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ARTICLE

How face perception unfolds over time
Katharina Dobs 1,2,3, Leyla Isik 1,2,3, Dimitrios Pantazis 1,2 & Nancy Kanwisher1,2,3

Within a fraction of a second of viewing a face, we have already determined its gender, age

and identity. A full understanding of this remarkable feat will require a characterization of the

computational steps it entails, along with the representations extracted at each. Here, we

used magnetoencephalography (MEG) to measure the time course of neural responses to

faces, thereby addressing two fundamental questions about how face processing unfolds over

time. First, using representational similarity analysis, we found that facial gender and age

information emerged before identity information, suggesting a coarse-to-fine processing of

face dimensions. Second, identity and gender representations of familiar faces were enhanced

very early on, suggesting that the behavioral benefit for familiar faces results from tuning of

early feed-forward processing mechanisms. These findings start to reveal the time course of

face processing in humans, and provide powerful new constraints on computational theories

of face perception.
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A brief glimpse at a face quickly reveals rich multi-
dimensional information about the person in front of us.
How is this impressive computational feat accomplished?

A key property of a complex computation is that it proceeds via
stages and hence unfolds over time. Thus, knowing which
information is extracted when is of the essence for understanding
the computations underlying face perception. Surprisingly, it
remains unknown 1) when after stimulus onset information
about different face dimensions, such as gender, age, or identity,
are extracted, and 2) how early these computations are affected by
the familiarity of the face. Here we use magnetoencephalography
(MEG) to answer these questions.

While extensive prior evidence indicates that humans detect
and recognize faces very rapidly1–3, much less is known about the
precise temporal dynamics of extraction of information about
different dimensions of face information. One possibility is that
different dimensions of face information are extracted at different
stages of processing. For example, gender information might be
extracted before identity information, following a coarse-to-fine
trajectory1,4. Alternatively, different face dimensions could be
processed at the same time, suggesting greater interdependence of
their processing5,6. Resolving the time course by which infor-
mation about gender, age, and identity emerge will importantly
constrain computational models of face perception.

Our second question is whether these face dimensions are
processed differently for familiar vs. unfamiliar faces, and if so
how early familiarity affects processing. A striking yet unex-
plained finding about face perception is that familiar faces are
processed more robustly and efficiently than unfamiliar faces7.
The neural mechanisms underlying this effect remain unknown.
According to one hypothesis, visual experience with specific faces
tunes the bottom-up processing filters for face features, thereby
enhancing representations of familiar faces8. This hypothesis
predicts that familiarity should enhance face representations early
in processing, at the same time when those representations are
first being extracted. Alternatively (or in addition9), familiarity
effects in face processing could arise via activation of associated
person knowledge and memories, which would then enhance
perceptual representations in a top-down manner10,11. This
hypothesis predicts that familiarity should enhance face repre-
sentations at some point after those representations are first
extracted. Determining which (or both) of these accounts is
correct will provide an important step towards understanding the
neural mechanisms underlying the behavioral familiarity
enhancement effect, and will further inform more general and
long-standing questions of how specific prior experience affects
the processing of objects12–14.

To determine how face processing unfolds over time, we
applied multivariate analysis methods to MEG data from subjects
viewing images of familiar and unfamiliar celebrities who varied
orthogonally in gender and age. We used representational simi-
larity analysis (RSA) to reveal the temporal dynamics of the
representation of gender, age, and identity for familiar and
unfamiliar faces. We show two novel results: 1) the brain encodes
gender and age information before identity information, and 2)
information about both identity and gender is enhanced for
familiar faces early on in processing. These findings constrain
computational models of face perception and support a bottom-
up account of the strong familiarity effects previously reported in
behavior.

Results
Behavioral performance during MEG task. We recorded MEG
data from 16 subjects while they viewed five images of each of
eight familiar (American) and eight unfamiliar (German)

celebrities and monitored for consecutive repetitions of identical
images (i.e., 1-back task; Fig. 1a). Celebrities varied orthogonally
in gender and age. Images for each identity were chosen to
incorporate natural variability in various dimensions, such as
pose, hair style, eye gaze or lightning. Subjects viewed 28 repe-
titions of each of 80 face stimuli, each presented for 200 ms in
individual trials. To ensure that subjects maintained attention and
processed the presented images throughout the course of the
experiment, we asked them to perform a 1-back task, pressing a
button when the identical image was repeated consecutively.
Subjects were highly sensitive to an image repetition (mean
sensitivity index d’ ± SEM: 4.28 ± 0.16) and responded quickly
(mean response time ± SEM: 458 ± 10 ms after target stimulus
onset). To test whether subjects processed familiar faces more
efficiently than unfamiliar faces, we compared the responses to
familiar versus unfamiliar images. While subjects’ sensitivity did
not differ between familiar and unfamiliar face images (p= 0.67;
two-sided signed-rank test), subjects responded significantly fas-
ter to familiar than to unfamiliar faces (p= 0.021; familiar: 454 ±
11 ms, unfamiliar: 462 ± 9 ms). These behavioral results confirm
that the processing of familiar faces is enhanced compared to
unfamiliar faces, even when the task requires only image-level
(not identity-level) processing.

Time course of face image decoding. To reveal the time course
of face processing, we performed multivariate pattern analysis on
the MEG signals in a time-resolved manner (Fig. 1b)15,16. We
first extracted a set of principal components (PCs) for each
subject, based on MEG responses across sensors, trials, timepoints
(−100 to 800 ms with respect to image onset; 1 ms resolution)
and conditions. Then, using the resulting PCs, we trained and
tested support vector machines (SVM) on every pair of face sti-
muli for each time point. Dissimilarity for each pair of stimuli was
computed as five-fold cross-validated decoding accuracy, result-
ing in one 80 × 80 MEG representational dissimilarity matrix
(RDM) per subject and time point.

To determine when neural representations can first discrimi-
nate any visual information, we computed the average across all
pairwise decoding accuracy values, separately at each time point.
This analysis yielded a time course of neural image decoding
accuracy (Fig. 2a). Individual images could be discriminated by
visual representations early (decoding first reached significance at
46 ms), reached a peak at 103 ms (73.3% mean decoding
accuracy) and remained significantly above chance until 706 ms
after stimulus onset (cluster-corrected sign permutation test, clus-
ter-defining threshold p < 0.05, corrected significance level p
< 0.05). This time course is highly similar to the course of image
decoding reported in previous MEG studies15–17 and shows how
neural responses are resolved at the level of individual face
images. To test how persistent neural responses to face image
representations were, we performed temporal generalization
analysis (see Supplementary Note 4).

Early representations of face dimensions revealed by RSA. To
determine when neural representations discriminated face
dimensions at higher categorization levels (e.g., gender) or even at
the level of identity or familiarity, we created a model RDM (e.g.,
1 for between and 0 for within gender stimulus pairs) for every
face dimension (i.e., gender, age, identity and familiarity; Fig. 1c).
Because some face dimensions (e.g., gender) might be associated
with differences in low-level image properties (e.g., long hair
versus short hair for female and male, respectively), we further
created a low-level feature RDM based on an early layer of a deep,
convolutional neural network trained on face identity (i.e., VGG-
Face; see Methods for details and for comparison to other low-
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Fig. 2 Decoding of face images and dimensions from MEG signals. a Time course of image decoding where 0 indicates image onset (n= 16). b Time course
of partial Spearman correlations between MEG RDMs and model RDMs (see Fig. 1c) for gender (red), age (green), identity (blue) and familiarity (orange),
partialling out all other models and low-level features (see Methods). Lines below plots indicate significant times using cluster-based sign permutation test
(cluster-defining threshold p < 0.05, corrected significance level p < 0.05). c, d Onset (c) and peak (d) latencies for decoding of images, gender, age and
identity. Error bars indicate bootstrapped 95% confidence intervals. Stars above bars indicate significant differences across conditions (one-sample two-
sided bootstrap test, **p < 0.01; *p < 0.05; FDR-corrected). Source data are provided as a Source Data file
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Fig. 1 Task and multivariate MEG analyses. a Subjects viewed 80 images of faces while performing a 1-back task on the image. Each image was presented
for 200ms, followed by a variable [800–1000ms] interstimulus interval (ISI). b MEG analyses were performed in a time-resolved manner on principal
components (PCs) extracted from all MEG sensors, separately for each subject (see Methods section). For each time point t, we extracted the pattern of
response across PCs for each condition and each trial and performed pairwise cross-validated SVM classification. The resulting decoding accuracy values
resulted in an 80 × 80 representational dissimilarity matrix (RDM) for each time point. c To perform representational similarity analysis (RSA), we
constructed model RDMs for each face dimension (1 corresponding to between and 0 corresponding to within category, respectively). Images shown are
not examples of the original stimulus set due to copyright; the exact stimulus set is available at [https://osf.io/gk6f5/]. Images shown are in public domain
and available at [https://commons.wikimedia.org]
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level feature models). For every face dimension, we computed
partial Spearman correlations between corresponding model and
MEG RDMs at every time point and for each subject, while
partialling out all other model RDMs and the low-level feature
model (Fig. 2b). We further performed a similar analysis based on
cross-decoding of face dimensions (e.g., training gender on some
identities, testing gender on the left-out identities), which yielded
highly similar results (see Supplementary Note 3).

MEG responses revealed information about age (significant
time points: 60–208, 214–368 ms), gender (72–608, 630–705 ms)
and specific identity (91–437 ms; all cluster-corrected sign
permutation tests, cluster-defining threshold p < 0.05, corrected
significance level p < 0.05). Age and gender information were
extracted first from MEG representations, and arose around 20
ms earlier than identity information (Fig. 2c; p < 0.05; one-sample
two-sided bootstrap test, FDR-corrected). This finding suggests
that coarse distinctions between faces in categorical dimensions
are extracted before finer distinctions on an identity level; in line
with a coarse-to-fine processing of face dimensions1,4. Although
the later latency of identity information could in principle reflect
lower power to detect this smaller effect, this account seems
unlikely, as we explain in the familiarity analysis results in the
next section. Importantly, age, gender and identity dimensions
were discriminated significantly later than individual images (p <
0.01; one-sample two-sided bootstrap test, FDR-corrected)
suggesting that these facial dimensions emerged early during
processing but after low-level feature extraction. Interestingly, we
found that neural representation of gender and identity peaked at
similar latencies ~125 ms after stimulus onset (Fig. 2d). So while
peak latencies often vary for different types of object categories16

(presumably processed in different locations in the brain),
different dimensions of the same category (here faces) can peak
at similar times.

We further found that MEG representations separated familiar
from unfamiliar identities at much later latencies (403–457,
482–573 ms; cluster-corrected sign permutation test, cluster-
defining threshold p < 0.05, and corrected significance level p <

0.05) than perceptual categories such as gender or age, and after
specific identity information is extracted (all p < 0.01; one-sample
two-sided bootstrap test, FDR-corrected). This finding indicates
that a late signature of generic familiarity can be read out from
MEG signals, long after the onset of extraction of identity
information. The basis of this familiarity signature is not clear,
and could reflect the activation of memories associated with a
given familiar individual, an emotional response to a familiar
face, or a generic familiarity response.

Familiarity enhances face information at early stages. Beha-
vioral evidence shows that familiar faces are processed more
robustly than unfamiliar faces, but it is unknown how early in
processing this occurs. To answer this question, we conducted the
same RSA analysis as above, but did so separately for familiar and
unfamiliar faces (Fig. 3a). Note that this separation reduces the
data available for each analysis fourfold, thus reducing the signal
to noise ratio (SNR). Despite this reduction, MEG representations
still discriminated familiar faces by gender (Fig. 3b; 71–206,
226–492 ms), age (Fig. 3c; 92–200, 220–271 ms) and identity
(Fig. 3d; 96–168, 252–406, 447–516, 519–570 ms; all cluster-
corrected sign permutation tests, cluster-defining threshold p <
0.05, and corrected significance level p < 0.05). Interestingly, the
onset latency of identity information for familiar faces was not
earlier than that found across all faces, despite the much higher
peak correlation for familiar faces. This result suggests that the
later onset for identity information than gender and age infor-
mation found in the previous analysis (Fig. 2c) is unlikely to
reflect overall lower sensitivity to identity information.

In contrast to familiar faces, neural representations of
unfamiliar faces were less pronounced but could still be
discriminated by gender (Fig. 3b; 102–415, 488–560 ms) and
age (Fig. 3c; 70–137, 241–397 ms; all cluster-corrected sign
permutation tests, cluster-defining threshold p < 0.05, and
corrected significance level p < 0.05), and were no longer
discriminable by identity (Fig. 3d). Crucially, we found that the
encoding of gender and identity, but not age, was significantly
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Fig. 3 Effect of familiarity on face representations. aWe conducted separate RSA analyses for familiar and unfamiliar faces (n= 16). Note that this reduces
the amount of data fourfold. b–d Time course of partial Spearman correlations between MEG RDMs and gender (b), age (c) and identity (d) separated for
familiar and unfamiliar faces, partialling out other models and low-level features (see Methods). Colored lines below plots indicate significant times, and
black lines indicate significant difference between conditions both using cluster-based sign permutation test (cluster-defining threshold p < 0.05, and
corrected significance level p < 0.05). Source data are provided as a Source Data file
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enhanced for familiar compared to unfamiliar faces (Fig. 3b–d,
black lines in plots; all cluster-corrected sign permutation tests,
cluster-defining threshold p < 0.05, and corrected significance
level p < 0.05). These enhancements occurred early with respect to
the onset of gender and identity encoding (gender: 66 ms – 142
ms (onset 71 ms); identity: 106–159ms (onset 96 ms)). Overall,
familiarity enhancement arose early during processing, suggesting
that early stages of visual processing are tuned to familiar face
features (perhaps via local recurrent processes17).

MEG responses are correlated with behavior. Not all informa-
tion that can be read out from brain activity is used by the brain
to guide behavior18,19. Is the face information we report here
related to behavior? To find out, 14 of the 16 subjects participated
in a behavioral multi-arrangement paradigm (see Methods) after
the MEG experiment to assess their perceived dissimilarity
between the face stimuli. We correlated the resulting behavioral
RDM of each subject with the MEG RDMs for each time point for
that subject, while partialling out low-level stimulus features. The
resulting correlation time courses revealed a significant partial
correlation between MEG and behavior (Fig. 4a; 85–274,
294–420 ms after stimulus onset; cluster-corrected sign permu-
tation test, cluster-defining threshold p < 0.05, and corrected
significance level p < 0.05) with a peak at 123 ms (mean partial
Spearman’s ρ: 0.06) after stimulus onset. This peak overlaps with
the peak of correlations obtained for gender, age and identity (see
Fig. 2d). To assess how much of the explainable MEG variance
was captured by behavior, we further computed an estimate of the
noise ceiling given the variability across the restricted set of
fourteen subjects (gray-shaded area in Fig. 4a). While the corre-
lation between behavior and MEG reveals the shared variance
between both modalities, it does not indicate how much each of
the face dimensions contributes to this shared variance. To
answer this question, we conducted a model-based commonality
analysis (Fig. 4b; see Methods). This approach is based on var-
iance partitioning and identifies the variance uniquely shared
between MEG and behavior and a given model RDM (e.g., the
gender model), termed commonality coefficients. We restricted
this analysis to the time window during which we found sig-
nificant correlations between MEG and behavior (i.e., 85–420 ms
after stimulus onset; note the changed x-axis in Fig. 4b). Given
the late correlation with the MEG data and the familiarity model
(see Fig. 2b), we did not include the familiarity model in this
analysis. We found that gender, age and identity each uniquely
contributed to the shared variance (commonality coefficients are
shown in Fig. 4b). We further show the explained variance

between MEG and behavior as reference (gray line in Fig. 4b).
Note that commonality coefficients reported with this kind of
analysis are often significant but very small20. Together, we found
that behavior was predictive for MEG responses and that the
shared variance predominantly reflected gender information,
followed by age and then identity, though all three were
significant.

Discussion
This study answers two fundamental questions about the time
course of face processing in humans. First, we find that extraction
of information about gender and age begins after image-level
decoding but before extraction of identity information. Second,
we show that familiarity of the face enhances representations of
gender and identity very early in processing. These two new
findings reveal the temporal dynamics underlying face processing
and provide powerful constraints on computational models of
face perception. Next, we relate these findings to prior work in
monkeys and humans, as well as computational models of face
perception.

While a few prior studies have investigated the time course of
face perception using multivariate pattern analyses in humans21–24,
our work goes beyond previous findings in two important
respects. First, previous studies have focused on a single facial
dimension (e.g., identity22–24; viewpoint21), and hence could not
address the relative timing of extraction of multiple dimensions of
face perception. Generally, however, our onset latencies lie within
the range of onset times reported in these studies. For example,
prior studies found that the onset of viewpoint encoding across
identity emerged at 60 ms after stimulus onset, while effects of
viewpoint symmetry (supporting view-point invariant mechan-
isms of face identification) started at around 80ms21. Further,
another study reported identity decoding accuracy across changes
in expression at around 50 ms24, although that study used a
60ms-sliding temporal window hence this time point could reflect
neural signals up to 110 ms after stimulus onset. To our knowl-
edge, only one prior study23 investigated the representation of
identity within and across gender, and reported no difference in
onset latencies (onset ~60 ms for each). Their analysis, however,
likely included low-level stimulus differences in the identity and
gender comparisons due to a limited set of stimuli, as well as
identity information in the gender comparison, whereas we
investigated gender and identity information unconfounded from
each other and from low-level features (i.e., by partialling out the
irrelevant models). Overall, while prior studies find similar early
decoding of face identity information, consistent with our results,
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they do not reveal the relative timing of extraction of different
dimensions from faces.

Second, and most importantly, our study is the first to reveal
how and when familiarity affects the representations of different
face dimensions. The neural mechanisms underlying the powerful
behavioral benefit for the perception of familiar versus unfamiliar
faces7,25 have remained an important unsolved mystery. In par-
ticular, is the familiarity enhancement effect due to tuning of
bottom-up perceptual filters, or to top-down feedback8,9,11?
Previous studies could not address this question as they used only
unfamiliar face images22–24, indirect analyses of steady-state
visual evoked responses26 or functional magnetic resonance
imaging with low temporal resolution27–31. Our finding that
identity and gender information are significantly enhanced for
familiar faces, very early on in processing, and virtually as early as
this information becomes available, suggests a neural mechanism
for the strong behavioral enhancement in perception of familiar
versus unfamiliar faces. In particular, because there is unlikely
sufficient time for feedback from high-level areas32, this early
enhancement is most likely due to tuning of feed-forward pro-
cessing for familiar faces or local recurrent processes17. Together,
our results suggest that familiarity affects face perception by
altering feed-forward face processing, not exclusively through
feedback from later stages after the personal identity of a face has
been extracted.

How do our findings relate to prior findings on the spatial
organization of face processing in the brain? In our study, we
consider whole-brain information and do not restrict the time
course to certain spatial locations given the low spatial resolution
of MEG. Despite the lack of spatial resolution, the finding that
gender and age were extracted before identity information sug-
gests that these aspects of face perception are processed at dif-
ferent stages of face processing. Evidence from fMRI is equivocal
about where specific face dimensions such as gender33,34 or
identity35–37 are represented in the brain. Given the fleeting
presence of face dimensions in our MEG data, it is possible that
fMRI misses some of this information due to its low temporal
resolution. Interestingly, previous studies found that people with
developmental prosopagnosia, who have trouble recognizing
faces, have no impairments in gender processing, suggesting that
these two facial dimensions might be processed in distinct neural
areas, potentially in parallel38,39. In contrast, behavioral studies
showed that gender processing influences face identification6.
Our results reconcile these two findings by suggesting that gender
and age are processed earlier in the processing hierarchy, at stages
possibly less affected by prosopagnosia, yet able to influence
subsequent identity processing in typical subjects6. Taken toge-
ther, it remains unclear where gender, age or identity are repre-
sented in the brain. In future, this question might be answered by
combining MEG with fMRI using a fusion approach16,17 to link
our finding to regions in the brain.

While human neuroimaging techniques are mainly limited to
either high temporal or high spatial resolution, neurophysiolo-
gical recordings in non-human primates provide an ideal
opportunity to simultaneously measure face representations with
high temporal and spatial resolution. Indeed, the macaque face
perception system is similar40,41 and possibly homologous42 to
the human face processing system. Neurophysiological studies
with non-human primates find that categorical distinctions
between faces and other categories develop earlier than face
identity information41,43, but it is still unknown when other face
dimensions, such as gender or age, emerge. Consistent with
human MEG data21, facial representations in macaques were also
found to gradually build up and become more invariant to
viewpoint at successive processing stages, measured both spatially
and temporally40,44, again showing the usefulness of the

macaque’s face perception system as a model to study human face
perception. With regard to familiarity, our findings are in line
with a recent study in macaques reporting early quantitative
differences and late qualitative differences in processing of
familiar versus unfamiliar faces45. However, the paradigms and
stimuli that have been used so far in humans and macaque studies
are too different to provide a precise correspondence between
species.

Our findings place important constraints on computational
models of face perception and further suggest new hypotheses to
probe in such models. Recently, deep convolutional neural net-
works (CNNs), have provided successful models of object and
scene perception in humans and macaques46–48. However, it
remains unclear how useful CNNs are as model for human face
processing. In future work, it will be interesting to test how well
different computational models can explain our findings. In
particular, the fact that we found little temporal cross-decoding
(see Supplementary Note 4) suggests that a sequence of non-
linear operations are performed on the representations of each
face dimension. Comparisons of our data to different computa-
tional models might shed light on the operations and transfor-
mations performed at different stages of face processing in
humans, as has been successfully done for facial viewpoint
decoding in macaques49. Furthermore, the face dimensions tested
in this study did not yet reach the noise ceiling, suggesting that
other factors beyond the ones investigated in this study might
contribute to the processing of faces. In future, it will be
important for computational models of face perception to
determine the relevant dimensions for face processing. Most
importantly, a crucial implication of our data is that early stages
of face processing are apparently tuned to familiar faces, a phe-
nomenon that could also be tested in computational models.
Analyzing these questions could provide a path toward the
development of a computationally precise, image-computable
model of face processing in humans.

While the results presented here further our understanding of
human face processing dynamics, they also have several limita-
tions. First, our decision to use natural images in this study for
ecological validity may introduce greater low-level image con-
founds compared to highly controlled, artificial face stimuli.
Although we partialled out low-level features as measured by an
early layer of a CNN trained on faces (a conservative choice, given
that this model had the greatest overall correlation with the MEG
data), we cannot be sure that all low-level features have been
captured by this model. Second, by investigating the onset of
extraction of several face dimensions, we cannot draw conclu-
sions about when the processing is completed, because the earliest
latency of significant decoding reflects an upper bound for the
beginning of the process. In fact, the correlations with gender, age
and identity were relatively sustained until at least 400 ms after
stimulus onset. Third, our analysis of familiarity effects is based
on a comparison of neural responses to American and German
celebrity stimuli and any low-level differences between these sti-
mulus sets could have contributed to these effects. Our analysis of
an early and a late layer of VGG-Face (see Supplementary Note 4)
found no evidence for systematic differences in the American and
German face stimuli, but it is possible they exist and were not
detected in this analysis. In future, it would be useful to replicate
our effects in a cross-over design in which one group of subjects is
familiar with half of the identities selected as stimuli, whereas a
second group is familiar with the other half. Lastly, the mere
existence of representations revealed by multivariate pattern
analysis does not in itself imply that these representations are
relevant to behavior18,19. Here, we correlated MEG to behavioral
similarity of our subjects and found that all face dimensions
explained unique variance between MEG and behavior. While
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this is an important step towards linking MEG representations
with behavior, more direct links such as correlates to online
behavior during MEG recording would be useful. However, our
results do make testable predictions about human face processing
behavior. For example, in line with our results, studies investi-
gating the speed of human categorization behavior have shown
that identity decisions were made faster than familiarity deci-
sions1 and that gender decisions occurred faster for familiar than
unfamiliar faces50. Our results go beyond these findings to predict
that behavioral discriminations of gender (and age, if tested in a
binary fashion) should be made faster than discriminations of
identity.

In sum, our findings of how face processing unfolds over time
in humans show that the extraction of face dimensions follows a
coarse-to-fine time trajectory, and support the hypothesis that the
face processing system is tuned to familiar face features in a
bottom-up manner. These findings inform broader questions
about how prior experience affects processing of other stimuli
beyond faces, such as object shapes12–14, offer powerful con-
straints on computational models of face perception, and provide
new predictions to be tested in future work.

Methods
Participants. Twenty-one healthy volunteers with normal or corrected-to-normal
vision participated in the study. Five subjects were excluded before data analysis
due to at least one of the following exclusion criteria: excessive motion during the
recording, behavioral performance below two standard deviations of the mean, or
incomplete recordings due to technical issues. Data from 16 subjects (eight female;
mean age 25.9, SD= 4.33) remained for the MEG analysis. The chosen sample size
was based on previous studies using multivariate decoding of EEG/MEG
data16,17,23. Fourteen of these 16 subjects additionally participated in an online
behavioral follow-up experiment. All subjects provided informed, written consent
prior to the experiment. The Massachusetts Institute of Technology (MIT) Com-
mittee on the Use of Humans as Experimental Subjects approved the experimental
protocol (COUHES No 1606622600) and the study was conducted in compliance
with all relevant ethical regulations for work with human participants.

Experimental design and stimuli. To investigate the temporal dynamics of face
processing, subjects viewed face images of different identities while monitoring for
consecutive repetitions of identical images (i.e., 1-back task; Fig. 1a) in the MEG.
We chose eight familiar (i.e., famous actors in the US) and eight unfamiliar (i.e.,
German actors) celebrities as identities, which varied orthogonally in gender and
age, such that half were female and half were male and half of them were young
(i.e., maximum age was 36 years) and half were old (i.e., minimum age was 59
years). Note that here, by gender, we refer to the sex of a face.

To ensure that all subjects were in fact familiar with the set of familiar identities,
subjects completed an online screening task prior to the study. In this screening, we
presented them with one image for each of the 16 identities (different from the
images used in the MEG study) and asked if they were familiar with the person
shown. Only subjects who recognized each of the eight familiar identities (e.g., by
giving their names or contexts in which they remembered the person) were
included in the study.

Final stimuli used in the MEG study consisted of five gray-scale images of each
of the 16 identities for a total of 80 stimuli. For each identity, we selected five
images from the internet which varied in several aspects such as expression (at least
two smiling and two neutral facial expressions), eye gaze (one averted to the left,
one averted to the right, two directed gaze and one gaze aligned with rotated head),
pose (one with head slightly rotated to the side), lightning, hair, etc. We then
standardized all images to a template by rotating, scaling and cropping them based
on the position of the nose tip, the mouth center and both eyes and saved them as
gray-scale images.

During the MEG experiment, subjects viewed trials of face images (Fig. 1a). Each
trial started with the presentation of a face image for 0.2 s followed by a 0.8–1 s
interstimulus interval (ISI; uniformly sampled between 0.8 and 1 s) during which a
gray screen was presented. Subjects were instructed to respond via button press to a
consecutive repetition of an identical image during image presentation or during
ITI. To avoid artifacts due to eye movements or blinking, subjects were instructed to
fixate a black fixation cross in the upper center of the screen during image
presentation (i.e., presented between the tip of the nose and the eyes of a face) and
ISI. They were further asked to blink at the same time when giving a button
response, as these trials were not included in the data analysis.

Subjects viewed 28 blocks of trials in which each of the 80 images was presented
once randomly interleaved with 20 task trials (1-back task) for a total of 100 trials
per block. Task trials were pseudo-randomized such that each of the 80 images was
additionally shown seven times as task trial for a total of 35 presentations. Stimulus

presentation was controlled and responses collected using Psychtoolbox 3 for
Matlab51,52. The experiment lasted around 70 min.

MEG recording and preprocessing. MEG data were collected using a 306-channel
Elekta Triux system with a 1000 Hz sampling rate, and were filtered online between
0.01 and 330 Hz. The position of the head was tracked during MEG recording
based on a set of five head position indicator coils placed on particular landmarks
on the head. We preprocessed the raw data with Maxfilter software (Elekta,
Stockholm) to remove head motion and to denoise the data using spatiotemporal
filters. We then used Brainstorm (version 3.453) to extract trials from −200 to 800
ms with respect to image onset. In Brainstorm, every trial was baseline-corrected by
removing the mean activation from each MEG sensor between −200 ms and
stimulus onset and principal component analysis was used to remove eye blink
artifacts which were automatically detected from frontal sensor MEG data. We
used a 6000 fT peak-to-peak rejection threshold to discard bad trials, imported the
remaining trials in Matlab (version 2016a; The Mathworks, Natick, MA) and
smoothed them with a 30 Hz low-pass filter. Note that we also performed an
analysis on the unfiltered data which yielded very similar results (see Supple-
mentary Note 2). To further decrease noise and to reduce computational costs, for
each subject we concatenated data of each MEG sensor over time and applied
principal component analysis to the MEG sensor data (keeping all components that
explained 99.99% of the variance in the data). This step reduced the set of features
from 306 MEG sensors to around 70 principal components (PCs) per subject and
we conducted all further analysis on this reduced set. We then baseline-corrected
every trial by removing the mean activation between −200 ms and stimulus onset
from each PC. These PC scores for each trial and each time point were used for the
subsequent analyses.

MEG multivariate pattern analysis. We used multivariate pattern analysis to
extract temporal information about the face stimuli from the MEG data (Fig. 2). To
obtain a similarity measure for each pair of stimuli, we used cross-validated
pairwise classification accuracy of linear support vector machines (SVM; libsvm54).
Classification analysis was performed separately for each subject in a time-resolved
manner (i.e., independently for each time point). A pattern in the analysis consisted
of the PC scores for one trial and one condition at a given time point. In the first
step, we sub-averaged all trials of one condition by randomly assigning each trial to
one of five splits and averaging the trials in each split (~5–7 trials per split when
considering bad trials). We then divided the groups into training and testing data
randomly selecting one group for testing and the remaining groups for training
(i.e., five-fold cross-validation). We then conducted a binary classification of all
3170 pairwise comparisons (i.e., 80 × 79/2 combinations) between conditions. This
classification procedure was repeated 100 times. The average decoding accuracies
over repetitions served as value in the 80 × 80 decoding matrix, termed repre-
sentational dissimilarity matrix (RDM). This RDM is symmetric and the diagonal
is undefined. The entire procedure resulted in one MEG RDM for each subject and
time point.

To get a measure of how well each face stimulus can be discriminated from all
other images in the MEG (i.e., image decoding), we averaged all pairwise decoding
accuracies in the lower triangular of each RDM. This resulted in one average
decoding accuracy value per subject and time point. The time course of image
decoding further serves as benchmark of time course of low-level image processing
in the MEG data. To investigate how persistent neural responses were to face
images, we further extended the SVM decoding procedure with a temporal
generalization approach16,55,56. Details and results of this analysis can be found in
the Supplementary Note 4.

Representational similarity analysis. To analyze the representation of face
dimensions in the MEG data, we used representational similarity analysis (RSA).
We created model RDMs for each face dimension which were 80 × 80 binary
matrices where 1 corresponded to a between category stimulus comparison (e.g.,
male vs female for the gender model) and 0 to a within category stimulus com-
parison (e.g., female vs. female). This procedure resulted in four face models
corresponding to the familiarity, gender, age and identity dimensions of our sti-
muli. To compute correlations between each model and the MEG data, we
extracted the lower off-diagonal of each of these matrixes as vectors. For each
model and subject, we computed the partial rank coefficients (Spearman correla-
tion) between the model and the MEG RDM at each time point partialling out all
other face models. This step was crucial because some of the models are correlated
(e.g., between identity comparisons comprised between gender comparisons) and
partialling out the other models thus allowed us to disentangle contributions of the
models from each other.

To further exclude the contribution of low-level features of our stimuli to the
results, we additionally partialled out a low-level feature model. This low-level
feature model was computed by extracting features for each of the 80 stimuli from
the second convolutional layer of a deep, convolutional artificial neural network
(CNN) trained on thousands of face identities (VGG-Face57). We used 1 – Pearson
correlation as a measure of dissimilarity between the CNN units of each pair of
stimuli, resulting in a 80 × 80 RDM based on low-level image features. Note that we
also compared other models of low-level features (e.g., HMAX C258,59, Gist60,
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pixel-based similarity), which produced similar results; we report here the VGG-
Face model because it reached the maximum correlation with the MEG data and
hence explains the most data (as accountable by low-level features).

We investigated the effect of familiarity on face processing by dividing the MEG
and model RDMs into within familiar and within unfamiliar RDMs, respectively.
Each of these RDMs was a 40 × 40 RDM constituting of only familiar or only
unfamiliar face images. We then performed the same analysis as for the full set of
stimuli (see above). To further test differences between familiar and unfamiliar face
processing, we subtracted the time courses of correlation for unfamiliar faces from
the time courses obtained for familiar faces for each subject and statistically
compared these difference time courses to zero (see Statistical inference below).
Note that while we tried to select the different sets of familiar and unfamiliar face
images as objectively as possible, we cannot fully exclude that differences between
the sets of stimuli contributed to this analysis. We therefore performed an
additional analysis of VGG-Face, testing for stimulus-driven familiarity effects in
an early and a late layer of VGG-Face, suggesting that such differences could not
straightforwardly explain our findings (see Supplementary Note 1).

Further, it is important to note that categorical information time series (e.g.,
gender) were constructed by correlating the MEG RDM matrix with model RMDs
consisting of zeros corresponding to within-category (e.g., female or male) and
ones corresponding to between-category stimulus comparisons. The correlation
between the MEG RDMs and a model RDM (while partialling out all other models)
served as a measure of clustering by category membership. An alternative approach
to computing categorical information time series is to directly train a classifier to
discriminate categories (e.g., female versus male across identity) stimuli. While
such a methodological approach may be sensitive to different aspects of categorical
stimulus information in general, it yielded consistent results in our data (see
Supplementary Note 3).

Behavioral similarity experiment. Fourteen of the 16 subjects additionally per-
formed a behavioral multi-arrangement task61 on the same stimuli on a separate
day after the MEG experiment. Subjects performed the multi-arrangement
experiment online using their own computer and by logging into an online plat-
form to run behavioral experiments ([www.meadows-research.com]). Subjects had
to enter an anonymous, personal code that was provided to them via email to start
the experiment. In the experiment, all 80 stimuli that the subject had previously
seen in the experiment were arranged as thumbnails around a white circle in the
center of the screen. Subjects were instructed to arrange these thumbnails based on
their perceived similarity (“similar images together, dissimilar images apart”,
without explicit instructions on which feature to use) by dragging and dropping
them in the circle. The experiment terminated automatically when a sufficient
signal to noise ratio was reached (i.e., evidence weight was set to 0.5). The average
duration of the experiment was ~70 min. After the completion of the experiment,
the pairwise squared on-screen distances between the arranged thumbnails was
computed, thus representing a behavioral RDM. For each subject, we extracted the
lower off-diagonal data from the behavioral RDM and correlated this vector with
the corresponding MEG RDMs for each time point. We additionally computed the
noise ceiling for this correlation to get an estimate for the upper and lower bound
of the correlation given the variability across the restricted set of subjects in this
analysis. We estimated the noise ceiling following a method described here62.
Briefly, we estimated the upper bound of the correlation as the mean correlation of
each subject with the group mean. As this correlation includes the correlation with
the subject itself, it represents an overestimation of the true model’s average cor-
relation. In contrast, the lower bound is computed by taking the mean correlation
of each subject with the mean of all other subjects (excluding the subject itself).
This underestimates the true model’s average correlation due to restricted set of
data. Together, the noise ceiling provides an estimate of the maximum obtainable
correlation and is useful as a reference, in particular when low but significant
correlation values are found.

Further, to assess the unique contribution of each model to the shared variance
between MEG and behavioral RDMs, we additionally performed commonality
analysis, a variance partitioning approach that estimates the shared variance
between more than two variables20,63. Briefly, we computed the variance uniquely
contributed from each face model (e.g., gender) by calculating two correlation
coefficients: First, for each subject, we calculated the partial correlation between
MEG and behavioral RDMs, while partialling out all models (gender, age, identity
and low-level feature model). Second, we calculated the partial correlation between
MEG RDM and behavioral RDM while partialling out all face models and the low-
level feature model but leaving one face model out (e.g., gender). The difference
between these two partial correlation coefficients represents the unique variance
contributed by that model referred to as commonality coefficient. This step was
repeated for every MEG time point resulting in a commonality coefficient time
course for each face model.

Statistical inference. For all analyses, we used non-parametric statistical tests that
do not rely on assumptions on the distributions of the data64,65. For statistical
inference of decoding accuracy (image decoding) or partial correlation (e.g., model
correlation) time series, we performed permutation-based cluster-size inference
(i.e., a cluster refers to a set of contiguous time points). The null hypothesis
corresponded to 50% chance level for decoding accuracies, and 0 for correlation

values or correlation differences. Significant temporal clusters were defined as
follows. First, we permuted the condition labels of the MEG data by randomly
multiplying subject responses by+ 1 or −1 (i.e., sign permutation test). We
repeated this procedure 1000 times resulting in a permutation distribution for
every time point. Second, time points that exceeded the 95th percentile of the
permutation distribution served as cluster-inducing time points (i.e., equivalent to
p < 0.05; one-sided). Lastly, clusters in time were defined as the 95th percentile of
the maximum number of contiguous, significant time points across all permuta-
tions (i.e., equivalent to p < 0.05; one-sided).

Onset and peak latency analysis. To test for statistical differences in onset or
peak latencies between different face dimensions, we performed bootstrap tests. We
bootstrapped the subject-specific time courses (e.g., measured as decoding accu-
racy, partial correlation or commonality coefficient) 1000 times to obtain an
empirical distribution of the onset (i.e., minimum significant time point post sti-
mulus onset) and peak latencies (i.e., maximum correlation value between 80 and
180 ms post stimulus onset). We restricted the time window for the peak analysis to
180 ms post stimulus onset, since we were interested in the first peak occurring
after stimulus onset, unconfounded from later peaks (e.g., due to stimulus offset
responses66). The 2.5th and the 97.5th percentile of these distributions defined the
95% confidence interval for onset and peak latency, respectively. For differences
between latencies, we computed 1000 bootstrap samples of the difference between
two latencies (e.g., onset) resulting in an empirical distribution of latency differ-
ences. The number of differences that were smaller or larger than zero divided by
the number of permutations defined the p-value (i.e., two-sided testing). These p-
values were corrected for multiple comparisons using false discovery rate (FDR) at
a 0.05 level.

Data availability
The stimuli used in this study can be downloaded from the Open Science Framework
([https://osf.io/gk6f5/]). MEG data will be made available upon request. The VGG-Face
model is available online ([http://www.robots.ox.ac.uk/~vgg/software/vgg_face/]). We
used Psychtoolbox 3 ([www.psychtoolbox.org]), Elekta MaxFilter software, Brainstorm
([https://neuroimage.usc.edu/brainstorm]), Meadows ([www.meadows-research.com]),
the libsvm toolbox and standard Matlab (R2017b) functions for data collection and
analysis. The source data underlying Figs. 2, 3 and 4 and Supplementary Figs. 1, 2, 3 and
4 are provided as a Source Data file.
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