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Abstract 

The development of a biopharmaceutical manufacturing process involves an assessment 

of all possible sources of variation throughout each of the unit operations in the drive toward six 

sigma manufacturing. The primary goal of this project is to develop a novel way to assess the 

variation in raw materials attributes throughout the life-cycle of the material and gain insights 

about the correlation between material variation to process performance and product quality. 

This thesis focuses on understanding the impact raw materials have on unit operations 

within biopharmaceutical manufacturing processes through machine learning techniques. To 

evaluate the impact of raw material attributes on process performance and exclude the variations 

explained by process operating parameters, a modeling framework is developed and tested. The 

framework contains three steps: (1) fitting models with only process operating data, (2) fitting 

models with process operating data and batch number information, (3) fitting models with 

process operating and raw material attributes data. By comparing the performance measurements 

from 3 different models, insights of correlations between raw materials and process outcomes 

could be obtained. 
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1 Introduction  

The raw materials used in biopharmaceutical manufacturing include materials such as  

media and other chemical components used in cell culture and fermentation, excipients used in 

formulation of final drug products and single use equipment used for production [1]. The 

variation in the attributes of these raw materials can have a significant influence on process 

performance and product quality in the biopharmaceutical industry. For example, even small 

variations in trace elemental metals and impurities in media can have a strong impact on product 

quality, cell culture performance, batch duration, and titer [2]. In other cases, excess impurities 

of raw materials can be toxic to the process, but unexpected decreases in impurities may also 

have impacts as large as unexpected increases in impurities [3]. To consistently provide high 

quality medicine for the patients, it is very important to understand the impact of the variation in 

raw material attributes on process performance and product quality, and thus enhance the control 

over the manufacturing process. Amgen is at the forefront of implementing strategies for 

understanding raw material attributes important to process performance and product quality 

attributes during product and process development. However, for legacy manufacturing 

processes where raw materials may not have been fully evaluated in a systematic way, a novel 

approach to assess the impact of raw material variabilities is needed. This thesis aims to develop 

a framework to evaluate the impact of raw material variabilities on process performance of 

biopharmaceutical manufacturing. The research is performed in cooperation between MIT 

Leaders for Global Operations and Amgen Inc. 

1.1 Project Background 

Material Science is a rising topic in biopharmaceutical manufacturing, as raw material 

potentially can be a significant source of variability, which would cause inconsistent process 
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performance, non-conformance, as well as productivity and product quality issues. Thus, there is 

a clear need to gain better understanding of raw materials related to manufacturing processes.  

On the other hand, biotechnology firms like Amgen are paying extra attention in the 

digital revolution around the world and have been investing significant resources in data 

infrastructure and data-driven projects [4,5]. By nature of the pharmaceutical business, these 

firms have been keeping track of a rich amount of data throughout the manufacturing process. A 

comprehensive infrastructure has been built and implemented to monitor manufacturing 

processes, and Amgen has partnered with AWS for its  data services [6]. However, it has only 

been recently that raw material related data is starting to be actively utilized for understanding 

the impact raw materials have on process performance and proactively mitigating risks. 

1.1.1 About Amgen Inc. 

Amgen Inc. is an American multinational biopharmaceutical company founded in 1980. 

Headquartered in Thousand Oaks, California, Amgen has a global footprint with presence in 

approximately 100 countries and regions, as of December 2019 Amgen’s market capitalization 

exceeds $142 billion [7]. Amgen has six focused therapeutic areas which include cardiovascular 

disease, oncology, bone health, neuroscience, nephrology and inflammation [8].  

Amgen also has a multinational manufacturing network, with plants within United States 

and its territories in Puerto Rico, Rhode Island, and California as well as international locations 

in Ireland, Netherlands and Singapore. In addition to these facilities, Amgen also utilizes contract 

manufacturing organizations for certain products [9].  

Beyond multinational manufacturing network, Amgen has a diverse portfolio of 

medicines. The company's major products include Neulasta® (pegfilgrastim), Neupogen® 
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(filgrastim), Enbrel® (etanercept), Xgeva/Prolia® (denosumab), Aranesp® (darbepoetin alfa), 

Epogen® (Epoetin alfa), and Sensipar/Mimpara® (cinacalcet) [10]. Besides large molecule 

medicine, Amgen also has small molecule products like Kyprolis® (carfilzomib) [11].  

1.1.2 Biopharmaceutical and Material Sciences 

The general concept of "biotech" or "biotechnology" includes a wide range of 

technologies for altering living organisms according to human purposes, cultivation of the plants, 

and modification of these through artificial selection and hybridization processes. 

Biopharmaceutical manufacturing is one of the advanced usages of biotechnology which 

manufactures pharmaceutical drugs in and extracted from biological sources.  

The product of biopharmaceutical manufacturing, a biologic, is defined as “a large 

molecule typically derived from living cells and used in the treatment, diagnosis, or prevention 

of disease. Biologic medicines include therapeutic proteins, DNA vaccines, monoclonal 

antibodies, and fusion proteins” [12]. In 1919, the term “biotechnology” first appeared as “the 

interaction between biology and human technology for conversion of raw materials into socially 

valuable products” [13]. In the early 1950s, the discovery of the structure of DNA laid the 

foundation of modern biopharmaceutical manufacturing as most biologic medicines are 

developed and produced by genetically engineered living cells to produce the desired protein 

[13]. This technology enabled the production of molecules with considerably larger size and 

significantly more complex structure than molecules produced by traditional chemical synthesis 

processes.  

Due to the size and complexity of large molecules, biologics are often sensitive to 

physical conditions (temperature, shear forces, chemical phase, and light) [14], and these 
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medicines are generally taken by injection, inhalation or infusion. Furthermore, manufacturing 

processes also need to be controlled carefully during the whole production cycle, and the raw 

materials utilized in each process are known to be have important impact on the processes.  

Raw materials used in biopharmaceutical manufacturing include a variety of materials 

utilized in all steps of manufacturing. Ranging from cell culture media components, chemicals 

and excipients to product contact materials like single-use bags and equipment, raw materials can 

be a significant source of variation, where the variability is either in the chemical or physical 

properties of the material or both (Figure 1-1). Because of the wide range of material types and 

complex sources of variation, a comprehensive understanding of raw material variability is 

important yet challenging. 

 

Figure 1-1 Typical Biopharmaceutical Process and Related Raw Materials 

1.2 Project Overview 

1.2.1 Project Motivation and Opportunity 

Amgen Inc. has thousands of raw materials within the system, and a substantial network 

of raw material suppliers. Often, the direct suppliers will have their own suppliers from which 

they purchase starting materials or finished goods. This vast network adds additional complexity 

and is a source of variation. Biotech companies have been paying special attention to understand 
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their processes, but raw material variation is not always well characterized. Therefore, to better 

understand the variability in raw materials and its impact on process performance, a systematical 

way of evaluating raw materials is necessary. 

While it is important to have a comprehensive understanding of all the raw material in the 

processes, due to the large number of raw materials used throughout the manufacturing 

operations, the time and resources required to evaluate everything manually would be unrealistic. 

Furthermore, the supply chain with various processes and origins of the raw material acquired 

also contributes to the complexity of raw material evaluations. Therefore, a novel way of 

assessing raw materials is needed, and a data driven approach is being considered to solve this 

problem.  

Artificial intelligence and machine learning have been hot topics for years with numerous 

applications in many industries. Although most of the concepts and techniques have been around 

for decades, it was not until the recent breakthrough of computational capability of computers 

and the explosive growth of the amount of data that enabled the wide use of this technology. By 

the nature of the business, biopharmaceuticals keep track of a lot of data during manufacturing 

processes, which serves as the foundation for the potential use of machine learning to gain 

insight of raw materials and their impact on process performance.  

During a previous study conducted by a former LGO student, Maria Emilia Lopez 

Marino [15], the concept has been proved that machine learning could be used to predict certain 

process performance metrics by utilizing the data collected. And a web-based app was developed 

to enable proactive prediction of raw material performance in a process, however, this version of 

models includes many features which would not be available before production starts and could 

be improved by generating models with only raw material data for prediction. To continue the 
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journey of evaluating the impact of raw materials on process performance, this project was 

conducted as a follow-up. 

1.2.2 Goals of the Project 

Amgen has a goal to “serve patients by transforming the promise of science and 

biotechnology into therapies that have the power to restore health or save lives” [16], therefore 

quality is essential in every aspect of the organization. A robust manufacturing process is the 

cornerstone of ensuring the quality of the medicines produced and raw materials are fundamental 

to manufacturing reliability. The goal of this project is to provide a data-oriented tool or 

framework to better evaluate raw material attributes and harness the power of data to bridge the 

gap between raw material attribute knowledge and process performance. 

This project is a continuation from the previous LGO thesis project and serves as part of 

the Amgen’s Data Science initiatives. Overall, the aim is to unleash the power of digitalization to 

advance manufacturing operation excellence which Amgen has long been focused on [17]. 

Furthermore, this project is forward looking in that it aims to leverage the data available and 

develop a method to proactively evaluate and monitor raw material variation. 

The previous LGO thesis project has proved that through advanced modeling techniques, 

process and raw material data have the potential to be used on building a predictive model on 

desired process performance and gain insight. To further develop the achievement of previous 

work, this project will be focusing on developing a framework as a complementary tool for the 

current raw material evaluation process.  
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1.2.3 Significance of Study 

Digital technology has already disrupted multiple industries and created tremendous 

changes in today’s business environment. Digital and data analytics are becoming a competitive 

advantage for more and more companies in traditional industries and have increasingly been a 

strategic topic for many leading biopharmaceutical companies [18]. With many already known 

opportunities from better understanding the impact of the quality attributes on the outcome of 

patients, to leveraging the data for better identifying the most productive cell clone, digital 

technology can further increase the productivity of the biopharma industry [15,19]. This project 

is an attempt to create a business scenario by developing a novel framework of gaining insight of 

raw material through digital technology and data analysis, thus enabling the ability to leverage 

data to gain enhanced insights about raw material variation and impact on process performance 

to proactively mitigating raw material related risks. On a higher level, this project also serves as 

part of Amgen’s digitalization strategy to maintain manufacturing excellence to serve patients. 

1.2.4 Thesis Outline 

This thesis is structured as follows: Chapter 1 presents a background and overview of the 

project, the company in the biopharma industry, focusing on both raw material science and 

digital technology. Chapter 2 presents the relevant literature which provides foundations of the 

project, and covers the previous work done to understand the raw material attributes variability 

and the machine learning techniques. Chapter 3 describes the methodologies utilized in this 

project and how the methodologies are used to develop predictive models. Model evaluating 

processes will also be illustrated by describing the metrics to evaluate the performance of the 

models. Chapter 4 explains the results of the models and how the models developed are being 

interpreted and provide insights to relevant processes. Chapter 5 concludes the thesis with 
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general findings and recommendations to Amgen. This is followed by potential business impact, 

future possibilities, and improvement opportunities.  



20 
 

2 Literature Review 

This chapter gives an overview of raw materials in the biopharmaceutical/pharmaceutical 

industry as well as the previous work done to manage raw materials. Finally, data analytics is 

discussed for biotechnology. 

2.1 Raw Materials 

A raw material in biotechnology is a general term defined as “starting materials, reagents, 

and solvents intended for use in the production of intermediates or APIs (Active Pharmaceutical 

Ingredients)” by ICH [20], and there are biologically derived raw materials, chemically derived 

raw materials [21]. Based on the broad definition, there is a variety of different raw materials 

used in the pharmaceutical industry and each has its own source of potential variability that 

could impact the manufacturing process.  

There are primarily three categories of variabilities in raw materials: (1) trace impurities, 

some of which may alter the quality of the therapeutics, (2) trace impurities that are themselves 

toxic to humans, (3) microorganism contaminants that lead to variabilities in bioburden of raw 

materials [22]. This project focuses on the first category of variabilities related to trace impurities 

that may alter the quality of biotherapeutics.  

The sources of variations are diverse in the field of raw materials. The naturally derived 

(biologically-derived) raw materials can contain a large number of compounds like acid or 

putrescine[23], which could be a significant source of variability. Chemically derived raw 

materials can also contain impurities originating from the synthesis or mining of the material or 

that may be generated during storage through various degradation pathways [24]. Different raw 
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materials might have different impurities, and lot-to-lot variability can result in various impact 

on process performance. 

Guideline have been established for quality control in the pharmaceutical industry, 

including raw material quality control requirements, which are outlined in the ICH Q7 Guideline 

[25]. It states that raw materials used in pharmaceuticals need to have the identity of each batch 

confirmed on receipt and a Certificate of Analysis (C of A) provided from the supplier. The C of 

A from the supplier is one important source of raw material data in this project.  A key challenge 

is the large number of raw materials used in biopharmaceutical manufacturing. And a multistep 

Quality by Design (QbD) based approach has been proposed and shown in Figure 2-1 [26,27]. 

This project aims at creating a data driven approach to gain insight of raw material critical 

attributes. 

 

Figure 2-1 Managing raw materials in the QbD paradigm 

2.2 Data Analytics in Pharmaceutical 

Data driven approaches have been explored extensively in the pharmaceutical industry, 

previous studies have been conducted to predict titers and product quality through machine 
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learning methods [28,29]. This project focuses on prediction process performance based on raw 

material attribute data combined with process data, with the aim to gain more material attributes 

insights though a data driven approach. 

In the following section, the methodology and underlying techniques used will be 

described in the application. In summary, the python package scikitlearn is the primary source of 

machine learning algorithms in this project [30]. 
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3 Research Methodology 

This chapter provides an overview of the methodology of this project. First, the following 

section will conceptualize the aim of understanding the impact of raw material attributes on 

process performances. Second, available data is collected, preprocessed and feature engineered 

for further model training. Third, trained models were evaluated and selected through 

performance metrics. Lastly, a framework is established to guide further raw material study 

through comparing model performance in different stages.  

3.1 Contextualization 

The research project began by understanding the problems and challenges. Data and 

resources availability, problem complexity, and previous initiatives were evaluated before data 

collecting, data mining, and model training. 

From a pragmatic point of view, this project should serve as an additional tool to help 

Amgen gain insights about raw materials. In addition, there is a desire to increase the efficiency 

of the material evaluation process with by providing analytical insight through the trained 

models and model evaluation process. Furthermore, the aim of this project is to develop a data 

analysis framework that could enable quick evaluation of the understanding of the impact of raw 

material attributes on desired process performance. 

Material science related studies in the field of biotechnology are usually conducted by 

laboratory-based scientists, which can be labor intensive and time consuming, but in this project, 

a data-driven approach is taken to evaluate material attributes. The growing amount and good 

quality of data would enable the ability to capture value through advanced data analytics 
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technology. Furthermore, more and more suppliers are brought onboard with the data network, 

which provide this project with the data foundation for analysis.  

To achieve the overall goal of gaining raw material attributes insight through advanced 

modelling techniques, three question were asked: (1) how much impact does raw material 

attribute variation have on process performance, (2) how much impact can be ascribed to the raw 

material attributes being monitored, and (3) what insights can be gained through advance 

modeling techniques? Through answering the three questions, this project could focus on 

developing an achievable framework to provide analytical insight of raw materials.  

3.1.1 Raw Material and Process Selection 

To answer the questions stated previously, three raw materials for four processes where 

selected to develop the data evaluation framework. There are several reasons for choosing the 

selected raw materials: (1) all of them were known to have attributes impactful to the process 

performance and / or product quality, and have been studied to gain better understanding which 

could be used to verify the findings generated though the data analytics method, (2) there are 

various levels of correlations between the selected raw materials with related processes, which 

could test the universality, (3) the different amount of data could verify the general applicability 

of the proposed framework. 

A proof of concept project has been done with materials and processes which were 

known to have a significant correlation with each other [15]. The results showed a strong linear 

relationship between selected material attributes with desired process performance, however, 

biotech processes are known to have complex and non-linear relationships. Therefore, in this 
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project, it is important to include materials which do not have clear linear correlations to develop 

the framework which could be applied more broadly.  

In a biotech process, it is typical to have processes separated into several unit operations. 

Intermediate drug substances are often collected prior to the steps of drug product production. To 

cover processes in different steps, raw materials used in both upstream and downstream 

operations were selected in this project.  

Although most of Amgen’s commercial drug products are large molecules, there are also 

small molecule drugs in Amgen’s portfolio. And small molecule related processes were also 

included in this project.  

3.1.2 Overview of Available Data 

Although the subject of focus in this project is raw material attributes, the operating 

control parameters also have significant impact on the process performance. To generate a model 

which could represent most of the variabilities in the process and result in the highest 

predictability, process data as well as the material data (Figure 3-1) were collected and combined 

together as a unified source of data.  

 

Figure 3-1 Outline of The Data Available [15] 
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The material data are provided either by suppliers or internal testing measurements, and 

only attributes of selected raw materials were incorporated into the dataset, however, there are 

much larger varieties of materials utilized in each process which could potentially contribute to 

process variation. This is an area for future improvement, more data collected in the future could 

potentially train models with better performance. Despite this fact, the way the framework of 

modeling and the evaluation of model metrics, based on out-of-sample performance, were set up 

still helps to gain insight for selected materials.  

The process data comes from operating control parameters which are closely controlled 

and monitored during the manufacturing operations. The biotech industry has been aware of the 

complex and nonlinear impact processes have on the overall performance of manufacturing 

operations [2]. Therefore, an intensive effort was spent on understanding the process and 

collecting data. Including the process data helps minimize the effect of the absence of other raw 

material data because a lot of the raw material variation will result in the variation of process 

data. The general monitored data in this phase include but not limited to pH, temperature, OD 

(Optical density), DO (dissolved oxygen), and agitation speed which are all parameters 

representing the condition of processes. 

3.1.3 Selected Raw Materials and Processes 

Different raw materials and processes are selected to test if the proposed framework 

would be generally applicable to different types of raw materials in different processes under the 

several guidelines which are going to be described below. (1) There is enough understanding 

with the correlation between the selected raw materials and utilized processes to verify the 

potential finds from the framework. (2) There are different levels of correlation between raw 

materials and processes so the results could be used to test the universality of the proposed 
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framework. (3) The amount of data also varies a lot to verify the general applicability of the 

framework. 

Under these guidelines, three raw materials used in three different processes are selected 

to be studied in this project. Table 3-1 shows the general information and usage in used 

processes. Note that although Raw Material 3 is used in both Process 3 and 4, its relationship 

with Process 3 is discussed in this project for simplicity. 

Table 3-1 Selected raw material and processes 

Raw Material Raw Material 1 Raw Material 2 Raw Material 3 

RM chemical form liquid powder liquid 

Product Process 1 Process 2 Processes 3 and 4 

Purpose 

Chemical used to 
form the desired drug 

substance 
intermediate 

Reductant in reaction Defoaming agent 

Known Impact Impurity/yield Step Recovery 
No process impact, 
Impactful to supply 

 Step Recovery: Amount of product captured 

Reductant: an element or compound that loses (or "donates") an electron to an electron recipient (oxidizing agent) in a redox 

chemical reaction. 

Defoaming agent: chemical additive that reduces and hinders the formation of foam in industrial process liquids 

3.2 Data Collection and Preprocessing 

3.2.1 Data Collection 

It is typical that getting the correct data is the most difficult and time-consuming work in 

a machine learning project. And both data querying from different parts of the EDL (Enterprise 

Data Lake) which is a centralized repository that allows Amgen to store all structured and 
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unstructured data at any scale) as well as data stored in Excel spreadsheets were gathered for this 

project.  

To query data from EDL, SQL (Structured Query Language used to communicate with a 

database) is used in combination with an opensource package in Python to streamline the data 

collection effort, getting ready for scaling up in the future. EDL system was originally designed 

to store and document, so additional data processing and clean-up are required to transform data 

into the format for modeling training. Also, due to the constant evolving manufacturing process 

and data recording standards as well as different operation monitoring parameters for different 

processes, significant work of data cleaning, data matching, reconfiguration and reconciliation 

from various sources was required after direct data querying. Because of these difficulties, it 

would require an understanding of both the data structure of EDL and the standard operating 

process (SOP) to be able to efficiently gather data for future analysis. For future scale-up, 

significant data restructuring should be considered for practicing machine learning techniques for 

the large number of processes and raw materials in Amgen’s network. 

Although the EDL is very comprehensive and convenient, it does not contain all the 

information required, especially raw material data from suppliers, which is normally stored and 

transferred through CofA (Certificate of Analysis) documents. Gathering supplier data requires 

knowledge with process owners and information outreach from people across the organization. 

Cumbersome as it seems, data in an Excel file are often more relevant and manageable. 

However, as the amount of data keeps increasing and more suppliers adopting digital data 

infrastructure and onboarding with Amgen’s data sharing partnership, the Excel file formatted 

data will be less utilized and would be replaced by the EDL system if future scale-up is desired.  
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3.2.2 Data Preprocessing 

After the data were collected, data pre-process was conducted for the preparation of the 

final data frame in the format needed for machine learning algorithms of python scikit-learn 

package [30]. Three steps are followed for preprocessing: (1) matching data from different 

sources into one single store of all relevant data for each topic, (2) generalizing continuous 

operating data into representative data measurement, (3) cleaning up outliers and data errors. 

Matching data from different sources 

Data collected from different sources and tables are normally in different format and 

structured differently. In addition, data from different sources are typically not in the same 

sequential order. To unify the data into one single source, aggregating the raw material data with 

different process data with the right order was needed. A lot genealogy exploration tool was 

provided by Amgen’s system to keep track of the lot numbers of manufacturing batches and 

relevant lot number of raw materials which were utilized in production. As shown in Figure 3-2, 

different data frames could be connected by tracing back on lot numbers.  

 

Figure 3-2 Data Matching Method by Lot Numbers 

While lot genealogy provides enough information to link the raw material data with the 

process data it also revealed a second level of complexity during the manufacturing process 

which would be challenging to deal with for relevant data matching. Because not all raw 

materials come in quantities as the exact multiples of the amount required in each manufacturing 

batch, and sometimes raw materials are being stored in the inventory and are mixed together with 

Raw material lot Manufacturing lot 
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different lots before use, multiple lots being recorded in the system could potentially be found. 

Often, one manufacturing process is separated into several unit operations, and like the raw 

materials, intermediate drug substances are also stored in the inventory and would potentially be 

mixed with other batches before going further downstream. The challenge here is how to 

aggregate the data from different lots and batches to represent the true property of either the raw 

material attributes used or the process control parameter.  

To address this issue, a documentation review was conducted to understand the different 

attributes being recorded for each of the raw materials selected to pilot in this project. And for 

most of the attributes, a weighted average is taken to calculate the representative value for the 

desired parameter because for attributes of raw materials, impurity percentage for example, the 

results value of the mixed material would equal to the total impurity amount divided by the total 

weight or volume of the material used. For other type parameters where taking the weighted 

average does not make sense, in the scenarios studied in this project, they were not being 

selected as features to be included in the final data to train the models through feature 

engineering which would be discussed further later in this chapter. 

Generalizing continuous data from different sources 

After successfully connecting data from various sources, it was to be possible to 

rationalize that all the parameters, especially continuous or sequential operating control 

parameters recorded under the same names, represent the same information. Because the process 

durations can vary from batch to batch, which is acceptable as long as they are within the range 

defined in the SOP, one batch might have more recorded features than another. Besides, some 

sequential information is recorded every set period, the difference in the start recording time will 

result in an offset of all sequential data. For these reasons, it is not sensible to simply use the data 
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being recorded. After consulting with a subject matter expert, it was decided to generate some 

representative values (e.g., maximum, minimum and average values) to be included in the 

datasets. 

Cleaning up outliers and data errors  

Treatment of outlier and errors is also important in data cleaning and pre-processing. 

Data found to be orders of magnitude bigger or smaller than the median of the distribution are 

clearly outliers or errors in the given context. Data outliers and errors are manually removed and 

left as blanks, depending on whether the features which include the outliers are selected by the 

feature engineering, decision will be made on whether the data for the whole batch will be 

deleted or not. If the feature of the outlier data is selected by feature engineering, then the data 

with the whole record of the batch will be eliminated. 

3.2.3 Data Imputation 

All datasets suffered from missing values (15% to 25% of the data missing). The three 

main reasons for missing data were found to be: (1) data was missed when logging into the 

database or simply missed by users randomly, (2) standard operating process was changed with 

modifications to operation control parameters being added or dropped, (3) not all attributes are 

tested for each incoming raw material lot (full testing is done per schedule in accordance with 

SOP). Data scientists when dealing with real world data need to face these types of issues 

regularly. Data imputation is one of the common solutions to solve this problem which replaces 

missing data with substituted values 

After evaluating the datasets, it was found that the shape of the dataset is quite “flat”, 

which means the ratio between number of features and number of records are large with 
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hundreds of features and similar number of records, and the location of missing values are quite 

sparse rather than concentrated. Dropping all the features (columns) or records (rows) with value 

missing is quite costly and would decrease the amount of data which is already limited. 

Therefore, conducting data imputation is both necessary and achievable.  

The approach taken was leveraging KNN algorithm in data imputation [31]. KNN itself is 

a machine learning algorithm which is useful for both regression and classification in a multi-

dimensional scenario. Before implementing KNN for imputation, data were normalized to avoid 

overly relying on data features in larger magnitude. This is because KNN algorithm relies on 

majority voting based on 'k' nearest neighbors on Euclidean distance for a given point, and 

features with larger magnitude would be weighted more than smaller magnitude features if data 

are not scaled which will introduce bias into the imputed dataset (Figure 3-3 Data without 

Normalization in KNNFigure 3-3 versus Figure 3-4). And for similar reasons, data are also 

normalized in the model fitting process. 

 

Figure 3-3 Data without Normalization in KNN [32] 
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Figure 3-4 Data with Normalization in KNN [32] 

A threshold is needed to decide when data imputation would be unreliable and feature 

elimination is necessary. Eliminating records (rows) was intentionally avoided because there is a 

large ratio of features number to record number, therefore eliminating records would be costlier 

than eliminating features. The threshold set is 30%, which means features with more than 30% 

missing values were deleted. This threshold is recommended in a previous LGO project of 

similar nature [19], and a more rigorous analysis and optimization is recommended in follow-up 

projects. 

In practice, Python KNN imputation package fancy impute [33] was used to perform the 

data imputation process, and a value of k = 3 was used in the KNN algorithm as recommended 

from the package tutorial, and further study should be conducted to find the most optimal k value 

in the future. 

3.3 Data Exploration 

After the data frame is constructed, the next step would be data exploration by plotting 

the history diagrams and scatter plots to understand the distribution and correlation between 



34 
 

different features and the overall nature of the data. And two primary observations are found. 

The first observation is that there is very little variation in most of the features, raw material 

attributes, process operating control parameters and performance metrics are all concentrated in a 

small range, and it is a challenge to evaluate model results.  

Figure 3-5 and Figure 3-6 show the example of bar plots representing the spreads of 

examples of process performance and raw material attributes. Both are heavily concentrated in 

the acceptable range. This limited variability is largely due to Amgen’s robust quality control 

strategy and highly controlled manufacturing processes and could also be a challenge for future 

projects with a similar nature. 

 

Figure 3-5 Spread of Process 2 Performance 
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Figure 3-6 Spread of Raw Material 2 Attribute 1 

The second observation is that there is no obvious correlation between the evaluated raw 

material attribute and performance metrics from Figure 3-7, but it is worth noticing that 

including this specific raw material attribute would increase the prediction power of the trained 

model significantly. Figure 3-7 shows the scatterplot of the same two features presented in the 

Figure 3-5 and Figure 3-6. This could mean that non-linear or more complex algorithms would 

be required for the best performance, however, such algorithms are normally more difficult to 

interpret and gain insight from. 
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Figure 3-7 Scatterplot of Raw Material 2 Attribute 1 to Process 2 Performance Metric 

3.4 Feature Engineering 

Feature engineering is the process of transforming raw data into features that better 

represent the underlying problem to the predictive models, resulting in improved model accuracy 

on unseen data, and only feature selection was conducted in this project for simplicity. For the 

modified data frame, after generalizing continuous data, there are 100 to 200 features just for 

process control parameters, and if more raw materials would be included in future projects, the 

number of features could potentially increase significantly. On the other hand, the number of 

data points or data records is limited. For data frame with high feature numbers and lower 

sample size scenario, machine learning will typically face interpretability and overfitting 

problems. In addition, when exploring the data, there is another observation which is not 

mentioned in Section 3.3, which is some process control parameters are highly correlated 

between each other and including all of them leave a lot of redundant features in the model. 

Thereupon, feature engineering is conducted to reduce the features.  
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Different algorithms were explored in determining the features to be included in the 

model. Feature importance from ensemble of trees and mutual information were selected. Three 

different tree algorithms Random Forest, Extra Trees and XGBoost as well as mutual 

information method (MI) are implemented through python packages [34–37]. Number of 

features to be selected is determined dynamically for the best performing model. The process of 

feature engineering is shown in Figure 3-8.  

 

Figure 3-8 Feature Engineer Process by Tree Algorithms 

Top n features are identified as the features with the highest feature importance in tree 

algorithms. Figure 3-9 shows the workflow of how to identify the value of n based on feature 

importance from random forest algorithms and trained model performances.  

Run tree algorithm or MI on all features 

Pick top n features  

Construct data frame with selected features 

Train models with selected algorithms  

Measure model performance 

Identify the best performing models 

C
hang value of n, and 

iterate until best 
perform

ing n is found 
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Figure 3-9 Example of feature Importance from Random Forest 

The iteration process of finding the best n (number of features) requires significant 

calculation power because of the larger number of features in the original data frame. Often, the 

enhancement of performance improvement is marginal. Therefore, a better method for feature 

selection could be further studied and developed for efficiency, especially when more raw 

materials are included in the models.  

3.5 Algorithmic Framework Design 

In supervised machine learning projects like this project, this project aims at training a 

model 𝒇 that would predict the process performance 𝒚 based on the selected features 𝒙 with the 

highest accuracy or minimum error 𝒆, which is represented in Equation 3-1 below. And ideally, 

the model should have the same accuracy when facing new data.   

 min 𝑒 = min
௙

𝐸ൣ𝑓መ(𝑥) − 𝑦൧ Equation 3-1 

As the name of this project indicates, gaining insight into raw material attributes is as 

important as generating an accurate model. In other words, it is also important to look for 



39 
 

interpretable models which could explain how raw materials are impactful to the processes and 

direct future studies directions. The modeling framework is outlined in Figure 3-10 and detailed 

below.  

 

Figure 3-10 Model Generating Framework Flowchart 

Data collection, preprocessing and feature selection are detailed in Section 0 and Section 

3.3. After the data frame for model training is set up, various algorithms are explored in the 

model training process. But before starting to fit models with existing data, the first step is 

identifying what is the performance metric that needs to be predicted. This process is a 

combination of experience selection and correlation selection. Initially, subject matter experts of 

specified processes were interviewed for the initial selection of potential targets (production titer, 

product quality, etc.) based upon past experiences and studies. Then data would be explored 

deeper to identify the target feature which correlated the most with raw material attributes. 

Data Preprocessing 

Identify Target 

Select Best Model 

Feature Selection 

Model Training 

Data Collection 

Prediction/Interpretation 
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Correlation plots were used to visually identify the correlations. An example of a correlation plot 

is shown in Figure 3-1, and Target feature 9 is found most correlated with the raw material 

attributes, thus it is selected to be the first target. In spite of that, other targets like Targets 11 

were also explored because it has the second-highest correlation. What is interesting, but not 

surprising, to find is a lot of the potential targets are highly correlated with each other.  

 

Figure 3-11 Example of correlation plot of raw material attributes with potential targets 

There are over a hundred machine learning algorithms and the number keeps growing. It 

is impossible to include all of them in the library. In this project several most commonly used 



41 
 

categories of algorithms were selected to be used in model training. They are Linear Regression, 

CART (Classification and Regression Trees), and ensemble of trees. In Linear Regression, Lasso 

[38], Ridge [39], Elastic Net [40], Linear Support Vector [41] and Stochastic Gradient Descent 

[42] are included. And for ensemble of trees, feature selection engines selected in this project 

(Random Forest, Extra Trees and XGBoost) are all implemented. Besides, Gaussian Process 

Regressor [43] is also included in used machine learning library. Selected data are then fitted into 

models through various algorithms.  

For each algorithm included in the library, the model is fitted and evaluated. But one 

challenge with evaluating performance with complex algorithms like Random Forest is 

overfitting. In statistics, overfitting is "the production of an analysis that corresponds too closely 

or exactly to a particular set of data, and may therefore fail to fit additional data or predict future 

observations reliably" [44]. To avoid overfitting, K-fold cross-validation is a dominant process in 

the field of machine learning. In this project, k = 10 was picked to perform k-fold validation, 

which means the total data set will be divided into 10 subsets and pick one different subset as 

validation set with the rest being training set for 10 times, train model with training set only and 

use validation set to measure the performance of models. The average of performance metrics for 

all 10 times will be used to evaluate the model performance with the set of hyper-parameters for 

specific algorithms, and this process is also used for hyper-parameter optimization. Example of 

k-fold validation data split is presented in Figure 3-12. In addition to the average of performance 

metrics, the variation of performance metrics from k-fold validation is also used to test the 

consistency of expected model performance.  
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Figure 3-12 Example of k-fold validation with k = 5 [45] 

3.6 Model Performance Metrics 

There are numerous metrics to evaluate model performance in machine learning. 

Depending on the type of machine learning algorithms, different metrics are normally 

implemented (RMSE for regression and AUC or ROC for classification). Since in this project all 

models are regression models, the main performance measurements were R2, adjusted R2, RMSE 

and MAE. The determination of each metric is shown in Table 3-2. 

Table 3-2 Model Measurement Metrics Definition 

Metrics Definition 

R2 
Mathematically, R-squared is calculated by dividing sum of squares of residuals 
(SSres) by total sum of squares (SStot) and then subtract it from 1. 

Adjusted R2 
The adjusted R-squared is a modified version of R-squared that has been 
adjusted for the number of predictors in the model 

RMSE 
RMSE is the standard deviation of the residuals (prediction errors). Residuals 
are a measure of how far from the regression line data points are; 

MAE 
The mean absolute error is an average of the absolute errors |𝑒௜| = |𝑦௜ − 𝑥௜|, 
where 𝑦௜ is the prediction and 𝑥௜ the true value. 
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Ultimately R2 was chosen as the primary metric for performance evaluation. The reason 

of picking R2 over RMSE is the object of the framework developed in this project is to gain 

insight of raw material rather than predicting value, and R2 is one of the metrics which measures 

the variation of dependent variable explained by all independent variables included in the model. 

Besides, as shown in Equation 3-2 and Equation 3-3, for the same model and dataset, both 

RMSE and R2 are calculated by measuring the summation of squared errors.  

 
𝑅ଶ = 1 −

∑ (𝑦௜ − 𝑦ො௜)
ଶ

௜

∑ (𝑦௜ − 𝑦ത௜)
ଶ

௜
 

Equation 3-2 

 
𝑅𝑀𝑆𝐸 =  ඨ

1

𝑛
෍ (𝑦௜ − 𝑦ො௜)ଶ

௜
 

Equation 3-3 

Where 𝑦௜ is the observed value in the dataset, 𝑦ො௜ is the predicted value from the model, 𝑦ത௜ is the 

mean of all observed values. 

R2 is utilized over MAE to penalized large errors between predictions and actual values. 

Adjusted R2 is not primarily implemented because (1) R2 is more commonly used in Amgen 

network, (2) feature selection process in this project generally returns ratio of 1/15 between 

number of features selected and sample size, therefore the difference between R2 and adjusted R2 

is negligible. 

 
𝑅௔ௗ௝

ଶ = 1 − ቈ
(1 − 𝑅ଶ)(𝑛 − 1)

𝑛 − 𝑘 − 1
቉ 

Equation 3-4 

K is the number of independent regressors, i.e. the number of variables in your model, excluding the constant.
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4 Results 

In this chapter, model performance and findings will be discussed both qualitatively and 

quantitively. First, the model performance metrics in all studied scenarios would be presented 

accompanied by insights into the impact of raw material attributes on process performance 

interpreted from the models. Next, a modeling framework designed to evaluate the impact of 

raw material on process performance through data analytics is proposed and discussed though 

three case studies.  

4.1 Model Performance 

As illustrated in Chapter 3, established methodology and machine learning processes 

were followed for the best performing models to predict the desired process performance 

metrics. In addition to prediction for the process performance, insights about if and how raw 

material attributes will be impactful on the process performance could also be interpreted from 

the models. However, different types of algorithms will provide different insights. Most 

apparently, linear regression will provide the coefficients of different independent variables 

which shows the positive or negative and significance level of correlation between dependent 

variable and independent variable. Decision tree regressors (CART) [46] is recognized as one of 

the most interpretable models which would generate most visible insight by plotting each 

branch and leaf. Last, decision tree ensemble regressions (Random Forest [34], e.g.) are the 

hardest to interpret, however, feature importance plots are the most obvious indicator of what 

features are found important to be included in the model . 

In total three raw materials in three different processes are selected as case studies in this 

project. As mentioned in Chapter 3, raw material attribute data and process data are combined 

as input, and target are either process titer or product impurity. 
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4.1.1 Predictive Power Analysis of Models 

As mentioned in Section 3.5, models will be validated through k-fold cross validation, 

training set will be split into k subsets (10 in this case). This will keep track of model 

performance for k times, and by summarizing the distribution of all the values, the average 

performance of fitted model along with the standard deviation could be calculated which 

represents the stableness of the prediction power. R2 and related standard deviations obtained 

from cross validations are shown in Table 4-1.  

Table 4-1 Performance R2 and standard deviation for all the models trained.  

Process Regressor Type R2 
Standard Deviation 

of R2 
Process 1 Regression Tree 0.19 0.14 
Process 1 Gaussian Process Regressor 0.32 0.17 
Process 1 Linear Regressor 0.12 0.11 
Process 1 Ensemble of Trees 0.27 0.18 
Process 2 Regression Tree 0.12 0.49 
Process 2 Gaussian Process Regressor 0.42 0.2 
Process 2 Linear Regressor 0.20 0.36 
Process 2 Ensemble of Trees 0.21 0.21 
Process 3 Regression Tree 0.86 0.07 
Process 3 Gaussian Process Regressor 0.72 0.15 
Process 3 Linear Regressor 0.76 0.10 
Process 3 Ensemble of Trees -0.60 1.45 

 

It is observed that the standard deviation is relatively large comparing with the average 

model performance which means that the predictive power with the same set of hyper-

parameters varieties a lot based on different training set and validation sets. This indicates the 

accuracy of models is not consistent, therefore, with different validation sets, the result varied 

significantly. This is a typical challenge with small datasets where the validation set sample size 

is small and does not represent the whole population.  
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For process 1 and 2, Gaussian process regressor yields the best accuracy of all 

algorithms, and regression tree and linear regressor algorithms only about 20% in R2. This is 

expected as there is no known key indicator to the process performance, and the correlation 

between raw material attributes to the process performance is non-linear which means there is 

no simple positive or negative correlation between each other, hence linear regressors are not 

yielding the best results. In process 3, the best performing model is regression tree, while 

Gaussian process regression and linear regression yield similar results. This is expected as 

previous study of the specified raw material has a significant and linear correlation with the 

tracked process performance.  

On the other hand, it is surprising to see that ensemble models did not have much better 

accuracy than simple regressor models. Especially for process 3, the R2 is negative, meaning the 

fitted model is worse than simply guessing the mean of the sample. This is a typical example of 

the problem called overfitting, and in this case, it is largely due to the small sample size (less 

than 30), and ensemble models require large dataset to yield better results. Perhaps in the small 

datasets, most value lies in the feature importance values associated with the trees.  

Feature importance, as the name indicates, measures how important each feature 

(independent variable or input) is to be included in the models and how likely the feature would 

help explain the variation in the dependent variable or target. And feature importance would 

also help identify the most relevant features in the model.   

4.1.2 Feature Importance Evaluation 

Due to the non-linear relationship between the raw material attributes or process 

operating parameters, it is not ideal to generate a linear relationship between independent 
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parameters with dependent parameters from the linear regressors included in the machine 

learning model library. Decision trees regressors could provide meaningful insight in this case, 

but without a good model accuracy, it is debatable how reliable the separation conditions are. 

Thereupon, it is worthwhile checking the feature importance from different ensemble models to 

get a general guidance on how important each feature is to be included in the model to enhance 

the accuracy of fitted models. Figure 4-1, Figure 4-2, and Figure 4-3 show the feature 

importance from process 1-3 from Random Forest Algorithm.  

 

Figure 4-1 Feature Importance for Process 1 from Random Forest 

In process 1, the feature importance chart shows that raw material attribute 1 is the most 

significance feature to be included in the model, which corresponds with existing understanding 

of the process that the specified raw material is essential to the process performance, however, it 

is not a simple linear relationship between the known attributes with the desired performance 

metrics. 
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Figure 4-2 Feature Importance for Process 2 from Random Forest 

Figure 4-2 shows the feature importance for top important features in the model 

constructed for process 2. Unfortunately, there are no raw material related attributes found too 

important to increase the explanatory power of the models, so the feature importance indicates 

that the selected raw material does not have significant impact on final process performance. 

Although disappointing, it corresponds with existing understanding with the process that this 

raw material does not have noticeable impact on the process performance. Yet, there is a 

specified range in the specification of this raw material which was found hard to meet for the 

supplier, and the feature importance chart, as well as other pieces of information gathered can 

be supporting evidence to provide a strong scientific justification for  removing this attribute 

from the raw material specification without impacting process performance and product quality. 
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Figure 4-3 Feature Importance for Process 3 from Random Forest 

Figure 4-3 shows the feature importance for top important features in the model 

constructed for process 3. More important than Figure 4-1, in process 3 half of the features 

found important are raw material related attributes which strengthened the existing knowledge 

about the raw material being one of the decisive factors to determine the outcome of the 

process. Referring the results shown in Table 4-1, it shows that linear regression yields a 

reasonable R2 which could show the correlation between raw material attributes with the 

process performance. 

In summary, the feature importance from ensemble models could be valuable in 

determining if raw materials attributes are important for process performance variability 

explanation. And together with linear regressors, it can be identified that the overall positive or 

negative correlation between independent variables and dependent variables. 
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4.2 Model Framework of Evaluating Raw Material Attributes 

As discussed in Section 4.1, feature importance and linear regressors could reveal the 

correlation between raw material attributes and process performance. But this could not 

systematically help answer if the right attributes of specified raw materials are being tracked. 

For example, from the results shown above, there are no raw material attributes found to be 

important to the process performance, however, it could not be simply concluded that the 

selected raw material does not have noticeable impact on the process. Thereupon, a framework 

of modeling is introduced to evaluate whether the right attributes for raw materials are captured 

or not. The framework includes a three-step modelling process shown in Figure 4-4.  

 

Figure 4-4 Three-step Modeling Framework 

First, train a model with only process data fitting for the target variable to set a base line 

for how much of the variabilities are explainable from process operating control parameters. 

Second, with the assumption that lot number contains most of the variability in raw materials, 

models are trained with no specified attributes data but lot number data. Third, attributes data 

along with process data are utilized to train the models. After best performing models are 

selected for all three steps, by comparing the model performance metrics (R2 in this project), it 

can be evaluated if a raw material is important in the selected process and if the specified 
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attributes could represent all the variabilities in evaluating the impact of the raw material on the 

process performance. Example of results are shown in Figure 4-5 to Figure 4-7. 

 

Figure 4-5 R2 Comparison of Three-step Modelling Framework for Process 1 
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Figure 4-6 R2 Comparison of Three-step Modelling Framework for Process 2 

 

Figure 4-7 R2 Comparison of Three-step Modelling Framework for Process 3 
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Figure 4-5 shows an 18% of R2 increase from model 1 to model 2 and a 3% decrease 

from model 2 to model 3. Although the 3% is a small drop but it is about 17% of the total R2 

increase from model 1 to model 2, and it will need further investigation to verify if there are 

sources of variability missing from in the specified attributes, for example, if there are any 

unknown impurities which could affect the process. Differently, in Figure 4-6, it shows no 

change from model 1 to 3 in terms of R2. This is because no raw material attributes nor lot 

numbers are found to be important in the feature importance calculation, thus none of them are 

included in the final model and adding those features in the final data frame for model fitting 

would only increase noise without increasing the model accuracy. Ideally, like what is shown in 

Figure 4-7, from model 1 to model 2, R2 increases by more than 65%, and there is a minimal 

decrease of R2 from model 2 to model 3. This strength of the findings about feature importance 

from the selected raw material in process 3 is one of the decisive factors to determine the 

process performance.
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5 Conclusion and Future Recommendations 

The developed modeling framework is the initial prototype of evaluating raw material 

understanding utilizing advanced data modeling technologies. The chapter summarized the 

primary findings, associated implications, and business applications. Furthermore, future 

recommendations and next steps are also discussed in this chapter. 

5.1 Findings and Business Applications 

This project evaluated the advanced modeling techniques in predicting the process 

performance metrics (titer, product quality, e.g.) and gaining insight focusing on understanding 

raw material attributes associated impact on processes through 3 chosen processes and 3 related 

raw materials. Both raw material data as well as process operating control parameters were 

included as independent variables in the various algorithms for the best performing model. 

Various accuracies were achieved for accuracy measurement (R2) of 3 different processes varies 

from 0.32 on the low end to 0.86 on the high end. However, the different accuracy 

measurements of models corresponded with existing understanding with the selected processes 

and raw materials where there are various levels of correlations between them. This also proves 

that the data driven approach could not only help identifying correlations where they do exist, 

but also be helpful in ruling out factors which is not significant source of variabilities. 

In addition to the primary models in utilizing material attributes and process data to train 

predictive models, other approaches were also explored to gain more insights from this data 

driven mythology. Feature importance was found informative in determining whether specific 

features are important to be included and significant in increasing the explaining power of 

developed models. The three-step modeling framework also enables the ability to evaluate 
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whether specified material attributes could represent all the variabilities in the selected raw 

materials. 

The results proved that the models fitted, and modeling framework allow us to identify 

the level of impact certain raw materials attributes have on associated process performance. 

Therefore, with more data available, the impact raw materials have on processes could be 

evaluated in a much more efficient manner with advanced modeling techniques, and a specific 

strategy could be designed with the suppliers to control the important attributes. In addition, the 

modeling framework and feature importance analysis could help identify if the right attributes 

are being tracked and controlled to further help find the direct next study area. Furthermore, this 

framework is not only useful in identifying the important attributes but also helpful in 

eliminating irrelevant attributes which could serve as supporting evidence when filing for a 

change in a raw material specification. 

5.2 Recommendation and Next Steps 

This project was successful in developing the modeling framework and identified level 

of correlations between the selected raw materials with processes. However, there are several 

aspects in the project that can be improved and even challenged. Incorporating some of the 

suggested next steps in this section could potentially increase the accuracy of trained models 

and enable some of the next steps to discuss in this section.  

Like most of the machine learning projects, it would require as much data as possible, 

especially for some of the data consuming algorithms like Random Forest. And it would be 

important to get more data to be included in the model, so getting more suppliers on board with 

data sharing would expedite the improvement of future projects of a similar nature.  
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This project intentionally selected one raw material per process to isolate the effect from 

different raw material and minimum noises. In process 3 the model trained captured most of the 

variabilities, while in process 1 and 2 no predictive model with enough accuracy was achieved. 

More raw material attribute data could be included in the model for exploration as the potential 

explanation of variabilities in the process. Besides, including more raw materials, generating 

interaction features in the model might also be helpful in increasing the prediction accuracy. 

In terms of the data collection and preprocessing steps, although the EDL system is very 

convenient and comprehensive, it was originally designed to be a data storage infrastructure, 

and the way it stored the data does not match the data structure required for machine learning. 

Significant effort is required to understand the structure of different data tables as well as the 

naming strategy for different processes to convert the data into the desired format. Therefore, 

standardizing EDL structure and developing another platform for machine learning might be 

essential for future scale-up of this project. 

Finally, this model is a data driven approach to evaluate raw materials, and the processes 

and raw materials have been evaluated before to be able to validate the findings. It would also 

be important to conduct a case study on a less understandable material for insight and work with 

a subject matter expert to verify that finding. If specified attributes variability is found not being 

able to represent all the variabilities generated from the specific raw material, subject experts 

could also be involved to perform controlled experiments to test the root causes of this 

discrepancy.  
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