains a factor of L by assumption. Let

ZN-L<1 denote the factors obtained by removing the factor of L. If all derivatives fall
on tryx, then we the commutator estimate with f = tryx, the estimate ,
and the L™ estimates of Prop. [9.12] to commute the factor of L in ZV:=! so that it
hits tryx first, which implies that |2V <'tryx| < |2V 5<!Ltryx| plus error terms that
are bounded by < RHS ([14.4.6). Moreover, using the pointwise estimate , we obtain
that |.,@’;N *1;§1Ltr¢x‘ < RHS ({14.4.6). Moreover, we bound the remaining factors multi-
plying ZVi<'tryx in magnitude by < 1 via Lemmas and and the L> estimates of
Prop. [9.12 In total, we find that the product under consideration is < RHS (14.4.6) as
desired. Similarly, if all derivatives fall on du, we use the commutator estimate ((9.5.7al) with
f = p and the L™ estimates of Prop. we can commute the factor of L so that it hits
w first, which implies that d,@iN;Slp‘ < }%N“élu‘ < },,@’;N?QL},L} plus error terms that
are bounded by < RHS ((14.4.6). Moreover, we bound the remaining factors multiplying
d2°V:=yin magnitude by < 1 via Lemmas and and the L> estimates of Prop. .
In total, we find that the product under consideration is < RHS as desired. If most
(but not all) derivatives fall on tryx or du, then we bound all terms using the above argu-

ments. If most derivatives fall on P¥, X, Y, V. ¢ ", or dZ, then we bound these factors by
< RHS with the help of Lemmas and . Moreover, we bound the remaining
factors (which multiply the factor with many derivatives on it) in magnitude by < 1 via
Lemmas and and the L™ estimates of Prop. [9.12 We have therefore proved ([14.4.6]).

To prove ([14.4.7a))-(14.4.7b)), we first use Prop. equation , and Lemma
to deduce that the deformation tensor components try g, X, o Kry X W, and X )ﬁﬁ
are schematically of the form

(v, f 47, X0) + (v, ¢, d7) PU + £y, ¢, d7)trgx + X+ ¢l

From this schematic formula and the assumption that &2V contains a factor of L, we see
that all terms can be bounded by using the arguments given in the previous paragraph.

The estimates (14.4.8a) and ([14.4.8b]) can be proved using similar but simpler arguments

and we therefore omit the details. This completes our proof of the lemma.

W

14.5. Pointwise estimates involving the fully modified quantities. Our main goal
in this section is to prove Prop. [14.9] in which we obtain pointwise estimates for the most
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difficult product that appears in our energy estimates: (Xv')ZN ?Sltrgx. As a preliminary
step, we prove Lemmam in which we use the transport equation ((7.2.4) to derive pointwise
estimates for the fully modified quantities (% “2 From Def.

Before proving Lemma [14.8, we first prov1de a lemma in Wthh we derive pointwise
estimates for the source term X appearing in the transport equation satisfied by
(=19 At the same time, for later use, we derive pointwise estimates for the terms X
and (&g appearing in the transport equation ([7.2.5)) verified by the partially modified

N*l;gl)

quantity (%+ Z .
Lemma 14.7 (Pointwise estimates for V<%, N-1<1% and (%Nfl;gl)%). Assume

that 1 < N < 20. Let X be the quantity defined in (7.2.1b|), let X be the quantity defined in

(7.2.3)), let (ZXTEDE be the quantity defined in ([7.2.2b), and let (Z SN be the quantity
defined in (7.2.6). Under the data-size and bootstrap assumptions of Sects. and the
smallness assumptions of Sect. the following pointwise estimates hold on M, .\ vy

’%Ngl% 4Gy, OX%N;Q@‘ <u ‘%[1,N+1};§1\f,‘ X )52[1,

< ,Y} + ‘%E’N];Slz} ,

(14.5.1a)

|%N;§1%| < | glNu= 25| 4 ‘c@i[LN];Slﬂ + }%E,N];Slﬂ 7 (14.5.1b)

‘f,fN;gl% < | gt (14.5.1¢)

‘L(g*N L<ty ‘ ‘Y(gN 1<1)3€ < z[LNH};gl\i} : (14.5.1d)
(N~ 1<1)% 5 |QZ[I’N};§1‘Y’ + |%E’N};OX|‘ (14.5.16)

Proof. See Sect. for some comments on the analysis. Throughout this proof, we silently
use the L™ estimates of Prop.|9.12]

To prove (14.5.1al), we first use (7.2.1b) and Lemma to deduce X = —Gpp o XU +

uf(y g1 da:)P\I/ We now apply ZV=! to this 1dent1ty and bring the top-order term
G L © X ZN; <1 over to the left (as mdlcated on LHS ( m which leaves the com-
mutator terms [Grr, ZN< o XU and G, o [X, ZN<1V on the RHS. To bound the term

’D@F*N?Sl {uf(y,ﬁfl,df)P\f/} by < RHS ([14.5.1a]), we use Lemmas [9.5 and . Note that

we have paid special attention to terms in which all derivatives ZV:<! fall on PV: these
terms are bounded by the first term on RHS (I4.5.1a). To bound |[Gpp, ZN<1] o)v(\ff‘

*

by < RHS (14.5.1a), we use the fact that Gy, = f(y) (see Lemma [3.19). To bound
’CjLLo (X, ZN<1T| by < RHS (14.5.1a)), we also use the commutator estimate (9.5.7b)

with f = U and M < 1. Combining the above estimates, we arrive at . The proof
of is similar but simpler and we omit the details. The same is true for the proof of
since by Lemma , we have X = f(y, 4!, d7) PU.

We now prove . We give the proof only for the second term on the LHS since the
proof for the first one is similar. To proceed, we use and Lemma to deduce that
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N1<1

y (% X =Y {f(y ¢ A7) Z N1 L The estimate (T4.5.1d) now follows easily from
the previous expression and Lemmas [9.5] and [9.6]
We now prove (14.5.1¢). We bound the term 2V~ 1<1(’51r x)? from RHS ( - 7.2.6) by <

RHS ((14.5.1¢€]) with the help of inequality (9.4.1¢ . We bound the term [ZV~Hst G ]04&\11
with the help of the aforementioned relation G = f(y) and Cor. To bound G ¢

[ZN-5=1 AW, we also use the commutator estimate (0.5.8b) with f = U. We bound the
term [L, 2N “U=tryx with the help of the commutator estimate (9.5.7a) with tryx in the
role of f and inequality w We bound [L, 2V ~1='X with the help of the commutator

estimate (0.5.74) with f = X and ([4.5.1d). To bound L{ 2R FNL <1%} we first
note that ((7.2.2b)), (7.2.3), and the Leibniz rule imply that the magnitude of this term is

/S Z Z ‘ S G#/;rame)

N1+N2<N Mi1+Mo<1
Ni>1

‘[L, L%N—lél]\ff‘ .

<[

Frame)

Since Lemma [3.19| implies that G(mee) = f(y,¢ ', dZ), the desired bound for the sum
follows from Lemmas (9.5 and . To bound the term ’[L LZN-L<
commutator estimate 1' with f = U and M < 1. We have therefore proved (14.5.1d),

which completes the proof of the lemma.

, we also use the

O

With the help of the previous lemma, we now derive pointwise estimates for the fully
arN;<1
modified quantities (%=~ )%,

Lemma 14.8 (Estlmates for solutlons to the transport equation verified by (% 2NN ).

Assume that N = 20 and let (% "=D2 and X be as in Prop. . Assume first that
ZNs = YN Under the data-size and bootstrap assumptions of Sects. mn 8.4 and the
smallness assumptions of Sect. . the following pointwise estimate holds on Mr .\ vy

‘<Y”>3{( (t,u,9) < C ‘<YN>3{( (0, u,9) (14.5.2)
+2(1+ Ce¢) /i M ‘YN%} (s,u,)ds

k(s u,v)
t [1,N];<1
. = %k*
+ C/ {‘%[1,N+1L<2\D‘ + ( g[LN};glz ) ‘} (s,u,9)ds
S:O * Y

t t
—i—C/ {u|f‘fN+1;<1w‘}(s,u,z?)ds+0/ | 2=V = w) (s, u,9) ds.
s=0

s=0

Assume now that NSt = YN-1X. Then ‘(YNAX)%‘ (t,u, ) verifies inequality (14.5.2)),
but with the term ‘(YN)%‘ (0,u, ) on the RHS replaced by ‘(YNAX)% (0, u, )+ (YN)%‘ (0,u,9),
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with the term |[YNX| (s,u,9) replaced by ‘YN_UZ'%) (s,u,9), and with the following addi-
tional double time integral present on the RHS:

C/ / - |%[1’N+”’—2\IJ| + - (8", u,9)ds ds. (14.5.3)
s=0Jsr=0 He(8', 1) Y

D@p[l NJ;
Proof. See Sect. for some comments on the analysis. We first prove (14.5.2)). We set
7.2.4

FNist = YN in ([7.2.4]) and view both sides of the equation as functions of (s, u,). Noting

that L = 75 in the present context, we define the integrating factor
s

s Lu(t',u,9) ,) u?(0,u,9)
L(s,u, 1) :=ex / 22— dt' | = ——"—+= 14.5.4
( ) P ( t'=0 u(tlv u, 79) }‘LQ(Sa u, ﬁ) ( )

corresponding to the coefficient of )2 on LHS (7.2.4). We then rewrite (7.2.4) as
L <L(YN)% > = x RHS (7.2.4) and integrate the resulting equation with respect to s from
time 0 to time ¢. From Def. and the estimates ((11.2.7) and (11.2.10]), we deduce

sup HEwY) o (14.5.5)

0<s'<t H(S u 19)

From (|14.5.4]) and (|14.5.5)), it is straightforward to see that the desired bound ({14.5.2) follows
once we establish the following bounds for the terms generated by the terms on RHS (7.2.4)):

|u[L, Y N]trgx| (s, u, ) (14.5.6)
< Ce ’(YN)% (s,u,?)

+ O | ZINHI2 (5,0, 0) + C2 | Z1V=by | (5,0, ) + Oz | ZIV=Yy | (s,0,0),
2 ‘utrngNtrgx| (s,u, ) (14.5.7)
< Ce )WN%”‘ (s,u,9)

+ Ce ‘%HWHKQ@‘ s,u, ) + Ce },@fjl’N]élﬂ (s,u,9)+ Ce }%E’N];Slﬂ (s,u,9),

L
g (B D)\ T s V) v gy ) (14.5.8)
u(sauaﬁ) H(S u, 0
L V)
<2(1+Ce¢) %’ YNx| (s,u,9)
+O| 2N (5,0,9) 4 C| VY| (5,,9) + € | 2Ny (s, ,9),
all remaining terms on RHS (7.2.4) are in magnitude (14.5.9)

<C ‘%HWH}?Q@‘ (s,u,9)+C |%{[1’N];§1y’ (s,u,9)+C |£’;[,}’N];Slz‘ (s,u,)
+u ‘ffNH;Slw| (s,u, ) + |,,@F[1’N};§1w‘ (s,u,v).
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We note that in deriving (14.5.2)), the product Cer ‘(YN)% ’ arising from the first term on

RHS (14.5.7) needs to be treated with Gronwall’s inequality. However, due to the small
factor e, this product has only the negligible effect of contributing to the factors Ce on RHS
(14.5.2). We remark that some of the estimates (14.5.6))-(14.5.9) are non-optimal in the

sense of the number of X derivatives allowed on the right-hand sides. However, later in the

proof, when we are analyzing YV X g , the same number of X derivatives appear on the
right-hand sides of the analogous estimates, and they are optimal.

We now prove ((14.5.6). We first use the commutator estimate (9.5.7a)) with M = 0 and
[ = trzx, the L> estimates of Prop. (19.6.2) with M = 0, and (9.4.1c) to deduce that

|u[L, Y N]tryx| < e |uY Ntrgx| plus error terms with magnitude < the sum of the last three

terms on RHS ((14.5.6)). We then use definition (|7.2.1a]) and the estimate ((14.5.1b]) to deduce

that e ‘p,YN try;x‘ = |y ) plus error terms with magnitude < the sum of the last three
14.5.6|)

terms on RHS , which yields the desired bound. Inequality (14.5.7) can be proved
using similar arguments (without the help of a commutator estimate).

L 0, Ly|_ ¥
We now prove ([14.5.8]). We first note the simple inequahty‘ (s, . )‘ < ‘[ H-(s,u. )‘—l—

u(s, u, ) u(s, u, )
'% . To bound terms on LHS arising from the factor %‘ by
< the terms on the last line of RHS (14.5.8), we use (11.2.1), (14.5.5), and the estimate
(14.5.1bf). To bound terms on LHS arising from the factor % , We con-

sider the partitions from Def. When (u,d) € DVE we use the bounds (11.2.9) and

u(t,u, 9) \* | (L] (s, u, )
14.5. h
(14.5.5) to deduce that (p.(s,u,ﬁ) (s, u,0)

(14.5.1b)), we easily conclude that the terms of interest are < the terms on the last line of
RHS (14.5.8). Finally, when (u, ) € V¥, we use (11.2.10) to deduce that

2<u@ﬂu®)2[LM—@ﬂuﬁ) [LM—@ﬂuﬁw

u(s, u, ) u(s, u, ) u(s,u,d) |

Thus, we conclude that the terms under consideration are < the terms on the first line of
RHS (|14.5.8]), which completes the proof of .

We now prove (14.5.9)), starting with the estimate for the term [L, YV]X on RHS .
Using the commutator estimate (9.5.7a) with M = 0 and f = X, the L™ estimates of
Prop. m (9.6.2) with M = 0, and the estimate (14.5.1b]), we deduce that HL,YN]%‘ <
RHS (14.5.9) as desired. We next bound bound the term [p, Y¥]Ltryx on RHS (7.2.4).
Using the L estimates of Prop. and the estimate with M = 0, we deduce
that |[u, Y] Ltryx| < RHS as desired. We next bound the term [V, Lp]tryx on
RHS (7.2.4). Using the estimate (9.4.1), the L> estimates of Prop. and the estimate
(9.6.1b)) with M = 0, we deduce that [YN,Lu]tr¢x| < RHS as desired. We now
bound the term YV (u(tryx)?) — 2utryxY Vtryx on RHS (7.2.4). By the Leibniz rule, we see

that the magnitude of this term is < Z ‘YNILL‘ ‘YNQtrgx| |YN3tr¢x| . Hence, from

Ni1+Na+N3<N
N2,N3<N-1

< (Ce. Combining this bound with

<2(1+Ce¢)
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the estimate and the L estimates of Prop. [9.12] we deduce that all products in
the sum are < RHS as desired. Finally, to bound the term Y~ on RHS ,
we apply YV to both sides of . We bound the products of interest in magnitude
by < RHS with the help of the estimates (9.3.3b))-(9.3.3c), (9.4.1a), and the L
estimates of Prop. . This completes the proof of ([14.5.9) and finishes the proof of
(114.5.2)).

We now derive the desired bound for ‘(YN_IX)EK ‘ (t,u,?). We first note that by using

essentially the same arguments used in the proof of (14.5.2), we can show that ({14.5.6)-
(14.5.9) hold with the operator YV on the LHS replaced by Y¥~1 X, but with the following
changes: ((14.5.6)-(14.5.7)) are replaced with

‘u[L, YN_lX']trgx‘ (5,u,9) (14.5.10)

< Ce ’(YN_IX)%

(s,u,9) + ‘(YN)%‘ (s,u,d)

(s,u,0) + Ce | 2Ny | (5,0, 9) + Ce | ZINSty | (5,0, 9),

2 ‘utrngN_l)u(trgx‘ (s,u,1) (14.5.11)

< Ce ’(YN_IX)%

(s,u, ) + Ce ‘(YN)%‘ (s,u,)

+ Ce | ZBNHILG] (5,0,9) + Cc | 21Ny | (5,u,0) + Ce | 2=y | (5, 0,9).

The new features are that the second term on RHS (14.5.10)) does not contain a small
factor ¢ and that both RHS (14.5.10) and RHS (14.5.11) depend on )2 (that is, the

estimate for " 'X)2" does not decouple from the one for "2’ ). To obtain (14.5.10)), w
use the commutator estimate (9.5.7a) Wlth | = tryx as before, but now with M = 1. Also

using the L*° estlmates of Prop. [9.12 (9.6.2)) Wlth M =1, and W we deduce that
u[L, YN-1X] trgjx < e |uyN- lXtrij + | Y Ntrgx| plus error terms that are bounded in

magnitude by < RHS ((14.5.10). We then use definition (7.2.1a)) and the estimate ((14.5.1b))
to deduce that 5 uYN 1Xtr¢)(‘ = ¢ ‘(Y X ‘ plus error terms with magnitude < the

sum of the last three terms on RHS ((14.5.10) and ’uYN trgx’ = |y ‘ plus error terms

with magnitude < the sum of the last three terms on RHS ((14.5.10)). We have thus proved
(14.5.10). Inequality (14.5.11]) can be proved using similar arguments (without the help of a
commutator estimate).

We now recall that we can rewrite (7.2.4) (with YV=1X in the role of Z<N:<! in that
equation) in the form L <L(YN71X Y ) =1 x RHS ([7.2.4]) and integrate the resulting equation
with respect to s from the initial time 0 to time ¢. With the help of of the estimates obtained

in the previous paragraph, we can obtain a pointwise estimate for LN (t,u, ), much
as in the case of .2 (t,u,v), where we use Gronwall’s inequality to handle the first

terms Ce ‘(YNAX)%‘ on RHS (14.5.10) and RHS (14.5.11)). The new step compared to the
argument for (YM2 is that we insert the already proven bound (|14.5.2)) in order to handle
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the terms ‘(YN)%‘ (s,u, ) on RHS (14.5.10) and RHS ([14.5.11)). In view of the fact that we
are using Gronwall’s inequality, we see that the bound ([14.5.2)) leads to the presence (on the

RHS of the pointwise estimate ‘(YNAX)% ‘ (t,u,¥) <--- ) of additional integrals of the form

! (t u, )
/ x RHS ([14.5.2)(s,u, ) d (14.5.12)
s=0 K ( 19)

which we did not encounter in our proof of (14.5.2]). To handle these additional integrals,

*(t,u, ¥
we first bound the factor % in (T2.5.12) by < C with the help of (T25.5). Next, we
u 8’ u?
use the L> estimates of Prop. and the estimate (14.5.1b)) to bound the first integrand

on RHS (|14.5.2), evaluated at (s, u, 1), as follows:
N|<
%E N}<iI (‘9,7 u, 19)
Z5 Ty

(14.5.13)

Inserting the estimate ([14.5.13)) into the first integrand on RHS (|14.5.2)) (with s in the role
of t on RHS (14.5.2) and s in the role of t), we generate the double time integral stated
in (14.5.3). The remaining two time integrals on RHS ({14.5.13)) also generate double time

integrals, but they are less singular in that they do not involve the factor of — present

(L,
on RHS ([14.5.13]). Hence, these double time integrals are < the single time integrals on
1157

RHS (14.5.2)), in view of the following simple bound, which holds for non-negative scalar-
valued functions f :

[Lu(s's u, 0)]-
}‘L(Slv u, 79)

5 1 {}%[17N+1];§2\P| +
u)

YN[ (s, u, 0
YR () K (s,

/ f(s' u,9)ds ds</ f s’ u,9)ds' ds (14.5.14)
5=0 Js'=0

t t
<t (s, u,9)ds" < C/ f(s,u,?)ds.
=0

s'=0
Similarly, with the help of (14.5.5)), we bound the time integral generated by the initial data
t
term ’<YN>3{‘ (0, u,9) on RHS ([45.2) by < (J/ <Y”>,%‘ (0,u,9)ds' < (J’(Y 2] (0, u,0).

s'=0
We have thus obtained the desired bound for ‘(YN_IX A ‘ (t,u, ), which completes the proof
of the lemma.

O

Armed with Lemma [I14.8, we now derive the main result of this section.

Remark 14.2 (Boxed constants affect high-order energy blowup-rates). The “boxed
constants” such as the |2|and |4 |appearing on the RHS of inequality are important
because they affect the blowup-rates (that is, the powers of u;!) featured on the right-hand
sides of high-order energy estimates. Similar remarks apply to the boxed constants appearing

on RHSs (15.2.14), (15.7.1), (15.7.4), (15.9.1a)), and (15.9.11).
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Proposition 14.9 (The key pointwise estimates for (Xv')2N:<'tyx). Assume that
N = 20 and let ZN<' € {YN YN-1X}. There exists a constant C, > 0 such that under

the data-size and bootstrap assumptions of Sects. and the smallness assumptions of
Sect. the following pointwise estimate holds on M. . v,

v Lul_ N
)(le)c@iN;gltrgX‘ < H& Xff;jvélvl‘ (14.5.15)
Lo=(2y)
1 o
O | X 2N o - o)
H*(tju) ( )
H[Lu]fHLOO(Eu) t|[[Ly]- ||Loo
+14|(1+ Ce ¢ / ‘ ', 9) dt’
4]( ) (L) A ) (', u, ) dt
1 ¢ 1 9
+C,—— / —— | XZNs o — oY) (Y, u, ) dt’
W6 0) Jyo el 0) (b=t 9)
+ Error,
where
1 N N—-1vy
Error| (t,u, ) < {‘(Y )&,V‘+‘(Y X)%‘} 0, u, 14.5.16
Ertor|(10,9) $ s (0.,9) (14.5.16)
1 - -
+e— ‘QF*[LNH];Q\I,‘ (t,u,ﬁ) + ‘%[1,N+1];§2\P‘ (t,u,ﬁ)
L,
o 1 Qp[LN];Sl,Y
QF“’N]’SQ\P) tou, )+ —— [ = Y ) (w0
* W (t, w) ’ * (t,u,9) + ) %[1,N],§1Y (t,u,v)

[1,N];<
{ b ( Qﬁ*ﬁ NI <1‘y ) |} (s,u, V) dsdt’
t'=0 J s=0 PL* ﬁfk Y

’gf*[l N41]; <2\I/’ Ju, ) dt’

1t u>/ﬂ ow u)

1
+m/ ’Qp N+1<2\I/‘tu19)d
1 t QP[LN];SI‘Y
+ ‘&‘”“N]Q\IJM Nl ' u,9) dt’
u*(t7u> /t’ 0 H*(t U, { %[I,N]’SI'Y ( )
1

t
s ) [ ] () ar
*\ Uy t'=

1 t
e u>/ 0|§5N?§1w}(t’,u,ﬁ) dt’.
*\ Uy t'=

Furthermore, we have the following less precise pointwise estimate:

_|_

|2 M=ty | (14.5.17)
{0z |+ |02} 0,00)
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i ‘@N+lﬁ‘ + ‘X%N@\fl
%E N} <1I
%[I,N},SI‘Y

t 1
+/t ) ,,%*’N“\If( ¢ u,9) dt’ +/

1= M(t, ) =0

[ } - Ddf[l’N};Sl,y
f‘él’NH ;9‘1" + e s,u, V) dsdt’
/t’ / e FLNST, ( )

1 ] g[LN];Sl‘Y
+/ ‘5:" N <2\If‘+ S NL<l— ' u, ) dt’
o H*( %[1,N],§1y ( )

t
+/ w(t' u, 9) | ZN = wl (¢, u, 9) dtf
t/

=0

n ‘%[1,1\/]52\17‘ "

t

‘%N“?Z\TJ‘ t',u,9)dt

t
+/ | 2= w| (', u,9) dt.
t'=0

Proof. See Sect.[9.2]for some comments on the analysis. Throughout this proof, Error denotes

any term verifying the estimate (14.5.16). We first prove (14.5.15)) in the case ZZVist = YV,
Using (7.2.1a)-(7.2.1b)), the estimate (14.5.1a)), and the simple bound || Xv!||z~ < 1 (see

(9.6.3d))), we decompose
1

o 1 o o - oo
(X0 )Y Virgx = = (X)) + =(X0")Gp 0 YV XU + Error. (14.5.18)
u b
Next, we use the commutator estimate (9.5.7b|) with f = \ff, the schematic identity (3.19.2h)),
and the L> estimates of Prop. to obtain
1 ] — v = 1 ] — V] —
(XG0 YVXU = —(X0v")Gpp 0 XYV + Error. (14.5.19)
i n

Recalling the definition (3.4.4) of ¥ and that G, o XU = 52, G, XU, and using the
transport equation (3.14.1)), we compute that
1

—(X0")Grpo XYNU (14.5.20)
i
—9 <LH) XY Nyl
"

1 o v

:L(XUI)GOLLXYN(D — ')

1. . 1. . 1 .

- ;(XUQ)G%LXYNM + ;(le)G%LXYNUQ e {X(vl - p)} GO, XY Ny

+ <éLL OL@) )?YNvl +2 (éLX <>L‘~I7> XYNvl.

Using the schematic identity (3.19.2b)) and the L* estimates of Prop.[9.12] we deduce that
the product on the second line of RHS ([14.5.20]) is bounded in magnitude by the second
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term C,--- on RHS (14.5.15). Using the L* estimates of Prop. [9.12] (in particular (9.6.3al)

and (9.6.4)) and the estimate (|10.2.6)), we deduce that the terms on the last two lines of
RHS ([14.5.20)) are bounded in magnitude by < the terms on the second line of RHS ((14.5.16))

L o
and are therefore Error. To bound the product 2 (_H) XYNol, we first split Lp = [Ly], —
u

[Ly]_. From ([11.2.1), we find that the product corresponding to [Lu|, is Error, while
the product corresponding to [Lu]_ is clearly bounded in magnitude by the first term on

RHS (14.5.15]).
1,4
It remains for us to bound the first product —(le)(YN)% on RHS (14.5.18). Our ar-

gument is based on equation . To procepetd7 we multiply both sides of by
l(X?}l). We first bound the product generated by the first time integral 2(1 + Ce¢)---
gn RHS (14.5.2). Using (14.5.14) and the simple bounds |[Lu]_|(s,u,9) < |Lu|(s,u,9) S 1
(that is, (9.6.5D))) and ‘%L(le) (t,u) < M(i m (see (9.6.3d)), we express the product under

consideration as

1 o t
—2(1+C’5)—(Xv1)/ [u)-(s,u,9) ‘GLLOXY \IJ’ s,u,9)ds + Error.  (14.5.21)
28 5=0 LL(S,'U, 19

Next, we algebraically decompose the second factor in the integrand in ((14.5.21)) as

1
Grpo XYNU =Y "Gy XYVl + G XY Vo? + GY XY N (p — o). (14.5.22)
1=0
Using the schematic identity (3.19.2b) and the L™ estimates of Prop. [9.12) we bound the
magnitude of the time integral corresponding to the product G%,; XY (p—o') in (14.5.22) by
1 ! 1 S N
< the fourth term C*m/ ‘X%N’Sl(p — oY (¥, u, ) dt' on RHS (14.5.15).
u) Ji

'—0 H*<t,, u)
Next, using (|10.2.6), we bound the magnitude of the time integral corresponding to the

product G%LYNUQ in (14.5.22) by the time-integral-involving product on RHS ({14.5.16|)
featuring the small coefficient ¢ (and thus the time integral under consideration is of the
form Error). We now bound the remaining time integral

1 4 t )]
2(1+C€):L(XU1>/S:0[ },L::Zﬁ (s, u, XY Mol (s,u,0)| ds,
which is generated by the sum in ((14.5.22). We first algebraically decompose
ZG s, u, )XY Nol(s, u,9) (14.5.23)

1

—ZG (t,u, )XY Nol(s,u,9) + {Z Gi(s,u, ) — ZG tuﬁ}XYNvl(s,u,ﬁ).

1=0
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1

Lt u
noted above, we bound the magnitude of the time integral featurlng the integrandufz(lcto)r
S G (s,u,0) =S Gy (t,u, 9) by < the time-integral-involving product on RHS
featuring the small coefficient € (and thus the time integral under consideration is of the form
Error). The remaining time integral that we must estimate contains the integrand factor
S, Gy (t,u,9), which we may pull out of the ds integral. That is, we must bound

t
Xv ZG tuﬁ/ M‘XYNl
s=0

w(s,u,d
Next, using the transport equation (3.14.1]), we algebraically decompose the factor outside
of the integral in ((14.5.24]) as follows:

~Y

Using the estimate (10.2.4) and the bounds |[Lu|_| < 1 and ‘ (Xv )' (t,u) <

2(1+ Ce)

(s,u,v)ds.  (14.5.24)

(X0 Gy = 2T (14.5.25)

1 ~ 1 N — - — —
— :LG%LX(p — Ul) — EG%LXUQ + GLL o LW + 2GLX o LW,

Substituting the decomposition ([14.5.25) into (14.5.24) and using the same arguments given
in the lines just below ({14.5.20]), we bound the term (|14.5.24)) by

t
4(1 + Ce) ‘—[L”]— (Xo') (t,u,z?)/ [u)-(s,u,9)
[ s=0 PL(S y Uy 19)
plus a term that is < the time-integral-involving product on RHS ([14.5.16| featuring the
small coefficient ¢ (and thus is of the form Error). Finally, we note that RHS (14.5.26) is <
the third term [4)(1 + Ce)--- on RHS as desired. We have thus proved
in the case ZNist =YV,

We now prove (14.5.15) in the remaining case ZVi<! = YN=1X. The proof is nearly
identical to the case Z7Vi<! = YN, The only difference is the presence of some additional
error terms Error, which appear on RHS ((14.5.16). The additional error terms, namely the
second term on the first line of RHS (14.5.16) and the double time integral on RHS ([14.5.16)),
are generated in view of equation (14.5.3)) and the remarks located just above it.

The proof of is based on a subset of the above arguments and is much simpler.

We therefore omit the details, noting only that the main simplification is that we do not
have to rely on the algebraic decompositions ([14.5.22)) and (14.5.25)); we can instead crudely

bound the terms on LHS ([14.5.22)) and (|14.5.25|).

(s,u,9)ds (14.5.26)

O

14.6. Pointwise estimates for the partially modified quantities. In this section, we
derive pointwise estimates for the partially modified quantities from Def. We also derive
pointwise estimates for their L derivative.

Lemma 14.10 (Pointwise estimates for the partially modified quantities and their
L derivative). Assume that N = 20 and let ZN~1SL € {yN=1 yN=2X}  [Let (% "Ny
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be the partially modified quantity defined by (7.2.2al). There exist constant@ C >0 and
Cy > 0 such that under the data-size and bootstrap assumptions of Sects. 8.4 and the
smallness assumptions of Sect. the following pointwise estimate holds on M, .\ vy:

pN-1L<1 1 !
L < 5
1=0

+ Ce |V 4 ©

=Hp—v')| (14.6.1a)

%E?N};OX
N <
%[1 ] I’Y

%thg)ggﬂ (tu, ) < ‘(f*Nfl;Sl)ﬁ (0, u,9) (14.6.1Db)

t
(o) [ ALY (¢, 0)at
t'=0

t
O [ RZN S o | (¢ 0)
t'=0

t
+ Ce/ ‘Q’;[l’N“];Sl\IJ‘ (', u,9) dt’
=0

=0 %[LN]?S]-,Y

Proof. See Sect. for some comments on the analysis. We first prove ([14.6.1a)) with the help
of equation ((7.2.5). We begin by algebraically decomposing the first product on RHS ([7.2.5])
as follows:

(t',u,9)dt'.

—GLL o AZN-LSIg = = Z A NI (14.6.2)

1 1 1
SGLLAZN I 4 DG KEN T (p— o),

Clearly the first sum on RHS (|14.6.1a)) arises from the first sum on RHS m Next,

using (3.19.2b)), the L estimates of Prop. [9.12] and m, we find that |G, || pe( = S
and [|G7p||ee(syy S €. Hence, we can bound the terms on the last line of RHS ( m by

the second and third terms on RHS (14.6.1a]). Finally, to bound the terms on RHS ((7.2.6)),

we simply quote (14.5.1¢]). We have thus proved (14.6.1a)).
To derive ((14.6.1b)), we integrate ((14.6.1al) along the integral curves of L as in The
-

only subtle point is that we bound the time integral of the first sum on RHS (14.6.1a)) as

109F6r the purpose of the remainder of the proof, there is no need to distinguish between the constants
C and C.. Here, we just use C, to denote the (large) constants which would in principle have caused the
top-order energy to blow up with a worse rate if it were not for the fact that we have carefully distinguished

between the energies Qn and (@ (Partial) (and Ky and Kg\fwtml)); see Remark Similar remarks apply
to later appearances of C,.
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follows by using ((10.2.4) with M =0 and s =t

/ | { 1
=0 1=0
1

. |¢%N—lsflvl{} (', u, ) dt’ (14.6.3)

t
(o) [ |2 (a0
t/f

—i—Ce/ | Z NS (# u, 0) dt
tlf

Note that the last term on RHS ([14.6.3)) is bounded by the next-to-last term on RHS ((14.6.1h)).
We have thus proved (({14.6.1b]). 0

14.7. Pointwise estimates for the inhomogeneous terms in the wave equations. In
this section, we derive pointwise estimates for the derivatives of the inhomogeneous terms in
the geometric wave equations (13.3.11a))-(3.3.11bj).

We start with a lemma in which we decompose the derivatives of the w-involving inho-
mogeneous terms on RHS into the main terms and error terms. By “main terms,”
we mean those products that involve the top-order derivatives of w.

Lemma 14.11 (Identification of the important wave equation inhomogeneous
terms involving the top-order derivatives of the vorticity). Assume that 1 < N < 20.
Under the data-size and bootstrap assumptions of Sects. 8.4 and the smallness assump-

tions of Sect. the following pointwise estimate holds on Mr,,, . v, (see Sect. regard-
ing the vectorfield operator notation):

PN {[ia]u(exp p)c2 g X" Lw} = [ia]u(exp p)c2ga X P Lw + Error,  (14.7.1a)
N gapY" , o[ GarY” N
+ Error,
where
[Error| S e | ZIVsly| + | 2N w| . (14.7.2)

Moreover, let ZZNit be a N order vectorfield operator containing exactly one factor of)z',
and let 2N~ denote the remaining non-X factors. Then we have the following estimates:

2N {[ia)u(exp p) g X L} = —[ia]w’ (exp p) g X" PN LLw + Error,

(14.7.3a)
y? Y?
22 fliauterp o)t (2200 ) veo | = —lieppi (220 ) 75y L
cd cd
(14.7.3b)

+ Error,

where Error satisfies (14.7.2)).
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Proof. See Sect. 9.2 for some comments on the analysis. The estimates ((14.7.1al)-(14.7.2)) are
a straightforward consequence of Lemma , (which implies that p(exp p)c2gsp X’ = f(y)
and p(exp p)c? (gi“}”,f;d> = f(y)) and the L estimates of Prop. [9.12,

Similar remarks apply to the estimates (14.7.3al)-(14.7.3b). However, when bounding
derivatives of w that contain the factor of X , we first use the commutator estimate
with f = w and the L* estimates of Prop.[9.12[to commute the factor of )Z' so that it hits w
first; the commutator terms are of the form Error, where Error verifies (14.7.2). We then use
the transport equation and the identity (3.7.15 m to algebralcally replace Xw with
—pLw; this replacement is the origin of the extra factor of u on RHSs ((14.7.3a))-((14.7.3b))
compared to (14.7.1a))-(14.7.1b). Finally, we explicitly place the products containing the
top-order (that is, order N + 1) derivatives of w on RHSs ([14.7.3a)-(14.7.3b]) and again use

the L estimates of Prop. to conclude that the remaining products are of the form
Error, where Error verifies (14.7.2)). This completes the proof of the lemma. 0

We now derive estimates for the derivatives of the null forms on RHSs (3.3.11a})-(3.3.11b)).

Lemma 14.12 (Estimates for the null forms). Assume that 1 < N < 20 and let 2"
and 2 be the null forms defined by (3.3.12a)) and (3.3.12V). Under the data-size and boot-
strap assumptions of Sects. and the smallness assumptions of Sect. the following
estimates hold on Mr,, v, (see Sect. regarding the vectorfield operator notation):

’fan;gl(ugi)‘ : ‘QpN;g(HQH < ‘%[1,N+1};§2\I}

| ZVE=Ly | (14.7.4)

Proof. See Sect. for some comments on the analysis. The estimate ((14.7.4) is a straight-
forward consequence of (3.19.4) and the L*° estimates of Prop. [9.12 U

14.8. Pointwise estimates for the error terms generated by the multiplier vector-
field. In this section, we derive pointwise estimates for the wave equation energy estimate
error terms generated by the deformation tensor of the multiplier vectorfield 7. That is, we
obtain pointwise bounds for the terms 9, [¥] (see (4.3.2)) corresponding the integrand

nQ* W Dr,5 on RHS (£.3.1).

Lemma 14.13 (Pointwise bounds for the error terms generated by the deforma-
tion tensor of T'). Let ¥ be a functio@ and consider the multiplier vectorfield error terms
(T)‘B(l)[\ll],'~ -, DB (V] defined in.14.3.35])—14.3.3ei. Let ¢ > 0 be a real number. .Under
the data-size and bootstrap assumptions of Sects. and the smallness assumptions of
Sect. the following pointwise inequality holds on MT(Boot),Uo (without any absolute value
taken on the left), where the implicit constants are independent of <:

>y (14 (L) + (1 4+ (XU + W + B Jdw2 (14.8.1)

1
+ [T [*.
T(Boot) —t

HOwWe will eventually apply this estimate with the role of ¥ played by a derivative of an element of {p —v!,

17 ’U2}.
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Proof. See Sect. for some comments on the analysis. Only the term (T)‘B(g) (W] is difficult
to treat. Specifically, using the schematic relations (3.19.3c|), (3.19.3d]), and (3.19.3¢), the
estimate (9.3.3b)), and the L* estimates of Props. [9.12] and [10.1} it is straightforward to
verify that the terms in braces on RHS (4.3.3al), (4.3.3b]), (4.3.3d)), and (4.3.3€) are bounded
in magnitude by < 1. It follows that for i = 1,2,4, 5, |(T)‘B(i) (V]| is < the sum of the terms
on the first line of RHS (14.8.1). The quantities ¢ and 5, appear on RHS (|14.8.1]) because
we use Young’s inequality to bound M9 ,[¥] < [LE||d¥| < 1671 (LE)? + o8, |d¥|* <
CsY(LW)? 4 Ccb,|d¥|2. Similar remarks apply to DP (5)[V].

To bound the difficult term (T)‘]3(3) [V], we also use the estimates ((11.2.1]) and (11.2.3)),
which allow us to bound the first two terms in braces on RHS (4.3.3c|). Note that since no

absolute value is taken on LHS ([14.8.1]), we may replace the factor (Xu)/u from RHS (4.3.3¢))

with the factor [X ], /u, which is bounded by (11.2.3). This completes our proof of (14.8.1)).
0

14.9. Proof of Prop. [14.1] See Sect. for some comments on the analysis. We must
derive estimates for the elements ¥ € {p —v!, v',v?}. To condense the notation, we use the
following notation for the term in braces on RHS (/5.0.1):

1
Do) .= Drob P, — Etr;z)w.@“\p. (14.9.1)
Throughout we silently use the Definition |14.1| of H armless(gvf,vave) terms. We prove the

estimates ([14.2.1¢)) and (14.2.2d)) (corresponding to ¥ = v*), whose proofs are closely related,
in detail. Later in the proof, we indicate the minor changes needed to obtain ((14.2.1al)-

and (14.2.2a))-(14.2.2¢|). At the very end of the proof, we indicate the minor changes
needed to obtain ((14.2.2¢]), that is, the estimates in the case ¥ = p — v!. To proceed, we
iterate (5.0.1)), use the wave equation (3.3.11a)), use the decomposition (3.18.3), use the
estimates (14.7.3a))-(14.7.3b) and (14.7.4)), and use the estimates

Hgglo;gltrﬁ(L%HLw(w) ’

Y B P PRty

Leo (5}

(which follow from ({3.13.4]), (9.4.1a)), and the L estimates of Prop.[9.12)) to deduce that

uDg(q_})(c@prl;lyvi) — grN-1l (u@éYya[vi]) (1493)
— lia]w* (exp p)ci (g X") PV~ LLaw

b
C 102 2 JapY N-1
+ [ia]u*(exp p)c3 <m) P YLw

+ Error,
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where
|Error| < Z Z Z (1+ |9@PN1;M1U¢(P1)7§‘) | Va3 (ugésza[QpNs;Msvi])|
N1+Na+N3<N—1 Mi+Mo+Msz<1 P,P,e P
No<N-2

(14.9.4)
Y Y 2N ) |2 (ware )|

N1+No+N3<N—-1PeZ
No<N-2

b Y3 (1] ) |2 (w2 )

N1+No+N3<N-1PecP
No<N-2

%JLN];SLY

g[l,N];§2; +] 2= w|.

Note that the terms on the last line of RHS (| are H armless(wave) as desired.

Remark 14.3. For the purpose of proving (14.2.1¢) and ((14.2.2d)), the estimate ((14.9.4))
is non-optimal in the sense that some terms on RHS (14.9.4) could be deleted and the

inequality would remain true. However, those terms later appear when we are deriving the
other estimates of the proposition. For this reason, we find it convenient to already include

them on RHS ([14.9.4)).

Most of our effort goes towards estimating the first term on RHS (14.9.3)). Equivalently,
we may analyze the Z”V =11 derivatives of the seven terms on RHS (5.0.2) (with ¥ = v* and
Z =Y in (5.0.2)). We will show that if 2”V~1! contains no factor of L, then

(Y i
FNh ljfﬂ )D(mger) [v] = (YN~ lXtrgjx)Xv + Harmless (Wave) (14.9.5)
FNh I%ﬂY)Less Dangerous) (0] = wy(dFYN- 2Xtrgx) dv' + Harmless (Wave): (14.9.6)

and

QPN 11% o [ ] QPN lljg(ﬂY)C'ancel 2[ ] "JépN lljg(ﬂY)GOOd)[ Z] (1497)

(m—Cancel—1)
N 11%\;’)[ ] N 11%/(;;0)[ z]

= Harmless(w ve)”

At the same time, we will show that if 2°V~11 contains one or more factors of L (and thus
N1 — grN-1; 1) then

QFN . 1‘%/ Danger [ ] "@pN . 1<%/w Less Dangerous) [UZ]’ (1498)
QFN . 1%71' Cancel—1) [ ] QFN . 1<%/(ﬂ Cancel—2) [ ] QFN . 1<%/(Tr Good)[ Z]
ZNHAG W), ZN T A oy o

= Harmless (Wave)®
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After establishing (14.9.7)-(14.9.8)), we will show that
RHS (14.9.4) = Harmless Vf,vave) (14.9.9)

Then combining (14.9.3), (14.9.7), (14.9.8)), and (14.9.9)), we conclude the desired estimates
(14.2.1€) and ((14.2.2d)).

We now return to our analysis of the first term on RHS ([14.9.3). We will separately
analyze the 2”V=11 derivative of each of the seven terms on RHS (5.0.2) (with Z =Y and
U =o' in (5.0.2)).

Analysis of 27V~ 11%(YDanger)[ 1. We apply to ZV=51 to (5.0.3a) (with ¥ = v® and
Z =Y). We first analyze the difficult product in which all derivatives fall on the factor

dip

—(ZNHi O X o (14.9.10)

Using the estimate ((14.4.3b|) for the first term on the LHS and the simple bound H)v(vZ |l Loo(zey) S
1 (see (9.6.3a]) and (9.6.3c])), we deduce from ((14.9.10]) that

(NGO Xyl = (v 2Nt X + Harmless (Wave): (14.9.11)

We first consider the case in which 2V~ contains no factor of L, which is relevant for
proving (14.9.5)). Then 2Z¥~"! contains N — 2 factors of Y and one factor of X. Thus, using
using the commutator estimate with f = tryx, N in the role of N 41, and M = 1,
the estimate , and the L> estimates of Prop. [9.12] we may commute the factor of
X so that it hlts trgx first, thereby obtaining (Y 2°N-1 1tr¢x)Xv = (YN Xtryx) Xo' +

H armless(wave) The remaining terms obtained from applying 2°V~1! to (5.0.3a) generate

products involving < N — 2 derivatives of di)(/(y)ny#. We will show that these products are
Harmless(vf/vwe), which completes the proof of (14.9.5)). To proceed, we again use the L*°

estlmates of Prop.[0.12] the estimate (9.4.1d), and (14.4.3b)) (with < N —2in the role of N—1
n (14.4.3b))) to deduce that all of the products under consideration are H armless (Wave)- We

clarify that the estimate b)) (for the first term on the LHS) generates a factor of tryx
with < N —1 derivatives on it (located on LHS (14.4.3D))), which is in contrast to the
factor from ([14.9.11) with N derivatives. This factor is below-top-order in the sense that
we may bound it with and hence the corresponding product of this factor and Xv
contributes only to the H armless(%,vave) terms. We have thus proved .

We now consider the case in which 2ZV~1! contains a factor of L, which is relevant

for the estimate ([14.2.2d)) Noting that the estimate (14.9.11)) still holds, we use the same

commutator argument given in the previous paragraph to obtain (V27N ~1ltryy)Xv! =
(2N Ltrgx) Xo' + Harmless(wave , where the operators Z”V=1! on the LHS and RHS

are not necessarily the same. Using (9.6.2) with M = 1 and the bound HX'UZ‘”LOO(E;L) <1
mentioned above, we deduce that (2"~ Ltryx) = H armless(vf,v o- The remaining terms

obtained from applying 2Vt to (5.0.3a)) are H armless;,f,v ave) for the same reasons given in
the previous paragraph. We have thus proved m for the term Z°NV-1 1% (r— D(mger) [v"].
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Analysis of 2N~ 11¢%/7T Cancer-1)[V']- We apply Z7V=51 to (5.0.3B) (with ¥ = ¢’ and Z =

Y). We first analyze the difficult product in which all derivatives fall on the deformation
tensor components:

1 1 . . 4
{EgNLlXtrg(Y)yf — N R — uo@le’ldw(Y)ﬁ} L', (14.9.12)

Using the second estimate in I14.4.3a and the first and second estimates in , we
express the terms in brace in (14.9.12)) as the sum of H armless(wave) terms and terms in-
volving the order NV derivatives of w and tryx, which ezactly cancel. Also using the bound
| Lo || poo(syy S € (see (9.6.3d)), we conclude that (14.9.12) = Harmless Vf,vave) The remain-
ing terms obtained from applying 2°V~%! to (5.0.3b]) can be shown to be H armless (Wave)
by combining essentially the same argument with the schematic identity (3.19.2d) for ¥, the

estimates ((9.4.1c|) and (9.4.2a)), and the L> estimates of Prop. [9.12, We have thus proved
(14.9.7) and (14.9.8) for ZN-k 1Ji/ Cancel ]

Analysis of 27V~ 11%7(rYCancel o [v']. We apply 2V to (5.0.3c) (with ¥ = v’ and Z =

Y). We first analyze the difficult product in which all derivatives fall on the deformation
tensor components:

{_ Nolilg (g L g# geN-L0 } ', (14.9.13)

Using the first estimate in and the third estimate in ((14.4.3b)), we express the terms
in braces in as the sum of H a'r’mless(gvf/vave) terms and terms involving the order N
derivatives of u and tryx, which ezactly cancel. Also using the bound ||dv'||p(zu) < € (see
(9.6.3d))), we conclude that m Harmless Vf,vave) The remaining terms obtained from
applying ZV-11 to can be shown to be H armless(WaUe) by combining essentially
the same argument Wlth the estimate and the L™ estimates of Prop.|9.12] - We have

thus proved (14.9.7) and ((14.9.8)) for .ff N-L; 1%/ 7(FY Cancel—2)[V']-
Analysis of 27V~ 11%(Y [v]. We apply 2Vt to (5.0.3d) (with ¥ = v* and

(r—Less Dangerous)
Z =Y). We first analyze the difficult product in which all derivatives fall on the deformation
tensor component:

1 : A
§u(¢{§1’1¢#trﬁ>¢) o' (14.9.14)
Using the fourth estimate in (14.4.3b]) and the simple bounds [|dv’||Leo(zyy S € (see (9.6.3d)),
|| oo (zny S 1 (see (9.6.5a]), and ||y||zo(ze) S € (which follows from (3.19.2d)), (9.6.3d)), and

(9.6.7a))), we deduce that

LN i 1 i
§u( b ld#trﬂ(y)yf) o’ = py(d* 2N M erx) - do' + Harmless(gvf,vave). (14.9.15)

We first consider the case in which 2’V contains no factor of L, which is relevant for
proving (14.9.6). Then 2Nl contains N — 2 factors of Y and one factor of X. We
write % ZN-LM tryx = ¢ ﬁg_lgMdtrgx, and use the commutator estimate (9.5.9a)) with
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§ = dtryx, N — 1 in the role of N, and M = 1, the estimate , and the L esti-
mates of Prop. [9.12/to commute the factor of X so that it hits tryx first, thereby obtaining
w(d” 2N M) - ot = (@Y V2 X trgx) - do’ + Harmless(gvf,vave). The remaining terms
obtained from applying 2"V 5! to generate products involving < N — 2 derivatives
of dtr;("f. We will show that these products are H armless(gvf,vave). To proceed, we again
use the L> estimates of Prop. the estimate (9.4.1d), the estimate [|y||zo(sp) < € men-
tioned above, and the fourth estimate in (14.4.3D)) (with < N — 2 in the role of N —1in
(14.4.3b))) to deduce that all of the products under consideration are H armless (Wave)- We
clarify that the estimate (14.4.3b]) generates a factor of tryx with < N — 1 derivatives on it
(located on LHS (14.4.3b)), which is in contrast to the factor from (14.9.15) with N deriva-
tives. This factor is below-top-order in the sense that we may bound it with (9.4.1c]), and
the corresponding product py(d#.ﬁp sN=2Mprx) - dv* contributes only to the H armless Wave)

terms. The remaining terms obtained from applying 2°V %! to ((5.0.3d)) can be shown to be
H armless(vf/vave by using essentially the same argument and the L estimates of Prop.(9.12]
We have thus proved .

We now consider the case in which 2°V~1! contains a factor of L, which is relevant for
proving . Noting that the formula still holds, we use the same com-
mutator argument given in the previous paragraph to obtain %u(ﬁg_l;ld#tryj(y)ﬁ) vt =

wy (7 ZNEM Lirx) ~dvi+Harmless(§V€,Vave). Moreover, using the L™ estimates of Prop.[9.12]

(3.19.2¢), and(9.6.2), we deduce that ’uy (f* 2N-5M Lrgx) - do?| < |Q"§N—1;§1Ltr¢x)‘ =
Harmless(wave) We have thus proved (14.9.8) for the term 2V~ 1Y ‘

i
(m— Less Dangerous) [U ]

Analysis of 2N~ Uji/(YGOOd[ 1. We apply V=11 to (5.0.3¢) (with ¥ = v' and Z =

Y). The main point is that all deformation tensor components on RHS (5.0.3¢)) are hit
with an L derivative. We may therefore bound the products under consideration using
(14.4.6)-(14.4.7b)) and the L estimates of Prop. thus concluding that all products are

Harmless(gvf/vave). We have therefore proved (14.9.7)) and (14.9.8)) for QﬁN—l?lc%/(f:)Gwd) [v7].

Analysis of QFN*MQ%/(Y)[ ‘]. The terms in Ji/(y)[ ‘] (see (5.0.4), where ¥ = v and Z =Y')
are of the form f(y)nPZv' + f(y)Av' where P € &, Z € %, and 7 is one of the following
components of Vr: 1 € {trgj i, ) % (Y)WXX Y)ﬁ# v ﬁ#} We now apply 27V =11 to the
expression f(y)mPZv' + f(y)Av' and use (9.5.10), (14.4.8a)-(14.4.8b)), and the L* estlmates
of Prop. [9.12] thereby concluding that all products under consideration are H armless (Wave)

as desired. We have thus proved (14.9.7) and (14.9.8)) for 2Nt 14%/(\1,) [v"].

Analysis of ZN-b 1,%’Low)[ v']. Using Lemma [3.19, we see that (see (5.0.5]), where ¥ = v’
and Z =Y) Jif((Low W] = {2y, g7t 4T, )v(\17)7rPy where 7 and P are as in the previous

paragraph. Hence, we conclude that 2°N-11 7Y Low [v]] = Harmless=N by using the same
arguments as in the previous paragraph together Wlth Lemmas and (to bound the
derivatives of ¢! and dF). We have thus proved (14.9.7) and (14.9.8) for ,,@FN 11 g (Y) v 9.

(Low)
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We have thus established (14.9.7)-(14.9.8)), which completes the analysis of the desired
estimates for U € {v!, v?}, except for the error term bound (14.9.4) (which we derive below),
in the case that the commutator operator is of the form ZV=5'Y where 2°V~1! contains

exactly one factor of X. We must also establish similar estimates in the remaining cases,
corresponding to the following operators on LHSs (14.2.1a))-(14.2.1d)) and ([14.2.2a))-(14.2.2)):

4) ZN-BLL (where 2°V =11 contains exactly one factor of X with all other factors equal
toY)

(5) PNLL (where 22V ~1 contains one or more factors of L)

(6) ZN-HLL (where 2”N~11 contains one or more factors of L)

(7) 2N-1X (where 22V~! contains one or more factors of L)

In these remaining seven cases, we can obtain an analog of the estimate (14.9.3) by us-
ing the same arguments, which are based on Lemma |[14.11| and the estimates (|14.7.4]) and
. We note that the error term bound ([14.9.4]) remains correct as stated in all of these
cases. We also note that the estimates of Lemma [14.11] yield the explicitly listed terms on
RHSs (14.2.1a)-(14.2.1d)) and (14.2.2a)-({14.2.2c|) that depend on the order N + 1 derivatives
of w. Moreover, in these remaining cases, we can use essentially the same arguments that
we used in the case 2V 1Y to establish pointwise estimates for the main term (that is, the
analog of the first one on RHS ((14.9.3))). That is, with the help of Lemmas and , we
can establish analogs of ((14.9.7))-(14.9.8). The estimates are very similar in nature, the only
difference being the details of the important terms generated by Lemmal[l4.5} the correspond-
ing important products are precisely the ones on explicitly listed on RHSs ((14.2.1a))-({14.2.1d))
that depend on N derivatives of tryx. More precisely, an argument similar to the one that we
gave in the case ZV~1Y yields that in the remaining seven cases stated above, the estimate

(14.9.5)) must respectively be replaced with

YA ey 0] = 0, (14.9.16)
Y- lji/;y Danger) [v'] = ( Uz)YNtrgjx + Harmless (Wave): (14.9.17)
YN 1f}£/er)DangeT) [v] = (Xo')YN- 1Xtr¢x + Harmless (Wave)” (14.9.18)
VA e 0] =0, (14.9.19)
PN A agery V] = 0, (14.9.20)
N geny V] =0, (14.9.21)
PN 1f%/er)Danger) [v'] = Harmless (Wave)” (14.9.22)



138 Shock Formation in the Presence of Non-Zero Vorticity

while the estimate (14.9.6)) must respectively be replaced with

YN 11%/7(TL Less Dangerous) (V'] = (d#v') - (Y N rgx) + Harmless(gvf,vave), (14.9.23)
YN 1%7(TY Less Dangerous) [U’] = y(d* o) - (Y N rgx) + Harmless(gvf,vave), (14.9.24)
YN, L pengeronsy [0 = — (1 07) - (udY V) + Harmzess(Wm), (14.9.25)
FNh lji/iL Less Dangerous) [v] = (4F0°) - (udY N~ 2Xtr¢)() + Harmless Wave)  (14.9.26)
PNh lfer Less Dangerous) [v'] = Harmless(gvf,vave), (14.9.27)
FN-L lji/iL Less Dangerous) [v'] = Harmless(vf,vave) (14.9.28)
PN- 1,%/7(rX)Less Dangerous) [V v'] = Harmless Vf,vave) (14.9.29)

(and all remaining terms are H armless (Wave): 85 in (14.9.7)).

Having treated the difficult main term in all cases, we now establish . We start by
bounding the terms on RHS involving < 10 derivatives of the factors try ("), tr‘j(j( %,
and tr;f. Using (14.9.2)), we see that it suffices to show that

Yoo > | (uatye (2

No+N3<N—1 Ma+Ms<1 P;,Poc P
No<N-2

S S| (woea)|.
No+N3<N-1PcP
No<N-2

PO IE i (Pl

No+N3<N-1PecZ
No<N-2

(14.9.30)

- <N
Harmless(wave)

It suffices to again decompose, with the help of ([5.0.2) , the terms 257 in (114.9.30) and to
show that all constituent parts, such as 2"V MQ,%/W Danger) | Z 207 and ,@NQ%/((L)QJ) (PN,

are H armless (Wave)- To this end, we repeat the proofs of the above estimates, includ-

ing (14.9.16)-(14.9-29), but with N (from LHS (14.9.30))) in place of N — 1 and ZNs:iMsyi
or 2Nyt in place of the explicitly written v factors. The same arguments given above
yield that all products = Harmlessz N2+])V3+1 <H armless(gvf,vave), except for the ones corre-
sponding to the explicitly written ones on RHSs (14.9.5))-(14.9.6)), (14.9.17), (14.9.18)), and
(14.9.23)-(]14.9.26)). For example, the analog of the explicitly written term on RHS (14.9.5))
is (YNUU(trgjx))u(ffN“M%i while the analog of the explicitly written term on RHS
is wy(d*y N2 X tryx) - 42"V M59". We now explain why these explicitly written products are
Harmless(vffv o) 100 The important point is that since Ny < N — 2 on LHS , the
factors of tryx in these products are hit with no more than N —1 derivatives. We may there-
fore pointwise bound these factors using @ . Given this observation, the fact that the

products under consideration are H armless(wj;) 3N 2} <H armless(gvf,vave) follows from the
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We have thus shown that the products on RHS (14.9.4) involving < 10 derivatives of the
factors try (L, trgj(X);zf and tr;(Vff are H armless(Wave)

To complete the proof of m, we must bound the terms on RHS ((14.9.4) with
11 < Ny < N —1 < 19 (which implies that Ny + N3 < 8). The arguments given in
the previous paragraph imply that the factors on RHS (14.9.4) corresponding to Ns, such

as ZNzMe (u@c(,Pan[fN3;M3\IJ]>, are HarmlesssmxNatNatLNot2h 106610

same arguments given in our prior analysis of 2V ~11.77 7(TY Danger)[P)s 5 ZNTE 1,/”5/( Low)[V]-
d

(Wawve) — (Wave)* In

particular, the L> estimates of Prop. [9.12| imply that ||H armless(gwl,%ve 2o (ze) < €. More-
over, from (3.13.4) and (0.4.1D)), we find that the factors ZNiMigr, (P Nty (Pt and

@Nltrg(x)yf on RHS (14.9.4) = Harmlessg; Nl:;. Combining this bound with the esti-

mate ||Harmlesss! Wave Loz S & we conclude that the products under consideration

= Harmless(g‘ifvé;l) < Harmless(gvf,vave) as desired. We have thus proved ((14.9.9)), which

completes the proof of Prop. m except for the estimates (14.2.2¢)) for the quantity p — v*.
To prove (14.2.2¢]), we first subtract (3.3.11a) with ¢ = 1 from (3.3.11b|) to obtain

MOy (p — v') = 2 — u2' + [Laf(exp p)cs(nd.w) — 2[1a](exp p)w(nBv?).  (14.9.31)

That is, p — vl solves the covariant wave equation with inhomogeneous terms equal to
RHS . We now repeat the above proofs of the estimates for v*, with p — v! in the
role of v and RHS (14.9.31)) in the role of RHS (3.3.11a}). Using nearly 1dentlca1 arguments,
we obtain (|14.2. 2e) For clarity, we note that p —v! = \IIO — Uy (see Def. [3 . and hence the
derivatives of p —v! can be controlled, via the triangle inequality, in terms of the derivatives
of U. This completes the proof of Prop. .

O

14.10. Proof of Prop. [14.2] See Sect.[0.2]for some comments on the analysis. Throughout
we silently use the Definition [14.1| of Harmless ‘fv p terms.

We first prove ((14.2.3bf). The main point is to identify the products that depend on the
order N+1 derivatives of wor the order NV derivatives of tryx; all other products will be shown
to be Harmless=Y Vo t) To proceed, we apply YV*! to the transport equation ([3.3.11d) and

use m ) to commute YV*1 through uB. Using also (9.4.3a]) and ( m ) with M =0
and the L* estimates of Prop. we find that

uBY " w = —(YNW) Lw + {pﬁg(y 1+ ﬁy(y)ﬂ%{} dw + Harmlesséﬁvg (14.10.1)
Note that we have isolated all of the top-order derivatives of deformation tensors in the
terms in braces on RHS . Moreover, we clarify that the smallness factors € on
RHS (with N + 1 in the role of N) come from the estimate for the low-
order derivatives of w, which appear as factors in quadratic terms that multiply high-order
derivatives of deformation tensors. In addition, from (14.3.2)), (14.4.4)), and the simple bounds
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[PwI[ poc sy » 19l oo sy < € (which follow from Lemma and Prop. 9.12), we find that

(YN W) Lw = g(V, YV)(Y V1 Xtryx) Lw + Error, (14.10.2)
{uﬂ(”ﬁ + YOt } S = y(@" YN W) - dw + Harmless3h,, (14.10.3)
= y(YN- 1Xtr¢x)Yw + Harmless(VO;Lt;

Combining ((14.10.1)) and ((14.10.2))-(14.10.3|), we arrive at the desired estimate ([14.2.3b)).

The proof of ((14.2.3a]) is similar but relies on (3.13.3a}) in place of (3.13.3b|) and (14.4.5))
*

in place of ((14.4.4)); we omit the details, noting only that the term —(Y¥Lw)Lw, which
is an analog of the first term on RHS ( m is Harmless=Y Vo t) in view of the bound
| Lw|| o (spy S € mentioned above and inequality (9-6.11) with M =0.
We now prove . Using the same arguments we used to derive
5.13.33)

(14.2.3b)), except now bounding the deformation tensor components from the formulas (3.

and (3.13.3b)) in magnitude by < 1 via (14.4.8b) with N = 1 and the L* estimates
of Prop. [9.12, we deduce that the RHS of the equation pBPw = .- is in magnitude

< |Lw| + |dw| S |22='w|. This implies (14.2.5).

We now prove ((14.2.4)), starting with the case 22Vt = 2Ny Then the same arguments
we used to prove ([14.2.3b) yield

uB2NYw = —(2Nyu)Lw + {Hﬁf;(y)ﬁf + ¢];,(Y)7f’ff(} dw + Harmless VN% (14.10.4)

The key point is that by assumption, the operator £V contains a factor of L. Hence, we
may use the commutator estimate with f = p and the L*° estimates of Prop. to
commute the factor of L in 22¥Y 1 so that it hits u first. Also using the p01ntW1se estlmate
(9.6.1b), we find that ZVY'u = Harmless, SNVl To bound the terms £5, 07 and £5, 7@%{
in magmtude we use the pointwise estlmate 1) Combining these p01ntW1se estimates
with the L*> estimates of Prop. n we conclude that all terms on RHS ((14.10.4)) are of the
form Harmless=Y Vm We have thus proved (14.2.4)) in the case 2V+! = ,@NY

To finish the proof of (14.2.4)), it remains only for us to consider the case 2Vt = PN,

where 2V contains a factor of L. Using the same arguments that we used to prove ((14.2.3al),
we derive the following analog of ((14.10.4)):

uB2YN Lw = —(2Y Lu)Lw + {ﬁ%(”ﬁ;} dw + Harmless V]i:g (14.10.5)

where the operator 2% in (14.10.5)) contains a factor of L. The remainder of the proof now
proceeds as in the case 2N = @NY but with the estimate ((14.4.7al) in place of (14.4.6]).
This completes the proof of Prop. [14.2]

O

15. ENERGY ESTIMATES

In this section, we derive the most important estimates of the article: a priori energy
estimates for the solution. The main result is Prop. (see Sect. , which we prove in
Sect. [I5.16) via a lengthy Gronwall argument, after deriving many preliminary estimates. The
main preliminary results of this section are Props. and (see Sect. , in which
we derive, with the help of the pointwise estimates of Sect. [14] , integral inequalities for the
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fundamental L2-controlling quantities defined in Sect.[12] To prove Props. and we
must bound the error integrals on the right-hand sides of the energy-null flux identities of
Props. and [4.4] and their higher-order analogs. We divide the error integrals into various
classes, which we bound in Sects. We combine all of these estimates into proofs
of Props. and in Sects. [15.14] and [15.13 respectively. Compared to the energy
estimates in previous works, the new feature of the present work is that we derive a priori
energy estimates for the specific vorticity and control various error integrals that depend on
it. In particular, we control the influence that the specific vorticity has on the variables p,
v!, and v2, which solve covariant wave equations with vorticity-dependent source terms. We
derive estimates for the specific vorticity itself in Sect. [I5.15] To simplify our proofs, we use
an energy bootstrap argument; see Sect. for the bootstrap assumptions.

15.1. Statement of the main a priori energy estimates. We start by stating the propo-
sition featuring our main a priori energy estimates. Its proof is located in Sect. [15.16]

Proposition 15.1 (The main a priori energy estimates). Consider the L*-controlling
quantities {Qn(t,u) }n=1... 20, {VN(t,u)}nzo... 21, and {Kn(t,u)}n=1... 20 from Defs.
and[12.3. There exists a constant C > 0 such that under the data-size and bootstrap assump-
tions of Sects. and the smallness assumptions of Sect. the following estimates
hold for (t,u) € [0, T(Boor)) x [0, Up):

VQusix (1) + /Kispr (b, u) < Ceu B9 (¢ u), (0< K <5), (15.1.1a)
Qg (t,u) + /Kpiag(t,u) < Cé, (15.1.1b)
Vor(t,u) < Céu54(t, u), (15.1.1c)

VVierk (t,u) < Ceuy EF9(t ), (0< M < 4), (15.1.1d)

VVais(t,u) < Cé. (15.1.1e)

To initiate the proof of Prop. [15.1] we provide the following simple lemma, which shows
that the fundamental L?-controlling quantities are initially < €2.

Lemma 15.2 (The fundamental controlling quantities are initially small). Under
the data-size assumptions of Sects. and the following estimates hold for t € (0,281

and u € [0, Up:
Q0,201 (0, 1), Qpo,201(¢, 0
0

) < C€, (15.1.2a)
V<21(0,u), Vi (¢,0) < C€?

(15.1.2b)

IN

Proof. We first note that by (8.2.5al) and (8.2.8)), we have p & 1 along 3} and along 7335:1. Us-

ing these estimates, Def.|12.1} and Lemmal4.1| we see that Qg 20)(0,u) < Z H %[1’2”;52\11“;(

Te{p—vl vt w2}
Similarly, for 0 < ¢t < 26-1. we have Qo201 (¢,0) S

* )

and V§21(07U> 5 HgZSmeiQ(ES)'
Z “%[1’21]51\1/”;(?5) and Voo (,0) < H‘@Qlw“;mg)' The estimates —

\Ile{pfv171;1’v2}

(15.1.2b)) follow from these estimates and the initial data assumptions (8.1.2) and (8.1.4). O

=6)
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15.2. Statement of the integral inequalities that we use to derive a priori es-
timates. We prove Prop. [15.1] using a lengthy Gronwall argument based on the sharp
estimates for pu derived in Sect. and the energy inequalities provided by the next two
proposition, Props. and [15.4] which we prove in Sects. [I5.14] and [I5.13| respectively. See
Remark regarding the boxed constants on RHS .

Proposition 15.3 (Integral inequalities for the wave variable controlling quan-
tities). Consider the L*-controlling quantities {Qn (¢, u)}n=1. 20, {Q Pamal)( t,u) N1, 20,

{Vn(t,u)} Neo,.. 21, and {Kn(t,u)}n=1,... 20 from Defs. and [12.3. Assume that N = 20
and ¢ > 0. There exist constants C' > 0 and C, > 0, independent of ¢, such that under
the data-size and bootstrap assumptions of Sects. and the smallness assumptions of
Sect. the following estimates hold for (t,u) € [0, T(Boor)) * [0, Uo]:

max {Qu (t,u), Kn(t,u)} (15.2.1a)
< C(14¢hHe2u2(t,u)

t[|[Lu ]—HLoo(ztu,) , ,
@/M ) Qn (¥, u)dt

(1, u
¢ PRl |1 s
+-8.1/ 2\ /Q t/,u/ D /Qun(s,u) ds dt’
o YOO [ TG YO
1 t 1
+[2] W2 \/QN(tau) ||LH||Loo(<)z;t)/ W\/QN(t’,u) dt’

+O* (t 'LL) Qg\lfjarmal ( )dt

t/
1 )
—i—C'*/ N(t/,u)/ anﬁml)(s,u) ds dt’
s=0

—o Hx(s, u)
! 1 (Partial) /1 ’
/2 )\/QN(t,u)/: ——\/ Qy (t',u)dt

+Ci———
H*

C ' u) dt’
+Ce oll*fu Qn(t',u)

—i—C'e/ . H* VO (t, 1) /_Oﬁ\/QN(s,u) ds dt’

s, u)

\/QT(t u)/ %@(tﬁu)dt’

ui/2<t, u) v=0 w/* (', u)

—i—C\/_tu/ ;\/QTN(t’,u)dt’

v=o /> ()

¢ 1
—1 / /
+C/ BOOt t U)dt +C( )/t —QN(t,u)dt

=0 pi/z(t’, u)

+C ;,/(@N(t’,u)/ 1/2;,/(@J\Z(S,u)dsdtl
) s=0 My )

=0 Mi(t's 1 (s,u

+ Ce
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t s
+C ;\/@N(t/,u)/ ! / 7 ! VQn(s',u)ds' ds dt’
) 5=0 H*( s'=0 ki

=0 Hx(?/, S, u) (s, u)

+C(1+¢1 / Qn(t,u') du' + CeQn(t,u) + CsQn(t, u) + C<Ky (¢, u)
u/=0

t 1 u
+ 0(1 -+ §_1) / /2—(@[1ny1] (t/, U) dt/ + C(l + §_1) Q[LN*I] (t, ’LL/) d’LL/
=0 W " (t', u) w/=0

+ C&Q[lj\[ 1](t U) -+ C’g(@[lN (t u) -+ C§K1N 1}(t u)

2
t 1
—l—C/ /2 / V Vs, u)ds t/
(' u)
t 1 t/ 1 2
+C —_ / m—\/VSN(s,u)ds dt’
o) | Js=0 py

v—o pd?(t (5, u)

+ C/ VSN—H (t/, u) dt/ + C/ VSN(ta U/) du/
t'=0 u'=0

Moreover[/]
inequality (15.2.1a]) holds with the LHS replaced with (15.2.2)

max { g\]fjartial) (t, U), Ks\]fjartial) (t, u)}

and without the siz “large-coefficient” terms @ o ,~ » ,- - C

on the RHS.

M nstead of the “large coefficient” terms, one only has corresponding “small coefficient” terms

! 1 ’ v 1 )
Ca/t/zom\/@(t,u)/s )@(s,u)dsdt

=0 H*(S7 U

t
1
C —  Qn,u)dt
o W e AL

t
+C’51/%./QN(t,u)/ 1/2¥,/(@1\,(75/7u)dt/’
(t =0 py

w7 (¢, w) (t',u)

which are also featured on RHS (|15.2.1a)).
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In addition if 2 < N < 20 and ¢ > 0, then

max {@[1’]\/,1} (t, u),K[LN,l] (t,u)} (1523)
< Cé?

t 1 , + 1 ,
t O// 1/2 Qpv—1)(t', u) /_ 7,V Qn(s,u)dsdt
v=0 (¥, u) s=0 W' (s, u)
C (', ) dt’
' / \% T(Boot t,Q[l 1] U)
1 1
+C(1+¢)

v=o /> (', )

+C(1 +§_1)/ @[1,N_1](t,u’) du'
u'=0

+ CcKp v—1)(t, w)

Q[lN 1](t U) dt

u

t
+ C/ VgN(t/; ’LL) dt, + C/ VSN—l(ta Ul) du'.
t/

=0 u'=0

Proposition 15.4 (Integral inequalities for the specific vorticity-controlling quan-
tities). Consider the L2-controlling quantities {Qu (t, 1)} 1. 20, {Q¥ D (t, 1)} N—1... 20,
{Vn(t,u)}neo,... 21, and {Ky(t, u)}n=1.... 20 from Defs. and- Assume that N = 20.

There exists a constant C' > 0 such that under the data-size and bootstrap assumptions of
Sects. and the smallness assumptions of Sect. the following estimates hold for
(t,u) S [07T(Boot)) X [O, Uo] N

1 1
e+ C€°
w2 (¢, ) b (£, 1)

2 ! 1 t 1 2 /
e /ﬂo 2, u) {/gomv@zv(w) ds} dt

WQ[LN—I} (t,u) + C€2K[1,N] (t,u)
2

+C€/ el t’ {/ V' Vinii(s,u)ds '
t'=0 Mx

2
t 1 t
C 2 / /
e /t’O wi(t', u) {/s 0 pi/Q (s ) }

+ C/ V§N+1 (t, u’) du'.

Ve (t,u) < &2

Qu(t, u) (15.2.4a)




J. Luk and J. Speck 145

Similarly, if N < 20, then

2
t t 1
Ven(t,u) < Ce* + 082/ {/ 1/2—\/Q[1,N](s,u) ds} dt’ (15.2.4b)
0 s

v= T ERY)
+ \6'52@[17]\[_1] (t, u) + C&T K[LN—U (t, UZ

Absent‘z’} N =0

+ O/ VSN(t,u’) du’.

'—0

15.3. Bootstrap assumptions for the fundamental L?- controlling quantities of
the wave variables. To facilitate our proof of Prop. , it is convenient to make L2-type
bootstrap assumptions, which we state in this section. Specifically, let {Qn (¢, u)}n=1.... 20,
{Vn(t,u)}n=0... 21, and {Kn(¢,u)}n=1.. 20 be the L?*-controlling quantities from Defs.
and . We assume that the following inequalities hold for (t,u) € [0,T{poor)) * [0, Up],
where ¢ is the small bootstrap parameter appearing in Sect. [8.4k

VQusiar(tu) + /Kispar(t,u) < euy M9 (L, ), (0< M <5), (15.3.1a)
VOt u) + /Kuag(t,u) < Ve, (15.3.1b)
Vou (t,u) < veu, ®4(t, u), (15.3.1c¢)

Vi (tu) < eu, M (¢ ), (0< M <4), (15.3.1d)

VVois(tu) < Ve (15.3.1e)

15.4. Preliminary L? estimates for the eikonal function quantities that do not
require modified quantities. In Lemma [15.6, we derive a priori estimates for the below-
top-order derivatives of the eikonal function quantities and, in the case that at least one
L-differentiation is involved, their top-order derivatives. These estimates are simple conse-
quence of the transport inequalities derived in Prop. and can be derived without using
the modified quantities.

We start with a simple commutator lemma.

Lemma 15.5 (Simple commutator lemma). Assume that 1 < N <21 and 0 < M <
min{2, N — 1}. Under the data-size and bootstrap assumptions of Sects. and the
smallness assumptions of Sect. the following pointwise estimates hold on Mr, .\ vy

Lo, Y] sy
gy

where (M — 1), = max{0, M — 1} and when N =1, only ‘@\ff‘ appears on RHS (|15.4.1]).

‘QP[LN i<

155 yﬂy[w—m@\ +e
M=0

Proof. We repeatedly use (9.5.7a)) with f = U and the L™ estimates of Prop.|9.12|to commute
the factors of X acting on W on LHS (15.4.1)) to the front (so they are the last to hit ¥). O

We now provide the main estimates of this section.
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Lemma 15.6 (L? bounds for the eikonal function quantities that do not require
modified quantities). Assume that 1 < N < 20. Under the data-size and bootstrap as-
sumptions of Sects. and the smallness assumptions of Sect. the following L?
estimates hold for (t,u) € [0, T(Boot)) X [0, Uo] (see Sect. regarding the vectorfield operator
notation):

1,N];<1
‘ Lﬁﬂ ] H‘ L2(sv \/Q—(t u)
‘ L= <é+ %, (15.4.2a)
(Smatb]l L2 () o (t )

1,N];<1
‘%L | " L2 (Z}) VQn (s, 1)
[1,N];<2 1 < 1N
‘fﬁ (Small) L2(s¥) €+/ 1/2 . (1542b)
”gq\/ 1 <2tr¢XHL2
Proof. See Sect. for some comments on the analysis. We set gy(¢) := LHS (15.4.2b).

From ((9.6.1b)), (9.6.2), Lemma [12.5] (15.4.1)), (12.2.3)), and Lemma_ we deduce

av ()<OQN()+O/i ax(s)ds +C | ”Q“Nsu . (15.4.3)

1/2(3 w)

Next, we note that ¢y(0) < €, an estimate that follows from the estimate (9.4.1c)) for tryx
and our data-size assumptions. We now apply Gronwall’s inequality to (15.4.3)) to conclude

that gn(t) < RHS (15.4.2b)) as desired. We have thus proved ((15.4.2b)).
To obtain the estimates ((15.4.2a)), we take the norm |[-[| 25w, of the inequalities (9.6.1b)),

(9.6.2) and argue as above using the already proven estimates ([15.4.2b)). In these esti-

\ Q[I,N} (57 U)

w2 (s, u)

Qpu,w(t,u) < p;1/2(t, u)+/Qp n(t, u) with the help of inequality (|11.3.6]).

mates, we encounter the integrals / ds, which we (inefficiently) bound by

O

15.5. Estimates for the easiest error integrals. In this section, we derive estimates for
the easiest error integrals that we encounter in our energy estimates for ¥ and w. These
error integrals do not contribute to the blowup featured in our high-order energy estimates.

We start with a lemma relevant for bounding the specific vorticity. Specifically, we bound
the error integrals corresponding to the last integral on RHS .

Lemma 15.7 (The simplest transport equation error integrals). Assume that N <
21. Under the data-size and bootstrap assumptions of Sects. and the smallness as-
sumptions of Sect. the following integral estimates hold for (t,u) € [0,T(Boor)) % [0, Up]
(see Sect. regarding the vectorfield operator notation):

N / Vy(t o) du'. (15.5.1)

'—=0

‘/ {Lp+ ptrgh } (PN w)? dw
M
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Proof. From equation ((3.9.8b) Lemma“ Lemma . and the L™ estimates of Prop.[9.12]
we deduce ||Lu + utrgh|[zoo(zey S 1. Hence, using Lemma we conclude that

LHS ([155.1) < y (@wadw://_0||<@Nw||%2(735/)du’§/ Vy(t,u)du'. (15.5.2)

u/=0

O

The next lemma is a more complicated analog of Lemma for the wave variables
{p—v', 0!, v?}. We recall that in (4.3.2), we decomposed the integrand corresponding to the
last term on the right-hand side of the wave equation energy identity . Moreover, we
recall that one of the integrand pieces is coercive and is critically important for controlling
geometric torus derivatives; we isolated it in Def. [12.2] In the next lemma, we bound the
error integrals corresponding to the remaining terms in the decomposition (4.3.2)).

Lemma 15.8 (Error integrals involving the deformation tensor of the multi-
plier vectorfield). Let ¥ € {p — v',v',v?*}. Assume that 1 < N < 20 and ¢ > 0.
Let DR ZN<N], (0 = 1,---,5), be the quantities defined by (4.3.3a)-(4.3.3¢) (with
ZN=SW in the role of ). Under the data-size and bootstrap assumptions of Sects. —
and the smallness assumptions of Sect. the following integral estimates hold for
(t,u) € [0, T Boory) x [0,Up], where the implicit constants are independent of ¢ (and without
any absolute value taken on the left):

Q[l N] t u dt (15.5.3)

N Uldw < /
/./\/lm i=1 [ 0 v/ Boot -t

+(1+¢7) Q[LN] (', u) dt

=0
+(1+¢h / Qu,n(t, ') du’ + Ky n(t, w).
u/=0

Proof. We integrate inequality (14.8.1]) (with 2V in the role of ¥) over the domain M,
and use Lemmas [[2.4] and 125 O

In the next lemma, we bound || 2V w|,, in terms of the fundamental L?-controlling

(Et,u)
quantities. These estimates play a role in bounding some of the inhomogeneous terms in the

wave equations that depend on the derivatives of the vorticity up to top-order.

Lemma 15.9 (L? estimates involving one transversal derivative of the specific
vorticity). Assume that 1 < N < 21. Under the data-size and bootstrap assumptions of
Sects. and the smallness assumptions of Sect. the following L* estimates hold
for (t,u) € [0, T(Boor)) % [0, Up):

Nltu

(15.5.4)

Nt +/Von(t +/ s,
H wHL?(zt,) € <n(t,u)+e ui/Z(S w)

where the last term on RHS (15.5.4) is absent when N = 1.
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Proof. We use (9.5.7a) with f = w and the L> estimates of Prop. to commute the
factors of X acting on w on LHS ([15.5.4)) so that it is the first to hit w, thereby obtaining

20| £ |25 Kw| 4 | 0] ¢ 2Ny e 2y, (1555)

where the last three terms on RHS are absent when N = 1. Using Lemma m,
and the estimate (15.4.2b), we see that the norms || - ||r2(s,,) of the last two terms on
RHS are S RHS (15.5.4). Next, we use the fundamental theorem of calculus to
obtain the following pointwise estimate for the second term on RHS :

2N | (1, 0) S | 2N w| (0, u,9) + / |IL2=N " w| (s, u,0) ds. (15.5.6)

s=0

Using Lemma and Lemma we see that the norm || - ||z2(x, ) of the last term on
V' V(s u)
RHS ([15.5.6)) is < e+/ VINRE T s, Manifestly, we have € < RHS ((15.5.4]). Moreover,

1/2 s
using inequality ((11.3.6)) and thé fac)t that Vi nj is increasing in its arguments we see that
the previous time mtegral is S v/ V(L u), Wthh is < RHS as desired. To bound
the norm || - ||12(z,.,) of the first term on RHS ( m, we use with s = 0 and the
small-data assumption to obtain || 2=V "1w(1, )| r2(s,0) § ||=@SN_1WHL2(2LU) < €
as desired.
It remains for us to bound the norm || - ||z2s,,) of the first term on RHS (15.5.5).

Using equations (3.3.11d) and (3.7.15) to algebraically express Xw = —pLw and us-
ing the estimates (9.6.54)), (9.6.5b), (9.6.5d), and (9.6.9), we find that ‘f@q’ le‘ <

VEPV W] + |2V | + | 2Ny
sent when N = 1. Lemma |12.5/ immediately yields that H\/FLQZN(U”LQ(EM) < \/@(t,u),
while the arguments given below imply that HQZSN’leLQ(Et’u) S e+ /Ven(t,u)
as desired. Moreover, above we showed that ¢ HQ’;E’N_”X‘ L) < RHS . This
completes the proof of . 7 0

, where the last two terms on the RHS are ab-

In the next lemma, we bound the error integrals corresponding to the H armless(vyave)

and the Harmless=Y Vort) terms.

Lemma 15.10 (L? bounds for error integrals involving Harmless(gvf,v ¢) OF Harmless(‘fv 5
terms). Let ¥ € {p —v! 0! v2} Assume that 1 < N <20 and ¢ > 0. Recall that the terms
Harmless(gvf,vav ) and Harmless Vorn) € defined in Def.|14.1. Under the data-size and boot-
strap assumptions of Sects. mh and the smallness assumptions of Sect.[8.6], the following
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integral estimates hold for (t,u) € [0, T(poor)) % [0, Uo|, where the implicit constants are inde-
pendent of <:

(1+ H)Lo@pN;Sl\I’ ) ‘ ‘ <N
9 . * Harmlessgy,,. ’ dwo (15.5.7)
s
¢
S(+¢7h Q[lg( )dt "+ (147t / Qu,w(t,u) du’
v=0 W' (', u)
+§K[1 N] t U —|—/ t u dt +/ VSN(t,u’) du' + é2.
u'=0

Moreover, if N < 21, then

/M ‘yNw‘ ‘Harmless V]\grt) dw (15.5.8)

¥2Q[1N 1yt w) + Ky vy (¢, u / Ven(t,u')du' + €
Absent sz =0,1

Proof. See Sect. for some comments on the analysis. To prove and ([15.5.8]) we
must estimate the spacetime integrals of various quadratic terms. We derive the desired
estimates for five representative quadratic terms: four in the case of and one in
the case of . The remaining terms can be bounded using similar or simpler argu-
ments and we omit those details. As our first example, we bound the spacetime integral
of |LZN='||[YN 1| (note that YN T = Harmless(wave)). Using spacetime Cauchy-

Schwarz, Lemmasm 12.4{and [12.5] -, 5, and simple estimates of the form ab < a?+b%, and separately

treating the regions {p > 1/4} and {u < 1/4} when bounding the integral of |YN+1\IJ’2, we
deduce the desired estimate as follows:

/ |LZN=1| YN dw (15.5.9)

1/2 1/2
< / ILZN=0|* dew / Y| da
Mt,u Mt,u

S (1+<‘1)/ / |LZN=| de du’

u'=0 ”Pi,
+//0/73t |y V| des du + <8, /M ety |4V V0| deo
< (1 —l—gl)/ Qu,w(t, u') du’ + Ky (t, w).

u'=0

As our second example, we bound the spacetime integral of |L5’,’;N ?51\D| NS Using

spacetime Cauchy-Schwarz, Lemmas and |12.5] inequalities ([11.3.6)) and (({15.4.2b)), simple

estimates of the form ab < a® + b*, and the fact that Qp nj is increasing in its arguments,
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we derive the desired estimate as follows:

/ L= | |2 M= dew (15.5.10)

u t
5/ / Lz N=1g)? dﬁdu’—l—/ / | 2PN de di!
u'=0 J P!, =0 J %Y
2
\/ S, ’LL
/ Qo (t, u') du’ +/ {/ Qi[/l?N s} +é2dt’

S4/ Qp,m (¢, u) dul+/ Qun (', u)dt’ + €.
u'=0 t'=0

As our third example, we bound the spacetime integral of |LZN<'W| | ZN 12|, From
Lemmal15.5with M = 2 and N+1 in the role of N, we obtain | 2N T120| < | X X 2LN-1y|+
| X PUNIG| 4 | 2Ny 4 g| N2y +€|%§’N};Slz|. Thus, we must bound the integral
of the five corresponding products from the RHS of the previous inequality. To bound the
integral of the first product, we argue as in the proof of to deduce that

/Mt,u
u t
5/ / LNty dadu'+/ /

u'=0 J P!, t'=0 J %Y

u t
5/ Qv (£, u') dut’ +/ Quw (', u) dt’,
u'=0

t'=

‘”\IJ‘ dw (15.5.11)

o U 2
XX 2Nyl dedt!

which is < RHS as desired. The second product }L,,@’;Nél\ﬂ ))U(Q[LN]\II‘ can be
bounded in the same way. Similar reasoning yields that the integral of the third product
|LZN=Wp|| 2N+ s < RHS (15.5.9) plus RHS (15.5.10)) as desired. We clarify that the
factor €2 is generated by the square of RHS ((12.3.5D)), which is needed to bound P¥. Similar
reasoning, together with inequality (15.4.2b)), yields that the integral of the third product
e| Lz N<1y|| 2 NF=2y | and the integral of the fourth product €|LQiN;S1\I/H%E’N];Slz| are
< RHS plus RHS as desired. We clarify that we have used the fact that
Qq,n) is increasing in its arguments and the estimate to bound the time integrals
on RHSs by < Qp,n(t,u), as we did in passing to the last line of .
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As our fourth example, we bound the integral of |LZN<10| |21 w|. We argue as in the

proof of and use Lemmas and - to deduce that
/ |LZN=| | 2N w| dw (15.5.12)

u t
5/ / |L£1N;§1\p\2dﬁdu’+/ / | 2N 0| de dt!
u'=0 JPt, =0 J x4
t 2
U
/ Qu,w(t,u) du+/ {/ 1/]2\[1) s} dt’

t
—|—/ V<N( )dt/—l—e
t'=0

Using inequality (|11.3.6) and the fact that the Q[1,N—1] is increasing in its arguments, we
t

bound the double time integral on RHS ((15.5.12)) by < / Qp,n—1y(t',u)dt’ < Qv (¢, u) dt’.
=0
We conclude that RHS ((15.5.12)) is < RHS ((15.5.7)) as desn“ed This completes our proof of
the representative estimates from 115 5.7)).
We now prove one representative estimate from (|15.5.8]). Specifically, we bound the integral
of the product | 2<Nw||ZN=<2J| in the cases 1 < N < 21. Using Lemma [15.5, we bound

the last factor as follows:
| 2N |X&W“’N‘”;§1\I7| + LN + (g PN (15.5.13)

+ Z |‘§’P[1 AN <2L(Small ’ + ’G@i[iNil];SlHL
=1
where the first, fourth, and fifth terms on RHS (15.5.13) are absent when N = 1. Thus,
we must bound the integral of ¢ times the five corresponding products from the RHS of the
previous inequality. To this end, we first use Young’s inequality to obtain

5/ 2=V w| | 225520 deo (15.5.14)
Mtu
5/MZOH¢@SNLUH;@ du’+s/ |zt - it
A Rty T
2(pt, 12(pt)
+e / Z ||o@plN 1] <2LZSmall)||L2(E“ dt' + ¢ /t,OHg*E’N”;q“Hiz(z;) dt’

112

By Lemma | the integrals on the ﬁrst line of RHS (15.5.14]) and the L2<N- Ly integral
on the second hne are S RHS as desired. Moreover using Lemma we find

that the d2<N-1¥ integral on RHS 15.5.14 is, for N > 2, < the e?Kp y_1j(t, u ) term on

RHS (15.5.8)) as desired. In the case N = 1, to bound the d\I/ integral on RHS ((15.5.14))
by < RHS (15.5.8), we again use Lemma m Finally, the argument given in our second
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example above implies that the terms on the last line of RHS ({15.5.14)) are < RHS ((15.5.8)
as desired. This completes our proof of the representative estimate from ([15.5.8)).

O

15.6. Estimates for wave equation error integrals involving top-order vorticity
terms. Recall that the geometric wave equation has inhomogeneous terms de-
pending on w. In the next lemma, we derive simple estimates for the corresponding error
integrals that depend on the top-order derivatives of w. The precise form of the terms that
we bound corresponds to the explicit vorticity-involving terms on RHS ([14.2.1a))-({14.2.2¢]).

Lemma 15.11 (Estimates for wave equation integrals involving top-order vorticity
terms). Assume that ¥ € {p — v',v',v?*} and that 1 < N < 20. Under the data-size
and bootstrap assumptions of Sects. and the smallness assumptions of Sect. the
following integral estimates hold for (t,u) € [0, T(poor)) % [0,Us] (see Sect. regarding the
vectorfield operator notation):

X Nty w(exp p)c2 (g X*) 2N 1w
/Mt*“ < (1+ WLz = ‘ w(exp p)c? (9%}{;(1) PN de (15.6.1)
t

Qn(t,u)dt' + VN+1(t’, u) dt’.

t'=0 t'=0

Proof. Using the schematic relations (3.19.2a)), the L*° estimates of Prop. Young’s
inequality, and Lemma [12.5] we bound LHS ({15.6.1]) as follows:

/Mt,u (g%ﬁ;izvq@ )‘ <[ ajpu (epr; (g X") PN w >

lia](exp p JapY. >9N+1 dw (15.6.2)
o 2
5/ ‘X%Nzﬁl\lj‘ dw+/ u’L%N;Sl\I}f dw+/ u’gZN—I—lw’Z deo
Mt,u Mt,u

<gchcyd

/ HX@@FN<1\I"

t
/ N;<1,]|2 /
L2(Eu dt +/tl_0H\/rLL%< \I[HLQ(E;L,) dt
N+1

VP ol

t t
5/ Qn(t',u) dt'+/ V(' u)dt’.

t'=0 t

=0

U

15.7. L? bounds for the difficult top-order error integrals in terms of Qpu,n)- In this
section, we derive estimates for the difficult error integrals that we encounter in our energy
estimates for W. These error integrals would cause derivative loss if they were not treated
carefully and moreover, they make a substantial contribution to the blowup-rates featured
in our high-order energy estimates. Our arguments here rely on the fully modified quantities
defined in Sect. [7.

The main result is Lemma[I5.13] We start with a preliminary lemma in which we estimate
the most difficult product that appears in our wave equation energy estimates.
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Lemma 15.12 (L? bound for the most difficult product). Assume that N = 20 and
that ZN=! e {YN YN-1X}. There exist constants C > 0 and C, > 0 such that under
the data-size and bootstrap assumptions of Sects. and the smallness assumptions of
Sect. m the following L? estimate holds for the difficult product ()u(vl)%N?gltrgx from

Prop. whenever (t,u) €

Kut) 2|
H( v)Z. X L2(Y)

[0; T(Boot)) X [07 UO] ;

< . ||L°° (=) \/_ t u

H[ ]fHLoo(zg) t”[LU]—HLOO(Eé‘)
405 /s:o ) VQn(s,u)ds

1 Partial
OV )

m /;0 mw(s,u) ds
* Cgu*(i, w) /io u*(i, u) Vs
1 VO (t,u) + Cﬁ\/m@’“)

(15.7.1)

+ Ck

VQu(s,

u) dsds’

+C———
/2 t,u) we (¢, u

. (t ) / _ VVa(su)ds

1 t .
et ) /3_0 TV Ve ds
1
(t, u)

+C

+C

+C—

Moreover, we have the following less degenerate estimates:

H ,QPN <1tl"¢x

{6 -} 29,

LQ(Eu) < 1

VQu(t,u)

S 5m (15.7.2)

1 ¢ 1
sl B AL
1 t
+ SW /;0 \/VN+]_(S, u) ds

L (Z})
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1 t 1
)/ 1/2—\/V§N(3,u>ds
=0 [y

E—
b (tu) Jo—o (s,u)
1 .
+€?)/2—\/Q[17N,1](t,u)+€3/2—.
i (t, w) i (t, w)

Furthermore, we have the following less precise estimate:

t
. 1
2= x| o ) S VQuav (tw) + /SO Gy Y Qu(s v ds (15.7.3)

t t
1
+/ \/VN_H(S,U)dS—i—/ UQ—\/VSN(S,U) ds
s=0

s=0 W' (s, u)

+é{lnp " (tu)+1}.

Proof. We first prove . We take the norm || - [|z2(zu) of both sides of inequal-
ity (14.5.17). Using Lemma we see that the norm || - ||L2 zuy of the first term on
RHS (14.5.15) is bounded by the ﬁrst term on RHS (|15.7.1)). Slmﬂarly, using Lemma m
we see that the norm || - ||z2(zu) of the second term on RHS ([14.5.15)) is bounded by the

1 artia
term C*TVQ%D K l)(t,u) on RHS ([15.7.1). Next we use Lemmas [12.3| and [12.5| to
l’l'* y U

bound the norm || - ||z2(su) of the third term on RHS (14.5.15)) by the term |4.05]-
RHS ([15.7.1). Similarly, using Lemmas and [12.5) we see that the norm || - [|p2(sy) of the

fourth term on RHS ([14.5.15) is bounded by the \/Q(Partml) involving time integral term on
RHS (which is multiplied by C.).

It remains for us to explain why the norm || - ||z2(zuy of the terms Error on RHS
are < the sum of the terms on lines five to eleven of RHS ((15.7.1). With the exception
of the bound for the terms on the first line RHS (14.5.16), the desired bounds follow from
the same estimates used above together with those of Lemmas and [I5.9] inequalities
(11.3.3), (11.3.5), and (11.3.6)), the fact that the Qa; are increasing in their arguments, and
simple inequalities of the form ab < a? + b2 Finally, we must bound the norm || - ||z2(su) of
the terms on the first line of RHS ‘ To this end, we first use (12.2.3) with s = 0

M| (1,) + [ g YNZ% n ] (N1 X) g . Next
L2(2Y) L2(5%) ’

from definition (|7 D the simple inequality |G(me€ | = |f(y,dZ)| < 1 (which follows from
Lemmas [3.19] and - and the L™ estlmates of Prop. [9.12), the estimate (9.4.1c)), and our

assumptions on the data, we find that H‘ v ‘ + ) (A= 1X)<%” < €. It follows that

to deduce

N

L2(Z§)
|
the norm || - ||z2(zuy of the terms on the first line of RHS (14.5.16)) is < € e
Lt u

This completes the proof of ((15.7.1]).
The proof of (|15.7.3)) is based on inequality (14.5.17) and is similar but much simpler;
11.3.5

we omit the details, noting only that inequality (11.3.5) leads to the presence of the factor
In gt u) + 1.
The estimate (15.7.2)) then follows from (15.7.3) and the estimates || Xv?||f(sy) < € and

1X(p — 0"l =(sp) S  (that s, (0:6.3a) and (9:6.4)).

as desired.
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Armed with Lemma [15.12] we now derive the main result of this section.

Lemma 15.13 (Bound for the most difficult error integrals). Assume that N = 20.
There exist constants C' > 0 and C, > 0 such that under the data-size and bootstrap as-
sumptions of Sects. and the smallness assumptions of Sect. the following integral
inequalities hold for (t,u) € [0, T oory) % [0, Up):

2

/ (X ZNstoh) (X" Y Ntryx deo |, 2 / (X ZNstph) (X YN Xty x do
Mtu Mtu

(15.7.4)

[[Ln]- ”Loo(zg,)

s/

t
Qn(t', u)dt
t'=0 H*(t/, U’) N( )

t L] —]] ;oo s LW || oo s
+/ L=l oo s fQN(t,w)/ L oo sy (o) ds dt
s=0

t’'=0 H*(t’>u) PL*(S,U)

t
1 / Partial)
vo. | —JOn(t,u)\/Q dt’
o (t,, u) N( ) N ( )

t 1 t’ 1 -
+C*/ oy V() / . VO (s, u) ds dt
t 9 s=

ot (5, 0)

+Ca/t %@(i’,u)/oﬁ\/@(s,u)d(‘sdt’

—o M(t,u S, u)

t 1 , t/ 1 s’ 1 .
+ C/t (t’,u) VN (T, u) /S'=0 1, (s’ u) /s:O LL}/Q(S,U) VQn(s,u) dsds'dt

=0 Hx

+0L R (t,u)/: ﬁ\/@(s,u)dsdt'

0ty

t

1 1
+c/ —  Qu(t.u dt’+C/ e Qu_y(tu)dt
o pi/2(t,u) ( ) v—o }.li/z(t/ u) 1,N 1]( )

2
1 /
cof g { [ mee]
t 1 t 1 2 ,
+C 77 v VVen(s,u)ds p dt
=0 W' (¥, u) | Js=0 ' " (s,u)
+Ce
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Moreover, we have the following less degenerate estimates:

(X ZNs1p?) (X o) YV X tryx doo |

2 / (X ZNs1?) (X o) Y Virgx deo |, 2
Mtu

Mt,u
(15.7.5)

{X%N;Sl(p — vl)} {)v((p — vl)} YN tryx doo |,

[\
£

2 /Mt u {XﬁN;Sl(p - @1)} {)‘é(p - vl)} YV Xty dow

58/ ;u)QN(t',u) dt’
N(t',u)/ ! VQn(s,u)dsds

i s.0)

—i—s/ \/VNH s,u) ds dt’

VO (t, u)/s O%N/VSN(S,U)det’

t 1 1
+s/ —@ N u) dt + €——.
veo 12wy W ()

Proof. We first prove ([15.7.4). We treat only the first integral on the LHS since the second
one can be treated using identical arguments. To proceed, we first use Cauchy-Schwarz and

(12.3.2a)) to bound it by

<2 \/ (' u) H Xv YNtrﬁx‘

/

7

(15.7.6)

L2( E"

We now substitute the estimate (with ¢ in replaced by t') for the second factor
in the integrand ((15.7.6)). Following this substitution, the desired bound of RHS by
< RHS ([15.7.4) follows easily with the help of simple estimates of the form ab < a® +
b?, the fact that Qu is increasing in its arguments, and the estimate (11.3.3)), which we

e 1 . 1
use to bound the error integral e/ 3/2—\/(@1\;(15/, u) dt’ by < 62/ TCTTERS dt' +
r— I— /
v=0 p (1, u) v=0 (¢, u)

t 1 o 1 ‘ 1
/ 72, @t u)dt S ¢’ 3/2 +/ —77 o Qu(t u) dt’.
=0 Hx (t 7“) Hoe (ta U) =0 My (t 7“)
The proof of (|15.7.5)) is similar but simpler. To bound the first integral on LHS (15.7.5)),

we first argue as above to deduce that it is bounded by RHS ({15.7.6)), but with Xov! on the

RHS replaced by Xv2. We then use the estimate (15.7.2)) in place of the estimate (15.7.1)
used in the proof of (15.7.4]). The remainder of the proof now proceeds as in the proof of

(15.7.4)). The remaining three integrals on LHS (15.7.5)) can be bounded in the same way. [
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15.8. L? bounds for less degenerate top-order error integrals in terms of Q; nj. In
this section, we bound some top-order error integrals for which we need the fully modified
quantities defined in Sect. [7] to avoid losing a derivative. However, the error integrals contain
a helpful factor of u. For this reason, the estimates are easier to derive and less degenerate.

Lemma 15.14 (Bounds for less degenerate top-order error integrals). Assume
that ¥ € {p — v',v',v?*} and that N = 20. Recall that y is the scalar-valued function
appearing in Lemma [3.8  Under the data-size and bootstrap assumptions of Sects. [8.1-
and the smallness assumptions of Sect. the following integral estimates hold for
(t,u) € [07T(Boot)) X [O, UO] :

comvaay @i (M) .
'/Mtﬁuy(Xfc”; U)(XT)(d" W) (udYNZXtW) d | (15.8.1a)

t

t
5 / {ln u:l(t’,u) + 1}2 Q[LN](t’,u) dt/—F/
t:() t/

U —

V§N+1 (t/, U) dt/ + éQ,
0

Nty gy (@t - (MY X g
‘/Mt,uu””)y@%‘ ) (X0) (47 0) ( MdyNthW) d (15.8.1b)

t u
< / {Inp (¢, u) + 1}2 Qu,w(t', ) dt’ + Qu,w(t,u) du’
/=0

/— u'=0
t
+/ V§N+1(t’,u)dt’+é2.
=0
Proof. We prove ([15.8.1b|) only for the first product on the LHS since the proof for the

second term is identical. To proceed, we first use the schematic identity (3.19.2¢|) for vy,
the L estimates of Prop. [9.12] Young’s inequality, Lemma [12.5] and inequality ((15.7.3) to

obtain

| 2 S ) - () dw| (15.8.2)

U t
5 / o HLQZN;SI\I}Hiqpt/) du’ +/ 0 ||HYNtr¢X||i2(Z;‘,) dt’
u'= w V=

2
u ¢ ¢ v 1
5/ Qv (t, u') du'+/ Qv (t', ) dt'—l—/ {/ vV Qn(s,u) ds} dt’
u'=0 t'=0 t s=0

'=0 }‘L*(Svu)

t t 2 t t 2
1
+/ / V Vnii(s,u)ds dt’—{—/ / 1/2—\/V<N(S,U) ds p dt’
=0 | Js=0 =0 | Js=o W/ (s,u)

t
- %?/ {Inp Lt u) + 1} dr.
t'=0

1 —

Using inequalities (|11.3.5]) and (|11.3.6)) and the fact that Q,; and V,; are increasing in their
arguments, we conclude that RHS (15.8.2]) is < RHS (15.8.1b|) as desired.
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The proof of ((15.8.1af) is similar, except in the first step we bound LHS ((15.8.1a]) by
t 5 2 t
5/ REREN] dt’+/ Y Ve[ ) 0
/=0 ) /=0 ¢

L2(3y

15.9. Error integrals requiring integration by parts with respect to L. In deriving
our top-order energy estimates for the wave variables {p — v!, v, v?}, we encounter some
difficult error integrals that we can control only by integrating by parts with respect to L;
see the error integral and the discussion below it. It turns out that in carrying out
this procedure, we must use the partially modified quantities of Sect. [7] in order to avoid
generating error terms that are too large to control. This results in the presence of two types
of error integrals, which we bound in this section: spacetime error integrals, some of which
involve the partially modified quantities, and >} “boundary” error integrals, some of which
also involve the partially modified quantities. We remark that we treat the most difficult of
these error integrals in Lemmas [15.15| and [15.17]

Lemma 15.15 (A difficult top-order hypersurface L? estimate). Assume that N = 20
and let ZN-U=1 e {yN-1 yN-2X1_ Let (ETNY be the corresponding partially modified
quantity defined by . There exist constants C' > 0 and C, > 0 such that under
the data-size and bootstrap assumptions of Sects. and the smallness assumptions of
Sect. the following L* estimate holds for (t,u) € [0, T(poot)) % [0, Up):

. W N—1;,<1 Ly || qorsu
H%(X“)L(J* _)3/4 <[l e o ) (15.9.1a)

) b (t, u)
N C*m E\IIDartial) (t,)
+ cmm(u u) + Cemmw)
+ Cﬁm“’w + Oém,

]. Y »N—1;<1
o X’Ul (% = )@’1
Hﬁ()

1 t 1
S e A er etV TR AN
" VWt w) Jomo WP (0 0)
(15.9.1b)

1 ! 1 (Partial) /1 /
+ C, Q (t',u)dt
t

Ptu) Jomo B ) VY

——/Qpu.n (', u) dt’
t 1
/ 1/2 V Qv (t', w) dt’
¢

=0 w7 (', u)

e
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Moreover, we have the following less precise estimates:
(%N—hﬁl)g/?}." 1

<
2~ ()
t
apN—1;<1 1 o
(J)*N = )ﬂ 5 / 1/2—\/ Q[LN] (t/, U) dt/ + €. (1592b)
L2(X}) =0 W (1, u)
1 .
Proof. We start by proving (15.9.1a)). We multiply inequality (14.6.1a)) by ﬁle. We first
consider the difficult product generated by the first term on RHS (|14.6.1a)). To proceed, we
multiply the identity (14.5.25) by ,/u and use the schematic identity (3.19.2bf) and the L
9.12) (

estimates of Prop.|9.12| (in particular (9.6.3a) and (9.6.4))) to obtain
Z Gy

1
Inserting (15.9.3) into the product of TXUI and the first product on RHS (|14.6.1a)), we

Quvi(t,u) + &, (15.9.2a)

=L o) —. (15.9.3)

m
obtain the terms

,‘\/—AgN 1;<1 1"" +}\/_4A5N 1;<1 1’+ |\/—4AgN 1;<1 1‘ (1594)

Using Lemma . we see that the norm ||-||g2(sw) of the ﬁrst product in is bounded
by the ﬁrst term on RHS m as desired. Next, we again use Lemma and the esti-
mate ) to bound the norm ||- || z2(suy of the Second and third products on RHS ([15.9.4)
by the terms on the third line of RHS 1} as desired. In proving the remaining esti-

1 1
mates, we use ((9.6.3c|) to bound H—Xv < (C—mmm
Vi Leo(2) VH(t, u)

to bound the norm || - [|z2(zv) of the remaining two terms on RHS (14.6.1a)) and to multi-

1
Vit u)

RHS (14.6.14), we use Lemma m, which implies that its norm || - ||z2(sw) is bounded by

the Q (Partial) -involving term on RHS ([15.9.1a)) (which has the coefficient C.). To bound the
product generated by the next-to-last term C’e - on RHS (14.6.1a]), we use Lemma m

/@t ) on

RHS (15.9.1a))). To bound the product generated by the last term on RHS (14.6.1al), we
use the estimate (15.4.2b)), inequality (11.3.6]), and the fact that Q; ) is increasing in its

arguments. We have thus proved ((15.9.1al)

1
We now prove ([15.9.1b). We multiply inequality (14.6.1b]) by ﬁX v'. The most difficult
product is generated by the second term on RHS (|14.6.1b)):

ZG

and thus it remains for us

ply those bounds by C' To handle the product generated by the second term on

(the product under consideration is bounded by < the term Ce

1 t
- (t,u,? / AZN=ES M (¢, 9) dit. 15.9.5
2 \/— ) o | K ) ( )
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1
1 .
We now substitute RHS ((15.9.3)) for the product — E G, Xv'| in (15.9.5) and take the
o

1=0

norm ||| 2(sy) of the resulting expression. With the help of Lemma|12.3/and Lemma
see that the norm ||-|| y2(sy) of the product generated by the second product on RHS 1) is

bounded by the next-to-last term Ce - -- on RHS ((15.9.1b)). To handle the remaining product
L
(corresponding to the term —l: on RHS ([15.9.3)), we first decompose 3¢ = (3%, U )E;t as

in (11.1.9b)) and again use Lemmas and as well as the simple estimate || L[| p2(su) S
1 (see (9.6.5b))) to bound it by

1 t 1
< V2Kl sy | (e it (15.9.6
’ t

(t,u) Jr=0 W/~ (t', u)
! 1
- / d/
+\/_H\/_ Loo( (+)E“ /t’ -0 H}(/Z( ) Q[l,N](t7U> t

1 t 1
+C€1/2—/t 1/2—,/(@[1’N](t’7u)dt’.

e () Je=0 S (H u)

The first and third products on RHS ((15.9.6) are manifestly bounded by RHS (15.9.1b)).
To bound the second product on RHS (15.9.6) by RHS ((15.9.1b]), we need only to use the

following estimate to bound the factor multiplying the time integral:

HMM+ [Ly]-
m m

<C

<C. (15.9.7)

v

I

The estimate ((15.9.7) is a straightforward consequence of the estimates (9.6.5a)) and (9.6.5b))
(with M = 0), (11.2.1), and (11.2.9). We now bound the norm || - [|z2(zu) of the product of

1 -
TX v' and the remaining four terms on RHS (14.6.1b)). In all of the remaining estimates, we
m

=S (+)Eu Loo((+)2%i; ) oo((+)27ti;t)

rely on the bound H — Xv' noted in the proof of (15.9.14)); it therefore

1
< CO—F——=
Lo (SY) V H(t u)

remains for us to bound the norm || - || z2(spy of the remaining four terms on RHS (14.6.1D)

and to multiply those bounds by C’T. To bound the product corresponding to
. (t, u

the first term ‘(‘%N;Sl)ﬂ (0,u,v) on RHS , we first use ((12.2.3) with s = 0 to
deduce H ‘(YN_I)Eﬂ (1, )’ Lo < H(YN_I)ﬁﬂ . . Next, from definition (7.2.24)), the simple
inequality |G (prame) ] = ]f(y dz)| <1 (whlch follows from Lemmas m and (9.5 and the L™
estimates of Prop. [9.12]), the estimate , and our assumptions on the data, we find
that H (=1 %Aﬂ I < €. In total, we conclude that the product under consideration is
bounded in the norm |[-[| 725y by the last term on RHS as desired. To bound the

norm || - || z2(ge) of the second time integral C, --- on RHS m, we use Lemmas [12.3) -
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and [12.50 Multiplying by C , we find that the term of interest is bounded by the

(8, u)
second term C, --- on RHS (15.9.1b)). Similarly, we see that the product generated by the
time integral Ce--- on RHS (14.6.1b) is bounded by < the Ce--- term on RHS (15.9.1h).
To bound the product generated by the last time integral on RHS , we use a similar
argument together with , except that as a preliminary step, we bound the time
integral on RHS by < +/Qp,n(t, u) with the help of (11.3.6]). We have thus proved
(15.9.10).

The proofs of and are based on a subset of the above arguments and
are much simpler; we therefore omit the details, noting only that the main simplification is
that we do not have to rely on the estimate , which played a fundamental role in our

proofs of (15.9.1a}) and ( m 0

Lemma 15.16 (Bounds connected to easy top-order error integrals requiring in-
tegration by parts with respect to L). Let ¥ € {p — v vt v} Assume that N = 20

N1<1

and ¢ > 0. Fori = 1,2, let Error;[ ZV:s1; (% 3{] be the error integrands defined in
(#4.3a)) and (£.4.3V), where the partially modified quantity %= iy defined in (7.2.2a)) is

in role of N and we are assuming no relationship between the operators ZN<t and 2N ~1i<!
(see Sect. regarding the vectorfield operator notation). Under the data-size and bootstrap
assumptions of Sects. and the smallness assumptions of Sect. the following esti-
mates hold for (t,u) € [0,T(Boot)) % [0,Us], where the implicit constants are independent of
S’

/ ‘Errorl[o@iN;Sl\I/; (%Nil;gl)ﬁff]) dw (15.9.8a)
Mt u

! 1 ! 1
§(1+g—1)/ 1/2—(@[1,1\7](5,@ ds—i—/ 3/2—@[17]\;_1}(5,14) ds
5=0 (8, u) s=0 W7 (s, u)

+ Kpw(t,u) + (1+¢ —he?,

/ Errors[ 2N <00 (5027 de < €2 4 Qi (t, u), (15.9.8b)

/ Error,[ZV<10; (275097 dw < €2, (15.9.8¢)
/ (14 20 (X0) (Y 2V E T 4 < &2, (15.9.84)
Zu

0

Proof. See Sect.[9 -for some comments on the analysis. We first prove ((15.9.84 m All products
on RHS ( m contain a quadratic factor of (A2 =L )& Ehg (YQPN Shp) (2" <1)%
(ZNSIg) (2N or (NS LTSN Using inequalities (9.4.3a)) and and
the L* estimates of Prop. 0.12] we find that the remaining factors in the products are
bounded in the norm || - ||z (zsy by < 1. Hence, it suffices to bound the magnitude of the

spacetime integrals of the four quadratic terms by < RHS ([15.9.8a)). To bound the spacetime
integral of ‘(Y%N?Sl\ll)(%wlél)% , we use spacetime Cauchy-Schwarz, Lemmas [12.4] and
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m, inequalities (11.3.6)) and (15.9.2b)), simple estimates of the form ab < a? + b?, and the

fact that Q; n) is increasing in its arguments to deduce

/ ‘(Y%N;Slxlf)%”’“l)ﬂ dw (15.9.9)
Mt [

o . ‘ B )
,SQS*/ |¢L@iN;§1\IJ|2 dw—i—glﬁ*l/ H(QF*N 1,311%\;‘
M, s=0

L2(ZY)

t s 2
< Kt u) +¢71 / / 7 Q[ll/?v]( tou)dt p +¢ €% ds
o (/=0 ( u)

S gK[l,N] (ta u) + gil / Q[LN](S, u) ds + §71é27
5=0

which is < RHS ([15.9.8a)) as desired. We clarify that in passing to the last inequality in
(115.9.9), we have used the fact that Qq,ny 1s increasing in its arguments and the estimate
S

(11.3.6)) to deduce that / 1/2( )Q[ll/f\f]( ' u)dt < Ql/z ( u), as we did in passing to
=0 |y

the last line of ((15.5.10)).

The spacetime integral of ‘(dc@iN ?Slﬁf)(YN*l)fﬁﬂ can be bounded in the same way.
The spacetime integral of ‘(%N?SI\IJ)(%N?I;SI)@T can be bounded by < RHS ([15.9.8a]) by

using essentially the same arguments; we omit the details.
To bound the spacetime integral of ’(QPN <hy) (2 ,%Aﬂ by < RHS (15.9.84)), we first

use Cauchy-Schwarz, Lemma [12.5] and inequality ((15.9.2a)) to deduce

ds

) t
e PEr R St T
M u s=0

‘L(fN 1<1ﬂ

L2(Zy)

(15.9.10)

' 1 1/2
< /520 (s, u) 1]( )Q[l N]( u) ds

t
; 1 1/2
+€/ —»——Q (s,u)ds.
=0 3 (s,u) T

Finally, using simple estimates of the form ab < a? + b2, the estimate (11.3.6]), and the fact
that Qp v is increasing in its arguments, we bound RHS (15.9.10) by < RHS (15.9.8a)) as
desired. This concludes the proof of (15.9.8a)).

We now prove ([15.9.8b)) and ((15.9.8¢]). Using the estimate (9.4.5) and the L> estimates of
Prop.|9.12] we see that RHS (4.4.3b)) is bounded in magnitude by < ¢ ‘%N?Slw‘ ’(f*Nfl;Sl)gﬂ,
Next, we use Cauchy-Schwarz on ¥}, Lemma [12.5 (15.9.2b)), and the estimate ([11.3.6)) to
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deduce that

g/u ‘gN <1\IJ‘ ‘ FN- 1<1)<;m//\-/l dw S c H%N;SlquLQ(E?) (15911)

aN—1;<1
g
L2(2F)

2
< e {3t u) + ¢} < RuS (BISH)

as desired. We clarify that in passing to the second inequality of ((15.9.11]), we have used
(11.3.6) and the fact that Qp is increasing in its arguments to bound the time integral

on RHS ( m by < @1/2 m ) then follows from ((15.9.8b)) with ¢ = 0 and
Lemma [15.2]

The proof of (|15.9.8d) is similar. The difference is that the L* estimates of Prop. [9.12
imply only that LHS ((15.9.8d]) is < fzu | 2 Sl)ﬂ dw, without a gain of a factor
€. However, this integral is quadratically small in the data-size parameter €, as is easy to

verify using the arguments given in the previous paragraph. We have thus proved (15.9.8d)).
O

Lemma 15.17 (Bounds for difficult top-order spacetime error integrals connected
to integration by parts involving L). Assume that N =20 and ¢ > 0. Let Y2 and
N2 be the partially modified quantities defined in . There exists a constant C' >
0, independent of s, such that under the data-size and bootstmp assumptions of Sects. 8.1
and the smallness assumptions of Sect. the following integral estimates hold for
(t,u) € [0, T Boot)) x [0,Uo] (see Sect. regarding the vectorfield operator notation):

/ (1 +2u) (X ) (Y ZN=1yH LY N deo| (15.9.12)
Mtu

/ (14 2u) (X)) (¥ 2NN LY 857 g
Mt u

LH ||L°°
<./ Q[l N](t u) dt’

t
1
+Cs/ —0 t' u dt’+0/ —Q, ' u)dt
t/oH*( u) () t/ou*1/2(t w) .t )

+Cé?,
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(15.9.13)

/ (1 +2u) (X" ) (Y Z2N=1y)0" 2 de|

/ (14 2u) (X o) (Y Z V=10 2 X097 dw‘

1 t 1
< 1/2—)\/@[1,1\/] (£, u) | Ll oo (osp /t —7 .V Qun (' u)dt’

w7t u 0 (', u)

1 t 1
+ e Qv (t, ) / —7a .V Q) (t',u)dt/
o (ta U) t'=0 My (t )

t
1
+C @[LN}(t,u)/ 7 ,/@[LN](t/’w dt
v=0 W' (¥, u)

1
H*(ta U) '

Moreover, we have the following less degenerate estimates:

+ CsQpn(t,u) + Cs1e?

X 12 N;<1,,2 -
/ 1+2u) ( (Y Z; ) o ) O YGT | (15.9.14)
M { (p— }{Y‘% <lp—oh)}
(sz)(YffN <1 2) N
/Mtu 2 ( {X(p } (Y ZN<1(p -1} ) L 2 dw
B t'= OH*( 5 ) [1,N]
) (15.9.15)

(X vz)(Yﬁqu 2) o1
/u(1+2u) < {X(p_ }{Y%N;g(p_vl)} )( 2 dw

1 2 ( )(YffN <1 2)

/u< o {X(p— TGRS}
1 ! 1 , ,

VD | g Y 0

1
+ CeQp n(t, u) + CE? )

Proof. We prove ((15.9.12)) only for the first term on the LHS since the second term can be
treated in an identical fashion. To proceed, we first use Cauchy-Schwarz, and the estimates

Y| <14 Ce, < 1, and [[u]|;eo(sey S 1 (which follow from (9.4.2a]) and the L
) ~ Leo(Zy) ~
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estimates of Prop.|9.12)) to bound the LHS by

t . 1 . B
< (1+C€)/ VA ZN =10 ‘—(X\IJ)L(YN leﬂ dt’ (15.9.16)
t'=0 ¢ \/rL L2(zY)
t
N;<1 (YN-1) /
*C/t,:o e T

The desired estimate (15.9.12) now follows from (15.9.16]), Lemma , and inequalities

(15.9.1a)) and (|15.9.2a}). We clarify that to bound the integral /t/ ) Ce p}/Q( )Q[lﬁ\f]( ' u)dt,
which is generated by the last term on RHS m, we first use Young’s mequahty to bound

e? Q[l N] (t u)

172 2
() W)
term in the previous expression by < €2 with the help of the estimate (11.3.6)) and the time
integral of the second by < the third term on RHS ((15.9.12]).

the integrand by <

. We then bound the time integral of the first

The proof of ({15.9.14]) is similar but simpler and is based on the estimates HXUQ H - <e
Loo(xu

and HX(p —vl) < e (see (9.6.3a) and (9.6.4)) and the estimate (15.9.2a)); we omit

the details.
The proof of ((15.9.13)) is similar to the proof of ((15.9.12) but relies on ([15.9.1b)) and

(15.9.2b)) in place of (15.9.1a) and (15.9.2a); we omit the details, noting only that we
encounter the term Cep* n )Q[ll/?v (t,u) generated by the last term on RHS ({15.9.1bj).

Lo (5Y)

We bound this term by using Young’s inequality as follows: Cep* 7 )Q[ll/ ?v]( u) <

C —1¢ 2 + C§Q[1
The proof of 5 9.15 D is similar to the proof of m but is simpler. It is based on
the estimates H Se and ‘X — vl)’ - < € noted above and the estimate
Loo( Loo(xu

(115.9.2bf); we omit the detalls
O

15.10. Estimates for the most degenerate top-order transport equation error in-
tegrals. In the next lemma, we bound the most degenerate error integrals appearing in the
top-order energy estimates for the specific vorticity, which are generated by the main terms
from Prop. These error integrals are responsible for the large blowup-exponent 6.4 in
the factor u‘“(t, u) on RHS (15.1.1d).

Lemma 15.18 (Estimates for the most degenerate top-order transport equa-
tion error integrals). Assume that N = 20 and recall that y is the scalar-valued ap-

pearing in Lemma 3.8, Under the data-size and bootstrap assumptions of Sects. 8.4 and
the smallness assumptions of Sect. the following integral estimates hold for (t,u) €
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[0) T(Boot)) X [07 UO] ;

(Y)Y N1 Xtryx
/ gV, V) (L)Y Xtryx | 2V wdw (15.10.1)
Mew \ y(Y )Y N1 Xty

¢ v 2
Se’ ! @N(t,u)+52/ ;{/ ! \/QN(s,u)ds} dt’

u*(tau) t'=0 uz(tlvu) =0 },L*(S,U)

t 1 t 2
+€2/ / VVnii(s,u)ds p dtf
t s=0

'=0 Hz(t/» U)

_|_ 62 /t ;
t'=0 uz(tla U)

u . 1
+ / VN+1(t, u') du’ + €23/2—.
w'=0 we (6, w)

2
t 1
/ UQ—\/VSN(S,U) dS} dt/

=0 Hx (S,U)

Proof. We prove ([15.10.1) for the term | [, u(Yw)(YN_lXtrgx)gzNHw dw‘ in detail. The

other two error integrals on LHS ((15.10.1]) can be handled using nearly identical arguments,
the schematic relations (3.19.2af) and (3.19.2c), and the L> estimates of Prop.[9.12} we omit
those details. To proceed, we use the bound ||Ywl/p~ s < € (see (9.6.9)) and Young’s

inequality to deduce that the error integral under consideration is

552/ (YN1Xtr¢X)2dw+/ (PN w)? dw (15.10.2)
My M

t,u

u

t
5 52/ . HYN—lXtrﬂXH%%E?/) dt’ —|—/ . ngN—‘,—leiQ(ptl) du.
v u'= u

Using Lemma [12.5] we bound the last integral on RHS (15.10.2) by < [ V1 (¢, u/) du’
15.10.2)

as desired. To handle the remaining time integral on RHS ((15.10.2)), we use the estimate
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(15.7.3]) to bound it as follows:

t
62/ ||YN_1X'C1“¢XH%2(Eul)dt/582/ 200
t k =0 H*( , u)

<é? / Qn(t',u)dt’

=0 PL* 7
t/ 1 2
— / VQn(s,u)ds p dt’
=0 }‘L* t s )
=0 }'L* t

t

I uYN_lXtrijHig(Eg/ dt! (15.10.3)

I’ —

-|—52

+52/
/ 2
+€2/ /t ;\/V (s,u)ds p dt
Lo k2(F,u) | Jeso ui/Q(s,u) =V

1 2
+e2¢ / _ lnu*_1 tu)+ 11V dt.
v—o WE(t',u) { (t2w)+1)

Using the fact that Qu is increasing in its arguments and the estimate (|11.3.3)), we find that

RHS ((15.10.3) < RHS ((15.10.1)) as desired. O

15.11. Estimates for transport equation error integrals involving a loss of one
derivative. In the next lemma, we estimate some error integrals that arise when bounding
the below-top-order derivatives of the specific vorticity. We allow the estimates to lose one
derivative. The advantage is that the right-hand sides of the estimates are much less singular
with respect to powers of p; ' compared to the estimates we would obtain in an approach
that avoids derivative loss. This fact is crucially important for our energy estimate descent
scheme, in which the below-top-order energy estimates become successively less singular with
respect to powers of u*_l.

_o Hi(s,u

i {/ s

Lemma 15.19 (Estimates for transport equation error integrals involving a loss
of one derivative). Assume that 2 < N < 20 and recall that y is the scalar-valued
appearing in Lemma [3.8  Under the data-size and bootstrap assumptions of Sects. [8.1-
and the smallness assumptions of Sect. the following integral estimates hold for
(t,u) € [0, T Boory) x [0,Us] (see Sect. regarding the vectorfield operator notation):

(Y)Y V2 Xty
/ gV, V) Lw)YN2Xtryx | 2Vwdw (15.11.1)
Mew \ y(Y )Y N2 Xty

AV S, U u
s /t {/_ Qi[/z S} dt,+/,_OVSN(t,ul) du' + %2

Proof. The proof is the same as the proof of Lemma |15.18 except for one key difference: we
use the estimate (|15.4.2bf) to bound the term HYN’2Xtr¢xH%2(Eu), in place of the estimate
t/

(15.7.3)) used in bounding the term ||YN_1)v(trﬂx||%2(Eu/) on the first line of RHS ({15.10.3)).
0
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15.12. Estimates for wave equation error integrals involving a loss of one deriva-
tive. We now provide an analog of Lemma for the wave equations. Specifically, in the
next lemma, we estimate some error integrals that arise when bounding the below-top-order
derivatives of the elements of {p — v!,v!,v?}. As in Lemma [[5.19] we allow the estimates
to lose one derivative, and the gain is that the right-hand sides of the estimates are much
less singular with respect to powers of u; ! compared to the estimates we would obtain in an
approach that avoids derivative loss.

> ‘ ‘(Xq/)zN—l;éltr¢x( dw (15.12.2)

o+ ||L%N—mw|<m} | 285 g,

“II

Lemma 15.20 (Estimates for wave equation error integrals involving a loss of one
valued function appearing in Lemma |3.8. Under the data-size and bootstrap assumptions of
Sects. and the smallness assumptions of Sect. the following integral estimates
(X W) ZN =y
v o N—1;<1 _ # . N-2:<1
Mt,u
(47 ) - (nd 2V 2= )
(t',u) v ¢ (', u
/ Q[lN 1 @;\[(S,u) ds dt/+/ Q[l’lN 1}( )dt/+ é2
/2
) v=0  p (¢
Proof. Tt suffices to consider only the first term (X¥)2N~5<ltrx in the second array on
LHS (|15.12.1)) since the other three terms in the array can be bounded using the same ar-
and ||p|| Loo () S 1, which are simple consequences of (3.19.2¢) and the L* estimates of
Prop. To proceed, we use Cauchy-Schwarz along Z“, the L™ estimates of Prop. [9.12] -,
and inequality (|11.3.6)) to bound the spacetime integral under consideration as follows:
[ ( XNty
Mtu
</ {HXQPN 1<1\I/‘
Nltu{o+ VQ (su) }dt/
(t' u (t',u
/ 1/12\7 1( { VvQ (S u) } gt +/ Q[111\/72 1( )
) =0 1% (s,u 0
ol
=0 w2 (¢, u)
s=0 u1/2(87 u "L’l(/Q (t/7 U)

derivative). Let U € {p—v' v',v?} and assume that2 < N < 20. Recall thaty is the scalar-
hold for (t,u) € [0, T(Boot)) % [0, U] (see Sect. regarding the vectorfield operator notation):
A+ awren =y ||yt (e 2ty
1/2 L) =0 w/ (s,u ' u)
guments. They are in fact smaller in view of the estimates [|y[| (5w S &, |4 oo sy S €
Lemma 12.5, the estimate (15.4.2b)), the simple estimate €/Qp y_1)(t', u) < €*+Qp n_1(t', u),
(1+2u)LZN-b=ly
® o w2t u) =0 1% (s,u)
t U t t _ t/
/ \V 11/]2\7 1 ) { V QN(57u) ds} dat’ + Q[LN 1]( 7u> at’ + &2
=0
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O

15.13. Proof of Prop. . We first prove ((15.2.4al). Let I be a & multi-index with
|I| = 21. From ({4.3.6), we deduce that

R (Vort) [ngw] (t,u) + F(Vort) [,@fw](t, u) = E(Vort) [@fw] (0,u) + F(Vort) [@fw] (t,0)
(15.13.1)

+ / {Lp+ ptrgf } (ngu))2 dw
Mt,u
—|—2/ (f@fw)uB@fw dw.
Mtu

We will show that the magnltude of RHS ([15.13.1)) is < RHS ((15.2. 4a Then taking the max
of that inequality over all I with |I | =21 and appeahng to Def 12.1} we arrive at ((15.2.4a)).

The first integral on RHS (|15.13.1]) was treated in Lemma 1 To bound the last integral on
RHS , we first use Prop.|14.2[to express the 1ntegrand factor uB PTw as the products
explicitly indicated on either RHS or RHS ( m plus H armlessg‘firt) error

terms. The error integrals fMtu(ﬂl )Harmless(v 1) dw were treated in Lemma [15.10}
The remaining three error integ’rals, which correspond to the products explicitly indicate
on either RHS (14.2.3a)) and RHS , were treated in Lemma We have thus
proved ((15.2.4al).

The proof of (15.2.4b)) in the cases 2 < N < 20 is similar. The only difference is that
we bound the explicitly listed products on RHS and RHS (with N — 1
in the role of N in (14.2.3a})-(14.2.3b))) in a different way: by using the derivative-losing
Lemma in place of Lemma [15.18] The proof of case N =1 is similar
but simpler and relies on equati. The proof of (15.2.4b)) when N = 0 is even
simpler since, by , the last integral on RHS ([15.13.1)) completely vanishes.

O
15.14. Proof of Prop.

Proof of (15.2.1a]): We set N = 20 (which corresponds to the top-order number of commu-
tations of the wave equations (3.3.11a])-(3.3.11b))). Let ZV:=! be an N'-order vectorfield

operator involving at most one X factor and let ¥ € {p — v', v v?}. From (4.3.1) with
ZN:<I in the role of U, the decomposition (4.3.2) with 27V<'W in the role of ¥, and

definition ((12.1.2af), we have
EWave)| g2 Nisy] (¢, ) 4+ FW e [ NS0 (¢ u) + K[ 22V (¢, u) (15.14.1)
= BV [ 2V S1) (0, u) + W0 (2510 1, 0)

-/ {(1 F2)(LZNE) 4 2X 2N ) 0, (25 de
Mt u

+Z/ o 2V dw.

Mtu
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We will show that RHS < RHS . Then, taking the max over that estimate
for all such operators of order precisely N and over ¥ € {p — v',v!,v?} and appealing to
Defs. and [12.2] we conclude (15.2.1al).

To show that RHS ([15.14.1) < RHS (|15.2.1a}), we first use Lemma to deduce that
EWave)[ 2N:<1] (0, u)+FWave) [ 22N:<1) (¢, 0) < €2, which is < the first term on RHS
as desired.

To bound the last integral >0, S, (T)‘B(i)[- --] on RHS by < RHS (15.2.14),
we use Lemma [15.8 ’

We now address the first integral — [, -+ on RHS (15.14.1). If ZN="is not of the
form YN-LL, YN YN-IX | gN-L1[ or N-11y where ZN—11 contains exactly one factor
of X and N — 2 factors of Y, then it is easy to see that ZN:<! must be of the form of one of
the operators on LHSs ([14.2.2a)-(14.2.2d)). The desired bound thus follows from ([14.2.2a))-
(14.2.2d), (14.2.2¢)), (15.5.7), and ([15.6.1). Note that these bounds do not produce any of
the difficult “boxed-constant-involving” terms on RHS ((15.2.1aj).

We now address the first integral — [, -+ on RHS (15.14.1) when ¥ = v' and 2,¥=" is

one of the five operators not treated in the previous paragraph, that is, when 2V:<! is one
of YN-IL YN yN-1X gN-Li[ o N1y where 2V-51 = #N-L1 contains exactly
one factor of X and N — 2 factors of Y. We consider in detail only the case ZNi<t = YN
the other four cases can be treated in an identical fashion (with the help of Prop. ED
and we omit those details. Moreover, the estimates for the wave variables ¥ = v? and
U = p — o' are less degenerate and easier to derive; we will briefly comment on them
below. To proceed, we substitute RHS (in the case ¢ = 1) for the integrand
factor pO,(YNo') on RHS ((15.14.1)). Tt suffices for us to bound the integrals corresponding
to the terms (Xv')YNtryx and y(d*ov') - (udY V~'tigx) from RHS ([4.2.1D)); the integrals
generated by the w-involving terms on RHS were suitably bounded in Lemma ,
while the above argument has already addressed how to bound the integrals generated by
Harmless(gvf,vave) terms (via ([15.5.7)). To bound the difficult integral

—2 / (XY Nol) (X0 )Y Mgy dew (15.14.2)
Mt,u

in magnitude by < RHS ((15.2.1a}), we use the estimate ((15.7.4), which accounts for the
portion ~ -+ of the first boxed constant integral @ -+ on RHS (15.2.1a) and the full

portion of the boxed constant integral - -~ on RHS (|15.2.14)).

We now bound the magnitude of the error integral

—/ (1+2w) (LY Vo) (X o) Y Nty doo. (15.14.3)
Mt,u

To proceed, we use (7.2.2a)-(7.2.2D)) to decompose Y Ntryx = YO — vy NE . Since
RHS (14.5.1d) = Harmless=", we have already suitably bounded the error integrals gener-
ated by Y )X, We therefore must bound the magnitude of

- / (14 2w) (LY N o) (X oYY DY de (15.14.4)
Mt,u
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by < RHS (15.2.1a). To this end, we integrate by parts using (£4.2) with n := @ 12",
We bound the error integrals on the last line of RHS (4.4.2)) and the fzg .-+ integral on the
second line using Lemma [15.16] It remains for us to bound the first two (difficult) integrals
on RHS (4.4.2) in magnitude by < RHS ((15.2.1a)). The desired bounds have been derived in
the estimates (15.9.12)-(15.9.13)) of Lemma |15.17, Note that these estimates account for the
remaining portion [2|--- of the first boxed constant integral [6]--- on RHS and
the full portion of the boxed constant integral - -~ on RHS .

To finish deriving the desired estimates in the case ¥ = v!, it remains for us to bound the
two error integrals generated by the term y(d#vl) (ndY N tryx) from RHS (14.2.10)). These
two integrals were suitably bounded in magnitude by < RHS (15.2.1?]) in Lemma (15.14
(note that we are using the simple bound {Inp*(#,u) + 1} < wi*(#,u) in order to
bound the integrand factors in the first integrals on RHS and RHS )
Note also that these estimates do not contribute to the difficult “boxed-constant-involving”
products on RHS e have thus shown that when ¥ = v!, the desired inequality

15.2.14)

RHS({15.14.1) < RHS (15.2.1a)) holds.
We now comment on the cases ¥ = v? and ¥ = p — v!. The proofs that RHS ((15.14.1]) <

RHS ([15.2.1a]) in these cases are essentially the same as in the case U = v!, except that in
bounding the analog of the error integral (15.14.2]), we now use the less degenerate estimate

(15.7.5)) in place of (15.7.4) and, in bounding the analog of the error integral (15.14.4)), we
use the less degenerate estimates ((15.9.14)-(15.9.15) in place of (15.9.12)-(15.9.13). These

less degenerate estimates do not produce any of the “boxed-constant-involving” products
on RHS ((15.2.1a) because they all gain a smallness factor of € via the factors Xv? and

X(p — v")) (which verify the smallness estimates (9.6.3a) and (9.6.4)). In total, we have
proved ([15.2.1al).

Proof of ((15.2.2): The argument given in the previous paragraph yields (|15.2.2)).

Proof of ((15.2.3): We repeat the proof of ([15.2.1a) with M in the role of N, where 1 <
M < N — 1, and with one important change: we bound the difficult error integrals such as

-2 / (XYY (X )Y Vtryx dew,  — / (14 2w) (LY N0 (X 0)Y Vg dow
Mt,u Mt,u
in a different way: by using Lemma|15.20, More precisely, we replace N with M in ({14.2.1a])-
(14.2.1€]) and consider the explicitly listed products on the RHSs that involve the derivatives
of tryx (see also (14.2.2¢) in the case ¥ = p — v'). We bound the corresponding error
integrals by using the derivative-losing Lemma [15.20| in place of the arguments used in

proving ({15.2.1al).
O

15.15. The main vorticity a priori energy estimates. The energy estimates for the
specific vorticity are easy to derive with the help of the bootstrap assumptions. We provide
them in the next lemma.

Lemma 15.21 (The main a priori energy estimates for the specific vorticity). Under
the data-size and bootstrap assumptions of Sects. and Sect. and the smallness
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assumptions of Sect. the a priori energy estimates (15.1.1c)-(15.1.1¢|) for the vorticity
hold on My, Uo-

Proof. We start by deriving the desired estimates ((15.1.1¢)-(15.1.1¢]) for Vo, (£, u) and Voo (¢, u).
Below we will use inequalities ([15.2.4a))-(15.2.4b)) and the bootstrap assumptions ({15.3.1al)-

(15.3.1€]) to obtain the following inequalities:

Vgl (t, u) S C (éQ + 53) }l:m's(t, u) + C/ Vgl (t, u') du’ + C/ Vggo(t, U,) du',
u'=0 u'=0
(15.15.1)

Vaao(t,u) < C (€24 &%) u "%t u) + C/ Veoo(t,u') du'. (15.15.2)
u'=0

Then from and Gronwall’s inequality in u, we obtain Vs (t,u) < C (€* 4 &%) p >
Inserting this estimate into the last integral on RHS , we find that Vy;(¢,u) obeys
inequality but with the last integral deleted. Hence, from Gronwall’s inequality
in u, we obtain Vo (t,u) < C (&€ + &%) u;"*%(t,u). Recalling the assumption £¥/2 < € (see
(8.6.1])), we see that we have shown (15.1.1d) and the estimate (15.1.1d) for v/Vayo(t, u).

It remains for us to derive (15.15.1)-(15.15.2). To derive (15.15.1) we set N = 20
in (15.2.4a)), which yields an integral inequality for Vo (t,u). We then insert the boot-
strap assumptions ([15.3.1a)-(15.3.1¢]) into all terms on RHS except for the last

integral C' / Veniai(t,u')du'. It immediately follows that all of the terms generated
l:O
by the bootlétrap assumptions, except for the ones involving time integrals, are < the

C (é2 + 83) w, ?8(t,u) term on RHS (15.15.1)) as desired. We now explain how to handle
the terms generated by the time integrals on RHS (15.2.4a)). We consider in detail only the

t t
1 1
term Ce? /t’() NETT] {/0 m\/@go(S, w) ds} dt'; the remaining time integrals on
RHS (|15.2.4a)) can be bounded in a similar fashion and we omit the details. To proceed, we
use the bootstrap assumptions, the estimate ((11.3.3)), and the assumption (8.6.1]) to deduce

that the double time integral under consideration is

<C3/t ! /t L th’ (15.15.3)
= t'=0 H%(t'a u) s=0 p§-9(s,u) ’ o

t

1 .

< 053/ . m dt' < Ce’u 8 (tu) < C€u, ?%(t,u)
t'= * )

as desired. We have thus proved (15.15.1). The proof of (15.15.2) is based on inequality
(15.2.4bf) with N = 20 but is otherwise similar to the proof o; we omit the details.
We have thus obtained the desired estimates for Vy; (¢, u) and Vyo (¢, u).

We now explain how to derive the estimates (15.1.1d)-(15.1.1€]) for \/V<i9, v/V<is, -+,
V/Vy. The desired estimates can be derived from inequality , the bootstrap as-
sumptions (15.3.1b)-(15.3.1€), Gronwall’s inequality in u, and the assumption (8.6.1) by
using essentially the same arguments that we used to derive the estimates for v/Vy. How-
ever, there is one minor new feature that is needed to obtain the estimates for
/V<i5(t,u): in carrying out the above procedure, we encounter a term that needs to be
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treated using a slightly different argument: the term

2
t t/ 1
053/ D{/ OmdS‘} dt/ (15154)
t'= s= * y

generated by the double time integral on RHS ([15.2.4b)). The new part of the argument

is that in addition to inequality (11.3.3]), we must also use inequality (11.3.6|); inequality
11.3.6) is what allows us to break the u ! degeneracy. More precisely, to bound the term
1 )

5.15.4)), we use inequalities ((11.3.3) and (11.3.6]) and the assumption (8.6.1]) to deduce that

t

1
(15.15.4) < 053/ ——dt < 0 < 0¢? (15.15.5)

t'=0 uf(sv u)

as desired, where RHS (15.15.5)) does not involve the singular factor ;! We have thus
obtained the desired estimates (15.1.1¢])-(15.3.1€)), which completes the proof of the lemma.
O

15.16. Proof of Prop.[15.1} To simplify the proof, we assume that the energy bootstrap as-
sumptions ([15.3.1a)-(15.3.1€) hold for (¢, u) € [0, T(poory) %[0, Up]. To prove the proposition, it
suffices to derive, under the energy bootstrap assumptions, the estimates (15.1.1a})-(15.1.1¢])
for (t,u) € [0, T(Boot)) % [0, Up]. We can then use a standard continuity-in-t argument for the
fundamental L?-controlling quantities to deduce that the estimates (15.1.1a)-({15.1.1¢]) do in
fact hold for (¢,u) € [0,T(Boor)) X [0, Up] and, in view of our assumption € < ¢, that the boot-
strap assumptions are never saturated (for € sufficiently small). Note that this argument
relies on Lemma which implies that the fundamental L?-controlling quantities do not
saturate inequalities ([15.3.1a[)-(15.3.1€)) at the initial time 0.

We now recall that in Lemma [15.21] we derived, with the help of the energy bootstrap
assumptions, the a priori vorticity energy estimates (15.1.1c|)-(15.1.1¢]). Hence, it remains
only for us to derive the wave variable energy estimates ((15.1.1a))-([15.1.1bf). We are of course
free to use the vorticity energy estimates ((15.1.1c|)-(15.1.1¢€]) in the remainder of the proof.

Estimates for Qy, Ky, Q1,19 and Kp 19 These estimates are highly coupled and must

be treated as a system featuring also Qgﬁa’m” and Kgﬁf“’“a”. To proceed, we set
F(t,u) := sup Up (£, @) max { Qoo (4, @), Koo (2, 0) } (15.16.1)
(£,2)€[0,¢]x[0,u]
Gtou):=  swp  (Ea) max{ (Partial) 7 ) K{PartieD) 7 a)} , (15.16.2)
(t,2)€[0,t]x[0,u]
H(t,u) := sup v (£, @) max {Qpi gy (2, 4), K ag) (£, ) } (15.16.3)

(£,4)€[0,t] x[0,u]
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where for 1 < ¢ < do<u <u<Uy<1, we define
= ( dS) = €Xp (2 T(Boot) —2 T(Boot) - t/) )
Boot) - S
(15.16.4)
t/ 1
L(t' u') ;== exp / —0 - ds |, (15.16.5)
0w (s, u’)
ve(t ) = 1a(t ) = uT S ) ()t e e (15.16.6)
v (t ') = w08 S () (et e (15.16.7)

and c is a sufficiently large positive constant that we choose below. The functions (({15.16.4])-
(15.16.7) are approximate integrating factors that we will use to absorb all error terms on
the RHSs of the inequalities of Prop. [15.3 back into the LHSs. We claim that to obtain the

desired estimates for Qq, Koo, QQIJ“’"”“” K(Pmml , Qpi107, and Ky 1g], it suffices to prove
F(t,u) < Cé?, G(t,u) < Cé?, H(t,u) < Cé (15.16.8)

where C' in ((15.16.8)) is allowed to depend on c. To justify the claim, we use the fact that

for a fixed ¢, the functions ¢§(t), t5(¢, u), e, and e are uniformly bounded from above by a

positive constant for (¢,u) € [0,T(Boor)) x [0, Up]; all of these estimates are simple to derive,
_11 3.6)

except for (|15.16.5)), which relies on (|11.3.6)).
To prove (|15.16.8)), it suffices to show that there exist positive constants o, «o, &3, P1,

B3, Y1, and y3 with

o+ ocQ\/Bl IS C R A B T | (15.16.9)
l—vs 11—
such that if ¢ is sufficiently large, then
F(t,u) < C& + o F(t,u) + oo FY2(t,u)GY?(t, u) + s H(t, u), (15.16.10)
G(t,u) < C&% + B F(t,u) + BsH(t, u), (15.16.11)
H(t,u) < C&* +vy1F(t,u) +vsH(t,u). (15.16.12)

One key reason that we will be able to obtain (15.16.9)) is that we will be able to make 3,
B1, and 3 as small as we want by choosing ¢ and € to be sufficiently small. Once we have
obtained ([15.16.10)-(15.16.12)), we easily deduce from those estimates that

H(tu) < C&+ —LP(t,u), (15.16.13)
1 =3
G(t,u) < Cé* + {(51 +Bsg Vly } F(t,u), (15.16.14)
- V3
F(t,u) < Cé* + CeFY2(t,u) + {oq + oc2\/61 + ;33 y 10¢3Yy1 }F(t,u). (15.16.15)
- 73

The desired bounds ((15.16.8)) (for € sufficiently small) now follow easily from ((15.16.9)) and
(15.16.13)-(15.16.15).
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It remains for us to derive ((15.16.10)-(15.16.12)). To this end, we will use the critically
important estimates of Prop.[11.3|as well as the following estimates, which are easy to derive:

! 1 L[t d 1.
Ct’—dt’:—/ — LS} b < =5 (), 15.16.16
R e el AP A LG R0 (15.16.16)
t 1 1 [t d 1,
/ TR ———— / 9w a) ar < L), (15.16.17)
/=0 w (', a) ¢ Jy—odt ¢
t
, 1,
/ et dt’ < —e (15.16.18)
t/:0 C
C 1 .
/ e du' < —e. (15.16.19)
u'=0 c

We will close the estimates by taking c to be large and ¢ to be small.

Remark 15.1. We stress that from now through inequality (15.16.58)), the constants C' can

be chosen to be independent of c.

In our analysis, we will often use the fact that ($(-), (5(-) e“, and e“ are non-decreasing in
their arguments. Also, we will often use the estimate (11.2.13)), which implies that for ¢’ < ¢
and v’ < u, we have the approximate monotonicity inequality

(1+ Ce)u,(t' ) > w,(t,4). (15.16.20)

We use these monotonicity properties below without explicitly mentioning them each time.

We now set N = 20, multiply both sides of inequality by L}l (t,u) and then set
(t,u) = (£,4). Similarly, we multiply both sides of the inequality described in by
15! (t,u) and the inequality (15.2.3) by ¢} (t,u) and, in both cases, set (t,u) = (¢,4). To
deduce (15.16.10)-(15.16.12)), the difficult step is to obtain suitable bounds for the terms
generated by the terms on RHSs ((15.2.1a))-(15.2.3]). Once we have obtained suitable bounds,
we can then take sup; )cp0.4xj0,,] 0f both sides of the resulting inequalities, and by virtue of
definitions ((15.16.1))-(15.16.3]), we will easily conclude ((15.16.10])-(15.16.12)).

We start by showing how to obtain suitable bounds for the terms on RHS ([15.2.1a)) that
involve the vorticity energies. These estimates are easy to derive because we have already
derived suitable estimates for the vorticity energies. Specifically, we must handle the terms

A 2
. t 1 t

C  sup L;l(t,ﬂ)/ —_— {/ V Vi (s,0) ds} dat’, (15.16.21)
s=0

(£,)€[0,] x[0,u] =0 pj/2 (t',u)
1

N 2
PP t t 1 . ,
C sup LFl(t, u) / m {/:0 ui/g—A)\/ Vggo(s, U) dS} dt s (151622)

(£,2)€[0,¢]x[0,u] =0 Ly (s,u
t
C  sup L;}(f,a)/ Veor (t',u) dt’, (15.16.23)
(£,0)€[0,t] x[0,u] t'=0
C  sup il ﬂ)/ Veoo(t, o) du (15.16.24)
(£,2)€[0,t]x[0,u] w'=0
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generated by the integrals on the last three lines of RHS (|15.2.1a). To proceed, we insert
the already proven vorticity estimates ((15.1.1c|)-(15.1.1€]) into the integrands in ((15.16.21))-

(15.16.24)). With the help of inequality (11.3.3)), we obtain
. 2
i
C 3/2 {/ vV Vo (s, @) s} t' (15.16.25)

=0 Ly

i t/ 2
< Cé?/ TR 1) {/ by (s, 1) dS} dt’
t'=0 s=0

t 2
t 1 t 1 )
/ 37271 {/ —7, -V Veal(s, ) ds} dt’ (15.16.26)
= ) s=0 (87 u)

=0
i i .
O/ Ve (', a) dt’ < (JéQ/ w2 a) dt < CEu A a), (15.16.27)
t'=0 t'=0
C/ Veoo(t,u) du' < CVeg(t,0) < C&%u;"8(t,4). (15.16.28)
u/=0
Multiplying (15.16.25)-(15.16.28) by ¢5'(, @) and then taking SUD(7,a)e[0,x[0,)» We conclude
[(5.1621) <C&  sup  wl(f,a) (D)o, )e e < C&, (15.16.29)
(,2)€[0,t]x[0,u]
[(5.16.22) < C&>  sup  u25(f, @) c(F); (F, a)e e < C&2, (15.16.30)
(t,4)€[0,t]x[0,u]
[(5.16.23) < €& sup (D) (E, @) le ™ < C&2, (15.16.31)
(t,4)€[0,t]x[0,u]
[@5.16.24) < C&®  sup 2L, a) () (F, a)ePe e < C&> (15.16.32)

(£,4)€[0,t]x[0,u]

as desired. We have thus accounted for the influence of the vorticity in the top-order wave
energies.
We now show how to obtain suitable bounds for the terms generated by the “borderline”

1
terms 6] [---,[8.1][ -+, and W\/Qm(t, W) [ Lu| oo o5y / -+~ on RHS (|15.2.1al)
7u '

(where we recall that N = 20 in this part of the proof). The terms generated by the re-
maining “non-borderline” terms on RHS ([15.2.1a)) are easier to treat. We start with the

term [6 ;! (£, ) ffzo -++. Multiplying and dividing by u!'#(# 4) in the integrand, taking
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sup wHB (' 0)Quo(t, @), pulling the sup-ed quantity out of the integral, and using the crit-
€lo,i]

ically important integral estimate (11.3.1)) with b = 12.8, we find that

t Lul_ ;e
@El(f,ﬂ)/ IEH Ty Qao(t', ) dt’ (15.16.33)

t'=0 u*(tlv ﬁ')

i
<[6)z' (£, a) sup {ui"*(¢, @) Qa0(t', 1)} / Lp] -l oo sy e 25 ) dt”
t'=0

t'€[0,1]
<@HHB sup {LIC<t/)L;C(tl,ﬁ) —ct’ efcu 11. 8( )QQO( )}
t’e[Oﬂ
i
N gy 250
t'=

6+C\/E o _64+Cye
< .
< g Fd) < = Ftu)

To handle the integral L}l(f, @) [ -+, we use a similar argument, but this time taking
into account that there are two time integrations. We find that

t L . L] || oo sa
Sl [ T gy [ e g
¢ s=0

=0 H*<t,; A) H*(S; U’)
(15.16.34)

8.1+ Cye

< ST OVE LG ),
< soxiigl by

To handle the integral L}l(f, @) [ -+, we use a similar argument based on the critically
important estimate ((11.3.2]). We find that

gy L = ' 1 ==
LFl t 'LL 12, o~ ng(t )HL}.L“LOQ(F)E@_A) 12, o~ @20(t/,U) dtl (151635)
},L*/ ( it v /

A) =0 Hx (t/,’fb)
2+ Cy/e
< ——F(t,u).
< ZEOVE ()
6+C 81+C
The important point is that for small €, the factors i 8\/_ on RHS (15.16.33 ’+—11\/8_
C 6 8.1 2
on RHS ([15.16.34)), and ————— + \/_ on RHS (|15.16.35]) sum to + +—+CVe <

11.8 59 x11.8 54
1. This sum is the main Contrlbutor to the constant «; on RHS 1}
We now derive suitable bounds for the three terms on RHS at are multiplied
by the large constant C,. We bound these terms using essentially the same reasoning that we
used in proving ((15.16.33)), (15.16.34)), and , but we use only the crude inequality
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(11.3.3]) in place of the delicate inequalities (|11.3.1)) and (11.3.2)). We find that

i
o 1 ;
Coupt (i, @) / —)\/@Qo(t', a)\/ QS (¢! 4 dt! (15.16.36)

t'=0 }l*(t/, U
< CP'2(t, )G (1, ),

n ! 1 g 1 artia
C*LFl(tva)/ W\/@Qo(t/,fb)/ ———\JQFertieD (g 4) ds df! (15.16.37)

#—0 M =0 He(s, )
< CF'Y2(t,u)GY2(t, u),
N 1 7 t 1 artia
C*Lpl(t,ﬁ)T\/on(t,ﬂ)/ T P ety a) at! (15.16.38)
w = (t,a) v=0 W' (¥, 0)

< CPY(t,u)GM2(t, ),

where the constants C' on RHSs(|15.16.36))-({15.16.38]) are large and sum to the large constant
s on RHS . We remark that the largeness of ay will not preclude us from closing
the estimates because we will gain smallness in G(t,u) by using a separate argument given
below.

The remaining integrals on RHS are easier to treat. We now show how to bound
the term arising from the integral on the 14" line of RHS , which involves three
time integrations. The term arising from the integrals on the 13" line of RHS
can be handled using similar arguments, so we do not provide those details. We claim that
the following sequence of inequalities holds for the term of interest, which yields the desired
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bound:

S

C‘L?(f,a)/t ﬁ\/(@m(t/,ﬁ)/_o ! . / A)\/ng(s’,ﬁ)ds’dsdt’

=0 Hx be(s, @) Jo—o 1% (s', 1
(15.16.39)
< gprl(f,ﬁ)L;m(tA,ﬁ) /t ;\/ng(zﬁ',ﬁ)
c t'=0 “'*(tlaf&)
v -
></ - sup {L2C/2(S,,U,)\/@Qo(sl,ul)} dsdt/
s=0 },L*(S,U) (s’,u")€[1,s] % [0,4]
< gagl(f, a)*(t, a) /t %\/ Quo(t', )
¢ t'=0 H*(t ,U)
t/
< s VBl ) [ dsar
(s",u")€[0,t']x[0,4)] s=0 H2(s, 1)

C — A C T A —C
< =) s {i ) T )y Q) |

(s',u’)€[0,{] x[0,4]

t t
X sup {\/ @20(5',1/)}/ = / . ! — ds dt’

(s’ u")€[0,]] x[0,4] v—o Me(t', 1) Jo H2(s, )

C ~ t 1 t 1

< —w(t,a) sup 1t (8, 1) Qoo (s, 1) b < . / — ds dt’
¢ (s',u")€[0,] x [0,4] { r } t'=0 I“L*(t,7u) 5=0 H»%(S’u)
c .

< —F(t,a) < —F(t,u),

1
which yields the desired smallness factor —. We now explain how to derive (15.16.39). To de-
c

duce the first inequality, we multiplied and divided by L;/ (¢, 4) in the integral J---ds’, then

pulled sup {L;c/2(8/, u' )/ Qao($, u’)} out of the integral, and finally used (15.16.17)
[0,4]

(s',u’)€l0,s] x

1 s 1 c A
to gain the smallness factor — from the remaining terms — 8P, a)ds’. To
¢ /=0 @/2(3’,71)
derive the second inequality in ((15.16.39)), we multiplied and divided by (s, @) in the
integral f ---ds, and used the approximate monotonicity property ((15.16.20)) to pull the
factor sup {H*(S/,UI)L;C/2(8,,UI)\/Q20<8/,u,)} out of the ds integral, which costs
(s’,u’)€[0,t']x 0,4
us a harmless multiplicative factor of 1 + C'e. The third inequality in ((15.16.39)) follows
easily. To derive the fourth inequality, we use the monotonicity of ¢{(-), ¢5(-) and e®, and
the approximate monotonicity property (15.16.20). To derive the fifth inequality, we use

inequality (11.3.3)) twice. The final inequality follows easily.
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Similarly, we claim that we can bound the terms on the 8" through 11** lines of RHS ([15.2.1a))
and the second term on the 12" line of RHS ([15.2.1a)) as follows:

t
A (E ) Ce / L Qu(t, @) dt < C=F (i) < CeF(t,u),
/=0 H*(t a)
(15.16.40)
. | Yoo A
—1 ~ !~ ~ /< F ~ < F
Lp (t,u)CE/th —p*(t’,ﬁ)\/(@zo(t L) /80 H*(S’a)\/(@go(s,u) dsdt' < CeF(t,u) < CeF(t,u),
(15.16.41)
. 1 - 1 o .
() O~/ Qo @) / Qo (t @) dt < CeF (i, @) < C=F(t,u),
Mo (t,U) =0 i (tau)
(15.16.42)
T . 1 — o C o C
lp (t,U>C @20<t,U) T @20<t ,'LL) dt < —F<t,U) < —F(t,U),
v=0 W' (¥, ) ¢ ¢
(15.16.43)
YL Co v C '
tp (L, u)C(1+¢7) Wng(t ) dt < — (1+< VF(t,u) < (l—l—g VF(t,u).
=0 My

(15.16.44)

To derive ((15.16.40[), we use arguments similar to the ones we used in deriving ((15.16.33|), but

in place of the delicate estimate (|[11.3.1]), we use the estimate (11.3.3]), whose imprecision
is compensated for by the availability of the smallness factor €. Similar remarks apply

o (15.16.41]), but we rely on the fact that there are two time integrations. The proof of
(15.16.44]) is similar, but we multiply and divide by by ¢, “(#', @) in the integrand and use the

1

estimate ([15.16.17) to gain the smallness factor —. To derive ([15.16.42), we use arguments
c

similar to the ones we used above, but we now multiply and divide by u5 9%(¢',4) in the time

integral on LHS ([15.16.42)) and use ([11.3.3). To derive ([15.16.43)), we use similar arguments
based on multiplying and dividing by Lg/ 2(25’ ,0) in the time integral and using ((15.16.17]).
Similarly, we derive the bound
t
C .
@20 t'a)dt < F(t u) <
0 \/ Boot) -
for the first term on the 12 line of RHS (15.2.1a)) by multiplying and dividing by «¢(¢') in
the integrand and using (15.16.16|) to gain the smallness factor —.
c

Similarly, we derive the bound

C(1+¢ M)t (ta) Qao(t,u) du’ < gF(f, @) < gF(t,u) (15.16.46)
0

w = C C

Cuph(t, a) F(t,u) (15.16.45)

GIQ

for the first term on the 15 line of RHS (15.2.1a)) by multiplying and dividing by e in
the integrand and using (15.16.19)) to gain the smallness factor —.
c
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It is easy to see that the terms arising from the term on the first line and the last three terms

on the 15" line of RHS ((15.2.1al), namely C(1 + (1)@:2p;3/2(t,u), CeQoo(t,u), CsQoo(t, u),
and CsKy(t, u), are respectively bounded (after multiplying by ' and taking the relevant

sup) by < O(1 +¢ He?, < CeF(t,u), < CsF(t,u), and < C<F(t,u).
To bound the term arising from the first term on the 16" line of RHS (15.2.1al) (where we
recall that N = 20), we argue as follows with the help of (15.16.17)) and ({15.16.20)):
o 1
C(1 + ¢ (i, ) / Qg (t, ) dt (15.16.47)
v=0 W/ (', )

AN 2

S t

< O+ (E ) (D (F @) e sup (M)
' €[0,{] Mo (t , U)

—cC (4! !~ f Lg—(t/) /
X < sup ¢y (1) Qg (t, ) X/ 2 dt
t

t'€0,1) —o w2 (¢, w)

i c(4!
1y —erp B R R Ls(t
< C(1+¢ Ny (F) § sup ey (¢, 0)Qp (1, 0) X/ —1/3( )A dt’
t€0,] =0 W' (¥, )

C
< =

c

Using a similar argument based on (15.16.19)), we bound the term arising from the second
term on the 16 line of RHS ([15.2.1a)) as follows:

(1+¢HH(Ea) < %(1 + ¢ HH(t,u).

C(1+¢ Mt (ta) Q19 (£, u") du’ (15.16.48)

To bound the terms arising from the three terms on the 17¢* line of RHS (15.2.1al), we argue
as follows (again recalling that N = 20):

Cevp (6, 0) Qg (t, 4) = Cer(t, @) ey (¢, ) K v—1 (E, @) (15.16.49)
< Cepl(t,a)H(t,0) < CeH(t, 1) < CeH(t,u),

Csup! (8, 4)Quag (f, 0) = Cop (£, 4) ey (£, 0) Ky v—y (£, @) (15.16.50)
< Cou(t,a)H(t,a) < CsH(t,a) < CsH(t,u),

Csupt (t,0) Ky n_1 (8, 0) = Copl(t, a)ey (F, @)Ky n— (£, 2) (15.16.51)
< Cop2(f,a)H(t,0) < C<H(f,1) < CsH(t, u)
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~
~

Inserting all of these estimates into the RHS of ¢ ' (, @) x (15.2.1a))(#, @) and taking SUD(7.0)€[0,4] [0,4]
of both sides, we deduce that

6 8.1 2 C
< —1y 22 “ -1
F(t,u) <C(l+4+¢ H)e*+ {11.8 + F 9% 113 +—5‘4 + CVe + Cs+ . (1+¢ )}F(t,u)
(15.16.52)

1
+C {5 ++ 5(1 - g‘l)} H(t,u) + CFY2(t,u)GY?(t, u).

We now bound the terms L&l (t,4) x --- arising from the terms described in (15.2.2). We
claim that the following analog of ([15.16.52)) holds:

G(t,u) <C(1+¢He*+C {5 +<c+ %(1 + g_l)} F(t,u)+C {5 +<¢+ %(1 + g‘l)} H(t,u).
(15.16.53)

The proof of ((15.16.53)) is similar to the proof of (|15.16.52)), but with the following key
changes: 1i): in view of (15.2.2)), the terms corresponding to ([15.16.33))-(15.16.35) and

(15.16.36)-(15.16.38) are absent from RHS (15.16.53). To treat the terms t5' (¢, @) x -
corresponding to the three new terms explicitly listed in , we argue as in the proof
of (15.16.33)), ([15.16.34)), and (15.16.35)), but using the cruder inequality in place of
the delicate inequalities (|11.3.1)) and (11.3.2)). We find that

) ¢ 1 N )
C&E:l(t,ﬁ)/ - \/QN(t’,t)/ —/Qn(s,1)dsdt (15.16.54)
=0 Wi (t', 1) s=0 Hi(s, 1)
< CeF(t,u),
i
) 1

Ceu M (t, 4 —Qn(t,0)dt 15.16.55
¢ (1) () ~(t',0) ( )

< CeF(t,u),

Ceig!(t, ﬂ)%\/@N(f,a)/ L Jonadl (15.16.56)
(1 a) )
< CeF(t,u).

The desired estimate (15.16.53)) now follows from the same arguments used to prove (15.16.52)),
where ((15.16.54)-(15.16.56)) contribute to the second product on RHS ((15.16.53]).

We now bound the terms ¢! (£,4) x - - - arising from the terms on RHS (15.2.3). All terms
except the one arising from the integral involving the top-order factor v/Qy (featured in the

ds integral on RHS (15.2.3))) can be bounded by < C'é* + %(1 +¢ HG(t,u) + CsH(t,u) by

using essentially the same arguments given above. In particular, we use the already proven
specific vorticity energy estimates ((15.1.1d))-([15.1.1€)) to handle the terms generated by the
integrals on the last line of RHS ((15.2.3). To handle the remaining term involving the top-

order factor y/Qq, we use arguments similar to the ones we used to prove ((15.16.39)) (in
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particular, we use inequality ((11.3.3)) twice) to bound it as follows:
. ¢ 1 t 1
Cbﬁl(taﬁ)/ —7a vV an 19 (', u)/ —72 -V Qa(s, 4) dsdt' (15.16.57)
v=o (¢, ) s:op*( u)

SCLEl(t,ﬁ) sup {uﬁ'g(t/,A) 119 sup {H* (', )\/Q_%( )}

(' ') €[0,£] x[0,4] " ) €[0,£] x [0,1]

i 1 t/ 1 ,
X ~ — ds dt
/t’:0 ui.4(t,7u) /s:0 }’L?cA(Sa U)

. . 1
< CFY2(t,a)HY?(t,4) < CF(t,u) + S H(tu).

Inserting all of these estimates into the RHS of « ;! (£, @) x (15.2.3))(f, @) and taking SUD(7.4)e[0,4] x [0.4]
of both sides, we deduce that

H(t,u) < C&*+C {1 1}F(t u) + C { Lo +g—1)i} H(t,u).  (15.16.58)

We now consider the system of three inequalities ((15.16.52)), (15.16.53)), and ((15.16.58)),
and we remind the reader that the constants C' in these inequalities can be chosen to be
independent of ¢. The desired estimates ({15.16.10])-(15.16.12)) now follow from first choosing

¢ to be sufficiently small, then choosing ¢ to be sufficiently large, then choosing € to be

6 8.1 2
fficientl 11, and using the afi tioned fact that — 1.
sutliciently small, and using the alorementioned fact tha 118+59>< 118+54+C’\/_<

Estimates for max {Q[l,lS]a K[l,lS]}a max {Q[l,l?];K[l,lﬂ}v +, Imax {@1, Kl} via a de-
scent scheme: We now explain how to use inequality to derive the estimates
for max {@[1718},K[1718}}, max {@[1,17],K[1,17]}, -+, max{Qq,K;} by downward induction.
Unlike our analysis of the strongly coupled pair max {Qqg, Koo} and max {@[1719], K[Mg]}, we
can derive the desired estimates for max {@[1718},K[1718}} by using only inequality
and the already derived estimates for max {Q[ng}, K[ng}}. At the end of the proof, we will

describe the minor changes needed to derive the desired estimates for max {Q[l,lﬂaK[l,l?}}a
, Max {Ql + Kl}
To begin, we define the following analogs of ((15.16.7) and ((15.16.3)):

L () = T W) S () (e e (15.16.59)

H(t,u) := sup L;~Il (t, @) max {Qpu 5 (£, 4), Ky gy (£, @) } - (15.16.60)

(£,2)€[0,t] x[0,u]

Note that the power of u_ ! in the factor ;" has been reduced by two in (15.16.59) compared
o (|15.16.7]), which corresponds to less singular behavior of max {Q[ng],K[ng]} near the
shock. As before, to prove the desired estimate (15.1.1al) (now with K = 3), it suffices to

prove
H(t,u) < C&. (15.16.61)

We now set N = 19, multiply both sides of inequality (15.2.3]) by L; (t,u) and then set
(t,u) = ({,4). With one exception, we can bound all terms arising from the integrals on
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RHS (15.2.3) by < C&* + g(l + ¢ YH(t,u) + <H(t,u) (where C' is independent of ¢) by

using the same arguments that we used in deriving the estimate for max {@[1719},11{[1719}}.
The exceptional term is the one arising from the integral involving the above-present-order

factor /Q1,19). We bound the exceptional term as follows by using inequality (11.3.3)), the
approximate monotonicity of ¢, and the estimate /Qp19) < Crép;*?(¢,u) (which follows
from the already proven estimate ([15.16.8)) for H(¢,u)):
t t
R 1 1
-1 ~
Cuz (1, a) /

vmo (00 V Qg (t', ) / 75—/ Qg (s, @) ds dt’ (15.16.62)

s=0 W' (s, )

i t/
. 1 1
e hn s (@< [ [ s
A W weo,ixfo,a © 7 el =0 uiﬂ(t’, @) Js=0 ni4(s, @)

o —1/2/7 « — N —1/2
<G an0 ) s L))}

(t"u')€[0,4]x[0,a]
< CRH(f,i) < C.& + LH(t,u).
In total, we have obtained the following analog of ([15.16.58)):
H(t,u) < C.&+ %(1 + ¢ YH(tu) + %ﬁ(t, u) 4+ CcH(t, u), (15.16.63)

where C. is the only constant that depends on ¢. The desired bound ([15.16.61]) easily follows
from ([15.16.63)) by first choosing ¢ to be sufficiently small and then ¢ to be sufficiently large

so that we can absorb all factors of H on RHS (15.16.63|) into the LHS.
The desired bounds (15.1.1b)) for maX{Q[l,m,K[l,m , max{Q[l,m],K[l,lG]} -+ can be

(downward) inductively derived by using an argument similar to the one we used to bound

max {@[1,18] K18 }, which relied on the already proven bounds for max {@[1,19}, Ki1,19 ;. The
15.16.59)

only difference is that we define the analog of the approximating integrating factor (

to be uPu§(t)5(t, u')e e, where P = 5.8 for the max {Q 17, K117} estimate, P = 3.8
for the max {@[1,16},11{[1,16}} estimate, P = 1.8 for the max {Q[1715],K[1715]} estimate, and P =
0 for the max {Q[1,§14]7 K[LSM}} estimates; these latter estimates do not involve any singular
factor of u;t. There is one important new detail relevant for these estimates: in deriving the

analog of the inequalities (15.16.62)) for max {Q[17S14}7K[1,§14l , we use the estimate ((11.3.6))
in place of the estimate (11.3.3)); as in our proof of Lemma|15.21] the estimate ((11.3.6)) allows
us to break the u; ! degeneracy. This completes the proof of Prop. [15.1}

16. THE MAIN THEOREM
We now state and prove the main theorem.

Theorem 16.1 (Stable shock formation). Let (p,v', v?, w) be a solution to the 2D com-
pressible Euler equations in the form (3.3.11a])-(3.3.11d) under any physz'cam barotropic
equation of state except for that of a Chaplygin gas (see (3.3.4))) and let u be a solution

to the eikonal equation (B.6.1). Let U = (Wy, Uy, U,) := (p,v',v2) denote the array of the

H2physical in the sense described below equation (3.3.2).
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difference between the wave variables and the constant state solution (0,0,0). Assume that

the solution verifies the size assumptions on ¥} and 73025*_1 stated in Sects. and as
well as the smallness assumptions of Sect. . In particular, let €, &, and b, be the data-

size parameters from (8.1.1), (8.1.2)-(8.1.7), and (8.2.1a)-(8.2.8). Assume the genericity
conditiorl ™|

& +1+#0, (16.0.64)

where ¢’ = c(p = 0) denotes the value of ¢, corresponding to the background constant
state. Let T be the change of variables map from geometric to Cartesian coordinates (see

Def.[3.19). For each Uy € [0,1], let

T(Lifespan);Uo

= sup {t € [1,00) | the solution ezists classically on My,

and Y is a diffeomorphism from [1,t) x [0,Ug] x T onto its image}

(see Figure on pqg. @) If € is sufficiently smal relative to 5~ and b, (in the sense
explained in Sect. , then the following conclusions hold, where all constants can be chosen
to be independent of Uy.

Dichotomy of possibilities. One of the following mutually disjoint possibilities must oc-

cur, where W, (t,u) is defined in (11.1.2)).

I) Tvifespanyg > 25*_1. In particular, the solution exists classically on the space-
time region clMys—1 1, , where cl denotes closure. Furthermore, inf{i.(s,Up) | s €
0,257} > 0.

II) 0< T(Lifespan) Uo < 26;1, and

)

T L espanyty = SUD {t € [1,2571) | inf{pw(s,Up) | s € [1,6)} > o} . (16.0.65)
In addition, case II) occurs when Uy = 1. In this case, we have

T(Lifespan);l = {]— + O(é)} 8;1 (16066)

What happens in Case I). In case I), all bootstrap assumptions, the estimates of Props.
and|10.1, and the energy estimates of Prop. hold on clMyz—1 1, with all factors e on the
RHS of all inequalities replaced by C€é. Moreover, for 0 < K <5, the following estimates

H3For any barotropic equation of state except for that of the Chaplygin gas (see (3.3.4), there exist
choices of the background density p such that the condition holds.

H4Recall that in Subsect. we show that there exists an open set of solutions satisfying the desired
smallness conditions.
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hold for (t,u) € [0,267%] x [0, U

||%[17141;§1HHL2 Eu) ? ‘ka<14 <2L(Small HLZ(E%‘) ? %Slg;gztrngHLQ(Eg) S Cé7 (16067&)
szlg]—i_l(;SluHL?(Eu Ho@plfy—i-l( <2L(Small Hp@y) ’ H%MJFK;S%WXHB(E?) < C«éu*—(K+.4) (t,u),

16.0.67b)

u),

(
L2y 122 g 0
(16.0.67c)
(
(

- L2 XHL2 < Ceép 64

H “YmtrﬁXHLZ(Ey) 7

}LYlg)v(t H < Céu, >9(¢
rjX L2( g) — € * ) )
16.0.67d)

What happens in Case II). In case II), all bootstrap assumptions, the estimates of
Props. |9.]q and|10. JI, and the energy estimates of Prop. hold on MT(Lifespan);U07U0 with
all factors € on the RHS of all inequalities replaced by C'e. Moreover, for 0 < K < 5,
the estimates (16.0.67a)-(16.0.67d) hold for (t,u) € [1,T(Lifespanyy) X [0,Uo]. In addi-
tion, the scalar-valued functions Q”SH?Q\I_}, )u()v()u(\l_}, s eSSty and XX}J. ex-

tend to E%OW“W)U as functions of the geometric coordinates (t,u,v) that are uniformly

bounded in L*. Furthermore, the Cartesian component functions gag(\l_}) verify the esti-
mate gog = Mag + O(€) (where myz = diag(—1,1,1) is the standard Minkowski metric) and
have the same extension properties as U and its derivatives with respect to the vectorfields
mentioned above.

Up;(Blowu
Moreover, let ZT?LEfespani)U be the (non-empty) subset of ET(szespam o defined by
Uo;(Blowup) | -
T(OLifESpani)Uo = {(T(Lifespan);Um u, 19) | H(T(Lifespan);Uov u, 19) - 0} . (16068)

Uo;(Blowup)
T(szespan) ;Ug 7
containing it such that the following lower bound holds in the neighborhood:

Then for each point (T(Lifespanyvy, U, V) € X there exists a past neighborhood

5, 1

X Xo'
Xett,w ) [Xv' )] 2 g iy

(16.0.69)

d. ‘ s
In (16.0.69), m is a positive data-dependent constant (see (16.0.64) ), and the C;,-
Cs
transversal vectorfield X is near-Euclidean-unit length: 6,4,X*X° =1+ O(€). In particular,

Uo;(Blowup)

T(0sfespam)ty Conversely, at all points in

Xp and Xv' blow up like 1/u at all points in ¥

U U (Blowup)
(T Lifespan);Ups U, V) € ET?LWWM) UO\ T(Oszegpan)pU , we have
}Xp(T(LifSSP‘ln);Um u, 19) ) 1(CT(Lz'fespom);Ug7 u, 19)‘ < oQ. (16070)
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Proof. Let C' > 1 be a constant (we will enlarge it as needed throughout the proof). We
define

T(Maz):v, = The supremum of the set of times T{poo) € [0, 25_1] such that: (16.0.71)

° \17, w, u, W, L(Small and all of the other quantities
defined throughout the article exist classically on Mg, . v,

e The change of variables map Y from Def. is a (global) C*!
diffeomorphism from [0, T{oor)) X [0, Uo] x T onto its image M, ., v,-

e inf {1, (¢, Up) | t € [0, TBoory) } > 0.

e The fundamental L* bootstrap assumptions and
hold with € := C"¢€ for (t,u) € %[0, T(Boor)) % [0, Up].

e The following L?-type energy bounds hold for (t,u) € x[0
QUL (tw) TR (tu) < Ceu; S 9(w),  (0< K
Q%) + K1, (tu) < C'¢, 16.0.73

T (Boot)) X [0, Up) :
< ( )
( )
VA2t u) < C'éu54(t, ), (16.0.74)
( )
( )

5), 16.0.72

Vig(tu) < Cep U9 (tu), (0K <4), 16.0.75
VY (tu) < C'e. 16.0.76

It is a standard result that if € is sufficiently small and C" is sufficiently large, then T\ yrq0),0, >
0 (this is a standard local well-posedness result combined with the initial smallness of the
L?-controlling quantities obtained in Lemma [15.2).

We now show that the energy bounds (16.0.72))-(16.0.76|) and the fundamental L> boot-
strap assumption and are not saturated for (t,u) € [1, T(rraz)v,) X [0, Uo.
The non-saturation of the energy bounds (for C’ sufficiently large) is provided by Prop. .
The non-saturation of the fundamental L> bootstrap assumptions then follows from
Cor. [13.2 Consequently, we conclude that all of the estimates proved throughout the ar-
ticle hold on M1, v, Wwith the smallness parameter ¢ replaced by C' €. We use this fact
throughout the remainder of the proof without further remark.

Next, we show that (16.0.67a))-(16.0.67d|) hold for (¢,u) € [1,T(rrax),) X [0,Up]. To
(

obtain ((16.0.67a)-(16.0.67c|), we insert the energy estimates of Prop. [15.1] into the RHS of
the inequalities of Lemma |15.6| and use inequalities (11.3.3]) and (11.3.6]) as well as the fact

that Qi a is increasing in its arguments. To obtain inequality (16.0.67d)), we also insert the
energy estimates of Prop. into RHS ((15.7.3)) and use inequality (11.3.3)).
We now establish the dichotomy of possibilities. We first show that if
inf {w.(t,Uo) | t € [1, Tinranyy) } > 0,

then Tinjaw)v, = 25;1. This fact can be established using the same arguments given in
the proof of |30, Theorem 15.1] (for € sufficiently small), which were based on analogs of
the fundamental L*™ bootstrap assumptions (now known to be non-saturated) and the L*>
estimates of Props. [9.12] and [10.1} We will not repeat the (straightforward but tedious)
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proof here; we note only that the above assumption for w, can be combined with other
simple estimates to yield that T extends as a global C'*! diffeomorphism from [1, T (Maz);U) %
[0, Up] x T onto its image and moreover, that neither the solution nor its derivatives can blow
up with respect to geometric or Cartesian coordinates for times in [0, 25*_1]. We have thus
shown that I) T(Mam);Uo = 28*_1 or II) inf {},L*(t, Uo) ‘ t e [LT(Mam);Uo)} =0.

We now show that case II) corresponds to a singularity and that the classical lifespan
is characterized by ([16.0.65]). To this end, we first use (9.6.4), (10.2.7), (11.2.2), and the
identity X = pX to deduce that inequality (16.0.69) holds. Furthermore, from (3.5.1)-
(35.3), (3.19.2d), and the L™ estimates of Prop. [0.12] we deduce that | X| := /g, XX =
1+ f(y)y = 1+ O(¢€). From this estimate and (16.0.69), we deduce that at points in
ZT(MW;UO,U() where w vanishes, | X ¥| must blow up like 1/u. Hence, T{ysqz),0, is the classical

lifespan. That is, we have T{arae),y = T(Lifespan);t, @S Well as the characterization ((16.0.65)

of the classical lifespan. The estimate (16.0.70f) is an immediate consequence of the estimates
(9.6.3b])-(19.6.3¢) and the identity X = pX.
To obtain ((16.0.66)), we use ((11.2.5a]) and ([11.2.6b)) to deduce that w,(t, 1) vanishes for the

first time when ¢t = 8! + O(é€).

We now derive the statements regarding the quantities that extend to 2%)” oy 35 L>
ifespan);Ug

functions. Let ¢ denote any of the quantities Z<15<2¥, ... X X that, in the theorem,

are stated to extend to E%)Lf Lo, A an L> function of the geometric coordinates. The
ifespan);Ug

L> estimates of Props. |9.12| and |10.1| imply that ||Lgl| L(soy 18 uniformly bounded for

Q, we conclude that ¢ extends to ZKT]O _
ot 5 (Lifespan);Ug

) as desired. The estimate g,3(V) = mqp + O(€) and the

—

extension properties of the Z-derivatives of the scalar-valued functions g,3(¥) then follow
from (3.5.1)), the already proven bound || V]| Loo(sU0) < €, and the extension properties of the
t

0 <t < TiLifespan);t,- Recalling that L =

as an element of L‘X’(Ego ,
(Lifespan);Ugy

% -derivatives of U obtained just above. This completes the proof of the theorem. 0
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