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Air pollution imposes significant environmental and health risks worldwide

and is expected to deteriorate in the coming decade as cities expand. Mea-

suring population exposure to air pollution is crucial to quantifying risks to

public health. In this work, we introduce a big data analytics framework to

model residents’ stay and commuters’ travel exposure to outdoor PM2.5 and

evaluate their environmental justice, with Beijing as an example. Using mo-
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bile phone and census data, we first infer travel demand of the population to

derive residents’ stay activities in each analysis zone, and then focus on com-

muters and estimate their travel routes with a traffic assignment model. Based

on air quality observations from monitoring stations and a spatial interpola-

tion model, we estimate the outdoor PM2.5 concentrations at a 500-meter grid

level and map them to road networks. We then estimate the travel exposure

for each road segment by multiplying the PM2.5 concentration and travel time

spent on the road. By combining the estimated PM2.5 exposure and housing

price harnessed from online housing transaction platforms, we discover that in

the winter, Beijing commuters with low wealth level are exposed to 13% more

PM2.5 per hour than those with high wealth level when staying at home, but

exposed to less PM2.5 by 5% when commuting the same distance (due to lighter

traffic congestion in suburban areas). We also find that the residents from the

southern suburbs of Beijing have both lower level of wealth and higher stay-

and travel- exposure to PM2.5, especially in the winter. These findings inform

more equitable environmental mitigation policies for future sustainable devel-

opment in Beijing. Finally, or the first time in the literature, we compare the

results of exposure estimated from passive data with subjective measures of

perceived air quality (PAQ) from a survey. The PAQ data was collected via a

mobile-app. The comparison confirms consistencies in results and the advan-

tages of the big data for air pollution exposure assessments.

Keywords— Environmental justice, PM2.5 exposure, travel exposure, urban mobility, mobile

phone data, Beijing
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1 Introduction

With rapid urbanization and industrialization, air pollution has become a global threat to hu-

man health, especially for large and dense cities in developing countries (Kampa and Castanas,

2008, Pope III et al., 2009, Lelieveld et al., 2015, World Health Organization, 2016, Kelly and

Zhu, 2016). According to the World Health Organization (WHO), around 3 million people died

in 2012 as a result of ambient air pollution exposure, which makes it the largest environmental

risk to the health of human beings worldwide. The particulate matter of a diameter of less than

2.5 µm (PM2.5) is a major public concern in recent years, especially for cities suffering from

severe hazes. Taking Beijing as an example, in 2015, the outdoor PM2.5 concentration of 179

days were higher than 75 µg/m3 and the average annual level reached 80.6 µg/m3 (Beijing Mu-

nicipal Environmental Monitoring Center, 2016). Such concentrations represent severe threats

to public health, particularly to those vulnerable to heart or respiratory diseases, such as the

young and elderly population (Di et al., 2017).

Due to these threats to health, quantifying human exposure to air pollutants has received

considerable attention, and various data and methods have been introduced to estimate their

exposure in space and time (Jerrett et al., 2005, Steinle et al., 2013, Quiros et al., 2013, Levy

et al., 2015, Smith et al., 2016, Nyhan et al., 2016, Dewulf et al., 2016, Shekarrizfard et al.,

2017). Many previous studies infer pollutants concentration from stationary air quality moni-

toring networks using spatial interpolation techniques and estimate air pollution exposure with

spatial distributions of population at aggregated level (Steinle et al., 2013). This approach ig-

nores human mobility and the time spent at various places in a day (Setton et al., 2011, Zhang

et al., 2013). The development of GPS-enabled mobile monitors and location-aware instru-

ments addresses this issue by measuring individual exposure during their activities (Gerharz

et al., 2009, Hatzopoulou et al., 2013, Quiros et al., 2013, Deville Cavellin et al., 2015). Travel
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survey data were also employed to examine the dynamic exposure of participating intervie-

wees (Smith et al., 2016). However, such datasets can only be used to estimate exposure for

limited groups of individuals, and it is challenging to expand the samples to the population.

More recently, researchers have employed new data sources and methods to study the dy-

namic exposure to air pollutants at the city scale (Saraswat et al., 2016, Nyhan et al., 2016,

Dewulf et al., 2016). For example, based on travel survey data, Shekarrizfard et al. devel-

oped an integrated transportation and emission model to assess the individual stay and travel

exposure to NO2 in Montreal, Canada (Shekarrizfard et al., 2016). Saraswat et al. simulated

the travel demand of population in New Delhi with a Gravity model and estimated the human

exposure for different activities (such as staying at home, work and commuting in the road

network) (Saraswat et al., 2016). However, they neglected travel behavior and speed when

estimating travelers’ exposures.

With the development of information and communication technologies (ICT), large scale

geo-located mobile phone data have been increasingly useful to model human mobility in

cities (Gonzalez et al., 2008, Deville et al., 2014, Jiang et al., 2016, Dong et al., 2016). For in-

stance, Nyhan et al. (2016) adopted mobile phone data to model the active population weighted

exposure to PM2.5 at aggregated spatial levels in the New York City (Nyhan et al., 2016), and

quantified individual exposures to PM2.5 by considering both home and work locations (Nyhan

et al., 2018). Dewulf et al. (2016) used mobile phone data to track a user’s visited locations and

duration of stays to estimate dynamic exposure at individual level in Belgium (Dewulf et al.,

2016). Although these works took advantages of the large scale mobile phone data, they only

considered the samples without expanding them to the population level in the city (Gauderman

et al., 2004, Devlin et al., 2003). By only focusing on the exposures of stationary activities,

these studies also ignored exposures of human travel in cities. With the increased traffic con-

gestion and long commuting distances in large cities, commuters have spent more time on the
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road than ever before (TomTom, 2017). As a result, people are exposed to non-negligible air

pollution while traveling. Therefore, it is important to estimate the air pollution exposure on the

road networks. More importantly, by estimating exposure to PM2.5, it will offer opportunities

for researchers to examine the environmental justice for the economically disadvantaged popu-

lation (Marmot, 2005). The evaluation of environmental justice in cities will be useful to inform

policymakers to develop equitable strategies for sustainable urban futures (Brugge et al., 2015).

Towards this end, this study presents a framework that incorporates urban mobility derived

from massive and passive mobile phone data to evaluate the environmental justice of PM2.5

exposure of commuters with different wealth levels in Beijing at the population level. First, we

infer the seasonal average PM2.5 concentration per hour (at a 500-meter grid level) based on air

monitor observations and a spatial interpolation algorithm. We then map the PM2.5 concentra-

tion to the road networks. Second, by using mobile phone data and census data together with a

traffic assignment model, we derive human mobility (including individual stay location, dura-

tion, travel routes and travel time) at both individual and aggregated levels for the metropolitan

area without expensive travel surveys (Deville et al., 2014, Xu and González, 2017, Jiang et al.,

2016, Jiang et al., 2017, Li et al., 2017). Moreover, we estimate the residents’ outdoor stay ex-

posure to PM2.5 by weighting population density, and model the travel exposure of commuters

by accumulating the PM2.5 exposure on each traversed road segment, taking travel time in traffic

into account. Third, we investigate the environmental justice of residents by connecting human

exposure to PM2.5 with housing prices (a proxy for wealth) in Beijing, which is important for

policymakers to develop equitable environmental mitigation policies for the city. Finally, by

comparing our results with a mobile-phone based survey on individual perception of air quality,

we assess the feasibility of using large-scale mobile phone data to measure human exposure to

the air pollution in the city.

In the following sections, we will discuss in detail our methods to estimate PM2.5 concen-
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trations, urban mobility, population stay and travel exposure to PM2.5 concentrations, and their

relation to environmental justice in Beijing. We obtained data of the PM2.5 concentrations in

Beijing from 2015 to 2016. Ideally, we would like to collect data on human mobility, air quality,

and wealth level of residents for the same period; however, such efforts have been challenging.

In particular, world-wide urban mobility studies in the past relied mostly on expensive travel

surveys collected by cities and government agencies in very low frequency to estimate travel

demand for a given year, by adjusting samples to a current population. For example, the na-

tional household travel surveys in the U.S. are conducted every ten years. One of the advantages

of this study is that by using more recent mobile phone data we can estimate more up-to-date

travel demand models compared to those using traditional expensive travel surveys. However,

due to data availability limitation, we could only obtain mobile phone data from 2013. With

the assumption that the routine travel demand of Beijing residents in 2013 were similar to those

in 2015 and 2016, the mobile phone data in 2013 can be a good proxy to estimate the stay and

travel exposure of residents in 2015. We collected housing price data harnessed from an on-line

platform in 2016 as a proxy for wealth distribution, assuming that correlation between wealth

level and housing price is relatively stable in metropolitan areas such as Beijing.

2 Materials and methods

2.1 Estimating the spatial concentration of PM2.5

As one of the most crowded cities in the world, Beijing accommodates 21.5 million residents

in an area of 16, 410 km2. Since 75% of Beijing residents live in the urban area within the Sixth

Ring Road, a 20% of the total land area of the Beijing metropolitan area (Figure 1A), this study

is focused in this area. Beijing Municipal Environmental Monitoring Center (BJMEMC) (Bei-

jing Municipal Environmental Monitoring Center, 2016) collects concentrations of major air

pollutants on an hourly basis from 35 air quality monitoring stations, among which 24 are lo-
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cated within the Sixth Ring Road (Figure 1A). The PM2.5 concentration in Beijing displays

strong seasonality, in both climate characteristics and economic activities such as coal heating

in the winter (Guo et al., 2014, Liu et al., 2016). To derive the representative seasonal air qual-

ity data, we average the PM2.5 concentration for each monitoring station during a given hour

in the summer (from June 1st to August 31st, 2015) and winter (from December 1st, 2015 to

February 28th, 2016), respectively. Figure 1B shows the average PM2.5 concentration per hour

for the 24 stations, and their respective average value in the summer and winter. The average

PM2.5 concentrations in the summer were stable and below 75 µg/m3; while in the winter, the

values were relatively higher at night than those during the day. The PM2.5 concentrations in the

winter at most monitoring stations were higher than 100 µg/m3 and ranked as either unhealthy

or very unhealthy based on standards defined by the U.S. Environmental Protection Agency

(EPA) (U.S. Environmental Protection Agency, 2017).

Estimating the PM2.5 spatial concentrations is the first step to quantify human exposure to

air pollutants in the city. The Ordinary Kriging (OK) spatial interpolation method (Wong et al.,

2004, Zou et al., 2015) and the land use regression (LUR) method are widely used for map-

ping the spatial PM2.5 concentration with sparse monitoring data. LUR utilizes the geographic

characteristics to refine the estimation of PM2.5 concentration. Zou et al. evaluated the per-

formance of LUR and OK interpolation in Houston, and revealed that LUR and OK generate

similar end-result accuracy for their comparable error rates (6.13% and 7.01%, respectively) in

the estimation of PM2.5 concentration (Zou et al., 2015). By applying the OK method imple-

mented with the python function of GEOMS2, an open-source geostatistics and geosciences

modeling software (CERENA Research Center, 2017), we estimate the PM2.5 concentration at

a 500 meter grid level in sub-regions of the city based on the seasonal average values of the 24

monitoring stations per hour.

We predict the values at the target locations based on the distance and spatial distribution
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Figure 1: Observed and estimated PM2.5 concentration in Beijing. A Population density
in 2015 and the distribution of air quality monitoring stations within the Sixth Ring Road of
Beijing. B Average hourly PM2.5 concentration during the summer and winter of 2015. The
scatter dots denote the concentration of the monitoring stations and the solid line shows the
average concentration of all monitoring stations. C Estimated average PM2.5 concentration in
each zone at selected hours, 8:00, 12:00 and 18:00, in summer and winter. [Figure created with
the Python library Matplotlib Basemap Toolkit]

of the target location using the OK method. Each of the (500 meter by 500 meter) grid is then

assigned a PM2.5 concentration per hour for the summer and winter. Figure 1C exhibits the
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estimated PM2.5 concentration in each zone Jiedao (a community-level zone in China) during

the morning peak hour, the midday off-peak hour, and the evening peak hour in both summer

and winter. As shown in the figure, PM2.5 in the winter were more concentrated in the southeast

of Beijing, where industrial activities played an important role.

2.2 Inferring urban mobility from mobile phone data

The travel demand for the 16.3 million residents living in the urban area of Beijing is estimated

using mobile phone data, provided by a mobile operator in China. The mobile phone dataset

contains 100, 000 active users with their call detail records (CDRs) and data detail records

(DDRs) for December 2013. The communication activities of CDRs comprise the incoming

and outgoing phone call and the sending and receiving of a text message, while DDRs com-

prise the using of Internet data. Each record of the CDRs and DDRs data has a hashed ID,

start time-stamp of the activity, type of activity, duration of the activity, longitude and latitude

of the cell tower that communicated with the phone. The hashed ID is unique for each mobile

phone devise, so that we are able to analyze the anonymized user when she is interacting with

the phone which communicates with the nearest cell tower. In rare cases, the second nearest

tower will be used if the nearest one is fully loaded. The cell phone in use will be switched

to the closest cell tower when the user is moving. The average distance between cell towers

is 332 meters (with a median of 254 meters), representing the spatial resolution of the study.

Alexander et al. and Colak et al. outlined a general framework to obtain the travel demand,

a.k.a. Origin-Destination (OD) matrices, from massive mobile phone data (Alexander et al.,

2015, Çolak et al., 2015). We apply the same method here to extract daily trips from mobile

phone samples in Beijing. These trips are then combined with the resident population of each

zone within the Sixth Ring Road to estimate representative urban travel demand at the zonal

level. Before modeling the travel behavior of each anonymous users, we first eliminate non
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active users. Then, we extract stay locations of the active users from their raw records. We

improve upon the stay-point algorithm presented by Zheng and Xie (Zheng and Xie, 2011) and

Jiang et al. (Jiang et al., 2013) as follows: (i) We apply a temporal agglomeration algorithm,

such that temporally consecutive records within a certain radius (e.g., 500 meters) are bundled

together with an updated stay duration from the start time of the first record to the end time of

last one. (ii) We label the records as pass-by points and stays, based on the stay duration thresh-

old (e.g.,10 minutes). In the analysis hereafter, we only focus on the stays. We then combine

all the spatially adjacent stay points for a user (within a threshold) as his or her stay regions.

For this spatial agglomeration, we use a spatial search balancing tree, R-tree, to accelerate the

computation (see Figure S1 in Supplementary Material (SM) (Guttman, 1984)).

After the stay locations are detected for each user, the stays are labeled as home, work, or

other. The most frequently visited location during weekday nights and weekends are labeled as

home, and the most frequently visited one during weekday working hours (at least 500 meters

away from home) is labeled as work, if one exists, and the rest are labeled as other. Each trip

can be then labeled as one of the three categories, (i) home-based-work (HBW), which refers

to the trips between home and work, a.k.a. commuting; (ii) home-based-other (HBO), which

refers to the trips between home and other places; (iii) non-home-based (NHB), which refers

to the trips between work and other places or two other places. Among the three categories of

trips, commuting flow among zones are the most stable as the urban population and economic

structure are relatively stable in the metropolitan area, such as Beijing. Eventually, as the mobile

phone users only cover a part of the entire population, we expand the travel portrait of the

mobile phone samples with expansion factor by zone. The expansion factor is defined as the

ratio between the actual resident population and the number of mobile phone users whose home

are located in the given zone. We aggregate the population data in 2015 at the 100 by 100 meter

grid level obtained from WorldPop (Tatem, 2017) to the Jiedao level. After aggregating the
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Figure 2: Estimation and validation of urban mobility in Beijing. A The top 5,000 origin-
destination commuting flows among zones during the weekday morning peak hour. B Distribu-
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trips at the zone level, we estimate the OD matrices by hour for an average weekday and 24 OD

matrices were derived for the population and commuters, respectively.

Figure 2A shows the OD pairs with the large commuting flows between zones for the morn-

ing peak hour, obtained from the above discussed mobility model. Figure 2B shows the average

number of phone usage records per day per user during a month. Majority of users are active,

with an average of 15 daily records. As we observe the travel demand of individuals during one

month, the records cover most places that they visited in their daily life, especially the work
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places for commuters. For the validation of estimated commuting travel demand, we compare

with the census employment statistics at the Jiedao level in the Beijing 2nd Economic Census

in 2014. We find the Pearson correlation coefficient Cpearson = 0.745, which indicates a good

agreement between our employment estimation and the survey data (see Figure 2C) (Beijing

Municipal Bureau Statistics, 2016). The number of commuting and all trips per hour are shown

in Figure 2D. The morning and evening peaks can be observed from the commuting trips, while

there are three peaks for all trips during the morning, mid-day and evening on an average week-

day. While a travel survey from Beijing is not available for this study, this method has been

validated in many other cities with travel surveys, and traditional travel demand models devel-

oped by planning agencies (Çolak et al., 2015, Toole et al., 2015, Alexander et al., 2015). More

details of the urban mobility model results can be found in SM Note 1.

As previous studies have shown that exposure to PM2.5 can also be positively associated

with increased psychological distress and affect human health (Sass et al., 2017), to compare

the objective estimate with individual subjective perception of air quality, we collected a smart-

phone based survey from individuals in Beijing in this study. To our knowledge, this is the first

survey in a Chinese city that is dedicated to capturing the perceived air quality by local residents.

In the perceived air quality (PAQ) experiment, 860 individuals downloaded our smartphone-

based survey application to track their daily trajectory, and 256 of them finished the survey by

rating the PAQ for home, workplace, and worst spot during their commuting during the two

week study period in the winter of 2015 (although some of them didn’t complete the whole

period). The perception runs from 0 to 5, with 0 being the best air quality and 5 being the worst.

When comparing the daily PM2.5 with the daily average PAQ for these respondents during the

study period, we find that they are highly correlated with a Pearson correlation coefficient of

0.831. More detailed description of PAQ data can be found in SM Note 2.
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2.3 Modeling stay and travel exposure to PM2.5

With our inferred mobility at the urban population scale, we account the hourly dynamic stay of

the population and the travel time and route choice of commuters assuming all residents starts

their daily trips from home. We then estimate the stay exposure to PM2.5 of population and the

travel exposure to PM2.5 of commuters per hour in the summer and winter, respectively. We

define population density weighted exposure (PDWE) to represent the total outdoor exposure

of population per square kilometer per hour. For a given zone z during an hour h, its PDWE

is defined as Eh,z = Ch,z · Ph,z/Sz, where Ch,z denotes the PM2.5 concentration during that

hour, Ph,z denotes the dynamic population staying in the zone during the same hour and Sz

denotes the area of the zone. The unit of PDWE is person · µg · m−3 · km−2 · h. Unlike the

population weighted exposure (PWE) introduced by Nyhan et al. (Nyhan et al., 2016), which

is density-independent and tied to the total population of the zone, PDWE highlights the areas

with higher population density and heavier air pollution. As shown in Figure 1A, the size of

zones are widely different, which causes the total population of low density zones in suburban

area is higher than that of high density zones in the central area. However, air pollution impose

more serious threats to zones with high density.

The travel exposure to PM2.5 of a commuter depends on her selected route, travel time, and

PM2.5 concentration on the road segments. In this work, we focus on commuters who travel

between zones either with cars or buses as they are the main travel modes for long-distance

above-ground commuting in Beijing. Based on the travel demand of commuters inferred from

mobile phone data and census data, we use the travel mode share reported in the Travel Survey

of Beijing Residents to estimate trips made by passenger cars and buses per hour (Beijing Trans-

portation Development & Research Center, 2007, Huang et al., 2008). Regarding the traffic

conditions in the road networks, we derived vehicle trips from the vehicle usage rate per origin

zone. We then estimated the driving time per route by assigning the vehicle OD matrices to the
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road network using a traffic assignment model based on user equilibrium (UE). Further details

are discussed in Ref. (Çolak et al., 2015, Çolak et al., 2016). The road network is extracted

from OpenStreetMap (OpenStreetMap, 2016). The UE model gives each OD pair its shortest

travel time and paths. We validated our estimates of travel times with Gaode Map (AutoNavi,

2016), a widely used travel navigation platform in China. The Pearson correlation coefficient

between the travel times estimated by our model and Gaode Map is 0.84 and the relative accu-

racy is 79.17% by regarding Gaode Map as the ground truth. The comparison of the distribution

of travel time indicates good estimates, shown in Figure S2B and .S2C in SM. For simplicity,

we assume that buses use similar routes as cars, but with longer travel times. According to a

travel survey report, the travel time for a trip made by bus equals to 1.57 times for a car trip on

average (Beijing Transportation Development & Research Center, 2007).

With the traffic assignment model, each road segment in the road network is associated with

a travel time with traffic. Further, we can estimate the PM2.5 concentration on each road segment

by mapping the grid map of PM2.5 concentration to the roads. When a road segment covers

more than one grid, the average concentration of all covered grids is regarded as the PM2.5

concentration of the road segment (see Figure S3 in the SM). The estimated PM2.5 concentration

of the road network during the morning peak hour, mid-day, and the evening peak hour in

summer and winter are shown in Figure S4 in the SM. Finally, we calculate the route travel

exposure to PM2.5 of a commuter by aggregating the road segment exposure,ET
h =

∑R
r=1C

r
hT

r
h ,

where Cr
h and T r

h denote respectively the PM2.5 concentration and travel time on the rth road

segment in the route during the hth hour and R is the number of road segments forming the

route. The unit of travel exposure is µg ·m−3 · h.
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3 Results

3.1 Population density weighted exposure

As most travel activities happen during the daytime (e.g., work, school), we calculate the stay

exposure to PM2.5 in two periods, work hours and non-work hours. The former covers hours

between 9:00 am to 5:00 pm; the latter covers the rest of the day. Figure 3A illustrates the

average hourly PDWE during non-work and work hours in the summer and winter. By ob-

serving the spatial distribution of PDWE, we identify exposure by zones during non-work and

work hours. The disparity of PDWE between work and non-work hour is mainly caused by the

travel activities of residents, and the disparity between summer and winter is mainly caused by
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the seasonal variations in PM2.5 concentration in Beijing. Specifically, some central areas in

Beijing experience more severe PDWE during work hours than non-work hours as a significant

portion of the population is gathering into the central area of the city during daytime for work

and/or business. The disparity of stay exposure in space and time is more evident in winter than

in summer.

According to the urban mobility patterns, we select six representative zones in the city,

marked with different symbols in Figure 3A, to uncover the PDWE. Figure 3B displays the

population density of stays per hour in the selected zones (keeping the colors of the labeled

zones). The population density at noon is three times that of midnight in zone Z2, which is

located in the CBD of Beijing, the Chaoyang district. Figures 3C and 3D depicts the hourly

PDWE of six selected zones during summer and winter, respectively. In the summer, the worst

PDWE in zone Z2 reaches 3.5 × 106person · µg ·m−3 · km−2 · h. While in winter it reaches

5.0× 106person · µg ·m−3 · km−2 · h.

3.2 Spatial variation of travel exposure to PM2.5

The travel exposure captures the air pollution for each commuter between home and work by

car or bus. By combining the estimated traffic flow, route, and travel times between each OD

pairs with the PM2.5 concentration of the road network, we can estimate the travel exposure to

PM2.5 between any two zones in any hour of the day. We select the trips between 8:00 am and

9:00 am, which reflects commuters’ trips and the spatial differences in their travel exposure. The

map in Figure 4A depicts the number of commuters that travel across zones during the morning

peak hour. In Figure 4B we show the average travel distance of commuters living in each zone.

As expected, suburban areas display longer commuting distance as most jobs are centralized

in the city center. Figure 4C and 4D display the average travel exposure of commuters in each

zone during the morning peak hour in the summer and winter, respectively. The commuting
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Figure 4: Travel exposure to PM2.5 of commuters from each zone during the morning peak
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peak hour. C, D Average travel exposure to PM2.5 of commuters during the morning peak
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morning peak hour in summer and winter, respectively.

exposure in the summer and winter show some discrepancies, especially in the southern area

where commuters experience higher travel exposure to PM2.5 in the winter.

To better evaluate the spatial variation of travel exposure to PM2.5, we define the travel

exposure per kilometer in each zone as the ratio between the total travel exposure and the total

travel distance for commuters in a given zone, namely exposure-over-distance ratio (EoD, µg ·

m−3 ·h·km−1). EoD indicates the concentration of PM2.5 exposures to the traveler per kilometer

from the origin to the destination. Trips with larger EoD are exposed to more PM2.5 than others

even when they have the same commuting distance. Figure 4E and 4F illustrate the EoD per

zone in summer and winter, respectively. In the summer, EoD displays higher values near the

central area and lower values in the suburbs. This is caused by the heavy traffic congestion
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in the central area, as shown in Figure S2A in the SM. Regarding the distribution of EoD in

winter, regions in the south show highest values due to the combined effect of both higher

PM2.5 concentration (shown in Figure 1C) caused by coal-burning plants in the south of Beijing

and the heavy traffic congestion near the central area. More results are presented in Figure S5

in the SM and an on-line travel exposure visualization platform 1.

3.3 Environmental justice in PM2.5 stay- and travel-Exposure

Environmental justice refers to “the fair treatment of all people with variant races, cultures

and incomes, in development of regulations and policies.” (Marmot, 2005, Pearce et al., 2006,

Brugge et al., 2015) Here we investigate the environmental justice for commuters with differ-

ent wealth levels, regarding their PM2.5 exposure. We derive aggregated zonal housing price

index from disaggregated housing price data, obtained from an online housing property listing

platform in June 2016 (Homelink, 2016). We use housing price as a proxy for wealth level and

examine its relationship with commuters’ hourly stay-exposure during non-work hours (which

are mostly stay-at- home activities). We then compare their travel-exposures (EoD) across

space.

Figure 5A shows the average housing price in each zone, revealing higher housing value in

the city center than in the suburbs. In each of the sub-figures from B1 to C2, the community

zones in Beijing are separated into six groups by combing three levels of housing prices (i.e.,

low, middle and high) with two levels of PM2.5 exposure (i.e., low and high). Figure 5B1

and 5B2 display the relationship between the housing prices and the hourly stay exposure of

commuters during the non-work hours in the winter, with the assumption that commuters go to

work in the morning and return home in the evening. We estimate that hourly stay exposure

to PM2.5 for commuters with low, middle and high wealth levels are 111.82 µg · m−3 · h,

1http://www.mit.edu/˜yanyanxu/exposure/
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103.87 µg ·m−3 · h and 98.66 µg ·m−3 · h on average in winter of 2015. That is, commuters

with lower wealth are exposed to more PM2.5 than their counterparts with higher wealth by

13% per hour when they stay at home. Moreover, the different groups of zones display clear

differences. For example, 12.12% of the commuters in Beijing having high stay-exposure at

home are with low level of wealth. Most of these population live in the southern suburbs,

depicted in dark red; another 12.34% of the commuters are with low level of wealth but the

PM2.5 concentration in their residential areas were lower as they live in the north of the city.

In short, for commuters in the southeastern Beijing, those with lower wealth level experience

higher level of PM2.5 exposure than those with higher wealth levels. However, for commuters

residing in the northwest of the city, those with lower wealth level are exposed to less PM2.5.
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This spatial disparity is mainly caused by the industrial and economic activity distribution in

the city and can be mitigated by future spatial planning policy.

In contrast, the relationship between the housing price and the commuting travel expo-

sure (EoD) displays large spatial disparity, as shown in Figure 5C1 and 5C2. The travel ex-

posure to PM2.5 per kilometer for commuters with low, middle and high wealth levels were

1.47 µg ·m−3 · h · km−1, 1.56 µg ·m−3 · h · km−1 and 1.55 µg ·m−3 · h · km−1 on average in

winter of 2015. This indicates that the commuters with lower wealth were exposed to 5% less

PM2.5 than commuters with higher wealth level when traveling the same distance for commut-

ing trips. The primary reason is that the lower wealth residents are living in the suburban areas

where traffic is less congested than the city center, as shown in Figure S2A in the SM. We also

estimate that 9.43% of the commuters had both low wealth and high travel exposure per kilome-

ter during their commuting trips. They were concentrated in the southern areas, colored in dark

red. For commuters residing in southern Beijing, those with low wealth level were exposed to

more PM2.5 for both stay-at-home activities and travels in the winter. Moreover, 46% of the

commuters have middle wealth level and experienced high travel exposure (EoD) to PM2.5 (as

shown in the in orange zones). Their high EoD is mainly caused by the heavy traffic congestion

within the 5th Ring Road in the south of Beijing. The results from the summer are presented in

Figure S6 in the SM.

3.4 Perceived air quality experiment as a comparison

To compare the spatial correlation of perceived air quality (PAQ) and the objective estimates of

PM2.5 exposure, we then model the population density weighted air quality perception (PDW-

Per) with PAQ data on the same day (February 17th, 2016) by replacing the PM2.5 concentration

in PDWE with the average perception in each zone, similar to the calculation of PDWE with

mobile phone data discussed previously. PDWPer is calculated only using the perception of
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participants and the static population density from census data. Only 97 individual samples

for PAQ were completed for this day (February 17th, 2016) among the 256 individuals who

responded for the 2 week study. The PDWPer at home and work are illustrated in Figures 6A

and 6B, respectively. As the sample size of the PAQ data is limited, the PDWPer does not

cover all areas in Beijing. Figures 6C and 6D illustrate the PDWE of the worst hour during the

non-work and work hours on the same day, respectively. Although the subjective perception

of the participants does not contain the concentration of pollutants, we compare the exposures

inferred from mobile phone data with PAQ data by normalizing both datasets. The r2 between

exposure from mobile phone data and PAQ equals to 0.43 at home and 0.33 at work, as shown

in Figures 6E and 6F. The r2 is relative low possibility due to the following two reasons: (i) the

participants’ perception to air quality might be different, as sensitive people are more vulnerable

to the air pollutants; (ii) the limited number of reports per user per day loses the variation of air

quality in time. In summary, given the small sample size of PAQ and the relative consistency

between the two estimates from PAQ and mobile phone data, we show that when survey data

are expensive to collect, combining air quality monitoring of PM2.5 concentration and large-

scale mobile phone data can be a good alternative to estimate exposure to air pollution without

surveys.

4 Discussion and conclusion

Exposure to air pollution threatens public health, increasing mortality and morbidity. Within the

same city, levels of exposure to air pollution differ in space and time. Among various pollution

metrics, PM2.5 concentration is the major concern for the public in Beijing as it is the main

cause of haze and affects the heart and lungs when inhaled. On certain days, schools need to be

closed and people are encouraged to stay at home to avoid exposure to severe haze.

Today, massive mobile phone data can help us better understand and simulate human mo-
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Figure 6: Population exposure estimates from PAQ survey vs. mobile phone data. A, B
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bility at the metropolitan scale. Still, previous works that model population exposure to PM2.5

using mobile phone data only account for stays of the mobile phone users in each zone (Nyhan

et al., 2016) or estimate exposure to air pollutants using the dynamic stay locations of sampled

mobile phone users (Dewulf et al., 2016, Nyhan et al., 2018). The former study models the

exposure of population in each zone at aggregated levels; the latter one focuses on the individ-

ual exposure and uses mobile phone data to track the sampled users. Both cases consider only

the actual mobile phone users instead of the total population and ignore the individual travel

exposure, which is nearly 10% of the total exposure if the resident spends 2 hours of travel per

day.

By introducing the population census data, we expand the mobility of mobile phone users
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to the population at scale and incorporate their associated travel times. We estimate the PM2.5

concentration in space and in the road networks. Without having to rely on costly travel surveys,

we can estimate for the entire population their daily stay- and travel- exposure. In addition,

we investigate environmental justice regarding the relationship between personal exposure to

PM2.5 and their level of wealth using housing price as a proxy. We find that commuters residing

in southern Beijing are both economically disadvantaged and suffer higher static and travel

exposure in the winter. This information is useful for policymakers to plan a more equitable

and sustainable city. Mitigation policies may include subsidizing installation of air purifiers for

low income population, regulating heavily polluting factories, and planning for urban greening

projects focusing on PM2.5 control (Brugge et al., 2015,Yang et al., 2015). Finally, we compare

exposure during stays from two diverse data sources, one passively collected via CDRs and one

actively collected via a PAQ survey. We show that the PM2.5 exposure modeled by mobile

phone data is also supported by the PAQ survey. All of the results and plots in this work are

implemented using Python.

The mobile phone data used for the inference of urban mobility only cover about 0.5% of

the population in Beijing. Despite expanded with the actual population in census data, the small

sample size might cause bias in the estimation of travel demand at urban scale. On the other

hand, the low frequency of mobile phone usage may cause the loss of visited locations if the

user doesn’t interact with the cell phone in these places. However, these two shortcomings could

be improved conveniently at low cost by expanding the sample of users and the duration of the

datasets as the data of all mobile phone users have already been stored by telecommunication

operators. Due to the lack of ground truth data (such as traffic counts or travel survey data),

we are not able to directly validate our estimated travel demand in Beijing. The framework to

generate the mobility model has been proved successful in other cities, e.g., we have validated

the mobility model in Boston with the United States National Household Travel Survey (NHTS)
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and the Massachusetts Travel Survey (MTS) (Alexander et al., 2015,Çolak et al., 2015), in Bay

Area with the Bay Area Transportation Survey (BATS) (Çolak et al., 2016). While mobile

phone data is blind to the travel mode, in contrast with the Taxi GPS data and transit smart card

data, it is still one of the best options to investigate the urban mobility in big cities, due to its high

penetration rate. In addition, the location-based service (LBS) data collected from the mobile

applications are also valuable resources to reproduce human mobility. Especially in China the

high adoption rate of Wechat (the multi-purpose messaging, social media and mobile payment

app) and its accurate positioning could better estimate both individual and aggregated mobility

pattern of population. However, the LBS data are actively collected under the permission of

users and thus lack of universality compared with the passive cellular data.

Future investigations in the following aspects would improve the estimation accuracy of

population exposure to PM2.5: (i) modeling the infiltration of vehicles and buildings would

improve the estimation accuracy of personal exposure. The PM2.5 concentration observed from

the monitoring stations are adopted to model the population exposure without accounting for the

ambient PM2.5 infiltration; (ii) a chemistry-transport model would further improve the estimate

of PM2.5 concentration and other pollutants in the road networks with the consideration of land

use and topography; (iii) an individual mobility model with higher resolution of data in the road

segments would provide a more precise representation of personal exposure.
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Çolak, S., Alexander, L. P., Alvim, B. G., Mehndiratta, S. R., and González, M. C. (2015). Ana-
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