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Abstract 
Project-based manufacturing presents unique challenges that highly automated and repetitive 

production lines do not face. Highly automated production lines do not have much variation in 

the types of products that are made, and these products are usually manufactured at high volume. 

This makes it relatively easy for the business to know its marginal cost of production and to 

assist with pricing strategies.  

Project-based manufacturers, on the other hand, tend to specialize in manufacturing products that 

are highly customized. These environments have much more variability and products are usually 

produced in low volume. Predicting the cost of production in this scenario is difficult and usually 

requires a dedicated team that focuses on cost estimating and proposal development for 

competitive bids. Cost estimating and proposal development is a time-consuming and costly 

overhead activity and inaccurate proposals can have significant impact to business performance. 

This project focuses on how data analytics can be used to streamline the estimating process for 

project-based manufacturers resulting in reduced proposal cycle time and improved accuracy and 

precision metrics.  

This pilot project focuses on one product type with a privately owned project-based 

manufacturer. Although the scope of this project focuses on one product type, each project is 

unique as it relates to dimensions, surface contour shapes, technical specifications, and other 

unique features. The methodology for this project analyzes historical technical data and labor 

durations and implements a lasso regression model to predict the number of labor hours required 

for a future project with a given set of technical inputs. 

While this project focuses on producing a fit-for-purpose solution for estimating one product 

type for one company, the process and methodology can be applied more holistically. The 

findings from this research can be applied to accomplish the same objectives for products across 

an array of project-based manufacturing industry verticals. 
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Introduction 
A fundamental part of running a manufacturing business is quantifying and 

understanding total costs and marginal costs of production. Depending on the manufacturing 

environment, this can be relatively simple or quite difficult. Nevertheless, every reasonable 

attempt should be made to accurately quantify and categorize production costs to streamline 

production planning, predict costs for future production, and stay profitable in a competitive 

industry. It is important to understand why different manufacturing environments make 

quantifying and predicting costs more difficult than others and how companies can overcome 

these challenges. 

1.1 Problem Statement and Business Case 

The focus of this study was a medium-size project-based manufacturer (hereinafter 

referred to as the “Company”) in a complex manufacturing industry. As a project-based 

manufacturer, the Company experiences many challenges associated with its manufacturing 

environment. Every day, the Company receives a handful of requests for quotation for various 

types of products and solutions. Jobs can be very simple and require only a few production areas 

or they can be highly complex and require support from every production area with intricate 

levels of testing and quality assurance. There are three key challenges that the Company faces 

that may improve commercial operations. 

The first challenge for the Company is to reduce the cycle time for proposal development 

in competitive bids. Typically, the commercial team will only forego a bid if they are technically 

incapable of providing the solution requested. However, this is rare since their customers 

typically know the full capabilities of the Company. Therefore, the daily variation in quote 

volume and complexity affects the team’s ability to review larger proposals with management. 
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This time constraint has the potential to lead to overbidding or underbidding if the review 

process must be rushed to meet proposal submission deadlines. 

The second challenge for the Company is to ensure its estimates are consistently accurate. 

The Company can easily submit proposals by the deadline set by its customers, but if the cost 

estimates in the proposals are inaccurate, this will significantly hurt business performance. 

Underestimating proposals hurt profit margins and overestimating proposals can lead to work 

lost to competitors. Additionally, the Company plans its operations and resource requirements 

based on the estimates from successful proposals. Ensuring accuracy and confidence in proposals 

is vital to maintaining and improving success and profit margin. 

Finally, the Company needs to incorporate a data feedback loop into its estimating 

processes. While the Company has a database of historical proposals and an enterprise resource 

planning (ERP) system with actual duration and cost data from completed projects, this data is 

only referenced on an as-needed basis for either exact replicas or very similar projects. As it 

currently stands, there is no systemized method for feeding data back into the estimating process. 

Figure 1 displays the current and proposed state for the Company’s estimating process. 
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Figure 1. Current and proposed state for data feedback in estimating process 

The objective of this project is to address these three challenges by developing a semi-

automated estimating model by leveraging data from historical projects. Data was collected from 

previously completed projects and modeled using regression techniques to predict the time 

required for future projects. A feedback process was also proposed so that data from ongoing 

operations would be incorporated into the model and older projects would eventually be removed 

over time. The final model and estimating process would result in an accelerated proposal 

development process and improved estimating accuracy. 
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Background 

1.2 Types of Manufacturing Environments 

Most manufacturing environments can be broadly placed in three different categories. 

The first environment can be described as repetitive where a production line produces the same 

item, or very closely related items, over an extended time period. These items typically have 

production setups that are rarely modified. The marginal cost of producing each item is generally 

well-known because there is typically a continuous flow of lots of units through the 

manufacturing environment for reliable data collection. These environments are also able to 

utilize more automated machinery given the repetitive nature of the process.  

At the other end of the spectrum, a second type of environment is project-based 

manufacturing, also referred to as a “job shop.” This environment is highly variable as compared 

to a repetitive production environment. Rather than having production lines, a project-based 

manufacturing facility typically has production areas. These production areas focus on specific 

tasks or skillsets, such as welding, machining, surface finishing, or quality assurance, but each 

product coming through these production areas will have unique features or manufacturing 

requirements. This requires the workforce to plan the requirements for each product as a separate 

project leading to large amounts of variability in time and cost required to manufacture each 

product. This work environment tends to be highly labor intensive and cannot use as much 

automated machinery as repetitive manufacturing environments.  

The third manufacturing environment can be described as a hybrid between a highly 

repetitive production line and a job shop. This manufacturing environment has various discrete 

setups that allow for equipment to be reconfigured to make a suite of different SKUs that have 

similar characteristics. The more similarities SKUs have, the more it resembles a repetitive 

manufacturing environment; conversely, the more dissimilar SKUs are, the more it resembles 
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project-based manufacturing. Table 1 summarizes these three manufacturing environments with 

an example of a production sequence that may be observed in each. [1] 

 

Table 1. Types of Manufacturing Environments [1] 

Environment Type Production Sequence 

Repetitive A A A A A A A A A A A A 

Hybrid A B A B A C A A B B D A 

Project-Based (Job Shop) A B C D E F G A H A I J K 

 

Project-based manufacturing brings a unique set of challenges for the business. On the 

shop floor, there must be a team constantly analyzing work in progress, capacity constraints, and 

personnel requirements to ensure maximum plant utilization and to allow for adjustments before 

a production area is over capacity. On the commercial side, these jobs are typically bid 

competitively where the lowest quote, technically competent bidder wins the jobs. Often, if the 

true market price for a product is not known, manufacturers will submit proposals for these 

projects by estimating their own cost of production (based on the design and specifications 

provided by the customer) and add a profit margin to the estimate (also known as cost-plus 

pricing). These types of projects make estimating production costs extremely important to the 

business in order to 1) avoid underbidding more expensive jobs and risk losing money, and 2) 

avoid overbidding and not being awarded the contract at all. This is a challenge the Company 

faces on a daily basis. 

1.3 Overview of the Private Equity Portfolio Company 

The private equity firm involved in sponsoring this project is an operationally-oriented 

middle market private equity firm focused on buying and improving industrial businesses. The 

Company is held within the firm’s portfolio and they provide manufactured solutions for many 
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customers in a particular industry vertical. It employs around 1,000 employees across four states 

in the United States and several international locations with a global customer base. The 

Company, as it now exists, is the result of a series of mergers and acquisitions of various legacy 

companies over the course of the private equity firm’s ownership. Each legacy company prior to 

acquisition had a particular industry niche, so these acquisitions allowed the new company to 

become a fully integrated solutions provider to their customers. They are also continuing to make 

investments into new capabilities to broaden their value proposition. 

This project focuses on estimating the time requirements for manufacturing one particular 

product type within the Company’s portfolio. These products are primarily manufactured at one 

of two locations: these locations will be referred to as Manufacturing Site 1 (MS-1) and 

Manufacturing Site 2 (MS-2). MS-1 manufactures a higher quantity of these products; however, 

MS-2 typically manufactures the projects that are physically larger in size given the larger 

footprint and larger machinery at MS-2. Although manufacturing for these products take place at 

both sites, the estimating team for this product is located solely at MS-1. 
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Data Collection 
The strategy for this model was to leverage as much historical data as possible from 

recently completed projects as the basis for the model. Data was collected from projects that 

were completed from 2017 through 2019. A total of 77 projects across both manufacturing sites 

were analyzed for use in the estimating model. 

1.4 Cost and Labor Data 

Cost and labor duration data from completed projects were collected from two sources 

within the Company’s internal network: SAP and Visual. These are both enterprise resource 

planning (ERP) systems that are designed to integrate various business processes into a 

centralized system and provide information across departments in real time. Their objectives are 

to increase productivity, better manage inventory, promote quality in manufacturing, reduce 

material cost, and manage human resources, among various other uses. [2] [3] 

One important feature of these systems, as it relates to the purpose of this research, is that 

manufacturing execution for each project can be tracked at a high level of detail. As projects 

progress through the facility each day, every worker records which project they worked on, what 

type of work they completed, and how long they spent on each task. For example, at the end of a 

welder’s shift, s/he may document that they spent 5 hours welding for Project A and 5 hours 

welding for Project B. This data is continuously logged in SAP or Visual and stored for as long 

as the Company deems appropriate per internal retention requirements. This feature provides the 

user with the capability of running queries to see how many hours were spent in each production 

area for any given project.  

A third system that the Company uses to track projects is QlikView. QlikView is another 

third-party data integration, data analytics, and data visualization platform to support business 

operations. [4] The Company uses QlikView to integrate with both SAP and Visual to extract 
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and analyze data. The following sections will provide more detail on the internal uses of these 

data systems and the structure of the data that was available. 

1.4.1 SAP 

SAP has been the ERP used at MS-1 for many years and covers the full breadth of 

projects collected from this site. MS-2 began using SAP only in January 2019. One of the reports 

in SAP is set up to track shop floor labor durations and costs for specific tasks for each worker. 

Table 2 provides an overview of the structure for this report where each category is one of the 

column headers in SAP. When a worker logs in to the system, they log their hours for each task 

by project ID (identical to the WBS Element in SAP) with a free form text description of the task 

completed. All other columns are automatically populated by SAP depending on who is logging 

the information and the project that is being worked on. To run this report, the SAP user only 

needs the project ID. 
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Table 2. Structure of SAP report data 

Category Description 

Posting Date Date entered into SAP 

Period Month of entry 

Time of Entry Time on the date of entry 

Employee Name Employee Name 

Personnel Number Personnel Number 

WBS Element* Project ID 

Partner-CCtr Cost Center 

Order SAP specific number 

ParActivity Activity Group 

Object SAP specific number 

CO object name* Freeform text of the task(s) completed 

Total Quantity* Time spent on this task 

Unit of Measure* in hours 

Cost Element SAP number associated with ParActivity 

Cost element descr.* Description of cost element 

Ref Document Number SAP specific number 

Val/COArea Crcy Cost in US dollars 

CO area currency In US dollar 

Value TranCurr Cost in transaction currency 

Transaction Currency In transaction currency 

Purchasing Document SAP specific number 

 

Of the 21 columns in this SAP report, only five of the columns are useful for this 

analysis. These five columns are denoted by the asterisk in the category column of Table 2. As 

mentioned, the ‘WBS Element’ is identical to the project ID and is the only entry used to run the 

SAP query. ‘CO object name’ is the free form text description of the task(s) completed and 

‘Total Quantity’ is the number of hours spent working on this task. This SAP report also includes 

costs for materials from inventory, allocated overhead costs, and other costs not associated with 

direct manufacturing labor, so the ‘Unit of Measure’ is filtered to only include ‘HR’ indicating 

that the line item is manufacturing labor hours. Finally, ‘Cost element descr.’ is a preset 

description of the department that the worker belongs to.  
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1.4.2 Visual 

Visual was a second ERP that had been used by MS-2 for most of their recent past. 

Visual was a legacy system at this facility that they continued to use even after the parent 

company made the acquisition. In January 2019, however, the Company fully transitioned MS-2 

to the SAP ERP to have the entire company operating on the same system. Nevertheless, Visual 

contained the data for projects built at MS-2 prior to 2019, many of which are projects that are 

larger in scope and necessary for understanding how economies of scale may factor into the 

analysis and final model. At the time of this data collection Visual was no longer in use and new 

users were not set up for use in the system. Therefore, to access any data from Visual, QlikView 

was the source for gathering this information. 

1.4.3 QlikView 

QlikView is a third-party business intelligence platform that provides data analysis and 

visualization support to help users better understand business operations and financials. Of the 

many features of this platform, among the most important for this project is that it consolidates 

data from SAP and Visual into a single location and data structure on the Internet browser. 

QlikView was used as the data source for collecting projects that were started at MS-2 prior to 

January 2019 since these projects were stewarded using Visual and not SAP. Table 3 provides an 

overview of the data structure in QlikView.  
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Table 3. Structure of QlikView data 

Category 

Customer 

Job #* 

Leg 

Op 

Status 

Op Type 

Determinant Path 

Progress 

Leg Desc 

Start 

Finish 

Days 

Could Start 

Delay 

Description* 

Planned Hrs 

Actual Hrs* 

Rem Hours 

Reqs Fulfilled 

Resource ID* 

Department* 

Promise Date 

Sched Health 

 

Once again, only those categories denoted by an asterisk were identified as useful for this 

analysis. The column headers in QlikView are much more self-explanatory as compared to SAP. 

Similar to ‘CO object name’ in SAP, ‘Description’ in QlikView is a free form text of the 

description of work performed for that line item. Additionally, ‘Resource ID’ was a more 

specific job title or job description of a worker within a more general ‘Department’ 

1.5 Technical Data 

In addition to the cost and labor data collected from the ERP and business intelligence 

systems, technical data was also collected for each project. The technical design for projects 
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dictates the scopes of work; these various metrics and characteristics would be used as 

explanatory variables for the estimating model. 

1.5.1 3D Models 

All projects have an accompanying 3D model with the exact dimensions and features of 

the final products. These models were used for two specific objectives. The first objective was 

for taking physical measurements. Not only were length, width, and height among the 

measurements, but certain thicknesses, depths, and curvatures were also measured for various 

calculations. The second objective was to count quantities of key features. Since these were all 

historical projects, walking to the shop floor to see the work in process was not an option to 

capture these quantities. Additionally, the PDF drawings that came with the 3D models were not 

always easy to look at when trying to capture the physical measurements and quantities of key 

physical features. The 3D models also provided a sense of the complexities and major unique 

features that needed to be considered for quantifying manufacturing durations for the various 

production areas. 

1.5.2 Other Technical Documents 

In addition to the 3D models, the estimating team is provided various technical 

documents either from the customer or from the Company’s internal engineering team with 

information that is not captured in the 3D models. Some of the technical information includes 

surface finish specifications, contour tolerances, and quantities for items that were not explicitly 

presented in the 3D models. The information captured from the 3D models and from the other 

technical documents is all that was needed to collect the potential explanatory variables. 
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1.6 QuoteCentral 

Internally, the Company uses a customer database system called QuoteCentral that was 

developed by a third party IT consulting company. This system is used by the estimating team to 

input the various elements of a proposal, document the basis of the proposal, and generate the 

necessary paperwork to send to the customer. Every proposal that the Company submits to its 

customers is stored in QuoteCentral. During the proposal stage, a proposal will have a quote 

number. If the Company wins the proposal, a project number is generated and tied to the 

proposal number for stewardship during the design and manufacturing phases.   
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Table 4 provides the structure of proposal hours in QuoteCentral. The various production 

areas are generalized to help maintain the anonymity of the Company. The proposals that are 

stored in QuoteCentral were used as the baseline to compare potential accuracy improvements. 

In order to maintain consistency and to assess changes in accuracy of the model versus the 

original proposal, the model had to generate estimates in the same format as QuoteCentral. 

  



Public Information 29 

Table 4. Structure of Estimated Hours in QuoteCentral 

  Production Area (PA) Estimated Hours 

Project 

Management 

PA-01  

PA-02  

PA-03  

PA-04  

PA-05  

PA-06  

Fabrication 

PA-07  

PA-08  

PA-09  

PA-10  

PA-11  

PA-12  

PA-13  

PA-14  

PA-15  

PA-16  

PA-17  

Machining 

  

PA-18  

PA-19  

PA-20  

PA-21  

PA-22  

PA-23  

PA-24  

PA-25  

Finishing 

PA-26  

PA-27  

PA-28  

PA-29  

PA-30  

PA-31  

PA-32  

PA-33  

QA/QC 

PA-34  

PA-35  

PA-36  

PA-37  
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  Production Area (PA) Estimated Hours 

“Miscellaneous” 

(Concealed for 

identity protection) 

PA-38  

PA-39  

PA-40  

PA-41  

Planning PA-42  

PA-43  

PA-44  

Total Hours   

 

1.7 Data Mapping 

Prior to this effort, there was no work completed to leverage historical project data for 

developing estimating tools for this product line. Some work had been completed on a different 

product line, but it did not leverage detailed SAP data as the basis for analysis (data was 

manually entered rather than linked to detailed SAP reports). Therefore, there was little prior 

knowledge or learnings to help determine how much detail was appropriate for developing an 

accurate estimating model that was still easy to use. Given that there was limited basis to start 

from, this effort started with the approach of gathering as much detailed information as possible 

about each project to break down the scope into as many components as possible. For example, 

one of the production areas that consumes lots of hours is the welding area. Welding can be 

broken into smaller scopes of work that are all completed within the welding production area. 

Theoretically, a low level of granularity is possible, but there are some challenges that currently 

prevent this from being possible. 

The biggest challenge is the free-form text aspect of logging hours into the ERP. While 

free-form text allows for potentially important information to be documented in the day’s work, 

it makes it difficult to run quick analyses in more detail. Every line item in the ERP needed to be 

mapped to one of the production areas. The ‘Cost element descr.’ column in SAP helped to 
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identify some of the major categories but it was not all-encompassing, meaning that there are 

more production areas in the QuoteCentral breakdown than are categorized in SAP. This 

challenge meant that a direct mapping from SAP to QuoteCentral was not possible.  

To address this, a helper mapping table was created to map every line item from SAP to 

one of the production areas in QuoteCentral. Each ‘CO object name’ was mapped to the correct 

production area so that analysis at the production area level could be conducted. This mapping 

effort needed to happen for every project that was added to the dataset and was largely a manual 

process. Since there were no previously made mapping tables to convert from SAP exports to a 

QuoteCentral structure, using a natural language processing model, such as the bag-of-words 

algorithm, to map the correct categories was not yet possible. However, this is an opportunity 

that can be pursued in the future and will be discussed in chapter 0 Future Opportunities. 

.  
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Model Development 
As outlined in the problem statement, there were three objectives for this estimating 

model that were always at the forefront of the development process: 1) reduce cycle time for 

proposal development, 2) maintain or improve estimating accuracy, and 3) ensure an ability for 

continuous improvement of the model through a feedback process. To accomplish these 

objectives, the estimating model had to be robust and easy to use while ensuring enough 

granularity to assess the accuracy of the estimating model versus the baseline (i.e. the original 

proposals). There also needed to be a seamless methodology for updating the model with new 

projects as they are completed so that the model accuracy can continue to improve over time.  

The estimating model was developed using both R and Microsoft Excel given the ease of 

use for developing preliminary models as well as the widespread user familiarity with the 

Microsoft Excel platform. The long-term vision for the Company is to build the model into a 

cloud-based platform, such as Office 365, or directly into QuoteCentral to enhance the security 

of the model while maintaining ease of access and use within the Company network.  

1.8 Exclusion of Major Unique Scope Items 

One key refinement of the model entailed accounting for major unique scope items that 

require appreciable amounts of manufacturing time. Through exploring the data and speaking 

with various individuals who support estimating and/or manufacturing operations, there were 

three scopes of work that needed closer attention. These are not required for most projects, but if 

they are part of the scope, then they require special attention when developing time estimates. 

These three scope items have limited consistency from project to project and, therefore, make it 

difficult to use historical data and statistical relationships to predict durations. To develop an 

estimating model for these items, additional less intuitive or difficult to measure variables would 

need to be captured. Therefore, this model development process intentionally excluded durations 
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associated with these scopes of work. Across the 77 projects used for this model, these unique 

scope items are only 5.5% of the total manufacturing hours so adding this extra capability was 

not worth the limited value add for the time allotted to the project. 

Given the difficulty of automating the estimation of these unique items, the final scope 

and intent of the model is to help the team develop estimates for the standard structure of the 

products with these unique scope items excluded. For most projects, this capability covers the 

full scope of work from initial raw material preparation through final shipment. For other 

projects that have these major unique scope items, estimating manufacturing time for these 

features will be extra requirements that the estimator must complete. They will continue 

following the traditional approach for estimating time and cost for these features. By using the 

new model to predict manufacturing durations for the standard structures, the team will save time 

on the repetitive items and can focus more on the complexities, if they exist. 

1.9 Data Exploration 

The data collection process resulted in collecting 21 variables across the 77 projects. Of 

these 21 variables, 7 variables are categorical and the other 14 variables are continuous, 

numerical variables. All but one of the variables are considered objective variables, meaning that 

they are observable and measurable. The one subjective variable is a contour complexity 

categorization that attempts to categorize projects into one of three types of relative perceived 

manufacturing difficulty: low, medium, and high. These complexity categories are based on how 

sharp the curves are and how many different directions the contour curves in. 

Table 5 lists the 7 categorical variables that were collected and the number of different 

categories each variable could take on. Table 6 lists the continuous variables and their respective 

variable inflation factors (VIF). In the data collection process, it was known that many variables 
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were not independent and that multicollinearity among regressors would be a concern. The 

variable inflation factor detects multicollinearity and estimates how much the variance of a 

regression coefficient is inflated due to multicollinearity in the model. [5] A higher VIF means 

that a variable is highly correlated with the other predictors. The general rule of thumb varies 

among sources, but a VIF larger than 10 is consistently considered high among all sources. 

Therefore, these variables have high levels of multicollinearity and will need to be accounted for 

to generate a stable model. 

  

Table 5. Categorical variables and the number of categories each can take 

Variable Number Number of Categories 

Var-1 2 

Var-2 3 

Var-3 2 

Var-4 2 

Var-5 2 

Var-6 2 

Var-7 3 
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Table 6. Continuous variables and their variable inflation factors 

Variable Number Variable Inflation Factor 

Var-8 142.16 

Var-9 139.38 

Var-10 15.68 

Var-11 144.20 

Var-12 7.16 

Var-13 3.14 

Var-14 2.98 

Var-15 58.78 

Var-16 65.64 

Var-17 43.72 

Var-18 489.99 

Var-19 309.91 

Var-20 110.45 

Var-21 80.50 

 

In addition to the need for addressing the issue of multicollinearity, expanding the list of 

potential regressors was necessary to address the potential for nonlinear relationships between 

the response variable (Total Hours) and the explanatory variables. All continuous variables were 

squared, square-rooted, and natural-logged (where it potentially made sense) to expand the list of 

explanatory variables from 21 to 62. Given the need to decide which variables were most 

important, reduce the model to as few variables as possible, and resolve the multicollinearity 

problem, a lasso regression (least absolute shrinkage and selection operator) model was chosen 

to conduct the analysis. 

1.10 LASSO Regression 

Lasso regression models are particularly well-suited when explanatory variables have 

high levels of multicollinearity and when a simple, interpretable model with a small number of 

variables is preferred over a more complex model. Lasso regression operates with the support of 

a tuning parameter, λ, that penalizes each coefficient in the regression based on its magnitude. 
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This algorithm results in driving some coefficients to zero and eliminating them from the model 

altogether. [6]  

Two lasso models were built, tested, and compared to see which strategy best balanced 

predictive ability with model simplicity. The first lasso model focuses on predicting the total 

manufacturing hours rather than predicting each production area individually. These hours are 

then distributed to each of the production areas based on the distribution of hours from the actual 

dataset. Distributing hours to each production area is important because these are the budgets 

each production area will use to steward execution. The second lasso model groups the 

production areas into six production area groupings and a lasso model for each grouping is 

produced to predict hours at the grouping level. The hours are then distributed to each production 

area following the same methodology as the first lasso model. Each lasso model was then 

compared against the baseline model, where the baseline is the Company’s current estimating 

process. The actual hours from SAP were the point of comparison to see whether the lasso 

models were more effective prediction methods than the baseline. The following explanation 

describes the process for modeling the first lasso model, but the same process can be followed 

for the second lasso model as well. 

R was the programming language chosen to develop these lasso models. The response 

variable (Hours) and all 62 explanatory variables were stored in a CSV file and imported into R. 

A set of ten randomly generated seeds were used to build ten slightly different models to see how 

model variable selection and coefficients changed across trials. For each seed, the data were 

partitioned into a training set and a test set where 75% of the projects were in the training set and 

25% were in the test set. This resulted in the training set containing 58 projects and the test set 
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containing 19 projects. The glmnet function in R was used to execute the lasso regression on the 

training set using the following format: 

 

𝑙𝑎𝑠𝑠𝑜_𝑚𝑜𝑑 =  𝑔𝑙𝑚𝑛𝑒𝑡(𝑥_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑎𝑙𝑝ℎ𝑎 = 1, 𝑙𝑎𝑚𝑏𝑑𝑎 = 𝑔𝑟𝑖𝑑) 

 

where grid is a sequence of 10,000 evenly spaced numbers from 10-2 to 1010. This range of 

values ensured that the optimal lambda fell somewhere in between these two extremes and 

10,000 samples was the order of magnitude before the algorithm’s processing time became slow.  

lambda was optimized using cross validation by executing the two functions below.  

 

𝑐𝑣. 𝑜𝑢𝑡 = 𝑐𝑣. 𝑔𝑙𝑚𝑛𝑒𝑡(𝑥_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛, 𝑎𝑙𝑝ℎ𝑎 =  1) 

𝑏𝑒𝑠𝑡𝑙𝑎𝑚 =  𝑐𝑣. 𝑜𝑢𝑡$𝑙𝑎𝑚𝑏𝑑𝑎.𝑚𝑖𝑛 

 

Figure 2 shows a sample plot of the training mean-squared-error (MSE) as a function of lambda. 

The optimal lambda is where the MSE of the plot in Figure 2 is at its minimum. 
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Figure 2. Lasso lambda cross-validation 

The optimal lambda for each trial is then used to predict the total hours in the test set using the 

function below: 

 

𝑙𝑎𝑠𝑠𝑜_𝑝𝑟𝑒𝑑 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑙𝑎𝑠𝑠𝑜_𝑚𝑜𝑑, 𝑠 =  𝑏𝑒𝑠𝑡𝑙𝑎𝑚, 𝑛𝑒𝑤𝑥 =  𝑥_𝑡𝑒𝑠𝑡) 

 

where x_test is the array of explanatory variables in the test set. For each trial, the root mean 

square error (RMSE) on the test set was always lower than the RMSE of the baseline estimating 

process. This was an indication that the model could show performance improvements and was 

worth continuing to pursue. 

Next, a lasso model was fit with the same optimal lambda in each trial on the full dataset 

with the following R functions:  
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𝑜𝑢𝑡 =  𝑔𝑙𝑚𝑛𝑒𝑡(𝑥, 𝑦, 𝑎𝑙𝑝ℎ𝑎 =  1, 𝑙𝑎𝑚𝑏𝑑𝑎 =  𝑔𝑟𝑖𝑑) 

𝑙𝑎𝑠𝑠𝑜_𝑐𝑜𝑒𝑓 =  𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑜𝑢𝑡, 𝑡𝑦𝑝𝑒 =  "𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠", 𝑠 =  𝑏𝑒𝑠𝑡𝑙𝑎𝑚) 

 

where x and y are the explanatory variables and response variable, respectively, for the full 

dataset. Table 7 shows the resulting regression model variables and coefficients for the full 

dataset across all ten trials for the first lasso model. The table also shows the root mean square 

error for each trial, which averaged 168 across the ten trials. The root mean square error is a 

metric used to quantify model error and variation; this and other performance metrics will be 

discussed further in section 1.12 Model Testing and Performance. 

 

Table 7. Lasso regression models for ten random trials in the first lasso model 

Trial 1 2 3 4 5 6 7 8 9 10 

RMSE 186 239 186 139 107 129 150 229 197 122 

           

(Intercept) 79.4 81.1 106 130 76.4 76.0 107 75.2 140 84.5 

Var-2 124 122 88.2 56.3 138 139 86.8 139 42.4 117 

Var-7 - - - - -18 -19 - -21 - - 

Var-19 5.0 5.0 4.7 4.4 5.3 5.4 4.7 5.4 4.3 5.0 

Var-20 6.8 6.9 9.7 12.3 5.5 5.5 9.8 5.5 13.4 7.3 

Var-21 
1.0 

E-02 

1.0 

E-02 

9.4 

E-03 

8.6 

E-03 

1.0 

E-02 

1.0 

E-02 

9.4 

E-03 

1.0 

E-02 

8.2 

E-03 

1.0 

E-02 

(Var-21)2 - - - - 
3.7 

E-09 

4.8 

E-09 
- 

6.4 

E-09 
- - 

sqrt(Var-17) 3.1 3.1 3.1 3.1 3.6 3.6 3.1 3.6 3.1 3.1 

sqrt(Var-19) 22.0 22.2 24.7 27.1 19.4 19.5 24.8 19.8 28.2 22.6 

 

The lasso regression performs as expected and eliminates either 54 or 56 of the 62 

explanatory variables, leaving only six or eight explanatory variables depending on the trial. 

However, in these ten trials, Var-19 appears twice in every trial: once as itself and once as the 
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square root of itself. Ideally, the final model should not include both Var-19 and sqrt(Var-19) 

since these variables can be used to explain each other. With the same randomly generated seeds, 

these ten trials were ran again with sqrt(Var-19) removed as an option from the dataset. Table 8 

shows the resulting regression models.  

 

Table 8. Lasso regression models for ten random trials with sqrt(Var-19) removed 

Trial 1 2 3 4 5 6 7 8 9 10 

RMSE 188 240 186 114 108 127 146 230 194 119 

           

(Intercept) 133 137 166 151 124 124 155 125 191 142 

Var-2 125 120 88.8 104 139 139 100 138 61.5 115 

Var-7 - - - - -27.9 -27.6 - -26.1 - - 

Var-19 5.8 5.8 5.6 5.7 6.1 6.1 5.6 6.1 5.4 5.7 

Var-20 12.2 12.7 15.9 14.3 9.9 9.9 14.8 10.1 18.6 13.2 

Var-21 
8.6 

E-03 

8.4 

E-03 

7.4 

E-03 

7.9 

E-03 

9.1 

E-03 

9.1 

E-03 

7.7 

E-03 

9.1 

E-03 

6.4 

E-03 

8.3 

E-03 

sqrt(Var-17) 10.4 10.5 11.4 10.9 9.6 9.6 11.1 9.7 12.0 10.7 

 

While sqrt(Var-19) was manually removed from the model, this series of reruns also removed 

(Var-21)2 through the algorithm. Despite removal of these two variables, the average root mean 

square error reduced from 168 to 165 and shows that the performance, based on this metric 

alone, is not compromised. Additionally, Var-7 was expected to be an important metric but only 

appeared in three of the ten trials. Since Var-7 is a categorical variable and is expected to be 

significant, a few more trials were run to generate a total of five models that include Var-7 and 

then all coefficients were averaged to determine the final model to be used for analysis. Table 9 

summarizes the final regression model that was used for the first lasso modeling approach. 
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Table 9. Final lasso model with five trials that include Var-7 

Model 1 2 3 4 5 Average 

RMSE 139 139 139 143 141 140 

       

(Intercept) 124 124 125 128 127 126 

Var-2 139 139 138 132 134 136 

Var-7 -27.9 -27.6 -26.1 -11.7 -17.7 -22.2 

Var-19 6.1 6.1 6.1 5.9 6.0 6.0 

Var-20 9.9 9.9 10.1 11.1 10.7 10.3 

Var-21 
9.1 

E-03 

9.1 

E-03 

9.1 

E-03 

8.8 

E-03 

8.9 

E-03 

9.0 

E-03 

sqrt(Var-17) 9.6 9.6 9.7 10.1 9.9 9.8 

 

While this lasso model predicts the total hours across all production areas, each 

production area needs their own estimates to plan capacity requirements and to properly steward 

project execution. To account for this, the total hours are allocated across each production area 

based on the observed distribution in the dataset. Table 10 shows a breakdown of how predicted 

hours are distributed across the production areas. The distributions are grouped by the three 

different material types and three contour complexity levels. 
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Table 10. Allocation of production hours by material and complexity 

 
Mat-1 

Com-L 

Mat-1 

Com-M 

Mat-1 

Com-H 

Mat-2 

Com-L 

Mat-2 

Com-M 

Mat-2 

Com-H 

Mat-3 

Com-L 

Mat-3 

Com-M 

Mat-3 

Com-H 

PA-01 4% 3% 2% 5% 1% 2% 3% 3% 4% 

PA-07 0% 0% 1% 1% 0% 1% 1% 1% 1% 

PA-08 3% 8% 8% 4% 6% 8% 5% 7% 3% 

PA-09 14% 30% 32% 18% 32% 32% 22% 16% 23% 

PA-10 3% 3% 2% 2% 2% 2% 1% 1% 2% 

PA-11 3% 4% 3% 3% 2% 3% 3% 2% 3% 

PA-12 4% 3% 5% 5% 6% 5% 5% 5% 6% 

PA-21 2% 2% 3% 3% 5% 3% 5% 5% 3% 

PA-22 

PA-23 

PA-24 

PA-25 

26% 14% 14% 19% 18% 14% 18% 15% 20% 

PA-26 6% 10% 9% 13% 13% 9% 12% 8% 10% 

PA-27 16% 9% 7% 11% 4% 7% 10% 19% 7% 

PA-28 2% 2% 2% 2% 2% 2% 0% 0% 0% 

PA-29 

PA-34 
11% 8% 6% 8% 7% 6% 4% 11% 10% 

PA-33 1% 2% 1% 1% 1% 1% 4% 2% 3% 

PA-34 6% 4% 4% 5% 2% 4% 9% 5% 5% 

Total 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

Allocating predicted hours to each production area using Table 10 was the first strategy 

for providing estimates for each production area. A second model was created that focused on 

estimating manufacturing durations for groupings of related production areas rather than solely 

focusing on the total hours. The objective for this model was to, theoretically, increase accuracy 

and precision for each of these production area groupings. The same lasso regression approach 

was conducted for the production area groupings (PAG) in Table 11 that share similar 

characteristics and human resources.  
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Table 11. Production area groupings for second lasso model 

Production 

Area Grouping 

Production 

Area 

PAG-1 

PA-07 

PA-09 

PA-10 

PA-11 

PA-12 

PAG-2 PA-08 

 PAG-3 

PA-21 

PA-22 

PA-23 

PA-24 

PA-25 

PAG-4 PA-26 

PAG-5 

PA-27 

PA-28 

PA-29 

PA-34 

PA-33 

PA-34 

PAG-6 PA-01 

 

A sample model of one trial of the lasso regression analysis resulted in the model 

outlined in Table 12. The first column lists the variables that were selected across all PAGs. Each 

number represents the coefficients for their respective variables to calculate hours for each PAG. 

A series of additional trials were run yielding similar variable selections as those in Table 12, but 

this methodology was abandoned due to an appreciable increase in model complexity and 

perceived level of effort for updating without an appreciable improvement in predictive 

performance. This will be discussed further in section 1.12 Model Testing and Performance. 
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Table 12. Sample of lasso regression across six production area groupings 

 
PAG-1 PAG-2 PAG-3 PAG-4 PAG-5 PAG-6 

Intercept -95.8 -10.9 73.6 44.7 67.5 12.6 

Var-2 117 26 - - - - 

Var-11 0.7 - - - - - 

Var-1 - 1.1 - - - - 

Var-18 - 1.56E-03 - - - - 

Var-17 - - 0.1 - - - 

Var-16 - - - 0.4 0.4 0.3 

Var-19 - - 1.2 0.2 1.5 - 

Var-20 16.8 - - - - - 

sqrt(Var-16) - - - 0.8 - - 

sqrt(Var-17) - 1.9 - 1.0 - - 

sqrt(Var-18) - 3.1 - - - - 

sqrt(Var-19) 27.3 - - - 5.1 - 

sqrt(Var-20) - 0.6 - - - - 

sqrt(Var-21) 5.9E-08 - - - - - 

Ln(Var-18) 15.8 - - - - - 
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Discussion 

1.11 Variable Selection 

A fundamental characteristic of the lasso modeling algorithm is that it naturally selects 

the explanatory variables that provide strong prediction models while eliminating variables that 

do not add much value to the model’s predictive power. For both models, the algorithm 

eliminates variables without regard to whether the user expects a particular variable or set of 

variables to be included or not. Two of the continuous variables included in the first lasso model 

were expected to be included based on an intuitive understanding of the manufacturing process 

and how highly correlated these variables were with the total hours. However, two of the 

categorical variables, specifically material and complexity, were deemed to not be as important 

for predicting total manufacturing hours. The initial expectation was that all three materials and 

all three complexities would be vital characteristics for predicting manufacturing durations, but 

the lasso regression only distinguishes one of the three material types and only one of the three 

complexity levels. If complexity is truly important in reality, then this analysis may benefit from 

reassessing how complexity is captured and include more projects that are noticeably and 

measurably more complex than the projects included in this dataset. Additionally, the model 

would likely benefit from including more projects that were manufactured using the other two 

materials that are not distinguished from each other in the final model. 

The second lasso model, which is the aggregation of six lasso regressions, was much 

more complex than the first lasso model. Each of the six individual models include anywhere 

from one to six variables, but the variables chosen are not always intuitive for explanation 

purposes. Furthermore, each of the six sub-models use different variables in the calculations so 

the full list of variables in the complete second model is 15 rather than six variables for the first 

model. Of these 15 variables, eight of them are direct physical measurements or observations as 
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opposed to four measurements or observations for the first lasso model. This increase in variable 

count increases the level of effort required to update the model in the future and can only be 

justified if there is an appreciable improvement in predictive performance. 

1.12 Model Testing and Performance 

A mix of criteria was used to compare the two lasso models against the baseline, where 

the baseline is the current estimating process utilized by the Company. The performance criteria 

included the following five metrics defined below: mean absolute error (MAE), root mean 

squared error (RMSE), mean absolute percentage error (MAPE), mean bias error (MBE), and 

mean percentage error (MPE). 
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The mean absolute error quantifies the average magnitude of the error, regardless of 

whether the error is positive or negative. Each residual contributes proportionately to the total 

amount of error, meaning that larger errors contribute linearly to the overall error. [7] The root 
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mean square error is a quadratic scoring rule that also measures the average magnitude of the 

error. It is different from the mean absolute error in that the RMSE is the square root of the 

average of squared errors. Since errors are squared before being averaged, larger errors 

contribute more weight in the calculation than smaller errors. RMSE is an important calculation 

for models where larger errors are particularly undesirable. [8] Whereas MAE and RMSE 

measure error in units (in this case the units are hours), the mean absolute percentage error 

measures error in percentage terms, a unitless measurement. MAPE can be used in conjunction 

with MAE and RMSE to paint a more complete picture of model accuracy, regardless of whether 

errors are positive or negative. For all three of these calculations, the closer the number is to 

zero, the more accurate the predictions are. 

The mean bias error and mean percentage error are similar calculations to the mean 

absolute error and mean absolute percentage error, respectively, except the absolute value 

function is removed. The MBE and MPE are used to determine whether a model typically 

overestimates or underestimates in its predictions and are not helpful for determining model 

accuracy. In these calculations, a large negative error and a large positive error with the same 

magnitude would cancel each other out. Positive calculations for MBE and MPE indicate a bias 

towards overestimating while negative calculations indicate a bias towards underestimating. The 

closer the calculations are to zero, the lower the bias. [8] 

Table 13 summarizes the results of these calculations for the baseline and for both lasso 

models. Both lasso models perform better than the baseline across every performance metric 

except for the mean absolute percentage error where the second lasso model performs about 

equal to the baseline. The lasso models are generally more accurate, have less variation in the 

magnitude of errors, and have less bias. This observation supports the hypothesis that advanced 
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data analytics, and lasso regression in particular, can provide noticeable improvements in 

estimating performance with the appropriate technical inputs. 

When comparing the two lasso models, the first lasso model performs noticeably better 

than the second lasso model in every performance category. This result was expected given that 

the first lasso model was built using the total, bottom line durations whereas the second model is 

six sub-models for six production area groupings that were aggregated to develop the total 

predicted durations. 

 

Table 13. Lasso model performance versus baseline 

 Baseline Lasso Model 1 Lasso Model 2 

Root Mean Square Error 413 140 187 

Mean Absolute Error 247 111 147 

Mean Absolute Percentage Error 24% 17% 25% 

Mean Bias Error 152 5 5 

Mean Percentage Error 19% 8% 16% 

 

The performance metrics between the two lasso models were also assessed for each of the 

production area groupings. The objective for comparing these two models was to see if 

performance improved by modeling production area groupings individually rather than allocating 

these durations from a single model that predicted total hours for the entire project. Table 14 

through Table 18 summarize the performance metrics for five of the six production area 

groupings as compared to the allocation approach used for the first lasso model. Program 

management and production planning was the sixth production area grouping but this grouping 

was not compared between the two models because there are not any strong relationships 

between the program management durations and any technical characteristics, measurements, or 

calculations.  
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The performance differences between the two models at the production area grouping 

level are inconsistent. In some areas, the second lasso model performs better than the first model 

and in other areas the first model still outperforms the second model. Even when one model 

performs better than the other for a given production area grouping, the performance 

improvement is usually not very significant. Given this inconsistency, it cannot be reliably 

determined which model is a better performer at the production area grouping level. However, 

the simplicity of the first model as compared to the second model, both in terms of the number of 

variables required and the level of effort required to provide model updates, makes the first 

model much more preferred. 

 

Table 14. Production Area Grouping 1 performance metrics 

 Lasso Model 1 Lasso Model 2 

Root Mean Square Error 104 85 

Mean Absolute Error 71 63 

Mean Absolute Percentage Error 28% 33% 

Mean Bias Error -11 0 

Mean Percentage Error 14% 16% 

 

Table 15. Production Area Grouping 2 performance metrics 

 Lasso Model 1 Lasso Model 2 

Root Mean Square Error 30 28 

Mean Absolute Error 18 18 

Mean Absolute Percentage Error 35% 40% 

Mean Bias Error -1 0 

Mean Percentage Error 12% 20% 
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Table 16. Production Area Grouping 3 performance metrics 

 Lasso Model 1 Lasso Model 2 

Root Mean Square Error 141 145 

Mean Absolute Error 74 73 

Mean Absolute Percentage Error 34% 38% 

Mean Bias Error -23 -37 

Mean Percentage Error 9% 11% 

 

Table 17. Production Area Grouping 4 performance metrics 

 Lasso Model 1 Lasso Model 2 

Root Mean Square Error 44 54 

Mean Absolute Error 24 33 

Mean Absolute Percentage Error 51% 114% 

Mean Bias Error -7 0 

Mean Percentage Error 34% 100% 

 

Table 18. Production Area Grouping 5 performance metrics 

 Lasso Model 1 Lasso Model 2 

Root Mean Square Error 104 92 

Mean Absolute Error 68 60 

Mean Absolute Percentage Error 25% 36% 

Mean Bias Error -10 -4 

Mean Percentage Error 11% 23% 

 

1.13 Observations 

There are several important observations to notice in this analysis. The first important 

observation is looking at the mean absolute error (MAE) and root mean square error (RMSE) for 

both the baseline model and the lasso model. The MAE for the baseline is about twice the size of 

the MAE for the lasso model and the RMSE for the baseline is over 2.5 times the size of the 

RMSE for the lasso model. These metrics help provide evidence that the lasso model is both 
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more accurate given the lower error metrics and that the lasso model does a better job reducing 

the magnitude of large errors since the RMSE does not increase substantially above the MAE as 

compared to the baseline. 

A second important observation is that the original proposals show a strong bias towards 

overestimating the number of labor hours required to manufacture these products. On average, 

the original proposals, which were largely based on the estimators’ prior experiences and 

personal judgement, allocated 19% more hours on average than were required to complete the 

project. This equated to an average of 152 hours surplus for each project. The bias for the lasso 

model was 8%  high and only five hours high on average across the dataset. Logically, it is more 

likely that estimators would be conservative and allocate too many hours for the proposal rather 

than estimate aggressively and risk not having enough hours. If the operations team is executing 

a project and they are going to run overbudget without having had any major execution 

challenges, they will often question and put pressure on the estimator that was responsible for the 

proposal. However, if the operations team has a budget surplus, the estimator will rarely get 

questioned.  

Systematically overestimating on proposals also has a negative impact on the business. 

The Company is fortunate that they still won the bids for the overestimated projects in this 

dataset. However, it is likely that the Company failed to win competitive bids for some other 

projects due to overestimation. If there was not a strong bias for overestimating proposals, the 

Company’s success would likely increase on bids that are priced strictly on a cost-plus basis. 

Finally, it is important to observe how the performance metrics change based on the 

project size. Table 19 shows the performance metrics for both the baseline and for the first lasso 

model in three groupings: all projects, projects that required more than 500 hours to manufacture, 
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and projects that required more than 1000 hours to manufacture. The baseline either maintains its 

performance or performs worse across every performance metric. The mean absolute error and 

root mean square error both increase as projects grow. The metric that is the most relevant point 

of comparison is the mean absolute percentage error. This error grows from 24% in the full 

dataset to 30% for projects larger than 1000 hours. This shows that the absolute error is growing 

at a faster rate than project size and that the baseline performs worse as projects become larger. 

Conversely, the lasso model shows some improvements as projects grow. Again, as expected, the 

mean absolute error and root mean square error both grow as projects become larger, but they do 

so at a slower rate than the baseline. Simultaneously, the mean absolute percentage error for the 

lasso model decreases from 17% to 11% to 9% across the three project size segments. As 

previously mentioned, it is important for the business and manufacturing operations to improve 

estimating performance for larger projects given the financial risks associated with large 

estimating errors on larger projects. 

 

Table 19. Performance metrics of lasso and baseline models by project size 

  Baseline Model 

Baseline 

> 500 hrs 

Model > 

500 hrs 

Baseline > 

1000 hrs 

Model > 

1000 hrs 

RMSE 413 140 502 156 726 194 

MAE 247 111 336 124 580 159 

MAPE 24% 17% 24% 11% 30% 9% 

MBE 152 5 200 -25 283 -95 

MPE 19% 8% 19% 1% 18% -5% 

 n = 77 n = 51 n = 23 

 

Although the lasso model generally performs better than the baseline as projects grow 

larger, the lasso model still shows an inherent vulnerability when estimating larger projects. 

There appears to be an inherent bias for slightly underestimating larger projects where the mean 
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percentage error for projects larger than 1000 hours was -5% and the mean bias error was -95 

hours. With only 23 projects larger than 1000 hours in this dataset, there is an opportunity to 

improve on this metric by adding a variety of projects that meet this size threshold to improve 

upon this underestimation bias. 

Figure 3, Figure 4, and Figure 5 graphically show the mean percentage errors of the lasso 

regression against the baseline as projects grow in size. The errors of the lasso model predictions 

are shown in green while the errors from the baseline are shown in red. The solid lines show the 

mean percentage error and the dashed lines are calculations for two standard deviations to 

visually represent the variation in the magnitude of the error across the dataset. While the size of 

the band between the two standard deviations tend to get smaller for the lasso model as projects 

become larger, this same band increases for the baseline as projects become larger.  

 

Figure 3. Mean percentage error of lasso regression vs baseline for all projects 
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Figure 4. Mean percentage error of lasso regression vs baseline projects > 500 hours 

 

Figure 5. Mean percentage error of lasso regression vs baseline projects > 1000 hours 
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These observations also have significant implications on the business and can be 

demonstrated through this simple example. Let’s say that an estimator predicts that Project A 

will require 500 hours of manufacturing time, but it actually took 625 hours to complete. The 

estimate was 125 hours short and translates to a -25% error. Now let’s say that an estimator 

predicts that Project B will require 2000 hours to complete, but it actually took 2500 hours. The 

estimate in this case was 500 hours short but also translates to a -25% error. The impact of 

underestimating Project B is much higher than the impact of underestimating Project A. 

Underestimating Project B is more likely to cause production areas to become overcapacity and 

lead to schedule delays not only for this project, but also for other projects in the queue. The 

Company is then more likely to outsource some portions of the work scope to relieve capacity, 

usually resulting in cost increases to meet schedule requirements. Finally, assuming the proposal 

took a cost-plus pricing approach, unless there was a substantial profit markup (which is highly 

unlikely in this competitive market), the Company is now taking a financial loss to provide this 

product to the customer.  

Overestimating on larger projects also has negative implications for the business. One 

point that was mentioned earlier is that the Company may be failing to win some bids if a 

competitor is delivering proposals that are both lower cost and more accurate. A second point is 

that the Company plans capacity needs weeks in advance of when the capacity is needed. These 

planning efforts leverage the hours from successful bids to plan requirements for each production 

area. Overestimating hours on larger projects can lead to underutilization in the future. This is 

particularly problematic if the Company made advanced plans to outsource some work and 

signed contracts to complete work elsewhere when they have the capacity to complete more 

work in-house. The negative impacts of overestimation or underestimation increase nonlinearly 
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as projects grow so it is in the Company’s best interest to ensure mean absolute percentage error 

decreases as projects grow in size. 

1.14 Final Excel Model Structure 

While the lasso regression analysis was conducted using R, the final model was 

implemented using Microsoft Excel given the ease of use for the team. The Excel model contains 

17 inputs as listed in Table 20; five of the input names are concealed to help protect the industry 

and identity of the manufacturer. These 17 inputs are used to generate the remaining explanatory 

variables in the analysis.  

 

Table 20. Final Microsoft Excel model inputs 

Build Location 

Material 

Length (in) 

Average Width (in) 

Height (in) 

Depth (in) 

Base Structure Type 

Surface Finish 

Surface Complexity (1-3) 

Surface Style 

Surface Thickness (in) 

Support Thickness 

Hidden Measurement 1 

Hidden Measurement 2 

Hidden Measurement 3 

Hidden Measurement 4 

Hidden Measurement 5 

 

The build location is the only input that was not included as an explanatory variable for 

lasso regression. The build location only affects one of the production areas. Manufacturing Site 
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2 (MS-2) has an in-house capability that Manufacturing Site 1 (MS-1) does not have. All projects 

require this scope of work but the duration requirements for this work do not significantly 

depend on any physical measurements or properties of the product. Thus, if the project is 

proposed for manufacturing at MS-2, then a constant number of hours is added to the estimate. If 

the project is executed at MS-1, then the estimator must add the cost for outsourcing to the 

proposal. 

1.15 Management Considerations 

While advanced data analytics has potential for improving the estimating and proposal 

development process, there are some challenges that company management must be aware of. 

These challenges include ensuring that the Company has the skills necessary to update and 

maintain the model, developing trust in the new data-driven estimating process over the 

historical “human-intuition” process, and providing the appropriate incentives to ensure data is 

accurate and reliable. Expansion of the model applications, change management, and growing 

the culture of continuous improvement and data-driven decision making will be necessary to 

capitalize on the full potential of this initiative. 

 While the final model is implemented in Microsoft Excel, the analysis and model 

development were executed in R. In order to update this model with new projects, and to expand 

the applicability of this methodology to other product types, the Company will need a human 

resource who knows how to manipulate the R code and understand the outputs generated. 

Updating the model for the product type focused on for this project will not be a major concern 

since the code has already been written. The administrator simply needs to update the CSV file 

that is loaded into R with the new dataset and run the code. The output is a simple copy and paste 

from R to the Excel file. However, as the Company explores expanding this methodology to 
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other product types, this code will need to be manipulated to fit the new products and will likely 

require the administrator to have some understanding of R.  

In addition to having a basic understanding of R, the person who develops new models 

for other product types will need to have an understanding of manufacturing processes and have 

skills in R programming, Microsoft Excel, and 3D modeling software. These skills are typically 

readily available with LGO students, especially if they come from a mechanical or aerospace 

engineering program. There is also an opportunity for young engineers who have strong data 

analysis skills to challenge themselves and take on some of these responsibilities. Most 

undergraduate mechanical and aerospace engineering programs include statistics and 3D 

modeling as part of the core curriculum. The challenge would be for them to learn the 

fundamentals of R and implement lasso regression (or other modeling techniques) where 

appropriate. The concept of lasso regression is based on linear regression and multiple regression 

which is covered in most statistics courses. With this model as a go-by, a bright, young engineer 

can learn from this methodology and apply it to other product types while having the opportunity 

to learn more about the company, engage with various stakeholders, and develop their leadership 

and communication skills. 

For this model (and the estimating methodology more generally) to have long term 

success, the various stakeholders need to develop trust and confidence in the estimating process. 

It is important for the Company to understand that no process and no estimating methodology is 

perfect. However, it does appear that this methodology provides some performance 

improvements over the existing process for the applicable product types and sizes and that the 

proposal development cycle time is reduced by at least 50%. It can be easy to blame the model 

and deem it as useless or unreliable if it ever has a big miss. In fact, the model will have a higher 
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frequency of underestimation since it fundamentally removes the systematic conservative bias 

that human estimators have. 

There are two things that will help the Company and the key stakeholders develop 

confidence in this estimating methodology and approach. The first is to educate the key 

stakeholders on the fundamentals of how the model works and how it performs relative to the 

baseline process. This education can take the form of a lunch and learn series to demonstrate (at 

the appropriate level of detail) how the model was built, how it performs relative to the baseline, 

and what potential operational and financial opportunities exist if the company was able to fully 

transition their estimating methodology. The second thing that will help build trust and 

confidence is time. Initially, the Company should continue to use the baseline estimating process 

in parallel with the new estimating model and continue comparing the performance of both. Over 

time, if the new model continues to perform better than the baseline, the team will continue 

building confidence and can fully transition to the semi-automated model for applicable projects. 

Finally, this model relies on consistent and reliable data as the foundation for model 

development. If unreliable data from historical projects is incorporated into the analysis, then the 

outputs from the model will also be unreliable. For long-term sustainability, the company needs 

to ensure the correct incentives are in place to ensure reliable data is entered into SAP during 

manufacturing. There is a potential for the Company to have a challenge regarding data 

reliability. Shop floor workers might log hours to projects in SAP in a fashion that is most 

beneficial for them politically rather than accurately log hours to projects as it actually happened. 

More specifically, if a production area is about to overrun their budgeted hours for a project, it is 

not unreasonable for a worker to log more hours to another project that has a budget surplus. 

Thus, a project that should have overrun, or should have overrun by a more significant amount, 
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may have been worse if some hours were inaccurately allocated to another project. 

Simultaneously, a project that finished at or under budget may have inappropriately received 

hours from a project that was running over budget. This practice would compromise the data 

quality and make the model less reliable. 

This risk of data reliability is particularly important since the model fundamentally 

removes the conservative estimating bias they have seen historically. More projects will overrun 

their budget than they’ve seen previously. To prevent the practice of misallocating hours from 

occurring, the Company must ensure that there is not a culture of blame and punishment, but 

rather a culture that promotes data accuracy so that management and other office workers can 

learn from the operational challenges, adjust processes, and improve estimating models. Senior 

management should continuously reinforce the importance of accurate data management and that 

nobody will be punished or negatively treated for any individual project going over budget. A 

more holistic evaluation across a larger set of projects should be the norm. 

Another approach to help ensure data reliability is to prevent the shop floor workers, and 

possibly even the program managers, from knowing what their budget is for each individual 

project. Removing this anchor could help promote consistency across the portfolio of projects. 

Program managers and shop floor workers would focus solely on meeting the required delivery 

dates to ensure customer satisfaction and the operations managers would focus on ensuring each 

production area has the necessary resources to complete the work on time. The hours would then 

be a true representation for the level of effort required to manufacture each project. 
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Future Opportunities 
The Company can continue improving on this study to enhance accuracy, speed, and 

breadth of estimating. These improvements include modifying the 3D modeling capabilities to 

accelerate data collection, implementing natural language processing algorithms to support SAP 

data mapping, and expanding the scope of this modeling methodology to other product types. 

When developing this model, data collection was unquestionably the most time-intensive 

requirement. For each project, data had to be collected from 3D models and other PDF files and 

manually entered into an Excel spreadsheet. For each project, this could take around 30 minutes, 

assuming the data was readily available. There was also data that ideally would have been useful 

to include in the dataset but were either too time-consuming to reliably capture or too difficult to 

measure consistently across projects. A potentially big opportunity exists if the Company can 

modify its 3D modeling software to generate an export into a spreadsheet in the same format as 

the technical inputs in the model. These automated exports would include both physical 

measurements of the product itself as well the quantities of key features. Automating this process 

would save time for both the estimators and the administrative user who is responsible for 

capturing the technical data during model updates. 

Continuing with the opportunity to accelerate the model updating process, a natural 

language processing algorithm can be implemented into the machine learning model to prevent 

manually mapping unique ‘CO object name’ descriptions to the various production areas. This 

research found that the workers are not consistent in their descriptions of the work that is 

completed for each project. Most projects had some unique descriptions (some were just the 

result of typos) requiring a manual data mapping step to be implemented into the model updating 

process. A natural language processing algorithm can help alleviate this challenge. While there 

were over 1500 unique ‘CO object name’ descriptions, many of those that fell into the same 
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category contained specific keywords or were part of the same ‘ParActivity’ to indicate the 

correct production area to map to. The mapping table developed for this project can now be used 

to train a language processing algorithm to automate the SAP data mapping process. 

Furthermore, the Company can help this effort by changing the ‘CO object name’ from free form 

text to a dropdown option when workers log their time in SAP. This standardization would also 

prevent the need for this additional algorithm. 

Finally, this project focused on only one of the Company’s products, but they provide 

many products and solutions for their customers. This modeling methodology can be expanded 

to other product types following a similar process of collecting technical data from 3D models 

and time data from SAP and using lasso regression analysis to develop estimating models. 

Similar to this project, the developer may need some creativity in defining the explanatory 

variables and using logic and intuition to create variables from a series of other simple 

measurements. If the Company can apply a streamlined and semi-automated estimating 

methodology across its portfolio with modern data analytics methodologies, they will continue 

speeding up the estimating process, improving estimate accuracy, and removing estimator bias. 
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