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Abstract
This thesis consists of three disparate parts. In the first, we generalize and extend
recent ideas of Chiarelli, Hatami and Saks to obtain new bounds on the number of
relevant variables for a boolean function in terms of its degree, its sensitivity, and
its certificate and decision tree complexities, and we also sharpen the best-known
polynomial relationships between some of these complexity measures by a constant
factor. In the second part, we show that the Partial Rejection Sampling method
of Guo, Jerrum and Liu can solve a handful of natural sampling problems that fall
outside the guarantees of the authors’ original analysis. Finally, we revise and make
partial progress on a conjecture of De Caen, Erdős, Pullman and Wormald on clique
partitions of a graph and its complement, building on ideas of Keevash and Sudakov.
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Chapter 1

Introduction

Each of the three chapters of this thesis is, in terms of its mathematical content,

almost entirely unrelated to the others – distant cousins at best. They are alike,

however, in that they are comprised of refinements, generalizations and applications

of clever mathematical ideas developed by other groups of people before me. We

give a very brief overview of these ideas and what we do with them below – a more

satisfactory introduction can be found at the beginning of each chapter.

Let us say a boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is non-degenerate if it cannot

be written as a function on {0, 1}𝑛′ for 𝑛′ < 𝑛. In 1992, Nisan and Szegedy [58]

proved a lower bound on the degree of such functions as real multilinear polynomials.

More specifically, if 𝑓 : {0, 1}𝑛 → {0, 1} is a non-degenerate function of degree 𝑑,

then 𝑛 ≤ 𝑑 · 2𝑑−1. A recent paper of Chiarelli, Hatami and Saks [13] improved this

bound to 𝑛 ≤ 6.416 ·2𝑑, which is tight up to a constant factor. Their main idea was to

consider the potential function ∑︀𝑖∈[𝑛] 2− deg(𝐷𝑖𝑓) instead of the quantity ∑︀𝑖∈[𝑛] Inf𝑖[𝑓 ],

as in Nisan and Szegedy’s original proof. In Chapter 2, we introduce similar potentials

based on sensitivity and certificate complexity, as well as mixtures of these measures,

obtaining new results of a similar flavor. Along the way, we sharpen their result by a

constant, as well as many other best-known polynomial relationships between these

measures.

In Chapter 3, we explore some applications of a recent paper by Guo, Jerrum and

Liu [32], in which the authors introduced a general algorithmic framework called Par-
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tial Rejection Sampling for generating samples from product distributions conditional

on a set of constraints being satisfied. It is shown in [32] that the procedure termi-

nates with a uniform sample in an expected number of rounds which is logarithmic in

the problem size, as long as (i) a Lovasz Local Lemma-like condition holds, and (ii)

whenever two constraints overlap at all (in terms of the variables they depend on),

they overlap significantly (loosely speaking). We apply their method to two sampling

problems which do not satisfy the second condition, and yet we prove a logarithmic

runtime bound for these problems.

Finally, in Chapter 4, we prove new bounds on the quantity

max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺),

where 𝒢𝑛 is the set of all graphs on 𝑛 vertices, and cp(𝐺) is the clique partition number

of 𝐺, which is defined as the minimal number 𝑟 such that there exist 𝑟 edge-disjoint

cliques whose union is exactly 𝐺. (In particular, cp(𝐺) ≤ |𝐸(𝐺)|, since 𝐸(𝐺) is an

edge-disjoint family of 2-cliques whose union is 𝐺.) In a 1986 paper of De Caen,

Erdős, Pullman and Wormald [18], the authors show that

(︂ 7
25 + 𝑜(1)

)︂
𝑛2 ≤ max

𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) ≤
(︂13

30 + 𝑜(1)
)︂
𝑛2

and conjecture that the constant 7
25 is optimal. We show that this is not true, by

exhibiting an infinite family of graphs with cp(𝐺) = cp(𝐺) = 1
2

(︁
7
25 + 1

2050 + 𝑜(1)
)︁
𝑛2.

We also make use of a method of Keevash and Sudakov to improve the upper bound,

showing that

lim
𝑛→∞

max𝐺∈𝒢𝑛 cp(𝐺) + cp(𝐺)
𝑛2 ∈ (0.28048, 0.3186).

(The content in Chapter 4 overlaps with a forthcoming joint work by the author,

John Urschel and Dhruv Rohatgi [69]).
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Chapter 2

On Some Extremal Properties of

Boolean Functions

2.1 Introduction

In this chapter, we investigate several fundamental questions about boolean functions

𝑓 : {0, 1}𝑛 → {0, 1}. Such functions are natural objects of study in many areas of

computer science and mathematics, and therefore a fairly rich theory has developed

around them in the past half century. Many important breakthroughs in active areas

such as circuit complexity, PCPs and hardness of approximation, learning theory,

cryptography and pseudorandomness – to name a few – are built upon an under-

standing of the combinatorial and analytic properties of boolean functions. For a

proper introduction to the analysis of boolean functions and their role in theoretical

computer science, we refer the reader to Ryan O’Donnell’s excellent book ([61]).

Here, we concern ourselves not with these exciting applications, but rather with

a few basic extremal questions about boolean functions. In particular, we focus on

questions of the form, “if a boolean function 𝑓 is small in measure A, then how

large can it be in measure B?”, for a variety of complexity measures A and B. In

most of our results, the measure B is simply the number of relevant variables1 of

1We say a variable 𝑖 ∈ [𝑛] is relevant for 𝑓 if flipping the 𝑖th bit can actually change the value of
𝑓 for some inputs. More formally, a coordinate/variable 𝑖 is relevant if there exists a pair of inputs
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a function 𝑓 , while the measure A belongs to a class of well-studied, polynomially

related complexity measures, including 𝑠(𝑓), bs(𝑓), deg(𝑓), 𝐶(𝑓), DT(𝑓), or sensitiv-

ity, block sensitivity, degree, certificate complexity and decision tree/query complexity,

respectively2. These measures arise naturally when studying various simple models

of computation. For example, the decision tree depth DT(𝑓) measures the worst case

number of bits of 𝑥 made by the best adaptive query algorithm for computing 𝑓(𝑥).

Perhaps a more interesting model is a CREW-PRAM (Concurrent Read Exclusive

Write Parallel Random Access Machine), which has been studied by computer sci-

entists since at least the early 1980’s (see e.g. [10], [16], [68]). A CREW-PRAM

for computing some function 𝑓 : {0, 1}𝑛 → {0, 1} consists of a collection of proces-

sors, computing synchronously in parallel, communicating via a global random access

memory. Beginning with a string 𝑥1, . . . , 𝑥𝑛 stored in global memory cells 𝐶1, . . . , 𝐶𝑛,

the computation must finish with 𝑓(𝑥1, . . . , 𝑥𝑛) written on cell 𝐶1. At each step of

computation, each processor can read any global memory cell, do some (arbitrary)

private computing and then write to a global memory cell, with the restriction that at

most one processor be allowed to write to a particular global memory cell in a single

step (hence the “exclusive write”). In [16] and [68], Cook, Dwork and Reischuk show

that any CREW-PRAM computing a function 𝑓 requires at least Ω(log 𝑠(𝑓)) steps

in the worst case. Nisan [60] then introduced block sensitivity as a generalization of

sensitivity to obtain a corresponding upper bound of 𝑂(log bs(𝑓)) on CREW-PRAM

complexity – hence tightness of the Cook-Dwork-Reischuk lower bound on CREW-

PRAM complexity is equivalent to the statement bs(𝑓) ≤ 𝑠(𝑓)𝐶 , for some constant

𝐶 < ∞. Nisan, Szegedy and others ([58], [28], [11], e.g.) conjectured this to be true

(eventually with 𝐶 = 2). The so-called sensitivity conjecture remained open for some

25 years, until Hao Huang’s recent proof ([40]) of bs(𝑓) ≤ 𝑠(𝑓)4.

In light of the Cook-Dwork-Reischuk lower bound, a generic lower bound 𝑠(𝑓) ≥

𝑠(𝒞), for all 𝑓 in some function class 𝒞, implies that all 𝑓 ∈ 𝒞 have CREW-PRAM

complexity Ω(log 𝑠(𝒞)). The same is of course true for deg(𝑓) or any of the other

𝑥 and 𝑥′ in {0, 1}𝑛 such that 𝑥 and 𝑥′ differ only in the 𝑖th coordinate and 𝑓(𝑥) ̸= 𝑓(𝑥′).
2We give formal definitions of all of these quantities in section 2.2, but for a more comprehensive

treatment, we recommend the surveys [11] and [35].
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measures discussed above. The broadest possible class 𝒞 of boolean functions for

which it is possible to obtain nontrivial lower bounds is the set of all functions with 𝑛

relevant variables, which we denote by 𝒞𝑛. The following two foundational results in

this direction, concerning 𝑠(𝒞𝑛) and deg(𝒞𝑛), are due to H.U. Simon [72] and Nisan

and Szegedy [58], respectively.

Theorem: (Simon, 1983) For any 𝑓 ∈ 𝒞𝑛, with 𝑠(𝑓) = 𝑠,

𝑛 ≤ 𝑠

2 · 4
𝑠. (2.1)

Theorem: (Nisan-Szegedy, 1994) For any 𝑓 ∈ 𝒞𝑛, with deg(𝑓) = 𝑑,

𝑛 ≤ 𝑑 · 2𝑑−1. (2.2)

Both theorems yield a Ω(log log 𝑛) lower bound on the CREW-PRAM complexity of

𝑓 ∈ 𝒞𝑛. This lower bound is tight, as witnessed by the address function

𝑓(𝑥1, . . . , 𝑥𝑘, {𝑦𝑧}𝑧∈{0,1}𝑘) = 𝑦(𝑥1,...,𝑥𝑘)

which has 𝑛 = 2𝑘 + 𝑘 relevant variables and 𝑠(𝑓) = deg(𝑓) = 𝑘 + 1 = log 𝑛 +

𝑂(log log 𝑛). In fact, Wegener [75] gave an even tighter example of a monotone

function 𝑔 on 𝑛 = Ω( 1√
𝑠(𝑔)
· 4𝑠(𝑔)) = Ω( 1√

deg(𝑔)
· 2deg(𝑔)) relevant variables. Hence, the

logarithmic (in 𝑛) lower bounds obtained on 𝑠(𝑓) and deg(𝑓) from (2.1) and (2.2) are

tight up to a 1 + 𝑜(1) factor. However, viewed as upper bounds on 𝑛, (2.1) and (2.2)

are not known to be asymptotically tight. In fact, Nisan and Szegedy’s result was

recently improved, for the first time, in [13]:

Theorem: (Chiarelli, Hatami, Saks 2019) For any 𝑓 ∈ 𝒞𝑛, with 𝑑 := deg(𝑓),

𝑛 ≤ 6.614 · 2𝑑. (2.3)

The authors of [13] also construct an infinite family of functions of degree 𝑑 with

𝑛 = (1.5 + 𝑜(1))2𝑑 relevant variables, so the tightest possible bound on relevant
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variables in terms of degree is 𝑛 ∼ 𝐶deg · 2𝑑, for some 𝐶deg ∈ [1.5, 6.614]. Computing

the precise value of 𝐶deg remains an open problem, one which we believe is inherently

interesting, even though such improvements are inconsequential from the perspective

of PRAM lower bounds.

Unlike the Nisan-Szegedy theorem, Simon’s theorem has not been improved (as

far as we are aware), nor have any tight examples been discovered. In particular,

it does not appear to be known whether the extra factor of 𝑠 can be removed from

(2.1), which seems like a natural question to ask in light of the recent improvement

to (2.2).

Similarly, many of the known polynomial relationships between the measures

𝑠(𝑓), bs(𝑓), deg(𝑓), 𝐶(𝑓) and DT(𝑓) have not been improved since the initial flurries

of work in the 1990s and early 2000s. (The obvious exception being Huang’s recent

proof that 𝑠(𝑓) even belongs in this polynomial family!) There has, however, been

more recent progress in constructing separations between these measures. For exam-

ple, a classical result of Nisan [60] says that 𝐶(𝑓) ≤ bs(𝑓)2, and yet for many years

the biggest gap exhibited by a known family of functions was 𝐶(𝑓) = bs(𝑓)log4.5 5,

until Gilmer, Saks and Srinivasan [27] showed in 2013 that 2 is the best possible

exponent in this bound. One outstanding question in this area is that of bs(𝑓) versus

deg(𝑓). Nisan and Szegedy showed in [58] that

bs(𝑓) ≤ 2 deg(𝑓)2, (2.4)

and other than a constant-factor improvement to bs(𝑓) ≤ deg(𝑓)2 by Tal [73], neither

this upper bound nor the bs(𝑓) = deg(𝑓)log3 6 separation [59] has been improved in 25

years. The proof is completely analytic and makes use of V. A. Markov’s inequality

for polynomials on R, while most of the best-known relationships between other com-

plexity measures either have completely combinatorial/algorithmic proofs, or result

from chaining together an algorithm with the bound bs(𝑓) ≤ deg(𝑓)2. (Again, the

notable exception is Huang’s deg(𝑓) ≤ 𝑠(𝑓)2, which is proved using spectral graph

theory. Even so, the bs(𝑓) ≤ 𝑠(𝑓)4 corollary does go through (2.4)!) For example, the
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best-known bound on DT(𝑓) in terms of deg(𝑓), follows from an algorithm described

in [55] which computes 𝑓 using at most bs(𝑓)·deg(𝑓) queries, giving DT(𝑓) ≤ deg(𝑓)3

when combined with (2.4). Any progress on the bs(𝑓) vs. deg(𝑓) question is therefore

interesting, in the author’s opinion.

2.1.1 New Results

In this chapter, we make modest progress on the aforementioned problems. Our main

results are summarized in the following theorem:

Main Theorem: Let 𝑓 : {0, 1}𝑛 → {0, 1} be such that every 𝑖 ∈ [𝑛] is relevant for

𝑓 , and set 𝑠 := 𝑠(𝑓), 𝑑 := deg(𝑓), 𝑏 := bs(𝑓), 𝐶 := 𝐶(𝑓), and 𝐷 := DT(𝑓). Then

𝑛 ≤ min
{︂

4.394 · 2𝑑, 1
24𝐶 , 8.277 · 2 𝑑

2 +𝑠, (log 𝑠+ 0.29) · 2𝐶+𝑠
}︂
. (2.5)

Moreover, for each 𝑘, the number of coordinates 𝑖 ∈ [𝑛] which are not sensitive for

any input 𝑥 with 𝑠𝑥(𝑓) ≥ 𝑘 is at most 𝑘2+𝑜𝑘(1)4𝑘. If 𝑓 is monotone, then

𝑛 ≤ min
{︂

1.325 · 2𝑑, 1
2 · 4

𝑠,
1
4 · 2

𝐷 + 2
}︂
. (2.6)

In any case, for 𝛾 :=
√︁

2/3 = 0.81649 . . . , we also have

𝑏 ≤ (𝛾 + 𝑜(1)) · 𝑑2 (2.7)

𝑏 ≤ (𝛾 + 𝑜(1)) · 𝑠4 (2.8)

𝐷 ≤ (𝛾 + 𝑜(1)) · 𝑑3 (2.9)
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2.2 Preliminaries

Throughout the entire chapter, 𝑓 will be a boolean function on {0, 1}𝑛. We will refer

to the input variables to such functions either by 𝑥𝑖 or simply by the index 𝑖, for each

𝑖 ∈ {1, . . . , 𝑛} =: [𝑛]. We define 𝑅(𝑓) to be the set of relevant variables (sometimes

relevant coordinates) for 𝑓 , namely those 𝑖 ∈ [𝑛] for which there exists a pair of inputs

(𝑥, 𝑥′) such that 𝑥𝑗 = 𝑥′
𝑗 for all 𝑗 ̸= 𝑖 and 𝑓(𝑥) ̸= 𝑓(𝑥′). Let 𝛿𝑖(𝑓) be the indicator

of whether 𝑖 is relevant for 𝑓 . We also define 𝑛(𝑓) = |𝑅(𝑓)| = ∑︀
𝑖∈[𝑛] 𝛿𝑖(𝑓) to be the

number of relevant variables for 𝑓 . We say a function 𝑓 on {0, 1}𝑛 is non-degenerate

if 𝑛(𝑓) = 𝑛, that is, every variable is relevant for 𝑓 .

Sometimes it will be convenient to consider functions 𝑔 : {±1}𝑛 → {±1} instead of

𝑓 : {0, 1}𝑛 → {0, 1}. Such sets of functions are clearly in bijection with one another,

e.g. via the algebraic transformations

𝑓(𝑥1, . . . , 𝑥𝑛) ↦→ 𝑔(𝑥) :=
1− 𝑓(1−𝑥1

2 , . . . , 1−𝑥𝑛

2 )
2 : {±1}𝑛 → {±1} (2.10)

𝑔(𝑥1, . . . , 𝑥𝑛) ↦→ 𝑓(𝑥) := 1− 2𝑔(1− 2𝑥1, . . . , 1− 2𝑥𝑛) : {0, 1}𝑛 → {0, 1}(2.11)

Functions on {±1}𝑛 can be expressed as a linear combination of characters 𝜒𝑆 for 𝑆 ⊆

[𝑛], where 𝜒𝑆(𝑥) = ∏︀
𝑖∈𝑆 𝑥𝑖. These characters form an orthonormal basis with respect

to the inner product ⟨𝑓, 𝑔⟩ := 1
2𝑛

∑︀
𝑥∈{±1}𝑛 𝑓(𝑥)𝑔(𝑥) = E[𝑓(𝑥)𝑔(𝑥)], and hence any 𝑓 :

{±1}𝑛 → R has a unique (Fourier) expansion of the form 𝑓(𝑥) = ∑︀
𝑆⊆[𝑛] 𝑓(𝑆)∏︀𝑖∈𝑆 𝑥𝑖.

(The coefficients 𝑓(𝑆) are called the Fourier coefficients of 𝑓 .) For each coordinate 𝑖,

we define the 𝑖th directional derivative 𝐷𝑖𝑓 via 𝐷𝑖𝑓(𝑥) = 𝑥𝑖
𝑓(𝑥)−𝑓(𝑥𝑖)

2 , from which it

follows that 𝐷𝑖𝑓(𝑥) = ∑︀
𝑆∋𝑖 𝑓(𝑆)𝜒𝑆∖{𝑖}(𝑥). The 𝑖th coordinate influence of a function

𝑓 , denoted Inf𝑖[𝑓 ], is defined to be

Inf𝑖[𝑓 ] := Pr
𝑥∼{±1}𝑛

[𝑓(𝑥) ̸= 𝑓(𝑥𝑖)]

and the total influence of 𝑓 , denoted by I[𝑓 ], is defined to be ∑︀𝑛
𝑖=1 Inf𝑖[𝑓 ]. Since

𝑓(𝑥) ̸= 𝑓(𝑥𝑖) precisely when 𝐷𝑖𝑓(𝑥) ̸= 0, it follows that Inf𝑖[𝑓 ] = ‖𝐷𝑖𝑓‖2
2, recovering
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the well-known Fourier formulas for influence:

Inf𝑖[𝑓 ] =
∑︁
𝑆∋𝑖

𝑓(𝑆)2, I[𝑓 ] =
∑︁
𝑆⊆[𝑛]

|𝑆|𝑓(𝑆)2

If 𝑓 is monotone, then Inf𝑖[𝑓 ] = 𝑓({𝑖}) and so I[𝑓 ] = ∑︀𝑛
𝑖=1 𝑓({𝑖}). The following

useful fact can be observed directly from the definition of influence:

Fact 2.2.1. For any 𝑖 ∈ [𝑛], and any set 𝐻 ⊂ [𝑛] with 𝑖 ̸∈ 𝐻,

Inf𝑖[𝑓 ] = E𝛼∼{0,1}𝐻 [Inf𝑖[𝑓𝛼]].

The Fourier expansion of a function 𝑓 is the unique polynomial expansion of

𝑓 in {±1}-valued variables, and there is a corresponding (unique) polynomial for

𝑓 over {0, 1}, which we call the multilinear polynomial expansion of 𝑓 . These two

polynomials have the same degree, which we simply call the degree of 𝑓 , denoted

deg(𝑓). From the Fourier formulas it is clear that I[𝑓 ] ≤ deg(𝑓). The following facts

are well-known and easy to show by induction (see, e.g. [35] and [61]):

Fact 2.2.2. Let 𝑓 be a boolean function and let ∑︀𝑆⊆[𝑛]𝑐𝑆

∏︀
𝑖∈𝑆 𝑥𝑖 be its multilinear

polynomial expansion over {0, 1}. Then for all 𝑆 ⊆ [𝑛]:

1. 𝑐𝑆 ∈ Z, and 𝑓(𝑆) ∈ 1
2deg(𝑓) · Z

2. 𝑐𝑆 = (−2)|𝑆|∑︀
𝐵:𝑆⊆𝐵⊆[𝑛] 𝑓(𝐵)

3. 𝑓(𝑆) = ∑︀
𝐵⊆[𝑛],𝐵′⊆𝑆 𝑐𝐵(−1)|𝐵′|(1

2)−|𝐵∖𝐵′|

We next define a variety of complexity measures we will encounter in this chapter.

As mentioned at the start of the chapter, these concepts were originally introduced

because of their close relationships with various models of computation. For any

string 𝑥 ∈ {0, 1}𝑛 and a subset 𝑆 ⊆ [𝑛], we let 𝑥𝑆 denote the string obtained by

flipping the bits of 𝑥 belonging to 𝑆 and leaving the rest alone. If 𝑆 = {𝑖}, we simply

write 𝑥𝑖 to denote 𝑥 with the 𝑖th bit flipped. If 𝑓(𝑥) ̸= 𝑓(𝑥𝑖), we say that 𝑓 is sensitive

to 𝑖 at 𝑥. The sensitivity of 𝑓 at an input 𝑥, denoted 𝑠𝑥(𝑓), is the number of 𝑖 ∈ [𝑛]
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for which 𝑓 is sensitive to 𝑖 at 𝑥. The maximum of 𝑠𝑥(𝑓) over all 𝑥 ∈ {0, 1}𝑛 is

called the sensitivity of 𝑓 (also maximum sensitivity of 𝑓), and is denoted 𝑠(𝑓). The

1-sensitivity (resp. 0-sensitivity) of 𝑓 , denoted 𝑠1(𝑓) (resp. 𝑠0(𝑓)), is the maximum

of 𝑠𝑥(𝑓) over all inputs 𝑥 with 𝑓(𝑥) = 1 (resp. 0). Note that I[𝑓 ] = E𝑥[𝑠𝑥(𝑓)] ≤ 𝑠(𝑓).

The block sensitivity at the point 𝑥 of a boolean function 𝑓 : {0, 1}𝑛 → {0, 1},

denoted bs𝑥(𝑓), is the maximum number 𝑘 such that there exist 𝑘 disjoint sets

𝐵1, . . . , 𝐵𝑘 ⊆ [𝑛] (called blocks) with the property that

𝑓(𝑥) = 𝑓(𝑥𝐵𝑖), for 𝑖 = 1, . . . , 𝑘.

We then define the block sensitivity of 𝑓 to be the maximum value of bs𝑥(𝑓) over all

𝑥 ∈ {0, 1}𝑛, and we denote it by bs(𝑓). If we restrict the blocks to be of size at most

ℓ, the corresponding quantity is denoted bsℓ(𝑓). Clearly bs(𝑓) ≥ bs1(𝑓) = 𝑠(𝑓).

The certificate complexity at the point 𝑥 of a boolean function 𝑓 , denoted 𝐶𝑥(𝑓),

is the size of the smallest set 𝑆 ⊆ [𝑛] with the property that 𝑓 is constant on the

subcube of points which agree with 𝑥 on 𝑆, i.e. {𝑦 : 𝑦𝑖 = 𝑥𝑖 for all 𝑖 ∈ 𝑆}. The

certificate complexity of 𝑓 , denoted 𝐶(𝑓), is then defined as the maximum value of

𝐶𝑥(𝑓) over all 𝑥 ∈ {0, 1}𝑛. Also, let 𝐶min(𝑓) := min𝑥∈{0,1}𝑛 𝐶𝑥(𝑓). By analogy with

𝑠0(𝑓) and 𝑠1(𝑓), we can also define 𝐶0(𝑓), 𝐶1(𝑓), 𝐶0
min(𝑓) and 𝐶1

min(𝑓) in the obvious

way.

The query complexity or (deterministic) decision tree complexity of 𝑓 , denoted

DT(𝑓), is defined to be the minimum cost of any deterministic, adaptive query algo-

rithm which always computes 𝑓 correctly. (The cost of such an algorithm is defined

to be the maximal number of queries used by the algorithm to compute 𝑓(𝑥), taken

over all 𝑥 ∈ {0, 1}𝑛.)

The 𝜀-approximate degree of a boolean function 𝑓 : {0, 1}𝑛 → {0, 1} is the smallest

𝑑 for which there exists a degree 𝑑 (multilinear) polynomial 𝑝(𝑥1, . . . , 𝑥𝑛) such that

|𝑝(𝑥)− 𝑓(𝑥)| ≤ 𝜀 for all 𝑥 ∈ {0, 1}𝑛,

and we denote this quantity by ̃︂deg𝜀(𝑓). If we omit the 𝜀 and simply write ̃︂deg(𝑓),
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it should be understood to mean ̃︂deg1/3(𝑓). This is the canonical and somewhat

arbitrary choice – replacing 1/3 by any other constant can only change the value of̃︂deg(𝑓) by a constant factor.

The measures deg(𝑓), bs(𝑓), 𝐶(𝑓),DT(𝑓),̃︂deg(𝑓) and (last but not least!) 𝑠(𝑓)

are all known to be polynomially related.3 Some of these relationships are known

exactly, while for others there remains a gap between the best-known bound and

the best-known separation. For example, Huang [40] recently proved the inequality

deg(𝑓) ≤ 𝑠(𝑓)2 for all 𝑓 , and this is tight, as witnessed by the function

(𝑥1,1 ∧ 𝑥2,1 ∧ · · · 𝑥𝑚,1) ∨ · · · ∨ (𝑥1,𝑚 ∧ 𝑥2,𝑚 ∧ · · · 𝑥𝑚,𝑚)

which has sensitivity 𝑚 and degree 𝑚2. On the other hand, the relationship 𝑠(𝑓) ≤

deg(𝑓)2 is not known to be tight – the best known construction has 𝑠(𝑓) = deg(𝑓)log3 6.

We summarize the current state of knowledge about these relationships in Table 2.1.

Below, we list the facts that “generate” the left table, in the sense that any inequality

implied by Table 2.1 can be proved by combining these inequalities in the proper

sequence.

Fact 2.2.3. DT(𝑓) ≤ 𝐶(𝑓)2 (Blum-Impagliazzo [8])

𝑠(𝑓) ≤ bs(𝑓) ≤ 𝐶(𝑓) ≤ bs(𝑓)2 (Nisan [60])

bs(𝑓) ≤ deg(𝑓)2 (Nisan-Szegedy [58], refined by Tal [73])

DT(𝑓) ≤ bs(𝑓) deg(𝑓) (Midrijanis [55])

Fact 2.2.4 (Nisan, [60]). For monotone boolean functions 𝑓 , 𝑠(𝑓) = bs(𝑓) = 𝐶(𝑓) ≤

deg(𝑓).

Next we describe a construction of Wegener [75], which is a monotone function

whose (block) sensitivity, degree, certificate and query complexity are all quite low

compared to the number of variables. For each odd integer 𝑘 ≥ 1, we define the
3A number of other complexity measures, such as randomized and quantum decision tree com-

plexities (with 0, 1 or 2-sided error) also fit into this “polynomial family”, but they do not play a
significant role in this thesis so we do not define them here. These definitions can be found in [11],
for example.
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𝑠(𝑓) deg(𝑓) bs(𝑓) 𝐶(𝑓)
𝑠(𝑓) * 2 1 1
deg(𝑓) 2 * 2 2
bs(𝑓) 4 2 * 1
𝐶(𝑓) 5 3 2 *
DT(𝑓) 6 3 3 2

𝑠(𝑓) deg(𝑓) bs(𝑓) 𝐶(𝑓)
𝑠(𝑓) * log3 6 [59] 1 1
deg(𝑓) 2 * 2 2
bs(𝑓) 2 log3 6 [59] * 1
𝐶(𝑓) 2.22 [6] log3 6 [59] 2 [27] *
DT(𝑓) 3 [6] 2 [26] 2 2

Table 2.1: Best-known relationships (left) and separations (right) between complexity
measures. On the left: A number 𝛼 in the row labeled by measure 𝐴 and the column
labeled by measure 𝐵 means that for all boolean functions 𝑓 , 𝐴(𝑓) ≤ 𝐵(𝑓)𝛼. So for example
the 4 in the (bs, 𝑠) entry means bs(𝑓) ≤ 𝑠(𝑓)4 for all 𝑓 . On the right: A number 𝛽 in the
row labeled by measure 𝐴 and the column labeled by measure 𝐵 means that there exists
(infinitely many) functions 𝑓 with 𝐴(𝑓) = Ω̃(𝐵(𝑓)𝛽). The corresponding reference is given
in square brackets. For example, the 2 in the (bs, 𝑠) entry means we know of an explicit
family of functions with bs(𝑓) = Ω(𝑠(𝑓)2). Note that we do not include a column for DT(𝑓),
since DT(𝑓) ≥ 𝐴(𝑓) for any measure 𝐴 considered here.

monotone address function

MAF𝑘
(︂
𝑥1, . . . , 𝑥𝑘, {𝑦𝑆}𝑆∈( [𝑘]

⌈𝑘/2⌉)
)︂

:= MAJ(𝑥1, . . . , 𝑥𝑘)
⋁︁

𝑆∈( [𝑘]
⌈𝑘/2⌉)

(︃⋀︁
𝑖∈𝑆

𝑥𝑖 ∧ 𝑦𝑆
)︃
.

Proposition 2.2.5. The monotone address function 𝑓 = MAF𝑘 has 𝑠(𝑓) = bs(𝑓) =

𝐶(𝑓) = ⌈𝑘/2⌉+1, and deg(𝑓) = DT(𝑓) = 𝑘+1. Therefore, for 𝑚 ∈ {𝑠(·), bs(·), 𝐶(·)}

and 𝑚′ ∈ {deg(·),DT(·)}, 𝑓 has 𝑛(𝑓) = Θ
(︂

1√
𝑚(𝑓)
· 4𝑚(𝑓)

)︂
= Θ

(︂
1√
𝑚′(𝑓)

· 2𝑚′(𝑓)
)︂

relevant variables.

Proof. The fact that 𝑠(𝑓) = ⌈𝑘/2⌉+1 can be seen through a direct case analysis – we

refer the reader to the proof in [75] for details. By Fact 2.2.4, this implies the same

for bs(𝑓) and 𝐶(𝑓). To compute deg(𝑓), note that we can write

MAF𝑘(𝑥, 𝑦) =
∑︁

𝑆∈( [𝑘]
⌈𝑘/2⌉)

𝑦𝑆
∏︁
𝑖∈𝑆

𝑥𝑖 ·
∏︁
𝑖 ̸∈𝑆

(1− 𝑥𝑖) + 1
(︃

𝑘∑︁
𝑖=1

𝑥𝑖 ≥ 𝑘/2 + 1
)︃

⏟  ⏞  
deg(·)≤𝑘

,

and so each 𝑦𝑆 appears in a unique degree 𝑘 + 1 monomial 𝑦𝑆 · 𝑥1 · · ·𝑥𝑘. Since

DT(𝑓) ≥ deg(𝑓), and clearly DT(𝑓) ≤ 𝑘 + 1 (𝑓 can computed by querying the 𝑥

variables and then possibly the unique relevant 𝑦𝑆), it follows that DT(𝑓) = 𝑘+ 1 as

well. The conclusion then follows from Stirling’s formula.
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2.3 Improved bounds on the number of variables

2.3.1 Overview

Our goal is to generalize the ideas of Chiarelli, Hatami and Saks [13] to develop a

unified framework for proving bounds on 𝑛(𝑓) in terms of various complexity measures

like deg(𝑓), 𝑠(𝑓) and 𝐶(𝑓). The key player in each proof is a certain “coordinate

version” 𝑚𝑖 of each complexity measure 𝑚, which is engineered to behave in a certain

way with respect to restrictions of variables (see Definition 2.3.1). We call such 𝑚𝑖

“restriction reducing coordinate measures” (RRCMs) and form the corresponding

potential functions

M(𝑓) :=
∑︁
𝑖∈[𝑛]

𝛿𝑖(𝑓)
2𝑚𝑖(𝑓) . (2.12)

The defining properties of RRCMs are chosen to guarantee that, for any 𝐻 ⊆ [𝑛], M

always obeys the inequality

M(𝑓) ≤
∑︁
𝑖∈𝐻

𝛿𝑖(𝑓)
2𝑚𝑖(𝑓) + E𝛼∼{0,1}𝐻 [M(𝑓𝛼)]. (2.13)

This enables us to bound M(𝑓) recursively, assuming we choose the set of coordinates

𝐻 in such a way that the restrictions 𝑓𝛼 are guaranteed to have lower complexity, in

some sense. Upper bounds on M(𝑓) naturally yield exponential upper bounds on 𝑛(𝑓)

in terms of 𝑚(𝑓). We make these definitions precise below in the next subsection,

and each subsequent subsection describes a different implementation of the general

strategy above, yielding new bounds.
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2.3.2 Restriction-reducing coordinate measures

Let us say a functional 𝑚 on boolean functions is an i-coordinate measure if 𝛿𝑖(𝑓) =

0 =⇒ 𝑚(𝑓) = 0.

Definition 2.3.1. We say an 𝑖-coordinate measure 𝑚𝑖 is restriction reducing if, for

any 𝑗 ∈ [𝑛] ∖ {𝑖}, and each 𝑏 ∈ {0, 1} :

(1) 𝑚𝑖(𝑓𝑗=𝑏) ≤ 𝑚𝑖(𝑓)

(2) if 𝛿𝑖(𝑓) = 1 and 𝛿𝑖(𝑓𝑗=𝑏) = 0, then 𝑚𝑖(𝑓𝑗=1−𝑏) ≤ 𝑚𝑖(𝑓)− 1.

We denote by ℛ𝑖 the set of restriction reducing 𝑖-coordinate measures. We abuse

notation sightly and write {𝑚𝑖} ∈ ℛ𝑖 to denote that 𝑚𝑖 ∈ ℛ𝑖 for each 𝑖 ∈ [𝑛].

Properties (1) and (2) were essentially chosen to make the following a fact:

Fact 2.3.2. Let 𝑚𝑖 ∈ ℛ𝑖, and let 𝑗 ∈ [𝑛] ∖ {𝑖}. Then

𝛿𝑖(𝑓)2−𝑚𝑖(𝑓) ≤ 𝛿𝑖(𝑓𝑗=0)2−𝑚𝑖(𝑓𝑗=0) + 𝛿𝑖(𝑓𝑗=1)2−𝑚𝑖(𝑓𝑗=1)

2 . (2.14)

Proof. If 𝛿𝑖(𝑓𝑗=0) = 𝛿𝑖(𝑓𝑗=1) = 1, then property (1) of Definition 2.3.1 implies that

both 2−𝑚𝑖(𝑓𝑗=0) ≥ 2−𝑚𝑖(𝑓) and 2−𝑚𝑖(𝑓𝑗=1) ≥ 2−𝑚𝑖(𝑓), which implies (2.14). Otherwise,

suppose without loss of generality that 𝛿𝑖(𝑓𝑗=0) = 0 and 𝛿𝑖(𝑓𝑗=1) = 1. Then property

(2) of Definition 2.3.1 implies that 2−𝑚𝑖(𝑓𝑗=1) ≥ 2·2−𝑚𝑖(𝑓) which also implies (2.14).

Fact 2.3.2 extends easily by induction to larger restrictions:

Fact 2.3.3. For any 𝑖 ∈ [𝑛] and any 𝐻 ⊂ [𝑛] with 𝑖 ̸∈ 𝐻, and any {𝑚𝑖} ∈ ℛ𝑖,

𝛿𝑖(𝑓)2−𝑚𝑖(𝑓) ≤ E𝛼∼{0,1}𝐻

[︁
𝛿𝑖(𝑓𝛼)2−𝑚𝑖(𝑓𝛼)

]︁
. (2.15)

Proof. We proceed by induction on |𝐻|. The base case 𝐻 = {𝑗} is Fact 2.3.2. For

the inductive step, observe that if 𝛿𝑖(𝑓)2−𝑚𝑖(𝑓) ≤ E𝛼∼{0,1}𝐻

[︁
𝛿𝑖(𝑓𝛼)2−𝑚𝑖(𝑓𝛼)

]︁
holds for
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all 𝑓 with 𝐻 = 𝐻1 or 𝐻2, then it holds for 𝐻 = 𝐻1 ⊔𝐻2, since

𝛿𝑖(𝑓)2−𝑚𝑖(𝑓) ≤ E𝛼1∼{0,1}𝐻1

[︁
𝛿𝑖(𝑓𝛼1)2−𝑚𝑖(𝑓𝛼1 )

]︁
≤ E𝛼1∼{0,1}𝐻1

[︁
E𝛼2∼{0,1}𝐻2

[︁
𝛿𝑖(𝑓𝛼1,𝛼2)2−𝑚𝑖(𝑓𝛼1,𝛼2 )

]︁]︁
= E𝛼∼{0,1}𝐻1⊔𝐻2

[︁
𝛿𝑖(𝑓𝛼)2−𝑚𝑖(𝑓𝛼)

]︁
.

For any {𝑚𝑖} ∈ ℛ𝑖, we can define the associated potential function M via equation

(2.12). By Fact 2.3.3, M satisfies the inequality (2.13) for any set 𝐻 ⊆ [𝑛] of restricted

coordinates. Next we introduce three explicit families of RRCMs, the first of which

(deg𝑖) was introduced in [13]:

Definition 2.3.4. For each 𝑖 ∈ [𝑛], define the 𝑖-coordinate measures

deg𝑖(𝑓) := deg(𝑓(𝑥)− 𝑓(𝑥𝑖)) (2.16)

sens𝑖(𝑓) := max
{𝑥 :𝑓(𝑥)̸=𝑓(𝑥𝑖)}

𝑠𝑥(𝑓) + 𝑠𝑥𝑖(𝑓) (2.17)

cert𝑖(𝑓) := max
{𝑥 :𝑓(𝑥)̸=𝑓(𝑥𝑖)}

𝐶𝑥(𝑓) + 𝐶𝑥𝑖(𝑓) (2.18)

Lemma 2.3.5. For each 𝑖 ∈ [𝑛], the coordinate measures deg𝑖, sens𝑖, and cert𝑖 all

belong to ℛ𝑖.

Proof. Since deg(·), 𝑠𝑥(·) and 𝐶𝑥(·) cannot possibly increase by restricting input vari-

ables, property (1) of Definition 2.3.1 is trivially satisfied for each of the coordinate

measures in question. To see that (2) holds, we abbreviate 𝑓𝑗=𝑏 by 𝑓𝑏 and assume

without loss of generality that 𝛿𝑖(𝑓0) = 0.

First we argue that deg𝑖(𝑓1) = deg𝑖(𝑓) − 1. We can write 𝑓(𝑥) = 𝑥𝑗𝑓1(𝑥) + (1 −

𝑥𝑗)𝑓0(𝑥). Since 𝑥𝑖 does not appear in (1 − 𝑥𝑗)𝑓0(𝑥), it follows that 𝑓(𝑥) − 𝑓(𝑥𝑖) =

𝑥𝑗(𝑓1(𝑥)− 𝑓1(𝑥𝑖)) from which it is clear that deg𝑖(𝑓) = 1 + deg𝑖(𝑓1).

Next we argue sens𝑖(𝑓1) = sens𝑖(𝑓)−1. Let 𝑥 be any input for which 𝑓(𝑥) ̸= 𝑓(𝑥𝑖),

and let us write 𝑦 for the string which is 𝑥 with the 𝑗th bit omitted. Since 𝑓0 does not

depend on 𝑖, it must be that 𝑓0(𝑦𝑖) = 𝑓0(𝑦). Therefore all such 𝑥 must have 𝑥𝑗 = 1,
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so 𝑓1(𝑦) = 𝑓(𝑥) ̸= 𝑓(𝑥𝑖) = 𝑓1(𝑦𝑖). But then 𝑗 must be sensitive for 𝑓 at exactly one

of 𝑥𝑖 or 𝑥, hence 𝑠𝑥(𝑓) + 𝑠𝑥𝑖(𝑓) = 𝑠𝑥(𝑓1) + 𝑠𝑥𝑖(𝑓1) + 1.

Finally we argue cert𝑖(𝑓1) = cert𝑖(𝑓)− 1, which essentially follows from the previ-

ous paragraph. Indeed, as above, all 𝑥 for which 𝑖 is sensitive for 𝑓 must have 𝑥𝑗 = 1,

and 𝑗 must be sensitive for exactly one of 𝑥 or 𝑥𝑖 – suppose it is 𝑥 (wlog). Then any

certificate for 𝑓 which agrees with 𝑥 must assign 1 to 𝑥𝑗, since if it were allowed to

be flipped, the certificate could not make 𝑓 constant. The claim follows.

Lemma 2.3.6. Let 𝑚𝑖 be a restriction reducing 𝑖-coordinate measure and set 𝑟 :=

min{𝑚𝑖(𝑥 ↦→ 𝑥𝑖),𝑚𝑖(𝑥 ↦→ ¬𝑥𝑖)}. Then for any boolean function 𝑓 ,

𝛿𝑖(𝑓)2−𝑚𝑖(𝑓) ≤ 2−𝑟 · Inf𝑖[𝑓 ]. (2.19)

Hence M(𝑓) ≤ 2−𝑟 · I[𝑓 ] and for any 𝑘 ∈ N, at most I[𝑓 ] · 2𝑘−𝑟 relevant variables can

have 𝑚𝑖(𝑓) ≤ 𝑘.

Proof. We proceed by induction on 𝑛(𝑓). If 𝑛(𝑓) = 1, then the corollary follows from

the definition of 𝑟 and the fact that Inf𝑖[𝑓 ] ≤ 1. Now suppose the desired inequality

holds for all 𝑓 ′ with 𝑛(𝑓 ′) < 𝑛(𝑓), and we wish to show it holds for 𝑓 as well. Then

by the induction hypothesis and Fact 2.3.2,

𝛿𝑖(𝑓)2−𝑚𝑖(𝑓) ≤ 2−𝑟 · Inf𝑖[𝑓𝑗=0] + 2−𝑟 · Inf𝑖[𝑓𝑗=1]
2 = 2−𝑟 · Inf𝑖[𝑓 ] (2.20)

where the final equality is Fact 2.2.1. If we sum this inequality over 𝑖 ∈ 𝑅(𝑓), we

obtain

M(𝑓) =
∞∑︁
𝑘=0

|{𝑗 ∈ 𝑅(𝑓) : 𝑚𝑖(𝑓) = 𝑘}|
2𝑗 ≤ 2−𝑟I[𝑓 ] (2.21)

which in particular implies that at most I[𝑓 ] · 2𝑘−𝑟 variables in 𝑅(𝑓) have 𝑚𝑖(𝑓) ≤

𝑘.
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Observation 2.3.1. Applying Lemma 2.3.6 to the measures deg𝑖 and sens𝑖 imme-

diately yields both Nisan-Szegedy’s and Simon’s theorems. Indeed, min{deg𝑖(𝑥 ↦→

𝑥𝑖), deg𝑖(𝑥 ↦→ ¬𝑥𝑖)} = 1 and min{sens𝑖(𝑥 ↦→ 𝑥𝑖), sens𝑖(𝑥 ↦→ ¬𝑥𝑖)} = 2, so

𝑛(𝑓) ≤ I[𝑓 ] · 2deg(𝑓)−1 (2.22)

𝑛(𝑓) ≤ I[𝑓 ] · 4𝑠(𝑓)−1. (2.23)

2.3.3 Degree

Let D(𝑓) := ∑︀
𝑖∈[𝑛]

𝛿𝑖(𝑓)
2deg𝑖(𝑓) , and for any 𝐻 ⊆ [𝑛], let D(𝐻, 𝑓) = ∑︀

𝑖∈𝐻
𝛿𝑖(𝑓)

2deg𝑖(𝑓) . For

any 𝑑 ∈ N, let D𝑑 = max{𝑓 : deg(𝑓)≤𝑑} D(𝑓). In [13], the authors argue that one

can always find a set 𝐻 of ≤ deg(𝑓)3 coordinates such that (i) deg𝑖(𝑓) = deg(𝑓)

∀𝑖 ∈ 𝐻 and (ii) deg(𝑓𝛼) < deg(𝑓) for all 𝛼 ∈ {0, 1}𝐻 . This implies D𝑑 ≤ 𝑑3

2𝑑 + D𝑑−1,

and hence that D(𝑓) <
∑︀∞
𝑑=1

𝑑3

2𝑑 = 26 for all 𝑓 . Combined with the observation

that D𝑑 ≤ 𝑑
2 (see Lemma 2.3.6), this yields Chiarelli, Hatami and Saks’ final bound

D(𝑓) ≤ 11
2 +∑︀∞

𝑑=12
𝑑3

2𝑑 ≈ 6.614.

In this subsection, we implement their argument in a slightly different way to

obtain a slightly stronger bound. In particular, rather than choosing 𝐻 to be a

minimal set of coordinates which covers all max degree monomials in 𝑓 , we choose 𝐻

to be the variables in a single monomial of 𝑓 . Restricting this set of coordinates may

not reduce the degree of 𝑓 , but as shown below, it will reduce the block sensitivity of

𝑓 . Hence, as we’ll want to induct on both degree and block sensitivity simultaneously,

we define

D𝑏,𝑑 := max
𝑓 with bs(𝑓)≤𝑏
and deg(𝑓)=𝑑

D(𝑓).

We also define 𝐵𝑑 := maxdeg(𝑓)=𝑑 bs(𝑓), and make the convention that D𝑏,𝑑 = 0

whenever 𝑏 > 𝐵𝑑.

Lemma 2.3.7. If 𝑀 is a monomial of degree 𝑑 = deg(𝑓) which appears in 𝑓 with

non-zero coefficient, then for any assignment 𝛼 : 𝑀 → {0, 1}, the restricted function

𝑓𝛼 has bs(𝑓𝛼) ≤ bs(𝑓)− 1.
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Proof. Let us write any string 𝑥 ∈ {0, 1}𝑛 as 𝑥 = (𝑥𝑀 , 𝑦), where 𝑥𝑀 ∈ {0, 1}𝑀 and

𝑦 ∈ {0, 1}[𝑛]∖𝑀 . We claim that for any (𝑥𝑀 , 𝑦), there is always a sensitive block

for 𝑓 contained entirely in 𝑀 . Indeed, for any 𝑦, the function 𝑓(·, 𝑦) has degree 𝑑,

since nothing can cancel with the maximal monomial ∏︀𝑖∈𝑀 𝑥𝑖. In particular, it is not

constant, so for any input 𝑥𝑀 , there is always at least one sensitive block for 𝑓(·, 𝑦)

at 𝑥𝑀 . Therefore, bs𝑦(𝑓𝛼) + 1 ≤ bs(𝛼,𝑦)(𝑓), and the lemma follows.

Lemma 2.3.8. For each 𝑏, 𝑑 with 𝑏 ≤ 𝑑2, we have

D𝑏,𝑑 ≤ 𝑑 · 2−𝑑 + max
𝑘∈{1,...,𝑑}

D𝑏−1,𝑘

Proof. Suppose 𝑓 has deg(𝑓) = 𝑑 and bs(𝑓) ≤ 𝑏. Let 𝑀 be any degree 𝑑 monomial

in 𝑓 . Using (2.13),

D(𝑓) ≤ |𝑀 | · 2−𝑑⏟  ⏞  
= 𝑑·2−𝑑

+ E
𝛼∼{0,1}𝑀

[D(𝑓𝛼)]. (2.24)

By Lemma 2.3.7, each 𝑓𝛼 has bs(𝑓𝛼) ≤ 𝑏−1. Since D𝑏,𝑑 is monotone in 𝑏 (for feasible

𝑏 ≤ 𝑑2), it follows that for each 𝛼, D(𝑓𝛼) ≤ D𝑏−1,𝑘, where 𝑘 = deg(𝑓𝛼). Taking the

maximum over all values of 𝑘 ∈ {1, . . . , 𝑑} yields a uniform bound that holds for all

restrictions 𝑓𝛼.

Corollary 2.3.9. For every 𝑓 , and every 𝑑 ≥ 1,

D(𝑓) ≤
⎛⎝D𝐵𝑑,𝑑 + (𝑑+ 1)𝐵𝑑+1

2𝑑+1 +
∞∑︁

𝑘=𝑑+2

𝑘(𝐵𝑘 −𝐵𝑘−1)
2𝑘

⎞⎠ (2.25)

≤

⎛⎝D𝑑2,𝑑 + (𝑑+ 1)3

2𝑑+1 +
∞∑︁

𝑘=𝑑+2

2𝑘2 − 𝑘
2𝑘

⎞⎠ . (2.26)

Lemma 2.3.8 yields explicit bounds on D𝑏,𝑑 for any finite (𝑏, 𝑑), which in turn

yields an explicit bound on D(𝑓) for any 𝑓 via Corollary 2.3.9. Incorporating the

influence bound D𝑏,𝑑 ≤ 𝑑
2 , we build up a table of upper bounds 𝐷(𝑏, 𝑑) recursively,
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using the rule

𝐷(𝑏, 𝑑) =

⎧⎪⎪⎨⎪⎪⎩
min

{︁
𝑑
2 , max𝑘∈{1,...,𝑑}

{︁
𝑑 · 2−𝑑 +𝐷(𝑏− 1, 𝑘)

}︁}︁
for 𝑏 ≤ 𝐵𝑑

0 for 𝑏 > 𝐵𝑑

(2.27)

Supposing 𝐵𝑑 = 𝑑2 and extracting bounds recursively already shows that D(𝑓) <

5.0782, but we can further improve this by obtaining sharper upper bounds on 𝐵𝑑.

For values of 𝑑 ≤ 14 (which contribute the most to 𝐷(𝑏, 𝑑) anyway), we can obtain

such bounds by manually checking feasibility of a certain linear program, as shown

below. (This reduction is partially inspired by ideas of Nisan and Szegedy in [58].)

Fact 2.3.10. If there exists a function 𝑓 : {0, 1}𝑛 → {0, 1} of degree 𝑑 with block

sensitivity 𝑏, then there exists another function 𝑔 : {0, 1}𝑏 → {0, 1} of degree ≤ 𝑑 with

𝑔(0) = 0 and 𝑔(𝑤) = 1 for each vector 𝑤 of hamming weight 1.

Proof. If 𝑓(𝑥) attains maximal block sensitivity at 𝑧, then 𝑓(𝑥⊕ 𝑧) attains maximal

block sensitivity at 0, so without loss of generality we may assume 𝑧 = 0, and possibly

replacing 𝑓 by 1 − 𝑓 we may also assume that 𝑓(0) = 0. If 𝐵1, . . . , 𝐵𝑏 are sensitive

blocks for 𝑓 at 0, then define

𝑔(𝑦1, . . . , 𝑦𝑏) = 𝑓(𝑦1, . . . , 𝑦1⏟  ⏞  
𝐵1

, . . . , 𝑦𝑏, . . . , 𝑦𝑏⏟  ⏞  
𝐵𝑏

)

so that for each coordinate vector 𝑒𝑖, 𝑔(𝑒𝑖) = 𝑓(1𝐵𝑖
) = 𝑓(0𝐵𝑖) = 1.

For any 𝑑 ≥ 1, define the moment map 𝑚𝑑 : R→ R𝑑 by 𝑚(𝑡) = (𝑡, 𝑡2, . . . , 𝑡𝑑).

Proposition 2.3.11. If there exists a degree 𝑑 function 𝑓 : {0, 1}𝑛 → {0, 1} with

block sensitivity 𝑏, then there exists 𝜏 ∈ {0, 1} such that the following set of linear

inequalities has a solution 𝑝 ∈ R𝑑:

⟨𝑝,𝑚𝑑(1)⟩ = 1

0 ≤ ⟨𝑝,𝑚𝑑(𝑘)⟩ ≤ 1 for each 𝑘 ∈ {2, . . . , 𝑏− 1} (2.28)

⟨𝑝,𝑚𝑑(𝑏)⟩ = 𝜏

27



𝑑 1 2 3 4 5 6 7 8 9 10 11 12 13 14
𝐵𝑑 ≤ 1 3 6 10 15 21 29 38 47 58 71 84 99 114

Table 2.2: LP bounds on block sensitivity for low degree functions.

Proof. If such an 𝑓 exists, then let 𝑞(𝑥1, . . . , 𝑥𝑏) = 1
𝑏!
∑︀
𝜎∈𝑆𝑏

𝑔(𝑥𝜎(1), . . . , 𝑥𝜎(𝑏)), where

𝑔 comes from Fact 2.3.10, and set 𝜏 = 𝑔(1, 1, . . . , 1). It is well known (see [11])

that there is a univariate polynomial 𝑝 : R → R of degree at most 𝑑 such that for

any 𝑥 ∈ {0, 1}𝑏, 𝑞(𝑥1, . . . , 𝑥𝑏) = 𝑝(𝑥1 + · · · + 𝑥𝑏). For each 𝑘 ∈ {1, . . . , 𝑏}, 𝑝(𝑘) is

therefore the average value of 𝑔 on boolean vectors with hamming weight 𝑘, so in

particular 𝑝(𝑘) ∈ [0, 1]. We also know 𝑝(0) = 𝑔(0) = 0, 𝑝(𝑏) = 𝑔(1, . . . , 1) = 𝜏 , and

𝑝(1) = 1
𝑛

∑︀
𝑖 𝑔(𝑒𝑖) = 1, and hence the coefficients of 𝑝 provide a solution to the set of

linear inequalities.

Using the simplex method with exact (rational) arithmetic in Maple, we compute

the largest 𝑏 for which the LP (2.28) is feasible for 1 ≤ 𝑑 ≤ 14, which yields upper

bounds on 𝐵𝑑 for small 𝑑. These bounds are summarized in Table 2.2. Recomputing

the table 𝐷(𝑏, 𝑑) with 𝐵𝑑 given by Table 2.2 for 𝑑 ≤ 14 (and 𝐵𝑑 = 𝑑2 for 𝑑 > 14),

we can recompute the table as in (2.27) with these boundary conditions. This time

𝐷(302, 30) ≤ 4.4157 . . . , which implies

D(𝑓) ≤ 4.4158 (2.29)

for all 𝑓 . If we incorporate the main result of Section 2.4, which implies that

𝐵2
𝑑 −𝐵𝑑 ≤

2
3(𝑑4 − 𝑑2)

into the table 𝐷(𝑏, 𝑑), we obtain the slightly stronger result D∞ ≤ 4.3935, which

implies

Theorem 2.3.12. For all 𝑓 , 𝑛(𝑓) ≤ 4.3935 · 2deg(𝑓).
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2.3.4 Certificate complexity

Now let us define the analogous quantities for certificate complexity. Let C(𝑓) :=∑︀
𝑖∈[𝑛]

𝛿𝑖(𝑓)
2cert𝑖(𝑓) , and for any 𝐻 ⊆ [𝑛], let C(𝐻, 𝑓) = ∑︀

𝑖∈𝐻
𝛿𝑖(𝑓)

2cert𝑖(𝑓) . For any 𝑑 ∈ N, we

also define C𝑑 = max{𝑓 : deg(𝑓)≤𝑑} C(𝑓).

Theorem 2.3.13. For any 𝑑 ≥ 1, C𝑑 ≤ 1
2 .

Proof. Let 𝑓 be a boolean function with deg(𝑓) = 𝑑. For any certificate 𝐶 for 𝑓 , let

𝐻 be the set of variables fixed by 𝐶. It follows from (2.13) that

C(𝑓) ≤ C(𝐻, 𝑓) + E𝛼∼{0,1}𝐻 [C(𝑓𝛼)]. (2.30)

Since 𝐶 is a certificate, we know deg(𝑓𝛼) ≤ 𝑑− 1 for all 𝛼, and deg(𝑓𝛼*) = 0 for some

𝛼* ∈ {0, 1}𝐻 . So, C(𝑓𝛼*) = 0, and we can improve (2.30) to

C(𝑓) ≤ C(𝐻, 𝑓) +
(︁
1− 2−|𝐶|

)︁
C𝑑−1. (2.31)

Now take 𝐶 to be the globally smallest certificate for 𝑓 , so that 𝐶𝑖(𝑓) ≥ 2|𝐻| for all

𝑖 ∈ 𝑅(𝑓), and in particular

C(𝑓) ≤ |𝐻| · 4−|𝐻| +
(︁
1− 2−|𝐻|

)︁
C𝑑−1. (2.32)

Since 𝑐 · 2−𝑐 ≤ 1
2 for 𝑐 ≥ 1, inequality (2.32) implies that C𝑑 ≤ 𝛼 · 1

2 + (1− 𝛼) ·C𝑑−1

for some 𝛼 ∈ [0, 1]. Therefore if C𝑑−1 ≤ 1
2 for some 𝑑, then also C𝑑 ≤ 1

2 . The theorem

then follows by induction on 𝑑, noting that C1 = 1
4 <

1
2 .

Since C(𝑥 ↦→ 𝑥1) = 1
4 , Theorem 2.3.13 cannot be improved by more than a factor

of 2. In any case, we have the following immediate corollary:

Theorem 2.3.14. For any 𝑓 , 𝑛(𝑓) ≤ 1
2 · 4

𝐶(𝑓).

Finally, we use an implementation similar to the one above to give a proof of a

stronger bound on 𝑛(𝑓) in terms of deg(𝑓) for monotone functions 𝑓 .

Theorem 2.3.15. For monotone functions 𝑓 , 𝑛(𝑓) ≤ 1.325 · 2deg(𝑓).
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Proof. We let ̃︁D𝑑 denote the maximum value of D(𝑓) over all monotone functions of

degree at most 𝑑. Given a monotone 𝑓 of degree 𝑑, let 𝐻 be the variables fixed by

any minimal 0-certificate 𝐶. By monotonicity, 𝑓(0𝐻 , 1𝐻) ≡ 0, so by minimality of

𝐻, each 𝑖 ∈ 𝐻 must be sensitive for 𝑓 at the input (0𝐻 , 1𝐻). Therefore restricting

the variables in 𝐻 to 1 yields an OR function on 𝐻, and hence each 𝑖 ∈ 𝐻 has

deg𝑖(𝑓) ≥ |𝐻|. If we restrict all of the variables in 𝐻 so that one of the restrictions

is constant, we get the analogue of (2.32):

D(𝑓) ≤ |𝐻| · 2−|𝐻| +
(︁
1− 2−|𝐻|

)︁̃︁D𝑑−1. (2.33)

However, if we only restrict those variables 𝑖 in 𝐻 with deg𝑖(𝑓) = 𝑑, we obtain

D(𝑓) ≤ |𝐻| · 2−𝑑 + ̃︁D𝑑−1. (2.34)

Combining these two inequalities yields

̃︁D𝑑 ≤ max
1≤𝑘≤𝑑

{︁
min

(︁
𝑘 · 2−𝑘 + (1− 2−𝑘)̃︁D𝑑−1, 𝑘 · 2−𝑑 + ̃︁D𝑑−1

)︁}︁
. (2.35)

Note that ̃︁D1 = ̃︁D2 = 1
2 , since the only monotone functions of degree exactly two are

AND2 and OR2. Starting with these values and using (2.35) to recursively compute

bounds on ̃︁D𝑑, we find that ̃︁D30 ≤ 1.3243, and hence D(𝑓) ≤ 1.3243 + ∑︀∞
𝑑=31

𝑑
2𝑑 <

1.325.

Remark: In [13], a function of degree 𝑑 with 1.5 · 2𝑑 − 2 relevant variables is con-

structed. Therefore, Theorem 2.3.15 implies that all monotone functions of a given

degree have at least 11% fewer variables than do certain general functions of the same

degree.
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2.3.5 Sensitivity

Define S(𝑓) := ∑︀
𝑖∈[𝑛]

𝛿𝑖(𝑓)
2sens𝑖(𝑓) and S(𝐻, 𝑓) = ∑︀

𝑖∈𝐻
𝛿𝑖(𝑓)

2sens𝑖(𝑓) for any 𝐻 ⊆ [𝑛]. In light

of the previous subsections, it seems natural to expect that one should be able to

prove a bound S(𝑓) = 𝑂(1) for any 𝑓 using a similar inductive argument, thereby

improving Simon’s theorem (in the same sense that [13] improved Nisan-Szegedy’s

bound.) However, choosing a good 𝐻 to restrict for S is tricky business – neither

choice from the previous two subsections will work in general here. Despite this

challenge, we believe such a bound does hold, so we leave it as a conjecture and

provide some evidence in favor of it below.

Conjecture 2.3.16. For any 𝑓 , 𝑛(𝑓) . 4𝑠(𝑓). More strongly, S(𝑓) . 1.

Our first piece of supporting evidence for Conjecture 2.3.16 comes from a direct

combination of (2.2.4) with Theorem 2.3.13:

Theorem 2.3.17. For any monotone 𝑓 , 𝑛(𝑓) ≤ 1
2 · 4

𝑠(𝑓).

Theorem 2.3.17 is especially interesting in light of the fact that the tightest known

example in Simon’s theorem is monotone. Our next two pieces of evidence are corol-

laries of the following lemma, which is essentially a consequence of Huang’s theorem.

Lemma 2.3.18. For any function 𝑓 , and any monomial 𝑀 appearing in 𝑓 , the

number of variables 𝑖 ∈𝑀 with sens𝑖(𝑓) ≤ 𝑘 is at most (𝑘− 1)2. The same is true of

any 𝑀 with 𝑓(𝑀) ̸= 0.

Proof. Let 𝐵 = {𝑖 ∈ 𝑀 : sens𝑖(𝑓) ≤ 𝑘}, and let 𝑀 ′ ⊆ 𝑀 be a minimal monomial

containing 𝐵, in the sense that no other monomial 𝑁 has 𝐵 ⊆ 𝑁 ⊂ 𝑀 ′. Let 𝛼

be a partial assignment which sets all coordinates in [𝑛] ∖𝑀 ′ to arbitrary values in

{0, 1}, and sets those in 𝑀 ′ ∖ 𝐵 to 1. Consider the polynomial 𝑓𝛼, which depends

only on the variables in 𝐵. If 𝑓𝛼 does not have full degree |𝐵|, this could only

be because the term 𝑐𝑀 ′
∏︀
𝑖∈𝐵 𝑥𝑖

∏︀
𝑖∈𝑀 ′∖𝐵 𝑥𝑖 cancelled with another term of the form

𝑐𝑁
∏︀
𝑖∈𝐵 𝑥𝑖

∏︀
𝑖∈𝑁∖𝐵 𝑥𝑖 when 𝑀 ′ ∖𝐵 was restricted to 1. But this could only happen if

𝐵 ⊆ 𝑁 ⊂ 𝑀 ′, which by minimality of 𝑀 ′ cannot happen. Therefore |𝐵| = deg(𝑓𝛼),
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and by Huang’s theorem [40], deg(𝑓𝛼) ≤ 𝑠(𝑓𝛼)2. But since sens𝑖(𝑓) ≤ 𝑘 for each

𝑖 ∈ 𝐵, 𝑠(𝑓𝛼) ≤ max𝑖∈𝐵 sens𝑖(𝑓)− 1 ≤ 𝑘 − 1, and hence |𝐵| ≤ (𝑘 − 1)2.

To prove the same for a monomial 𝑀 appearing in the fourier transform, we

switch to ±1 notation and observe that if 𝑧 ∼ {±1}[𝑛]∖𝑀 is a random assignment to

the variables outside of 𝑀 , then

E𝑧∼{±1}[𝑛]∖𝑀 [̂︁𝑓𝑧(𝑀)2] = E𝑧∼{±1}[𝑛]∖𝑀

⎡⎢⎣
⎛⎝ ∑︁
𝑇⊇𝑀

𝑓(𝑇 )𝜒𝑇∖𝑀(𝑧)
⎞⎠2
⎤⎥⎦

=
∑︁
𝑇⊇𝑀

𝑓(𝑇 )2 ≥ 𝑓(𝑀)2 > 0

and hence there exists some restriction 𝑓𝑧 : {±1}𝑀 → {±1} with ̂︁𝑓𝑧(𝑀) ̸= 0. There-

fore we can apply Huang’s theorem as above and reach the same conclusion.

As we show below, Lemma 2.3.18 implies a bound on the number of variables

𝑖 ∈ 𝑅(𝑓) with sens𝑖(𝑓) ≤ 𝑘. Unlike the bound 1
4I[𝑓 ] · 2𝑘 (from Lemma 2.3.6), this

bound only depends on 𝑘, and not the (average) sensitivity of the function 𝑓 , and for

𝑘 ≪
√︁

I[𝑓 ] it says something much stronger.

Corollary 2.3.19. Let 𝑣 : N → N be any increasing function such that ∑︀∞
𝑘=1

𝑘
𝑣(𝑘) =

𝐶𝑣 < ∞. Then any boolean function 𝑓 has at most 𝐶𝑣 · 𝑣(𝑘) · 2𝑘 relevant variables

with sens𝑖(𝑓) ≤ 𝑘. In particular, the number of such variables is 𝑂𝜖(𝑘2+𝜖2𝑘) for any

𝜖 > 0.

Proof. For simplicity we consider only 𝑣(𝑘) = 𝑘3, the same proof works in general.

Let 𝑆 be any set with 𝑓(𝑆) ̸= 0, and let 𝑎𝑘 = |{𝑖 ∈ 𝑆 : sens𝑖(𝑓) = 𝑘}|. Then by

Lemma 2.3.18, for each ℓ we have ∑︀ℓ
𝑘=2 𝑎𝑘 ≤ (ℓ− 1)2. Note that the solution to the

(integer) linear program

maximize
∞∑︁
𝑘=2

𝑎𝑘
𝑘3

subject to

⎧⎪⎪⎨⎪⎪⎩
∑︀∞
𝑘=2 𝑎𝑘 = 𝑑∑︀ℓ
𝑘=2 𝑎𝑘 ≤ (ℓ− 1)2 for all ℓ ≥ 1

(2.36)
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occurs when as much weight is put on the lower values of 𝑘 as possible, which means

setting 𝑎𝑘 = 2𝑘 − 3. Therefore,

∑︁
𝑖∈𝑆

1
sens𝑖(𝑓)3 =

∑︁
𝑘≥2

𝑎𝑘
𝑘3 ≤

∞∑︁
𝑘=2

2𝑘 − 3
𝑘3 =: 𝑐 <∞.

By Parseval’s identity ∑︀𝑆⊆[𝑛] 𝑓(𝑆)2 = 1, this implies

𝑐 ≥
∑︁
𝑆⊆[𝑛]

∑︁
𝑖∈𝑆

1
sens𝑖(𝑓)3𝑓(𝑆)2 =

∑︁
𝑖∈𝑅(𝑓)

Inf𝑖[𝑓 ]
sens𝑖(𝑓)3 (2.37)

On the other hand, by Lemma 2.3.6, Inf𝑖[𝑓 ] ≥ 2−sens𝑖(𝑓). Then

𝑐 ≥
∑︁

𝑖∈𝑅(𝑓)

1
2sens𝑖(𝑓)sens𝑖(𝑓)3 ≥

1
𝑘32𝑘 · |{𝑖 ∈ 𝑆 : sens𝑖(𝑓) ≤ 𝑘}|, (2.38)

from which the corollary follows.

A similar argument also works to show that S(𝑀, 𝑓) = 𝑂(1) for any monomial

occurring in 𝑓 .

Corollary 2.3.20. For any function 𝑓 , and any monomial 𝑀 of degree 𝑑 in 𝑓 ,

S(𝑀, 𝑓) ≤
⌊
√
𝑑+1⌋∑︁
𝑘=2

2𝑘 − 3
2𝑘 + 𝑑− ⌊

√
𝑑⌋2

2⌊
√
𝑑+2⌋

< 1.5.

Finally, we remark that most of the known functions4 with low sensitivity com-

pared to the number of relevant variables have the property that almost all of their

variables never get to “interact” – that is, they are never simultaneously sensitive.

Below, we give a simple tensorization argument which implies that any function 𝑓

with this property must obey the bound on 𝑛(𝑓) in Conjecture 2.3.16.

Lemma 2.3.21. Suppose we can write 𝑅(𝑓) = 𝑌 ⊔ 𝑍, where for every input 𝑥, the

set 𝑠(𝑓, 𝑥) of sensitive coordinates for 𝑓 at 𝑥 has |𝑠(𝑓, 𝑥) ∩ 𝑌 | ≤ 1. Then |𝑌 | < 4𝑠(𝑓).
4For example, the address function, the monotone address function, and the low-depth large-junta

construction of Kane [45] all have this property.
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Proof. Replacing each 𝑦 ∈ 𝑌 with a copy of 𝑓 on 𝑛(𝑓) fresh variables 𝑥𝑦, we obtain a

function 𝑓2 with 𝑠(𝑓2) ≤ 𝑠(𝑓)+𝑠(𝑓)−1, since at most one of the 𝑦 variables and 𝑠(𝑓)−1

other variables are sensitive in 𝑓 , which is really at most 𝑠(𝑓) “new” variables and

𝑠(𝑓)−1 “old” variables in 𝑓2. Also, it is clear that 𝑛(𝑓2) = |𝑍|+ |𝑌 |(|𝑌 |+ |𝑍|) ≥ |𝑌 |2.

Recursively, we let 𝑓𝑘 be the function obtained from 𝑓 by replacing each 𝑦 ∈ 𝑌 with

a copy of 𝑓𝑘−1 on fresh variables. By the same reasoning as the 𝑘 = 2 case, we see

that 𝑠(𝑓𝑘) ≤ 𝑠(𝑓) + 𝑠(𝑓𝑘−1) − 1 ≤ 𝑘𝑠(𝑓) − 𝑘 and 𝑠(𝑓𝑘) ≥ |𝑌 |𝑘. If |𝑌 | ≥ 4𝑠(𝑓), then

𝑛(𝑓𝑘) ≥ 4𝑘𝑠(𝑓) = 4𝑘 · 4𝑘𝑠(𝑓)−𝑘 ≥ 4𝑘 · 4𝑠(𝑓𝑘), which contradicts Simon’s theorem for 𝑘

large enough so that 4𝑘 > 𝑘𝑠(𝑓)− 𝑘 ≥ 𝑠(𝑓𝑘). Therefore, |𝑌 | < 4𝑠(𝑓) as claimed.

2.3.6 Mixing measures

The goal of this subsection is to prove bounds on the number of relevant variables in

terms of multiple complexity measures simultaneously, e.g.

𝑛(𝑓) . 2
deg(𝑓)

2 +𝑠(𝑓). (2.39)

Note that such a bound would follow from taking the geometric mean of Theorem

2.3.12 with Conjecture 2.3.16, however, we can give a direct and unconditional proof

using the methodology we have already developed, combined with the following simple

observation:

Observation 2.3.2. ℛ𝑖 is convex.

We therefore define, for any 𝛽 ∈ [0, 1], the coordinate measures 𝑑𝑠𝛽𝑖 , 𝑐𝑠
𝛽
𝑖 ∈ ℛ𝑖 via

𝑑𝑠𝛽𝑖 (𝑓) := 𝛽 · deg𝑖(𝑓) + (1− 𝛽) · sens𝑖(𝑓) (2.40)

𝑐𝑠𝛽𝑖 (𝑓) := 𝛽 · cert𝑖(𝑓) + (1− 𝛽) · sens𝑖(𝑓) (2.41)
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and the associated potentials

DS𝛽(𝑓) :=
∑︁
𝑖∈[𝑛]

𝛿𝑖(𝑓)
2𝑑𝑠𝛽

𝑖 (𝑓)
(2.42)

CS𝛽(𝑓) :=
∑︁
𝑖∈[𝑛]

𝛿𝑖(𝑓)
2𝑐𝑠𝛽

𝑖 (𝑓)
. (2.43)

Proposition 2.3.22. For each 𝛽 ∈ (0, 1], DS𝛽(𝑓) = 𝑂𝛽(1). In particular, for 𝛽 =

1/2, DS𝛽(𝑓) < 8.277 for all 𝑓 .

Proof. Since 𝛽 > 0, we can essentially let deg𝑖 do the legwork while sens𝑖 simply

hangs on for a free ride. Indeed, let

DS𝛽𝑑 := max
{𝑓 : deg(𝑓)=𝑑}

DS𝛽(𝑓)

and suppose 𝑓 is any function of degree 𝑑. Let 𝐶 be any minimal certificate for 𝑓 ,

and let 𝐻 be the variables 𝑖 which are fixed by 𝐶. Let 𝐻 ′ ⊆ 𝐻 be those 𝑖 ∈ 𝐻 with

deg𝑖(𝑓) = 𝑑. Since any restriction 𝛼 of 𝐻 ′ lowers the degree of 𝑓𝛼, inequality (2.13)

implies

DS𝛽(𝑓) ≤ 𝑑3

22−𝛽(2𝛽)𝑑 + DS𝛽𝑑−1, (2.44)

where we have used that 𝑑𝑠𝛽𝑖 (𝑓) ≤ 2−𝛽𝑑−2(1−𝛽) for each of the variables 𝑖 ∈ 𝐻 ′, and

that |𝐻 ′| ≤ 𝐶(𝑓) ≤ DT(𝑓) ≤ deg(𝑓)3 by a result of Midrijanis [55]. By induction,

we then have for all 𝑑 that

DS𝛽𝑑 ≤
𝑑∑︁
𝑖=1

𝑖3

22−𝛽(2𝛽)𝑖 <∞ (2.45)

which implies the desired conclusion with constant 1
22−𝛽

∑︀∞
𝑖=1

𝑖3

(2𝛽)𝑖 , but this can be im-

proved dramatically. By Lemma 2.3.6, DS𝛽(𝑓) ≤ 1
22−𝛽 I[𝑓 ], so DS𝛽(𝑓) ≤ min𝑘≥1{ 𝑘

22−𝛽 +∑︀
𝑖≥𝑘+1

𝑖3

22−𝛽(2𝛽)𝑖}. For 𝛽 = 1
2 , this minimum occurs at 𝑘 = 32, giving

DS
1
2 (𝑓) ≤ 1

21.5

(︃
32 +

∞∑︁
𝑖=33

𝑖3

2𝑖/2

)︃
= 11.602.
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We can also keep track of block sensitivity and turn the crank of Lemma 2.3.8, which

ultimately yields a bound DS
1
2 (𝑓) ≤ 8.277.

Corollary 2.3.23. For any 𝑓 , 𝑛(𝑓) ≤ 8.277 · 2
deg(𝑓)

2 +𝑠(𝑓).

Corollary 2.3.23 implies in particular, that for every 𝜖 > 0, either 𝑛(𝑓) ≤ 1
𝜀
·4𝑠(𝑓) or

𝑛(𝑓) < 70 · 𝜀 · 2deg(𝑓). In other words, any function 𝑓 which fails to satisfy Conjecture

2.3.16 has 𝑛(𝑓) = 𝑜(2deg(𝑓)). We can prove a similar result for CS𝛽(𝑓), although the

bound is slightly worse at 𝛽 = 1/2 (by a logarithmic factor). The idea is similar to

the proof of Theorem 2.3.13, although the recursive bound that arises is a bit more

complicated. To deal with this, we make use of a small technical lemma.

Lemma 2.3.24. Suppose a non-negative sequence {𝐴𝑑}𝑑∈N satisfies

𝐴𝑑+1 ≤ max
ℎ∈N

{︂
𝐵 · ℎ · 𝛼ℎ +

(︂
1− 1

2ℎ
)︂
𝐴𝑑

}︂
(2.46)

for some constants 𝐵 and 𝛼 < 1, and every 𝑑 ≥ 1. Then 𝐴𝑑 = 𝑂𝐵,𝛼(log 𝑑). If

𝛼 < 1/2, then 𝐴𝑑 = 𝑂𝐵,𝛼(1).

Proof. First we treat the easy case 𝛼 < 1/2. In this case, we can write 𝐵 · ℎ · 𝛼ℎ =

(𝐵 · ℎ · 𝛾ℎ) · 1
2ℎ , for some 𝛾 < 1. Since 𝑚 := maxℎ∈N𝐵 · ℎ · 𝛾ℎ < ∞, we can set 𝐶 =

max{𝐴1,𝑚}. If 𝐴𝑑 ≤ 𝐶, then for every ℎ, 𝐵·ℎ·𝛾ℎ

2ℎ +(1− 1
2ℎ )𝐴𝑑 ≤ 𝐶 ·( 1

2ℎ +(1− 1
2ℎ )) = 𝐶,

and hence 𝐴𝑑+1 ≤ 𝐶, and the conclusion follows by induction.

Now suppose 𝛼 = 1
2 . We can loosen the upper bound by allowing ℎ to take on

any positive real value. By reparameterizing ℎ as ℎ ln 2 and modifying the constant

𝐵, the upper bound is maximized when

𝑑

𝑑𝑥

[︁
𝑒−𝑥(𝐵𝑥− 𝐴𝑑)

]︁
= 0 =⇒ 𝑥 = 1 + 𝐴𝑑/𝐵 (2.47)

and hence 𝐴𝑑+1 ≤ (𝐵+𝐴𝑑)𝑒−(1+𝐴𝑑/𝐵) +𝐴𝑑(1− 𝑒−(1+𝐴𝑑/𝐵)) = 𝐴𝑑+𝐵𝑒−(1+𝐴𝑑/𝐵). Note

that the function 𝑎 ↦→ 𝑎 + 𝐵𝑒−(1+𝑎/𝐵), is increasing for 𝑎 ≥ 0, so any bound of the

form 𝐴𝑑 ≤ 𝐴*, implies the bound 𝐴𝑑+1 ≤ 𝐴* +𝐵𝑒−(1+𝐴*/𝐵).

We’ll prove by induction on 𝑑 that 𝐴𝑑 ≤ 𝐶
∑︀𝑑
𝑖=1

1
𝑖
, where 𝐶 := max{𝐴1, 𝐵}. The

base case is clear. Suppose the bound holds for some 𝑑 ≥ 1. Since 𝐴𝑑 ≤ 𝐶
∑︀𝑑
𝑖=1

1
𝑖
,

36



the above reasoning implies

𝐴𝑑+1 ≤ 𝐶
𝑑∑︁
𝑖=1

1
𝑖

+ (𝐵/𝑒)𝑒−(𝐶/𝐵)
∑︀𝑑

𝑖=1
1
𝑖

≤ 𝐶
𝑑∑︁
𝑖=1

1
𝑖

+ (𝐵/𝑒)𝑒− ln(𝑑+1)

≤ 𝐶
𝑑∑︁
𝑖=1

1
𝑖

+ 𝐵/𝑒

𝑑+ 1

≤ 𝐶
𝑑+1∑︁
𝐼=1

1
𝑖
,

where we have used the Riemann sum inequality ∑︀𝑑
𝑖=1

1
𝑖
≥ ln(𝑑+ 1).

Proposition 2.3.25. For each 𝛽 ∈ (1
2 , 1], CS𝛽(𝑓) = 𝑂𝛽(1). For 𝛽 = 1

2 , CS
1
2 (𝑓) ≤

log 𝑠(𝑓) + 𝛾
2 , where 𝛾 ≈ 0.5772 is the Euler-Mascheroni constant.

Proof. Let

CS𝛽𝑑 := max
{𝑓 : deg(𝑓)=𝑑}

CS𝛽(𝑓)

and let 𝑓 be any function with degree 𝑑. Let 𝐶 be a globally minimal certificate for

𝑓 , and let 𝐻 be the variables 𝑖 which are fixed by 𝐶. We note that it follows from

global minimality of the certificate 𝐶 that cert𝑖(𝑓) ≥ 2|𝐻| for all 𝑖 ∈ 𝐻. Then apply

(2.13) to obtain the analogue of (2.32):

CS𝛽(𝑓) ≤ |𝐻|4−𝛽·|𝐻|−(1−𝛽) + (1− 2−|𝐻|)CS𝛽𝑑−1 (2.48)

Hence the sequence {CS𝛽𝑑}𝑑∈N satisfies the conditions of Lemma 2.3.24, with 𝐵 = 1
2

and 𝛼 = 4−𝛽. Hence, for 𝛽 > 1
2 , 𝛼 < 1

2 and CS𝛽(𝑓) = 𝑂𝛽(1). For 𝛽 = 1
2 , we are in

the 𝛼 = 1
2 case of the lemma, and since max{𝐵,CS

1
2
1 } = 1

2 , we conclude

CS
1
2 (𝑓) ≤ 1

2

𝑑∑︁
𝑖=1

1
𝑖

≤ 1
2 log deg(𝑓) + 𝛾/2

≤ log 𝑠(𝑓) + 𝛾/2,
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where the final inequality is Huang’s theorem, 𝑠(𝑓) ≥
√︁

deg(𝑓).

Corollary 2.3.26. For any 𝛽 ∈ (1
2 , 1] and any 𝑓 , 𝑛(𝑓) .𝛽 4𝛽·𝐶(𝑓)+(1−𝛽)·𝑠(𝑓), and

𝑛(𝑓) ≤ (log 𝑠(𝑓) + 𝛾
2 ) · 4

𝐶(𝑓)+𝑠(𝑓)
2 .

2.3.7 Decision tree depth

For decision tree depth – unlike the other complexity measures considered thus far –

getting a tight bound on 𝑛(𝑓) is trivial. Indeed, a depth 𝑑 binary tree has at most

2𝑑− 1 nodes, so 𝑛(𝑓) ≤ 2DT(𝑓)− 1, and this is obtained by the function which queries

a different variable at each node. However, the question becomes nontrivial when

restricted to monotone boolean functions. Let us denote the set of monotone boolean

functions of depth 𝑑 by ℳ𝑑 and define the quantities

RDT
𝑑 := max

𝑓∈ℳ𝑑

𝑛(𝑓) and RDT := lim sup
𝑑→∞

RDT
𝑑

2𝑑 .

It is quite possible (and, we believe, probably true) that RDT = 0 – see Section 2.5

for comments. In this section, we give a proof that

RDT ≤ 1
4 . (2.49)

Here we do not use the general restriction-reduction strategy of the previous sections.

Instead, our main idea is in the following lemma, which essentially says that unless

both of the subfunctions 𝑓0, 𝑓1 of a node in a monotone decision tree have very short

certificates, they must share a significant number of relevant variables.5

Lemma 2.3.27. Let 𝑓0, 𝑓1 be the two subfunctions from the root node in a monotone

decision tree. If neither 𝑓0 nor 𝑓1 is constant, then

𝐶0
min(𝑓0) + 𝐶1

min(𝑓1) ≤ |𝑅(𝑓0) ∩𝑅(𝑓1)|+ 1.

Proof. We first claim that every assignment to 𝑅(𝑓0)∩𝑅(𝑓1) must either force 𝑓0 = 0
5This property, of course, does not hold in general for non-monotone decision trees!
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or force 𝑓1 = 1. To see this, let 𝐶 := 𝑅(𝑓0)∩𝑅(𝑓1). Let us decompose any assignment

𝛼 to 𝑅(𝑓) into (𝛼𝑥, 𝛼0, 𝛼1, 𝛼𝐶), where each component is the assignments to 𝑥 (the

root node), 𝑅(𝑓0) ∖ 𝑅(𝑓1), 𝑅(𝑓1) ∖ 𝑅(𝑓0), and 𝐶 respectively. Suppose for the sake

of contradiction that there is some assignment 𝛽𝐶 to 𝐶 which does not force 𝑓0 = 0

or 𝑓1 = 1 – then we can pick assignments 𝛼, 𝛼′ such that: (i) 𝑓0(𝛼0, 𝛽𝐶) = 1 and (ii)

𝑓1(𝛼′
1, 𝛽𝐶) = 0. But then 𝑓(0, 𝛼0, 𝛼

′
1, 𝛽𝐶) = 1 and 𝑓(1, 𝛼0, 𝛼

′
1, 𝛽𝐶) = 0, which violates

monotonicity of 𝑓 since (0, 𝛼0, 𝛼
′
1, 𝛽𝐶) ≺ (1, 𝛼0, 𝛼

′
1, 𝛽𝐶), which proves our claim.

Now fix some ordering 𝑥1, . . . , 𝑥|𝐶| of 𝐶 and consider the |𝐶|+ 1 assignments

𝛼𝑖 := (1, . . . , 1⏟  ⏞  
𝑖

, 0 . . . , 0⏟  ⏞  
|𝐶|−𝑖

), for 𝑖 = 0, 1, . . . , |𝐶|.

By the claim above, each 𝛼𝑖 forces either 𝑓0 = 0 or 𝑓1 = 1. In particular, we know

that 𝛼0 forces 𝑓0 = 0 and 𝛼|𝐶| forces 𝑓1 = 1. (Indeed, if 𝛼0 does not force 𝑓0 = 0,

then 𝑓1 ≡ 1, which we assumed is not the case, and likewise for 𝛼|𝐶|.) Therefore,

since 𝛼𝑖 ≺ 𝛼𝑖+1, there must be some 0 ≤ 𝑖 ≤ |𝐶| − 1 for which 𝛼𝑖 forces 𝑓0 = 0 and

𝛼𝑖+1 forces 𝑓1 = 1. Hence, by monotonicty, there is a 1-certificate for 𝑓1 fixing only

the variables {𝑥1, . . . , 𝑥𝑖+1} to 1, and a 0-certificate for 𝑓0 fixing only the variables

{𝑥𝑖+1, . . . , 𝑥|𝐶|} to 0. This implies 𝐶0
min(𝑓0) +𝐶1

min(𝑓1) ≤ 𝑖+ 1 + |𝐶| − 𝑖 = |𝐶|+ 1.

We also need the following standard fact, whose easy proof we omit:

Fact 2.3.28. Let 𝑔 be any function which does not depend on the variable 𝑎. Then

DT(𝑎 ∨ 𝑔) = DT(𝑎 ∧ 𝑔) = 1 + DT(𝑔).

Lemma 2.3.29. For 𝑑 ≥ 2, RDT
𝑑 ≤ max

{︁
2RDT

𝑑−1 − 2, 2 + 2RDT
𝑑−2, 1 + RDT

𝑑−1

}︁
.

Proof. Let 𝑓 ∈ℳ𝑑, for 𝑑 ≥ 2. We consider the possible values of 𝑐0 := 𝐶0
min(𝑓0) and

𝑐1 := 𝐶1
min(𝑓1). If either 𝑐0 = 0 or 𝑐1 = 0 (i.e. one of the subfunctions is constant),

then 𝑛(𝑓) ≤ 1 + RDT
𝑑−1.

Otherwise, 𝑐0, 𝑐1 ≥ 1 and Lemma 2.3.27 applies. If min{𝑐0, 𝑐1} ≥ 2, then 𝑐0 +𝑐1 ≥
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4, and so by the lemma,

𝑛(𝑓) ≤ 1 + 𝑛(𝑓0) + 𝑛(𝑓1)− |𝑅(𝑓0) ∩𝑅(𝑓1)|

≤ 𝑛(𝑓0) + 𝑛(𝑓1)− 2 (2.50)

≤ 2RDT
𝑑−1 − 2.

If 𝑐0 = 𝑐1 = 1, then we can write 𝑓0 = 𝑎 ∧ 𝑔 and 𝑓1 = 𝑎 ∨ ℎ for some functions 𝑔

and ℎ which do not depend on 𝑎. By Fact 2.3.28, DT(𝑔) = DT(𝑓0)− 1 ≤ 𝑑− 2, and

similarly DT(ℎ) ≤ 𝑑− 2, so 𝑛(𝑓) ≤ 1 + 1 + 𝑛(𝑔) + 𝑛(ℎ) ≤ 2 + 2RDT
𝑑−2.

Finally, it remains to consider the case when {𝑐0, 𝑐1} = {1, 2}. Without loss of

generality, suppose 𝑐0 = 1. It follows that we can write 𝑓0 = 𝑎 ∧ 𝑔, for some function

𝑔 which does not depend on 𝑎. By Fact 2.3.28, DT(𝑔) = DT(𝑓0) − 1 ≤ 𝑑 − 2, and

hence

𝑛(𝑓) ≤ 1 + 𝑛(𝑓0) + 𝑛(𝑓1)− |𝑅(𝑓0) ∩𝑅(𝑓1)|

≤ 1 + RDT
𝑑−1 + 1 + RDT

𝑑−2 − 3 (2.51)

= RDT
𝑑−1 + RDT

𝑑−2 − 1

≤ 2RDT
𝑑−1 − 2.

Proof of (2.49): Since RDT
1 = 1, Lemma 2.3.29 immediately implies RDT

2 ≤ 2, RDT
3 ≤

4, RDT
4 ≤ 6, and RDT

5 ≤ 10. It is also easy to construct explicit examples showing

that these all of these inequalities are actually equalities – in fact, if 𝑔(𝑥) ∈ ℳ𝑑−2,

then the function

𝑓(𝑎, 𝑏, 𝑥, 𝑦) = ((¬𝑎) ∧ (𝑏 ∧ 𝑔(𝑥))) ∨ (𝑎 ∧ (𝑏 ∨ 𝑔(𝑦))) ∈ℳ𝑑

has 2𝑛(𝑔) + 2 relevant variables. Therefore RDT
𝑑 ≥ 2RDT

𝑑−2 + 2, and the bound RDT
𝑑 ≤

2RDT
𝑑−1− 2 becomes the dominant bound in the lemma for 𝑑 ≥ 4. We can rewrite this

inequality as

(RDT
𝑑 − 2) ≤ 2(RDT

𝑑−1 − 2) for 𝑑 ≥ 5,

and therefore (RDT
𝑑 −2) ≤ 2𝑑−5(10−2) = 2𝑑−2 =⇒ RDT

𝑑 ≤ 2𝑑−2+2 and RDT ≤ 1
4 .
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2.4 A constant factor improvement in the sensi-

tivity conjecture

In their seminal 1994 paper, Nisan and Szegedy [58] proved an upper bound on the

block sensitivity of any boolean function 𝑓 in terms of its degree, namely

bs(𝑓) ≤ 2 deg(𝑓)2. (2.52)

In [73], Avishay Tal gives a tensorization argument showing that the constant factor

2 in (2.52) can be reduced to 1:

bs(𝑓) ≤ deg(𝑓)2. (2.53)

In this section, we improve upon the original argument of Nisan and Szegedy to

further improve the constant in (2.53):

Theorem 2.4.1. For any boolean function 𝑓 ,

bs(𝑓)2 − bs(𝑓) ≤ 2
3(deg(𝑓)4 − deg(𝑓)2) (2.54)

and hence

bs(𝑓) ≤
√︁

2/3 · deg(𝑓)2 + 1. (2.55)

For many pairs of complexity measures, the proof of the best-known relationships

between them make use of the inequality (2.53) as an intermediate step. Upgrading

those proofs (see [55], [40] and [60]) with Theorem 2.4.1 immediately improves those

relations by a constant factor:

Corollary 2.4.2. For any boolean function 𝑓 ,

bs(𝑓) ≤
√︁

2/3 · 𝑠(𝑓)4 + 1 (2.56)

DT(𝑓) ≤
√︁

2/3 · deg(𝑓)3 + deg(𝑓) (2.57)

𝐶(𝑓) ≤
√︁

2/3 · 𝑠(𝑓)5 + 𝑠(𝑓) (2.58)
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In particular, (2.56) improves on Huang’s recent result bs(𝑓) ≤ 𝑠(𝑓)4, which

constitutes the best-known progress on the (strong) sensitivity conjecture, namely

bs(𝑓) . 𝑠(𝑓)2. We note that while the bound in Theorem 2.4.1 can probably be

improved further, there is a limit to this approach. The family obtained by tensorizing

the function

𝑓(𝑥1, . . . , 𝑥6) :=
(︃ 6∑︁
𝑖=1

𝑥𝑖

)︃
−

⎛⎝ ∑︁
1≤𝑖<𝑗≤6

𝑥𝑖𝑥𝑗

⎞⎠+ 𝑥1𝑥3𝑥4 + 𝑥1𝑥2𝑥5 + 𝑥1𝑥4𝑥5

+𝑥2𝑥3𝑥4 + 𝑥2𝑥3𝑥5 + 𝑥1𝑥2𝑥6 + 𝑥1𝑥3𝑥6 + 𝑥2𝑥4𝑥6 + 𝑥3𝑥5𝑥6 + 𝑥4𝑥5𝑥6

certifies that bs(𝑓) ≥ deg(𝑓)1.63 is possible,6 and since Huang’s theorem (deg(𝑓) ≤

𝑠(𝑓)2) is tight, combining the two inequalities can never yield a bound stronger than

bs(𝑓) ≤ 𝑠(𝑓)3.26. We also remark that, as a consequence of Theorem 2.4.1, any

function family generated by tensorizing a single example will always have a truly

subquadratic separation between bs(𝑓) and deg(𝑓). So if it is possible to quadratically

separate bs(𝑓) from deg(𝑓), this will require a different proof technique.

2.4.1 Proof of Theorem 2.4.1

We begin by recalling Fact 2.3.10, which says that the maximal block sensitivity

among functions of degree 𝑑 is actually obtained by a function 𝑓 with (i) 𝑓(0) = 0

and (ii) 𝑓(𝑥) = 1 for all vectors 𝑥 of hamming weight 1. Let us say any 𝑓 satisfying

properties (i) and (ii) is in standard form. It is easy to see that any function 𝑓(𝑥) in

standard form has a real multilinear polynomial expansion which looks like

𝑓(𝑥1, . . . , 𝑥𝑏) = 𝑥1 + · · ·+ 𝑥𝑏 +
∑︁
𝑖<𝑗

𝑐𝑖𝑗𝑥𝑖𝑥𝑗 + (higher degree terms) (2.59)

where 𝑏 = bs(𝑓) = 𝑠(𝑓). As it turns out, the coefficients 𝑐𝑖𝑗 on the quadratic terms

𝑥𝑖𝑥𝑗 in such functions can only take one of two values:

Lemma 2.4.3. If 𝑓(𝑥1, . . . , 𝑥𝑏) is in standard form, then each quadratic term 𝑥𝑖𝑥𝑗

6This example is due to Kushilevitz [59], and achieves the best-known separation between bs(𝑓)
and deg(𝑓).
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appears with coefficient 𝑐𝑖𝑗 ∈ {−1,−2} in the polynomial expansion of 𝑓 .

Proof. For any pair 𝑖, 𝑗 of coordinates, let 𝑒𝑖,𝑗 be the vector which has ones in the 𝑖th

and the 𝑗th coordinates and zeroes elsewhere. Since 𝑓 is boolean-valued, 𝑓(𝑒𝑖,𝑗) ∈

{0, 1}. On the other hand, we can compute 𝑓(𝑒𝑖,𝑗) by plugging into the polynomial

(2.59), which yields 1 + 1 + 𝑐𝑖𝑗 ∈ {0, 1}, since all higher degree terms evaluate to

0.

If we plug any real numbers (𝜇1, . . . , 𝜇𝑏) in [0, 1]𝑏 into equation (2.59) for the 𝑥𝑖,

we can interpret the result as the expected value of 𝑓(𝑥) where the bits 𝑥𝑖 of 𝑥 are

independently sampled Bernoulli(𝜇𝑖)’s. In particular, taking all 𝜇𝑖 = 𝜇, we obtain a

univariate polynomial 𝑝𝑓 (𝜇) whose relevant properties are summarized in the lemma

below.

Lemma 2.4.4. If 𝑓(𝑥1, . . . , 𝑥𝑏) is in standard form, then the polynomial 𝑝𝑓 (𝜇) satis-

fies

1. deg(𝑝𝑓 ) ≤ deg(𝑓)

2. sup𝑥∈[0,1] |𝑝𝑓 (𝑥)| ≤ 1

3. |𝑝′′
𝑓 (0)| ≥ 𝑏(𝑏− 1).

Proof. Item (1) follows directly from the definition of 𝑝𝑓 , while item (2) follows from

the interpretation of 𝑝𝑓 (𝜇) as the expected value of the boolean function 𝑓 . To see

(3), observe that (2.59) implies that

𝑝𝑓 (𝜇) = 𝑏 · 𝜇+
⎛⎝∑︁
𝑖<𝑗

𝑐𝑖𝑗

⎞⎠𝜇2 + (higher degree terms), (2.60)

and hence by Lemma 2.4.3,

𝑝′′
𝑓 (0) = 2 ·

∑︁
𝑖<𝑗

𝑐𝑖𝑗 ∈
[︃
−4
(︃
𝑏

2

)︃
,−2

(︃
𝑏

2

)︃]︃
,

which clearly implies (3).
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In light of Lemma 2.4.4, to bound 𝑏 in terms of deg(𝑓), it suffices to bound |𝑝′′
𝑓 (0)|

in terms of deg(𝑝𝑓 ). This is accomplished by the following fact, which is a direct

consequence of V. A. Markov’s inequality [52].

Fact 2.4.5. If 𝑝(𝑥) is a degree 𝑑 polynomial satisfying 0 ≤ 𝑝(𝑥) ≤ 1 for all 𝑥 ∈ [0, 1],

then

|𝑝′′(0)| ≤ 2𝑑2(𝑑2 − 1)
3 .

Proof. Recall the famous Markov brothers’ inequality, which states that if 𝑞(𝑥) is a

degree 𝑑 real polynomial, then for each 𝑘 ≥ 1,

sup
𝑥∈[−1,1]

|𝑞(𝑘)(𝑥)| ≤ 𝑑2(𝑑2 − 12)(𝑑2 − 22) · · · (𝑑2 − (𝑘 − 1)2)
1 · 3 · 5 · · · (2𝑘 − 1) sup

𝑥∈[−1,1]
|𝑞(𝑥)|.

In particular, for 𝑘 = 2

sup
𝑥∈[−1,1]

|𝑞′′(𝑥)| ≤ 𝑑2(𝑑2 − 1)
3 sup

𝑥∈[−1,1]
|𝑞(𝑥)|. (2.61)

To translate (2.61) from [−1, 1] to [0, 1], we simply let 𝑞(𝑥) := 1
2 − 𝑝

(︁
1+𝑥

2

)︁
. Since

𝑥 ↦→ 1+𝑥
2 maps [−1, 1] to [0, 1], we know that

sup
𝑥∈[−1,1]

|𝑞(𝑥)| = sup
𝑥∈[0,1]

|12 − 𝑝(𝑥)| ≤ 1
2 .

Similarly, since 𝑞′′(𝑥) = −1
4𝑝

′′(1+𝑥
2 ), we also have

|𝑝′′(0)| ≤ sup
𝑥∈[0,1]

|𝑝′′(𝑥)| = 4 sup
𝑥∈[−1,1]

|𝑞′′(𝑥)|

≤ 4 · 𝑑
2(𝑑2 − 1)

3 · sup
𝑥∈[−1,1]

|𝑞(𝑥)|

≤ 2𝑑2(𝑑2 − 1)
3 ,

which is what we wanted to show.

Combining (1), (2), and (3) from Lemma 2.4.4 with Fact 2.4.5 yields (2.54). This

then implies (2.55), because if 𝑏 is an integer with 𝑏 = (
√︁

2/3)𝑑2 + ℓ for some ℓ ≥ 1,
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then

𝑏2 − 𝑏 = (2/3)𝑑4 − (
√︁

2/3)𝑑2 + ℓ2 − ℓ > (2/3)𝑑4 − (2/3)𝑑2,

which contradicts (2.54). Therefore (2.55) holds, and Theorem 2.4.1 is proved.

2.4.2 Block sensitivity vs. approximate degree:

In [58], the authors also prove a bound on block sensitivity in terms of the approximate

degree, namely

bs(𝑓) ≤ 6 · (̃︂deg1/3(𝑓))2. (2.62)

Again we can streamline their argument to improve the constant, this time from 6 to

5. We remark that, although ̃︂deg(𝑓 ∘ 𝑔) = 𝑂(̃︂deg(𝑓) ·̃︂deg(𝑔)) (by a result of Sherstov

[71]), the implicit constant in the 𝑂(·) obstructs us from reducing the constant in

(2.62) to 1 via tensorization. Another difference between (2.62) and (2.52) is that

(2.62) is known to be tight up to the constant – it is shown in [58] that OR𝑛 can be

1/3-approximated by a Chebyshev polynomial of degree 2
√
𝑛, and hence the 6 cannot

be replaced by anything smaller than 1
4 in (2.62).

Theorem 2.4.6. For any boolean function 𝑓 ,

bs(𝑓) ≤ 5 · (̃︂deg1/3(𝑓))2

Proof. By reasoning as in Fact 2.3.10, we may assume that 𝑓 is in standard form

with (block) sensitivity 𝑏. Let 𝑝(𝑥1, . . . , 𝑥𝑏) be a polynomial of degree 𝑑 = ̃︂deg1/3(𝑓)

satisfying |𝑝(𝑥)− 𝑓(𝑥)| ≤ 1/3 for all 𝑥 ∈ {0, 1}𝑏. Write

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥1 + · · ·+ 𝑐𝑏𝑥𝑏 + (higher order terms),

and observe that

|𝑝(0)− 𝑓(0)| ≤ 1/3 =⇒ |𝑐0| ≤ 1/3 (2.63)

|𝑝(𝑒𝑖)− 𝑓(𝑒𝑖)| ≤ 1/3 =⇒ 𝑐𝑖 + 𝑐0 ≥ 2/3. (2.64)
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Therefore each 𝑐𝑖 ≥ 1/3, and so ∑︀𝑏
𝑖=1 𝑐𝑖 ≥ 𝑏/3. Viewing 𝑝 as a function on [0, 1]𝑏

via its multilinear extension, and considering the univariate function 𝑞(𝑡) := 1
2 −

𝑝(1+𝑡
2 , 1+𝑡

2 , . . . , 1+𝑡
2 ), we have that

sup
−1≤𝑡≤1

|𝑞(𝑡)| = sup
0≤𝑡≤1

|12 − 𝑝(𝑡, 𝑡, . . . , 𝑡)| = sup
𝑥∈[0,1]𝑏

|12 − 𝑝(𝑥)| ≤ 1
2 + 1

3 = 5/6,

where the middle inequality is due to convexity/multilinearity. On the other hand,

𝑞′(0) = 1
2
∑︀𝑏
𝑖=1(𝜕𝑖𝑝)(0) = 1

2
∑︀𝑠
𝑖=1 𝑐𝑖 ≥ 𝑏/6. By Markov’s inequality (in the 𝑘 = 1 case),

this implies

𝑏/6 ≤ 5𝑑2

6 =⇒ 𝑏 ≤ 5𝑑2.

2.5 Open problems and future directions

In addition to Conjecture 2.3.16, we suggest some other questions left open by our

work:

Asymptotically stronger bounds on 𝑛(𝑓) for monotone functions: For mono-

tone functions 𝑓 , our work shows stronger bounds on 𝑛(𝑓) in terms of deg(𝑓), 𝑠(𝑓)

and DT(𝑓) than are known for general functions. However, these bounds still fall

short of the best construction, which (for each of the three measures above) is given

by the monotone address function MAF𝑘, for which

𝑛(𝑓) = Θ
⎛⎝ 2DT(𝑓)√︁

DT(𝑓)

⎞⎠ = Θ
⎛⎝ 2deg(𝑓)√︁

deg(𝑓)

⎞⎠ = Θ
⎛⎝ 4𝑠(𝑓)√︁

𝑠(𝑓)

⎞⎠ .
We conjecture that this is the best possible for monotone functions.

Approximate junta size: If 𝑠(𝑓) = 𝑠, then is 𝑓 𝜀-close to a 𝑂𝜀(4𝑠) junta? Verbin,

Servedio and Tan conjectured that for monotone 𝑓 with DT(𝑓) = 𝑑, 𝑓 must be 𝜀-close

to a poly𝜀(𝑑) junta, which would imply the same for 𝑠(𝑓). However, Kane [45] showed
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this was false, by constructing a (random) monotone function with DT(𝑓) = 𝑑 which

is not 0.1-close to any exp(
√
𝑑)-junta. This is tight up to a constant in the exponent

by Freidgut’s theorem and the OS inequality (I[𝑓 ] ≤
√︁

DT(𝑓) for monotone 𝑓 , see

[64]). Since 𝑠(𝑓) ≤ DT(𝑓), Kane’s construction is also a monotone function with

𝑠(𝑓) = 𝑠 that is not 0.1-close to any exp(
√
𝑠)-junta.

Do large juntas have smaller separations? If 𝑛(𝑓) (the number of relevant

variables) is exponential in 𝑠(𝑓), deg(𝑓), 𝐶(𝑓),DT(𝑓), then how are these measures

related? For example, if 𝑛(𝑓) = 2Ω(deg(𝑓)) then 𝑠(𝑓) = Ω(deg(𝑓)), by Simon’s theorem;

if 𝑛(𝑓) = 2Ω(𝑠), then deg(𝑓) = Ω(𝑠(𝑓)) by Nisan-Szegedy. Do the other directions

hold? What can be said if 𝑛(𝑓) ≥ 2𝑠(𝑓)1/100?
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2.6 Appendix A: A simplified presentation of the

Ajtai-Linial construction

One of the earliest and most important motivating examples for studying the analysis

of boolean functions is the Kahn-Kalai-Linial theorem [44], which states that for

any 𝑓 : {0, 1}𝑛 → {0, 1}, there is a coordinate 𝑖 with Inf𝑖[𝑓 ] = Ω(Var(𝑓) · log𝑛
𝑛

).

This improves over the trivial Inf𝑖[𝑓 ] ≥ Var(𝑓)
𝑛

(Poincare inequality) by a log 𝑛 factor.

This factor is asymptotically optimal, as witnessed by the balanced Tribes function

𝐹 = ⋁︀𝑛/𝑏
𝑗=1

⋀︀𝑏
𝑘=1 𝑥

𝑘
𝑗 (where 𝑏 = log2 𝑛 − log2 log2 𝑛 + 𝑜(1) is chosen so that E[𝐹 ] =

(1−2−𝑏)𝑛/𝑏 = 1
2 +𝑜(1)). One important application of the KKL theorem (and in fact,

the first ever) is to the problem of collective coin flipping, introduced by Ben-Or and

Linial [7]: imagine a two candidate election in which 𝑛 binary votes 𝑥1, . . . , 𝑥𝑛 are

cast, most of which are fair coin flips, but there is some unknown coalition 𝑄 ⊂ [𝑛]

of voters whose votes are corrupted by an adversary, who can observe the votes from

[𝑛] ∖𝑄 and cause 𝑄 to vote however she pleases. The outcome of the election is then

defined to be 𝑓(𝑥). Is there a voting function 𝑓(𝑥) such that, with high probability

over the fair coin flips, the adversary cannot change the outcome of the election?

The answer of course, depends on the size of 𝑄. If |𝑄| = 𝑜(
√
𝑛), for example, a

simple majority vote will do the trick. Let us write 𝐼𝑄[𝑓 ] to denote the influence of

the coalition 𝑄 on 𝑓 , that is, the probability that 𝑄 can change the outcome of 𝑓 , i.e.

𝐼𝑄[𝑓 ] := Pr
𝛼∼{0,1}[𝑛]∖𝑄

[𝑓𝛼(·) is not constant]. (2.65)

If 𝑓 = MAJ𝑛, then 𝐼𝑄[𝑓 ] = Pr
[︁⃒⃒⃒
𝑛
2 −

∑︀
𝑖 ̸∈𝑄 𝑥𝑖

⃒⃒⃒
≤ |𝑄|

]︁
, which, by the central limit

theorem, implies

𝐼𝑄[𝑓 ] .
∫︁ |𝑄|√

𝑛

0
𝑒−𝑡2 𝑑𝑡 .

|𝑄|√
𝑛
,

so 𝐼𝑄[MAJ𝑛] ≤ 𝜖 for |𝑄| . 𝜖
√
𝑛. In general, if 𝑓 has the property that 𝐼𝑄[𝑓 ] = 𝑜(1)

for any 𝑄 ⊂ [𝑛] with |𝑄| = 𝑞(𝑛), we say that 𝑓 is resilient to coalitions of size

𝑞(𝑛). So MAJ𝑛 is resilient to coalitions of size 𝑜(
√
𝑛), yet it is easy to see that any

coalition of size Ω(
√
𝑛) will have Ω(1) influence on 𝑓 . The constant function 𝑓 ≡ 1
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is trivially resilient to coalitions of all sizes, but it is also a pretty terrible way to

decide an election – we rule out such functions by restricting to those 𝑓 which are

nearly balanced, which we take to mean min{Pr[𝑓 = 1],Pr[𝑓 = 0]} ≥ 1/3, although

the constant 1/3 is completely arbitrary. The KKL theorem provides7 a very general

upper bound on how resilient a nearly-balanced function can be:

Theorem 2.6.1 (Kahn-Kalai-Linial, 1988). If 𝑓 : {0, 1}𝑛 → {0, 1} is nearly balanced,

then for each 𝜖 > 0, there is some coalition 𝑄 of size |𝑄| = 𝑂(𝑛 log( 1
𝜖

)
log𝑛 ) with 𝐼𝑄[𝑓 ] ≥

1− 𝜖.

Whether Theorem 2.6.1 can be improved remains an interesting open problem.

However, a construction of Ajtai and Linial [1] shows that it cannot be improved by

very much:

Theorem 2.6.2 (Ajtai-Linial, 1993). There is a nearly balanced function 𝑓 which is

resilient to coalitions of size 𝑞(𝑛), for any 𝑞(𝑛) = 𝑜( 𝑛
log2 𝑛

).

In what follows, we give a “lecture-friendly” proof of Theorem 2.6.2. We use

the original randomized construction of Ajtai and Linial, and simplify the resilience

analysis in a few small ways, inspired in part by Meka’s recent derandomization of

this construction [53]. We emphasize that our proof is merely a simplification of

the original proof, not a dramatically different one. However, while Theorem 2.6.2

is well-cited and often stated in undergraduate lectures on the analysis of boolean

functions, the author could not find a proof of it, or even a proof sketch, in any

lecture notes or textbooks available online. Perhaps this is because Ajtai and Linial’s

original argument, while mostly elementary, is long and somewhat challenging to

follow, which hopefully ours is not. As the problem of improving Theorem 2.6.2 is

still open, perhaps including the complete proof in lecture would inspire more young

minds to work on this interesting open problem.

7The coalition 𝑄 is essentially formed by taking the maximal influence coordinate, restricting
and looping until the function becomes highly biased. (Technically this procedure only works for
monotone functions, but it is a standard fact that monotonization can only make a function more
resilient.)
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2.6.1 The construction

Given 𝑛, pick 𝑏 = log2 𝑛− 2 log2 log2 𝑛+ 𝑜(1) such that

1− ln 2
𝑛
≤ 1− (1− 2−𝑏)𝑛/𝑏 ≤ 1− ln 2

𝑛
+ ln2 𝑛

𝑛2 .

For a collection P = {𝑃 1, . . . , 𝑃 𝑛} of partitions 𝑃 𝑖 = {𝑃 𝑖
1, . . . , 𝑃

𝑖
𝑛/𝑏} of [𝑛] into parts

of size8 𝑏, and a sequence g = (𝑔1, . . . , 𝑔𝑛) of 𝑛 strings 𝑔𝑖 ∈ {0, 1}𝑛, we define the

functions

𝐹𝑃 𝑖,𝑔𝑖(𝑥) :=
𝑛/𝑏⋁︁
𝑗=1

⋀︁
𝑘∈𝑃 𝑖

𝑗

(𝑥𝑘 = 𝑔𝑖𝑘) and 𝐹P,g(𝑥) :=
𝑚⋀︁
𝑖=1

𝐹𝑃 𝑖,𝑔𝑖(𝑥). (2.66)

We’ll show that, for some choice of P and g, the function 𝐹P,g is (a) nearly balanced

and (b) resilient to all coalitions of size 𝑜( 𝑛
log2 𝑛

). First we give a short proof of (a):

Lemma 2.6.1. For every P, there exists some choice of g for which

Pr
𝑥

[𝐹P, g(𝑥) = 1] = 1
2 + 𝑜𝑛(1).

Proof. Fix any P = {𝑃 1, . . . , 𝑃 𝑛}. For any 𝑔𝑖, we have Pr𝑥[𝐹𝑃 𝑖,𝑔𝑖(𝑥) = 1] = 1− (1−

2−𝑏)𝑛/𝑏, which by our choice of 𝑏, is equal to 1 − ln 2
𝑛

+ 𝑂( ln2 𝑛
𝑛2 ). Observe that, for a

fixed 𝑥, when the strings 𝑔𝑖 are chosen independently and uniformly at random, the

events {𝐹𝑃 𝑖,𝑔𝑖(𝑥) = 1} are independent across different values of 𝑖. Therefore,

Eg Pr
𝑥

[𝐹P,g(𝑥) = 1] = E𝑥 Pr
g

[𝐹P,g(𝑥) = 1]

= E𝑥
[︃
𝑛∏︁
𝑖=1

Pr
𝑔𝑖

[𝐹𝑃 𝑖,𝑔𝑖(𝑥) = 1]
]︃

=
(︃

1− ln 2
𝑛

)︃𝑛
= 1

2 +𝑂

(︃
log2 𝑛

𝑛

)︃
,

so on average, 𝐹P,g has the correct bias. Fix 𝛿 = Θ( log2 𝑛
𝑛

). If there is no g such that

Pr𝑥[𝐹P,g(𝑥) = 1] ∈ (1
2 − 𝛿, 1

2 + 𝛿), then by connectedness of the hypercube graph,

8We ignore questions of divisibility here, as such issues are inconsequential to the analysis.
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there must be some g such that flipping a single bit 𝑔𝑖𝑘 causes the expectation of 𝐹P,g

to change by at least 2𝛿. This in turn implies that the influence of coordinate 𝑖 on

𝐹𝑃 𝑖,𝑔𝑖 is at least 𝛿, contradicting the fact that 𝐼𝑖(𝐹𝑃 𝑖,𝑔𝑖) ≤ Var(𝐹𝑃 𝑖,𝑔𝑖) = 𝑂( 1
𝑛
).

2.6.2 Proof of resilience

To prove theorem 2.6.2, it remains to bound the influence of a 𝑞-sized coalition 𝑄 on

𝐹P,g, for 𝑞 = 𝜀𝑛
log2 𝑛

. Recall that 𝐼𝑄[𝑓 ] is the probability that a random assignment to

the variables outside of 𝑄 doesn’t leave 𝑓 fixed. So by a union bound,

𝐼𝑄[𝐹P,g] ≤
𝑛∑︁
𝑖=1

𝐼𝑄[𝐹𝑃 𝑖,𝑔𝑖 ] =
𝑛∑︁
𝑖=1

𝐼𝑄[𝐹𝑃 𝑖,0], (2.67)

where in the final equality we have used the easy observation that 𝐼𝑄[𝐹𝑃 𝑖,𝑔𝑖 ] does not

depend on 𝑔𝑖, so we may set it to 0 for convenience. Let us simply write 𝐹𝑃 𝑖 for

𝐹𝑃 𝑖,0. A partial assignment 𝑥 ∈ {0, 1}𝑄 can only leave 𝐹𝑃 𝑖 unfixed if (1) for every

part 𝑃 𝑖
𝑗 that does not intersect 𝑄, we have 𝑥𝑘 = 1 for some 𝑘 ∈ 𝑃 𝑖

𝑗 , and (2) for some

part 𝑃 𝑖
𝑗 which intersects 𝑄, we have 𝑥𝑘 = 0 for all 𝑘 ∈ 𝑃 𝑖

𝑗 ∖ 𝑄. These two events

are independent, and we can bound their probabilities somewhat crudely. Since there

are at least 𝑛
𝑏
− 𝑞 parts which do not intersect 𝑄, the probability of (1) is at most

(1− 2−𝑏)𝑛/𝑏−𝑞 . 1
𝑛
. The probability of (2) is, by a union bound, at most

∑︁
𝑗:𝑃 𝑖

𝑗 ∩𝑄 ̸=∅

1
2𝑏−|𝑃 𝑖

𝑗 ∩𝑄| = 2−𝑏 ∑︁
𝑗:𝑃 𝑖

𝑗 ∩�̸�=∅
2|𝑃 𝑖

𝑗 ∩𝑄|.

Therefore,

𝐼𝑄[𝐹𝑃 𝑖 ] ≤ (1− 2−𝑏)𝑛/𝑏−𝑞2−𝑏 ∑︁
𝑗:𝑃 𝑖

𝑗 ∩𝑄 ̸=∅
2|𝑃 𝑖

𝑗 ∩𝑄| .
log2 𝑛

𝑛2

𝑛/𝑏∑︁
𝑗=1

1𝑄∩𝑃 𝑖
𝑗 ̸=∅2|𝑃 𝑖

𝑗 ∩𝑄|. (2.68)

If we define 𝑆𝑖 = 𝑆𝑖(P, 𝑄) := log2 𝑛
𝑛2

∑︀𝑛/𝑏
𝑗=1 1𝑄∩𝑃 𝑖

𝑗 ̸=∅2|𝑄∩𝑃 𝑖
𝑗 |, then (2.67) and (2.68) imply

𝐼𝑄[𝐹P,g] .
𝑛∑︁
𝑖=1

𝑆𝑖. (2.69)
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Consider choosing the collection P = {𝑃 1, . . . , 𝑃 𝑛} uniformly at random. Then the

random variables 𝑆𝑖 are i.i.d., with mean

E[𝑆𝑖] = 𝑛

𝑏
· log2 𝑛

𝑛2 (E𝑃 1 [2|𝑃 1∩𝑄|]− Pr
𝑃 1

[𝑃 1 ∩𝑄∅])

= log2 𝑛

𝑛𝑏

𝑏∑︁
𝑘=1

2𝑘 Pr
𝑃 1

[|𝑃 1 ∩𝑄| = 𝑘]. (2.70)

The number of 𝑃 1 ∈
(︁

[𝑛]
𝑏

)︁
with |𝑃 1 ∩ 𝑄| = 𝑘 is exactly

(︁
𝑞
𝑘

)︁(︁
𝑛−𝑞
𝑏−𝑘

)︁
≤ ( 𝑒𝑞

𝑘
)𝑘
(︁
𝑛
𝑏−𝑘

)︁
, and

hence

Pr[|𝑃 1 ∩𝑄| = 𝑘] ≤
( 𝑒𝑞
𝑘

)𝑘
(︁
𝑛
𝑏−𝑘

)︁
(︁
𝑛
𝑏

)︁ =
(︂
𝑒𝑞

𝑘

)︂𝑘
· 𝑏(𝑏− 1) · · · (𝑏− 𝑘 + 1)

(𝑛− 𝑏+ 𝑘) · · · (𝑛− 𝑏+ 1) (2.71)

≤
(︂
𝑒𝑞

𝑘

)︂𝑘 (︃2𝑏
𝑛

)︃𝑘
≤
(︃

6𝑞𝑏
𝑛

)︃𝑘
(2.72)

which by (2.70) implies

E[𝑆𝑖] ≤
log2 𝑛

𝑛𝑏

∞∑︁
𝑘=1

(︃
12𝑞𝑏
𝑛

)︃𝑘
≤ 2 log 𝑛

𝑛
·

∞∑︁
𝑘=1

(︃
6𝜀

log 𝑛

)︃𝑘
≤ 100𝜀

𝑛
. (2.73)

This already implies that, for a random P and a random 𝑄 of size 𝑞, 𝐼𝑄[𝐹P,g] . 𝜀

for any g. However, we need this bound to hold for all 𝑄 simultaneously, not just an

average 𝑄. There is an easy Markov/Chernoff fix, as long as we’re willing to pay a
√
𝜀

price in the influence bound. Indeed, by Markov’s inequality, Pr
[︁
𝑆𝑖 >

100
√
𝜀

𝑛

]︁
≤
√
𝜀,

and hence by a Chernoff bound we have, for each 𝑄,

Pr
P

[︃⃒⃒⃒⃒
⃒
{︃
𝑖 ∈ [𝑛] : 𝑆𝑖(P, 𝑄) > 100

√
𝜀

𝑛

}︃⃒⃒⃒⃒
⃒ > 10

√
𝜀𝑛

]︃
≤ 2−𝜀𝑛. (2.74)

Since there are only
(︁
𝑛
𝑞

)︁
=
(︁

𝑛
𝜀𝑛

log2 𝑛

)︁
≤
(︁
𝑒 log2 𝑛

𝜀

)︁𝜀𝑛/ log2 𝑛
≤ 2

𝑛 log log 𝑛

log2 𝑛 sets 𝑄 to worry

about, taking a union bound gives

Pr
P

[︃
∃𝑄 ∈

(︃
[𝑛]
𝑞

)︃
for which

⃒⃒⃒⃒
⃒
{︃
𝑖 ∈ [𝑛] : 𝑆𝑖(P, 𝑄) > 100

√
𝜀

𝑛

}︃⃒⃒⃒⃒
⃒ > 10

√
𝜀𝑛

]︃
≤ 2−𝜀𝑛+ 𝑛 log log 𝑛

log2 𝑛

< 2−𝜀𝑛/2.
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So fix any such P satisfying
⃒⃒⃒
{𝑖 ∈ [𝑛] : 𝑆𝑖(P, 𝑄) > 100

√
𝜀

𝑛
}
⃒⃒⃒
≤ 10

√
𝜀𝑛 for all 𝑄. Let

𝑆(𝑄) := {𝑖 ∈ [𝑛] : 𝑆𝑖(P, 𝑄) > 10
√
𝜀}. Then for any 𝑄 and any g, we have

𝐼𝑄[𝐹P,g] ≤
∑︁

𝑖∈𝑆(𝑄)
𝐼𝑄[𝐹𝑃 𝑖 ] +

∑︁
𝑖 ̸∈𝑆(𝑄)

𝐼𝑄[𝐹𝑃 𝑖 ]

.
∑︁

𝑖∈𝑆(𝑄)
𝑆𝑖 +

∑︁
𝑖 ̸∈𝑆(𝑄)

Var[𝐹𝑃 𝑖 ] (2.75)

.
∑︁

𝑖∈𝑆(𝑄)

100
√
𝜀

𝑛
+

∑︁
𝑖 ̸∈𝑆(𝑄)

1
𝑛

(2.76)

.
√
𝜀+
√
𝜀 (2.77)

Taking the particular g from Lemma 2.6.1, we see that the function 𝐹P,g satisfies

Theorem 2.6.2.

Remark: Technically, Ajtai and Linial’s original argument proves a slightly stronger

result. They showed that, for almost all P and almost all g, all sets 𝑄 of size 𝜀𝑛
log2 𝑛

have 𝐼𝑄[𝐹P,g] . 𝜀, whereas our proof shows that, for almost all P, there exists a g

such that all sets 𝑄 of size 𝜀𝑛
log2 𝑛

have 𝐼𝑄[𝐹P,g] .
√
𝜀.
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Chapter 3

Applications of Partial Rejection

Sampling

3.1 Introduction

Given a set of “bad” events 𝐴1, . . . , 𝐴𝑚 depending on variables 𝑋1, . . . , 𝑋𝑛, how can

we sample a uniformly random assignment 𝜎 to the variables subject to the constraint

that

𝜎 ∈
𝑚⋂︁
𝑖=1

𝐴𝑖 ?

The most naive approach would be to repeatedly sample an assignment 𝜎 uniformly

at random until, by a stroke of luck1, 𝜎 ∈ ∩𝑚𝑖=1𝐴𝑖. While this algorithm is attractively

simple and always outputs a sample from the desired distribution upon termination,

it takes an often intractably large 1
Pr[∩𝑚

𝑖=1𝐴𝑖]
rounds in expectation. Is there a general-

purpose way to make rejection sampling more efficient?

In a 2017 paper [32], Guo, Jerrum and Liu gave a general algorithm for uniform

sampling which captures (at least partially) the simplicity of rejection sampling, with-

out necessarily taking an enormous number of rounds to terminate when Pr[∩𝑚𝑖=1𝐴𝑖]

is small. The underlying idea of their method, called partial rejection sampling, is

1One must of course assume something about the events 𝐴𝑖 to ensure that Pr[∩𝑚
𝑖=1𝐴𝑖] > 0. A

common choice is given by the hypothesis of the Lovasz Local Lemma, which roughly says that this
probability is positive when Pr[𝐴𝑖] is small compared to the number of events on which 𝐴𝑖 depends.
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simple: instead of resampling all of the variables every time at least one bad event

occurs, sample just a subset of them, which includes all of the variables involved in

violated constraints – which we call Badvar(𝜎) – and not too many more than that.

Indeed, consider drawing a random assignment 𝜎0 from the product distribution on

the 𝑋𝑗, and continually resampling the variables in Badvar(𝜎𝑖) to obtain 𝜎𝑖+1. This

is the algorithm analyzed in Moser and Tardos’s celebrated constructive proof of the

Lovasz Local Lemma [57], in which the authors give a bound on the expected number

𝑡 of rounds of resampling until Badvar(𝜎𝑡) = ∅, which is finite when the events 𝐴𝑖
satisfy the conditions of the Lovasz Local Lemma (LLL). The most general condition

on the collection of events 𝐴𝑖 which guarantees that Pr[∩𝑚𝑖=1𝐴𝑖] > 0 is called Shearer’s

condition [70], and in 2011, Kolipaka and Szegedy [49] strengthened the arguments

of Moser and Tardos, showing that Shearer’s condition is sufficient for the same algo-

rithm to terminate efficiently. The instances for which the lower bound on Pr[∩𝑚𝑖=1𝐴𝑖]

from Shearer’s condition is tight are exactly those in which dependent bad events are

disjoint – these have been called extremal instances [49]. Somewhat amazingly, Guo,

Jerrum and Liu showed that, on extremal instances, the random assignment output

by the Moser-Tardos algorithm is actually uniform among all satisfying assignments

to the 𝑋𝑗. A number of classical sampling algorithms actually fit into this framework,

such as the “sink-popping” algorithm of Cohn, Pemantle and Propp [15] for gener-

ating a uniformly random sink-free orientation of an undirected graph, or Wilson’s

“cycle-popping” algorithm for sampling uniform spanning trees [78].

For non-extremal instances, however, the output of the Moser-Tardos algorithm

may not be uniform. Guo et al. provide one method of growing the set Badvar(𝜎) to

include certain “neighboring” variables (discussed in Section 3.2.2), giving a general-

ized partial rejection algorithm, and in [32] it is shown that this is always a uniform

sampler. The authors provide general conditions under which this sampler is also

efficient: loosely speaking, this occurs when any dependent pair of bad events share

many of their variables. As an example, the authors of [32] use PRS to sample satis-

fying assignments of 𝑘-CNFs with the property that no variable occurs in more than

≈ 2𝑘/2 clauses, and every pair of dependent clauses share at least 𝑘/2 variables. Their
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methods also yield an algorithm for sampling from the hard-core distribution on in-

dependent sets in graphs of maximum degree 𝑑 up to fugacity 1
2
√
𝑒·𝑑−1 . This is about

a factor of 9 short of the hardness threshold 𝑒
𝑑
, which is attained by the correlation

decay-based algorithm of Weitz [76], although as the authors of [32] point out, the

PRS-based algorithm “has the advantage of being simple, exact, and running in linear

time in expectation.”

In this chapter, we consider a few sampling problems which are not extremal in

the sense of [49], nor do they have the large-overlap feature mentioned above, and yet

we exploit other properties of their underlying dependency graphs to prove that gen-

eralized partial rejection sampling solves them efficiently. While these problems are

probably not of great theoretical or practical importance, we believe they suggest that

partial rejection sampling may be a viable approach for structured sampling prob-

lems, even when that structure does not obey the hypotheses of the main theorems

in [32]. The two types of problems we consider are:

1. Sampling 𝑤-free strings: Given input (Σ, 𝑤, 𝑛), where Σ is a finite alphabet

and 𝑤 is some string over Σ, generate a uniformly random element of Σ𝑛 which

does not contain 𝑤 as a contiguous substring.

2. Sampling 𝐻-free subgraphs of a grid: Given an input (𝐺,𝐻, 𝜆), where 𝐺

and 𝐻 are subgraphs of a grid graph and 𝜆 ∈ (0, 1), generate a sample from the

following distribution, which is supported on 𝐻-free (non-induced) subgraphs

of 𝐺:

Pr(𝐺′) ∝

⎧⎪⎪⎨⎪⎪⎩
𝜆𝑒(𝐺

′)(1− 𝜆)𝑒(𝐺)−𝑒(𝐺′) ∝
(︁

𝜆
1−𝜆

)︁𝑒(𝐺′)
if 𝐺′ ⊆ 𝐺 is 𝐻-free

0 otherwise
(3.1)

(We only deal explicitly with the case that 𝐺 is a subgraph of either the trian-

gular or the square grid, and 𝐻 is either a triangle or a square, respectively.)
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3.1.1 Our results

The main theorem of [32] (Theorem 26 therein), applied directly to Problem 1 above,

only guarantees that general PRS is efficient for |Σ| > 16|𝑤|, which is quite undesir-

able. By tailoring the runtime analysis to the associated dependency graph, we are

able to prove efficiency of PRS under much less severe restrictions:

Theorem 3.1.1. For |Σ| ≥ 3 and any 𝑤, the expected number of rounds used by PRS

to sample a 𝑤-free string in Σ𝑛 is 𝑂(log 𝑛) and the expected number of resampled

events is 𝑂(𝑛).

We remark that a variety of efficient samplers exist for this problem. Indeed, a

number of efficient combinatorial algorithms are known for counting length 𝑛 strings

in regular languages (see, e.g. [41], [46], [62], [21]). These methods, however, do have

a few disadvantages: for one, their complexity grows with |Σ| and |𝑤|, while PRS

actually uses fewer rounds of resampling for larger alphabets and longer forbidden

words. Secondly, these combinatorial methods can be rather difficult to implement,

and many of them involve doing arithmetic with numbers whose bit complexity grows

quite rapidly. Even in the parameter regime where some of these methods may

outperform PRS, they cannot compete in terms of simplicity of implementation and

ease of explanation. Simple MCMC-based approximate samplers may also work here,

but it is unclear how to make them exact. We also remark that our methods can easily

be adapted to a more general definition of “string”, including necklaces, figure-eights,

and any path-like object with a bounded number of self-intersections.

In contrast to string sampling, the exact counting problem for subgraph sam-

pling is NP-hard in general, and perhaps remains hard even on instances which are

subgraphs of a grid. However, when 𝐺 and 𝐻 have the property that no edge of 𝐺 ap-

pears in more than 2 copies of 𝐻 inside 𝐺, then there is an FPRAS for approximately

sampling from this distribution when 𝜆 ≤ 1/2, based on an algorithm of Lin, Liu and

Lu [50]. Both the square and triangular grid versions of the problem we consider in

this chapter satisfy this property. However, even on these grids the FPRAS can be

quite inefficient – the runtime bound in [50] becomes 𝑂(𝑛11.16(1/𝜖)2.58) when applied
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to an 𝑛× 𝑛 grid.

Again we can try appealing directly to Theorem 26 in [32] to see how PRS per-

forms. When sampling triangle free subgraphs of a triangular grid graph, the theorem

guarantees efficiency of PRS for 𝜆 ≤ 1
9𝑒 ≈ 0.04088, while for square-free subgraphs of

the square grid, it requires 𝜆 ≤ 1
12𝑒 ≈ 0.03065. However, when we ran an implemen-

tation of PRS on these problems, the efficiency thresholds for 𝜆 appeared to be about

0.471 and 0.456 respectively. Inspired by these simulations, we greatly improve the

guarantees from [32]:

Theorem 3.1.2. If 𝜆 ≤ 𝜆Δ ≈ 0.3748 and 𝐺 is a subgraph of the 𝑛×𝑛 triangular grid,

then running on the instance (𝐺,𝐾3, 𝜆), PRS takes 𝑂(log 𝑛) rounds in expectation.

If 𝜆 ≤ 𝜆� ≈ 0.4063 and 𝐺 is a subgraph of the 𝑛 × 𝑛 square grid, then running on

the instance (𝐺,𝐶4, 𝜆), PRS takes 𝑂(log 𝑛) rounds in expectation2.

In an appendix to this chapter, we consider an application of PRS to a problem

outside of the so-called “variable framework”. In [31], Guo and Jerrum give a PRS-

based algorithm for sampling from the hard-spheres model, which is a particular

distribution of non-overlapping spheres of equal radii in R𝑑, parameterized by an

intensity parameter 𝜆. We give a geometric argument which, in any dimension 𝑑,

slightly increases the range of 𝜆 for which their algorithm is guaranteed to be efficient.

3.2 The method of Guo, Jerrum, Liu

In this section, we review the ideas from Guo et al. [32] that we’ll need to make

use of. We also fix our notation to be largely consistent with theirs. Let 𝑋1, ..., 𝑋𝑛

be independent random variables distributed according to some product distribution

𝜋𝑛 and let {𝐴1 ..., 𝐴𝑚} be a set of (“bad”) events dependent on some of the 𝑋𝑖.

Let var(𝐴𝑖) be the set of random variables on which the event 𝐴𝑖 depends. For an

assignment 𝜎 to the 𝑋𝑖, we define Bad(𝜎) to be the set of 𝐴𝑖 which hold under 𝜎, and
2The overall runtime of the algorithm depends on certain implementation choices, but the most

naive implementation requires time 𝑂(𝑛3 log 𝑛), space 𝑂(𝑛2), and uses 𝑂(𝑛2) random bits in expec-
tation.
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we let Badvar(𝜎) be the set of all variables involved in some occurring bad events, that

is Badvar(𝜎) = ∪𝑖∈Bad(𝜎)var(𝐴𝑖). We define the dependency graph 𝐺 = (𝑉,𝐸), where

𝑉 = {𝐴1, ..., 𝐴𝑛}, and 𝐴𝑖 ∼ 𝐴𝑗 (i.e. 𝐴𝑖 and 𝐴𝑗 are neighbors) if var(𝐴𝑖)∩var(𝐴𝑗) ̸= ∅.

In other words, 𝐴𝑖 ∼ 𝐴𝑗 if they both depend on some common random variable 𝑋𝑘.

For any subset 𝑆 of bad events, we define Γ(𝑆) = {𝐴𝑖 |𝐴𝑖 ∼ 𝐴𝑗 for some 𝐴𝑗 ∈ 𝑆,𝐴𝑖 ̸∈

𝑆} and Γ+(𝑆) = 𝑆 ∪ Γ(𝑆).

3.2.1 Extremal Partial Rejection Sampling

As mentioned in the introduction, an instance of this setup is called extremal if

𝐴𝑖 ∼ 𝐴𝑗 =⇒ Pr[𝐴𝑖∩𝐴𝑗] = 0. Algorithm 1 below, which is the parallel version of the

Moser-Tardos algorithm, generalizes the sink-popping algorithm of Cohn, Pemantle

and Propp [15], in which the term “partial rejection sampling” first appeared.

Algorithm 1: Partial Rejection Sampling for extremal instances
1 sample 𝜎 = (𝑥1, . . . , 𝑥𝑛) ∼ 𝜋𝑛

2 while Bad(𝜎) ̸= ∅ do
3 resample all variables in Badvar(𝜎)
4 update 𝜎
5 end
6 output 𝜎

As shown in [32], Algorithm 1 produces a uniform sample from the product distri-

bution on (𝑋1, . . . , 𝑋𝑛) conditioned on the event ⋃︀𝑚𝑖=1 𝐴𝑖. Moreover, by differentiating

a relevant generating function, the authors produce an exact formula for the expected

number of resampled events during the entire run of this Algorithm on any extremal

instance:

Theorem 3.2.1 (Guo, Jerrum, Liu 2017). Let 𝑞𝑆 be the probability that the set of

occurring bad events is exactly 𝑆, and suppose 𝑞∅ > 0. Then the expected number of

resampled events during Algorithm 1 is ∑︀𝑛
𝑖=1

𝑞{𝑖}
𝑞∅

.
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3.2.2 General partial rejection sampling

We now describe the general version of partial rejection sampling given in the latter

half of [32]. For any set of events 𝑆, we let 𝜎𝑆 denote the restriction of the assignment

𝜎 to the variables in var(𝑆) := ∪𝑖∈𝑆var(𝐴𝑖). We say3 that 𝜎𝑆 blocks an event 𝐴𝑖 if

𝜎𝑆 =⇒ 𝐴𝑖, that is, 𝐴𝑖 cannot occur given that the variables in var(𝑆) are set

according to 𝜎𝑆. In general, it is not enough to sample only the variables participating

in Bad(𝜎) – in each round we must sample the variables from a larger set of events

we call Res(𝜎). Algorithm 3 gives one method of doing this. In words, it grows

𝑅 = Res(𝜎) iteratively, beginning with 𝑅 = Bad(𝜎), choosing an unmarked event

𝑖 ∈ 𝑈 = Γ(𝑅), and checking whether 𝐴𝑖 is blocked by 𝜎𝑅. If it is, we mark it “don’t

resample,” while if it is not blocked, we add it to 𝑅. After we have looped through all

of the unmarked events in 𝑈 , we update 𝑈 = Γ(𝑅), as 𝑅 might’ve grown during the

last iteration. We continue until we reach a point when Γ(𝑅) contains no unmarked

events.

Algorithm 2: Computing the resample set Res(𝜎)
1 initialize 𝑅 = Bad(𝜎), 𝑁 = ∅, and 𝑈 = Γ(𝑅) ∖𝑁
2 while 𝑈 ̸= ∅ do
3 for 𝑖 ∈ 𝑈 do
4 if 𝜎𝑅 blocks 𝑖 then
5 update 𝑁 = 𝑁 ∪ {𝑖}
6 end
7 else
8 update 𝑅 = 𝑅 ∪ {𝑖}
9 end

10 end
11 update 𝑈 = Γ(𝑅) ∖𝑁
12 end
13 output 𝑅 = Res(𝜎)

3Note that our terminology here differs from that in [32], as we find theirs to be less intuitive.
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Algorithm 3: General Partial Rejection Sampling
1 sample 𝜎 = (𝑥1, . . . , 𝑥𝑛) ∼ 𝜋𝑛

2 while Bad(𝜎) ̸= ∅ do
3 compute Res(𝜎) via Algorithm 2
4 resample the variables in ∪𝑖∈Res(𝜎)var(𝐴𝑖)
5 update 𝜎
6 end
7 output 𝜎

It is important to note that when looping over the set 𝑈 in line 3 of Algorithm 2,

we must use a fixed, deterministic ordering of 𝑈 , although this ordering is arbitrary.

Let 𝜎𝑡 denote the assignment after 𝑡 invocations of Algorithm 2 during Algorithm 3,

and let Res𝑡 denote the resampled events at this stage. In [32] it is shown that

(𝜎𝑡+1 |Res0,Res1, . . . ,Res𝑡) ∼ 𝜋𝑛(· | ∩𝑖∈[𝑚]∖Γ+(Res𝑡) 𝐴𝑖), (3.2)

which implies that 𝜎 ∼ 𝜋𝑛(· | ∩𝑖∈[𝑚] 𝐴𝑖) upon termination, so this is indeed a uni-

form sampler. As an interesting corollary of 3.2, we see that the sample output by

Algorithm 3 is independent of how many rounds it had to run for. This means in

particular that a time-constrained user could interrupt and/or restart the algorithm

without introducing impatience bias into the sample.

Unlike Algorithm 1, it is likely impossible to give a simple closed form for the

expected runtime of Algorithm 3, but Guo, Jerrum and Liu are able to prove a

logarithmic upper bound on the number of rounds under a certain set of conditions.

Let 𝑝 = max𝑖∈[𝑚] Pr[𝐴𝑖] and4 Δ = max𝑖∈[𝑚] |Γ(𝐴𝑖)| be the maximum degree in the

dependency graph. Let 𝑅𝑖𝑗 be the event that the partial assignments on var(𝐴𝑖) ∩

var(𝐴𝑗) can be extended to an assignment satisfying 𝐴𝑗. Let 𝑟𝑖𝑗 = Pr[𝑅𝑖𝑗] and finally

set 𝑟 = max𝑖∼𝑗 𝑟𝑖𝑗.

Theorem 3.2.2. ([32], Theorem 26): Let 𝑚 be the number of events and 𝑛 the

number of variables. For any Δ ≥ 2, if 6𝑒𝑝Δ2 ≤ 1 and 3𝑒𝑟Δ ≤ 1, then the expected

number of rounds is 𝑂(log𝑚) and the expected number of resampled events is at most

𝑂(𝑚).
4Unless otherwise indicated, all probabilities will be with respect to the product measure 𝜋𝑛.
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As mentioned in the introduction, applying this theorem directly to our problems

of interest yields quite suboptimal results. So, we now open up the proof of this

theorem from [32], laying out the terminology and the general strategy which we will

fine-tune in our applications.

The proof of Theorem 3.2.2 works by showing that the expected size of the re-

sampling set Res𝑡 is exponentially decaying in 𝑡. The main observation is that when

an event 𝑖 is added during stage ℓ of Algorithm 5, there must be a chain of ℓ events

ending at 𝑖 and beginning at a bad event which occurs, such that the partial assign-

ments never block the next event in the chain. The probability of such an occurrence

can be bounded by 𝑝𝑟ℓ−1, and the number of such potential paths can be bounded

by something like Δ(Δ− 1)ℓ. This motivates the condition 𝑟Δ . 1. We justify these

observations below.

Lemma 3.2.1. If 𝑖 is added to 𝑅ℓ during a run of Algorithm 5 on an assignment 𝜎,

then there exists a path 𝑖0, 𝑖1, . . . , 𝑖ℓ = 𝑖 in the dependency graph such that, for each

0 ≤ 𝑘 ≤ ℓ, 𝑖𝑘 ∈ 𝑅𝑘, the events 𝑅𝑖𝑘−1𝑖𝑘 occur, and 𝑖𝑘′ ∼ 𝑖𝑘 ⇐⇒ |𝑘 − 𝑘′| ≤ 1.

Proof. If 𝑖 is added in to 𝑅ℓ, it must be because it was unblocked by some neighboring

event 𝑖ℓ−1 which was added in the previous round. By induction, there is a path

𝑖0, 𝑖1, . . . , 𝑖ℓ−1 as in the lemma. If 𝑖 ∼ 𝑖𝑘 for 𝑘 < ℓ − 1, then Algorithm 5 would’ve

added 𝑖 to either 𝑅𝑘+1 or 𝑁𝑘+1 during stage 𝑘 + 1 < ℓ, which is impossible since

𝑖 is added during stage ℓ. Therefore the path 𝑖0, . . . , 𝑖ℓ−1, 𝑖ℓ satisfies the desired

conditions.

We shall henceforth refer to such paths as bad paths, as is done in [32]. More

precisely, we define a path to be a sequence of events 𝑃 = 𝑖0, 𝑖1, . . . , 𝑖ℓ such that

𝑖𝑘′ ∼ 𝑖𝑘 ⇐⇒ |𝑘 − 𝑘′| ≤ 1. Then we see that a path 𝑃 is bad under an assignment

𝜎 if (1) 𝑖0 ∈ Bad(𝜎) and (2) 𝑅𝑖𝑘−1𝑖𝑘 occurs for all 𝑘. Let 𝐸𝑃 denote the event that

the path 𝑃 is bad. Note that the events 𝑅𝑖𝑘−1𝑖𝑘 are independent for different values

of 𝑘 – indeed, 𝑅𝑖𝑘−1𝑖𝑘 depends only on var(𝐴𝑖𝑘−1) ∩ var(𝐴𝑖𝑘), and so our definition of
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a path implies that var(𝐴𝑖𝑘) ∩ var(𝐴𝑖𝑘′ ) = ∅ unless |𝑘 − 𝑘′| ≤ 1. Hence

Pr[𝐸𝑃 ] = Pr[(𝑖0 ∈ 𝑅0) ∧𝑅𝑖0𝑖1 ∧ (𝑖1 ∈ 𝑅1) ∧𝑅𝑖1𝑖2 ∧ · · · ∧ (𝑖ℓ ∈ 𝑅ℓ) ∧𝑅𝑖ℓ−1𝑖ℓ ]

≤ Pr[𝐴𝑖0 ∧𝑅𝑖0𝑖1 ∧ · · · ∧𝑅𝑖ℓ−1𝑖ℓ ] ≤ Pr[𝐴𝑖0 ∧𝑅𝑖0𝑖1 ]
ℓ∏︁

𝑘=2
𝑟𝑖𝑘−1𝑖𝑘 (3.3)

To show that Res𝑡 is shrinking exponentially, we’d like to prove a bound of the

form

E[|Res𝑡+1| |Res𝑡] ≤ 𝐶|Res𝑡|, (3.4)

for some 𝐶 < 1. Since Bad(𝜎𝑡+1) ⊆ Γ+(Res𝑡), the number of paths 𝑃 = 𝑖0, . . . , 𝑖ℓ of

length ℓ is at most |Γ+(Res𝑡)|Δ(Δ − 1)ℓ ≤ (1 + Δ)Δ(Δ − 1)ℓ−1|Res𝑡|. By a union

bound, the expected number of elements that are added to Res(𝜎𝑡+1) during the ℓth

iteration of the for loop in Algorithm 2 is at most ∑︀𝑃 Pr[𝐸𝑃 |Res𝑡]. If, for a moment,

we assume that the bound in (3.3) held for the conditional probability Pr[𝐸𝑃 |Res𝑡],

it would follow that

E[|Res𝑡+1 |Res𝑡] ≤
(︃
𝑝Δ(1 + Δ)

∞∑︁
ℓ=1

(𝑟(Δ− 1))ℓ−1
)︃
|Res𝑡| (3.5)

which would imply Theorem 3.2.2 (with even weaker hypotheses). However, we still

need to show a bound on the conditional probabilities ∑︀𝑃 Pr[𝐸𝑃 |Res𝑡]. Given a set

𝑆 ⊂ [𝑚] of bad events, we let 𝐵(𝑆) denote the event that none of the events in 𝑆 occur,

i.e. Bad(𝜎) ⊆ 𝑆. Hence by (3.2), we are trying to bound Pr[𝐸𝑃 |𝐵(Γ+(Res𝑡))]. For

this, the authors of [32] make use of the following lemma from [34], which essentially

says that if an event 𝐸 does not share many dependent variables in common with a

set 𝑆, then conditioning on 𝐵(𝑆) doesn’t increase the likelihood of 𝐸 by too much.

It can be proven inductively in a way similar to the Lovasz Local Lemma.

Lemma 3.2.2. (Theorem 2.1 in [34]): If 𝑥 ∈ R+ is such that 𝑥(1− 𝑥)Δ ≥ 𝑝, then

Pr[𝐸 |𝐵(𝑆)] ≤ Pr[𝐸] (1− 𝑥)−|Γ(𝐸)∩𝑆| (3.6)

for any event 𝐸 and any set 𝑆 ⊂ [𝑚].
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Incorporating the factor from Lemma 3.2.2 into (3.5), and using the assumptions

max{6𝑒𝑝Δ2, 3𝑒𝑟Δ} ≤ 1, one can show that (3.4) holds with a constant 𝐶 < 1. We

omit the details of this easy computation, and close this section with a proof that

(3.4) implies a logarithmic runtime in expectation.

Lemma 3.2.3. If (3.4) holds with some 𝐶 < 1, then the expected number of resampled

events during Algorithm 3 is at most 𝑚
1−𝐶 , and the expected number of rounds of

resampling is at most log1/𝐶𝑚+ 𝐶
1−𝐶 .

Proof. By (3.2), (3.4) is equivalent to E[|Res𝑡+1| |Res0,Res1, . . . ,Res𝑡] ≤ 𝐶|Res𝑡|, so

by the tower property of conditional expectations, E|Res𝑡| ≤ 𝐶𝑡E|Res0| = 𝐶𝑡 ·𝑚, and

the expected total number of resampling events is ∑︀∞
𝑡=0 E|Res𝑡| ≤ 𝑚 ·∑︀∞

𝑡=0 𝐶
𝑡 = 𝑚

1−𝐶 .

Let 𝑇 be the number of rounds before Algorithm 3 terminates. Then

E[𝑇 ] ≤ log1/𝐶𝑚+
∑︁

𝑡>log1/𝐶 𝑚

Pr[𝑇 > 𝑡] ≤ log1/𝐶𝑚+
∑︁

𝑡>log1/𝐶 𝑚

E|Res𝑡|

⏟  ⏞  
≤
∑︀∞

𝑡=1 𝐶
𝑡

and hence E[𝑇 ] ≤ log1/𝐶𝑚+ 𝐶
1−𝐶 .

3.3 Sampling 𝑤-free strings

In this section, we’ll prove Theorem 3.1.1. We first consider a special case of the

𝑤-free string sampling problem, for which we can use the simpler Algorithm 1 and

give a short proof of its efficiency.

3.3.1 Extremal case: non-translatable 𝑤

For a fixed string 𝑤 ∈ Σ*, let Σ𝑛
𝑤 ⊂ Σ𝑛 be the set of length 𝑛 strings over the alphabet

Σ which do not contain 𝑤 as a (contiguous) substring. In light of Theorem 3.2.1, we

also define Σ𝑛
𝑤,1 ⊂ Σ𝑛 to be the set of strings containing exactly one copy of 𝑤 as a

substring. A string 𝑤 ∈ Σ* will be called non-translatable if no non-trivial prefix of

𝑤 is also a suffix of 𝑤. Equivalently, 𝑤 is non-translatable iff it cannot be written as
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𝑤 = 𝑥𝑦𝑥 for a non-empty string 𝑥 and some string 𝑦. (For example, 𝑤 = 𝑎𝑏𝑐𝑎𝑏𝑐𝑑 is

non-translatable but 𝑤 = 𝑎𝑏𝑐𝑎𝑏𝑐𝑎 isn’t.) Instantiating Algorithm 1 in this context

yields the following sampling algorithm:

Algorithm 4: 𝑤-free string sampler (non-translatable)
1 sample 𝑠 = 𝑠1 · · · 𝑠𝑛 ∈ Σ𝑛 uniformly at random
2 while 𝑠 ∈ Σ* · 𝑤 · Σ* do
3 resample all characters involved in each copy of 𝑤 inside 𝑠
4 update 𝑠
5 end
6 output 𝑠

Proposition 3.3.1. When Algorithm 1 halts, the string 𝑠 is a uniformly random

element of Σ𝑛
𝑤. Moreover, the expected number of rounds is |Σ𝑛

𝑤,1|
|Σ𝑛

𝑤| .

Proof. The non-translatability of 𝑤 is precisely what makes this problem amenable to

the partial rejection sampling framework of Guo, Jerrum and Liu [32]. More explicitly,

let us define the random variables 𝑋𝑖 to be the 𝑖th character of our string 𝑠 and the

“bad events” 𝐴𝑖 to be the event that 𝑋𝑖𝑋𝑖+1 · · ·𝑋𝑖+|𝑤|−1 = 𝑤. Clearly 𝐴𝑖 and 𝐴𝑗 are

independent for |𝑖− 𝑗| ≥ |𝑤|. If 1 ≤ |𝑖− 𝑗| < |𝑤|, then 𝐴𝑖 and 𝐴𝑗 are disjoint, since

𝑤 is non-translatable. Therefore the guarantees of Algorithm 1 apply to Algorithm

4.

Lemma 3.3.2. When |Σ| ≥ 3,
|Σ𝑛

𝑤,1|
|Σ𝑛

𝑤|
≤ 𝑛.

Proof. Let 𝑘 = |𝑤|. We’ll define an injective map from Σ𝑛
𝑤,1 to Σ𝑛

𝑤 × [𝑛]. Let 𝑠 =

𝑠1𝑠2 · · · 𝑠𝑛 be any string containing exactly one copy of 𝑤, and let 𝑖 be the unique

index such that 𝑠𝑖𝑠𝑖+1 · · · 𝑠𝑖+𝑘−1 = 𝑤. We claim there is some way to modify 𝑠 by

changing only the characters 𝑠𝑖, . . . , 𝑠𝑖+𝑘−1 to make it 𝑤-free. There are |Σ|𝑘 potential

ways to reassign these 𝑘 characters, and we’ll argue that at most

2 |Σ|
𝑘 − 1

|Σ| − 1 − 1

of them can create an instance of 𝑤 somewhere else in 𝑠. Since this is strictly less

than |Σ|𝑘 for |Σ| ≥ 3, this will imply the existence of a 𝑤-free modification of 𝑠 on
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these 𝑘 characters.

Suppose an assignment of 𝑠𝑖 · · · 𝑠𝑖+𝑘−1 creates an instance of 𝑤 in 𝑠. Since 𝑠1 · · · 𝑠𝑖−1

and 𝑠𝑖+𝑘−1 · · · 𝑠𝑛 are 𝑤-free, the copy of 𝑤 must overlap this interval, and therefore

must have its leftmost endpoint in one of the 2𝑘−1 locations 𝑖−𝑘+1, 𝑖−𝑘+2, . . . , 𝑖+

𝑘 − 1. The number of assignments to 𝑠𝑖, . . . , 𝑠𝑖+𝑘−1 for which 𝑠𝑗𝑠𝑗+1 · · · 𝑠𝑗+𝑘−1 = 𝑤 is

at most

|Σ|𝑘−|[𝑗,𝑗+𝑘−1]∩[𝑖,𝑖+𝑘−1]|

and therefore the total number of assignments which can create a 𝑤 is at most

|Σ|𝑘−1 + · · ·+ |Σ|1 + |Σ|0 + |Σ|1 + · · ·+ |Σ|𝑘−1 = 2 |Σ|
𝑘 − 1

|Σ| − 1 − 1.

Now we’re ready to define the injection: given a string 𝑠 ∈ Σ𝑛
𝑤,1, let 𝑖(𝑠) be the

coordinate of the left endpoint of its 𝑤-substring, and let 𝑠′ be (one of) the 𝑤-free

modifications of 𝑠 which we have just shown to exist. Then 𝑠 ↦→ (𝑠′, 𝑖(𝑠)) is clearly

an injection into Σ𝑛
𝑤 × [𝑛], since given (𝑠′, 𝑖), we can recover 𝑠 by changing the 𝑖, 𝑖 +

1, . . . , 𝑖+ 𝑘 − 1 characters of 𝑠′ to the corresponding characters of 𝑤.

Remark: The bound in the lemma is tight up to a factor which is constant in 𝑛.

Indeed, if we send a pair (𝑠, 𝑖) ∈ Σ𝑛
𝑤 × [𝑛] to the string which has 𝑤 spliced into it at

location 𝑖, we obtain an element of Σ𝑛
𝑤,1 (since 𝑤 is non-translatable this only creates

a single copy of it). The number of pre-images of any 𝑠 ∈ Σ𝑛
𝑤,1 under this mapping is

at most |Σ||𝑤|, which implies the bound

|Σ𝑛
𝑤,1|
|Σ𝑛

𝑤|
≥ 𝑛 · |Σ|−|𝑤|. (3.7)

The assumption |Σ| ≥ 3 in the lemma is also necessary. Indeed, consider Σ = {𝑎, 𝑏}

and 𝑤 = 𝑎𝑏. Then |Σ𝑛
𝑤| = 𝑛 + 1, but |Σ𝑛

𝑤| & 𝑛3, since it contains all strings of the

form 𝑏𝑖𝑎𝑗𝑏𝑘𝑎𝑛−(𝑖+𝑗+𝑘). However, for non-translatable 𝑤 with |𝑤| ≥ 5, this superlinear

behavior cannot happen: it is a direct consequence of Corollary 15 in [32] that the

expected number of rounds required by Algorithm 4 is at most 𝑛
|Σ||𝑤|

𝑒(2|𝑤|−1) −1
whenever

|Σ||𝑤| > 𝑒(2|𝑤| − 1). This also shows that, for large enough 𝑘, our lower bound (3.7)
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on the runtime of Algorithm 1 is essentially tight.

3.3.2 Proof of Theorem 3.1.1

For generic 𝑤, we’ll have to use Algorithm 3. However, since in this case Δ = 2|𝑤|−2

and 𝑟 = 1
|Σ| , in order for Theorem 3.2.2 to apply, we would need

|Σ| > 16|𝑤|. (3.8)

It is interesting to ask whether a condition like (3.8) is necessary for Algorithm 3 to

run efficiently in this setting. We now show that for |Σ| ≥ 3 it is not necessary.

Let Δ = 2(|𝑤| − 2) be the maximum degree in the dependency graph, and let

𝑝 = |Σ|−|𝑤| be the probability of the bad event 𝐴𝑖 = {𝑠[𝑖:𝑖+|𝑤|] = 𝑤}. In everything

that follows, we assume 𝑧 is some positive number satisfying 𝑧(1 − 𝑧)Δ ≥ 𝑝, and

𝛼 := (1 − 𝑧)−1. Set 𝛿 ≤ Δ to be the number of compatible shifts of 𝑤 in either

direction, so that 𝛿 is, for a typical bad event, the number of neighboring bad events

which are not blocked by it (and 𝛿 = 0 ⇐⇒ 𝑤 is non-translatable). Let 𝜎0, 𝜎1 . . . , 𝜎𝑡

be the current strings after each iteration of the while loop of Algorithm 3, and let

Bad𝑡 = Bad(𝜎𝑡) and Res𝑡 = Res(𝜎𝑡). Finally, let 𝐶𝑡 denote the number of connected

components of Res𝑡 in the dependency graph.

Lemma 3.3.3. At any stage 𝑡 of Algorithm 3, we have

E[𝐶𝑡+1 |Res𝑡] ≤ E[|Bad𝑡+1| |Res𝑡] ≤
𝑝Δ
2 |Res𝑡|+

(︃
2𝑝𝛼

(︃
𝛼Δ/2 − 1
𝛼− 1

)︃
− 𝑝Δ

2 + 𝑝

)︃
𝐶𝑡.

Proof. The first inequality is obvious from the nature of Algorithm 2 – it builds

Res𝑡+1 starting from Bad𝑡+1 and attaching unblocked neighbors, so the number 𝐶𝑡 of

connected components of Res𝑡+1 is at most |Bad𝑡+1|. To prove the second inequality,

we need to look more closely at the structure of Γ+(Res𝑡), which we know contains

Bad𝑡+1. Let 𝑆 be some connected component of Res𝑡, and we will consider its con-

tribution Γ+(𝑆) to Γ+(Res𝑡). Since 𝑆 is connected, it looks like a line segment with

gaps of at most |𝑤| − 2 between adjacent events, which will get filled in upon moving
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to Γ+(𝑆). At each end of the segment, there are up to |𝑤| − 1 extra events. Thus,

|Γ+(𝑆)| ≤ |𝑆|+ (|𝑤| − 2)|𝑆|+ 2(|𝑤| − 1) = Δ
2 |𝑆|+ Δ. (3.9)

More precisely, Γ+(𝑆) contains at most Δ events with any “unfresh” variables – just

the ones on the fringes. There are at most (|𝑤|−1)(|𝑆|−1)+1 = Δ
2 |𝑆|−

Δ−2
2 interior

(i.e. fresh) events, which therefore contribute at most an expected 𝑝Δ
2 |𝑆| −

𝑝(Δ−2)
2

events to Bad𝑡+1, while the unfresh events contribute at most

𝑝 · 2 ·
Δ/2∑︁
𝑘=1

𝛼𝑘 ≤ 2𝑝𝛼 ·
(︃
𝛼Δ/2 − 1
𝛼− 1

)︃

in expectation by Lemma 3.2.2. Summing these contributions over all components 𝑆

of Res𝑡, we obtain

E[|Bad𝑡+1| |Res𝑡] ≤
𝑝Δ
2 |Res𝑡|+

(︃
2𝑝𝛼

(︃
𝛼Δ/2 − 1
𝛼− 1

)︃
− 𝑝Δ

2 + 𝑝

)︃
𝐶𝑡

Lemma 3.3.4. If
𝑟𝛼|𝑤| − 𝛼𝑟|𝑤|

𝛼− 𝑟
< 1,

then at any stage 𝑡 of Algorithm 3, we have

E[|Res𝑡+1| |Res𝑡] ≤ 𝐵𝑡+1 ·

⎛⎝1 + 𝛼Δ/2 · 𝛿
1− 𝑟𝛼|𝑤|−𝛼𝑟|𝑤|

𝛼−𝑟

⎞⎠
where 𝐵𝑡+1 is the upper bound on E[|Bad𝑡+1| |Res𝑡] obtained in Lemma 3.3.3.

Proof. By Lemma 3.2.1, we know that for any event 𝑖 which is added to Res𝑡+1, there

must be a bad path 𝑖0, 𝑖1, . . . , 𝑖ℓ = 𝑖. Paths of length 0 correspond exactly to Bad𝑡+1,

whose expected size we know how to bound from Lemma 3.3.3. For a given 𝑖0, there

are at most 𝛿 choices for the next event 𝑖1, which also fixes the “direction” of the path
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(the path moves “right” iff 𝑖0 < 𝑖1). From here, the path is parametrized by a tuple

(𝑑1, 𝑑2, . . . , 𝑑ℓ−1)

where each 𝑑𝑖 ∈ {1, . . . , Δ
2 }, and 𝑖𝑘+1 = 𝑖𝑘+𝑑𝑘 for rightward paths, while 𝑖𝑘+1 = 𝑖𝑘−𝑑𝑘

for leftward paths. For a tuple (𝑑1, . . . , 𝑑ℓ−1), the probability (conditional on Res𝑡)

that the corresponding path is bad is at most

Pr[𝐴𝑖0 ∧𝑅𝑖0𝑖1 ∧ · · · ∧𝑅𝑖ℓ−1𝑖ℓ |Res𝑡] = Pr[𝐴𝑖0 ∧𝑅𝑖1𝑖2 ∧ · · · ∧𝑅𝑖ℓ−1𝑖ℓ |𝐵([𝑚] ∖ Γ+(Res𝑡))]

≤ Pr[𝐴𝑖0 ∧𝑅𝑖1𝑖2 ∧ · · · ∧𝑅𝑖ℓ−1𝑖ℓ ] · 𝛼|𝐸∖Γ+(Res𝑡)|

≤ 𝑝 · 𝑟(ℓ−1)|𝑤|−
∑︀ℓ−1

𝑘=1 𝑑𝑘 · 𝛼|𝐸∖Γ+(Res𝑡)|

where 𝐸 = Γ+({𝑖0, 𝑖1, . . . , 𝑖ℓ}). We can bound

|𝐸 ∖ Γ+(Res𝑡)| ≤ |Γ+(𝑖0) ∖ Γ+(Res𝑡)|+ |Γ+(𝑖1) ∖ Γ+(𝑖0)|+
ℓ−1∑︁
𝑘≥1
|Γ+(𝑖𝑘+1) ∖ Γ+(𝑖𝑘)|

≤ |Γ+(𝑖0) ∖ Γ+(Res𝑡)|+
Δ
2 +

ℓ−1∑︁
𝑘=1

𝑑𝑘

and so

Pr[𝐴𝑖0 ∧𝑅𝑖0𝑖1 ∧ · · · ∧𝑅𝑖ℓ−1𝑖ℓ |Res𝑡] ≤ 𝑝 · 𝛼Δ/2+|Γ+(𝑖0)∖Γ+(Res𝑡)| · 𝑟(ℓ−1)|𝑤| ·
(︂
𝛼

𝑟

)︂∑︀ℓ−1
𝑘=1 𝑑𝑘

.

Summing this bound over all 𝑖0 ∈ Γ+(Res𝑡) and admissible choices of 𝑖1, we obtain

the bound

E[|Res𝑡+1 ∖ Bad𝑡+1| |Res𝑡] ≤ 𝛼Δ/2 ·𝐵𝑡+1 · 𝛿
∑︁
ℓ≥1

𝑟(ℓ−1)|𝑤| ∑︁
(𝑑1,...,𝑑ℓ−1)

(︂
𝛼

𝑟

)︂∑︀ℓ−1
𝑘=1 𝑑𝑘

(3.10)

Observe that for any 𝑥, we have

∑︁
(𝑑1,...,𝑑ℓ−1)

𝑥
∑︀ℓ−1

𝑘=1 𝑑𝑘 = (𝑥+ 𝑥2 + · · ·+ 𝑥|𝑤|−1)ℓ−1 = 𝑥ℓ−1
(︃
𝑥|𝑤|−1 − 1
𝑥− 1

)︃ℓ−1

(3.11)
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Plugging in 𝑥 = 𝛼/𝑟, we see that

∑︁
ℓ≥1

𝑟(ℓ−1)|𝑤| ∑︁
(𝑑1,...,𝑑ℓ−1)

(︂
𝛼

𝑟

)︂∑︀ℓ−1
𝑘=1 𝑑𝑘

=
∑︁
ℓ≥1

𝑟(ℓ−1)|𝑤| ·
(︂
𝛼

𝑟

)︂ℓ−1
·

⎛⎜⎝
(︁
𝛼
𝑟

)︁|𝑤|−1
− 1

𝛼
𝑟
− 1

⎞⎟⎠
ℓ−1

=
∑︁
ℓ≥1

(︃
𝑟𝛼|𝑤| − 𝛼𝑟|𝑤|

𝛼− 𝑟

)︃ℓ−1

(3.12)

= 1
1− 𝑟𝛼|𝑤|−𝛼𝑟|𝑤|

𝛼−𝑟

(3.13)

whenever the series converges, i.e. when 𝑟𝛼|𝑤|−𝛼𝑟|𝑤|

𝛼−𝑟 < 1.

So the upper bound in (3.10) becomes

E[|Res𝑡+1 ∖ Bad𝑡+1| |Res𝑡] ≤
𝛼Δ/2 ·𝐵𝑡+1 · 𝛿
1− 𝑟𝛼|𝑤|−𝛼𝑟|𝑤|

𝛼−𝑟

(3.14)

Adding in the remaining E[|Bad𝑡+1 |Res𝑡] ≤ 𝐵𝑡+1 paths of length 0 yields the lemma.

Lemma 3.3.5. Set

𝑋𝑡 = 𝑝Δ
2 |Res𝑡|+

(︃
2𝑝𝛼

(︃
𝛼Δ/2 − 1
𝛼− 1

)︃
− 𝑝Δ

2 + 𝑝

)︃
𝐶𝑡.

Then at any stage 𝑡 of Algorithm 3, we have

E[𝑋𝑡+1 |Res𝑡] ≤
⎛⎝𝑝Δ

2

⎛⎝ 𝛼Δ/2𝛿

1− 𝑟𝛼|𝑤|−𝛼𝑟|𝑤|

𝛼−𝑟

⎞⎠+ 2𝑝𝛼
(︃
𝛼Δ/2 − 1
𝛼− 1

)︃
+ 𝑝

⎞⎠𝑋𝑡

Proof. This follows immediately by taking the appropriate linear combination of the

bounds in Lemmas 3.3.3 and 3.3.4.

Corollary 3.3.1. For any string 𝑤 with |𝑤| ≥ 2 and alphabet with |Σ| ≥ 3, Algorithm

3 outputs a uniformly random element of Σ𝑛
𝑤 in 𝑂(log 𝑛) rounds.

Proof. Let |Σ| ≥ 3. The upper bound in Lemma 3.3.5 is clearly increasing in 𝛿, so we

can assume 𝛿 = Δ. For |Σ| ≥ 4, plugging this value of 𝛿 into Lemma 3.3.5, along with

𝛼 = (1+1/Δ) already yields the corollary (via Lemma 3.2.3). For |Σ| = 3, this works
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for |𝑤| ̸∈ {2, 3, 4}. For these remaining lengths, we can choose 𝛼 more optimally: set

𝑧 equal to the smallest value of 𝑥 for which 𝑥(1−𝑥)Δ ≥ 3−|𝑤|, and pick 𝛼 = (1−𝑧)−1.

This tightens the bounds enough to work in these cases, as can be easily verified.

One can easily extend the arguments in this section to the setting where the

string being sampled is actually a circle, or a figure eight, or any closed “curve”

with a bounded number of self-intersections. In this case, the dependency graph is

essentially a union of intersecting cycles (with extra local edges, as in the string case,

which corresponds to a path with extra local edges). It is easy to see that the proofs

of Lemmas 3.3.3 and 3.3.4 go through in this setting, paying only a constant factor

𝑂(𝜂) in the bounds, where 𝜂 is the number of self intersections. We leave the tedious

details to the skeptical reader.

Corollary 3.3.2. Let 𝐶 be a curve of length 𝑛 with 𝜂 self-intersections. Then Al-

gorithm 3 finds a labeling of 𝐶 by Σ which avoids a pattern 𝑤 in 𝑂(log 𝑛) rounds in

expectation, provided that |Σ||𝑤| & 𝜂.

Note that when 𝛿 = 0, Algorithm 3 reduces to Algorithm 4, and hence Lemma

3.3.5 can be used to obtain a runtime bound for Algorithm 1. In this case, Algorithm

1 takes 𝑂(log 𝑛) rounds when

2
|Σ||𝑤| ·

(︃
1
2 + 𝛼|𝑤| − 𝛼

𝛼− 1

)︃
< 1

for any 𝛼 = (1− 𝑧)−1 with 𝑧(1− 𝑧)2|𝑤|−2 ≥ |Σ|−|𝑤|. When |Σ| = 2, this says nothing

for |𝑤| = 2, 3, 4, but for |𝑤| ≥ 5 we can take 𝑧 = 0.0453 and 𝛼 = 1.0475, so that

2
25 ·

(︃
1
2 + 1.04755 − 1.0475

0.0475

)︃
≈ 0.312 < 1.

Corollary 3.3.3. For non-translatable 𝑤 ∈ Σ𝑛, Algorithm 1 takes 𝑂(log 𝑛) rounds

in expectation, except possibly for |Σ| = 2 and |𝑤| = 2, 3, 4.
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3.4 Sampling 𝐻-free subgraphs of a grid graph

Given (𝐺,𝐻, 𝜆), our goal is to sample from the following distribution, supported on

𝐻-free subgraphs of 𝐺:

Pr(𝐺′) ∝

⎧⎪⎪⎨⎪⎪⎩
𝜆𝑒(𝐺

′)(1− 𝜆)𝑒(𝐺)−𝑒(𝐺′) ∝
(︁

𝜆
1−𝜆

)︁𝑒(𝐺′)
if 𝐺′ ⊆ 𝐺 is 𝐻-free

0 otherwise
(3.15)

We can think of this problem as a special case of the hard core model5 in |𝐻|-uniform

hypergraphs – indeed, the vertices correspond to the edges of 𝐺, and the hyperedges

correspond to the copies of 𝐻 in 𝐺. When 𝜆 = 1/2, the problem is simply asking for

a uniformly random 𝐻-free subgraph of an input graph. Viewed another way, each

instance of (𝐻, 1
2) corresponds to a monotone 𝑒(𝐻)-CNF

⋀︁
(𝑒1,...,𝑒𝑒(𝐻))∼=𝐻

(¬𝑒1 ∨ ¬𝑒2 ∨ · · · ∨ ¬𝑒𝑒(𝐻))

whose clauses correspond to copies of 𝐻 and whose variables correspond to edges.

Here we want to sample a uniformly random satisfying assignment. On instances 𝐺

in which each edge appears in at most 𝑘 different copies of 𝐻 inside 𝐺, we say the cor-

responding CNF is a read-k-monotone CNF. When 𝑘 = 2 (as it will be in the case of

planar grid graphs), an algorithm of Lin, Liu and Lu [50] gives a FPTAS for approx-

imately counting the set of satisfying assignments to a read-twice-monotone-CNF.

Using the standard reduction from approximate counting to approximate sampling

for self-reducible problems, this implies the following theorem:

Theorem 3.4.1 (Lin, Liu, Lu 2012). For 𝜆 ≤ 1/2, there is an algorithm which

𝜀-approximately samples from the distribution (3.15), provided that each edge of 𝐺

appears in at most 2 different copies of 𝐻. The running time is 𝑂(𝑛3.58𝑚2 · (1/𝜀)2.58),

where 𝑛 = |𝐸(𝐺)| and 𝑚 is the number of copies of 𝐻 in 𝐺.

Liu and Lu [51] subsequently gave a FPTAS for counting solutions to read-𝑘-
5In most work on the hardcore model, the fugacity parameter 𝜆 plays the role that the quantity

𝜆
1−𝜆 plays in our notation.
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monotone CNF, for 𝑘 ≤ 5. However, their algorithm is somewhat impractical, with

a provable runtime bound on the order of (𝑛/𝜖)144. For 𝑘 ≥ 6, there is no FPTAS

(resp. FPRAS) for this problem unless NP = P (resp. NP = RP).

3.4.1 Triangle-free subgraphs of the triangular grid

We now analyze the performance of Algorithm 3 on instances of the form (𝑇,𝐾3, 𝜆),

where 𝑇 is a subgraph of the 𝑚×𝑚 triangular grid graph. (Throughout this section,

when we speak of Algorithm 3, we implicitly assume that it is running on such an

instance.) Here, the bad events correspond to the presence of each triangle, so Δ = 3

and 𝑝 = 𝜆3. Since any pair of dependent triangles share exactly one edge, 𝑟𝑖𝑗 = 𝜆 for

every 𝑖 ∼ 𝑗. Applying Theorem 3.2.2 directly, we see that for

𝜆 ≤ 1
9𝑒 ≈ 0.04088

Algorithm 3 solves this problem efficiently. Our present goal is to extend this range

of 𝜆.

Lemma 3.4.1. At any stage 𝑡 during Algorithm 3,

|Γ+(Res𝑡)| ≤ 2.5 · |Res𝑡|

Proof. Let Δ ∈ Bad𝑡 be an occurring triangle in round 𝑡. It suffices to prove the

expansion inequality for the connected component 𝑆 of Res𝑡 containing Δ. There are

a handful of cases to consider, depending on the number of neighbors of Δ in the

dependency graph, which of course depends on the graph 𝑇 . Since all edges of Δ

are present by assumption, each of its neighbors will be added to 𝑆 during stage 1

of Algorithm 5, so 𝑆1 := Γ+({Δ}) ⊆ 𝑆. In each case |𝑆1| ∈ {1, 2, 3, 4}, we can check

that
|Γ+(𝑆1)|
|𝑆1|

≤ 2.5

holds. Now we observe that attaching a triangle to any non-empty set 𝑆 ′ of triangles

increases |𝑆 ′| by 1 and |Γ+(𝑆 ′)| by at most 2. Since 𝑎
𝑏
≤ 2.5 =⇒ 𝑎+2𝑘

𝑏+𝑘 ≤ 2.5 for any
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𝑘 ≥ 0, the inequality remains true for 𝑆, and hence for Res𝑡.

Proposition 3.4.2. If

2.5𝜆3 + 7.5𝜆3

1− 2𝜆
1+𝜆

< 1

then Algorithm 3 takes an expected 𝑂(log𝑚) rounds. In particular, we may take

𝜆 ≤ 0.3748.

Proof. At a high level, instead of counting bad paths, we directly estimate the ex-

pected number of events added to Res𝑡 during each phase of Algorithm 5, conditioned

on the previous rounds. More precisely, let 𝑅𝑡
ℓ be the intermediate set at stage ℓ in Al-

gorithm 5, during round 𝑡 of Algorithm 3 (so in particular 𝑅𝑡
0 = Bad𝑡 and 𝑅𝑡

∞ = Res𝑡).

We will show that for ℓ ≥ 1,

E[|𝑅𝑡+1
ℓ+1| |𝑅𝑡+1

ℓ , . . . , 𝑅𝑡+1
0 ,Res𝑡] ≤ 𝐶(𝜆)|𝑅𝑡+1

ℓ | (3.16)

for some constant 𝐶(𝜆). Since E[|𝑅𝑡+1
0 | |Res𝑡] ≤ 𝜆3|Γ+(Res𝑡)| ≤ 2.5𝜆3|Res𝑡| (by

Lemma 3.4.1) and |𝑅𝑡+1
1 | ≤ 3|𝑅𝑡+1

0 |, we have

E[[|𝑅𝑡+1
1 | |Res𝑡] ≤ 7.5𝜆3|Res𝑡|.

To upper bound E[|𝑅𝑡+1
2 | |𝑅𝑡+1

1 , 𝑅𝑡+1
0 ,Res𝑡], we observe that each event (i.e. triangle)

in 𝑅𝑡+1
2 is one of the ≤ 2|𝑅𝑡+1

1 | triangles which share an edge with a triangle in 𝑅𝑡+1
1

and do not belong to 𝑅𝑡+1
0 ∪𝑅𝑡+1

1 . For each triangle Δ in 𝑅𝑡+1
1 , we know that a certain

edge (and possibly one more) is present (the common edge(s) between Δ and 𝑅𝑡+1
0 ),

and that not all three edges in Δ are present – otherwise it would have been in 𝑅𝑡+1
0 .

If Δ shares two edges with 𝑅𝑡+1
0 , we know for sure the third edge is not present, and

so it contributes nothing to 𝑅𝑡+1
2 . Otherwise, we claim that

Pr(Δ has another edge |𝑅𝑡+1
1 , 𝑅𝑡+1

0 ,Res𝑡) ≤ Pr(Δ has another edge |Δ ̸∈ Bad𝑡+1)

= 2𝜆
1 + 𝜆

and hence E[|𝑅𝑡+1
2 | |𝑅𝑡+1

1 , 𝑅𝑡+1
0 ,Res𝑡] ≤ 2𝜆

1+𝜆 · |𝑅
𝑡+1
1 |. The same argument works for 2
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and 1 replaced by ℓ + 1 and ℓ, and so (3.16) holds with 𝐶(𝜆) = 2𝜆
1+𝜆 . By the tower

property of conditional expectations, it follows that

E[|𝑅𝑡+1
ℓ+1| |Res𝑡] ≤ 𝐶(𝜆)ℓ · 7.5𝜆3|Res𝑡|. (3.17)

Summing over ℓ ≥ 0, we see that

E[|Res𝑡+1| |Res𝑡] ≤
(︃

2.5𝜆3 + 7.5𝜆3

1− 2𝜆
1+𝜆

)︃
|Res𝑡|

from which the proposition follows.

3.4.2 Square-free subgraphs of the square grid

We now analyze the performance of Algorithm 3 on instances of the form (𝐺,𝐶4, 𝜆)

problem, where 𝐺 is a subgraph of the 𝑚×𝑚 square grid graph. Here the bad events

correspond to the presence of each square, so Δ = 4 and 𝑝 = 𝜆4. Since any pair of

dependent squares share exactly one edge, 𝑟𝑖𝑗 = 𝜆 for every 𝑖 ∼ 𝑗. Applying Theorem

3.2.2 directly, we see that for

𝜆 ≤ 1
12𝑒 ≈ 0.03065

Algorithm 3 solves this problem efficiently. Our present goal is to extend this range

of 𝜆.

Lemma 3.4.3. At any stage 𝑡 during Algorithm 3,

|Γ+(Res𝑡)| ≤ 3 · |Res𝑡|

Proof. The idea is the same as in the proof of Lemma 3.4.1. Let � ∈ Bad𝑡, and let 𝑆

be the component of Res𝑡 containing �, which also must contain 𝑆1 := Γ+({�}). It

is easy to check that for every possible 𝑆1 we have

|Γ+(𝑆1)|
|𝑆1|

≤ 3,
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Figure 3-1: All squares which can be added to Res𝑡+1 in stage 1 or 2 of Algorithm 5
due to 𝑖0 ∈ Bad𝑡+1.

and since attaching an additional square to any nonempty set 𝑆 ′ of squares increases

|𝑆 ′| by 1 and |Γ+(𝑆 ′)| by at most 3, the inequality persists all the way to 𝑆 and hence

to Res𝑡.

Proposition 3.4.4. Let 𝐺 be a subgraph of the 𝑚×𝑚 square grid. If

3𝜆4
(︃

5 + 4𝜆− 4𝜆2 − 12𝜆3

1− 2𝜆− 𝜆2

)︃
< 1

then sampling a square-free subgraph with Algorithm 3 takes an expected 𝑂(log𝑚)

rounds. In particular we may take 𝜆 ≤ 0.4063.

Proof. For each 𝑖0 ∈ Γ+(Res𝑡), we bound the expected number of squares which are

added to Res𝑡+1 as a result of a bad path rooted at 𝑖0. All probabilities will be

conditional on Res𝑡, that is, conditional on a certain set of squares not being present

– however, by monotonicity6, we can ignore this conditioning and exploit the resulting

independence. The square 𝑖0 (represented in black in Figure 3-1 above) is present with

probability at most 𝜆4. If 𝑖0 is present, it automatically brings the (≤) four adjacent

(heavy-hatched) squares into Res𝑡+1. Each of the four light-hatched squares can only

be added to Res𝑡+1 if the two edges they share with the heavy-hatched squares are

present, which happens with probability at most 𝜆2. If those edges are not present,

the squares will be blocked by the heavy-hatched squares and hence not added to

Res𝑡+1. Each of the light-grey squares will be blocked unless their edge bordering a
6more specifically, the FKG inequality
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heavy-hatched square is present, which happens with probability at most 𝜆. Thus,

the expected number of squares added due to 𝑖0 during stages 1 and 2 of Algorithm

5 is at most

𝜆4

⎛⎝ 5⏟ ⏞ 
𝑖0 and its 4 neighbors

+ 4𝜆2⏟ ⏞ 
light-hatched squares

+ 4𝜆⏟ ⏞ 
light grey squares

⎞⎠

Next we bound the expected number of squares added due to paths 𝑖0, 𝑖1, . . . , 𝑖ℓ, with

ℓ > 2 and 𝑖𝑘 ∼ 𝑖𝑘′ ⇐⇒ |𝑘 − 𝑘′| = 1. This last condition is stronger than that of a

self-avoiding walk – even the neighbors of previously visited sites must be avoided on

the next step – so we’ll call them very self-avoiding walks, or vSAWs. We can break

up the set of such walks into two categories – 𝑆 and 𝐷 – based on their first two

moves: either the first two moves are the same (e.g. left, left or up, up) or the two

moves are different (e.g. up, right). We claim that for ℓ ≥ 2,

𝑆ℓ+1 ≤ 𝑆ℓ + 2𝐷ℓ (3.18)

𝐷ℓ+1 ≤ 𝑆ℓ +𝐷ℓ (3.19)

where 𝑆ℓ and 𝐷ℓ count the number of length-ℓ vSAWs of type 𝑆 and 𝐷 respectively

starting from a fixed square. Indeed, if the first two moves of a length ℓ + 1 vSAW

are the same – say left, left – then up, down, left are the next available moves, which

correspond to walks of length ℓ of type 𝐷, 𝐷, and 𝑆 respectively, proving (3.18). To

prove (3.19), suppose without loss that the first two moves are left, up. Then the

next move is either right or up, since a left move would land on a neighbor of the

original square. This yields (3.19). Combining all of the above, we know that each

𝑖0 ∈ Γ+(Res𝑡) contributes at most

5𝜆4 + 𝜆4 ·
⟨ ∞∑︁
ℓ≥0

⎛⎜⎝ 𝜆 2𝜆

𝜆 𝜆

⎞⎟⎠
ℓ⎛⎜⎝ 4𝜆

4𝜆2

⎞⎟⎠ ,
⎛⎜⎝ 1

1

⎞⎟⎠⟩ = 𝜆4
(︃

5 + 4𝜆− 4𝜆2 − 12𝜆3

1− 2𝜆− 𝜆2

)︃

to E[|Res𝑡+1| |Res𝑡] (where we have used the identity ∑︀ℓ≥0 𝐴
ℓ = (𝐼−𝐴)−1). Summing
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up these contributions over all |Γ+(Res𝑡)| ≤ 3|Res𝑡| (Lemma 3.4.3), we have shown

E[|Res𝑡+1| |Res𝑡] ≤ 3𝜆4
(︃

5 + 4𝜆− 4𝜆2 − 12𝜆3

1− 2𝜆− 𝜆2

)︃
.

By Lemma 3.2.3, this implies the proposition.

A very similar argument also gives an improvement over Theorem 3.2.2 for sam-

pling cube-free subgraphs of a three dimensional cubic lattice. In this setting, 𝑝 = 𝜆12,

𝑟 = 𝜆 and Δ = 18, so the bound from Theorem 3.2.2 is 1/54𝑒 < 0.00682. In the

subsequent proposition we sketch a proof of a significantly improved bound. A dis-

tinguishing feature of this problem is that, in the cube, each edge belongs to four bad

events (versus only two in grid graphs). In other words, the natural CNF representa-

tion is read-four-times, so Theorem 3.4.1 does not apply.

Proposition 3.4.5. Let 𝐺 be any subgraph of the 𝑚×𝑚×𝑚 cube. If

11𝜆12
(︃

1 + 18− 138𝜆− 36𝜆4

1− 7𝜆− 𝜆4 − 25𝜆5

)︃
< 1

then sampling a cube-free subgraph with Algorithm 3 takes an expected 𝑂(log𝑚)

rounds. In particular we may take 𝜆 ≤ 0.142588.

Proof. Starting from an occurring cube, there are 18 ways a bad path could proceed

– 6 lateral moves, one through each face (call these F moves) and 12 diagonal moves,

one through each edge (call these D moves). A moment’s reflection shows that at any

point along a bad path, if the last move was an F move, then for the next move, there is

at most 1 available F move and at most 8 available D moves; while if the last move was

a D move, then there are at most 4 available F moves and 7 available D moves. Each

F move is possible if a particular square is present, which happens with probability at

most 𝜆4 (even when conditioned on Res𝑡, by monotonicity). Similarly, each D move

is possible if a particular edge is present, which happens with probability at most

𝜆. Therefore, the sum over all potential bad paths, weighted by their probability of
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being bad given Res𝑡 is at most

𝜆12 · |Γ+(Res𝑡)|+ 𝜆12 · |Γ+(Res𝑡)|
⟨ ∞∑︁
ℓ≥0

⎛⎜⎝ 𝜆4 8𝜆

4𝜆4 7𝜆

⎞⎟⎠
ℓ⎛⎜⎝ 6

12

⎞⎟⎠ ,
⎛⎜⎝ 1

1

⎞⎟⎠⟩ (3.20)

In the spirit of Lemmas 3.4.1 and 3.4.3, one can prove a bound of |Γ+(Res𝑡)| ≤

11|Res𝑡|. We omit the details, since this constant has only negligible effect on the

cutoff value for 𝜆. The rest of (3.20) can be evaluated explicitly (using the identity∑︀
ℓ≥0 𝐴

ℓ = (𝐼 − 𝐴)−1) to yield the proposition.

3.5 Open questions

∙ Numerical experiments suggest a phase transition in the expected runtime of Algo-

rithm 3 on grid graphs as a function of the edge probability 𝜆. However, we are

currently unable to prove even much weaker statements, such as the existence of an

𝜖 > 0 for which this algorithm takes super-polynomial time when 𝜆 ∈ (1− 𝜖, 1). The

critical value of 𝜆 reflects something about the intrinsic geometry of the lattice, and

could perhaps have an interpretation in the language of statistical physics.

∙ Our simulations also suggest that Theorem 3.1.1 holds even for |Σ| = 2, as long as

|𝑤| ≥ 3. Proving this would likely require a bound stronger than the one from Lemma

3.2.2.

∙ Consider a scenario with two sets of bad events, 𝐴𝑖 and 𝐵𝑖, such that (i) 𝐴𝑖 ∼ 𝐴𝑗 =⇒

Pr[𝐴𝑖∩𝐴𝑗 ] = 0, (ii) 𝐵𝑖 ∼ 𝐵𝑗 =⇒ Pr[𝐵𝑖∩𝐵𝑗 ] = 0, and (iii) 𝐴𝑖∩𝐵𝑖 = ∅. (For example:

in a randomly oriented graph 𝐺, let 𝐴𝑖 and 𝐵𝑖 be the events that vertex 𝑖 is a sink

or a source, respectively.) Is there a way to sample a uniformly random assignment

satisfying
⋂︀
𝑖(𝐴𝑖 ∩𝐵𝑖) that leverages the extremality of 𝐴 and 𝐵 separately?

∙ It would of course be interesting to apply partial rejection sampling to other problems

outside the regime of Theorem 3.2.2, to see how it performs in practice. It probably

won’t come as close to hardness thresholds as MCMC methods can, but our results

in this chapter offer some evidence that PRS should at least be considered when one

needs a quick and dirty uniform sampler.
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3.6 Appendix: Hard sphere model

Originating (like so many things) from statistical physics, the hard sphere model is

a simple probability distribution used to model positions of particles of a contained

gas, supported on configurations of non-overlapping disks of radius 𝑟 in a bounded

region of R𝑑. More precisely, the centers of the spheres are sampled from a Poisson

process on Λ ⊂ R𝑑, conditioned on the spheres being non-overlapping. When 𝑑 = 2,

this is called the hard disks model, and was the original object of study in the seminal

work of Metropolis et al. on MCMC methods [54].

In recent work of Guo and Jerrum [31], the authors show that for sufficiently small

intensities 𝜆 ≤ 𝜆𝑑, a PRS-based algorithm (Algorithm 5 described below) is efficient

in the sense that in expectation, it only requires 𝑂(log 1/𝑟) rounds of resampling.

Theorem 3.6.1. (Guo, Jerrum [31]) Algorithm 5 for the hard disks model with pa-

rameter 𝜆𝑟 = 𝜆
𝜋𝑟2 takes 𝑂(log 1/𝑟) rounds of resampling in expectation for 𝜆 ≤ 𝜆2 :=

0.21027. The same conclusion holds for the hard sphere model in 𝑑 > 2 dimensions

with parameter 𝜆𝑟 = 𝜆
vol(𝐵𝑑

𝑟 (0)) for 𝜆 ≤ 𝜆𝑑 := 2−(𝑑+ 1
2 ).

Combined with a result of Jenssen, Joos and Perkins [42] which relates the in-

tensity parameter 𝜆 to the expected packing density 𝛼 for the hard sphere model,

Theorem 3.6.1 yields an efficient method of generating sphere packings of density

Ω(2−𝑑). This matches the best known algorithms up to a constant factor, which all

fall short of the density Ω(𝑑2−𝑑) packings which are known to exist.7 The authors of

[31] conjecture that 𝜆2 can be taken to be ≈ 0.5, according to their simulations. In

this note, we slightly improve the value of 𝜆𝑑 for all 𝑑:

Theorem 3.6.2. The constant 𝜆𝑑 in Theorem 3.6.1 can be improved by factor of

(1 + 2−𝑂(𝑑))). In particular, 𝜆2 ≥ 0.2344+.

7Very recently, Helmuth, Perkins and Petti [38] have shown that a certain Markov chain (called
single-center dynamics) mixes rapidly to the hard sphere distribution with parameter 𝜆, as long as
𝜆 ≤ 21−𝑑. This improves by a constant the best expected packing density of any known efficient
algorithm, to (0.8526 + 𝑜𝑑(1))2−𝑑.
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3.6.1 A partial rejection sampler for hard spheres

We now describe the sampling algorithm used by Guo and Jerrum in [31], and intro-

duce some notation. Let 𝐵𝑑
𝑟 (𝑥) be the open ball of radius 𝑟 centered at 𝑥 ∈ R𝑑. If 𝑃

is a finite subset of [0, 1]𝑑, we define the sets

BadPairs(𝑃 ) := {{𝑥, 𝑦} : 𝑥, 𝑦 ∈ 𝑃 and ‖𝑥− 𝑦‖2 ≤ 2𝑟}

BadPoints(𝑃 ) :=
⋃︁

𝑆∈BadPairs(𝑃 )
𝑆

It is shown in [31] that the set of points 𝑃 = {𝑥1, . . . , 𝑥𝑘} output by Algorithm 5

below is distributed as a Poisson process on [0, 1]𝑑 with intensity 𝜆𝑟, conditioned on

‖𝑥𝑖 − 𝑥𝑗‖2 > 2𝑟 for all 𝑖 ̸= 𝑗, and moreover that the analogue of (3.2) holds at each

step.

Algorithm 5: Partial rejection sampling for hard spheres in [0, 1]𝑑

1 sample 𝑃 from a Poisson process of intensity 𝜆𝑟 = 𝜆
vol(𝐵𝑑

𝑟 (0))
2 while BadPoints(𝑃 ) ̸= ∅ do
3 set 𝑆 = ⋃︀

𝑥∈BadPoints(𝑃 ) 𝐵
𝑑
2𝑟(𝑥)

4 Let 𝑃 𝑆 be a sample from the Poisson process of intensity 𝜆𝑟 on S
5 update 𝑃 ← 𝑃 𝑆 ∪ (𝑃 ∖ BadPoints(𝑃 ))
6 end
7 output 𝑃

To prove that the while loop terminates after 𝑂(𝑑 log 1
𝑟
) iterations in expectation,

the authors argue that the number of BadPairs is decreasing exponentially for suffi-

ciently small 𝜆. More precisely, if 𝑃0, 𝑃1, . . . , 𝑃𝑡 denotes the set 𝑃 after each update,

then the authors show E[|BadPairs(𝑃𝑡+1)| |𝑃𝑡, . . . , 𝑃0] = E[|BadPairs(𝑃𝑡+1)| |𝑃𝑡] ≤

𝐶(𝜆)|BadPairs(𝑃𝑡)|, for some 𝐶(𝜆) which goes to 0 as 𝜆→ 0. Since |BadPairs(𝑃0)| ≤
1
2𝜆

2
𝑟, it then follows from Lemma 3.2.3 that the expected number of loops is𝑂(log(𝜆𝑟)) =

𝑂(𝑑 log 1
𝑟
) for 𝜆 sufficiently small.

3.6.2 Pushing spheres apart

To improve upon Guo and Jerrum’s analysis of Algorithm 5 (i.e. to improve the

upper bounds on 𝐶(𝜆)), we need the following intuitive geometric fact:
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Fact 3.6.1. Let 𝛾 > 1, and 𝑥1, . . . , 𝑥𝑛 ∈ R𝑑. Then

vol
(︃

𝑛⋃︁
𝑖=1

𝐵𝑑
𝑟 (𝑥𝑖)

)︃
≤ vol

(︃
𝑛⋃︁
𝑖=1

𝐵𝑑
𝑟 (𝛾𝑥𝑖)

)︃
.

While intuitively obvious, proving Fact 3.6.1 is not trivial. In fact it is a special

case of the Kneser-Poulsen conjecture. Let us say the point set 𝑌 = {𝑦1, . . . , 𝑦𝑛} ⊂ R𝑑

is an expansion of 𝑋 = {𝑥1, . . . , 𝑥𝑛} if ‖𝑥𝑖−𝑥𝑗‖2 ≤ ‖𝑦𝑖−𝑦𝑗‖2 for all 𝑖, 𝑗. The Kneser-

Poulsen conjecture posits that, for any radii 𝑟1, . . . , 𝑟𝑛, and point sets 𝑋, 𝑌 ⊂ R𝑑 such

that 𝑌 is an expansion of 𝑋,

vol
(︃

𝑛⋃︁
𝑖=1

𝐵𝑑
𝑟𝑖

(𝑥𝑖)
)︃
≤ vol

(︃
𝑛⋃︁
𝑖=1

𝐵𝑑
𝑟𝑖

(𝑦𝑖)
)︃
. (3.21)

The conjecture remains open, although certain cases are known. We say 𝑌 is a

continuous expansion of 𝑋 = {𝑥1, . . . , 𝑥𝑛} if there exist continuous functions 𝑥𝑖(𝑡)

such that 𝑋(𝑡) = {𝑥1(𝑡), . . . , 𝑥𝑛(𝑡)} is an expansion of 𝑋(𝑡′) for all 𝑡 > 𝑡′, and

𝑋(0) = 𝑋, 𝑋(1) = 𝑌 . It is known that when 𝑌 is a continuous expansion of 𝑋

then inequality (3.21) holds – this was proved first for disks in R2 of equal radii by

Bollobas [9], then for arbitrary radii in R2 and eventually in any dimension by Csikós

[17], which is enough to imply Fact 3.6.1. The following consequence of this fact is

what we’ll actually use:

Lemma 3.6.2. Let 𝐶 = ∪ℓ𝑖=1𝐵
𝑑
2𝑟(𝑥𝑖) be the union of ℓ spheres of radius 2𝑟 in R𝑑.

Then for any 𝑠 > 0,

∫︁
𝐶

∫︁
𝐶

1‖𝑥−𝑦‖≤𝑠 𝑑𝑥 𝑑𝑦 ≥
vol(𝐶)

vol(𝐵𝑑
2𝑟(0)) ·

∫︁
𝐵𝑑

2𝑟(0)

∫︁
𝐵𝑑

2𝑟(0)
1‖𝑥−𝑦‖≤𝑠 𝑑𝑥 𝑑𝑦.

Proof. The desired inequality is clearly equivalent to

E
𝑥∈𝐶

vol(𝐶 ∩𝐵𝑑
𝑠 (𝑥)) ≥ E

𝑥∈𝐵𝑑
2𝑟(0)

vol(𝐵𝑑
2𝑟(0) ∩𝐵𝑑

𝑠 (𝑥))

where 𝑓(𝑥) := vol(𝐶 ∩ 𝐵𝑑
𝑠 (𝑥)) and 𝑔(𝑥) := vol(𝐵𝑑

2𝑟(0) ∩ 𝐵𝑑
𝑠 (𝑥)). This is in turn
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equivalent to the inequality

1
vol(𝐶)

∫︁ ∞

0
vol(𝑥 ∈ 𝐶 : 𝑓(𝑥) > 𝑡) 𝑑𝑡 ≥ 1

vol(𝐵𝑑
2𝑟(0))

∫︁ ∞

0
vol(𝑥 ∈ 𝐵𝑑

2𝑟(0) : 𝑔(𝑥) > 𝑡).

We claim that the integrand on the left dominates the one on the right pointwise –

that is, for each 𝑡 ≥ 0, we have

vol(𝑥 ∈ 𝐶 : 𝑓(𝑥) > 𝑡)
vol(𝐶) ≥ vol(𝑥 ∈ 𝐵𝑑

2𝑟(0) : 𝑔(𝑥) > 𝑡)
vol(𝐵𝑑

2𝑟(0)) . (3.22)

Observe that for each 𝑡, the set {𝑥 ∈ 𝐵𝑑
2𝑟(0) : 𝑔(𝑥) > 𝑡} is an open ball 𝐵𝑑

2𝛼𝑟(0) for

some 𝛼 = 𝛼(𝑡) ≤ 1. Then clearly ∪ℓ𝑖=1𝐵
𝑑
2𝛼𝑟(𝑥𝑖) ⊆ {𝑥 ∈ 𝐶 : 𝑓(𝑥) > 𝑡}. Hence to prove

(3.22), it suffices to show that

vol(∪ℓ𝑖=1𝐵
𝑑
2𝛼𝑟(𝑥𝑖))

vol(𝐵𝑑
2𝛼𝑟(0)) ≥ vol(∪ℓ𝑖=1𝐵

𝑑
2𝑟(𝑥𝑖))

vol(𝐵𝑑
2𝑟(0)) . (3.23)

Consider applying the transformation 𝑥 ↦→ 𝑥/2𝛼𝑟 on R𝑑. This sends 𝐵𝑑
2𝛼𝑟(𝑥𝑖) ↦→

𝐵𝑑
1(𝑥𝑖/2𝛼𝑟) and scales all volumes by 1/(2𝛼𝑟)𝑑. Similarly the transformation 𝑥 ↦→

𝑥/2𝑟 takes 𝐵𝑑
2𝑟(𝑥𝑖) ↦→ 𝐵𝑑

1(𝑥𝑖/2𝑟) and scales volumes by 1/(2𝑟)𝑑. Hence, (3.23) is

equivalent to

vol
(︃

ℓ⋃︁
𝑖=1

𝐵𝑑
1(𝑥𝑖/2𝛼𝑟)

)︃
≥ vol

(︃
ℓ⋃︁
𝑖=1

𝐵𝑑
1(𝑥𝑖/2𝑟)

)︃
(3.24)

which is Fact 3.6.1, with 𝛾 = 1/𝛼.

3.6.3 Proof of Theorem 3.6.2

Recall that 𝑃𝑡 is the set of points sampled during round 𝑡 ≥ 0 of the algorithm. Sup-

pose |BadPairs(𝑃𝑡)| = 𝑘𝑡. Then the resampling set 𝑆𝑡 ⊂ [0, 1]𝑑 is ⋃︀𝑥∈BadPoints(𝑃𝑡) 𝐵
𝑑
2𝑟(𝑥).

Let

𝑘′ = E[𝑘𝑡+1 |BadPoints(𝑃𝑡)]

𝑗′ = E[#{(𝑥, 𝑦) ∈ 𝑆𝑡 × [0, 1]𝑑 : ‖𝑥− 𝑦‖ ≤ 2𝑟} ∩ 𝑃 2
𝑡+1 |BadPoints(𝑃𝑡)]

ℓ′ = E[#{(𝑥, 𝑦) ∈ 𝑆𝑡 × 𝑆𝑡 : ‖𝑥− 𝑦‖ ≤ 2𝑟} ∩ 𝑃 2
𝑡+1 |BadPoints(𝑃𝑡)]
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Since each unordered bad pair {𝑥, 𝑦} with 𝑥, 𝑦 ∈ 𝑆𝑡 gets counted twice in 𝑗′ and twice

in ℓ′, we have

𝑘′ = 𝑗′ − ℓ′

2 . (3.25)

It is shown in [31] that the hard disks process can be coupled to a Poisson process in

such a way that the latter configuration always contains the former. In particular,

𝑗′ ≤
∫︁
𝑆𝑡

𝜆𝑟

∫︁
[0,1]𝑑

𝜆𝑟1‖𝑥−𝑦‖≤2𝑟 𝑑𝑥 𝑑𝑦

≤ 𝜆2
𝑟 · vol(𝑆𝑡) · vol(𝐵𝑑

2𝑟(0)) = 2𝑑𝜆2

vol(𝐵𝑑
𝑟 (0)) · vol(𝑆𝑡) (3.26)

On the other hand, by Lemma 3.6.2, we have

ℓ′

2 = 1
2

∫︁
𝑆𝑡

𝜆𝑟

∫︁
𝑆𝑡

𝜆𝑟1‖𝑥−𝑦‖≤2𝑟 𝑑𝑥 𝑑𝑦

≥ vol(𝑆𝑡)
vol(𝐵𝑑

2𝑟(0)) ·
1
2

∫︁
𝐵𝑑

2𝑟(0)
𝜆𝑟

∫︁
𝐵𝑑

2𝑟(0)
𝜆𝑟1‖𝑥−𝑦‖≤2𝑟 𝑑𝑥 𝑑𝑦 (3.27)

=
2𝑑−1𝜆2 Pr𝑥,𝑦∈𝐵𝑑

1 (0) [‖𝑥− 𝑦‖2 ≤ 1]
vol(𝐵𝑑

𝑟 (0)) · vol(𝑆𝑡) (3.28)

and hence

𝑘′ ≤ vol(𝑆𝑡)
vol(𝐵𝑑

𝑟 (0)) · 𝜆
2 · 2𝑑 ·

(︃
1
2 − Pr

𝑥,𝑦∈𝐵𝑑
1 (0)

[‖𝑥− 𝑦‖2 ≤ 1]
)︃
. (3.29)

Recall that 𝑆𝑡 is the union of at most 2𝑘𝑡 copies of 𝐵𝑑
2𝑟, each of which must overlap with

at least one other disk – in fact, for each 𝐵𝑑
2𝑟(𝑥) in 𝑆𝑡, there must be an overlapping

𝐵𝑑
2𝑟(𝑥′) in 𝑆𝑡 with ‖𝑥− 𝑥′‖ < 2𝑟. Therefore vol(𝑆𝑡) is maximized when 𝑆𝑡 is a union

of 𝑘𝑡 connected components, each of which is a translated copy of 𝐵𝑑
2𝑟(0)∪𝐵𝑑

2𝑟(2𝑟e1).

Therefore

𝑘′ ≤ 𝜆2 · 22𝑑 · vol(𝐵𝑑
1(0) ∪𝐵𝑑

1(e1))
vol(𝐵𝑑

1(0))⏟  ⏞  
=:𝑉𝑑

·
(︃

1
2 − Pr

𝑥,𝑦∈𝐵𝑑
1 (0)

[‖𝑥− 𝑦‖2 ≤ 1]
)︃

⏟  ⏞  
=:𝑃𝑑

·𝑘𝑡 (3.30)
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𝑑 2 3 4 5 6 7 8 9 10 11 12
𝐶𝑑 1.32619 1.24419 1.18882 1.14913 1.11957 1.09693 1.07925 1.06523 1.05399 1.04488 1.03744
𝜆𝑑 0.23444 0.10997 0.052539 0.025393 0.01237 0.00606 0.00298 0.00147 0.000728 0.000361 0.000179

Table 3.1: Values of 𝐶𝑑 and 𝜆𝑑 for 𝑑 = 2, . . . , 12.

and therefore Theorem 3.6.2 holds with 𝜆𝑑 = 𝐶𝑑·2−(𝑑+ 1
2 ) where 𝐶𝑑 :=

√︁
2

𝑉𝑑·𝑃𝑑
. With el-

ementary geometry in R2, one can compute exactly 𝜆2 =
(︁(︁

16𝜋
3 + 2

√
3
)︁
· 4𝜋+3

√
3

2𝜋2

)︁− 1
2 =

0.2344+. For 𝑑 > 2, formulas involving regularized beta functions

𝐼𝑥(𝑎, 𝑏) =
∫︀ 𝑧

0 𝑢
𝑎−1(1− 𝑢)𝑏−1 𝑑𝑢∫︀ 1

0 𝑢
𝑎−1(1− 𝑢)𝑏−1 𝑑𝑢

are known for both 𝑉𝑑 and 𝑃𝑑. Indeed,

𝑉𝑑 = 2− 2 ·
vol(spherical cap of height 1

2)
vol(𝐵𝑑

1(0))

= 2− 𝐼3/4

(︃
𝑑+ 1

2 ,
1
2

)︃
(3.31)

and

𝑃𝑑 = 1− 𝑑

2

∫︁ 1

0
𝑥𝑑−1 · 𝐼1− 𝑥2

4

(︃
𝑑+ 1

2 ,
1
2

)︃
𝑑𝑥. (3.32)

Note that 2−(𝑑+ 1
2 ) is the value of 𝜆 obtained in [31], and that 𝐶𝑑 > 1 for all 𝑑, so this

is an improvement for all 𝑑. With some more work, one can show that 𝑃𝑑 ≤ 1−Ω(𝛼𝑑)

and 𝑉𝑑 ≤ 2− Ω(𝛼𝑑), for some 𝛼 ≈ 0.865, and therefore 𝐶𝑑 = 1 + 2−𝑂(𝑑).

86



Chapter 4

Clique partitions of a graph and its

complement

4.1 Introduction

For a graph 𝐺, let cp(𝐺) denote its (edge) clique partition number, which is the

minimum number of cliques in 𝐺 needed to cover the edges of 𝐺 exactly once. We

call such a covering a clique partition of 𝐺. Similarly, we let cc(𝐺) denote the clique

covering number, which is the minimum number of cliques needed to cover the edges

of 𝐺 at least once. For each of these quantities, the algorithmic task of computing

it for arbitrary graphs is an NP-complete problem [63] – nonetheless, they have been

extensively studied from a combinatorial perspective. In this chapter, we concern

ourselves primarily with the following question, raised in 1986 by De Caen, Erdős,

Pullman and Wormald [18]: what is the maximum possible value of cp(𝐺) + cp(𝐺),

where 𝐺 is any graph on 𝑛 vertices? In the same paper, the authors solved the

analogous problem for cc(𝐺) up to 1 + 𝑜𝑛(1) factors, showing that

max
𝐺∈𝒢𝑛

cc(𝐺) + cc(𝐺) = 𝑛2

4 (1 + 𝑜(1)) (4.1)

(where 𝒢𝑛 is the set of all graphs on 𝑛 vertices.) Note that the complete bipartite

graph 𝐾𝑛/2,𝑛/2 has cc(𝐾𝑛
2 ,

𝑛
2
) = ⌊𝑛2

4 ⌋, which is the maximum value of cc(𝐺) for 𝐺 ∈
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𝒢𝑛 [22], and cc(𝐾𝑛
2 ,

𝑛
2
) + cc(𝐾𝑛

2 ,
𝑛
2
) = ⌊𝑛2

4 ⌋ + 2, which almost matches the upper

bound on cc(𝐺) + cc(𝐺). L. Pyber [67] later closed the 𝑜(𝑛2) gap, showing that

max𝐺∈𝒢𝑛 cc(𝐺) + cc(𝐺) = ⌊𝑛2

4 ⌋+ 2 for 𝑛 ≥ 𝑛0 = 21500.

However, the corresponding problem for clique partitions appears to be much more

difficult. In the same paper [18], De Caen et al. were able to show

7𝑛2

25 +𝑂(𝑛) ≤ max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) ≤ 13𝑛2

30 +𝑂(𝑛), (4.2)

and left closing the rather sizeable gap as an open problem. They also conjectured

that the lower bound was close to the truth, namely that

max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) ∼ 7𝑛2

25 . (4.3)

The lower bound in (4.2) comes from a construction which is a type of blow-up of

𝐶5, while the upper bound comes from Turan’s theorem and Ramsey theory. Indeed,

for 𝐺 ∈ 𝒢𝑛, we can think of 𝐺 and 𝐺 as the black and white edges, respectively, of a

black/white coloring of the edges of 𝐾𝑛, and consider any maximal collection of black

and white triangles in this coloring. Then the set of uncovered edges forms a 𝐾6-free

graph on 𝑛 vertices, since otherwise the Ramsey bound 𝑅(3, 3) = 6 would yield either

another black or white triangle. By Turan’s theorem, a 𝐾6-free graph on 𝑛 vertices

has no more than 2𝑛2/5 edges. Therefore, if 𝑡 was the number of monochromatic

triangles and 𝑠 was the number of remaining edges, then since 𝑠+ 3𝑡 =
(︁
𝑛
2

)︁
, it follows

that cp(𝐺) + cp(𝐺) ≤ 𝑠+ 𝑡 ≤ 2𝑛2

5 + 𝑛2

6 −
2𝑛2

15 = 13𝑛2

30 .

As was remarked in [18], one can improve on the above argument by using known

bounds on 𝑅(𝑘, 𝑘) and including larger cliques in the cover – however, such improve-

ments quickly become negligible. Indeed, if one begins with a maximal collection of

monochromatic copies of 𝐾𝑟, bounds the number of remaining edges by 𝛼𝑟𝑛2, where

𝛼𝑟 := 1
2 −

1
2𝑅(𝑟,𝑟)−2 , and then iterates on the uncovered edges with cliques of size 𝐾𝑟−1
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down to 𝐾2, it is not hard to see that the bound one obtains is

cp(𝐺) + cp(𝐺) ≤
⎛⎝𝛼3 + 𝛼4 − 𝛼3

3 + 𝛼5 − 𝛼4

6 + · · ·+ 𝛼𝑟 − 𝛼𝑟−1(︁
𝑟−1

2

)︁ +
1
2 − 𝛼𝑟(︁

𝑟
2

)︁
⎞⎠𝑛2 (4.4)

Even using the most optimistic (i.e. smallest) of the possible values for 𝑅(𝑘, 𝑘) for

𝑘 ≥ 5, this approach will not yield an upper bound better than 0.41𝑛2.

One reason why this bound is not tight is because the greedy packing – just

throwing in monochromatic triangles, say, until there are no more remaining – can be

a rather inefficient packing. In fact, while the above argument shows that a greedy

packing of disjoint triangles into 𝐺 and 𝐺 always finds 𝑛2

30 triangles, a subsequent work

of Erdős et al. [23] shows by a different method that one can always find 3𝑛2

55 such

triangles. Picking 𝐺 = 𝐾𝑛
2 ,

𝑛
2

shows that the number of edge disjoint monochromatic

triangles can be as few as 𝑛2

12 , and in [23] it is conjectured this is optimal. Building on

the approach of Erdős et al. while making use of a fractional version of the packing

problem, Keevash and Sudakov [47] give a computer-aided argument showing that

the number of edge disjoint monochromatic triangles is always at least

(︂ 13
196 + 1

84 −
1

1568

)︂
𝑛2 + 𝑜(𝑛2) ≈ 𝑛2

12.88 + 𝑜(𝑛2) (4.5)

As noticed by Bujtas et al. [12], using this collection of triangles instead of one chosen

greedily yields clique partitions for 𝐺 and 𝐺 with at most 0.34481𝑛2 + 𝑜(𝑛2) cliques,

thereby improving the upper bound in (4.2) significantly.
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4.1.1 New results

In this chapter, we shrink the gap in (4.2) slightly on both ends, showing that

max𝐺∈𝒢𝑛 cp(𝐺) + cp(𝐺) ∼ 𝛼 · 𝑛2 for some 𝛼 ∈ (0.28048, 0.3186), which improves

upon the previously best known range of [0.28, 0.34481). In particular, in Section 4.2

we modify the 𝐶5 blow-up construction from [18] to yield an infinite family of graphs

𝐺 ∈ 𝒢𝑛 with

cp(𝐺) + cp(𝐺) ≥ 23
82𝑛

2 +𝑂(𝑛) =
(︂ 7

25 + 1
2050

)︂
𝑛2 +𝑂(𝑛). (4.6)

This implies that the conjectured asymptotic (4.3) is false, at least by a hair. On

the other hand, in Section 4.3, we adapt the methods of Keevash and Sudakov [47]

to directly attack the problem of upper bounding cp(𝐺) + cp(𝐺) for all 𝐺 ∈ 𝒢𝑛.

Running their algorithm on a 16-core compute grid, we bound the value of a certain

linear program on all graphs with 𝑛 ≤ 20 vertices, and from this we extract the upper

bound 𝛼 < 0.3186.

4.2 Improving the lower bound

The section closely follows [18] (with only one significant difference), but we include a

complete argument for the reader’s convenience. Before proceeding with the construc-

tion, we need the following lemma, which has appeared in many places but perhaps

first in Pullman and Donald [66]. Recall that the edge chromatic number 𝜒′(𝐺) of

a graph 𝐺 is the minimum number of colors needed to color the edges of 𝐺 so that

no two edges of the same color are incident to the same vertex. We use the notation

𝐺 ≡ 𝐻 to denote the graph on vertices 𝑉 (𝐺) ⊔ 𝑉 (𝐻) formed by adding all edges

between 𝑉 (𝐺) and 𝑉 (𝐻).

Lemma 4.2.1. Let 𝐺 be any graph with 𝑛 vertices and 𝑒 edges. Then cp(𝐺 ≡ 𝐾ℓ) ≥

𝑛ℓ− 𝑒. If 𝜒′(𝐺) ≤ ℓ, then cp(𝐺 ≡ 𝐾ℓ) = 𝑛ℓ− 𝑒.

Proof. Let 𝐻 = 𝐾ℓ and let 𝐸𝐺−𝐻 be the set of all 𝑛ℓ edges between 𝑉 (𝐺) and 𝑉 (𝐻).

Suppose 𝐶1, . . . , 𝐶𝑟 is a clique partition of 𝐺 ≡ 𝐻. Since 𝐶𝑖 can have at most one
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𝐺 𝐺

𝐾ℓ 𝐾ℓ𝐾ℓ 𝐾ℓ

𝐾ℓ 𝐾ℓ 𝐾ℓ 𝐾ℓ

Figure 4-1: The graph 𝐻ℓ(𝐺) and its complement.

vertex in 𝐻, it follows that |𝐸(𝐶𝑖)∩𝐸(𝐺)| ≥
(︁

|𝐸(𝐶𝑖)∩𝐸𝐺−𝐻 |−1
2

)︁
≥ |𝐸(𝐶𝑖)∩𝐸𝐺−𝐻 | − 1.

Letting 𝑆 = {𝑖 : 𝐸(𝐶𝑖) ∩𝐸𝐺−𝐻 ̸= ∅} and summing this inequality over 𝑆, we obtain

𝑒 ≥
∑︁
𝑖∈𝑆
|𝐸(𝐶𝑖) ∩ 𝐸(𝐺)| ≥

∑︁
𝑖∈𝑆
|𝐸(𝐶𝑖) ∩ 𝐸𝐺−𝐻 | − |𝑆| ≥ 𝑛ℓ− 𝑟 (4.7)

which implies cp(𝐺 ≡ 𝐻) ≥ 𝑛ℓ − 𝑒. When 𝜒′(𝐺) ≤ ℓ, we can assign each of the ℓ

nodes in 𝐻 to one of the ℓ color classes of a valid edge coloring in 𝐺, and obtain

a collection of triangles of the form {𝑣, 𝑥, 𝑦}, for 𝑣 ∈ 𝐻 and (𝑥, 𝑦) ∈ 𝐸(𝐺) which

has been given color 𝑣 in the edge coloring. No edge in 𝐸𝐺−𝐻 will be used twice

precisely because no vertex in 𝐺 is incident to two edges of the same color. This gives

a collection of 𝑒 edge-disjoint triangles which cover all the edges in 𝐺 and leaves at

most 𝑛ℓ − 2𝑒 edges left to cover, and adding in those edges yields a clique partition

of size at most 𝑛ℓ− 𝑒.

We now describe a construction which generalizes the construction in [18]. Let

ℓ and 𝑚 be any positive integers, and let 𝐺 be any graph on 𝑚 vertices. We define

𝐻ℓ = 𝐻ℓ(𝐺) to be the graph in Figure 4-1, where the double lines are to be interpreted

in the same way as the ≡ symbol, i.e. including all possible edges between the vertices

on either end. Observe that 𝐻ℓ(𝐺) ∼= 𝐻ℓ(𝐺), and that the edges of 𝐻ℓ(𝐺) can be

split into 𝑋ℓ(𝐺) := 𝐺 ≡ 𝐾2ℓ and 𝑌ℓ = 𝐾ℓ ≡ 𝐾ℓ ≡ 𝐾ℓ ≡ 𝐾ℓ, as depicted in Figure

4-2. Clearly 𝜒′(𝐺) ≤ 𝜒′(𝐾𝑚), which is at most 𝑚, since we can assign the numbers

0, 1, . . . ,𝑚− 1 to each vertex and color the edge (𝑖, 𝑗) by 𝑖− 𝑗 mod 𝑚. So if 𝑚 ≤ 2ℓ,
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𝐺

𝐾2ℓ 𝐾ℓ 𝐾ℓ

𝐾ℓ 𝐾ℓ

Figure 4-2: Decomposing 𝐻ℓ into the edge-disjoint union of the two graphs 𝑋ℓ(𝐺) =
𝐺 ≡ 𝐾2ℓ (left) and 𝑌ℓ = 𝐾ℓ ≡ 𝐾ℓ ≡ 𝐾ℓ ≡ 𝐾ℓ (right).

Lemma 4.2.1 implies that cp(𝑋ℓ(𝐺)) = 𝑚ℓ− 𝑒(𝐺). Therefore

cp(𝐻ℓ(𝐺)) + cp(𝐻ℓ(𝐺)) = cp(𝐻ℓ(𝐺)) + cp(𝐻ℓ(𝐺))

= cp(𝑋ℓ(𝐺)) + cp(𝑋ℓ(𝐺)) + 2cp(𝑌ℓ)

= 2𝑚ℓ−
(︃
𝑚

2

)︃
+ 2cp(𝑌ℓ)

for any graph 𝐺 on 𝑚 ≤ 2ℓ vertices. (In fact, this still gives a lower bound on

cp(𝐻ℓ(𝐺)) + cp(𝐻ℓ(𝐺)) for any 𝐺 and any 𝑚.) The term cp(𝑌ℓ) was computed in

[18], and we include the argument in the appendix.

Lemma 4.2.2 (Lem. 2 and 3 in [18]). For any ℓ, cp(𝑌ℓ) ≥ 7
4ℓ

2 + 𝑂(ℓ), and this is

tight infinitely often.

So for any 𝐺 on 𝑚 vertices, we have

cp(𝐻ℓ(𝐺)) + cp(𝐻ℓ(𝐺)) ≥ 2𝑚ℓ−
(︃
𝑚

2

)︃
+ 7

2ℓ
2 (4.8)

Note that 𝐻ℓ(𝐺) has 𝑛 := 𝑚 + 4ℓ vertices, so maximizing (4.8) in 𝑚 while keeping

𝑛 fixed, we find that the optimum occurs at 𝑚 = 9
8ℓ. At this value of 𝑚, the lower

bound is (8 − 81
128)ℓ2 + 𝑂(ℓ) for a graph on 41

8 ℓ vertices, implying that, for infinitely

many 𝑛,

max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) ≥
(8− 81

128)
(41

8 )2 𝑛2 +𝑂(𝑛) = 23
82𝑛

2 +𝑂(𝑛).
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4.3 Improving the upper bound

The problem of partitioning a graph 𝐺 into as few cliques as possible is equivalent to

the problem of packing disjoint copies of 𝐾3, 𝐾4, . . . , 𝐾𝑛 inside of 𝐺 in such a way as

to maximize a certain linear objective function. Indeed, given a clique partition 𝐶 of

𝐺, let 𝐶𝑖 denote the number of cliques of size 𝑖 in 𝐶, for 𝑖 = 2, . . . , 𝑛. Then

|𝐶| =
𝑛∑︁
𝑖=2

𝐶𝑖 , and
𝑛∑︁
𝑖=2

(︃
𝑖

2

)︃
𝐶𝑖 = |𝐸(𝐺)| (4.9)

and so

cp(𝐺) = min
𝐶
|𝐶|

= 𝐸(𝐺)−max
𝐶

∑︁
𝑖≥3

(︃(︃
𝑖

2

)︃
− 1

)︃
𝐶𝑖⏟  ⏞  

=:𝑣(𝐺)

. (4.10)

We will also consider 𝑟-restricted clique packings/partitions, in which the largest clique

can have size at most 𝑟. We define cp(𝐺, 𝑟) to be the minimum number of cliques of

size at most 𝑟 needed to partition the edges of 𝐺. Equivalently, cp(𝐺, 𝑟) = 𝐸(𝐺) −

𝑣𝑟(𝐺), where

𝑣𝑟(𝐺) := max
𝐶

𝑟∑︁
𝑖=3

(︃(︃
𝑖

2

)︃
− 1

)︃
𝐶𝑖. (4.11)

Clearly cp(𝐺, 𝑟) ≥ cp(𝐺), and one would expect the numbers cp(𝐺, 𝑟) and cp(𝐺) to

be relatively close for large 𝑟. This is indeed the case, as we show in the following

lemma.

Lemma 4.3.1. For any 𝜖 > 0, there exists an integer 𝑟0 = 𝑟0(𝜖) such that for any

𝑟 ≥ 𝑟0 and any graph 𝐺 on 𝑛 vertices,

cp(𝐺, 𝑟) ≤ cp(𝐺) + 𝜖 · 𝑛2.

Proof. We make use of the following fact, which is a straightforward consequence of

Wilson’s theorem [77]: for any fixed 𝑡 ≥ 2 and 𝜖 > 0, there is an integer 𝑚0 = 𝑚0(𝑡, 𝜖)
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such that for all 𝑚 ≥ 𝑚0, there is a partition of 𝐾𝑚 into edge-disjoint copies of 𝐾𝑡

and at most 𝜖𝑚2 left-over edges. Set 𝑡 = 1
2𝜖 and 𝑟0 = 𝑚0(𝑡, 𝜖/5).

Let 𝐶 be a clique partition with |𝐶| = cp(𝐺). For any 𝑟 ≥ 𝑟0, we can obtain an

𝑟-restricted clique partition ̃︀𝐶 from 𝐶 as follows: keep each clique of size at most 𝑟,

and for each clique 𝐾𝑚 with 𝑚 > 𝑟, decompose it into at most
(︁
𝑚
2

)︁
/
(︁
𝑡
2

)︁
copies of 𝐾𝑡

and cover the remaining edges (of which there are at most 𝜖
5 ·𝑚

2) with 𝐾2’s. This

gives a clique partition ̃︀𝐶 of size

| ̃︀𝐶| ≤ 𝑟∑︁
𝑖=2

𝐶𝑖 +
∑︁
𝑖>𝑟

⎛⎝
(︁
𝑖
2

)︁
(︁
𝑡
2

)︁ + 𝜖

5𝑖
2

⎞⎠𝐶𝑖
≤

𝑛∑︁
𝑖=2

𝐶𝑖 + 𝜖 ·
𝑛∑︁
𝑖=2

(︃
𝑖

2

)︃
𝐶𝑖

= |𝐶|+ 𝜖 · |𝐸(𝐺)|

from which the lemma follows.

4.3.1 Fractional clique packings

For a fixed family ℱ of graphs and any graph 𝐺, let
(︁
𝐺
ℱ

)︁
denote the set of (unlabeled,

non-induced) subgraphs of𝐺 which are isomorphic to some 𝐹 ∈ ℱ . Following Keevash

and Sudakov [47], and Yuster [80], we say a function 𝜓 :
(︁
𝐺
ℱ

)︁
→ [0, 1] is a fractional

ℱ-packing of 𝐺 if for every edge 𝑒 ∈ 𝐸(𝐺), we have

∑︁
𝑒∈𝐻∈(𝐺

ℱ)
𝜓(𝐻) ≤ 1.

We denote by 𝐺ℱ the polyhedron of all fractional ℱ -packings of 𝐺. As we are inter-

ested in the fractional analogue of clique packings, we will only be concerned with

families of the form

ℱ𝑟 := {𝐾3, 𝐾4, . . . , 𝐾𝑟}.
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Let 𝜈𝑟(𝐺) be the value of the linear program

max
𝜓∈𝐺ℱ𝑟

∑︁
𝐻∈( 𝐺

ℱ𝑟
)

(︃(︃
|𝐻|
2

)︃
− 1

)︃
𝜓(𝐻) (4.12)

When the objective function is simply ∑︀𝐻∈(𝐺
ℱ) 𝜓(𝐻), and the family ℱ = {𝐹} is just

a single graph, a theorem of Haxell and Rödl [36] implies that relaxing the domain

of maximization from (integer) packings to fractional packings can only change the

value of the optimum by 𝑜(𝑛2). Subsequently, Yuster [80] extended this result to

arbitrary families of graphs. For finite families (such as ℱ𝑟), Yuster’s proof easily

extends to arbitrary linear objective functions [79]. Therefore:

Theorem 4.3.1. For any 𝑟 ≥ 3 and 𝐺 ∈ 𝒢𝑛,

𝑣𝑟(𝐺)− 𝜈𝑟(𝐺) = 𝑜(𝑛2).

The advantages of studying fractional clique packings rather than clique partitions

are twofold. Firstly, solving the linear program (4.12) is computationally feasible,

unlike the corresponding integer program. Secondly, they can be averaged, which not

only enables one to turn finite computations into asymptotic bounds, but also allows

one to leverage the results of a search on 𝑛 vertices to reduce the search space when

looking for a minimizer on 𝑛+ 1 vertices. This is the approach used by Keevash and

Sudakov in [47], and the following averaging lemma (for a different LP) appears as

their Lemma 2.1, with the same proof.

For each 𝑟, define

𝑓𝑟(𝑛) := min
𝐺∈𝒢𝑛

𝜈𝑟(𝐺) + 𝜈𝑟(𝐺).

Lemma 4.3.2. For any 𝑟 ≥ 3, the sequence 𝑓𝑟(𝑛)
𝑛(𝑛−1) is increasing in 𝑛.

Proof. Let 𝐺 ∈ 𝒢𝑛+1, and let 𝐺1, . . . , 𝐺𝑛+1 be the induced subgraphs on the vertex

subsets of size 𝑛. Let 𝜓𝑖, 𝜓𝑖 be optimal fractional packings on 𝐺𝑖 and 𝐺𝑖. Since each
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edge of 𝐺 (and 𝐺) occurs in 𝑛− 1 of the 𝐺𝑖, we have that

𝜓 := 1
𝑛− 1

𝑛+1∑︁
𝑖=1

𝜓𝑖, 𝜓 := 1
𝑛− 1

𝑛+1∑︁
𝑖=1

𝜓𝑖

are fractional packings on 𝐺 and 𝐺 with combined objective value at least 𝑛+1
𝑛−1𝑓𝑟(𝑛),

and hence 𝑓𝑟(𝑛+1)
(𝑛+1)𝑛 ≥

(𝑛+1)𝑓𝑟(𝑛)
𝑛(𝑛−1)(𝑛+1) = 𝑓𝑟(𝑛)

𝑛(𝑛−1) , as claimed.

Since the sequence 𝑓𝑟(𝑛)
𝑛(𝑛−1) is obviously bounded above by 1/2, it follows that is

converges to a limit 𝑐𝑟 ∈ (0, 1/2). Since 𝑐𝑟 is increasing in 𝑟, the sequence {𝑐𝑟} also

converges to a limit we’ll call 𝑐∞.

Theorem 4.3.2.

max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) ∼
(︂1

2 − 𝑐∞

)︂
𝑛2

Proof. This essentially follows from Lemma 4.3.1 and Theorem 4.3.1. More explicitly,

for any 𝜖 > 0, we can pick 𝑟 large enough so that |cp(𝐺) − cp(𝐺, 𝑟)| < 𝜖𝑛2 for any

𝐺 ∈ 𝒢𝑛, and |𝑐𝑟 − 𝑐∞| < 𝜖. Now pick 𝑛 large enough so that |𝑣𝑟(𝐺) − 𝜈𝑟(𝐺)| < 𝜖𝑛2

for any 𝐺 ∈ 𝒢𝑛 and |𝑓𝑟(𝑛)− 𝑐𝑟𝑛2| < 𝜖𝑛2. It follows that

max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) ∈
(︂1

2 − 𝑐∞ ± 8𝜖
)︂
𝑛2

for 𝑛 sufficiently large.

The same argument shows that max𝐺∈𝒢𝑛 cp(𝐺, 𝑟) + cp(𝐺, 𝑟) ∼
(︁

1
2 − 𝑐𝑟

)︁
𝑛2. Let

us define 𝛼𝑟 := 1
2 − 𝑐𝑟, and 𝛼∞ = 1

2 − 𝑐∞. We seek an upper bound on 𝛼∞, and since

𝛼∞ ≤ 𝛼𝑟 = 1
2 − 𝑐𝑟 ≤

1
2 −

𝑓𝑟(𝑛)
𝑛(𝑛−1) for any 𝑛, it suffices for our purposes to compute a

lower bound on the value of 𝑓𝑟(𝑛)
𝑛(𝑛−1) for any particular pair of positive integers (𝑟, 𝑛).

For example, it takes only a few minutes on a modern computer to compute 𝑓4(8) = 6

numerically by solving the LP (4.12) on every non-isomorphic graph on 8 vertices.

This shows that 𝛼∞ ≤ 𝛼4 ≤ 1
2 −

6
8·7 = 11

28 ≈ 0.3928. This already beats the best

bound one can get from purely Ramsey-based arguments, although it does not beat

the Keevash-Sudakov triangle packing bound. In the remainder of this chapter, we

improve this bound in two ways: first, we show in Section 4.3.2, we can combine
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Ramsey-type arguments with estimates on 𝑓𝑟(𝑛0) to yield better estimates on 𝑓𝑟(𝑛)

for 𝑛 much larger than 𝑛0; second, in Section 4.3.3 we compute the exact value of

𝑓4(𝑛) up to 𝑛 = 19, using an algorithm of Keevash and Sudakov which is significantly

more efficient than brute force search.

4.3.2 Ramsey-type improvements

In [47], it was observed that the averaging argument in Lemma 4.3.2 can be improved,

in a sense, by using a different decomposition of 𝐺 into smaller subgraphs based on

a greedy packing as described in the introduction. In particular, given any bicoloring

of 𝐾3𝑛, greedily select vertex-disjoint monochromatic triangles 𝑇1, . . . , 𝑇𝑖, where the

fact that 𝑅(3, 3) = 6 guarantees that we can do this until 3 vertices remain – giving

us 𝑛− 1 triangles 𝑇1, . . . , 𝑇𝑛−1, and one set of 3 vertices denoted 𝑇𝑛. Consider the 3𝑛

colorings 𝑐 of 𝐾𝑛 obtained by picking one vertex in each 𝑇𝑖 and the edges between

them. Each coloring has some fractional packing 𝜓𝑐 of weight at least 𝑓3(𝑛), and since

each edge between 𝑇𝑖 and 𝑇𝑗 for 𝑖 ̸= 𝑗 occurs in exactly 3𝑛−2 of these, the average

3−(𝑛−2)∑︀
𝑐 𝜓𝑐 is a valid fractional packing in 𝐾3𝑛 of weight at least 9𝑓3(𝑛). Since each

of the monochromatic triangles 𝑇1, . . . , 𝑇𝑛−1 are edge disjoint from this packing, they

can be included as well, yielding a lower bound

𝑓3(3𝑛) ≥ 9𝑓3(𝑛) + 2(𝑛− 1). (4.13)

Since 𝑅(4, 4) = 18, we can greedily find vertex disjoint monochromatic copies of 𝐾4,

𝐻1, . . . , 𝐻𝑛−4, with 16 vertices remaining. From the remaining vertices, we can find

edge disjoint monochromatic triangles 𝑇𝑛−3, 𝑇𝑛−2, 𝑇𝑛−1, 𝑇𝑛, which we join with the

remaining four vertices to form 𝐻𝑛−3, . . . , 𝐻𝑛, each of size four. Repeating the same

process as above, we see that

𝑓4(4𝑛) ≥ 16𝑓4(𝑛) + 5(𝑛− 4) + 8. (4.14)
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For 𝑟 = 5, we can use the bound 𝑅(5, 5) ≤ 48 to find 𝑛 − 9 vertex-disjoint copies of

𝐾5, with 45 vertices left over. We can then find ⌈(45− 18)/4⌉ = 7 copies of 𝐾4, with

17 vertices left over, in which we can find 2 monochromatic triangles, and distribute

the remaining vertices so that each of these 11 parts has size 5. Arguing as above,

this then implies

𝑓5(5𝑛) ≥ 25𝑓5(𝑛) + 9(𝑛− 9) + 37. (4.15)

We omit the details, but using similar arguments and the Ramsey number bounds

𝑅(6, 6) ≤ 165 and 𝑅(7, 7) ≤ 540 yields the inequalities

𝑓6(6𝑛) ≥ 36𝑓6(𝑛) + 14𝑛− 151 (4.16)

𝑓7(7𝑛) ≥ 49𝑓7(𝑛) + 20𝑛− 532. (4.17)

According to András Gyárfás [33], Paul Erdős, sitting in the Atlanta Airport in 1995,

asked his companions whether every bicoloring of the edges of 𝐾𝑅(𝑘,𝑘) contains two

edge-disjoint monochromatic copies of 𝐾𝑘. Ralph Faudree pointed out that this is

not true, at which point Erdős asked for the smallest number 𝑛(𝑘) for which any

bicoloring of 𝐾𝑛(𝑘) does contain two edge-disjoint monochromatic 𝐾𝑘’s. The next

day, Faudree showed 𝑛(3) = 7, and some time later, Gyárfás showed 𝑛(4) = 19. For

our purposes, however, we require vertex-disjoint monochromatic copies of 𝐾𝑟. In

the appendix we give an argument, inspired by the proof of 𝑛(4) = 19 by Gyárfás,

showing that 𝑛 = 20 is sufficient to find two vertex-disjoint monochromatic 𝐾4’s,

provided there is also a monochromatic 𝐾5:

Lemma 4.3.3. Any bicoloring of the edges of 𝐾20 with a monochromatic copy of 𝐾5

contains two vertex-disjoint monochromatic copies of 𝐾4.

With this fact in hand, we can obtain a slight improvement over (4.14):

Lemma 4.3.4. For any 𝑛 ≥ 12, 𝑓4(4𝑛) ≥ 16𝑓4(𝑛) + 5𝑛− 9.

Proof. Consider any bicoloring of 𝐾4𝑛. Since 4𝑛 ≥ 48 ≥ 𝑅(5, 5), there is some

monochromatic copy of 𝐾5 – call this subgraph 𝑁 . While there are at least 𝑅(4, 4) =
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18 vertices in 𝐾4𝑛 ∖𝑁 , we can greedily select vertex-disjoint monochromatic copies of

𝐾4 in 𝐾4𝑛∖𝑁 , 𝐻1, . . . , 𝐻𝑛−5. This leaves a set 𝑆 of 15 remaining vertices. By Lemma

4.3.3, the coloring induced on 𝑆∪𝑁 ∼= 𝐾20 has two vertex disjoint copies of 𝐾4, which

we call 𝐻𝑛−4 and 𝐻𝑛−3. Removing the vertices in 𝐻𝑛−4∪𝐻𝑛−3 from 𝑁 ∪𝑆, we are left

with twelve vertices, which must contain 3 vertex-disjoint monochromatic triangles

𝑇1, 𝑇2 and 𝑇3. This leaves behind a set of three vertices {𝑣1, 𝑣2, 𝑣3}. Decomposing

𝐾4𝑛 into the 𝑛 blocks of size 4

𝐻1, . . . , 𝐻𝑛−3, 𝑇1 ∪ {𝑣1}, 𝑇2 ∪ {𝑣2}, 𝑇3 ∪ {𝑣3}

we consider the 4𝑛 edge-colorings 𝑐 of 𝐾𝑛 obtained by picking one vertex from each

part. Each of these has a fractional clique packing 𝜓𝑐 of size at least 𝑓4(𝑛), and

since each edge is used in 4−(𝑛−2) such 𝜓𝑐, we know that 4−(𝑛−2)∑︀
𝑐 𝜓𝑐 is a valid

packing in 𝐾4𝑛. Adding in the copies of 𝐾4 and 𝐾3 inside the parts, we see that

𝑓4(4𝑛) ≥ 16𝑓4(𝑛) + 5(𝑛− 3) + 6.

4.3.3 Computer-aided calculations

We next describe (a generalization of) the algorithm used by Keevash and Sudakov

in the case of triangle packings [47], which we call the KS bootstrap method. For any

finite family of graphs ℱ = {𝐻1, . . . , 𝐻𝑟}, any graph 𝐺 ∈ 𝒢𝑛, and any vector Γ ∈ Rℱ ,

we let 𝜈ℱ ,Γ(𝐺) be the value of the linear program

max
𝜓∈𝐺ℱ

∑︁
𝐻∈(𝐺

ℱ)
Γ(𝐻)𝜓(𝐻) (4.18)

For any ℓ ∈ R, and any set 𝐿 of graphs, define

ℒ(𝐿, ℓ) := {𝐺 ∈ 𝐿 : 𝜈ℱ ,Γ(𝐺) + 𝜈ℱ ,Γ(𝐺) ≤ ℓ},

and let Λℱ ,Γ(𝐿) = min𝐺∈𝐿 𝜈ℱ ,Γ(𝐺′) + 𝜈ℱ ,Γ(𝐺′). We also define ext1(𝐿) be the set

of one-vertex extensions of the graphs in 𝐿. The KS bootstrap method is based on
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the following observation: by Lemma 4.3.2, any graph 𝐺′ ∈ 𝒢𝑛+1 with 𝜈ℱ ,Γ(𝐺′) +

𝜈ℱ ,Γ(𝐺′) ≤ 𝑛+1
𝑛−1 · ℓ must be a one-vertex extension of some graph in ℒ(𝒢𝑛, ℓ). In other

words, if {ℓ𝑛}𝑛∈N is any sequence of numbers satisfying ℓ𝑛+1 ≥ 𝑛+1
𝑛−1ℓ𝑛, then

ℒ(𝒢𝑛+1, ℓ𝑛+1) ⊆ ext1(ℒ(𝒢𝑛, ℓ𝑛)).

Let us refer to such sequences ℓ𝑛 as level sequences.

Algorithm 6: KS Bootstrap Method
1 𝑛← 𝑛0
2 compute 𝐿 = ℒ(𝒢𝑛, ℓ𝑛) (e.g. via exhaustive search)
3 while 𝐿 ̸= ∅ do
4 Λ[𝑛] = Λℱ ,Γ(𝐿)
5 𝑆 ← ext1(𝐿)
6 𝐿← ℒ(𝑆, ℓ𝑛+1)
7 Λ[𝑛+ 1] = ℓ𝑛+1
8 𝑛← 𝑛+ 1
9 end

10 return Λ

Note that the sequence ℓ𝑛 used by Algorithm 6 does not have to be determined

before runtime – as long as it is guaranteed to be a level sequence, this guarantees

the loop invariant ℒ(𝒢𝑛, ℓ𝑛) ⊆ 𝐿, and hence Λ[𝑛] ≤ Λℱ ,Γ(𝒢𝑛). In [47], they choose a

parameter 𝑑 (called the “search depth”), and define ℓ𝑛 recursively by taking ℓ𝑛0 = +∞

and ℓ𝑛+1 to be 𝑛+1
𝑛−1 · 𝛼𝑛, where 𝛼𝑛 is either (a) the 𝑑th smallest value in the set

{𝜈ℱ ,Γ(𝐺′) + 𝜈ℱ ,Γ(𝐺′) : 𝐺 ∈ ℒ(𝒢𝑛, ℓ𝑛)}, if this set has at least 𝑑 elements, or (b) ℓ𝑛,

if the set has fewer than 𝑑 elements. The role of 𝑑 is to limit the number of graphs

stored in the set 𝐿 – if 𝑑 =∞, then Algorithm 6 has to solve the LP (4.18) on every

graph up to size 𝑛 in order to compute Λℱ ,Γ(𝒢𝑛), while if 𝑑 is too small, then the while

loop will terminate after a small number of iterations. We ran an implementation1

of this method on a 16-core computing grid with 𝑑 = 11, starting with an exhaustive

1There are other implementation details omitted from our pseudocode description of Algorithm
6 which also have significant impact its runtime and memory usage, such as how and when to
check and prune isomorphisms, which LP solver to use, which value of 𝑛0 to exhaust from, and
how to split work among multiple processors, if run in parallel. Our implementation is very similar
to the one used in [47] – we recommend reading their magma code which can be found online at
https://people.math.ethz.ch/~sudakovb/triangles-program.
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𝑖
𝑛 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 2 4 6 8 11 15 19 23 27 33 39 45 51 57 >64.725
2 4 5 7 9 12 16 20 24 28 34 40 46 52 58 *
3 5 6 8 10 12.5 16.5 20.5 24.5 28.5 34.5 40.5 * * * *
4 6 7 9 11 13 17 21 25 29 34.75 40.75 * * * *
5 7 8 9.5 12 14 17.5 21.25 25.25 29.25 35 * * * * *
6 8 8.3 10 12.3 14.5 18 21.5 25.5 29.5 35.25 * * * * *
7 8.3 8.5 10.3 12.5 14.6 18.25 22 26 30 35.5 * * * * *
8 9 9 10.5 12.6 14.8 18.3 22.25 26.25 30.25 * * * * * *
9 10.6 9.5 10.6 12.6 15 18.5 22.3 26.3 30.5 * * * * * *
10 12.5 10 10.6 12.8 15.5 18.6 22.5 26.5 30.75 * * * * * *
11 * 10.3 10.8 13 15.6 18.75 * * 31 * * * * * *

Table 4.1: The lowest values of 𝜈4(𝐺) + 𝜈4(𝐺) for 𝐺 ∈ 𝒢𝑛, 𝑛 = 6, . . . , 19, as found
by the KS bootstrap method. The level ℓ20 was 64.72527+ when the algorithm
terminated, which implies that 𝑓4(20) > 64.725.

Figure 4-3: One of the graphs with the smallest value of 𝜈4(𝐺)+𝜈4(𝐺) on 19 vertices.

search on 𝑛0 = 6 vertices, and obtained the results summarized in Table 4.1. The

last column in particular implies 𝑓4(20) > 64.725, which implies 𝑐4 > 0.1703. Using

Lemma 4.3.4, and inequalities (4.15), (4.16), and (4.17) (in that order), we can obtain

the bound 𝑐7 ≥ 0.1814, which implies

max
𝐺∈𝒢𝑛

cp(𝐺) + cp(𝐺) < 0.3186𝑛2 + 𝑜(𝑛2). (4.19)
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0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1
1 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0

Figure 4-4: The corresponding adjacency matrix.

4.4 Related questions

∙ What is 𝑐4? An upper bound comes from 𝐺 = 𝐾𝑛/2,𝑛/2, which has cp4(𝐺) +

cp4(𝐺) = 7𝑛2

24 , implying that 𝑐4 ≤ 5
24 = 0.208333 – is this tight?

∙ Let 𝒢𝛼𝑛 = {𝐺 ∈ 𝒢𝑛 : |𝐸(𝐺)| = 𝛼 ·
(︁
𝑛
2

)︁
}. Then what is

𝑓(𝛼) := lim
𝑛→∞

𝑛−2 · max
𝐺∈𝒢𝛼

𝑛

cp(𝐺) + cp(𝐺)?

Is argmax𝛼𝑓(𝑛, 𝛼) = 1
2? Is max𝐺∈𝒢𝑛 cp(𝐺) + cp(𝐺) always attained by a graph

𝐺 with 𝐺 ∼= 𝐺? One can ask the same question of the fractional version.

∙ A related question would be to compute max𝐺∈𝒢𝑛 min{cp(𝐺), cp(𝐺)}. Using the

construction 𝐻ℓ(𝐺) from Section 4.3, and taking 𝐺 to be a self-complementary

graph on 9ℓ
8 vertices, we see that

0.1402 ≈ 23
162 ≤ max

𝐺∈𝒢𝑛

min{cp(𝐺), cp(𝐺)} ≤ 1
4 .
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4.5 Appendix: Missing proofs

Lemma 4.2.2: For any ℓ, cp(𝑌ℓ) ≥ 7
4ℓ

2 +𝑂(ℓ), and this is tight infinitely often.

Proof. Let 𝒞 = {𝐶1, . . . , 𝐶𝑘} be an optimal clique partition of 𝑌ℓ. Let us denote the

left (according to Figure 4-2) copy of 𝐾ℓ in 𝑌ℓ by 𝐴 and the right copy by 𝐵. Suppose

that 𝒞 ′ = {𝐶1, . . . , 𝐶𝑡}, for some 𝑡 ≤ 𝑘, is the sub-collection of cliques which contain

vertices in both 𝐴 and 𝐵. Let 𝐸𝐴 and 𝐸𝐵 be the edges in 𝐴∩𝒞 ′ and 𝐵∩𝒞 ′, so that 𝑌ℓ
is the edge disjoint union of (𝐴 ∖𝐸𝐴) ≡ 𝐾ℓ and (𝐵 ∖𝐸𝐵) ≡ 𝐾ℓ with 𝒞 ′, and therefore

cp(𝑌ℓ) ≥ 2ℓ2 − 2
(︃
ℓ

2

)︃
+ |𝐸𝐴|+ |𝐸𝐵|+ 𝑡 (4.20)

If clique 𝐶𝑖 has 𝑎𝑖 vertices in 𝐴 and 𝑏𝑖 vertices in 𝐵, then

𝑡∑︁
𝑖

𝑎𝑖𝑏𝑖 = ℓ2 (4.21)

and

|𝐸𝐴|+ |𝐸𝐵|+ 𝑡 =
𝑡∑︁
𝑖=1

(︃(︃
𝑎𝑖
2

)︃
+
(︃
𝑏𝑖
2

)︃
+ 1

)︃
. (4.22)

Minimizing (4.22) over positive integers 𝑎𝑖, 𝑏𝑖 subject to the constraint (4.21), we see

the minimum occurs when 𝑎𝑖 = 𝑏𝑖 = 2, i.e. each 𝐶𝑖 ∈ 𝒞 ′ is a 𝐾4 with two vertices in

each of 𝐴 and 𝐵.

Lemma 4.3.3: Any bicoloring of the edges of 𝐾20 with a monochromatic copy of

𝐾5 contains two vertex-disjoint monochromatic copies of 𝐾4.

Proof. Suppose that we have a bicoloring of 𝐾20 with a red copy 𝑁 = {𝑛1, ..., 𝑛5} of

𝐾5. If there is a blue copy of 𝐾4, then we are finished, because this blue copy and 𝑁

cannot share an edge, and therefore share at most one vertex. We may now assume

that all monochromatic copies of 𝐾4 are red.

We can address the case in which there exists a vertex 𝑣 such that it is incident to

at least nine red and blue edges each relatively quickly. We denote by 𝑅 and 𝐵 the

cliques on the red and blue neighbors of 𝑣, respectively. Because the Ramsey number
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𝑅(3, 4) = 9 and our graph has no blue copy of 𝐾4, 𝑅 must contain a red copy of 𝐾3

and 𝐵 must contain a red copy of 𝐾4. Adding 𝑣 to the red copy of 𝐾3 in 𝑅 results

in two red copies of 𝐾4, one in 𝑅 ∪ 𝑣 and one in 𝑁 . We may now assume that all

vertices have at least eleven incident edges of the same color.

Consider the case in which some vertex 𝑣 has two red and two blue edges adjacent

to a red copy 𝑀 of 𝐾4. If 𝑣 has at least eleven red edges, then it has at least nine

red edges connected to 𝐾19∖𝑀 , which, by the same argument above, implies 𝐾20∖𝑀

has a red copy of 𝐾4. The same argument holds if 𝑣 has at least eleven blue edges.

We may now assume that no vertex has two red and two blue edges adjacent to a red

copy of 𝐾4.

From here, we consider two cases:

Case I: Suppose that there exists five vertices 𝑉 = {𝑣1, ..., 𝑣5} ⊂ 𝐾20∖𝑁 , each with at

least three red edges adjacent to 𝑁 . Because no vertex has both two red and

two blue edges adjacent to a red copy of 𝐾4, each vertex of 𝑉 has at least four

red edges adjacent to 𝑁 . In addition, because our graph has no blue copy of

𝐾4 every set 𝑉 ∖𝑣𝑖 has a red edge. If one vertex, say 𝑣1, has five edges adjacent

to 𝑁 , then, assuming (wlog) that (𝑣2, 𝑣3) is a red edge in 𝑉 ∖𝑣1 and that the

at most two blue edges between 𝑣2, 𝑣3 and 𝑁 are not incident to 𝑛4 or 𝑛5, the

subsets {𝑣1, 𝑛1, 𝑛2, 𝑛3} and {𝑣2, 𝑣3, 𝑛4, 𝑛5} are both red copies of 𝐾4. We may

now assume that each vertex in 𝑉 has exactly four red edges adjacent to 𝑁 .

Let 𝑓(𝑣𝑖) denote the unique vertex in 𝑁 for which (𝑣𝑖, 𝑓(𝑣𝑖)) is blue, and 𝑓(𝑉 )

denote the range of 𝑓 . We consider multiple cases, depending on the size of

|𝑓(𝑉 )|.

Suppose |𝑓(𝑉 )| > 2. Let (𝑣1, 𝑣2) be a red edge in 𝑉 , and let us denote by

𝑛1, 𝑛2, 𝑛3 three edges in 𝑁 for which (𝑣𝑖, 𝑛𝑗), 𝑖 = 1, 2, 𝑗 = 1, 2, 3, are all red

edges. By assumption, |𝑓(𝑉 )∩{𝑛1, 𝑛2, 𝑛3}| > 0, so (wlog) suppose that 𝑓(𝑣3) =

𝑛1. Then {𝑣1, 𝑣2, 𝑛1, 𝑛2} and {𝑣3, 𝑛3, 𝑛4, 𝑛5} are both red copies of 𝐾4.

Suppose |𝑓(𝑉 )| = 2. Without loss of generality, let 𝑓(𝑉 ) = {𝑛1, 𝑛2} and

|𝑓−1(𝑛1)| ≥ 3. Because there are no blue copies of 𝐾4 in our graph, 𝑓−1(𝑛1)

104



contains a red edge (𝑣𝑖, 𝑣𝑗), and the subsets {𝑣𝑖, 𝑣𝑗, 𝑛2, 𝑛3} and {𝑣𝑘, 𝑛1, 𝑛4, 𝑛5}

are both red copies of 𝐾4, where 𝑣𝑘 ∈ 𝑓−1(𝑛2).

Suppose |𝑓(𝑉 )| = 1. Without loss of generality, let 𝑓(𝑉 ) = 𝑛1. Then 𝑉 does

not contain a blue copy of 𝐾3, otherwise our graph would contain a blue copy

of 𝐾4. If 𝑉 contains a red copy {𝑣1, 𝑣2, 𝑣3} of 𝐾3, then {𝑣1, 𝑣2, 𝑣3, 𝑛2} and

{𝑣4, 𝑛3, 𝑛4, 𝑛5} are two red copies of 𝐾4, and we are done. If 𝑉 does not contain

a red or blue copy of 𝐾3, then the red edges in 𝑉 forms a cycle of length five,

and there are two vertex-disjoint red edges in 𝑉 , denoted (𝑣𝑖, 𝑣𝑗) and (𝑣𝑘, 𝑣𝑙).

In this case, the subsets {𝑣𝑖, 𝑣𝑗, 𝑛2, 𝑛3} and {𝑣𝑘, 𝑣𝑙, 𝑛4, 𝑛5} are both red copies

of 𝐾4.

Case II: Suppose that there exists at most four vertices in 𝐾20∖𝑁 with at least three red

edges adjacent to 𝑁 . Then there are at least eleven vertices in 𝐾20∖𝑁 with at

least three blue edges adjacent to 𝑁 . Because no vertex has two red and two

edges adjacent to a red copy of 𝐾4, these vertices have at least four blue edges

adjacent to 𝑁 , and so there exists a vertex 𝑛𝑖 ∈ 𝑁 with at least nine blue edges

adjacent to 𝐾20∖𝑁 . Therefore, 𝐾20∖𝑁 must contain a red copy of 𝐾4.
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