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Non-Gaussian SLAM utilizing Synthetic Aperture Sonar

Mei Yi Cheung1, Dehann Fourie2, Nicholas R. Rypkema2, Pedro Vaz Teixeira1,
Henrik Schmidt1, and John Leonard1

Abstract— Synthetic Aperture Sonar (SAS) is a technique to
improve the spatial resolution from a moving set of receivers by
extending the array in time, increasing the effective array length
and aperture. This technique is limited by the accuracy of the
receiver position estimates, necessitating highly accurate, typi-
cally expensive aided-inertial navigation systems for submerged
platforms. We leverage simultaneous localization and mapping
to fuse acoustic and navigational measurements and obtain
accurate pose estimates even without the benefit of absolute
positioning for lengthy underwater missions. We demonstrate
a method of formulating the well-known SAS problem in
a SLAM framework, using acoustic data from hydrophones
to simultaneously estimate platform and beacon position. An
empirical probability distribution is computed from a conven-
tional beamformer to correctly account for uncertainty in the
acoustic measurements. The non-parametric method relieves
the familiar Gaussian-only assumption currently used in the
localization and mapping discipline and fits effectively into a
factor graph formulation with conventional factors such as
ground-truth priors and odometry. We present results from
field experiments performed on the Charles River with an
autonomous surface vehicle which demonstrate simultaneous
localization of an unknown acoustic beacon and vehicle posi-
tioning, and provide comparison to GPS ground truths.

I. INTRODUCTION

Underwater acoustic beamforming typically uses phased
arrays which consist of a fixed set of physically connected
transducers that receive energy at varying times, depending
on the geometry and travel speed of transmission. Increasing
the physical aperture of the array can provide finer spatial
resolution but is often constrained by the platform the array
is mounted on. Synthetic aperture techniques operate by
considering the array output over a segment of the platform’s
trajectory, effectively creating a larger virtual array with
increased aperture and thus resolution. In addition, distribut-
ing the beamforming task over a network of platforms (ve-
hicles)—rather than one large expensive sensor—increases
resilience and exploration rate, necessitating an accurate
relative localization, mapping, and planning solution.

Conventional synthetic beamforming operations resolve
the location of features in view by assuming the locations of
transducer poses to be fixed and true – generally using some
method of accurate odometry [1]. The inverse problem of
resolving the transducer pose positions given a static scene
assumption is more difficult. We believe that this work is the
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Fig. 1: Illustration of a SAS-factor (black) that can be used in combination
with other factors in a factor graph (gray). Each consecutive vehicle pose
xi corresponds to a single element of the synthetic array. The measurement
associated with each pose is an acoustic waveform, zi. In our formulation,
the synthetic aperture can be beamformed to inform the location of the
landmark (conventional usage) and simultaneously, the correlation between
waveforms can be used to inform the location of every pose (SLAM usage).

first to leverage single hydrophone acoustic waveforms in a
common simultaneous localization and mapping solution, via
the synthetic aperture process, to improve the accuracy of the
vehicle’s pose estimate without prior knowledge of scene.

The main algorithmic contribution of this paper is incor-
porating conventional synthetic aperture beamforming into a
common factor graph inference operation, with two immedi-
ate consequences: (i) recorded acoustic waveforms made by
the vehicle in the field are used to simultaneously estimate
the position of the acoustic source and each of the receiver
positions associated with the synthetic array, and (ii) data-
fusion inference with other data sources is performed by non-
Gaussian smoothing using a factor graph.

II. LITERATURE REVIEW

A. Synthetic Aperture Sonar

Synthetic aperture radar (SAR) is a well-established tech-
nique. The underwater equivalent, synthetic aperture sonar
(SAS), faces many challenges unique to the underwater and
acoustic environment [2], but as we will establish, simulta-
neous localization and mapping (SLAM) methods can tackle
these difficulties by providing high quality navigational in-
formation to an underwater vehicle using low-cost sensors.
Conventionally, SAS is a method of processing sonar data
in order to produce images of significantly higher azimuthal
resolution than the physical array would normally permit. If a
single receiver (hydrophone) or array travels in a straight line
at a known and constant speed, the sampled acoustic data at
each position in time can be seen as having being collected
from sequential elements of a much larger, synthetic array. If
the receiver’s position and velocity are known, the sampled
signals can be phase-shifted into coherence, forming an
image from the synthetic array.



The accuracy of SAS systems relies heavily on the po-
sitioning accuracy of the platform, typically slow-moving,
very stable or ship-mounted for high-resolution imaging or
object detection purposes [3]. AUVs can recieve GPS local-
ization when surfaced, but must rely on other methods while
underwater. Unaided inertial navigation is highly susceptible
to drift, and acoustic positioning systems such as ultra-short
baseline (USBL) or long baseline (LBL) are conventionally
expensive and/or require ship support. Doppler velocity
logs (DVL) are accurate but expensive, and might require
specific flying altitudes. Given the increasing affordability
of small light-weight underwater vehicles [4], we formulate
the problem using low-cost hydrophone sensors.

B. Simultaneous Localization and Mapping

SLAM is the simultaneous construction of a map of a
robot’s environment and estimation of its state (pose) [5]. The
marine domain is an appealing application for SLAM due to
the above-mentioned challenges of underwater navigation;
however, another significant challenge lies in fusing measure-
ments obtained from underwater sensors such as ranging and
imaging sonars, optical modems, oceanographic (pressure,
temperature, bathymetry) sensors, etc.

Mallios et al. [6] demonstrate a pose-based EKF-SLAM
solution in an underwater cave system registering both
imaging and profiling sonars. Single-beam sonar registra-
tion without the need for inertial/odometry measurements is
shown with iSAM [7], or with forward-looking sonar and
pose-graph SLAM in [8]. Acoustic structure from motion
(ASFM) [9] presents a factor-graph formulation of fusing
odometry and imaging sonar measurements to recover envi-
ronmental point features in 3D.

Newman et al. [10] demonstrated incorporating range,
azimuth, and elevation measurements from a SAS system
into a constant-time SLAM (CTS) framework with manual
data association, while indicating that a graph-theoretical
perspective would likely resolve some of the limitations
encountered by the CTS method. In contrast to CTS, our
approach uses a non-Gaussian factor graph approach, and
does not divide the problem into submaps. Instead, the
Bayes (Junction) tree strategy is used to decompose the full
graph problem into statistically independent branches, in a
mechanism that allows previous computations to be recycled
in a near-optimal manner [11]–[13].

III. PROBLEM STATEMENT AND METHOD

A. Conventional Beamformer (CBF)

An array of acoustic receivers can be used to estimate the
angle between the array and a sound source through con-
ventional beamforming (CBF) [14], as illustrated in Fig. 2.
Assuming the wave of sound incident onto the array is planar
(a valid assumption when the source is in the far-field), we
use trigonometric principles and the known array geometry to
apply time-delays (or phase-shifts in the frequency domain)
to the received signals for a user-specified look-angle. The
aim of beamforming is to estimate the angle to the sound
source by varying this look-angle over a set of candidate

f0[n-т0]

f1[n-т1]

f2[n-т2]

f3[n-т3]

+т0 ejωт0

+т1 ejωт1

+т2 ejωт2

+т3 ejωт3

Σ

phase shifterrecorded signal beamformed output
for look angle

z
p2

look angle

p3 p4p1p0

incoming plane wave

0

z
p2

look angle

p3 p4p1p0

incoming plane wave

0

f4[n-т4]
+т4 ejωт4

f0[n-т0]

f1[n-т1]

f2[n-т2]

f3[n-т3]

+т0 ejωт0

+т1 ejωт1

+т2 ejωт2

+т3 ejωт3

Σ

phase shifterrecorded signal beamformed output
for look angle

f4[n-т4]
+т4 ejωт4

Fig. 2: Conceptual illustration of conventional beamforming. Top: The
output power of the beamformer is low when the look-angle is not directed
toward the incoming acoustic plane wave. Bottom: Signals received by each
element constructively combine when the look-angle is directed toward the
acoustic source, which is reflected by a high beamformer output power.

directions. The angle which results in maximum power
(constructive interference on all received signals) usually
corresponds to the look-angle is pointing towards the source.

For a given look-angle and set of array element positions
~xi, the time delay of a plane wave incident onto the array
from that direction can be calculated as:

τi = −~u
T~xi
c

where : ~u = [cos(ϑ) sin(ϑ)]T (1)

where c is speed-of-sound in water and ϑ is the look-angle.
This time-delay applied to the signal fi from element i is
identical to phase-shifts in frequency:

fi[n− τi]
DFT/IDFT


 Fi[ω] · e−j~ωτi (2)

where ~ω is the vector of frequencies of the n-point Discrete
Fourier Transform (DFT). These time delays are induced by
the array geometry, and beamforming works to negate these
by using an element-wise spatial filter ej~ωτi that applies
opposing phase-shifts, followed by a summation over all
signals as in Fig. 2:

Y [ω;ϑ] =

m∑
i=1

ej~ωτi · Fi[ω] (3)

The output power averaged over all frequencies is:

|Ỹ [ϑ]|2 =
1

n

∑
n

|Y [ωn;ϑ]|2 (4)

Typically, conventional beamforming is performed using
a geometrically fixed set of acoustic receivers. Synthetic
aperture beamforming/sonar (SAS) extends this concept: if a
single element coherently receives acoustic energy over time
(either by actively ensonifying an object in the environment
at every timestep, or in our case, by firing an acoustic
beacon in sync with the element recording), then identical
beamforming equations can be applied. There is only a minor
change to Eq. 1, to reflect this dependency over the most
recent n timesteps:

τi = −~u
T~xt−i
c

where : i = 0, 1, 2, ..., n (5)



Accurate estimation of the positions of the receiver(s),
~xt−i—the micronavigation problem—is critical to the perfor-
mance of the SAS system, and must be performed using the
few measurements available: received signals, odometry es-
timates, and occasional absolute positioning measurements.

B. Factor Graph Representation

The underlying inference problem that estimates state
variables Θ, (such as vehicle poses or beacon locations) from
non-ideal sensor measurements Z is described by a bi-partite
factor graph language [15]. The joint probability belief over
all variables, [ Θ |Z ] ∈ P , is a combination of factors
(measurements z∗k and residual prediction models δ (θ·, z·)),
where P is set of all probability functions. By the chain
rule, the product of independent measurements in the form
of likelihoods [Zi |Θi ] and variable prior potentials [ Θj ]—
each over an alphabet/domain Ξ—represents the theoretical
posterior joint probability density:

[ Θ |Z ] ∝
∏
i

[Zi |Θi ]
∏
j

[ Θj ] . (6)

The true measurements z∗i are assumed to originate from
the true hidden variable states θ∗i and the associated measure-
ment process z∗i ∼ [Zi |Θi = θ∗i ]. Factors (measurement
models) are modeled by means of algebraic structure along
with meaningful stochastic models. As an example, a basic
Gaussian odometry measurement likelihood could be:

zi ∼ [Zi |Θi = θi ] = N (µ = δ (θi, z
∗
i ) ,Σi) . (7)

Fig. 1 illustrates a synthetic aperture factor, containing hy-
drophone acoustic waveform recordings and required like-
lihood model, that can be used as part of a larger graph
containing a variety of sensor data.
While much of the existing state estimation, localization, and
mapping work in autonomy relies on point estimates and/or
unimodal Gaussian approximations these yield less com-
putational intensive algorithms, but they can over simplify
the representation of uncertainty, miss important mission-
relevant information, and yield brittle performance. In this
work, the measurement likelihood model shown in Fig. 1
is completely non-Gaussian and used along with multimodal
incremental smoothing and mapping (mm-iSAM) to perform
belief space inference over all sensor data without having to
resort to unimodal Gaussian assumptions.

C. Inference: Multimodal-iSAM

The multimodal-incremental smoothing and mapping in-
ference algorithm (mm-iSAM) [11], [16] (and implementa-
tion [17]) infers the belief over state variables Θi = Θ̂i that
produced the measurements z∗k. The inference is also known
as finding the posterior

[
Θ̂ |Z

]
, although mm-iSAM avoids

resolving the full joint posterior, at the expense of more
intensive computations. Mm-iSAM uses nine principles to
reduce the computational complexity [11]. One major feature
of mm-iSAM is that the full marginal posterior belief of
any or all variables in the factor graph can be estimated.

The marginal belief of each variable then contains all the
information introduced by the factors in the graph:[

Θ̂i |Z
]

=

∫
[ Θ |Z ] d\θi. (8)

The marginal beliefs are approximate functions, and the cur-
rent mm-iSAM strategy uses kernel density estimation with
N evenly weighted, common leave-one-out likelihood cross
validation for bandwidth selection Λi, Gaussian kernels [18]
to represent the marginal beliefs:[

Θ̂i |Z
]

=

N∑
n

1

N
N (θi;µn,Λi) . (9)

Mm-iSAM requires a residual function for the probabilis-
tic convolution of factors with current belief estimates of
the dependent variables. We define the forward projection
(akin to conventional SAS) as using receiver positions and
recorded waveforms to resolve the likely position of the
acoustic source. Similarly, the ‘backward’ projection esti-
mates a single receiver position from the beacon’s position
and neighboring poses.

1) Forward Convolution: Probabilistic convolution is per-
formed ‘forward’ or towards the beacon over the current
marginal beliefs of each pose Xi ∈ 1..m where m is the
length of the synthetic array and the beamforming compu-
tations using the recorded waveform measurements as in a
conventional beamformer (Section III-A):[

L̂ |X1..m,Z1, ·
]
∝ [Z1 |L,X1..m ]

m∏
j=1

[
X̂j | ·

]
(10)

Mm-iSAM numerically calculates this convolution by means
of a residual function δ (l1,x1..m; z1) where z1 represents
the recorded acoustic waveforms associated with the SAS
likelihood factor. For the forward case, a simplification can
be used whereby the azimuth angle beam pattern is con-
verted into a representative probability density over [0, 2π),
i.e.

[
Φ̃ |X = x1..m,Z = z1

]
as illustrated by the magenta

traces in Figs. 3 and 6. The density is re-calculated once for
each unique set of pose positions. The beamformer output
over azimuth (eq. (4)) is used as a pseudo-probability density
function after noise floor truncation and renormalization of
the beam pattern integral[

Φ̃ | ·
]

=
1

Q

∫
|Ỹ [θ, φ]|2 dφ, (11)

such that
∫∫
|Ỹ [θ, φ]|2 dφdθ = Q. Here Q is a hypothetical

partition function that normalizes the beamformer output so
that it will sum to 1. Strictly speaking the beam pattern also
includes reproducible structure dependent on the environ-
ment and physical setup which can be deconvolved from
the calculated beam pattern [19]; that calibration is not in
the scope of this work. The model in Eq. (11) can then
be used to sample the azimuth angles φ{n} for numerical
approximation of the convolution,

φ{n} ∼ [ Φ |X = x1..m,Z = z1 ] . (12)
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Fig. 3: Conventional SAS beamforming quantifies the distribution in re-
ceived acoustic energy over azimuths for a series of vehicle poses and
acoustic measurements. Range to the beacon is estimated from time-of-
flight. All acoustic measurements are from field experiments in the Charles
River. The output power of the CBF for a single array is drawn in magenta
at the array’s first pose. The range and azimuthal probability distribution is
sampled to form a proposed posterior distribution for the beacon’s location,
here shown as a histogram of sampled locations and a contour plot of the
resulting kernel density estimate representation. As typical for a CBF, the
likelihood is symmetric about the linear array. Here, the beacon is located at
(17.0, 1.78). Without any prior information, the CBF resolves two equally
likely modes, for which a non-Gaussian representation is applicable.

For both time-synchronized one-way, or active SAS two-
way time-of-flight operation, the range between beacon and
transducer ρ{n} can be calculated via matched filtering. The
correlator output of the matched filter is used to construct a
pseudo-probability density:

ρ{n} ∼ [P |X = x1..m,Z = z1 ] (13)

The combination of range and bearing samples can then be
used to perform a bearing, range, or bearing-range constraint
between the SAS reference frame and beacon location

δF

(
x
{n}
1..m, l

{n}
1 ;φ{n}, ρ{n}

)
. (14)

Using numerical root-finding, and given the independence of
the kernels in each of the pose marginal estimates (as per eq.
(9)), each of the pose values µ{n} are used in conjunction
with fresh samples φ{n}, ρ{n} to find the best value for each
l
{n}
1 , ∀n ∈ [1, N ]

∗l
{n}
1 =

argsolve
l1

(
0 = δF

(
x
{n}
1..m, l

{n}
1 ;φ{n}, ρ{n}

))
.

(15)

2) ‘Backwards’ Convolution: The ‘backwards’ probabilis-
tic convolution is the process by which the position of the
beacon informs the position of each element in the synthetic
array. We note that it is not a forward-backward solve in
the typical sense. The backward convolution is approximated
by the mm-iSAM infrastructure using the factor residual
function for all kernels n ∈ [1, N ] as in Eq. (9), however, in
the backwards case we can directly optimize the correlation
of one element at a time in a leave-one-out strategy:

∗x
{n}
i = argmin

pi

(
δF

(
x
{n}
1..m, l

{n}
1 ; z1

))2
. (16)

A leave-one-out strategy is used to ensure pose estimates
are calculated independently of their previous estimates, such
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Fig. 4: Example of coherence during beamforming during ‘backwards’
convolution. GPS ground-truth for five synthetic array elements are shown as
red crosses. Sampled solution locations for a single pose (2nd element) are
shown, from which mm-iSAM constructs its posterior distribution. The clear
‘line’ of solutions perpendicular to the ray from array to beacon represents
the far-field assumption, as moving linear array elements perpendicular
to the correct look-angle does not change the phase-shift applied to the
measurement waveform and its corresponding correlation. Inset: Correlation
ridge plotted against azimuth and δx, z-axis is beamformer power. Note the
large peak along the correct azimuth (≈ 60◦) and the additional peak at
the correct position in x.

that ~xj , j ∈ 1...m\i. When solving for the leave-out element
xi, the leave-in array element waveforms are time shifted
according to their positions

[
Xj = x̂

{n}
j | ·

]
.

The origin of the synthetic array is arbitrarily chosen as
one of the leave-in elements xo, o ∈ j, and the estimated
position of the beacon is [L1 | · ]. The relative azimuth
between pose and beacon is computed from the current belief
over the beacon’s location and the origin. The conventional
beamformer filter is applied to all of the leave-in elements,
and combined with the proposed phase-shifted waveform.
This produces a residual function as shown in Fig 4 (inset),
the largest peak of which is the position that most accurately
resolves the current look-angle.

ϑ = tan−1
(
yb − yo
xb − xo

)
(17)

τ̂i = −~u
T x̂i
c

(18)

τj = −~u
T~xj
c

where: ~u = [cos(ϑ) sin(ϑ)]T (19)

Y [ω;ϑ] =
1

m− 1

∑
j∈(1,m)\i

ej~ωτ̂j · Fj [ω] (20)

+ ej~ωτ̂i · Fi[ω]

IV. EXPERIMENTAL RESULTS

Field experiments were conducted from the MIT Sailing
Pavilion on the Charles River, Cambridge, MA. The oper-
ational area is characterized acoustically by very shallow
water depths (3-12m), concrete seawalls on both banks and
acoustic noise mainly from boating activity, surface wind
effects, and multi-path effects [20]. An acoustic beacon
transmits a known, time-synced chirp waveform (250 –
2000 Hz) from two experimental locations (A, B): (Trial
A) a stationary floating dock, and (Trial B) a drifting motor
boat. Fig. 5 shows an FFT of the chirp waveform, and a
representative spectrogram of the received signal.
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Fig. 5: Left: ASV Nostromo and acoustic beacon at the MIT Sailing Pavilion. Center: Frequency content of experiment waveform after windowed chirp
z-transform. Right: Sample spectrogram of acoustic waveform recorded by a single hydrophone, with chirp at left.

An autonomous surface vehicle (ASV) is used as an exper-
imental proxy for an underwater platform, with the benefit of
providing ground truth via RTK-GPS to an accuracy within
0.1m [21]. In two experiment trials, the ASV travels an
elliptical or circular loiter pattern relative to the beacon at
a constant forward speed of approximately 1m/s. We note
that the experimental ASV is able to travel faster (up to
4m/s) and has a smaller turning radius than a typical AUV,
thus the dynamics of trajectory-following are not the focus
for this experiment. MOOS-IvP autonomy software is used
to handle communication between mission-level trajectory
behaviors and low-level vehicle speed (thruster) and heading
(servo) controllers [22].

Acoustic signals are recorded with a stern-mounted (1.5m
depth) tetrahedral hydrophone array [23]. While only mea-
surements from a single element of the tetrahedral array
are processed, the factor graph representation is suited to
the incorporation of diverse factors, including potential long
baseline (LBL) measurements from the array. The length
of each mission is approximately 7 minutes, over which
the vehicle travels about 470m. Vehicle acoustic waveform
measurements and poses are recorded at the rate of 1Hz,
sampled at a frequency of 37.5 kHz for a total of 8000
samples. The speed of sound is assumed to be 1481m/s.
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Fig. 6: SAS-SLAM result with GPS priors on every pose for Trial A. Ground
truth GPS trajectory of the vehicle is traced in green, with poses used
for SAS shown as points. Estimated beam patterns are shown as magenta
traces at the origin of each array (arbitrarily selected as the earliest pose).
The true, MAP, and mean-fit beacon locations are shown, underlaid by the
full posterior distribution represented as a density contour plot, with each
contour containing 20% of the probability mass.

A. Factor Graph Construction

For Trial A, a stationary beacon is located at the MIT
Sailing Pavilion. For Trial B, a beacon is located on an
anchored motorboat equipped with accurate differential GPS,
with maximum drift under 20m. Both SAS-SLAM solutions
assume the beacon to be stationary. No prior is given for the
beacon’s position, assumed to be entirely unknown. Trial A
has 300 poses and Trial B has 400 poses in total.1

First, we show results with the assumption that every
vehicle pose is supplied with an accurate GPS ground-truth
prior (reasonable for a surface vehicle). This functions as an
objective analysis of the forward convolution in the SLAM
framework. Fig. 6 shows an instance of Trial A with six SAS
factors, each comprising eight poses (synthetic array length
of approximately 8m) selected at equal intervals around the
mission’s elliptical trajectory. With accurate positioning, the
beamformer strongly identifies the correct azimuth (and its
equally likely symmetric second mode) for every synthetic
array, with the exception of the very first one (closest to the
beacon). The first circular pattern represents the case where
no resolution in azimuth is obtained due to the very short
effective array length (as the vehicle was relatively stationary
at the start of the mission). The ability to resolve the correct
look-angle is also affected by end-fire conditions, as shown
by the third and seventh factor (counting counter-clockwise).

The 2-norm error eb =
√

(x̂− xo)2 + (ŷ − yo)2 from
both a Mean-Fit (Mean) estimate and a MAP estimate over
the posterior to ground-truth are tabulated in Table. I. The
multi-modality of the posterior is evaluated by computing its
Kullback-Leibler divergence (KLD) from a fitted multivariate
normal distribution. We conclude that given even just three
SAS-factors, inference over the joint distribution produced
from the CBF resolves the posterior probability of the
beacon’s location very accurately. The observed increase in
prediction error from 7 factors to 16 can be attributed to
the increasing number of SAS-factors with uninformative
beamformer distributions (as discussed in Fig. 6)

TABLE I: Results (GPS Priors)

Trial # SAS-F Mean eb (m) MAP eb (m) KLD
A 3 5.50 6.22 0.018
A 7 3.12 4.52 0.025
A 16 7.42 7.05 0.033
B 3 5.51 8.05 0.359
B 8 4.10 6.70 0.027
B 14 4.53 4.40 0.048

1Trial A SAS-SLAM video: https://youtu.be/ RfXLQ67N4o



50 100 150

Max-FitMean-Fit
Beacon Ground Truth

-200

-150

-100

-50

(m)

(m) -100 0 100 200 300

Simple-Max-Fit

Beacon Ground Truth

-300

-200

-100

0

(m)

(m)
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SLAM: Array poses are shown in red. The CBF output of each synthetic array is shown in cyan. The overall beacon location predicted with a Max-Fit
(orange point) over all five distributions after ‘forward’ convolution only. Each grey contour contains 50% of the probability mass.

Subsequently, GPS priors are provided on poses at dif-
ferent rates simulating dives. Navigational data is corrupted
with a specified amount (0.2, 0.4 m/s) of cumulative nav-
igation drift as a proxy for the accumulation of inertial
error via odometry on an underwater vehicle. Drift is only
accumulated between GPS priors, reflecting fixes obtained
at the surface. Vehicle poses are initialized with corrupted
position estimates, and consecutive vehicle poses are related
with odometry factors (σ = 0.5m in x, y). Fig. 7 (Left) shows
an instance of Trial B with five SAS-factors, instantiated at
equal intervals around a trajectory encircling the beacon from
approximately 75m. For comparison, using the same dataset,
Fig. 7 (Right) shows the density estimates from each of
the five synthetic arrays and their beam patterns where each
synthetic array is computed only from drifted position data
(no SLAM). While ultimately the most probable location
for the beacon lies on the interior of the trajectory, the
fusion of the non-Gaussian acoustic measurements is key to
identifying the posterior distribution of that probability given
relevant symmetric modes.

TABLE II: Results (GPS Priors and Odometry)

Trial Observations
σẋ,ẏ

eb (m) KLD ep (m)
GPS SAS Mean Max Initial Final

A
3 5 0.2 15.3 26.3 0.258 7.6 2.6
3 11 0.2 4.48 5.16 0.173 16.9 4.8
3 16 0.2 2.92 3.12 0.035 13.7 2.6

A
13 10 0.2 2.28 4.65 0.456 48.3 4.4
13 10 0.4 3.38 4.30 0.037 72.9 6.4
13 10 0.6 6.66 14.5 0.024 65.1 5.87

B
2 5 0.2 35.5 36.5 0.030 57.2 8.01
2 12 0.2 6.77 11.0 0.044 22.4 5.7
2 21 0.2 22.2 21.2 0.015 25.7 3.5

B
5 5 0.2 6.07 8.24 0.006 18.3 3.81
18 5 0.2 6.27 5.56 0.006 3.08 2.29
35 5 0.2 2.33 3.67 0.051 2.75 1.91

In addition to beacon localization errors, we compute the
initial (drift) and final errors in vehicle positions ep, and

evaluate estimation performance under different conditions:
number of GPS priors, number of SAS factors, and variance
of the velocities drift in the position data (σẋ,ẏ). The MAP
estimate was used to compute both eb and ep. The results,
tabulated in Table II, show that the algorithm succeeds
in estimating the position of both beacon and vehicle to
comparable levels of accuracy, bringing eb and ep to the
order of a few meters. Increasing the drift in odometry
measurements appears to have a more noticeable effect on the
accuracy of the beacon estimate rather than the vehicle’s. For
Trial A, the increase in the number of observations quickly
resolves the initially unknown beacon position estimate to
within 10m of its true value. Platform position error, despite
the low number of absolute measurements, remains low
(<5m). For Trial B, even with only five SAS-factors, the
localization performance was within 10m.

V. CONCLUSIONS

This work demonstrates that combining conventional
beamforming with simultaneous localization and mapping is
a desirable way to address the problem of micronavigation in
synthetic aperture sonar applications, particularly when faced
with inaccurate odometry and infrequent GPS updates. In the
future, we anticipate that this method can extend to active
SAS systems in two-way operation, either to build more
dense map representations using a single transducer with
moderate odometry in highly GPS-denied environments or,
conversely, allow teams of collaborating underwater vehicles
to map and localize more efficiently by communicating
relevant acoustic SAS measurements.
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