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A B S T R A C T

Understanding the complex impact of air pollution is crucial to assessing exposure risk and defining public
health policies in China. However, the evidence and hence knowledge of how urban activity responds to air
pollution are limited. In this paper, we propose to use geotagged check-in records on Weibo, a Tweeter-like
platform, to systematically investigate the effect of air pollution on urban activity.
Based on panel models, we found clear evidence that such effect exists and varies between pollutants, visitors

and residents, and different activity types. Typically, SO2 has the largest impact, followed by PM2.5, NO2, and
PM10; local citizens' activities are more susceptible than visitors; leisure-related activity has a sensitivity at least
twofold higher than work-related activities. Additionally, we tested hypotheses about the heterogeneous effect.
We confirmed the role of Income and air quality, showing that people who live in richer and more polluted cities
are more likely to experience the effects of air pollution. Specifically, people who live in a more polluted city
with 100 unit increments in AvgAQI show on average the same sensitivity as those who live in a less polluted city
and earn about 20.3 thousand yuan more in average Income.
This reveals new insights about environmental injustice in China. By presenting a portrait of the spatial

heterogeneity, we argued that environmental injustice in terms of air pollution is not just about the difference in
exposure risk measured based on population distribution, rather the measurement should also consider the
disparity derived from urban activity. Secondly, new injustice may arise in underdeveloped areas where man-
ufacture industry is transferred to but people barely take avoidance behavior. Finally, the map also reveals the
general neglect of the detrimental effect of light air pollution, which we speculate is partly due to China's
comparatively low standard in governmental regulations.
We believe our finding contributes significantly to exposure risk assessment and environmental justice de-

bates. Hence it highlights the necessity and urgency of public healthy polices that spread the health consequence
of air pollution, especially in the underdeveloped region.

1. Introduction

Air pollution in China has been causing severe health consequences.
Research demonstrates that air pollution in China may have caused
health-related economic losses of 1.63% to 2.32% of the GDP (Li, Lei,
Pan, Chen, & Si, 2016), and is calculated to contribute to 1.6 million
deaths per year — roughly 17% of yearly deaths in China (Rohde &
Muller, 2015). In North China, the most affected area (Li & Sun, 2018),
long-term exposure to total suspended particulates may have reduced
life expectancies by about 5.5 years (Chen, Ebenstein, Greenstone, & Li,
2013). In fact, China has been one of the countries with the highest

particulate matter levels in the world (Chen et al., 2013). Air pollution
in most Chinese cities exceeds 6 to 20 times the values suggested by the
World Health Organization Air Quality Guidelines (Chan & Yao, 2008;
Long, Wang, Wu, & Zhang, 2014). Meanwhile, both the recent in-
dustrialization and urbanization of China are aggravating the problem
(Sheng & Tang, 2016; Zheng & Kahn, 2013).

The same challenge lies in the potential adverse impact of air pol-
lution on urban activity. People come to cities to benefit from the social
interactions facilitated by high urban density, a process known as ur-
banization. Air pollution, however, is a kind of friction that impedes
such interactions, and thus reduces the value of urban density. Air
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pollution may lead directly to health consequences and then further
change urban activity patterns and finally cause a systematic influence
on urban interactions. Researchers have found clear evidence that air
pollution may cause a decline in activity frequency and life satisfaction
(MacKerron & Mourato, 2009). Taking a long-term view of the coming
urban era, such adverse effect could bring not only a slowdown to ur-
banization in developing areas but also bring about a decline of the
urban economy in developed regions. For instance, a study in Los An-
geles estimated that avoidance behavior due to ozone causes $11 mil-
lion of losses per year, about 25% of the annual costs from respiratory-
related hospitalizations (Moretti & Neidell, 2011).

From the short-term view, understanding the effect of air pollution
on urban activity is also crucial in terms of reducing and assessing the
exposure risk. The theoretical base is that a rational individual may
cancel or postpone discretionary activities when heavy pollution hap-
pens, resulting in an overestimate of their exposure risk. In contrast, the
exposure risk of those who have more indispensable activities may be
comparatively underestimated. However, current studies failed to pre-
sent an accurate portrait of which population groups are more affected
by air pollution because such studies often measured exposure based on
home locations (e.g., Long et al., 2014; Mitchell & Dorling, 2003). In
fact, several studies have revealed significant discrepancies between
pollutant concentrations at home location and the overall personal
exposure to pollutants (Avery et al., 2010; Nyhan, Mcnabola, &
Misstear, 2014), with causal factors including daily movement patterns,
varying activities throughout the day, and microenvironments (Dons
et al., 2011; Kaur & Nieuwenhuijsen, 2009; Nieuwenhuijsen et al.,
2015; Schembari et al., 2013; Valero et al., 2009). Recently, some
studies have pioneered the use of cellphone data (Nyhan et al., 2016) or
simulated individuals' mobility patterns (Burke, Zufall, & Ozkaynak,
2001) to provide a better exposure evaluation by taking into con-
sideration daily mobility patterns. Obviously, direct measurement of
the effect is still needed to evaluate to which extent the exposure risk is
biased.

In spite of the importance, evidence of the relationship between air
pollution and urban activity is far from enough. Only a few empirical
analyses have been conducted, showing that avoidance behavior may
only exist under certain circumstances. For instance, studying children's
hospital emergency admissions data from England, Janke (2014) found
evidence of avoidance behavior in response to air pollution warnings
but only when such behavior costs little. Based on time use diaries,
Bäck, Kuminoff, Buren, and Buren (2013) confirmed that conditional on
weather, only children and older adults reduced outdoor leisure when
pollution reached very unhealthy levels. Using the attendance records
of two outdoor facilities, Zivin and Neidell (2009) found that avoidance
behavior exists on the first day of a smog alert but decreases when alerts
are issued on two successive days. Since urban activity is not well re-
presented in these studies, it is still a question that whether the adverse
effect of air pollution on urban activity is marginal or not.

Additionally, studies related to environmental injustice also shed
light on the potential association between air pollution and urban ac-
tivity. In Western cases, researchers (Boone, Fragkias, Buckley, &
Grove, 2014; Jerrett et al., 2001) showed that people with lower so-
cioeconomic status are exposed to higher levels of air pollution. And
studies suggest that there are serious environmental inequalities asso-
ciated with income level (Bevc, Marshall, & Picou, 2007; Krieg & Faber,
2004), with the poor being exposed to environmental pollution more
than the middle class. Similarly, Mitchell and Dorling (2003) found that
in Britain those with the least ability to move away from poor air
quality (children and the poor) do indeed suffer the greatest exposure.
Another indirect evidence comes from Ferreira and Moro (2013), who
hypothesized that richer people are better able to substitute social ac-
tivities by undertaking costly averting actions. In China, however, the
conclusion seems to be inconsistent. Researchers found that people
living in prefectures with higher income levels are also more likely to
bear a higher industrial environmental burden (He, Fang, Ji, & Fang,

2017) and the poor do not suffer more from environmental pollution
than the rich (Ma, 2010), while another study shows that richer people
are more likely to invest in masks and air filters to protect themselves
from pollution (Sun, Kahn, & Zheng, 2017). Apparently, understanding
how urban activity responds to air pollution may contribute sig-
nificantly to a better environmental injustice evaluation.

We now summarize three important questions that still remained to
be answered. Firstly, do people in developing countries, such as China,
demonstrate the same avoidance behaviors at the same rate as in de-
veloped countries? The answer will be important for understanding the
social costs of air pollution in different economies. Secondly, if air
pollution has a significant impact on urban activity, then to what extent
does it affect urban activity and how the impact changes with factors
such as population groups, activity types, and socioeconomic status?
This paper uses open data, and as a result we provide answers from a
large-scale evaluation and a detailed heterogeneity analysis along sev-
eral dimensions. Thirdly, in addition to the questions above, what can
these new findings add to the global social debate over the impact of air
pollution, particularly in terms of environmental injustice and related
urban development policies?

To address these questions, we organize this paper as follows. In the
data section, we present a detailed description of the datasets we use.
All the pre-processing procedures and representativeness tests are
carefully explained to endorse the effectiveness of the result. In the
method section, we describe the three panel regression models used in
this paper as well as all the involved variables. In the results and dis-
cussion section, we first present the evidence and measurement of the
general effect of air pollution on urban activity. Then both the statis-
tical test result of the interactive factors and the spatial heterogeneity
are presented, based on which several new aspects of China's environ-
mental injustice are thoroughly discussed.

2. Data

2.1. The geo-tagged Weibo check-in activity in China

2.1.1. Data source and pre-process
We use social media check-in data on Sina Weibo as a proxy for

human social activity records. The Sina Weibo micro-blogging platform,
the Chinese answer to Twitter, is one of the biggest social networking
services in China with about 300 million active monthly users in 2016
when we collected our data. For the specific dataset we use, the total
check-in records correlate well with urban population and GDP in
logarithmic form with coefficients as high as 0.73 and 0.77 respectively.
Both the widespread use and the statistics endorse the representative-
ness of Weibo data, demonstrating that the continuous records provide
an effective portrait of social activity dynamics. Furthermore, as a kind
of volunteered geographic information (VGI), it contains exact loca-
tional and functional information about activities and that cannot be
gathered from passive LBS data. In fact, it has been widely used in
human mobility and urban structure analyses (e.g., Liu & Wang, 2016;
Wu, Zhi, Sui, & Liu, 2014) and even air pollution trends detection
(Jiang, Wang, Tsou, & Fu, 2015; Jiang, Wang, Tsou, & Fu, 2016; Mei, Li,
Fan, Zhu, & Dyer, 2014; Shi & Gao, 2017; Wang, Jing, Jiang, Wang, &
Xiaokang, 2017).

We based our analysis on check-in records attached with a POI
(point of interest), but we abandon the POIs with less than twenty ac-
cumulated check-ins to reduce workload. As a result, we captured the
check-in records at 1.1 million POIs from January 1st, 2015 to October
30th, 2016. Our final dataset consists of 50 million geotagged check-in
records across China, from about 640,000 unique users. We identified
the home city of each user by extracting the most frequent city in which
the user appears. Then check-ins in the home city were aggregated into
the local citizens' activity, in contrast to visitors' activity.

We consider the dataset as a virtual representation of urban activity.
To test that, we extracted the “urban area” by population density larger
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than 1500 per km2 according to Chinese regulation,1 considering that
there is no absolute distinction between suburban and rural. The result
shows that about 87.8% of the POIs and 90.9% of the check-in records
are located in urban area. Moreover, urban and rural areas are closely
integrated in terms of social activity. Eliminating check-ins outside
urban areas may lead to a biased measurement of the impact of air
pollution on many types of activities such as hiking, picnicking, and
sightseeing in the surrounding rural area. Thus we don't separate the
check-ins by areas.

Furthermore, it should be noticed that we did not differentiate be-
tween indoor and outdoor activity. Although in many places check-ins
could be roughly labeled as indoor or outdoor, e.g., museums versus
parks, most urban activities other than residence require travel through
the outdoor environment. Therefore, check-ins at residential POIs are
ignored when counting numbers, beyond which no more indoor/out-
door labels are needed.

2.1.2. Activity categories
The basic role of social media in our life is to share information with

friends. Although there is no guarantee that everyone has to attach the
right position, most of the time sharing an activity with the exact POI is
what we need. Thus defining activity types based on the tagged POI is
reasonable. The original POIs are divided by the Weibo platform
into>200 types, such as cafés, cupcake shops, and seafood restaurants.
In this paper, to reveal the effect of air pollution on different kinds of
urban activity, we merge the original types into 7 activity categories
(Table 1) according to land use regulations, and of these we are parti-
cularly interested in the difference between work-related activities and
leisure-related activities. Also note that people may conduct work-re-
lated activities in a leisure-related place as a freelancer or an employee,
however, we still believe that the POI categories generally provide rich
information about the urban activity types that other open data sources
cannot offer on such a large scale. (See Table 2.)

It is important to notice that statistics according to the categories
reveal potential biases of the check-in data. Comparing with the fifth
travel survey analysis (2011), in which about 40% of the travel activ-
ities are commuting, here in our data the work-related activity has a
proportion of 5.84% plus 8.90%, while the public service and leisure-
related activity become the commonest ones. We acknowledge that
there is an over-representation of public service, leisure-related, and
tourism activity, and an under-representation of work-related and
public transportation activity. However, it is well known in transpor-
tation studies that commuting activities usually dismiss the short pe-
destrian trips to and from mass transit, or from parking garages to the
final destination. Thus, although we recognize the biases, Weibo POI
still reveal a granularity seldom seem in urban analysis. Future studies
on biases on social media must be done in future works.

2.2. Ground-based air pollution observations

2.2.1. Data source
Air pollution data consists of the daily 24-hour averaged con-

centration records of the so-called criteria air pollutants and one in-
dicator (AQI, air quality index) for every prefecture city released by the
Ministry of Environmental Protection of China during the same period.
The six pollutants are PM2.5 (particulate matter < 2.5 μm), PM10
(particulate matter < 10 μm), SO2 (sulfur dioxide), NO2 (nitrogen di-
oxide), CO (carbon monoxide) and O3 (ozone). The measurement units
of the pollutants are set to μg/m3 (microgram per cubic meter). The
weather records, including precipitation, temperature and wind force,
are provided by China Meteorological Data Service Center.

2.2.2. Multi-collinearity
Since pollutants may come from the same sources (e.g., industries,

traffic, and other combustion sources), it is not surprising that these air
pollutants are temporally correlated. For example, the correlation
coefficient between PM2.5 and the PM10 could be as high as 0.8. Since
every pollutant may indicate inherently unique causes and effects on
human health and urban activity, we retain all of them in this study and
put each of them into the model separately to avoid collinearity.
Moreover, in the heterogeneous effect sections we only present the
result of AQI, since the test results of different pollutants are generally
similar.

2.3. Data integration

After removing cities and days with missing records for air pollu-
tion, weather condition or geo-tagged check-ins, the final dataset used
in this article comprises 630 days and 251 prefecture cities. According
to the official definition of city size in China,2 our sample includes every
city size, from small cities to super mega-cities, and covers most of the
populated regions, as shown in Fig. 1.

The average daily check-in number is 294, with about 40 check-ins
per user per year. Fig. 2 shows the average daily check-ins in quantile,
which illustrates that the most populated as well as developed cities,
including the coastal cities in the east, the south, and the capitals of the
central and west provinces, form the first quantile with average daily
check-in numbers larger than 283.

Fig. 3 shows the distribution of the average pollution level of each
pollutant in China. All maps show the same pattern: North China has
the worst air quality, and the Yangtze Delta Region and some other part
of the east coast region (e.g., Shandong province) also suffer heavily
from some air pollutants. Central and South China have relatively
better air quality when viewed from the averaged values.

2.4. Other factors

2.4.1. Weekends & holidays
Urban activities are highly influenced by weekends and holidays.

This pattern is also seen in Weibo check-ins activity, which increases
dramatically on weekends and holidays. To control for this effect, we
added two dummy variables in the models representing whether a day
is a weekend or national holiday.

2.4.2. Seasons & weather
Seasonal and weather conditions also affect urban activity. To

control for seasonal variation, we divide all dates into four seasons
based on the Chinese lunar calendar. We also control for daily pre-
cipitation capacity as a representative of weather conditions.

3. Methods

3.1.1. Panel regression
Our final sample consists of 630 days and 251 prefecture cities,

forming a strongly balanced panel dataset. Then, we implemented the
Fixed Effects Model (FEM), the most commonly used panel regression
method, to reveal the potential effects of air pollutants on urban ac-
tivity. The expression is= + + + +y X X X u

it

activity

it

pollution

it

weather

it

date

i it1 2 3 (1)

1 http://www.stats.gov.cn/tjsj/pcsj/rkpc/5rp/html/append7.htm

2 In China, the cities are classified into six classes by population size: Super
mega-cities (> 10,000,000), Mega-cities (5,000,000-10,000,000), Big cities
(1,000,000–5,000,000), Medium-sized cities (500,000–1000,000), Small cities
class one (200,000–500,000), Small cities class two (< 200,000).

L. Yan et al.

http://www.stats.gov.cn/tjsj/pcsj/rkpc/5rp/html/append7.htm


The dependent variable yitactivity could be the total activity number
or the amount of any specific activity type at city i on day t. Xitpollution is
one of the six air pollutants' concentration levels at city i on day t. We
expect the pollution coefficient (β1) will be negative. Xitweather is a vector
consisting of Temp (temperature), Wind (wind scale), and Rain (pre-
cipitation capacity). Xitdate is also a vector comprised of Weekend,
Holiday and Season. ui is the fixed effect on each city, which varies
because of differences in population, economic development, living
habit and even popularity of Weibo, and εit is the error term.

Meanwhile, interaction terms (Xitinter) are added into the augmented
Eq. (2) to investigate the heterogeneity of the effect. The method is
utilized to test general heterogeneity of the effect regarding income,
average air quality, holiday, season, or to verify the spatial hetero-
geneity of the effect based on the regional division obtained by the
following varying coefficient models.

= + + + + +y X X X X X u

it

activity

it

pollution

it

inter

it

pollution

it

weather

it

date

i it1 4 2 3

(2)

Table 1
Aggregation from original POI types to activity categories.
Activity categories Original POI types Activity proportion

Work-related Companies, office building, factory, etc. 5.84%
Public transportation Stations, bus stop, subway station, airport, harbor, etc. 8.90%
Residence Community names, apartments, residential quarter, etc. 11.53%
Public service School, hospital, police office, government administration, etc. 25.34%
General place General landmarks such as cities, towns, addresses, etc. 6.27%
Leisure-related Market, restaurant, gyms, bar, museum, art gallery, etc. 26.73%
Tourism Hotel, temple, scenic spot, famous location, etc. 14.94%

Table 2
Variable definitions and summary statistics.
Variables Definition Obs. Mean Std.

Activities Daily total check-in numbers in each city, divided into two groups (local citizens and visitors) or divided into six detail activity types. 158,130 293.80 910.97
Source: Sina Weibo platform, https://weibo.com/
AQI Daily air quality index 158,130 80.31 44.22
PM2.5 24 h average concentration of PM2.5 (μg/m3) 158,130 48.20 37.41
PM10 24 h average concentration of PM10 (μg/m3) 158,130 82.84 57.55
NO2 24 h average concentration of NO2 (μg/m3) 158,130 30.77 16.79
SO2 24 h average concentration of SO2 (μg/m3) 158,130 23.99 23.77
CO 24 h average concentration of CO (μg/m3) 158,130 1065.43 601.10
O3 24 h average concentration of O3 (μg/m3) 158,130 90.21 43.00
AvgAQI Average daily AQI in each city across 251 80.31 19.79
Source: Ministry of Environmental Protection of China
Temp Daily average temperature (°C) 158,130 21.6 10.2
Wind Daily average wind scale (level) 158,130 3.21 0.50
Rain Daily precipitation capacity (mm) 158,130 3.70 9.82
Source: China Meteorological Data Service Center
Holiday Dummy: 1= national holiday, 0= otherwise 630 0.08 0.50
Weekend Dummy: 1= Saturday or Sunday, 0= otherwise 630 0.23 0.42
Season Dummy: 4 seasons represented by 3 dimensional vectors according to lunar calendar 630 0.56 0.50
UrbanPop Urban population of each city in 2014 (10,000) 251 459 292
Income Average annual income per worker (10,000 RMB/year) of each city in 2014 251 3.18 0.76
Source: China City Statistical Yearbook 2015

Fig. 1. The sampled 251 prefecture cities.
Fig. 2. The daily check-in number in each city.
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3.1.2. Varying coefficient model
It is naturally right and axiomatic to postulate that citizens should

have the same sensitivities to air pollution. However, due to possible
cultural, psychological and even historical reasons, there could be
spatial variation of the effects of pollution across the cities. In fact, all
the chi-square tests in the FEMs result in significant rejection of the
parameter constancy hypothesis, i.e., all the cities have the same β1. To
locate the heterogeneous effect spatially, and to detect potential het-
erogeneity caused by other implicit factors, we change the model form
to a varying coefficient model, as in Eq. (3), which lets each city have a
specified β1i and keeps the other terms the same as in Eq. (1).= + + + +y X X X u

it

activity

i

it

pollution

t

weather

it

date

i it1 2 i 3 (3)

4. Results and discussion

4.1. General effect of air pollution on urban activity, regarding different air
pollutants, people, activity types, and air quality alert levels

4.1.1. General adverse impact of different air pollutants
In contrast to the conditional evidence in the literature, here we find

clear proof that avoidance behavior exists, i.e., air pollution causes a
general and significant decline in total urban activity. In Tables 3 and 4,
each row exhibits the coefficients of one air pollutant when put into the
model respectively, with the other factors controlled as described in eq.
(1). The result shows that avoidance behavior generally exists with
respect to PM2.5, NO2, SO2, and PM10. Specifically, an increase of
100 μg/m3 of the four pollutants will lead to an average decrease of
8.4–27.6% in the total local activities. That is a huge decline even for
one day, not to mention the accumulative loss in many cities where
severe pollution happens frequently. Taking PM2.5 as an example, in the
study period the total accumulative loss of the local activities across the
country is estimated to be as large as 6.7%. If multiplied by the total
urban social consumption in 2015, at some risk of oversimplifying, the
annual monetary loss will be up to 1.7 trillion RMB yuan (about 260
billion dollars)!

Huge differences exist among air pollutants in terms of how they
affect urban activity. CO and O3 seem not always significantly relevant
to the urban activity, although their coefficients are always negative.

We speculate that the disparity between pollutants is partly due to
perceptual differences, which may further relate to their chemical
properties, such as smell (Cole, Pengelly, Eyles, Stieb, & Hustler, 1999).

4.1.2. Local citizens and visitors
Surprisingly, the impact differs dramatically between local citizens

and visitors. As shown in Tables 3 and 4, every 100 μg/m3 increments
in the concentration of the first four air pollutants (PM2.5, PM10, NO2
and SO2) causes an average 19–61 decrease in local citizens' activities,
at least 4 times the effect observed for visitors' activity, which shows
only a 4–8 decrease. For local residents, SO2 has about 50% more effect
on urban activity than the second pollutant (PM2.5), followed by NO2
and PM10 with close coefficients. However, for visitors' activity, al-
though the rank remains the same, both the effect and the differences
between pollutants' coefficients are not that striking. Furthermore, this
difference between local citizens and visitors is consistent across every
activity. This finding supports the conclusion that air quality is only a
minor concern to tourists (Cheung & Law, 2001). Likely this could be
explained by the fact that traveling expense is a sunk cost and the
limited duration of the visitors' travel, which makes it less cost-effective
to rearrange their activities than it is for local residents.

4.1.3. Different types of activity
It is also evident that leisure-related activities are more susceptible

to air pollution than work-related activities. For local residents, the
effect on leisure-related activities represented by the coefficients is
about 4–6 times higher than for work-related activities, while for visi-
tors this difference is reduced to 2–4 times. This phenomenon corre-
sponds perfectly with some of the empirical evidence above (Bäck et al.,
2013; Graff Zivin & Neidell, 2009), which however didn't provide a
comparison between leisure with other activity. With such a huge dif-
ference measured here, we propose that this observation can be ex-
plained by more general theories such as in time-geographic studies,
which argue that different activity patterns of work and leisure are
mainly due to spatial-temporal fixity (Schwanen & Kwan, 2008).

In further analyses, we verified this differential across the six ac-
tivity types. According to Tables 3 and 4, if we sort the activity cate-
gories from the most susceptible to the least, i.e., from the smallest
negative coefficients to the largest, it would be: Entertainment > Public
Service > Tourism > Work Place > Public Transport≈General Place.

Fig. 3. Average pollution concentration across the cities, classified and colored into five groups by Jenks Natural Breaks.
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(Note that for visitors this sequence may change slightly). Although we
didn't measure the fixity of each type of activity, based on the result and
the theories, we believe it is reasonable to assume that activities with
higher spatial-temporal flexibility can be more easily re-arranged or
canceled to reduce exposure risk, which leaves the more fixed activities,
such as work and public transportation, to be more affected by air
pollution.

4.1.4. Time lag effect
A time lag effect may exist that on a polluted day people may cancel

future activities which last for several days. In our test, for a time lag
of< 10 days, the lagged AQI item is always significant with P < 0.01.
However, this is probably just caused by autocorrelation of the pollu-
tion on continuous days. Unfortunately, this paper cannot provide
further evidence for this. We expect further studies could explain this
with better research design.

4.2. Heterogeneity of the effect

4.2.1. General heterogeneity of the effect
The current literature has provided fragmentary evidence of the

heterogeneous impact of air pollution on urban activity. Two basic
factors have been revealed: income and pollution level. As discussed in
the introduction, people with lower socioeconomic status suffer from
less flexibility in social choices such as residence relocation, urban ac-
tivity substitution, and healthy investment. Similarly, people barely

change activities in light-pollution weather. All in all, several detailed
hypotheses are tested here. Since different cities have heavy con-
centrations of different pollutants, we report the result of the AQI as a
representative of all the pollutants in Tables 5 and 6, considering it is
calculated by the primary pollution.3

The first question is whether there exists a heterogeneous impact
respectively and simultaneously caused by income and pollution level.
Our answer is yes. As shown in columns (1) and (2), people in richer
cities (with higher average income) and more polluted cities (with
smaller AvgAQI) are significantly more susceptible to air pollution.
Particularly, in a more polluted city with 10 unit increments in AvgAQI,
the sensitivity of urban activity to air pollution increases by 14.65%,
that is an additional 9 activities will be canceled on a specific day with
an AQI of 100. Likewise, in a richer city with 10 thousand yuan more of
average Income, sensitivity to air pollution increases by 38.3%. Put
together in column (3), people who live in a more polluted city, with
100 unit increments in AvgAQI show on average the same sensitivity as
those who live in a less polluted city and earn about 20.3 thousand yuan
more in average Income. The result enhances the arguments that, for
example, averting behaviors become more common when pollution
levels exceed thresholds or the subjects are richer (Sun et al., 2017),
and rich people substitute urban activity to reduce exposure and ensure

Table 3
The general effect of air pollutants on each type of local citizens' activity.
Variables Total activities Leisure-related Public service Tourism Work-related Public transport General place

AQI −0.203⁎⁎⁎

(0.034)
−0.093⁎⁎⁎

(0.015)
−0.046⁎⁎⁎

(0.010)
−0.029⁎⁎⁎

(0.004)
−0.015⁎⁎⁎

(0.003)
−0.008⁎⁎⁎

(0.002)
−0.011⁎⁎⁎

(0.002)
PM2.5 −0.329⁎⁎⁎

(0.041)
−0.144⁎⁎⁎

(0.018)
−0.080⁎⁎⁎

(0.012)
−0.044⁎⁎⁎

(0.005)
−0.026⁎⁎⁎

(0.004)
−0.013⁎⁎⁎

(0.003)
−0.020⁎⁎⁎

(0.002)
PM10 −0.187⁎⁎⁎

(0.027)
−0.082⁎⁎⁎

(0.012)
−0.042⁎⁎⁎

(0.008)
−0.023⁎⁎⁎

(0.003)
−0.017⁎⁎⁎

(0.002)
−0.010⁎⁎⁎

(0.002)
−0.010⁎⁎⁎

(0.001)
NO2 −0.261⁎⁎

(0.103)
−0.166⁎⁎⁎

(0.046)
0.040
(0.030)

−0.053⁎⁎⁎

(0.013)
−0.030⁎⁎⁎

(0.009)
−0.032⁎⁎⁎

(0.006)
−0.012⁎⁎

(0.005)
SO2 −0.612⁎⁎⁎

(0.071)
−0.228⁎⁎⁎

(0.031)
−0.214⁎⁎⁎

(0.021)
−0.066⁎⁎⁎

(0.009)
−0.052⁎⁎⁎

(0.007)
−0.021⁎⁎⁎

(0.004)
−0.024⁎⁎⁎

(0.004)
CO −3.936

(2.780)
−1.192
(1.241)

−1.328
(0.834)

−0.900⁎⁎

(0.357)
−0.254
(0.255)

−0.161
(0.174)

−0.084
(0.145)

O3 −0.027
(0.040)

−0.029
(0.018)

0.009
(0.012)

−0.005
(0.005)

−0.006⁎

(0.004)
−0.0006
(0.003)

0.003
(0.002)

Note: Each grid refers to a model that evaluates the effect of one air pollutant on one activity type based on Eq. (1); * p < 0.1, ** p < 0.05, ** p < 0.01; The
adjusted R2 are stable at 0.45.

Table 4
The general effect of air pollutants on each type of visitors' activity.
Variables Total activities Leisure-related Public service Tourism Work-related Public transport General place

AQI −0.032⁎⁎⁎

(0.006)
−0.006⁎⁎⁎

(0.002)
−0.002⁎⁎

(0.001)
−0.009⁎⁎⁎

(0.002)
−0.002⁎⁎⁎

(0.0004)
−0.010⁎⁎⁎

(0.001)
−0.002⁎⁎⁎

(0.0004)
PM2.5 −0.059⁎⁎⁎

(0.007)
−0.014⁎⁎⁎

(0.003)
−0.008⁎⁎⁎

(0.002)
−0.015⁎⁎⁎

(0.002)
−0.004⁎⁎⁎

(0.0005)
−0.013⁎⁎⁎

(0.001)
−0.004⁎⁎⁎

(0.0005)
PM10 −0.035⁎⁎⁎

(0.005)
−0.009⁎⁎⁎

(0.002)
−0.005⁎⁎⁎

(0.001)
−0.007⁎⁎⁎

(0.001)
−0.002⁎⁎⁎

(0.0003)
−0.009⁎⁎⁎

(0.0008)
−0.002⁎⁎⁎

(0.0003)
NO2 −0.062⁎⁎⁎

(0.018)
−0.027⁎⁎⁎

(0.007)
0.002
(0.004)

0.001
(0.005)

−0.006⁎⁎⁎

(0.001)
−0.027⁎⁎⁎

(0.003)
−0.004⁎⁎

(0.001)
SO2 −0.075⁎⁎⁎

(0.012)
−0.006
(0.005)

−0.020⁎⁎⁎

(0.003)
−0.021⁎⁎⁎

(0.003)
−0.004⁎⁎⁎

(0.001)
−0.019⁎⁎⁎

(0.002)
−0.004⁎⁎⁎

(0.0009)
CO −1.001⁎⁎

(0.480)
0.359⁎

(0.195)
−0.180
(0.111)

−0.473⁎⁎⁎

(0.134)
−0.039
(0.034)

−0.521⁎⁎⁎

(0.087)
−0.130⁎⁎⁎

(0.034)
O3 −0.017⁎⁎

(0.007)
0.003
(0.003)

0.011⁎⁎⁎

(0.002)
0.0007
(0.002)

0.002⁎⁎⁎

(0.0005)
−0.002⁎

(0.001)
0.004⁎⁎⁎

(0.0004)

Note: Each grid refers to a model that evaluates the effect of one air pollutant on one activity type based on Eq. (1); * p < 0.1, ** p < 0.05, ** p < 0.01; The
adjusted R2 are quite stable at 0.71.

3 Ministry of Environmental Protection (China), Technical Regulation on
Ambient Air Quality Index, 2012.
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life satisfaction is not reduced (Ferreira & Moro, 2013). As far as we
know, this is the first countrywide evidence that focuses directly on
urban activities and confirms the heterogeneous effect of income and
pollution level.

The second hypothesis is the existence of non-linearity in the het-
erogeneity. Specifically, based on the different effect between activity
types in the previous section, we speculate that the aggravated sensi-
tivity due to increasing income or pollution will change more slowly,
that is to say, because of the existence of inevitable activities or trips,
even in the most polluted city the richest people have to maintain a
certain percentage of movement, such as work-related activities. To test
these hypotheses, we add the squared interactive items of AvgAQI and
Income into the model and present the result in column (4). Obviously,
the effect of income is non-linear, i.e., when people become richer their
sensitivity to air pollution changes more slowly. However, the role of
the squared AvgAQI is rejected, indicating that there is no clear non-

linearity in the heterogeneity.
Furthermore, we also tested the potential interactive effects of other

factors, including urban population size, GDP, holiday, season, tem-
perature, wind, and rain. There is no effect for many of them, as pre-
sented in Table 5. Moreover, urban population size generally has no
influence when other factors are controlled; for and the interactive term
of GDP is always significant, however, we believe it reveals the same
conclusion as Income. The most interesting finding is the role of national
Holiday, in which urban activities experience an average drop of 6.14%
in sensitivity to air pollution and thus causes more exposure risk than
on other days. We speculate that the explanation for Holiday is the
necessity of recreation activities at a medium-long distance.

4.2.2. Spatial heterogeneity and environmental injustice
The result above has revealed a complicated environmental in-

justice situation in China. To provide a clear portrait of that, we

Table 5
Test of the factors of general heterogeneity.
Variables Total activities

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

AQI 1.061⁎⁎⁎

(0.146)
0.641⁎⁎⁎

(0.481)
2.056⁎⁎

(0.233)
3.438⁎⁎

(0.474)
−0.276⁎⁎⁎

(0.039)
0.210⁎⁎⁎

(0.054)
0.198⁎⁎⁎

(0.048)
−0.247⁎⁎⁎

(0.042)
−0.240⁎⁎⁎

(0.038)
−0.287⁎⁎⁎

(0.059)
0.061
(0.218)

−0.436⁎⁎⁎

(0.078)
4.832⁎⁎⁎

(0.494)
AQI*

Income
−0.406⁎⁎⁎

(0.044)
−0.418⁎⁎

(0.002)
−1.150⁎⁎⁎

(0.223)
−2.754⁎⁎⁎

(0.251)
AQI* AvgAQI −0.009⁎⁎⁎

(0.032)
−0.010⁎⁎

(0.044)
−0.010⁎⁎⁎

(0.002)
−0.002⁎⁎⁎

(0.0002)
AQI* Income2 0.094⁎⁎⁎

(0.027)
0.449⁎⁎⁎

(0.036)
AQI* AvgAQI2 0.001

(0.000)
AQI* Holiday 0.309⁎⁎⁎

(0.104)
0.297⁎⁎⁎

(0.104)
AQI*

UrbanPop
−0.002⁎⁎⁎

(0.0001)
0.0002
(0.0003)

AQI*
GDP

2.219⁎⁎⁎

(0.154)
−5.509⁎⁎⁎

(0.447)
AQI*

Weekend
0.015
(0.076)

AQI*
Rain

−0.001
(0.003)

AQI* Temp −0.003
(0.003)

AQI*
Wind

−0.094
(0.067)

AQI*
Spring

0
(omitted)

AQI*
Summer

−0.046
(0.113)

AQI*
Autumn

0.526⁎⁎⁎

(0.108)
AQI*

Winter
0.179⁎

(0.090)
Adj-R2 0.5240 0.5242 0.5241 0.5242 0.5238 0.5242 0.5239 0.5241 0.5238 0.5241 0.5242 0.5243 0.5251

Note: * P < 0.1, ** P < 0.05, *** P < 0.01.

Table 6
Statistics about air quality and exposure risk in six regions.
Index Region City number Average yearly

income (yuan)
Excellent city*days
PM2.5 < 12

Excellent city*days
PM2.5 < 35

Proportional exposure risk by
population

Proportional exposure risk by
activity

1 East China 40 37,081 1.53% 32.23% 33.77% 26.38%
2 North China 29 34,862 0.96% 25.67% 31.96% 37.98%
3 Northeast China 23 30,968 3.17% 38.14% 37.09% 41.22%
4 Middle China 40 28,148 3.30% 49.75% 23.20% 26.10%
5 Broader South

China
99 27,049 5.48% 55.93% 11.65% 15.97%

6 Northwest China 20 27,865 2.07% 47.90% 26.06% 29.23%

Note: proportional exposure risk is calculated by the product of population/activity and the days with AQI larger than 100 divided by the total products of
population/activity and days, in which 100 is the threshold of “pollution” according to the official regulation.
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analyzed the spatial heterogeneity of the effect with Eq. (3) and re-
ported the coefficients of AQI in Fig. 4. The map shows clear spatial
patterns: (1) the most developed area, including East China (Region 1)
and the capital cities of each province, showing the highest sensitivity;
(2) North (Region 2), Northeast China (Region 3) and Middle China
(Region 4) are next; (3) and the non-capital cities in the broader South
(Region 5) and Northwest China (Region 6) have an insignificant cor-
relation or significant but small correlation. Most of the spatial het-
erogeneity can be explained by AvgAQI and Income. For instance, the
missing adverse impact on urban activity in the third pattern is mainly
due to light pollution and underdeveloped economies. Based on the
three patterns, we discuss three important environmental injustice is-
sues as follows.

First of all, the spatial patterns explicitly illustrate a new facet of
environmental injustice, i.e., the motivation to change the activity
pattern in order to protect from air pollution, which has been generally
ignored in the literature. When the inequity is measured using the
conventional scope – which directly estimates the exposure risk by
population, existing studies about China have revealed that developed
areas bear a higher environmental burden (He et al., 2017; Ma, 2010).
This is in direct contradiction to Western cases (e.g., Bevc et al., 2007)
but consistent with our evaluation, for instance, in Table 6 the Pro-
portional Exposure Risk (PER) by population follows the same order as
average income. Thus the first three regions are the worst cases and the
broader South China is the best one. However, if activity pattern is
taken into consideration, the PER by activity shows that citizens in the
East Coastal Area may suffer 11% less exposure risk than in North China
since they change their activity easily when severe pollution happens.
Similarly, in spite of the light pollution, the PER in the Middle and
broader South China is underestimated by 3–4% because the people
take less action to avoid it. We believe such a new environmental in-
justice exists not only in developing countries such as China, but also
occurs in developed countries. Future studies of certain assessment
(e.g., Bäck et al., 2013; Janke, 2014; Mitchell & Dorling, 2003) should
carefully incorporate such variance that derives from avoidance beha-
vior.

Moreover, the decisive role of income on the avoidance behavior
indicates that the on-going regional development policy in China

should be revisited thoroughly to take public health consequences into
consideration. Specifically, while considering the effect of air quality
alone, such as AvgAQI, the situation is partly acceptable because it
means that in a more polluted area people will take more actions to
avoid exposure risk. However, since Income is somehow more effective
than AvgAQI, as Table 5 shows, current regional development policy
becomes a decisive factor. Before 2010, China's economic growth was
heavily dependent on facilitating the industrialization of the East
Coastal Area, Beijing and its surrounding area, Guangdong province,
and the capital cities of the inner provinces. After 2010, first the local
governments and then the central government proposed regional bal-
ance policies with one focal point of transferring manufacturing from
developed cities to other areas, a process known as “industry shift
policy” in China. Focusing on service, high-tech, and environmentally-
friendly industries, those developed areas benefited from both eco-
nomic growth and health protection awareness. However, for cities
where manufacturing was transferred to, citizens may suffer from both
deteriorating air quality and the lack of avoidance behaviors. If this
kind of regional balanced-development policy is not combined with
public health policy such as spreading the health effects of air pollution
and adjusting work schedules in heavy pollution days, then the vision of
“economic growth – health problem – protection awareness” should be
archived quickly to avoid accumulated health problems. The worst
scenario would be that an economic slowdown occurs together with the
absence of public health policy and air pollution in the Middle and
broader South China increases. Obviously, this problem could be a
global lesson for all developing countries with unbalanced regional
development.

Finally, there is one more aspect, imperceptible but critical, of en-
vironmental injustice in China. That is the general neglect of the det-
rimental effect of light air pollution. In Fig. 4, we found no significant
correlation in many cities as hatched with diagonal lines. Most are lo-
cated in the Middle, Northwest, or broader South China. Some of them
even have a positive coefficient. While the uncommon positive values
may be due to a reversed causality that urban activity produces pol-
lution, the general disregard of air pollution could be explained as
widespread ignorance of its adverse effects. Although this paper pro-
vides no evidence of people's subjective perception about air pollution,

Fig. 4. The coefficients of AQI in each city by varying coefficient model. The cities hatched with diagonal lines indicate non-significant (P-value > 0.1) coefficients.
The regions are defined by combining the colored patterns and the official division in China.

L. Yan et al.



we still speculate on a possible linkage between ignorance and China's
comparatively low standard/definition of air pollution. For instance,
the standard for the World Health Organization's excellent air quality4
in terms of PM2.5 (≤10 μg/m3) is defined by the lowest levels at which
total, cardiopulmonary and lung cancer mortality have been shown to
increase with> 95% confidence in response to long-term exposure. The
same definitions in China5 and the US6 are 35 μg/m3 and 12 μg/m3. In
Table 6, if we calculate the percentage of days with excellent air quality
in the cities of each region based on China's standard, then in Regions
4–6 only half the time qualifies. In contrast, if based on the US standard
the appearance of excellent air quality is reduced to nearly 0. We are
not saying that the Chinese standard is too low. Instead, we believe it is
partly reasonable, as proposed by the WHO document as an “interim
target”. What we really want to highlight is the necessity and urgency
of popularizing the health consequences of air pollution, especially in
underdeveloped areas.

5. Conclusion

This paper focuses on a critical problem of contemporary Chinese
development: how air pollution affects urban activity. In contrast to the
limited literature (Bäck et al., 2013; Graff Zivin & Neidell, 2009; Janke,
2014), we found clear evidence that avoidance behavior exists, and the
effect of air pollution varies between pollutants, groups of people, ac-
tivity types, and air quality alerts. For pollutants, SO2 has the largest
impact on urban activity, followed by PM2.5, NO2, and PM10, while CO
and O3 seem to have little impact. We also revealed more details about
the avoidance effect: the effect is at least 4 times smaller among visitors
than local residents; the effect on leisure-related activities is about 2–6
times that on work-related activities; and there seems to be a pattern
that activities with greater spatio-temporal flexibility can more easily
be re-arranged or canceled to reduce exposure risk.

Additionally, we verified several hypotheses about the hetero-
geneous effect. The result accords well with the circumstantial evidence
(Boone et al., 2014; Jerrett et al., 2001; Mitchell & Dorling, 2003; Sun
et al., 2017), that increasing Income and AvgAQI (deteriorative air
quality) could lead to higher sensitivity to pollution, while national
Holidays tend to weaken sensitivity. Thus it reveals the ubiquitous en-
vironmental injustice in China between cities. Typically, people who
live in more polluted cities, defined as those with 100 unit increments
in AvgAQI, on average show the same sensitivity as those who live in a
less polluted city and earn about 20.3 thousand yuan more in average
Income. Further tests prove that the interaction effect of Income is not
linear.

The most important contribution of this paper may be the new in-
sights into environmental injustice based on the empirical evidence. By
showing the spatial heterogeneity of the ubiquitous avoidance beha-
vior, we argue that environmental injustice in terms of air pollution,
whether in China or in other countries, is not just about the difference
in exposure risk measured by pollutant concentration and population
distribution, rather it should take urban activity into consideration. At
the country scale, conventional estimation (such as He et al., 2017; Ma,
2010) seems to underestimate exposure risk in underdeveloped areas
and strongly overestimate in the most developed areas. Moreover, after
realizing the crucial role of income in such debate, we argue that the
absence of further public health policy on the implementation of a
national/regional development policy may lead to new injustice, i.e.,
huge accumulative health problems, particularly in underdeveloped

cities in Middle and broader South China. This problem could be a
lesson for all developing countries with unbalanced regional develop-
ment. Finally, the map also reveals general neglect of the detrimental
effect of light air pollution, which we speculate is partly due to China's
comparatively low standard of air pollution. The necessity and urgency
to popularize the health consequences of air pollution are thereby
emphasized.

Finally, we leave the contradictory role of air pollution's impact on
urban activity to future discussion. The fundamental starting point of
our argument is to take avoidance behavior as a helpful phenomenon to
reduce exposure risk when air pollution happens. Obviously, this is true
in the short/middle-term view since improving air quality requires
significant time and effort. However, from the long-term view, avoid-
ance behavior is never a good thing because it is caused by air pollu-
tion. As estimated in this paper, it could be responsible for hundreds of
billions of dollars in economic loss. Thus the only and fundamental
solution is to eliminate air pollution as much as possible, which of
course requires effort and debate far beyond this paper.
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