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Abstract
Urbanmobility significantly contributes to global carbondioxide emissions.Given the rapid expansion
and growth inurban areas, cities thus require innovative policies to ensure efficient and sustainable
mobility.Urban typologies can serve as a vehicle for understanding dynamics of cities,which exhibit high
variability in form, economic output,mobility behavior, amongothers. Yet, typologies relevant for
sustainable urbanmobility analyses are few, outdated andnot large enough in scope. In this paper,we
present a new typologization spanning 331 cities in 124 countries.Our sample represents 40%of the
global urbanpopulation and contains themost recent data from2008 to date.Using a factor analytic and
agglomerative clustering approach,we identify 9urban factors and 12 typologies.Wediscuss the
implications of this new framework for researchers andplanners and investigate the relationships
betweenmobility and environmental sustainability indicators.Notably,we showan immediate
applicationof the urban typologies to better understanding travel behavior and alsodescribe their usage
for detailed large-scale simulation in representative prototype cities for insights into sustainable future
mobility policy pathways.Our data and results are publicly available for further exploration andwill serve
as a foundation for future analyses towarddesirable urban and environmental outcomes.

1. Introduction

The rapid pace of growth in urban populations and
vehicle ownership worldwide has led to an increasing
demand for mobility and its associated impacts.
Transportation remains a key driver for carbon
dioxide emissions, accounting for nearly a quarter of
the 32.3 MtCO2-e emissions from fuel combustion
globally in 2016 (IEA 2017). Urban passenger traffic
further accounts for about 30% of this contribution.
The number of passenger-kilometers driven is
expected to more than double to 100 billion in 2050,
while the number motor vehicles on the road is
estimated to grow to 2.5 billion within the same
period, from a current level of 1 billion. Even more
critically, CO2 emissions are projected to increase by

60% in 2050 in the absence of concrete mitigation
measures (ITF 2017).

To tackle mounting environmental challenges,
metropolitan and city agencies are making greater
efforts to develop and share resources for under-
standing city dynamics. Instruments arising from
these efforts can facilitate the impact assessment of
future mobility solutions at the city level. To this end,
various programs have been established. We note the
following key examples. The International Council for
Local Environmental Initiatives5 was founded in 1990
and has influenced over 1500 urban areas worldwide.
The city vitality and sustainability6 program was
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established in 2002 to promote cleaner transportation
in European cities. Created in 2001, the transportation
planning capacity building program7 coordinates
information sharing and decision-making among
planners in the US toward more efficient and sustain-
able mobility. Another noteworthy example is the
Smart City Challenge8 launched by the US Depart-
ment of Transportation in 2015. Under this initiative,
78 cities proposed technology-driven solutions to
address urban mobility challenges and reduce carbon
emissions, with implementations currently underway
in 5 of them (U.S. DOT 2017). The unofficial
Chinese four-tier city classification system (Bland and
Hernandez 2016) highlights longstanding efforts to
coordinate policy for development andmobility in the
world’s most populous country (Li 2007). The exam-
ple of China also signifies its increasingly progressive
approach in developing accessible and resilient trans-
portation systems.

Yet, the above initiatives often suffer from a lack
of comprehensive and quantitative global analyses of
city dynamics and their heterogeneity. This type of
analysis is especially critical in today’s globalized
transportation market, where solutions pioneered in
one city are swiftly deployed in others with mixed
outcomes. Consequently, results from academic
efforts in understanding functional patterns in city
dynamics can be harnessed to improve outcomes for
sustainable urban mobility. Over the past 80 years,
researchers have approached this challenge by classi-
fying cities chiefly in terms of geography, urban form
and economy. Price (1942) proposed using factor
analysis to reduce the dimensions of 15 socio-
economic and demographic variables across 93 US
cities. Four key factors were identified to ultimately
aid the prediction of social change. Harris (1943)was
then the first to empirically classify cities, with his
seminal work grouping US metropolitan areas based
on primary economic function: manufacturing,
diversification, transportation, tourism, wholesale,
retail, education and mining. Bruce and Witt (1971)
also applied factor analysis in their classification,
producing 13 economic types of US cities from 6 fac-
tors, following earlier efforts by Hadden and
Borgatta (1965).

The economic classification of cities continues to
be an active topic with recent work still being put for-
ward by researchers, enhancing the methods used and
enlarging the scope of analysis.Martin et al (2008) pro-
posed a 15 indicator-based socioeconomic classifica-
tion of 300 cities, advancing the idea of a ‘canonical
city’ to allow for an ‘economy of effort’ in policy ana-
lyses. Similarly, the ‘City 600’ project conducted by the
McKinsey Global Institute (Dobbs et al 2011) attemp-
ted to track the economic power of established and
emerging global cities from 2007 to 2025 by ranking

them on age, GDP and household income, although
no typologies are generated.

The economic classification was soon followed by
urban form analysis. Huang et al (2007), for example,
clustered 77 cities using seven spatial metrics to typo-
logize urban form in order to provide a framework for
urban development analyses. More recently, these
urban formdynamics were linked to sustainability and
environmental indicators. Le Néchet (2012) analyzed
morphological and functional indicators of 34
European cities in order to find measures of sustain-
able urban form. The study further determined that
energy consumption is positively correlated to wealth,
automobile density, sprawl, diffusion, and poly-
centricity. In a recent analysis of 274 cities, notable for
its scope and relevance to sustainability, Creutzig et al
(2015) obtained 8 typologies of energy consumption,
using socioeconomic and environmental indicators.

In contrast to the existing literature above, very
few studies have integrated and focused on the trans-
portation dimension in large-scale urban classifica-
tion. Thomson (1977) collected and analyzed data
from 30megacities and in the process defined 5 arche-
types that broadly captured the urban characteristics
of the cities. We note Priester et al (2013) and Zegras
and Gakenheimer (2005) who analyzed 41 megacities
on a global scale to determine future mobility char-
acteristics. From 59 indicators, Priester et al (2013)
obtained 13 factors, including congestion, taxi traffic,
public transit usage, parking charges, among others.
Seven typologies emerged, namely: paratransit, auto,
non-motorized, hybrid, traffic-saturated, transit and
the singleton, Manila. However, this work is based on
data collected in 19959 and did not include environ-
mental or economic factors. Subsequently, McIntosh
et al (2014) investigated how urban form influenced
car ownership from 1960 through 2000. This study
incorporated prior typology information but was only
limited to 26 cities.

To effectively address urban efficiency and envir-
onmental concerns, a mobility-oriented global urban
typologization based on recent relevant data is
required. As noted, the majority of existing compre-
hensive urban typology work has been limited to a few
regions: Europe, China and the US. Those with a glo-
bal scope are either now outdated or do not account
for transportation-related variables. Given the sig-
nificant contribution of mobility to CO2 emissions
and consequently climate change, effective pathways
to sustainability must include sufficiently detailed
transportation variables. Most critically, there is a
dearth of publicly available data to inform decisions by
planners and policymakers. The new urban typologies
we have discovered in our effort target the aforemen-
tioned gaps. Our analyses span the most recent data
from331 cities worldwide, which is the largest in scope

7
https://planning.dot.gov/focus_metropolitan.asp

8
https://transportation.gov/smartcity

9
The UITP Millenium Cities Database for Sustainable Transport

(Kenworthy and Laube).
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in the academic literature to the best of our knowl-
edge. We incorporate economic, demographic, urban
form, mobility and environmental indicators. Our
compiled data and results are freely available and
applicable to (a) further understanding city dynamics
and behavior, and (b) enabling the coherent impact
analysis of future scenarios towards sustainable urban
mobility.

2.Methods

For the purposes of this urban typologization, we
defined a ‘city’ as an urban agglomeration with a
population of at least 750 000. Over 700 cities met
this criterion. However, owing to the ready avail-
ability of open data sources, we further reduced our
city sample to 331, ensuring global and national
representativity. This final sample spans 124 coun-
tries and represents 40% of the global urban popula-
tion. We collected urban data from a variety of open
sources, with the aim of representing themost recent
snapshot, thus limiting the variables to no earlier
than 2008. Following data collection, we conducted
an exploratory factor analyses to obtain latent urban
attributes and consequently reduce dimensionality
for further differentiation. Finally, we applied clus-
tering methods, using the identified attributes, to
obtain the typologies. We validated our results by
examining typology characteristics across the factors
and key variables.

2.1.Data
The data collected for this study consists of 64
indicators across seven urban dimensions: mobility,
economy, environment, social development, urban
form and geography. We compiled these data from
public and open sources and havemade them publicly
available (along with necessarymetadata) at http://its.
mit.edu/typologies. Key sources and variables are
summarized in table 1. To obtain the most recent and
accurate mode share data, metropolitan, regional and
national documents were accessed.

We validated and cleaned the dataset by inspec-
tion. In cases where appropriate and where city-level
data were unavailable, urban average values at the
country level were used. Network data was obtained
fromOpenStreetMap. Given the inconsistencies in the
boundaries of metropolitan regions, we computed the
network statistics (Boeing 2017) based on the urban
core of each city, which we found to be consistent
across all the available cities. To prepare the data for
factor analyses, each variable was scaled to amaximum
value of 10.

2.2. Factor analysis
We conducted an exploratory factor analysis (EFA) to
unearth the latent structure of the dataset and also to
reduce dimensionality for the clustering which fol-
lowed. Indicators related tometro, BRT and bikeshare
were treated as left-censored variables truncated at 0,
given that a sizable fraction of the cities do not have
these services available. Thus, we used the generalized
Tobit factor analysis approach, defining the vector of J

Table 1. Summary of data sources, indicators, years and number of cities.

Source(s) Indicators (units) Years

No.

cities

Demographia (2017) Population, land area (km2), population density (per km2) 2016 331

Global BRTData (2017) Fleet size (per 100 K), fare, stations (per 100 K), system length (km), annual ridership 2010–17 301–331

GlobalUrban Indicators

Database (2015)
GDP (USD), poverty rate (%), life expectancy (years) 2013 93–331

Global Petrol Prices (2017) Gasoline price (USD) 2017 331

InnovationCities

Index (2017)
Innovation score 2015 238

InternetWorld

Stats (2017)
Internet penetration (%), digital access (%) 2017 323–329

Numbeo (2017) Urban indices: cost of living, rent, groceries, purchasing power, affordability, safety, pol-

lution, traffic (time), inefficiency, emissions

2016 126–223

OpenStreetMap (2017) Circuity average, degree average, intersections, intersection density (per km2) street
length (km), street length average (km), street length density (per km) self-loop pro-
portion, highway proportion

2017 243–259

PewResearch

Center (2016)
Smartphone penetration (%) 2017 218

TomTom (2016) Congestion level: overall,morning peak, evening peak (%) 2016 146–154

UN-Habitat (2015) Population, Gini coefficient, CO2 emissions (metric tons per capita), unemployment,

urbanization level

2011–2014 129–331

WorldHealth

Organization (2013)
Road traffic deaths 2013 313
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latent response variables y*, where the actual mea-
surement is given by yj in each case. The factor analysis
model is thus:

y v , 1* h eL= + + ( )

y
y y

y

: 0

0: 0
, 2j

j j

j

* *

*
=

>⎧
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( )

where v is the vector of variable means, L a J×P
matrix of factor loadings; P is the number of factors, h
the P×1 vector of variable scores on each factor, and
e the J×1 vector of independent error terms The
covariance structure of y* is given by

yVar , 3*S L YL Q= = ¢ +( ) ( )

where Y and Q are the factor and error covariance
matrices, respectively. Further details on the formula-
tion of this factor analytical approach can be found in
Muthen (1989) andKamakura andWedel (2001).

A maximum likelihood approach was used to esti-
mate themodel. Thus, standard errors and a test statis-
tic were computed as robust to non-normality and
non-independence of observations. To handlemissing
data, full-information maximum likelihood was
incorporated. In the estimation procedure, the condi-
tional distributions of variables with missingness were
therefore assumed to be multivariate normal on vari-
ables with complete observations across the sample,
ensuring that all observations were utilized in model
estimation (Hirose et al 2016, Cham et al 2017). The
rate of missingness in the dataset is 15%, and we
assumed that observations weremissing at random.

We note that the goal of EFA is to produce an
interpretable parsimonious representation with simi-
lar correlation structure to that obtained from the ori-
ginal sample. Therefore, as an initial estimate of the
appropriate number of factors required, we consider
the eigenvalues of the sample correlation matrix. This
scree plot is shown in figure 1. From this, we see that

extracting any number between 8 and 12 factors will
sufficiently capture the variance in the dataset.

2.2.1.Model fitness
To formally judge model fitness, we used likelihood-
based approaches. We first employed the likelihood-
ratio test (LRT) to successively test m-factor models
against (m+1)-factor models. The LRT has been
shown to have limitations in that it could lead to
overfactoring. However, this property is not undesir-
able, as the greater the number of factors, the closer the
estimated structure will be to the true structure
(Hayashi et al 2007). These test statistics are shown in
table 2. diff

2c is the LRT statistic (Satorra and
Bentler 2001) used to test the null hypothesis (H0) that
the data structure has at most m factors against the
alternative of at least m+1 factor. In all successive
models the test statistic is significant enough to reject
H0. Clearly, we cannot rely on the LRT alone in this
case for the most parsimonious choice. However the
relative sizes of diff

2c indicate that within the current
range, the larger models will not drastically improve
thefit.

As has been long established (Jöreskog 1969), sta-
tistical testing alone is inadequate to make a final deci-
sion. Given that the AIC and BIC both decreased as the
number of factors increased to 11, we also had to con-
sider interpretability and simplicity to guide themodel
selection between 8 and 11 factors. Thus, we com-
puted the loading simplicity index (LSI) (Lorenzo-
Seva 2003), which measures the simplicity of a factor
solution on a scale of 0 (most complex) to 1 (simplest).
These values are shown as well in table 2, providing
further support for the 9-factor model. LSI* denotes
the case in which only the statistically significant load-
ings are used. Finally, we visually inspected each solu-
tion and chose the 9-factor model as it gave the most
parsimonious and interpretable results.

Figure 1.Eigenvalues of the sample correlationmatrix. The blue vertical line at the 9th index indicates the number of factors that was
ultimately extracted. The shaded rectangle indicates the knee regionwhich serves as a guide to the number of factors that would best
represent the sample data.

4

Environ. Res. Lett. 14 (2019) 095006



The factor loadings L were obliquely rotated
using the Geomin method (Yates 1988) for optimal
interpretation. We based our choice of the oblique
rotation on the hypothesis that the latent factors are
correlated. Further, Geomin has been shown to pro-
vide stable loadings and better results when the origi-
nal loading pattern is unknown, as was the case here
(Celimli Aksoy 2017). The objective of the rotation is
to maximize interpretability by minimizing the criter-
ion Q J P jp

2
P
1l eL = å  +( ) ( ( )) (Hattori et al 2017)

using an iterative approach that begins with a random
starting point. λjp are the elements of the factor load-
ing matrix, while ε is a small number added to prevent
indeterminacy when λjp=0. We used the recom-
mended 100 random starts with amaximum of 10 000
iterations to find the best localminimum. In the objec-
tive function, the rotated loading matrix ATL = ,
where A is the unrotated loading matrix. Thus, the
solution finds the optimal rotation matrix T . The
rotated factor loadings and standard errors are shown
in table 3. Factor correlations are shown in table 4 10.

Finally, we computed the factor scores, i.e. the
reduced dataset, using the components method. Spe-
cifically, we found the weight matrix W R 1 *L= - ,
where R is the sample correlationmatrix. The reduced
dataset was then given byY Y W331 9 331 64 64 9=´ ´ ´˜ .

2.3.Hierarchical agglomerative clustering
Hierarchical clustering has been shown to be effective
at pattern recognition, particularly because it is
unsupervised and thus requires no predefined
assumptions on the nature of the data (Jain et al 1999,
Jain 2010). Given a separation metric between ele-
ments in a multidimensional set, hierarchical cluster-
ing proceeds by iteratively agglomerating groups based
on various criteria (e.g. Ward’s method, method of
averages (UPGMA), single linkage, among others).
Using the 331×9 factor score matrix obtained from
the factor analytical procedure, we computed a
331×331 dissimilarity matrix based on the Manhat-
tan metric. Upon comparing the results of several

agglomerative approaches, we finally selected Ward’s
method (Murtagh and Legendre 2014) to cluster the
cities based on the factor score dissimilarities. Ward’s
method has historically been shown to consistently
perform best in a variety of applications (Kuiper and
Fisher 1975, Blashfield 1976, Hands and Everitt 1987,
Milligan and Cooper 1988, Ferreira and Hitchcock
2009). In this case, it produces the most balanced
clusters with assignments adjudged to be the most
valid.

In addition to selecting the clustering method, the
other important question was the number of relevant
clusters in the dataset. Various measures and heur-
istics have been proposed to elicit the cluster number
that produces the optimal separation of members into
groups, but the objective of interpretability ultimately
dictate the final choice. We compared the results of 30
clustering validity indices using the NbClust pack-
age in R (Charrad et al 2014). With the minimum
number of clusters set to 4, nine of the indices (includ-
ingHartigan, Tau andRatkowsky) indicated that 5was
the optimal number of clusters. As we increased the
minimum cluster number constraint, successively
optimal cuts were found at 6, 8, 9, 11 and 13 clusters,
respectively, as can be seen in the dendrogram
(figure 2).

We observed that a 6-cluster result produced the
higher-level typologies as described in section 3.2,
namely: Auto, BusTransit, Congested, Hybrid, Metro-
Bike, and MassTransit. The 13-cluster result splits the
MassTransit Heavyweight into two further groups
which are distinguished by population size. Moving
further up the tree to 12 clusters produced the pairwise
members of all the aforementioned higher-level
groups. Given the interpretative benefit of the 12 clus-
ter solution, however, we chose this as the final result.
Our decision was supported by a precedent for not
always following the majority rule in choosing the
optimal cluster number (Charrad et al 2014). After the
first clustering solution was obtained, we iterated by
imputing the cluster means into the dataset at the fac-
tor score computation stage. This iterative process was
repeated until the cluster results were stable in order to
obtain thefinal typology assignments.

Table 2. Fit statistics for the Tobit factormodels. The 9-factormodel was deemed the bestfit, taking into account
simplicity and interpretability.

No. of factors Log-likelihood AIC BIC diff
2c df diff LSI LSI*

3 −24 877.3 50 388.5 51 593.8 — — 0.380 —

4 −24 029.4 48 814.7 50 251.9 1035.9 61 0.401 0.655

5 −23 447.4 47 770.9 49 436.2 975.9 60 0.397 0.616

6 −23 005.2 47 004.4 48 894.0 743.8 59 0.416 0.693

7 −22 512.6 46 135.2 48 245.4 819.6 58 0.481 0.671

8 −22 115.5 45 455.0 47 781.9 500.6 57 0.504 0.727

9 21 965.3- 45 266.7 47 806.5 308.2 56 0.531 0.770

10 −21 672.8 44 791.5 47 540.5 699.4 55 0.523 0.770

11 −21 492.2 44 538.4 47 492.6 321.7 54 0.534 0.830

12 −21 390.6 44 441.1 47 597.0 206.8 53 0.536 0.784

10
The exploratory factor analysis was conducted inMplus v.8 using

theMLR estimator (Muthén andMuthén 2017).
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Table 3. Loadings of each variable onto the 9 factors.

Variable
Loading (Standard Error)

Metro propensity BRTpropensity Bikeshare propens. Development Sustainability Population Congestion Sprawl Network density

Metro length 0.862a (0.026) −0.046a (0.017) 0.062a (0.026) −0.042 (0.031) 0.009 (0.013) 0.081a (0.019) 0.011 (0.022) 0.059a (0.018) 0.077a (0.036)
Metro length density 0.870a (0.024) 0.021 (0.023) −0.014 (0.024) 0.061a (0.029) 0.037 (0.019) −0.007 (0.021) 0.043 (0.030) 0.021 (0.037) −0.105a (0.034)
Metro stations per 100K 0.825a (0.029) 0.069a (0.019) 0.159a (0.040) 0.001 (0.021) −0.014 (0.016) −0.056a (0.020) −0.073 (0.041) −0.074a (0.019) −0.033 (0.027)
Metro ridership p.c. 0.861a (0.023) 0.032 (0.021) 0.035 (0.033) 0.044 (0.024) 0.023 (0.013) 0.024 (0.017) 0.045 (0.029) −0.016 (0.027) −0.019 (0.027)
Metro age 0.785a (0.029) 0.096a (0.024) 0.080a (0.040) 0.054 (0.031) −0.088a (0.022) 0.021 (0.023) −0.01 (0.026) 0.003 (0.025) 0.091a (0.039)
BRT length 0.039 (0.027) 0.864a (0.023) 0.014 (0.039) 0.064 (0.036) −0.058a (0.025) 0.142a (0.026) 0.009 (0.029) 0.001 (0.020) −0.009 (0.021)
BRT system length density −0.023 (0.023) 0.903a (0.027) 0.112a (0.046) 0.011 (0.028) 0.016 (0.021) 0.065a (0.027) 0.018 (0.028) −0.014 (0.021) −0.071a (0.023)
BRT stations per 100K −0.054a (0.024) 0.860a (0.025) 0.086 (0.050) 0.119a (0.038) 0.027 (0.023) 0.045 (0.026) −0.022 (0.026) −0.017 (0.020) −0.038 (0.021)
BRTfleet per 100K 0.079a (0.035) 0.926a (0.024) 0.019 (0.031) 0.026 (0.036) −0.032 (0.017) 0.023 (0.021) 0.001 (0.022) −0.02 (0.019) −0.022 (0.026)
BRT annual ridership p.c. 0.044 (0.028) 0.983a (0.026) 0.001 (0.030) −0.025 (0.030) 0.003 (0.022) −0.006 (0.023) 0.048 (0.028) 0.032 (0.025) 0.02 (0.019)
BRT age 0.076a (0.038) 0.883a (0.029) −0.01 (0.040) 0.082a (0.038) −0.01 (0.030) 0.036 (0.025) 0.036 (0.030) −0.021 (0.027) 0.062 (0.032)
Bikeshare stations 0.054 (0.029) 0.085a (0.035) 0.819a (0.060) 0.073 (0.062) 0.056 (0.049) 0.041 (0.037) 0.025 (0.034) 0.022 (0.032) 0.081a (0.040)
Bikeshare stations

per 100K

0.024 (0.030) 0.092a (0.038) 0.815a (0.064) 0.105 (0.068) 0.057 (0.048) −0.011 (0.031) 0.003 (0.031) −0.022 (0.033) 0.043 (0.036)

Bikeshare number of bikes 0.025 (0.025) 0.054 (0.032) 0.879a (0.051) 0.035 (0.057) 0.074 (0.054) 0.062 (0.033) 0.022 (0.042) 0.054 (0.032) 0.066 (0.037)
Bikeshare bicycles

per 100K

0.008 (0.024) 0.055 (0.032) 0.896a (0.055) 0.027 (0.061) 0.088 (0.054) 0.009 (0.036) 0.011 (0.038) 0.045 (0.030) 0.05 (0.036)

Bikeshare age 0.074 (0.039) 0.03 (0.044) 0.686a (0.072) 0.257a (0.077) −0.005 (0.038) 0.067 (0.039) 0.071 (0.044) −0.063 (0.043) 0.031 (0.042)
Carmodeshare −0.203a (0.054) 0.017 (0.027) 0.333a (0.121) 0.437a (0.123) −0.269a (0.061) −0.044 (0.048) −0.337a (0.165) 0.208 (0.123) −0.028 (0.039)
Public transitmodeshare 0.203a (0.075) 0.001 (0.097) −0.216 (0.280) −0.264 (0.172) 0.073 (0.108) −0.06 (0.088) 0.360a (0.140) −0.149 (0.113) −0.001 (0.064)
Bicyclemodeshare −0.018 (0.055) 0.036 (0.084) −0.115 (0.177) 0.009 (0.105) 0.674a (0.076) 0.216 (0.150) 0.031 (0.085) 0.024 (0.085) 0.026 (0.054)
Walkingmodeshare 0.118 (0.078) 0.024 (0.092) −0.275 (0.229) −0.408a (0.158) 0.141 (0.094) 0.013 (0.069) 0.2 (0.169) −0.212a (0.099) 0.072 (0.065)
Gasoline pump price 0.065 (0.065) −0.018 (0.050) −0.007 (0.063) 0.348a (0.150) 0.186a (0.079) −0.017 (0.039) 0.167 (0.199) −0.549a (0.089) −0.044 (0.060)
Road deaths rate −0.01 (0.034) 0.066 (0.044) −0.205a (0.090) −0.704a (0.090) −0.028 (0.054) −0.091 (0.058) 0.009 (0.068) 0.375a (0.043) 0.03 (0.043)
Congestion −0.03 (0.026) 0.022 (0.040) −0.002 (0.049) −0.101 (0.077) −0.024 (0.042) 0.112 (0.078) 0.870a (0.041) −0.027 (0.142) −0.038 (0.080)
CongestionAMpeak 0.005 (0.035) −0.037 (0.044) 0.028 (0.066) −0.065 (0.089) −0.029 (0.046) 0.038 (0.060) 0.846a (0.069) −0.096 (0.154) −0.086 (0.089)
Congestion PMpeak −0.005 (0.031) 0.029 (0.047) 0.07 (0.072) −0.012 (0.059) −0.053 (0.067) −0.024 (0.071) 0.935a (0.044) 0.11 (0.147) −0.121 (0.111)
Traffic index 0.021 (0.036) 0.009 (0.035) −0.112 (0.232) −0.025 (0.057) −0.768a (0.088) 0.169 (0.177) 0.294a (0.137) 0.08 (0.048) 0.01 (0.023)
Travel time index 0.098a (0.038) 0.038 (0.043) −0.137 (0.207) 0.026 (0.044) −0.694a (0.081) 0.146 (0.172) 0.396a (0.117) 0.007 (0.038) −0.005 (0.029)
Inefficiency index 0.027 (0.046) −0.02 (0.052) −0.134 (0.267) 0.11 (0.080) −0.774a (0.094) 0.14 (0.177) 0.225 (0.148) 0.081 (0.061) −0.039 (0.032)
Population 0.088a (0.038) 0.032 (0.038) 0.093 (0.050) 0.148 (0.079) −0.029 (0.048) 0.605a (0.080) 0.238a (0.089) 0.016 (0.038) 0.215a (0.070)
Land area 0.112a (0.050) −0.083 (0.047) −0.004 (0.050) 0.518a (0.103) −0.03 (0.041) 0.292a (0.073) 0.129 (0.146) 0.259a (0.056) 0.280a (0.082)
Population density 0.003 (0.045) −0.015 (0.048) −0.046 (0.072) −0.392a (0.108) −0.075 (0.053) 0.395a (0.092) 0.075 (0.085) −0.240a (0.060) −0.151a (0.059)
PopulationΔ 1990-00 0.042 (0.028) 0.067a (0.031) 0.041 (0.062) 0.033 (0.045) 0.141 (0.081) 0.892a (0.032) −0.029 (0.044) 0.025 (0.029) 0.059 (0.042)
PopulationΔ 2000-10 0.014 (0.024) 0.063a (0.032) 0.032 (0.036) 0.033 (0.034) 0.099 (0.076) 0.949a (0.024) −0.019 (0.041) 0.014 (0.024) 0.071 (0.040)
PopulationΔ 2010-20 0.022 (0.020) 0.048a (0.024) 0.037 (0.024) −0.021 (0.023) 0.03 (0.074) 0.975a (0.016) −0.003 (0.027) −0.032 (0.030) 0.028 (0.031)
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Table 3. (Continued.)

Variable
Loading (Standard Error)

Metro propensity BRTpropensity Bikeshare propens. Development Sustainability Population Congestion Sprawl Network density

PopulationΔ 2020-25 −0.005 (0.023) 0.007 (0.030) 0.032 (0.035) −0.076 (0.043) −0.14 (0.075) 0.952a (0.042) 0.011 (0.034) −0.103a (0.039) −0.041 (0.033)
Urbanization rate 2015 0.055 (0.049) 0.265a (0.053) 0.02 (0.074) 0.483a (0.077) 0.027 (0.050) −0.341a (0.061) −0.083 (0.092) 0.111 (0.067) 0.141a (0.053)
Urbanization rateΔ
2015-25

−0.025 (0.039) 0.017 (0.047) −0.105 (0.108) −0.333a (0.078) 0.483a (0.069) 0.459a (0.099) 0.034 (0.059) 0.134 (0.087) −0.043 (0.050)

GDPper capita 0.067 (0.035) −0.08 (0.041) 0.005 (0.053) 0.931a (0.048) −0.041 (0.029) −0.017 (0.030) −0.092 (0.071) −0.01 (0.044) −0.04 (0.034)
Unemployment rate −0.043 (0.063) −0.151 (0.091) −0.063 (0.085) −0.322a (0.104) −0.399a (0.089) 0.054 (0.076) −0.087 (0.095) −0.299a (0.069) 0.015 (0.044)
Cost of living index −0.05 (0.026) 0.047a (0.021) −0.698a (0.129) 1.249a (0.065) −0.009 (0.023) −0.026 (0.020) 0.043 (0.025) −0.075a (0.025) 0.046a (0.020)
Rent index 0.008 (0.028) −0.079 (0.056) −0.734a (0.158) 1.239a (0.069) 0.006 (0.038) 0.097a (0.044) 0.169a (0.067) 0.021 (0.040) 0.041 (0.041)
Grocery index −0.067 (0.035) 0.039 (0.029) −0.667a (0.127) 1.223a (0.070) 0.02 (0.033) 0.019 (0.025) 0.027 (0.056) 0.023 (0.027) 0.035 (0.039)
Restaurant price index −0.018 (0.033) 0.054a (0.027) −0.487a (0.110) 1.143a (0.066) −0.078 (0.043) −0.073a (0.030) −0.013 (0.035) −0.128a (0.036) 0.018 (0.031)
Local purchasing power
index

−0.033 (0.047) 0.049 (0.050) 0.17 (0.126) 0.613a (0.106) −0.037 (0.054) 0.134a (0.044) −0.302a (0.094) 0.026 (0.074) −0.059 (0.042)

Gini coefficient −0.018 (0.069) 0.337a (0.071) −0.211 (0.125) −0.033 (0.092) −0.360a (0.072) −0.086 (0.100) −0.111 (0.090) 0.119 (0.085) 0.073 (0.066)
Poverty rate −0.053 (0.101) 0.210a (0.102) −0.262 (0.261) −0.216 (0.196) −0.303a (0.104) −0.007 (0.071) −0.164 (0.098) 0.063 (0.092) −0.041 (0.075)
Life expectancy 0.044 (0.031) 0.230a (0.051) 0.169 (0.099) 0.468a (0.069) 0.286a (0.055) −0.180a (0.078) −0.057 (0.054) 0.013 (0.035) 0.061 (0.032)
Safety index 0.05 (0.069) −0.198a (0.091) −0.001 (0.122) 0.301a (0.113) 0.472a (0.074) 0.017 (0.052) 0.014 (0.066) −0.127 (0.098) −0.15 (0.087)
Internet penetration 0.079a (0.034) 0.187a (0.044) 0.036 (0.062) 0.661a (0.058) 0.102a (0.043) −0.195a (0.048) −0.068 (0.057) −0.008 (0.038) 0.001 (0.035)
Digital penetration 0.065a (0.023) 0.116a (0.028) 0.141a (0.054) 0.710a (0.055) 0.026 (0.029) −0.175a (0.031) −0.135a (0.053) 0.009 (0.047) −0.01 (0.023)
Innovation index 0.154a (0.033) 0.072a (0.034) 0.211a (0.050) 0.661a (0.056) 0.02 (0.027) 0.077a (0.035) 0.076 (0.054) 0.002 (0.030) 0.042 (0.033)
Smartphone penetration 0.044 (0.042) 0.073 (0.045) 0.041 (0.066) 0.655a (0.076) 0.239a (0.051) −0.006 (0.052) −0.244a (0.080) 0.120a (0.055) −0.053 (0.043)
CO2 emissions p.c. 0.062 (0.049) −0.069 (0.041) 0.069 (0.068) 0.561a (0.086) 0.025 (0.054) 0.023 (0.033) −0.269a (0.122) 0.231a (0.077) −0.045 (0.045)
Pollution index −0.032 (0.053) −0.168a (0.064) 0.052 (0.096) −0.636a (0.074) 0.012 (0.059) 0.242a (0.047) 0.188a (0.063) 0.098 (0.054) 0.109 (0.056)
Street length total −0.082 (0.095) 0.075 (0.097) 0.026 (0.096) 0.166 (0.106) 0.111 (0.069) 0.08 (0.108) 0.16 (0.132) 0.239a (0.060) −0.055 (0.072)
Street length density −0.04 (0.054) 0.091 (0.083) 0.245a (0.098) 0.133 (0.098) −0.239a (0.069) −0.01 (0.042) 0.022 (0.051) −0.109 (0.120) 0.531a (0.067)
Street length average 0.011 (0.037) −0.044 (0.048) 0.001 (0.057) −0.02 (0.048) 0.610a (0.081) 0.166 (0.111) −0.007 (0.045) 0.290a (0.096) −0.245a (0.072)
Intersection count −0.066 (0.094) 0.102 (0.091) 0.05 (0.111) 0.15 (0.117) −0.06 (0.075) 0.089 (0.105) 0.191 (0.146) 0.157a (0.065) 0.073 (0.085)
Intersection density −0.189a (0.090) 0.079 (0.091) 0.089 (0.130) 0.018 (0.076) 0.004 (0.059) −0.111 (0.067) −0.003 (0.086) −0.226a (0.091) 0.360a (0.097)
Degree average −0.07 (0.072) −0.126 (0.072) −0.323a (0.117) −0.084 (0.097) −0.123 (0.088) 0.064 (0.076) −0.138 (0.153) 0.013 (0.061) 0.261a (0.111)
Streets per node 0.039 (0.050) 0.002 (0.048) −0.126 (0.125) 0.03 (0.055) 0.267a (0.083) 0.234 (0.121) −0.155 (0.179) 0.062 (0.056) 0.512a (0.070)
Circuity −0.015 (0.054) 0.167a (0.064) 0.034 (0.075) 0.1 (0.082) 0.069 (0.094) −0.234a (0.074) 0.139 (0.123) 0.052 (0.074) −0.528a (0.063)
Self-loop proportion −0.097 (0.071) 0.093 (0.050) 0.007 (0.048) 0.447a (0.079) −0.132 (0.072) 0.004 (0.054) −0.197 (0.114) −0.047 (0.057) −0.287a (0.053)
Highway proportion 0.016 (0.045) 0.028 (0.049) 0.018 (0.062) 0.454a (0.071) 0.425a (0.088) 0.207a (0.089) −0.077 (0.076) 0.217a (0.069) −0.158a (0.067)

a Indicates significance at the 5% level. Standard errors are parenthesized.
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Table 4. Factor correlations with standard errors parenthesized.

Factor Metro propensity BRTpropensity Bikeshare propensity Development Sustainability Population Congestion Sprawl Network density

Metro propensity 1 0.330a 0.496a 0.360a 0.287a 0.269a 0.271a −0.056 0.158

(0.000) (0.038) (0.039) (0.037) (0.089) (0.045) (0.062) (0.108) (0.108)
BRTpropensity 0.330a 1 0.536a 0.647a 0.013 0.134a −0.043 0.114 0.067

(0.038) (0.000) (0.046) (0.022) (0.093) (0.034) (0.105) (0.115) (0.106)
Bikeshare propensity 0.496a 0.536a 1 0.665a 0.405a 0.105 −0.135 0.154 −0.02

(0.039) (0.046) (0.000) (0.042) (0.100) (0.055) (0.075) (0.104) (0.101)
Development 0.360a 0.647a 0.665a 1 0.073 0.011 −0.202a 0.121 0.153

(0.037) (0.022) (0.042) (0.000) (0.087) (0.036) (0.069) (0.179) (0.104)
Sustainability 0.287a 0.013 0.405a 0.073 1 −0.048 −0.055 −0.024 −0.123

(0.089) (0.093) (0.100) (0.087) (0.000) (0.106) (0.086) (0.062) (0.094)
Population 0.269a 0.134a 0.105 0.011 −0.048 1 0.438a 0.172 0.104

(0.045) (0.034) (0.055) (0.036) (0.106) (0.000) (0.066) (0.134) (0.107)
Congestion 0.271a −0.043 −0.135 −0.202a −0.055 0.438a 1 −0.168 −0.028

(0.062) (0.105) (0.075) (0.069) (0.086) (0.066) (0.000) (0.138) (0.114)
Sprawl −0.056 0.114 0.154 0.121 −0.024 0.172 −0.168 1 0.024

(0.108) (0.115) (0.104) (0.179) (0.062) (0.134) (0.138) (0.000) (0.091)
Network density 0.158 0.067 −0.02 0.153 −0.123 0.104 −0.028 0.024 1

(0.108) (0.106) (0.101) (0.104) (0.094) (0.107) (0.114) (0.091) (0.000)

a Indicates significance at the 5% level.
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3. Results and discussion

3.1. Urban factors
Nine urban factors were discovered from the factor
analysis, namely: Metro Propensity, bus rapid transit
(BRT) Propensity, Bikeshare Propensity, Develop-
ment, Sustainability, Population, Congestion, Sprawl
and Network Density. These are the dimensions upon
which the typologies are defined. The factor descrip-
tions are summarized in table 5. Further, we show the
key significant variables and their respective loadings
on each factor infigure 3.

3.2. Typology descriptions
The 12 typologies can be grouped into pairs, namely:
Auto, BusTransit, Congested, Hybrid, MetroBike and
MassTransit. A summary of each typology showing its

key features and representative cities is provided in
table 6. The factors also enable us to better characterize
the typologies, as seen through the spider plot profiles
in figure 4. The geographic distribution of the
typologies is shown infigure 5.

3.2.1. Auto Innovative andAuto Sprawl
The Auto cities are modern and highly industrialized,
but marked by a history of car-driven development.
Thus, both typologies have the lowest mass transit
modeshare (figure 6(c)). Auto Innovative comprises
the subset of relatively dense North American agglom-
erations with extensive rapid transit systems (e.g.
Boston, Toronto, Chicago). Further, it has the highest
average Development score (0.82) of all the 12
typologies.

Figure 2.Dendrogram showing classification structure. The dashed line indicates the 6-cluster cut, while the dotted line indicates the
13-cluster cut. The selected result is at the 12-cluster level.

Table 5. Summary of latent urban factors identified.

Factor Key indicators

Metro propensity Urban rail/metro (demand, supply, age)
BRTpropensity Bus rapid transit(demand, supply, fares)
Bikeshare propensity Bikeshare (demand, supply), low cost of living

Development Wealth, cost of living indices, innovation

Population Growth, population change

Congestion Congestion (variousmetrics), public transitmode share, low carmode share

Sustainability Bikemode share, street length, safety, efficiency, low congestion

Sprawl Road deaths, high carmode share, low gas price, CO2 emissions, street length

Network density High intersection density, high street density, low street length average, low circuity
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Meanwhile, Auto Sprawl ranks second highest on
the Development factor (0.74), Auto Sprawl tellingly
scores much lower in Network Density (0.41

compared to 0.58 in Auto Innovative). Of all the typol-
ogies, Auto Sprawl has the highest car mode share and
ownership (figure 6(c)), highest emissions (figure 6(b))

Figure 3.Bar plots showing variables with significant loadings on each urban factor.
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and lowest mass transit mode shares (figure 6(c)).
Notable examples of this largely North American
typology are Baltimore, Indianapolis and St. Louis,
including a few cities in the Middle East (e.g. Abu
Dhabi, Dubai).

3.2.2. BusTransit Dense and BusTransit Sprawl
These typologies consist of cities with high bus (public
transit) usage, along with some of the lowest Develop-
ment and Sustainability average scores. TheBusTransit
Dense cities have the highest BRT Propensity score
(0.56), and they outscore BusTransit Sprawl in Popula-
tion, Congestion and Network Density. However,
BusTransit Sprawl has the highest Sprawl average (0.72
compared to 0.71 in Auto Sprawl). Key examples of
BusTransit Dense cities are Rio de Janeiro, Jakarta,
Tehran and Mexico City. These are highly populated,
dense cities with good mass transit systems, particu-
larly with respect to BRT. BusTransit Sprawl includes
several Latin American cities (Caracas, Puebla, San
Salvador), along with others across the world, includ-
ing Almaty, Cape Town and Isfahan.

3.2.3. Congested Boomer andCongested Emerging
The Congested Boomer cities are characterized by joint
highest scores in Population and Congestion, com-
pared to other typologies. Congested Emerging also
features the second highest Congestion average score
(0.69). However, both typologies rank the lowest in
Development (Boomer: 0.14; Emerging: 0.08). The
Boomer cities have the highest Population score (and
also the highest average population growth and density

figure 7(g)). Notable in this typology are the Indian
subcontinental urban centers (e.g. Delhi, Mumbai,
Dhaka) along with Lagos, Manila, among others.
Remarkably, Congested Emerging has the lowest CO2

emissions per capita and the highest public transit
mode share (figures 6(a), (b)). This could be explained
by its low levels of industrialization andwealth.

3.2.4. Hybrid Giant andHybridModerate
The Hybrid cities are fairly dense, growing urban
centers, with solidly average performance across all
urban factors. They also have among the highest mass
transit mode shares (about 40%) and share similar
CO2 emissions (figure 6(a)) and car usage character-
istics (figure 6(b)).

The chief distinguishing factor between theHybrid
Giant and Hybrid Moderate typologies is Metro Pro-
pensity, as Giant cities have an average score of 0.37,
compared to 0.09 forModerate cities. Giant also ranks
slightly higher onCongestion and Sprawl compared to
Moderate. Furthermore, Giant cities have an average
population of 2.7 million, compared to 2 million for
Moderate cities. The Hybrid Moderate typology is lar-
gely represented in South America (e.g. Havana, Cor-
doba, PanamaCity) andCentral Asia, while theHybrid
Moderate cities are chiefly found in Eastern Europe
and East Asia (e.g. Daegu,Hiroshima, Sofia).

3.2.5.MetroBike Emerging andMetroBike Giant
These MetroBike cities are heavily populated and
rapidly urbanizingmetropolitan areas in China, where
rapid transit and bikeshare systems are widely

Table 6. Summary of the urban typologies and their key cities.

Typology No. cities Features;major locations Key example cities

Auto Innovative 14 Auto-dependent, wealthy, higher transitmode share,

metro&population density; U.S., Canada

WashingtonDC, Boston, Chicago,

San Francisco, Toronto

Auto Sprawl 51 Auto-dependent, wealthy, sprawling, lowest transitmode

share; U.S., Canada,Middle East

Baltimore, Tampa, Raleigh,

Kuwait City

BusTransit Dense 16 Large population, high BRT, fairly congested; South

America

Bogota, Rio de Janeiro, Jakarta, Sao

Paulo, Tehran

BusTransit Sprawl 47 Lower population, sprawling, fair public transit ; Latin

America, Central Asia/Middle East

Mecca, Shiraz, Santa Cruz, Tripoli,

Caracas

Congested Boomer 17 Rapid growth, congestion,moderate carmode share;

Indian Subcontinent, Africa

Bangalore, Chennai, Delhi, Lagos,

Manila

Congested Emerging 59 High growth, lower population, developing; Africa,

S. Asia

Kumasi, Phnom-Penh,

Port-au-Prince, Lucknow

HybridGiant 26 Mix ofmode choices, dense networks, high population

density; S./E. Europe, E. Asia

Busan, Lisbon, Sapporo, Santiago,

Warsaw

HybridModerate 20 Mix ofmode choices, lower population; Central America,

Middle East

Havana, Johannesburg,Mon-

tevideo, PanamaCity

MetroBike Emerging 27 Metro&bikeshare dominant, highway development,

fairly wealthy; China

Ningbo, Zhengzhou, Shenyang,

Harbin

MetroBikeGiant 5 Metro&bikeshare dominant, large population; wealthy;

China

Shenzhen, Guangzhou, Chongqing,

Beijing

MassTransit

Heavyweight

19 Highmass transit usage andmetro availability, high bike-

share; fairly highCO2 emissions; Europe, S.E. Asia

Singapore,Madrid, Seoul, Berlin,

London

MassTransitModerate 30 Equitable, high bikeshare,moderatemetro andBRT, low

congestion;W. Europe, Israel

Antwerp, Tel Aviv, Turin, Liverpool
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available. The pace of bikeshare growth in China has
been so rapid in recent years that it has posed recent
challenges in urban management (Shi et al 2018).
MetroBike cities have the highest Sustainability scores
(Emerging: 0.74; Giant: 0.60) which highlight the
prevalence of cycling (Emerging: 23%; Giant: 17%).
We distinguish between the Emerging and the Giant
typologies based on key factors of Metro, Develop-
ment Population and Congestion, on which the
MetroBike Giant scores higher (0.58, 0.39, 0.72 and
0.72, respectively) than its Emerging counterpart (0.19,
0.27, 0.34 and 0.57, respectively). The Giant cities also
correspond to the well-known Tier 1 cities in China,
such as Shanghai, Beijing and Guangzhou (Li 2007).
The Emerging cities, which score highest in Bikeshare
overall (0.48) includeNingbo,Harbin and Shenyang.

3.2.6. MassTransit Heavyweight and MassTransit
Moderate
MassTransit Heavyweight cities have the highest Metro
(0.71) and second highest Development (0.74) scores
(figure 4). The Development score of this typology is
also similar to those of the Auto cities. While public
transit is fairly high in this typology, CO2 emissions are
the third highest (figures 6(c), (a)).Mostmember cities
are in Europe (London, Berlin, Paris, Oslo, Madrid
among others). Singapore, Hong Kong and Tokyo
make up the Asianmembers. The lonemembers in the
Americas are New York City and Vancouver, which
are furthest from the centroid of the typology.
MassTransit Moderate has the second highest BRT
(0.26) and Bikeshare (0.48) scores across all typologies.
Notably, it has the lowest Population score (0.19) and

Figure 4. Spider plots indicating normalized factor scores averaged in each typology. Factor names have been simplified for readability.
‘Propensity’has been dropped from ‘Metro’, ‘BRT’ and ‘Bikeshare’, while ‘Network density’has been shortened to ‘Network’.
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is dominated by European cities (e.g. Antwerp,
Brussels, Helsinki), along with major Israeli cities and
Ottawa.

3.3. Emissions and urban sustainability
The typology classification provides a unique way of
viewing and understanding urban and environmental
metrics. Box plots of selected urban and environmen-
tal indicators are shown in figure 6 by typology.We see
that the Auto cities, for example, have the highest car
mode share and CO2 emissions per capita. The
MetroBike cities stand out with the highest bike mode
shares. They also feature the highest highway propor-
tion of all typologies.

Scatter plots of two environmental variables,
annual CO2 emissions per capita and Pollution Index
(Numbeo 2017), against selected urban and economic
indicators are shown infigure 7. (The Pollution Index is
calculated on a scale of 0 to 100, in increasing order of
perceived pollution of air, water and the environment.)
The data points shown are the average values for each
typology. The Vehicles per capita variable was not used
in the factor analysis given that it was highly correlated
with car usage, and also given that city-level data were
not readily available for many cities. From the plots
(figures 6(a), (b)), its relationship to CO2 emissions and
Pollution provides validation of the typology classifica-
tion. ForMetroBike Giant andMetroBike Emerging, the
relatively higher emissions/vehicle indicates the impact
of the economic and industrial activities that also con-
tribute to their emissions.

On one end of the spectrum are the Auto Innova-
tive and Auto Sprawl cities (colored light and dark

blue) with the highest CO2 emissions per capita and
the lowest Pollution Index. Congested Boomer and
Congested Emerging cities are on the other end of the
spectrum with the opposite ranking on those two
indicators. Denser cities tend to be more polluted but
contribute less to CO2 emissions per capita. Unsur-
prisingly the wealthiest cities (those with the highest
GDP per capita) contribute the most to per-capita
CO2 emissions. Highway proportion, an indicator of a
car-centric mobility infrastructure culture, appears to
be a good indicator of CO2 emissions per capita. The
recently developing MetroBike cities are an exception
here: with the highest highway proportion of around
4%–5%, their contribution to CO2 emissions is com-
parable to cities with half that percentage.

We note that the variables discussed here were
chosen based on their relevance to environmental sus-
tainability. Further relationships among the variables
can be explored across the typologies to yield findings
of interest. These could be treated in more depth in a
future study.

4. Potential applications

4.1. Prototype city generation for simulation of
futuremobility
Amajor application of the typologies presented in this
paper is in the creation of prototype cities for large-
scale future mobility simulation. The typologies pro-
vide a framework for coherently analyzing the impacts
of relevant future mobility scenarios across different
city types. Thus, we have developed an approach for

Figure 5.Map of theworld indicating cities by typology.

13

Environ. Res. Lett. 14 (2019) 095006



high-fidelity large-scale simulation-based analyses of
the urban typologies. This hinges on the generation of
a prototype city designed to be broadly representative
of the cities within a given typology. We generate and
validate the prototype city based on population, land-
use, demand (activity and mode choice) and supply

characteristics, building on earlier efforts to model
the Boston metropolitan area in the US (Viegas de
Lima et al 2018). Using this approach, we have created
and simulated prototype cities for Auto Sprawl and
Auto Innovative in a state-of-the-art simulator, Sim-
Mobility (Adnan et al 2016). These detailed

Figure 6.Box plots of selected variables by typology.
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simulations have enabled the impact assessment of
automated mobility-on-demand scenarios, with
results on demand, network and energy outcomes
(Oke et al 2019).

Agent-based simulations on such prototype cities
can yield insights into the broad impacts of future sce-
narios in these typologies. Considerable time and effort
can thus be conserved by using the typology-level

Figure 7.Plots showing relationships between environmental variables (CO2 emissions per capita and theNumbeo Pollution index)
and selected indicators.
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evaluations to guide the selection of viable sustainable
mobility pathways for more detailed analyses at the city
level. Precedents for this sort of application can notably
be found in the work of Thomson (1977), where arche-
type strategies were empirically determined and ana-
lyzed for groups across 30 megacities. Fielbaum et al
(2016) also created a parametric representation of cities
as a tool for benchmarking and evaluation of mobility
scenarios. In this case, we leverage on the representa-
tional power of an agent-based simulator to facilitate
typology-relevant scenario explorations.

4.2. Latent class choicemodel framework for
behavioral implications
We have obtained access to a unique behavioral dataset
sampled globally from cities across 52 countries (Dalia
Research2017).The survey, conductedbyDaliaResearch,
provides individual characteristic andmobility preference
data (car ownership, travel mode, travel time, distance of
driving), tendency to purchase and use electronic vehicles
(EV), and safety perceptions of autonomous vehicles
(AV). Using a latent class choice modeling (LCCM)
framework informed by the 9 urban factors discovered,
we plan to estimate a model to explain travel behavior to
further confirm the validity of the typologies presented in
this paper. Moreover, capturing taste heterogeneity in
mobility behavior across typology-specific models, the
LCCM approach has the added advantage of predicting
current, and potentially future, travel-related choices,
which are relevant for sustainable urban mobility. The
latent urban typology structure is identified by maximiz-
ing the total likelihood of observing the choices of
individuals from different cities. Ultimately, we can
obtain a probabilistic typology profile for each city, which
provides richer information compared to a deterministic
assignment toonly one typology.

5. Conclusion

We have discovered a new set of urban typologies based
on 64 urban indicators from 331 cities spanning 124
countries across all continents. The cities represent 40%
of the global urban population in 2016, while the
indicator data have been compiled from open sources
datingback to2008.Oureffort is themost comprehensive
mobility-oriented classification to date that also incorpo-
rates environmental variables. Using factor-analytic and
agglomerative clustering approaches, we identified 9
urban factors and 12 typologies. Each typology captures
distinct urban outcomes and serves as a potential testbed
for sustainablemobility implementations.

Our results uncover critical typology patterns that
will enable researchers to focus future efforts in mitigat-
ing environmental concerns. In particular, theMetroBike
cities in China are the fastest growing, along with the
greatest proportion of highways. The Congested Boomer

typology is also notable for its large population density
and congestion problems, yet relatively low CO2 emis-
sions. Predominantly in North America, the Auto cities
are exceptional in their car usage, wealth and CO2 emis-
sions. The MassTransit Heavyweight and MassTransit
Moderate typologies, represent potentially desirable out-
comes in sustainable mobility. Further detailed com-
parative analyses on these typologies can yield valuable
insights for urbanplanners andpolicymakers.

We have indicated how the typologies can directly
impact policy through agent-based simulation of proto-
type cities.We plan to conduct simulations of alternative
mobility scenarios beyond automated mobility-on-
demand and on an expanded set of prototype cities, in
order to generate insights for optimal policy approaches
that cities can adopt to effectively harness new vehicle
technologies and mobility services for overall social and
environmental benefits.We have also indicated an ongo-
ing extension of the typology discovery effort by incor-
porating behavior and perceptions using a recent survey.
With the aforementioned LCCMapproach, we expect to
further enhance our typology specifications and provide
insights into the likelihood of EV and AV adoption
across variousurban typologies.

Our data and results have been made publicly
available at http://its.mit.edu/typologies. We expect
that these will be valuable to researchers and planners
as a foundation for further research, as well as aid pol-
icy efforts in reducing the environmental impacts of
urbanmobility for a sustainable future.
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