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A mixed-filter algorithm for dynamically tracking
learning from multiple behavioral and

neurophysiological measures
Todd P. Coleman, Marianna Yanike, Wendy Suzuki, Emery N. Brown

I. INTRODUCTION

Learning is a dynamic process generally defined as a change inbehavior as a result of experience
[2], [11], [26], [10], [19], [21], [23]. Understanding how processes at the molecular and neuronal levels
integrate so that an organism can learn is a central questionin neuroscience. Most learning experiments
consist of a sequence of trials. During each trial, a subjectis given a fixed amount of time to execute a
task and the resulting performance is recorded. During eachtrial, performance can be measured with a
continuous variable (i.e. reaction time) as well as a binaryone (whether or not the subject executes task
correctly). The spiking behavior of certain neurons can also be used to characterize learning [26],[28],[27].
Learning is usually illustrated by using the behavioral variables to show that the subject has successfully
performed the previously unfamiliar task with greater reliability than would be predicted by chance. When
neural activity is recorded at the same time as the behavioral measures, an important question is the extent
to what neural correlates can be associated with the changesin behavior.

We have developed a state-space model to analyze binary behavioral data [26], [21], [23],[24],[22]. The
model has been successfully applied in a number of learning studies [26], [14], [25], [12],[22]. Recently,
we have extended this model to analyze simultaneously recorded continuous and binary measures of
behavior [17], [16]. An open problem is the analysis in a state-space framework of simultaneously recorded
continuous and binary performance measures along with neural spiking activity modeled as a point process.

To develop a dynamic approach to analyzing data from learning experiments in which continuous
and binary and responses are simultaneously recorded alongwith neural spiking activity, we extend
our previously developed state-space model of learning to include a lognormal probability model for
the continuous measurements, a Bernoulli probability model for the binary measurements and a point
process model for the neural spiking activity. We estimate the model using an approximate EM algorithm
[20],[21],[23], [16] to conduct the model fitting. We illustrate our approach in the analysis of a simulated
learning experiment, and an actual learning experiment, inwhich a monkey rapidly learns new associations
within a single session.

II. A STATE-SPACE MODEL OF LEARNING

We assume that learning is a dynamic process that can be analyzed with the well-known state-space
framework used in engineering, statistics and computer science . The state-space model is comprised of
two equations: the state equation and the observation equation. The state equation defines the temporal
evolution of an unobservable process. State models with unobservable processes are also referred to
as latent process or hidden Markov models [7],[6],[9],[13],[15], [20]. Here, the state equation defines
an unobservable cognitive state that characterizes the subject’s understanding of the task. We track the
evolution of this cognitive state across the trials in the experiment. We formulate our model so that as
learning occurs the state increases and when learning does not occur it decreases. The observation equation
relates the observed data to the cognitive state process. The data we observe in the learning experiment
are the neural spiking activity and the continuous and binary responses. Our objective is to characterize
learning by estimating the cognitive state process using simultaneously all three types of data.
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To develop our model we extend the work in [17], [16] and consider a learning experiment consisting of
K trials in which on each trial, a continuous reaction time, neural spiking activity, and a binary response
measurement of performance are recorded. LetZk andMk be respectively the values of the continuous
and binary measurements on trialk for k = 1, . . . , K. We assume that the cognitive state model is the
first-order autoregressive process:

Xk =  + �Xk−1 + Vk (1)

where� ∈ (0, 1) represents a forgetting factor, is a learning rate, and theVk’s are independent, zero
mean, Gaussian random variables with variance�2

V . Let X = [X1, . . . , XK ] be the unobserved cognitive
state process for the entire experiment.

For the purpose of exposition, we assume that the continuousmeasurements are reaction times and that
the observation model for the reaction times is given by

Zk = �+ ℎXk +Wk (2)

whereZk is the logarithm of the reaction time on thekth trial, and theWk’s are independent zero mean
Gaussian random variables with variance�2

W . We assume thatℎ < 0 to insure that on average, as the
cognitive stateXk increases with learning, then the reaction time decreases.We letZ = [Z1, . . . , ZK ] be
the reaction times on allK trials.

We assume that the observation model for the binary responses, theMk’s obey a Bernoulli probability
model

P (Mk = m∣Xk = xk) = pmk (1− pk)
1−m (3)

wherem = 1 if the response is correct and0 if the response is incorrect. We takepk to be the probability
of a correct response on trialk, defined in terms of the unobserved cognitive state processxk as

pk =
exp (�+ �xk)

1 + exp (�+ �xk)
. (4)

Formulation ofpk as a logistic function of the cognitive state process (4) ensures that the probability
of a correct response on each trial is constrained to lie between0 and 1, and that as the cognitive state
increases, the probability of a correct responses approaches1.

Assume that each of theK trials lastsT seconds. Divide each trial intoJ = T
Δ

bins of widthΔ so
that there is at most one spike per bin. LetNk,j = 1 if there is a spike on trialk in bin j and0 otherwise
for j = 1, . . . , T and k = 1, . . . , K. Let Nk = [Nk,1, . . . , Nk,J ] be the spikes recorded on trialk, and
Nk = [N1, . . . , Nk] be the spikes observed from trial1 to k. We assume that the probability of a spike
on trial k in bin j may be expressed as

P (Nk,j = nk,j∣X
k = xk, Nk−1 = nk−1, Nk,1 = nk,1, . . . , Nk,j−1 = nk,j−1) = (�k,jΔ)nk,je−�k,jΔ (5)

and thus the joint probability mass function ofNk on trial k is

P (Nk = nk∣X
k = xk) = exp

(

J
∑

j=1

log (�k,j)nk,j − �k,jΔ

)

(6)

where (6) follows from the likelihood of a point process [4].We define the conditional intensity function
�k,j as

log �k,j =  + gxk +

S
∑

s=1

�snk,j−s. (7)

The state model (1) provides a stochastic continuity constraint [13] so that the current cognitive state,
reaction time (2), probability of a correct response (4), and the conditional intensity function (7) all depend
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on the prior cognitive state. In this way, the state-space model provides a simple, plausible framework for
relating performance on successive trials of the experiment.

We denote all of our observations at trialk as Yk = (Mk, Nk, Zk). BecauseX is unobservable, and
because� = (, �, �2

V , �, ℎ, �
2
W , �, �, g,  ) is a set of unknown parameters, we use the Expectation-

Maximization (EM) algorithm to estimate them by maximum likelihood [21],[23],[20], [9],[16]. The
EM algorithm is a well-known procedure for performing maximum likelihood estimation when there is
an unobservable process or missing observations. The EM algorithm has been used to estimate state-
space models from point process and binary observations with linear Gaussian state processes [5]. The
current EM algorithm combines features of the ones in [18],[21],[23]. The key technical point that allows
implementation of this algorithm is the combined filter algorithm in (8)-(12). Its derivation is given in
Appendix A.

III. D ISCRETE-TIME RECURSIVE ESTIMATION ALGORITHMS

In this section, we develop a recursive, causal estimation algorithm to estimate the state at trialk, Xk,
given the observations up to and including timek, Y k = yk. Define

xk∣k′ ≜ E[Xk∣Y
k′ = yk

′

]

�2
k∣k′ ≜ var

[

Xk∣Y
k′ = yk

′
]

as well aspk∣k and�k,j∣k,j by (4) and (7), respectively, with withxk replaced byxk∣k.
In order to derive closed form expressions, we develop a Gaussian approximation to the posterior, and

as such, assume that that the posterior distribution onX at timek givenY k = yk is the Gaussian density
with meanxk∣k and variance�2

k∣k. Using the Chapman-Kolmogorov equations (25) with the Gaussian
approximation to the posterior density, i.e.Xk givenyk, we obtain the following recursive filter algorithm:

One-Step Prediction

xk∣k−1 =  + �xk−1∣k−1 (8)

One-Step Prediction Variance

�2
k∣k−1 = �2�2

k−1∣k−1 + �2
V (9)

Gain Coefficient

Ck =
�2
k∣k−1

ℎ2�2
k∣k−1 + �2

W

(10)

Posterior Mode

xk∣k = xk∣k−1 + Ck

[

ℎ
(

zk − �− ℎxk∣k−1

)

+ ��2
W (mk − pk∣k)

]

+

J
∑

j=1

Ck�
2
W

[

g(nk,j − �k,j∣k,jΔ)
]

(11)

Posterior Variance

�2
k∣k =

[

1

�2
k∣k−1

+
ℎ2

�2
W

+ �2pk∣k(1− pk∣k) +

J
∑

j=1

g2�k,j∣k,jΔ

]−1

(12)

Details can be found in Appendix A. Because there are three observation processes, (11) has a continuous-
valued innovation term,(zk − � − ℎxk∣k−1), a binary innovation term,(mk − pk∣k), and a point-process
innovation term,(nk,j − �k,j∣k,jΔ). As is true in the Kalman filter, the continuous-valued innovation
compares the observationzk with its one-step prediction. The binary innovation compares the binary
observationmk with pk∣k, the probability of a correct response at trialk. Finally, the point process
innovation compares thenk,j, whether or not a spike occurred in binj on trial k, with the expected
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number of occurrences,�k,j∣k,jΔ. As in the Kalman filter,Ck in (10), is a time-dependent gain coefficient.
At trial k, the amount by which the continuous-valued innovation termaffects the update is determined
by Ckℎ, the amount by which the binary innovation affects the update is determined byCk��

2
W , and the

amount by which the point process innovation for neuronj affects the update is determined by the sum
of Ck�

2
Wg. Unlike in the Kalman filter algorithm, the left and right hand sides of the posterior mode

(11) and the posterior variance (12) depend on the state estimatexk∣k. That is, becausepk∣k and�k,j∣k,j
depend onxk∣k through (4) and (7). Therefore, at each stepk of the algorithm, we use Newton’s methods
(developed in Appendix A) to computexk∣k in (11).

IV. A N EXPECTATION-MAXIMIZATION ALGORITHM FOR EFFICIENT MAXIMUM L IKELIHOOD

ESTIMATION

We next define an EM algorithm [5] to compute jointly the stateand model parameter estimates. To
do so, we combine the recursive filter given in the previous section with the fixed interval smoothing
algorithm and the covariance smoothing algorithms to efficiently evaluate the E-step.

A. E-Step

The E-step of the EM algorithm only requires the calculationof the posteriorfXk∣Y (xk∣y). As mentioned
in Section III, we use a Gaussian approximation to the posterior. Although in general this is a multi-
dimensional Gaussian, we need only compute the mean and certain components of the covariance of this
distribution.

1) E-step I: Nonlinear Recursive Filter: The nonlinear recursive filter is given in (8) through (12).
2) E-step II: Fixed Interval Smoothing (FIS) Algorithm: Given the sequence of posterior mode estimates

xk∣k and the variance�2
k∣k, we use the fixed interval smoothing algorithm [20], [3] to computexk∣K and

�2
k∣K

Ak ≜ �
�2
k∣k

�2
k+1∣k

(13)

xk∣K = xk∣k + Ak

(

xk+1∣K − xk+1∣k

)

(14)

�2
k∣K = �2

k∣k + A2
k

(

�2
k+1∣K − �2

k+1∣k

)

(15)

for k = K − 1, . . . , 1 with initial conditionsxK∣K and�2
K∣K computed from the last step in (8) through

(12).
3) E-step III: State-Space Covariance Algorithm: The conditional covariance,�k,k′∣K , can be computed

from the state-space covariance algorithm and is given for1 ≤ k ≤ k′ ≤ K by

�k,k′∣K = Ak�k+1,k′∣K (16)

Thus the covariance terms required for the E-step are

W̃k,k+1 = �k,k+1∣K + xk∣Kxk+1∣K (17)

W̃k = �2
k∣K + x2k∣K (18)
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B. M-Step

The M-step requires maximization of the expected log likelihood given the observed data. Appendix B
gives the computations that lead to the following approximate update equations:

[


�

]

=

[

K
∑K

k=1 xk−1∣K
∑K

k=1 xk−1∣K

∑K

k=1 W̃k−1

]−1 [ ∑K

k=1 xk∣K
∑K

k=1 W̃k−1,k

]

(19)

[

�

ℎ

]

=

[

K
∑K

k=1 xk∣K
∑K

k=1 xk∣K
∑K

k=1 W̃k

]−1 [ ∑K

k=1 zk
∑K

k=1 zkxk∣K

]

(20)

�2
W =

1

K

[

K
∑

k=1

(zk − �)2 − 2(zk − �)ℎxk∣K + ℎ2W̃k

]

(21)

 = log

⎛

⎝

∑K

k=1

∑J

j=1 nk,j

∑K

k=1

∑J

j=1Δexp
(

gxk∣K + 1
2
�2
k∣Kg

2 +
∑S

s=1 �snk,j−s

)

⎞

⎠ (22)

To solve for�, �,  , g, {�s}, we use Newton’s method techniques, described in Appendix C.

V. ALGORITHM PERFORMANCE AND SIMULATION

A. Application of the Methods to Simulated Data

To illustrate our analysis paradigm, we apply it first to simulated data. We simulated neural spiking
activity, reaction times and binary responses for a25-trial learning experiment during which each trial
lasted5 seconds. We discretized time into5000 one-millisecond bins. To simulate the state process we
used the parameter values = 0.1, � = 0.99, and�2

V = 0.03. For the continuous-valued reaction time
process, we used the parameters� = 3.69, ℎ = −0.38, and �2

W = 0.75. For binary-valued data, we
used the parameter values� = −1.4170 and � = 1.75. For the point process parameters we chose
 = −3.5, g = 2.0, and� = (−20,−5, 1, 3). The simulated data are shown in Figure 1.
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Fig. 1. Visualization of the simulated data. Panel A shows the simulated spiking activity. Panel B shows the binary responses, with blue
(red) corresponding to correct (incorrect) responses. Panel C shows the log reaction times. Panel D shows the cognitivestate.

The state estimates are in close agreement with the true state for all trials (Figure 2A). The Kolmogorov-
Smirnov plot [4] confirms that the model describes well the point process component of the model
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(Figure 2B). These results demonstrate that the mixed analysis is capable of recovering the unobserved
states and the components the three observation models fromsimulated data.
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Fig. 2. A: performance of the recursive estimation procedure. The true cognitive state is given in black, while estimates are given in red.
95% Confidence intervals are given with the red dashed lines.(B): Kolmogorov-Smirnov plot confirms that the model describes well the
point process component of the model.

B. Application of the Methods to Experimental Data

In this section we apply the analysis paradigm to an actual learning experiment in which neural spiking
activity was recorded along with binary and continuous performance measures as a rhesus monkey executed
a location-scene association task described in detail in [26]. The experiment consists of 45 trials with each
trial lasting 3,300 msec. In this task, each trial started with a baseline period (0 to 400 msec) during which
the monkey fixated on a cue presented on a computer screen. Theanimal was then presented with three
identical targets (north, east, and west) superimposed on anovel visual scene (401 to 900 msec). The scene
disappeared and the targets remained on the screen during a delay period (901 to 1600 msec). At the end
of the delay period, the fixation point disappeared cueing the animal to make an eye-movement to one of
the three targets (1,600 to 3,300 msec). For each scene, onlyone target was rewarded and 3 novel scenes
were typically learned simultaneously. Trials of novel scenes were interspersed with trials in which three
well-learned scenes were presented. The probability of a correct response occurring by chance was0.33
because there were three locations the monkey could choose as a response. To characterize learning we
reported for all trials the reaction times (time from the go-cue to the response), the correct and incorrect
responses, and neural spiking activity recorded in the perirhinal cortex.

The correct and incorrect responses and neural spiking activity are shown in Figure 3A for one scene.
The spiking activity on a trial is red if the behavioral response was incorrect on that trial and blue if the
response was correct. The response times are shown in Figure3B. The animal clearly showed a change
in responses from all incorrect to correct around trial23 or 24. The response time decreased from trial
1 to 45. The spiking rate of the neural firing increased with learning. To analyze the spiking activity we
used one milliseconds time bins and chose the order of the autoregressive for the spiking activity equal
to 10 milliseconds.
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The cognitive state estimates in Figure 4A are consistent with the animal learning the task. The KS plot
in Figure 4B suggests that the point process component of themodel describes the neural spiking activity
well. The learning curve plot of the probability of correct response, overlayed with the binary responses,
is given by techniques in [16] and shown in Figure 5A. This information, as well as the decrease in the
reaction time of Figure 5B, is consistent with learning. Theestimated value of the parameterĝ = 0.0232
is consistent with increasing spiking activity as the animal learned whereas the estimated coefficients

�̂ = (−3.0278,−2.3581,−0.4836,−0.9458,−0.1914,−0.3884,−0.7690, 0.1783,−0.4119, 0.1066)

are consistent with a refractory period and a relative refractory period for the neuron. The results establish
the feasibility of conducting simultaneous analysis of continuous and binary behavioral data along with
neural spiking activity using the mixed model.

A B

Fig. 3. A: correct/incorrect responses in blue/red rows; a spike in bin j of trial k is present if a dot appears in the associated(k, j) row
and column. A change in responses from correct to incorrect is clear around trial23 or 24.B: The response times in milliseconds on each
trial. The response times on average decreased from trial 1 to 45.

VI. D ISCUSSION ANDCONCLUSION

Continuous observations, such as reaction times and run times, neural spiking activity and binary
observations, such as correct/incorrect responses are frequently recorded simultaneously in behavioral
learning experiments. However, the two types of performance measures and neurophysiological recordings
are not analyzed simultaneously to study learning. We have introduced a state-space model in which the
observation model makes use of simultaneously recorded continuous and binary measures of performance,
as well as neural spiking activity to characterize learning. Using maximum likelihood implemented in
the form of an EM algorithm we estimated the model from these simultaneously recorded performance
measures and neural spiking activity. We illustrated the new model and algorithm in the analysis of
simulated data and data from an actual learning experiment.

The computational innovation that enabled our combined model analysis is the recursive filter algorithm
for mixed observation processes, i.e. continuous, point process and binary observations, the fixed-interval
smoothing algorithm, and an approximate EM algorithm for combined cognitive state and model parameter
estimation. Our mixed recursive filter algorithm [21] combines the well-known Kalman filter with a
recently developed binary filter [17] and the point process filter [3], [1], [8]. In this way, the mixed filter
makes possible simultaneous dynamic analysis of behavioral performance data and neural spiking activity.
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Fig. 4. Mixed modality recursive filtering results. A: the estimate and confidence interval of the cognitive state process. B: a Kolmogorov-
Smirnov plot of the time-rescaled inter-spike intervals from the learned parameters.
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Fig. 5. A: plot of the estimated probability of correct response (black filled circles), along with 95% confidence intervals (black hollow
circles), as well as the correct (blue) and incorrect (red) behavioral responses. B: plot of the estimated reaction times, along with 95%
confidence intervals (red), as well as the true reaction times (black).

Several extensions of the current work are possible to more complex models of performance and neural
spiking data. These model extensions could be fit by constructing the appropriate extensions of our EM
algorithm. An alternative approach would be to formulate the model parameter estimation as a Bayesian
question and take advantage of readily available Bayesian analysis software packages such as BUGS to
conduct the model fitting [24].

The question we have studied here of simultaneously analyzing performance data and neural spiking
activity offers a solution to the now ubiquitous problem of combining information dynamically from
different measurement types. Possible extensions of this paradigm in neuroscience include combining
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information from local field potentials and ensemble neuralspiking activity to devise algorithms for neural
prosthetic control. Another extension of this approach is to functional neural imaging studies in which
combinations of functional magnetic resonance imaging, electroencephalographic and magnetoencephalo-
graphic recordings are made simultaneously or in sequence.Again, the state-space modeling framework
provides an optimal strategy for combining the informationfrom the various sources. We will investigate
these theoretical and applied problems in future investigations.
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APPENDIX A
DETAILS OF THE RECURSIVE FILTER

In this section, we provide details of the derivation of equations (8)-(12). Our objective is to construct
a recursive filter to estimate the stateXk at trial k from Y k =

{

Zk,Mk, Nk
}

. The standard approach to
deriving such a filter is to express recursively the probability density of the state given the observations.
For events{A,B,C}, we have from Bayes’ rule that

P (A∣B,C) =
P (A,B∣C)

P (B∣C)
=
P (A∣C)P (B∣A,C)

P (B∣C)
(23)

DenoteA according to{Xk = xk}, B according to{Yk = yk}, andC according to
{

Y k−1 = yk−1
}

. Then
we have

fXk ∣Y k

(

xk∣y
k
)

=
fXk∣Y k−1

(

xk∣yk−1
)

fYk∣Xk
(yk∣xk)

fYk∣Y k−1 (yk∣yk−1)

=
fXk∣Y k−1

(

xk∣yk−1
)

PMk∣Xk
(mk∣xk)PNk∣Xk

(nk∣xk) fZk∣Xk
(zk∣xk)

fYk∣Y k−1 (yk∣yk−1)

∝ fXk∣Y k−1

(

xk∣y
k−1
)

PMk∣Xk
(mk∣xk)PNk∣Xk

(nk∣xk) fZk∣Xk
(zk∣xk) (24)

and the associated one-step prediction probability density or Chapman-Kolmogorov equation is

fXk∣Y k−1

(

xk∣y
k−1
)

=

∫

fXk−1∣Y k−1

(

xk−1∣y
k−1
)

fXk∣Xk−1
(xk∣xk−1) dxk−1 (25)

Together (24) and (25) define a recursion that can be used to compute the probability of the state given
the observations.

We derive the mixed filter algorithm by computing a Gaussian approximation to the posterior density
fXk∣Y k

(

xk∣yk
)

in (24). At timek, we assume the one-step prediction density (25) is the Gaussian density

fXk∣Y k−1

(

xk∣y
k−1
)

∼ N
(

xk∣k−1, �
2
k∣k−1

)

. (26)

To evaluatexk∣k−1 and�2
k∣k−1, we note that they follow in a straightforward manner:

xk∣k−1 = E
[

Xk∣Y
k−1 = yk−1

]

=  + �xk−1∣k−1 (27)

�2
k∣k−1 = var

(

Xk∣Y
k−1 = yk−1

)

(28)

= var
(

 + �Xk−1 + Vk∣Y
k−1 = yk−1

)

(29)

= �2�2
k−1∣k−1 + �2

V (30)

Substituting all these equations together, then we have that the posterior density can be expressed as

fXk∣Y k

(

xk∣y
k
)

∝ exp

{

−
(xk−xk∣k−1)

2

2�2

k∣k−1

+mk log[pk(1− pk)
−1] + log(1− pk)

− (zk−�−ℎxk)
2

2�2

W

+
∑J

j=1 nk,j log (�k,j)− �k,jΔ

}

⇒ log fXk∣Y k

(

xk∣y
k
)

= C(yk)−
(xk−xk∣k−1)

2

2�2

k∣k−1

+mk log[pk(1− pk)
−1] + log(1− pk) (31)

− (zk−�−ℎxk)
2

2�2

W

+
∑J

j=1 nk,j log (�k,j)− �k,jΔ (32)
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Now we can compute themaximum-a-posteriori estimate ofxk and its associated variance estimate.
To do this, we compute the first and and second derivatives of the log posterior density with respect to
xk, which are respectively

0 =
∂ log fXk ∣Y k

(

xk∣yk
)

∂xk
= −

(xk − xk∣k−1)

�2
k∣k−1

+
ℎ(zk − �− ℎxk)

�2
W

+ �(mk − pk)

+

J
∑

j=1

g(nk,j − �k,jΔ)

∂2 log fXk ∣Y k

(

xk∣yk
)

∂x2k
= −

1

�2
k∣k−1

−
ℎ2

�2
W

− �2pk(1− pk)−
J
∑

j=1

g2�k,jΔ

where we have exploited the fact that from (4) and (7), the following properties hold:

∂pk

∂xk
= �pk(1− pk) ⇒

{

∂ log(1−pk)
∂xk

= −�pk,
∂ log pk
∂xk

= �(1− pk)
(33)

∂�k,j

∂xk
= g�k,j (34)

∂ log �k,j
∂xk

= g (35)

Combining all this together, using the Gaussian approximation, we arrive at (8)-(12).

APPENDIX B
DETAILS OF THE M STEP UPDATE EQUATIONS

In this section, we derive details of the update equations provided in Section IV-B. Note that the joint
distribution on all (observed and latent) variables is given by

log fXK ∣Y K

(

xK ∣yK; �
)

= C(yK) +
K
∑

k=1

−
1

2�2
V

(xk −  − �xk−1)
2 −

1

2�2
W

(zk − �− ℎxk)
2

+

K
∑

k=1

mk (�+ �xk)− log (1 + exp(�+ �xk))

+

K
∑

k=1

J
∑

j=1

nk,j

[

 + gxk +

S
∑

s=1

�snk,j−s

]

−Δexp

(

 + gxk +

S
∑

s=1

�snk,j−s

)

Note that the expected log-likelihoodQ(�) ≜ E
{

log fXK ∣Y K

(

xK ∣Y K ; �
)

∣Y K = yK
}

has linear terms
in E[Xk∣Y k = yk] along with quadratic terms involving̃Wk,j ≜ E

{

XkXj∣Y K = yK
}

, except for a couple
of terms, includingE[egxk ∣Y k = yk]. We note that ifX̃ ∼ N (�, �2) then its moment generating function
M(t) ≜ E[ex̃t] is given by

M(t) = eut+
1

2
�2t2 . (36)
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With this, we have

Q(�) ≃ C(yK)−
K
∑

k=1

1

2�2
V

E
[

(Xk −  − �Xk−1)
2∣Y K = yK

]

−
1

2�2
W

E
[

(Zk − �− ℎXk)
2∣Y k = yk

]

+

K
∑

k=1

mk

(

�+ �xk∣K
)

− E
[

log (1 + exp(�+ �Xk)) ∣Y
k = yk

]

(37)

+
K
∑

k=1

nk,j

(

 + gxk∣K +
S
∑

s=1

�snk,j−s

)

− E

[

exp

(

 + gXk +
S
∑

s=1

�snk,j−s

)

Δ∣Y K = yK

]

(38)

= C(yK)−
1

2�2
V

[

K
∑

k=1

W̃k − 2xk∣K − 2�W̃k−1,k + 2 + 2�xk−1∣K + �2W̃k−1

]

−
1

2�2
W

[

K
∑

k=1

(zk − �)2 − 2(zk − �)ℎxk∣K + ℎ2W̃k

]

+

K
∑

k=1

mk

(

�+ �xk∣K
)

− E
[

log (1 + exp(�+ �xk)) ∣Y
K = yK

]

(39)

+
K
∑

k=1

nk,j

(

 + gxk∣K +
S
∑

s=1

�snk,j−s

)

−Δexp

(

 + gxk∣K +
1

2
�2
k∣Kg

2 +
S
∑

s=1

�snk,j−s

)

(40)

where in going from (38) to (40), we have used the (36).
We now rely upon the Taylor series approximation aroundxk∣K

E[�(Xk)∣Y
K = yK ] ≃ �(xk∣K) +

1

2
�2
k∣K�

′′(xk∣K)

Let us now consider the conditional expectation term involves log (1 + exp(�+ �xk))

�1(xk) ≜
∂ log (1 + exp(�+ �xk))

∂�
=

exp(�+ �xk)

1 + exp(�+ �xk)
= pk, (41)

�2(xk) ≜
∂ log (1 + exp(�+ �xk))

∂�
=

xk exp(�+ �xk)

1 + exp(�+ �xk)
= xkpk (42)

Note from before that

�′1(xk) = �pk(1− pk) = �(pk − p2k)

⇒ �′′1(xk) = �[�pk(1− pk)− 2pk�pk(1− pk)]

= �2pk(1− pk)(1− 2pk)

Thus we have that

f1(�, �) =
∂

∂�

{

K
∑

k=1

mk

(

�+ �xk∣K
)

− E
[

log (1 + exp(�+ �Xk)) ∣Y
K = yK

]

}

(43)

=

K
∑

k=1

mk − E[�1(Xk)∣Y
K = yK] (44)

≃
K
∑

k=1

mk − pk∣K −
1

2
�2
k∣K�

2pk∣K(1− pk∣K)(1− 2pk∣K) (45)
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Let us now consider�2(xk) = xkpk. Note from (42) that

�′2(xk) = [xk�1(xk)]
′

= xk�
′
1(xk) + �1(xk)

⇒ �′′2(xk) = �′1(xk) + �′1(xk) + xk�
′′
1(xk)

= 2�′1(xk) + xk�
′′
1(xk)

= 2�pk(1− pk) + xk�
2pk(1− pk)(1− 2pk)

= �pk(1− pk) [2 + xk�(1− 2pk)]

Thus we have that

f2(�, �) =
∂

∂�

{

K
∑

k=1

mk

(

�+ �xk∣K
)

− E
[

log (1 + exp(�+ �xk)) ∣Y
K = yK

]

}

(46)

=

K
∑

k=1

mkxk∣K − E[�2(Xk)∣Y
K = yK ] (47)

≃
K
∑

k=1

mkxk∣K − xk∣Kpk∣K −
1

2
�2
k∣K�pk∣K(1− pk∣K)

[

2 + xk∣K�(1− 2pk∣K)
]

(48)

Thus we differentiate to find a local minimum

0 =
∂Q

∂
= −

1

�2
V

[

K
∑

k=1

−xk∣K +  + �xk−1∣K

]

0 =
∂Q

∂�
= −

1

�2
V

[

K
∑

k=1

−W̃k−1,k + xk−1∣K + �W̃k−1

]

0 =
∂Q

∂�
= −

1

�2
W

[

K
∑

k=1

�− zk + ℎxk∣K

]

0 =
∂Q

∂ℎ
= −

1

�2
W

[

K
∑

k=1

−(zk − �)xk∣K + ℎW̃k

]

0 =
∂Q

∂�2
W

=
1

2[�2
W ]2

[

−K�2
W +

K
∑

k=1

(zk − �)2 − 2(zk − �)ℎxk∣K + ℎ2W̃k

]

0 =
∂Q

∂�
=

K
∑

k=1

mk − pk∣K −
1

2
�2
k∣K�

2pk∣K(1− pk∣K)(1− 2pk∣K) (49)

0 =
∂Q

∂�
=

K
∑

k=1

mkxk∣K − xk∣Kpk∣K −
1

2
�2
k∣K�pk∣K(1− pk∣K)

[

2 + xk∣K�(1− 2pk∣K)
]

(50)

0 =
∂Q

∂ 
=

K
∑

k=1

J
∑

j=1

nk,j −Δexp

(

 + gxk∣K +
1

2
�2
k∣Kg

2 +
S
∑

s=1

�snk,j−s

)

(51)

0 =
∂Q

∂g
=

K
∑

k=1

J
∑

j=1

nk,jxk∣K −Δ(xk∣K + g�2
k∣K) exp

(

 + gxk∣K +
1

2
�2
k∣Kg

2 +

S
∑

s=1

�snk,j−s

)

(52)

0 =
∂Q

∂�s
=

K
∑

k=1

J
∑

j=1

nk,jnk,j−s −Δnk,j−s exp

(

 + gxk∣K +
1

2
�2
k∣Kg

2 +

S
∑

s=1

�snk,j−s

)

(53)
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Simplifying, we get
[


�

]

=

[

K
∑K

k=1 xk−1∣K
∑K

k=1 xk−1∣K

∑K

k=1 W̃k−1

]−1 [ ∑K

k=1 xk∣K
∑K

k=1 W̃k−1,k

]

(54)

[

�
ℎ

]

=

[

K
∑K

k=1 xk∣K
∑K

k=1 xk∣K
∑K

k=1 W̃k

]−1 [ ∑K

k=1 zk
∑K

k=1 zkxk∣K

]

(55)

�2
W =

1

K

[

K
∑

k=1

(zk − �)2 − 2(zk − �)ℎxk∣K + ℎ2W̃k

]

(56)

 = log

⎛

⎝

∑K

k=1

∑J

j=1 nk,j

∑K

k=1

∑J

j=1Δexp
(

gxk∣K + 1
2
�2
k∣Kg

2 +
∑S

s=1 �snk,j−s

)

⎞

⎠ (57)

Details for solving for the remaining parameters�, �, g, {�s} using Newton-like methods are given in
Appendix C.

APPENDIX C
NEWTON ALGORITHMS TO SOLVE FIXED POINT EQUATIONS

A. Newton Algorithm for the Posterior Update

We note thatxk∣k as defined in (11) is the root of the function�:

�(xk∣k) = −xk∣k + xk∣k−1 + Ck

[

ℎ
(

zk − �− ℎxk∣k−1

)

+ ��2
W (mk − pk∣k)

]

+

J
∑

j=1

Ck�
2
W

[

g(nk,j − �k,j∣k,jΔ)
]

⇒ �′(xk∣k) = −1− Ck�
2
W

[

�2pk∣k(1− pk∣k) +

J
∑

j=1

g2�k,j∣k,jΔ

]

Either the previous state estimate,xk−1∣k−1, or the one-step prediction estimate,xk∣k−1, can provide a
reliable starting guess.

B. Binary Parameters

In this section we develop derivatives of the functionsf3 andf4 for the purpose of enabling a Newton-
like algorithm to find the fixed point pertaining to (49)-(50). Define:

f3 =
K
∑

k=1

mk − pk −
1

2
�2
k∣K�

2pk(1− pk)(1− 2pk)

f4 =
K
∑

k=1

mkxk∣K − xk∣Kpk −
1

2
�2
k∣K�pk(1− pk)

[

2 + xk∣K�(1− 2pk)
]
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We arrive at the Jacobian:

∂

∂�
{f3} = −

K
∑

k=1

pk(1− pk)

[

1 +
1

2
�2
k∣K�

2
[

(1− 2pk)
2 − 2pk(1− pk)

]

]

∂

∂�
{f3} = −

K
∑

k=1

pk(1− pk)

[

xk∣K +
1

2
�2
k∣K�

2(1− 2pk)
2xk∣K + �2

k∣K�[1− 2pk − �xk∣Kpk(1− pk)]

]

∂

∂�
{f4} = −

K
∑

k=1

pk(1− pk)

[

xk∣K + �2
k∣K(1− 2pk) +

1

2
�2
k∣K�

2
[

(1− 2pk)
2 − 2pk(1− pk)

]

]

∂

∂�
{f4} = −

K
∑

k=1

pk(1− pk)

[

x2k∣K + �2
k∣K

[

�xk∣K(1− 2pk) + 1
]

+
1

2
�2
k∣Kxk∣K

[

2�
(

1− 2pk − �xk∣Kpk(1− pk)
)

+ �2(1− 2pk)
2xk∣K

]

]

C. Spiking Parameters

1) Finding g: In this section we develop derivatives of the functionsf5 and f6 for the purpose of
enabling a Newton-like algorithm to find the fixed point pertaining to (52). From (57), note that

 = log

(

∑K
k=1

∑J
j=1

nk,j
∑K

k=1

∑J
j=1

Δexp
(

gxk∣K+ 1

2
�2

k∣K
g2+

∑S
s=1

�snk,j−s

)

)

or Δexp( ) =
∑K

k=1

∑J
j=1

nk,j

∑K
k=1

∑J
j=1

exp
(

gxk∣K+ 1

2
�2

k∣K
g2+

∑S
s=1

�snk,j−s

) (58)
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Define:

f5 =
∂Q

∂g
=

K
∑

k=1

J
∑

j=1

nk,jxk∣K −Δ(xk∣K + �2
k∣Kg) exp

(

 + gxk∣K +
1

2
�2
k∣Kg

2 +
S
∑

s=1

�snk,j−s

)

=

(

K
∑

k=1

J
∑

j=1

nk,jxk∣K

)

−
K
∑

k=1

J
∑

j=1

(

∑K

k=1

∑J

j=1 nk,j

)

(xk∣K + �2
k∣Kg) exp

(

gxk∣K + 1
2
�2
k∣Kg

2 +
∑S

s=1 �snk,j−s

)

∑K

k=1

∑J

j=1 exp
(

gxk∣K + 1
2
�2
k∣Kg

2 +
∑S

s=1 �snk,j−s

)

=

(

K
∑

k=1

nk,jxk∣K

)

−

(

K
∑

k=1

nk,j

)

(

a(g)

b(g)

)

⇒ f ′
5(g) = −

(

K
∑

k=1

J
∑

j=1

nk,j

)

∂

∂g

{

a(g)

b(g)

}

= −

(

K
∑

k=1

J
∑

j=1

nk,j

)

b(g)a′(g)− a(g)b′(g)

b(g)2

a(g) ≜

K
∑

k=1

J
∑

j=1

(xk∣K + �2
k∣Kg) exp

(

gxk∣K +
1

2
�2
k∣Kg

2 +

S
∑

s=1

�snk,j−s

)

b(g) ≜

K
∑

k=1

J
∑

j=1

exp

(

gxk∣K +
1

2
�2
k∣Kg

2 +

S
∑

s=1

�snk,j−s

)

a′(g) =

K
∑

k=1

[

(

xk∣K + �2
k∣Kg

)2
+ �2

k∣K

]

exp

(

gxk∣K +
1

2
�2
k∣Kg

2 +

S
∑

s=1

�snk,j−s

)

b′(g) =

K
∑

k=1

(

xk∣K + �2
k∣Kg

)

exp

(

gxk∣K +
1

2
�2
k∣Kg

2 +

S
∑

s=1

�snk,j−s

)

= a(g)

⇒
f5(g)

f ′
5(g)

=

(

∑K

k=1 nk,jxk∣K

)

b(g)2 −
(

∑K

k=1

∑J

j=1 nk,j

)

a(g)b(g)
(

∑K

k=1

∑J

j=1 nk,j

)

(a(g)2 − b(g)a′(g))

2) Finding �s: In this section we develop the derivative of the functionsf6 to find the fixed point
pertaining to (53). Note that the equation for∂Q

∂�s
= 0 in (53) can be expressed as

f6 (�s) = f̃5 (�(�s))

= a0 − a1�(�s),

�(�s) = exp (�s) ,

⇒ f ′
6(�s) = −a1�

′(�s) = −a1 exp (�s)

where

a0 =

K
∑

k=1

J
∑

j=1

nk,jnk,j−s,

a1 =
∑

k,j:nk,j−s=1

Δexp

(

 + gxk∣K +
1

2
�2
k∣Kg

2 +
∑

s′ ∕=s

�s′nk,j−s′

)

Note that since eacha0 ≥ 0, a1 > 0, and� > 0, it follows that f ′
6(�s) < 0 and thusf is monotonically

decreasing. Moreover, sincef6(0) ≥ 0, it follows that f has a unique zerox∗ and thus a unique fixed
point �∗

s , when considering all other parameters�s′ fixed.


