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Abstract 

Amazon is able to deliver millions of packages to customers every day through its Fulfillment Center (FC) 

network that is powered by miles of material handling equipment (MHE) such as conveyor belts. 

Unfortunately, this reliance on MHE means that failures could cripple an entire FC. The exceptionally high 

stock-out cost associated with equipment failure means spare parts must always available when required. 

This is made difficult as Amazon does not hold any central repository of inventory at present – all inventory 

is held at a site-level. Unfortunately, FCs have to stock more inventory than required due to unpredictable 

failures, long lead times from suppliers, and no standard work processes for site-to-site transfers. However, 

if Amazon is able to pool its spares across multiple FCs, it has an opportunity to reduce the spares kept 

across the entire FC network, position itself to better respond to catastrophic failures, and consolidate 

interfaces with suppliers. 

The goal of this thesis is to identify the inventory model and network design that would maximize parts 

availability while minimizing cost. Additionally, an implementation roadmap will be developed to outline 

how such a system (e.g. hub locations, logistic channels etc.) can be developed. This thesis concludes by 

proposing potential extensions of the work conducted in this thesis to improve the practicality and financial 

impact of the proposed network and inventory model. 
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1. Introduction 

1.1. Project Background 

Amazon is able to fulfill its two-day delivery promise and deliver millions of packages to its customers 

every day through its Fulfillment Center (FC) network, where FCs hold inventory that is available for sale 

on Amazon. When a customer places an order online, the order is assigned to an FC that has the item in 

stock, and the item is then packed and shipped to the customer. The FC network is powered by miles of 

material handling equipment (MHE), such as conveyor belts and rollers, that help to move the inventory 

across the FC.  

In order to ensure that customers are able to receive their packages on time, FCs are required to hold spare 

parts for all MHE. This ensures that any breakdowns can be immediately repaired and will not disrupt any 

flow of inventory within, and out of, the FCs.  

 

1.2. Problem Statement 

Amazon’s ability to deliver on its two-day promise to customers is highly reliant on the continuous 

operation of Material Handling Equipment (MHE) within the various Fulfilment Centers (FCs). This 

dependence on MHE means that equipment stock-outs could have significant consequences for operations. 

As such, Reliability and Maintenance Engineering (RME) must ensure MHE spares are always available 

when required. However, holding an excessive amount of MHE parts is neither feasible nor desirable due 

to space and cash flow constraints.  

Inventory levels are currently controlled through a Min/Max inventory policy. However, the Min/Max 

levels are set based on vendor recommendation and site admin experience, not usage data of the parts. 

Variability in demand for parts and long lead times (typically four weeks or more) make it difficult to 

accurately determine optimal stocking volumes for MHE spares. Comparisons against a data-based 
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inventory model show that only 30.2% of current parts are stocked at an optimal level. This means that 

many NAFC sites are either holding excess inventory or not holding enough inventory (increasing the risk 

of a stock-out).  

The table below show how 102 NAFC sites (with >500 parts in stock) perform in terms of having a certain 

proportion of their SKUs within percentage bands of “optimal” stocking values based on best practice 

inventory policies. This data is not included as a precursor for further analysis on current stocking policies, 

but rather seeks to simply shed light on the potential of this program.  

Correct % of SKUs # of Sites 

< 15% 7 

15% – 20% 9 

20% - 25% 14 

25% - 30% 21 

30% - 40% 31 

40% - 50% 19 

> 50% 1 

Table 1.1: Current Stocking of SKUs 

This is further complicated as Amazon does not have a central repository for inventory, so parts are ordered 

directly from suppliers. Each FC manages its own budget and inventory through an Enterprise Asset 

Management (EAM) software and a dedicated site-based EAM administrator who is responsible for the 

spares cage in the FC. Since FCs are managed at the site-level, and not as a network, it is difficult to identify 

duplicate parts between sites, consolidate suppliers (and leverage Amazon’s buying power), and better 

respond to emergencies and stock-outs by sharing parts between sites in the network.  

 

1.3. Research Hypothesis and Methodology 

This presents two opportunities to improve FC operations across the entire network. First, Amazon has 

significant amounts of data regarding spare parts usage that could be used to better inform stocking levels 
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of spare parts. Second, risk-pooling between sites can be implemented to share and manage parts at the 

network level.  

Risk-pooling creates a multi-echelon supply chain by introducing centralized hubs within the FC network 

that FCs can source parts from. This significantly lowers part lead times at an FC-level and also pools the 

demand for spares across multiple FCs – both of which help to reduce inventory levels. This “nodal 

warehousing” strategy presents an opportunity for Amazon to not only reduce the spares kept across the FC 

network, but to also position itself to better respond to catastrophic failures whilst consolidating interfaces 

both internally (e.g. inventory planners) and externally (e.g. vendors). 

As such, there were two key goals for this project. First, to identify the optimal risk-pooling design for 

Amazon’s FCs and to quantify any potential savings that would result from its implementation. Second, to 

use data to determine the optimal part stocking levels that would maximize part availability while 

minimizing cost.  

 

1.4. Project Scope and Limitations 

Due to the scale of Amazon’s operations, in order to ensure that the project could be done within the 

available timeframe, only Amazon’s North American operations were considered. Although the scope of 

work from this project could be extended to other geographies, there are other factors that will have to be 

considered when doing so (e.g. cross-border complexities between countries).  

A core part of this project involves the use of data regarding spare part usage and ordering. One limitation 

of this data is that it is extracted from a system that involves manual input from users, and there are 

observations where those manual inputs are incorrect. However, due to the number of data entries within 

the system, it is not feasible for the data to be manually filtered. As such, systems will be put in place to 

identify and filter out incorrect data entries where possible, but all other data entries will be taken as 

accurate.  
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This study also assumes that inventory levels cannot be run down to zero (i.e. where FCs use a pull system 

when spares are required) as that would necessitate downtime whenever a spare is required. As the priority 

for FCs is to ensure that there is no downtime, this is considered to be not acceptable.  

Finally, although Amazon made all its data available as part of this thesis, for data privacy reasons, all data 

that is specific to Amazon was presented to Amazon at the conclusion of the project and will not be 

reproduced within this thesis. Instead, this paper will focus on the process and general learnings that are 

applicable to other scenarios.  

 

  



14 

 

2. Literature Review 

Spares management and inventory modelling are well-established areas of operations research. This chapter 

aims to provide an overview of the prior work already done in this space and to establish the context 

required to understand the other chapters of this paper. The literature review then also looks into potential 

ways in which risk-pooling can be applied to supply chains, and provides a glimpse into the facility location 

problem – the problem of placing warehouses in an optimal location. 

 

2.1. Inventory Theory 

One key challenge for any operation involving variable demand (e.g. retailers, warehouses etc.)  is 

determining the quantity of inventory to hold. If the operation does not hold sufficient inventory, they risk 

running out of stock which could result in lost sales or downtime. On the other hand, excess inventory ties 

up cash flow and space, both of which could be used to improve the operation in other ways, and typically 

has associated holding costs. 

Another inventory management challenge lies in restocking of inventory. Inventory typically has to be 

ordered in advance of when they are required due to lead times from suppliers (which typically adds another 

dimension of variability). This is further complicated as inventory will be further consumed while waiting 

for new inventory to be delivered from suppliers. As such, inventory managers have to determine how much 

inventory to order, and when to order that inventory before they have sufficient data to do so. Due to the 

highly visible consequences of stockouts, there is a temptation for warehouses/retailers to hold more 

inventory than required. 

In response to these challenges, mathematical inventory models have been developed to improve inventory 

policies which provide guidance on timing and quantities of inventory replenishment. Although there are 

many different models, there are several distinctions that are of particular interest to this paper: 
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1) Deterministic vs Stochastic Demand: Demand profiles will vary depending on the type of 

function the inventory is used for. If future demand is well-known and can be accurately forecasted, 

a deterministic inventory model is used. However, if future demand is a variable rather than a 

known constant, then a stochastic inventory model has to be used (Jensen & Bard, 2002). 

 

Deterministic demand profiles consume inventory continuously at a known and constant rate, 

whereas stochastic demand profiles have uncertainty in the demand. In both cases, inventory is 

replenished when needed by ordering a certain replenishment quantity. (b) 

 

 

Figure 2.1: (a) Deterministic vs (b) Stochastic Demand 

2) Single vs Multi Period: An inventory model has to determine the correct amount of inventory to 

stock in order to optimize costs and/or profits. However, the model may be used for a single period 

(i.e. once the period is over, the parts are no longer required), or for multiple periods. A single 

period considers inventory as independent of future periods, whereas multi-period models carry 

over inventory from period to period, which complicates the inventory policy (Zhang et al., 2009).  

 

3) Periodic vs Continuous Review: For multi-period inventory models, any consumed inventory will 

typically have to be replenished at some point in time. A periodic review model checks the 

inventory level at specific intervals, and replenishment orders are only made during those time 

windows. In a continuous review model, inventory is continuously monitored, and an order is 
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placed as soon as the inventory level falls below a certain threshold known as the reorder point 

(Zappone, 2006). 

For the purposes of this paper, Amazon faces a stochastic demand over multiple periods, but is able to 

implement a continuous review process. 

 

2.2. Inventory Models 

2.2.1. Newsvendor and Economic Order Quantity 

Any operation with fluctuating demands will typically face issues as the demand uncertainty could result 

in overstocking and stockouts. Numerous inventory models have been developed over the years to deal 

with this and the newsvendor model has been a mainstay of inventory theory since it was developed in 1951 

by Morse and Kimball.  

The newsvendor model applies to scenarios where an operation faces stochastic demand and has to 

determine its required quantity of inventory before knowing the required demand (Morse & Kimball, 1951). 

The overall objective of the newsvendor model is to identify the inventory quantity that best balances the 

overage and underage costs through statistical information on the demand (e.g. the mean and standard 

deviation of the demand). Using the newsvendor model, it is possible to determine a level of carrying 

inventory that is required to meet the expected demand for a given period of time. 

The newsvendor model typically assumes a normal distribution due to its ease of application. However, due 

to a high probability of negative demands (which is not theoretically possible) when the mean is low and 

variability is high, the normal distribution may not be a reasonable approximation of the demand all the 

time. As such, in the event of a high coefficient of variation of demand, typically defined as >0.5, one 

should consider a distribution other than a normal distribution (Halkos & Kevork, 2012; Silver et al., 1998). 
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Although the newsvendor model is able to provide operations with a sense of how much inventory is 

required for a single period, it does not help to determine how much inventory to reorder to make up for 

consumed parts. The Economic Order Quantity (EOQ) was first developed by Ford Whitman Harris in 1913 

and can be applied to inventory items that are replenished in batches. The EOQ model considers two cost 

buckets, holding costs and ordering costs, and aims to minimize the combined cost of both (Goh, 1994). 

 

2.2.2. (R,Q) Inventory Model 

Although the newsvendor model and EOQ provide a baseline upon which an inventory policy can be built, 

there are more specialized inventory models that are more applicable to Amazon. The (R,Q) inventory 

model typically involves a continuous review period over multiple periods, and is better suited for 

Amazon’s purposes.  

The (R,Q) policy assigns a fixed replenishment point and a fixed replenishment quantity for each part. The 

(R,Q) model has two parameters: whenever the inventory on hand falls below a certain Reorder Point (R), 

it will trigger a new order for a specific Reorder Quantity (Q). The reorder point is set such that there is 

sufficient inventory on hand to meet all reasonably expected demands while waiting for the replenishment 

quantity from the supplier. Reorder quantities are set to minimize the total cost of ordering and holding 

inventory through the EOQ (Cachon & Terwiesch, 2013; Capar & Eksioglu, 2009). 

Reorder Level (R) 

The Reorder Level is the inventory quantity at which new inventory is ordered. Intuitively, when a new 

order is placed, the system must ensure that there are sufficient parts on hand to cover demand until the 

new parts arrive. Accordingly, this Reorder Level for any part corresponds to the sum of the Cycle Stock 

and the Safety Stock. These terms are described further below: 
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1) Cycle Stock is the inventory that is expected to be used for any given period of time. This time 

interval is typically the lead time for the part (i.e. How many parts will be used while waiting for 

new parts to arrive).  

𝐶𝑦𝑐𝑙𝑒 𝑆𝑡𝑜𝑐𝑘 [𝑃𝑎𝑟𝑡𝑠] = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑇𝑖𝑚𝑒 (𝜇) [
𝑃𝑎𝑟𝑡𝑠

𝑇𝑖𝑚𝑒
] ∗ 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 [𝑇𝑖𝑚𝑒] 

2) Safety Stock refers to the additional inventory that is kept on hand to account for weeks that have 

larger than expected demand requirements (as it is impossible to predict the exact amount used 

every week).  

𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 [𝑃𝑎𝑟𝑡𝑠] = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎) [
𝑃𝑎𝑟𝑡𝑠

𝑇𝑖𝑚𝑒
] ∗ √𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 [𝑇𝑖𝑚𝑒] ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 

The Safety Factor is the z-score corresponding to a part’s desired service level on the normal distribution 

(i.e. a Safety Factor of 3 will ensure sufficient inventory to cover inventory requirements 99.7% of the time 

-- a 99.7% service level).  

Reorder Quantity 

As more parts are ordered, the “cost per part” decreases due to fixed costs being spread across more parts. 

However, this is countered by the increased cost of holding more inventory. The Reorder Quantity (Q) aims 

to minimize the total cost of placing an order by optimizing for both ordering costs and holding costs. 

𝑄 [𝑃𝑎𝑟𝑡𝑠] = √
2 ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 [

𝑃𝑎𝑟𝑡𝑠
𝑇𝑖𝑚𝑒 ] ∗  𝐹𝑖𝑥𝑒𝑑 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 [$]

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 [
$

𝑇𝑖𝑚𝑒 ∗ 𝑃𝑎𝑟𝑡] 
 

Whilst most parameters are fixed, the holding cost may be set based on numerous factors. Berling presents 

a general model based on microeconomics through which a holding cost can be determined (Berling, 2008). 

 

2.2.3. (S-1, S) Inventory Model 

An alternate model to the (R,Q) inventory model is the base stock model, also known as the (S-1, S) model. 

The (S-1, S) model works like the (R,Q) model in most ways. The main difference lies in how parts are 
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replenished. The (S-1, S) model sets the required inventory level at (S), and whenever parts are consumed, 

it immediately replenishes its inventory back to the required inventory level of “S” (Cachon & Terwiesch, 

2013). This is also known as an “order up to” inventory model, as it will replace any consumed inventory 

up to the required threshold. 

The (S-1, S) model can also be thought of as an (R,Q) model with a reorder level of (S-1) and a reorder 

quantity of 1.  

 

2.3. Inventory Pooling 

Inventory pooling is a well established branch of operations research that was first introduced by Eppen in 

1979 (Eppen, 1979). The concept of inventory pooling has been further explored since 1979, and it has 

been shown that pooling works across different demand distribution types (Federgruen & Zipkin, 1984). 

At a high level, inventory pooling combines various demand streams together in order to minimize the 

effects of demand uncertainty as the pooled demand will help to balance high and low demand variations 

(Bimpikis & Markakis, n.d.).  

Graves and DeBodt show that it is possible to extend the traditional (R,Q) inventory model to a multi-

echelon supply chain with reasonable accuracy (DeBodt & Graves, 1983). Additionally, Axsäter shows 

that, for multi-echelon supply chains with low demand, it is suitable to apply continuous review policies as 

opposed to needing to use a periodic review policy for high demand items (Axsäter, 1993). 

Multi-echelon systems do not reduce the average demand of its constituent FCs. If the system needed 10 

parts per week, it will still use 10 parts per week after nodal warehousing is introduced. As such, weekly 

consumption of Cycle Stock, which is defined through demand levels, are not affected by pooling. 

The benefit of pooling comes from reductions in demand variability which reduces Safety Stock levels. 

Safety stocks at an FC-level drop due to a lead-time reduction. At a systems level, safety stock reductions 

https://www.sciencedirect.com/science/article/pii/S0927050705801847#!
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occur by combining variations. Assume that there are three sites, each with a part with a standard deviation 

of 5. Using the formula above, the “combined” standard deviation is 8.66 (as opposed to the total standard 

deviation of 15 if they were kept separate). This almost halves the amount of safety stock that need to be 

held within the network to cover for demand fluctuations.  
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3. Methodology 

This chapter details the research expectations of this project, the steps required for the data analysis and 

inventory model development, the risk-pooling methodologies, and the various considerations that went 

into improving and selecting the final model.  

 

3.1. Research Hypothesis 

As failures can occur at any time, there is much uncertainty surrounding the rate of spare part consumption. 

This is one of the major factors that complicates spare parts stocking levels at Amazon FCs. Given 

Amazon’s desire for 100% uptime on MHE, FCs must ensure they have sufficient spare parts on-hand at 

any given time. Unsurprisingly, this could result in many FCs holding more parts than required. This study 

expects that inventory levels across the FC network can be optimized in two ways.  

First, historical data on parts consumption can be used to advise stocking quantities. The EAM system has 

access to part data (e.g. price, lead times etc.) and demand profiles for each part over the last five years. 

The demand profiles can be used to determine an expected mean and standard deviation for the consumption 

of each part over a given period of time. These parameters can be used alongside the available part data to 

determine an optimal stocking quantity for each part through an inventory model, such as the (R,Q) model 

described in Chapter 2.  

The second way is through risk-pooling across sites through a multi-echelon supply chain to minimize 

demand variations across the network. At present, all FCs individually manage their inventories with 

minimal sharing between sites. This exposes every FC to high variability in week-to-week part 

consumption. These demand fluctuations result in sites needing to stock enough parts to deal with weeks 

of high part consumption, even when those weeks of high demand do not happen often. A central warehouse 

for risk-pooling will normalize weekly demand across the entire network, and should result in lower 

carrying volumes of spare parts.  



22 

 

The central warehouse should stock all the required spared, and FCs can order parts directly from the central 

hub. This will dramatically shorten lead times for FCs to a matter of days. As shown by the equation for 

the reorder point, a shorter lead time will lower the quantity of parts that each site has to hold.  

𝐶𝑦𝑐𝑙𝑒 𝑆𝑡𝑜𝑐𝑘 [𝑃𝑎𝑟𝑡𝑠] = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟 𝑇𝑖𝑚𝑒 (𝜇) [
𝑃𝑎𝑟𝑡𝑠

𝑇𝑖𝑚𝑒
] ∗ 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 [𝑇𝑖𝑚𝑒] 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 [𝑃𝑎𝑟𝑡𝑠] = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝜎) [
𝑃𝑎𝑟𝑡𝑠

√𝑇𝑖𝑚𝑒
] ∗ √𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 [𝑇𝑖𝑚𝑒] ∗ 𝑆𝑎𝑓𝑒𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 

The network as a whole does not benefit from the shorter lead time (as the central hub still has to order 

from suppliers with the same four to six week lead time), but benefits from pooled demand as combined 

variance/standard deviation is lower than the sum of its parts as shown below:  

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √∑(𝜎1
2 + 𝜎2

2 … + 𝜎𝑛
2)

𝑛

𝑖=1

 

Intuitively, this can be understood as a higher week of consumption in one site will, when spread over 

hundreds of sites, be balanced out by a week of lower consumption in a different site. This will lower the 

required safety stock that needs to be held across the network. Note that the cycle stock (i.e. the amount 

that is expected to be consumed every week) is not affected by this change. There is also a possibility that 

centralized stocking and ordering will provide Amazon will more market power to negotiate shorter lead 

times with suppliers, but we assume its effect to be zero for the purposes of this study. 

 

3.2. Data Analysis 

The EAM data forms the foundation upon which the rest of the project is built. Although a large amount of 

information is available on Amazon’s servers, not all the information is relevant. Accordingly, any 
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necessary data must first be identified, before then extracting the data from Amazon’s servers through SQL 

queries. The accuracy/completeness of these queries must then be validated to ensure that  

As much of the data on EAM was filled in manually, there is a non-zero possibility of inaccuracies in the 

data. The data thus has to be filtered to determine what can be used, and what has to be excluded from the 

study. Due to the size of the data sets used, it was not possible to validate the data at an individual level. 

Issues were identified by trending and aggregating data, which highlighted areas that needed further 

investigation. For example, parts that were returned late resulted in choppy data that skewed weekly 

consumption numbers.  

These data trends provided valuable insights into not only data inaccuracies, but also key areas for 

improvement. For example, there were specific part types that accounted for a large proportion of weekly 

demand, and warranted special attention and focus. However, for data privacy reasons, the results from this 

section are not explored as part of this thesis as they do not provide any general learnings. Instead, they 

formed part of the internal recommendations that were made available Amazon through this thesis. 

Finally, in order to maximize the applications for this study, data that was missing from EAM was estimated 

where possible. Only parameters that could be ascertained with a high degree of confidence (e.g. FCs may 

not have a price assigned to a part, but the part’s price is known across the network) was included in the 

study. 

 

3.3. Model Development 

Once all of the data is verified and made available, it is possible to then fit the parameters for every part 

into an inventory model. The (R,Q) model was chosen to establish a specific inventory policy for every part 

in FCs due to its ease of use and continuous review period. First, the study considers how an application of 

the (R,Q) inventory model will affect inventory levels without the use of risk-pooling. This will enable 

effective evaluation of the impacts of applying an inventory policy by comparing the new inventory 
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numbers to the current state. Additionally, this will also establish a baseline to evaluate the impacts of risk-

pooling and whether it is worth pursuing. For example, if risk-pooling only reduces inventory levels by 2%, 

it may not be worth the capital and effort required to set up the multi-echelon model. 

Once the baseline (R,Q) model is established, it is possible to explore other inventory models and perform 

sensitivity analyses to identify key parameters that affect the overall inventory policy and where the biggest 

rooms for improvements are. Again, for data privacy reasons, the results from this section are not included 

in this paper as they do not provide any general learnings. 

The final step involves the inclusion of risk-pooling into the overall network through a multi-echelon system 

(also called nodal warehousing system in this thesis) that lowers inventory levels in the system by pooling 

variability. The key outcomes desired from this phase of the project was a determination of the number of 

nodal warehouses to be used, as well as the locations of those warehouses.  

A singular nodal warehouse will “pool” the most parts together, and should result in a lower inventory 

level. However, these gains could be undermined by longer lead times to FCs (a singular warehouse would 

increase the net distance between hubs and FCs) and/or higher shipping costs. For the purposes of this 

study, it is assumed that the shipping cost from suppliers to the hub is equivalent to existing shipping costs. 

As such, any incremental shipping cost will be the result of the extra shipping leg between the hub(s) and 

the FCs.  

First, potential hub locations have to be identified, and the distance between those hub locations and FCs 

have to be mapped (to accurately predict shipping costs and lead times). Next, the demand parameters for 

each FC/hub need to be determined. In multi-echelon inventory, each FC is considered a separate entity. 

Fortunately, the (R,Q) model also applies to multi-echelon systems. The only difference is that the hub’s 

inventory is not simply the physical inventory on-site, but also includes all inventory downstream of it. This 

formula is applied to each part to ascertain the overall network inventory level for every part: 

𝐻𝑢𝑏 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐿𝑒𝑣𝑒𝑙 =  𝑃𝑎𝑟𝑡𝑠 𝑎𝑡 𝐻𝑢𝑏 + ∑ 𝑃𝑎𝑟𝑡𝑠 𝑎𝑡 𝐹𝐶𝑠 + ∑ 𝑃𝑎𝑟𝑡𝑠 𝑖𝑛 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑡𝑜 𝐹𝐶𝑠 
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For example, if a hub has one motor on its shelves, and it supports two sites, each holding one motor, the 

inventory level of the hub is three motors. It is this combined inventory that triggers the Reorder Point. 

The lead time for the hub, for the purposes of (R,Q) model implementation, is given by the maximum 

amount of time it takes to get from a supplier to an FC (through the hub): 

𝐻𝑢𝑏 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 = 𝑇𝑖𝑚𝑒 𝑓𝑟𝑜𝑚 𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑡𝑜 𝐻𝑢𝑏 + max (𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒ℎ𝑢𝑏−𝑡𝑜−𝐹𝐶)  

Essentially, the hub and its FCs are treated as one “giant site” with the combined demands of all its 

constituent FCs. For example, assume a hub supports two FCs, each requiring one part a week. Assume 

also that it takes four weeks for a part to get from supplier to the hub, and it takes one week to go from the 

Hub to the FCs. This is the same as one giant site that uses two parts a week, with a lead time of five weeks.  

Demand profiles are treated in a similar way, except the hub has no demand of its own. Pooled demand 

parameters are calculated as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 𝐷𝑒𝑚𝑎𝑛𝑑 =  ∑ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑 𝑜𝑓 𝑃𝑎𝑟𝑡 𝑎𝑡 𝐹𝐶𝑛

𝐴𝑙𝑙 𝐹𝐶𝑠

𝑛=1

 

𝑆𝑦𝑠𝑡𝑒𝑚 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √ ∑ (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑃𝑎𝑟𝑡 𝑎𝑡 𝐹𝐶𝑛)2

𝐴𝑙𝑙 𝐹𝐶𝑠

𝑛=1

 

These parameters allow for the (R,Q) model to be applied to every possible hub configuration (both location 

and quantity) to identify the best configuration. As nodal warehousing will increase shipping costs (due to 

additional shipping between the central warehouse and the FCs) but reduce inventory volumes, the optimal 

solution would be defined by the most significant reduction in overall cost. 
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3.4. Summary 

Inventory models can provide guidance on inventory stocking policies at an individual FC level. In the 

particular case of Amazon, the (R,Q) model was chosen due to its continuous review period and easy 

applicability. After the (R,Q) model is applied to each FC, the entire network can be further optimized 

through risk-pooling, which can further reduce inventory levels by reducing overall demand variability 

across different sites.  
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4. Data Breakdown and Analysis 

As shown in Chapter 3, a large amount of data is required to apply the required models. This chapter details 

how that data was managed as part of this thesis. It explores the available data from EAM, how missing 

parameters were estimated based on available information, and how data accuracy was improved through 

systemic elimination of outliers. It then looks at how the final dataset can be aggregated and used to draw 

further conclusions regarding the overall state of the supply chain. 

 

4.1. Current State 

The bulk of the data used for this project was extracted from Amazon’s Enterprise Asset Management 

(EAM) software which captures most of the information regarding Amazon’s spare parts. However, the 

data on EAM is not populated automatically, and instead relies on EAM admins to manually input most 

parameters (e.g. price of part, quantity purchased/consumed etc.) In the past, EAM served as a platform for 

tracking data, but this data was not always utilized. As such, there was no incentive for EAM admins to 

ensure 100% data accuracy on EAM. This has resulted in some parts not having all the data required for 

further analysis (e.g. price, lead time, usage data etc.) and other parts having inaccuracies within the data 

(e.g. prices may be missing a zero).  

Data inaccuracies were a larger concern that missing data as any inaccuracy could result in significant 

deviations from the ideal inventory policy for any given part. For example, if the price of a part were $10, 

but was input into EAM as $100 by accident, that could result in dramatically lower stocking quantities due 

to the higher price of the part. However, as there were millions of data points, it was not feasible to manually 

inspect each data point to identify problematic data. Instead, data was aggregated and trended to identify 

outliers, which could then be manually inspected and removed if necessary.  

The remainder of this chapter details the data that was available, and how the above steps were achieved.  
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4.1.1. Available Data 

On top of having part-specific data (e.g. price), EAM also records every instance where a spare part is used 

within any FC. Although usage data for part consumption was available on a daily level, it was decided that 

data on such a granular level was unwieldly and unnecessarily detailed for the analysis that this project had 

to perform. Instead, data was compressed into weekly consumption levels for better interpretability and to 

minimize the impact of potential outliers by lumping data together. For example, if a site (e.g. BFI4) were 

to use one part on Monday, and two parts on Thursday of a given week, the system would record BFI4 as 

having used three of those parts in that week.  

The table below shows the most relevant information that was extracted from EAM through SQL queries 

and how they were important to the overall model development process.  

Parameter Description 

Part Number Every part has a unique part number that identifies the part. This number 

is consistent across sites and allows for aggregation across sites.   

Site Parts are used across sites and it is important to identify where the data is 

coming from (sites will have different prices/consumptions for each part). 

Quantity Consumed This shows the number of each part consumed at each site for any given 

week. Each entry is tied to a part number and a site.  

 

Figure 4.1: Example of part consumption in various sites in 1st week of 2014 
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First Sighted Date This is the date the part was first sighted within the system and is necessary 

to accurately calculate the weekly average demand for a part.  

𝑊𝑒𝑒𝑘𝑙𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
∑ 𝑊𝑒𝑒𝑘𝑙𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝑊𝑒𝑒𝑘𝑠 𝑖𝑛 𝑆𝑦𝑠𝑡𝑒𝑚
 

 

For example, assume the table above shows the weekly demand for a part. 

If the demand is calculated as is, its demand would be 0.4 parts/week. 

However, if it is known that the part entered the system in Week 3, its 

average demand would be 0.66/week. 

Store Min/Max Level and 

Current Quantity in Store 

This shows the current min/max levels for every part in each site. This, 

together with the current quantity, is required for benchmarking the 

efficacy of the proposed inventory policy/pooling methodologies. 

Lead Time / Avg. Price The average lead time and price is also available for any given part at a 

specific site. This is again required for quantifying proposed changes, but 

also required as a key parameter in applying the (R,Q) model.  

Criticality The criticality of a part ranges from 1 to 3, and indicates how important a 

part is to a site (1 being the highest) and is similar to the A-B-C 

classification that Silver proposes for part prioritization. 

Table 4.1: Parameters from SQL 

 

4.2. Estimating Missing Data 

Inventory models require specific inputs to generate results. For example, the (R,Q) model requires several 

parameters such as: 
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Usage data: Mean and standard deviation build a demand profile for the part. 

Price: Affects EOQ and allows for quantification of savings 

Lead Time: Dictates how much stock needs to be kept on hand (Cycle stock). 

Criticality: Determines required service level for the part.  

Any missing parameter would result in the model not being able to generate an optimal inventory stocking 

level for the part. Additionally, inaccuracies and missing data prevent the inventory model from being 

applies to all parts within the system. At present, only 57% of parts (in total monetary value) have sufficient 

data to allow for an implementation of an inventory model.  

The following methods were employed to estimate the necessary parameters (where possible) and only 

parameters that could be estimated with a sufficient level of confidence were included within the study. 

This was able to improve the total parts included in the study from 57% to 67%, which still excluded 

approximately 33% of parts (in total monetary value). However, estimating parameters for the remaining 

parts could result in inaccurate values that would invalidate the entire model.  

Although EAM provides each part in each site with its own parameters, a “common” parameter for each 

part has to be established for pooling purposes (i.e. a part must have one price within the system when 

pooled as opposed to having an individual price for each site). As the final goal of this project involves 

pooling, it makes sense to establish this common parameter and, if there is sufficient confidence in the 

“common” parameter, to apply that common parameter as the estimated data.  

Criticality 

Criticality values define the required service value for the inventory model. Due to the potential 

consequences of stockouts, if no parts within the network have an assigned criticality, the criticality for that 

part is assumed to be 1 (the highest criticality). 
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All parts take on the highest criticality assigned to the part across all sites. It is acknowledged that this may 

be overly conservative as sites with ten processing lines may have a low criticality for a part, whereas sites 

with only two lines may have the exact same part assigned a high criticality. However, due to the high 

service level requirements, this was chosen as the best compromise. 

Lead Time 

Lead times directly affect the inventory that has to be kept on hand due to its direct relationship with cycle 

stock. It is assumed that the bulk of the lead time comes from the manufacturer/supplier and not due to 

shipping. As such, for any given part, it is assumed that lead times will be fairly similar between sites.  

All lead times of 0 are assumed to be missing data and will require estimation. An average is taken of all 

parts with non-zero lead time data. However, once an average is found, any parts with a lead time of +/- 

1.282 SDs away from the mean is removed from the data (to eliminate potential outlier data), and a new 

average calculated. This mean is taken as the estimated lead time for that part and applied to all parts across 

all sites. In the event that there is no way of estimating a lead time for the part, it is assumed to be 4 weeks 

– the lead time for the vast majority of parts as shown from the distribution of parts below. 

 

Figure 4.2: Lead Time Distribution for Parts 

Price 

Prices affect the optimal ordering quantity (a cheaper price would result in a higher EOQ) and are vital for 

quantifying results. As parts are secured from different suppliers, parts will have different prices within the 
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system. Additionally, as these prices are input manually, they are also prone to errors (e.g. a $400 part may 

be input as $40,000) which could greatly skew recommendations. This was the area with the highest 

variation and risk of inaccuracies.  

A common price, established through determining a mean/median price, helps to mitigate many of these 

problems. As before, it is assumed that although there are variations, the price for any given part is relatively 

similar across sites. Missing prices were estimated in three ways. These are presented based below in 

decreasing order of priority (i.e. the model will try to estimate prices using method 1 first when it encounters 

a missing price): 

1) Preferred Supplier’s Price of Part (within EAM) 

2) Average price of equivalent parts in other sites 

3) Average price of that particular part class (e.g. roller) 

Once all parts have an estimated price, the model identifies a common price for each part. As before, all 

prices of 0 are assumed to be missing data. At this point, the model then identifies the mean and median 

price for each part based on the remaining price data.  

The model then overwrites each part with the “common” price – either the mean or the median price for 

each part. These data points are presented below. Pre-consolidation refers to the sum of prices before the 

prices were overwritten and is adjusted to be $200 million for privacy reasons. The median and mean prices 

were also adjusted accordingly, keeping the ratios constant. 

Configuration Total Price of all Parts Ratio to Pre-Consolidation 

Pre-Consolidation $200,000,000 1 

Median $206,990,387 1.035 

Mean $231,333,947 1.157 

Table 4.2: Median vs Mean Price 

In both cases, the median and mean both report higher prices than the pre-consolidation total. This suggests 

that many parts have under-reported prices within the system. An aggregation of the data shows many parts 
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have a price of $1, which is not unexpected given that the recorded price within EAM used to be of no 

importance to the overall ordering process. 

It is also worth noting that the mean prices are much higher than median prices, which suggest the presence 

of large outlier prices skewing the data upwards (as opposed to median prices were effectively eliminates 

larger outliers). Although the specific data cannot be shared, it is worth noting that the number of parts that 

had heavily under-reported prices were consistent across both the mean and median price consolidation 

methods. 

In further support of price consolidation, there were a significant number of parts whose individual prices 

were significantly higher/lower than the mean/median price. For example, approximately 1,500 parts had a 

reported cost than was <10% of the mean cost, and approximately 400 parts had a reported cost that was 

10,000% higher than the median cost. This highlights the variability in price and why consolidation is 

required for comparison purposes (i.e. It is not realistic for one site to buy a part for $210, whereas another 

site purchases the same part for $10).  

Based on the findings from this analysis, the median price was used as the “standard” price. It was found 

that most parts were accurately reported (with most actual prices ranging between ±10% of the median), 

but outliers were typically more than an order of magnitude off. As such, the median was used as it remains 

true to the pre-adjustment value, but eliminates outlier values (e.g. $1 parts or overly expensive parts) that 

would skew results in mean-based reporting.  

Usage Data 

Usage data is exceptionally important as it provides a demand profile for each part and determines how 

much inventory needs to be kept on-hand. Due to the importance of this data, average demands and standard 

deviations are not estimated. If a part does not have usage data, it is excluded from the analysis. 
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4.3. Improving Data Accuracy – Returns and Outliers 

In order to further improve the accuracy of the model, it was necessary to address issues that could skew 

the results. Trending of data points identified two areas of concern– extreme outliers and returned parts.  

Outliers are especially concerning due to the very sparse demand data for most parts. Unexpectedly, most 

spares are unused from week-to-week and weekly demand for most part has a mode of zero. 

 

Figure 4.3: Sample Week-By-Week Demand for 3 Parts 

The sparse demand profiles exacerbate the impact of outliers in demand data, particularly when the part has 

not been on the shelves for very long. Additionally, this means that average weekly demand numbers do 

not necessarily reflect the actual weekly consumption required when parts are actually used.   

Returns 

The data management software allows for unused spare parts to be “returned” to the available spares after 

it has been checked out. For example, if three parts were taken out for a job, but only two were used, the 

last part can be returned upon completion of the job. Any returns to the system are input as negative uses 

which replenishes inventory levels for that part as shown below (item receivals are recorded separately, so 

there is no risk of confusion). 

 

Figure 4.4: Example of Negative Usage Data for Part 10022 in Site ABE2 

Unfortunately, as seen above, these returns may not be identified until a few weeks later. If parts are checked 

out but returned in a different week, this will result in incorrect demand reporting. In order to address this, 

it was assumed that returns can only occur after a part is checked out. As such, all negative usages were 
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assumed to be cancelled out by previous positive usages (starting with the most recently checked out part 

and working backwards). For example, in the example above, the two negative usages in the 36th week of 

2015 would cancel out the two parts “used” in the 34th week.  

In order to prevent incorrect “return” entries from corrupting the data, it is assumed that if a return is not 

fully removed after four weeks of “backtracking”, there was a mistake in the quantity associated with the 

return, and any remaining amount to be returned is automatically deleted (with no other usages being 

deleted). This is able to correct the data to produce the cost chart as shown to the right below.  

 

Figure 4.5: Consumption of Parts by Cost (Original vs Smoothed) 

Although details on axis ticks were removed for data privacy reasons, it can be assumed that the lowest tick 

on the y axis corresponds to $0 total cost. Notice that the two negative spikes in ~weeks 38 and 41 have 

now been removed. Although this resulted in a negative spike in ~week 3, that negative spike was later 

found to be due to a negative price associated with a part in EAM (which was then removed from the 

dataset). The next section addresses how these outliers were identified and addressed. 

Outliers 

As highlighted by the previous section on estimating parameters, outliers present a significant risk to the 

accuracy of the model. This is exacerbated by the sparse demand data for most parts. Due to the size of the 

data (>1M data points), it was not feasible to investigate each data point. However, large outliers were 

identified by plotting the weekly consumption for parts and identifying large spikes in the data.  
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Plotting the weekly cost of parts consumption provided a way to identify abnormally high demand and high 

prices within the data as shown in the plots below. The plot on the left shows the original data. Each extreme 

point was individually and EAM admins were consulted when cases could not be immediately ruled out. 

For example, in the chart to the left, ~Week 40 of 2014 and ~Week 45 of 2016 show large spikes that 

warranted further attention. All unrealistic data points were removed which resulted in a much smoother 

chart as shown in the plot to the right, although spikes still do exist as part of normal operations.  

 

Figure 4.6: Consumption of Parts by Cost (Before / After Adjustment) 

Additionally, plots were also created for total parts consumed per week. This ensured that parts with high 

demand (but inaccurately low prices) were not missed. For example, the plot below helped to identify a 

large spike in demand on the 30th week of 2017 that would have been missed by evaluating cost alone.  

 

Figure 4.7:Weekly Consumption Parts (by Number of Parts) 



37 

 

4.4. Data Analysis 

The above sections highlighted the data that was extracted from EAM, how missing data was estimated, 

and how outliers were identified and removed from the dataset. As mentioned in Section 4.1.1, the weekly 

demand statistics (average demand and standard deviation) could be calculated based on the consumption 

numbers and the known “first sighted” date of the part.  

The dataset provides all the parameters needed to breakdown the data and identify key areas for 

improvement and answer high level questions that would impact the overall strategy regarding inventory. 

 

4.4.1. Aggregation of Data 

Although the analyses yielded useful data for prioritizing the inventory optimization methodology, they 

cannot be shared due to information that is confidential to Amazon. A small number of the data trends are 

presented below as examples to provide guidance for similar studies.  

For example, Figure 4.8 below shows how the total cost and number of parts vary as the price of the parts 

increase. In this example, the data shows that the most expensive parts make up the largest proportion of 

cost, but make up a small proportion of the number of parts kept on-hand. Consequently, a larger focus was 

placed on ensuring that the more expensive marks were prioritized in the study.  

 

 

Figure 4.8: Price vs Total Cost / # of Parts 



38 

 

4.4.2. Managing Peak Seasons 

Amazon faces two peak seasons throughout the year – Prime Day and the Christmas holidays. These two 

peak periods typically result in higher traffic through FCs. One concern was the need to ensure higher 

reliability during this period, and that there may be an uptick in parts usage during and prior to peak seasons 

(whether due to preventative maintenance, or higher loads causing faster spare consumption). If there is a 

significant increase in part consumption, a separate inventory model (with higher quantities of spares) may 

be required for certain periods of the year to ensure an adequate service level during peak periods.  

This hypothesis was disproved by plotting an “adjusted” consumption chart that scales the parts 

consumption in each year so that the weekly demands can be better compared between years. Figure 4.9 

suggests appears to be a peak in late February/early March, but when this peak was further examined in an 

unadjusted chart, the spike was found to be not significantly different enough to warrant a separate 

inventory policy.  

 

Figure 4.9: Scale Adjusted Consumption Plots 

The expectation is that any gains from implementing two separate models would be small enough that they 

are offset by the complications of managing two inventory models. Based on this, this paper did not further 

investigate the applications of having different inventory policies for different time periods as there was 

insufficient evidence that peak periods exhibited higher than average demand. 

 



39 

 

4.5. Summary 

In order for established inventory models, such as the (R,Q) model, to be implemented, a large amount of 

data is required. In particular, the parameters of criticality, price, lead time and usage data are especially 

important. Although EAM makes a large amount of this data available, there were still instances where that 

data was not available. Efforts were made to estimate these parameters where possible, but is not always 

possible. For example, any attempts at estimating usage data would only make the data less accurate. 

As data accuracy is exceptionally important in ensuring that the proposed inventory policy is fit for use, 

data was aggregated to identify any potential outliers which could then be manually verified and eliminated. 

Finally, the aggregation of data also allowed for big picture analysis of the data, and identified that demand 

for spare parts was largely random and did not follow any seasonal trends. This was an important insight 

as it meant that a separate inventory policy did not have to be developed for Amazon’s two peak periods 

throughout the year.  
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5. Inventory Model Development 

Amazon’s current inventory management system does not make full use of the data that is available. As 

such, a single-stage inventory model is still likely to out-perform Amazon’s current system. The proposed 

(R,Q) inventory model was chosen on the assumption that Amazon’s supply chain involves an extended 

time horizon (i.e. multi-period model) and that parts will be reordered on a regular basis such that a 

continuous review period applies.  

This chapter details how the (R,Q) model is applied within the Amazon context. Additionally, it goes into 

further detail regarding the background of the (R,Q) model by exploring its two building blocks - the 

Newsvendor and EOQ models.  

 

5.1. Newsvendor Model 

The newsvendor model is a single-period inventory model that ensures enough inventory is held to meet a 

required service level over a certain period of time (typically the lead time of the part). At a high level, the 

newsvendor model is made up of Cycle Stock (the expected amount of inventory required) and Safety Stock 

(the additional inventory carries to account for variations in demand). 

The cycle stock and safety stock levels are a function of the various parameters that were determined in 

Chapter 4 and are shown below. 

𝐶𝑦𝑐𝑙𝑒 𝑆𝑡𝑜𝑐𝑘: 𝑓(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑚𝑎𝑛𝑑, 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒) 

𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘: 𝑓(𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑒𝑚𝑎𝑛𝑑, 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙, 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒) 

The consumption of spare parts may be hard to predict, but the statistical parameters determined before 

allow for the random variable to be modelled through a probability density function as shown in Figure 5.1 

below. The cycle stock is represented by cumulative distribution to the left of the mean (µ). The safety 

stock is some additional stock held on hand to account for the potential demand variation to the right of the 
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mean. This serves as a buffer for higher than expected demand, and the specific amount of inventory held 

as safety stock will depend on the required service level.  

The variable ‘k’ below represents the number of standard deviations from the mean required to hit the 

required service level. For example, a 95% service level will have a ‘k’ value of 1.65 (which corresponds 

to a cumulative distribution probability of 95%). The variable q* refers to the specific point on the 

distribution that results in the desired service level / cumulative probability.  

 

Figure 5.1:Newsvendor Diagram 

A traditional newsvendor model will determine the optimal ‘k’ value through the overage and underage 

model described in Chapter 2. However, due to Amazon’s strict MHE uptime requirements, the underage 

costs are considered to be significantly higher than the underage costs, and are not easily quantified.  

Although Amazon would prefer a service level of 100%, it should be noted that this is statistically 

impossible, and would require an infinite number of parts. Instead, the required service levels were 

manually selected based on the parts’ criticalities. It should be acknowledged that this was a deliberate 

decision that was made to optimize for uptime, but may come at a potentially higher cost (than if the 

overage/underage method were used).  
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Criticality Service Level k Score 

1 99.5% 2.58 

2 99% 2.33 

3 95% 1.65 

Table 5.1: Criticality to Service Level Mapping 

Based on this criticality, the amount of inventory for each part required on-hand can be calculated by 

applying the formula below based on each part’s individual parameters. 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 = 𝐶𝑦𝑐𝑙𝑒 𝑆𝑡𝑜𝑐𝑘 + 𝑆𝑎𝑓𝑒𝑡𝑦 𝑆𝑡𝑜𝑐𝑘 

𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 [𝑃𝑎𝑟𝑡𝑠]

= ( µ [
𝑃𝑎𝑟𝑡𝑠

𝑇𝑖𝑚𝑒
] ∗ 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 [𝑇𝑖𝑚𝑒]) + (𝑘 ∗ 𝜎 [

𝑃𝑎𝑟𝑡𝑠

𝑇𝑖𝑚𝑒
] ∗ √𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒  [𝑇𝑖𝑚𝑒]) 

As evidenced above, the Newsvendor model requires an underlying distribution to build its recommended 

inventory (otherwise ‘k’ and σ do not exist). Although Figure 5.1 above uses a normal distribution for 

illustrative purposes, the stochastic nature of spare parts consumption may not follow a normal distribution.  

 

5.1.1. Potential Distribution Types 

There are a number of distribution types typically used for Newsvendor models. Examples include the 

Normal distribution, the Poisson distribution, and the Negative Binomial distribution (but is not limited to 

these). The following sections details the benefits and complications that arise from each distribution type 

to establish a baseline for selecting a distribution type.  

Normal Distribution 

The Normal distribution is one of the most preferred distribution types due to its versatility and ease of 

application. The cumulative distribution for Normal distributions is given by  

𝑞∗ =  𝜇 + 𝑘𝜎 
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Where k represents the number of standard deviations away from the mean required to achieve the desired 

cumulative probability.  

The Normal distribution is a continuous distribution that is bounded by [-∞,∞]. This results in several 

problems when applying the Normal distribution to inventory.  

First, inventory is usually best modelled through discrete distributions (with count variables). However, 

this can be mitigated by rounding all partial inventories upwards (to be conservative). Additionally, 

Amazon FCs often use “partial” parts for certain consumables (e.g. length of conveyor belt) which discrete 

distributions will not be able to adequately deal with.  

The second point of consideration is that inventory cannot be negative (i.e. it should be bounded by [0,∞]). 

However, by definition, average demand (µ) for a part must always be greater than zero which means that 

negative values will always fall to the left of the mean. As Amazon’s service levels (>95%) will always 

result in the required inventory being to the right of the mean, any negative values on the distribution curve 

can effectively be ignored.  

Finally, although the Normal distribution may not perfectly map to the consumptions’ distributions, the 

large number of data entries enables the Central Limit Theorem to hold, which supports the applications of 

a Normal distribution. 

Poisson Distribution 

The Poisson distribution is a discrete distribution that typically works well for count data (i.e. non-negative 

integer data {0, 1, 2…}). The Poisson distribution is described by a single parameter (λ) where λ > 0. By 

definition, the mean of a Poisson distribution is equal to its variance: 

𝑌 ~ 𝑃(λ = x) =
𝑒−λλx

𝑥!
  

𝐸(Y) = 𝑉𝑎𝑟(Y) 



44 

 

Additionally, the Poisson distribution models the sparse demand profile of spare parts quite well as it is 

very right-skewed with many data points at 0. Given that Poisson distributions are discrete distributions, 

the cumulative probability function is: 

𝑃(𝑋 ≤ 𝑘) =  ∑
𝑒−λλi

𝑖!
 

𝑘

𝑖=0

 

As such, q*, for a given service level (𝛼) is such that: 

∑
𝑒−λλi

𝑖!
 

𝑞∗−1

𝑖=0

≤  𝛼 ≤  ∑
𝑒−λλi

𝑖!
 

𝑞∗

𝑖=0

 

The Poisson is an especially good approximation when the data is under-dispersed (when the mean is less 

than, or equal to, the variance (i.e. (E(Y) ≤ Var(Y))). When the data is over-dispersed (i.e. (E(Y) > Var(Y)), 

the Negative Binomial Distribution becomes a better approximation. Based on the data available, there is a 

fairly even mix of over-dispersed and under-dispersed data, which makes it difficult to select between the 

two. 

 Count (n = 100,000+) 

E(Y) < Var(Y) 27.2% 

E(Y) = Var(Y) 13.3% 

E(Y) > Var(Y) 59.5% 

Table 5.2: Mean vs Variance Distribution of Dataset 

 

Negative Binomial Distribution 

The Negative Binomial Distribution is similar to the Poisson distribution, but works better with over-

dispersed data. Unfortunately, the data is a fairly balanced mix of over-dispersed and under-dispersed data 

(which would be better served by a Poisson distribution). As such, there is no clear way of choosing one 

distribution over the other.  
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The Negative Binomial distribution is typically presented as follows: 

𝑋~𝑁𝐵(𝑟, 𝑝) 

Where r and p are the parameters that define the distribution. This thesis will not discuss the details of this 

distribution, but it should be noted that unlike the Normal and Poisson distributions, the parameters r and p 

are not defined by the statistical mean and variance of the parts’ demands. As such, any application of the 

negative binomial distribution will require additional time to compute the required parameters.  

Empirical Distribution (Non-Parametrical)  

The Empirical distribution is a non-parametrical distribution and is the preferred distribution given the 

available data as it does not attempt to reduce the distribution into several parameters. Instead, it simply 

uses the real, historical data to create a distribution model. This maintains the integrity of the available data 

and avoids overfitting which could result from forcing a distribution. 

However, due to the relative size of the dataset, the empirical distribution cannot accurately reach the 

required service level of 99.5%. For example, 5 years of weekly data is approximately 260 data points. This 

would simply ignore the highest 2-3 data points to reach 99.5% data coverage, which is problematic as most 

parts are not used that regularly. Ignoring the result in the highest 2-3 data points would result in the large 

number of zeros being over-indexed within the distribution, and may even report a demand average of 0.  

As such, although the Empirical distribution is the preferred distribution for data fidelity, it cannot be 

applied to Amazon’s FCs until more data points are available.  

Best-Fit Distribution 

Rather than applying a blanket distribution to cover all parts, it is also possible to use computational 

methods to identify the best-fit distribution for every single part. This would ensure that the distribution 

chosen to represent the demand profile of the part. However, since there are tens of thousands of parts, this 

is an exceptionally time-consuming process if the simulation has to be run multiple times. 
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Although a best-fit distribution would provide the best possible outcome, it may not be feasible in an 

operational environment where the simulation will have to recalculate min/max levels on a regular basis 

(e.g. when a new part is added, when suppliers change lead times etc.) when there are potentially long 

computational times involved.   

 

5.1.2. Distribution Selection 

In order to establish an initial baseline (and since time was not a constraint), best-fit distributions were 

identified for every part by running each part’s demand profile through MATLAB. The table below shows 

how often a distribution type was selected as the best-fit distribution.  

Distribution Type Proportion of Parts 

Normal 0.03% 

Exponential 25.51% 

Gamma 10.01% 

Chi 15.95% 

Exponential-Normal 48.51% 

Table 5.3: Best-Fit Distribution Types 

As highlighted in section 5.1.1, being able to apply the normal distribution is ideal due to the ease of 

identifying the necessary parameters required for its implementation. As seen from the table above, very 

few parts are optimally represented by the Normal distribution, and the exponential-normal distribution 

appears to dominant. However, this table does not account for how far off the normal distribution is from 

the optimal exponential-normal distribution.  

In order to test the adequacy of the various distributions (Normal, Binomial and Best-Fit), an inventory 

policy was developed using the (R,Q) model (see chapter 5.3) with each of the above distributions applied 

to all parts through the Newsvendor model. The table below shows the ratios of the normal and binomial 

distributions against the best-fit distribution with respect to the total value of parts when the (R,Q) model 

is implemented (absolute values not provided for data privacy).  
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Underlying Distribution Ratio 

Best Fit 1 

Normal 1.012 

Binomial 0.853 

Table 5.4: Performance of Distributions vs Best-Fit 

As the goal of this exercise is not to minimize the total value, but rather to find a distribution that best 

approximates (and is equal to) the best-fit distribution, it becomes clear that the binomial distribution under-

represents the overall data. Although the normal distribution may not be ideal for many parts, its 

performance is not too far from the best-fit distributions.  

As the input data is already inherently inaccurate, a difference of ~1.2% is within the allowable tolerance. 

Accordingly, a Normal distribution is assumed for all parts to allow for quick computations that are still 

relatively accurate.  

 

5.2. EOQ 

As described in Chapter 2, the EOQ aims to minimize the total costs associated with purchasing parts (the 

holding cost and the ordering cost). The EOQ quantity (Q) is given by: 

𝑄 [𝑃𝑎𝑟𝑡𝑠] = √
2 ∗ 𝐷𝑒𝑚𝑎𝑛𝑑 [

𝑃𝑎𝑟𝑡𝑠
𝑇𝑖𝑚𝑒 ] ∗  𝐹𝑖𝑥𝑒𝑑 𝑂𝑟𝑑𝑒𝑟𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 [$]

𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 [
$

𝑇𝑖𝑚𝑒 ∗ 𝑃𝑎𝑟𝑡] 
 

As it is not possible to order partial quantities, the EOQ has to be a minimum of 1. This identifies the 

optimal quantity that should be ordered at any given time.  

However, several scenarios within Amazon’s spares inventory make it possible to further refine this EOQ 

quantity by considering NPV savings. This is further described in chapter 5.2.1. 
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5.2.1. EOQ Optimizations 

Low part prices could typically result in high EOQs due to low holding costs. For example, the EOQ 

formula may order 200 weeks’ worth of inventory to minimize costs if fixed costs are significantly higher. 

However, this consumes capital and takes up space within the spares cage. As such, where the EOQ is 

significantly higher than the weekly demand, there is a potential to realize further NPV savings and free up 

space by limiting the amount of EOQ purchased at any point in time.  

One way of achieving this is by setting a “cap” to EOQ purchase orders based on reorder quantities where 

“tolerance” is the maximum number of reorder quantities (R) that a site should hold at any given time.  

𝑁𝑒𝑤 𝐸𝑂𝑄 = min (𝑄𝐸𝑂𝑄, 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 ∗ 𝑅) 

This essentially “caps” the inventory at a specific multiple of reorder quantities in order to lower the 

inventory on hand at any given time. Although this is no longer an “optimal” solution, it helps to reduce 

inventory levels when excessively high quantities are purchased.  

By definition of the EOQ, if the reorder quantity (Q) is reduced through this multiple, this would in higher 

shipping costs. The number of shipments per week for any given part is given by: 

𝐷𝑒𝑚𝑎𝑛𝑑

𝑄
= 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑊𝑒𝑒𝑘 

If a fixed cost of $10 per shipment is assumed (more details in Chapter 6), the shipping costs per year for 

that part comes to: 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡𝑠 =  
𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 ∗ 𝑊𝑒𝑒𝑘𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 ∗ 𝑊𝑒𝑒𝑘𝑠

𝑄
=  

10 ∗ µ ∗  52

𝑄
  

Note that since weekly demand is fixed, the only variable that affects the shipping costs is Q. As such, the 

change in annual shipping costs (from having a Q that differs from EOQ) can be calculated through: 

520µ

𝑄𝑛𝑒𝑤
−

520µ

𝑄𝐸𝑂𝑄
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=  
520µ ∗ 𝑄𝐸𝑂𝑄

𝑄𝑛𝑒𝑤𝑄𝐸𝑂𝑄
−

520µ ∗ 𝑄𝑛𝑒𝑤

𝑄𝑛𝑒𝑤𝑄𝐸𝑂𝑄
 

=
520µ ∗ (𝑄𝐸𝑂𝑄 − 𝑄𝑛𝑒𝑤)

𝑄𝑛𝑒𝑤𝑄𝐸𝑂𝑄
 

The financial impact of implementing this constraint are presented in the table below, along with the total 

number of parts that are taken off the shelves. The financial impact is presented as the NPV of shipping 

costs (based on Amazon’s cost of capital). Again, the data has been masked, but have been kept in the same 

relative orders of magnitude for the illustrative purposes. 

Tolerance (in R) Parts Off Shelf Additional Shipping Cost (NPV) 

4 500,000 $950,000 

8 250,000 $200,000 

12 175,000 $75,000 

16 120,000 $35,000 

Table 5.5: EOQ Constraints 

As shown in Table 5.5 above, as the tolerance increases, fewer parts are taken off the shelves (as the 

maximum allowable inventories are higher), and fewer additional shipments are required to replenish 

inventory levels. Figure 5.2 below shows the rate at which these two parameters (how many parts can be 

removed from shelves vs shipping cost) change as the tolerance varies. Note that the magnitude of the two 

lines are not comparable, but simply show the difference in the rate of change.  

  

Figure 5.2: Increase in Shipping Costs due to EOQ Constraint 
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However, this neglects the additional benefit of postponing purchase of parts. If parts are purchased later 

in the year, it would free up present day cashflows, which has associated NPV savings. The formula below 

shows how such an NPV calculation would be done, where P is the price of the part. 

𝑄𝑛𝑒𝑤 ∗ 𝑃

1
+

𝑄𝑛𝑒𝑤 ∗ 𝑃

1 +
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

52
∗ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙

+
𝑄𝑛𝑒𝑤 ∗ 𝑃

(1 +
𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

52
∗ 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙)

2 … 

The interval between purchases is: 

𝑄𝑛𝑒𝑤

𝐷
 

Accordingly, the total number of periods in the NPV calculation is given by: 

𝑄𝑜𝑙𝑑

𝑄𝑛𝑒𝑤
 

This provides a way of calculating the expected NPV savings alongside the additional shipping costs as 

demonstrated in Table 5.6 and Figure 5.3 below.  

Tolerance (Weeks) Parts Off Shelf Additional Shipping 

Cost (NPV) 

NPV Savings 

4 473,213 $922,083 $130,433 

8 258,510 $198,273 $47,342 

12 168,793 $73,509 $23,310 

16 120,453 $34,421 $13,201 

Table 5.6: EOQ Constraints: Shipping Costs vs NPV Savings 
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Figure 5.3:EOQ Constraints: Shipping Costs vs NPV Savings 

There are two additional savings that result from postponement of purchasing parts. First, there is an 

immediate reduction in parts, which can be considered a once-off, immediate cost savings (remember that 

inventory on hand is the reorder amount (R) and the reorder quantity (Q), so any reduction in Q reduces 

total inventory within the network). Additionally, as there are fewer parts in the network, this reduces 

overall holding costs.  

  

Figure 5.4:EOQ Constraints: Overall Cost Savings 
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All of these costs can be superimposed onto one graph as shown in Figure 5.5 below, such that negative 

costs represent savings. Accordingly, the optimal tolerance, from a cost perspective, to be approximately 

7 reorder quantities for every part. 

  

Figure 5.5: EOQ Constraints (Overall Savings) 

Naturally, every part will have a different tolerance. If each part were to have its optimal tolerance identified 

and applied as opposed to the blanket tolerance of 7 reorder quantities, this would result in an additional 

3% in savings. The added complexity of identifying the optimal tolerance and implementing it for hundreds 

of thousands of parts on a regular basis (as demand profiles change) was considered to be too time-

consuming for practical purposes for 3% savings.  

Accordingly, the tolerance for every part was taken to be 7 reorder quantities, and was only applied if it 

would result in net savings for that particular part.  

𝑁𝑒𝑤 𝐸𝑂𝑄 = min (𝑄𝐸𝑂𝑄, 7 ∗ 𝑅) 
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5.3. (R, Q) Inventory Policy 

The (R, Q) inventory policy builds upon the two building blocks of the Newsvendor model and the EOQ. 

As detailed in Chapter 2, the Reorder Point (R) is based upon the Newsvendor model to ensure enough 

inventory is kept on-hand to cover demand and its associated fluctuations, and the Reorder Quantity (Q) is 

based on the EOQ to minimize ordering costs.  

𝑅 = min(1, 𝜇 ∗ 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒 +  𝜎 ∗ 𝑘 ∗ √𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒)  

𝐸𝑂𝑄 = min (7 ∗ R, min (1, √
2 ∗ 𝜇 ∗ 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑂𝑟𝑑𝑒𝑟

𝑊𝑒𝑒𝑘𝑙𝑦 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡
)) 

Note that both R and Q have a minimum of 1. The reorder point needs to be a non-zero value due to 

Amazon’s desire to not enact a pull model for spare parts (to ensure maximum uptime). Additionally, the 

reorder quantity has to be non-zero to ensure that actual orders are placed. 

As found before, it is assumed that the normal distribution applies to every part. This greatly simplifies the 

calculation for k as the normal distribution is exceptionally well defined. Although it would be ideal to 

achieve a 100% service level for each part, this is not feasible as it would require an infinite number of parts 

to ensure perpetual uptime (statistically speaking).  

As such, the criticality of each part within the FC determines its required service level, and parts are stocked 

accordingly to meet that requirement using the Newsvendor model. 

Criticality Service Level k Score 

1 99.5% 2.58 

2 99% 2.33 

3 95% 1.65 

Table 5.7: Criticality to Service Level 
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The (R,Q) model then forms the baseline inventory policy upon which the rest of this study can be built. It 

is worth noting that, this (R, Q) inventory policy alone could be one phase of reducing inventory across the 

FCs as it will optimize all inventory levels. 

If the (R,Q) model proposes a decrease in inventory, this would serve our desired outcome. However, if the 

(R,Q) model proposes an increase in inventory (from current stocking levels), that would imply that the site 

currently does not stock enough parts to meet the desired service level for that part.  

The table below shows the results of how the proposed (R,Q) model performs against Amazon’s current 

spares inventory (Again, numbers have been masked, but kept around similar orders of magnitude).  

Required Change to 

Inventory 
# SKUs 

Change to Quantity 

of Parts 

Change to Total 

Value 

Decrease 

(Currently Over-Ordering) 
~50,000 ~500,000 parts 

~$50,000,000 

Reduction 

No Change ~50,000 N/A N/A 

Increase Levels 

(Currently Under-Ordering) 
~60,000 ~1,100,000 parts 

~$35,000,000 

Increase 

Table 5.8: Differences in Inventory Levels (Current Min/Max vs Proposed (R,Q) Model) 

Based on the table above, it appears that low-value parts were typically understocked, whereas FCs typically 

held a larger than required amount of high valued parts. Out of the entire NAFC network, only 1 site had 

>50% of its SKUs stocked at the optimal levels proposed by the (R,Q) model. This further highlights the 

arbitrary nature of Min/Max numbers and the need to move towards data-based inventory policies.  

 

5.4. Conclusion 

The (R,Q) model provides a way in which FCs can apply an inventory model to their spare parts. Successful 

implementation of the (R,Q) model could reduce total inventory costs across the entire FC network by 

approximately 10%. Although there are several ways in which this can be further refined, for example, by 

setting a cap on the amount of spare parts that can be purchased through the EOQ, there remains few other 
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opportunities to further reduce inventory levels without affecting day-to-day operations unless significant 

changes are made to suppliers and/or current maintenance programs.  

A multi-echelon supply chain presents an opportunity to further reduce inventory levels by a further 15%. 

The methodology for a multi-echelon supply chain is presented in the following chapter.   
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6. Multi-Echelon Inventory 

Multi-echelon inventory systems provide a way of further reducing inventory levels across the network by 

pooling sites together and reducing the overall variation in the system demand. This chapter explores the 

concept of multi-echelon systems and how it can be applied to Amazon’s FCs. In particular, this chapter 

develops methods to optimize the number and locations of centralized hubs required, as well as the 

frequency of delivery. The chapter closes by performing several sensitivity analyses to determine how the 

various levers can impact the efficacy of a multi-echelon system. 

 

6.1. Multi-Echelon Systems 

Once inventory levels have been optimized through an inventory policy, there are limited opportunities to 

further improve the current system due to lead time and service level constraints. A multi-echelon system 

(also known as nodal warehousing) introduces centralized “hubs” that sit in between the suppliers and the 

FCs, and serve as intermediate staging points that support FCs. In this system, the hubs hold their own 

inventory and order directly from suppliers, while FCs replenish used parts directly from the hubs.  

This system decreases inventory in two ways. First, FCs will receive parts from the hub in a matter of days 

(as opposed to weeks). This allows FCs to significantly reduce their inventory levels. Second, FCs no longer 

have to hold large amounts of “safety” stock to account for larger than expected surges in demand as nodal 

warehousing allows FCs to pool their usages. As more FCs are pooled together, usage peaks at one site are 

more likely to be balanced out by lower consumption at a different site (i.e. The more FCs a hub supports, 

the more it is protected from demand variability). This aggregation of demand variability shields the 

network from demand fluctuations and allows for lower inventory levels across the network.  

It is worth noting that not all parts should be stocked at the hub – FCs should still order some directly from 

suppliers. Although pooling inventory decreases inventory levels across the network, it adds an additional 

shipping leg into the supply chain. As such, inventory should only be pooled if the reduction in inventory 
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from pooling makes up for the increased shipping costs. For example, if there is insufficient variability in 

a part’s demand profile, or if a part is not widely used, the additional shipping costs from hub to FC may 

outweigh the reduction in inventory levels from pooling.  

Intuitively, regardless of whether the supply chain is single stage or multi-echelon, the demand from FCs 

does not change. Instead, any reduction in inventory is less capital that is held in inventory (and can be 

considered as an immediate saving). If the increase in shipping cost from implementing a multi-echelon 

network does not exceed this saving, then the multi-echelon network is worth pursuing.  

 

6.2. Facility Location Analysis 

The goal of this phase of the project was to identify the optimal number of hubs, and where those hubs 

should be located. The process of optimally placing a facility to minimize costs is a well-researched branch 

of operations research known as location analysis (or facility location problems). For the purposes of this 

study, there are no constraints and the facilities can be placed in any location. It is assumed that all facilities 

deployed for pooling inventory does not have a maximum capacity, making this an uncapacitated facility 

location problem. 

The main consideration is determining hub quantity/location is the balance between additional shipping 

costs versus lower inventory volumes. In order to determine the optimal hub parameters, virtual facilities 

were created in various pre-determined locations to test their efficacy in lowering inventory across the 

network. This would allow for calculations of potential savings across all identified locations. For 

simplicity, it is assumed that shipping cost is standardized based on distance. 

However, there are also other factors to consider such as real estate costs and labor costs. Fortunately, these 

costs do not have to be considered immediately as they do not influence the shipping vs. inventory reduction 

calculation. Instead, they can simply be added on at the end after total savings have been calculated.  
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As shipping accounts for a significant proportion of the operational cost for a multi-echelon system, the 

ideal site(s) would minimize the distance between the warehouse(s) and the FCs: 

min (∑|𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝐻𝑢𝑏 𝑡𝑜 𝐹𝐶|) 

Although this does not guarantee optimal savings, it will help to narrow down the list of sites to consider.  

 

6.2.1. Potential Hub Locations 

A wide range of potential hub locations were chosen with the goal of evaluating how location will impact 

overall shipping costs. Two methods were developed for determining potential hub locations: 

1) Randomized coordinates within each state; 

2) Nodes with a high concentration of FCs (e.g. 3+ FCs within 50 miles of each other). 

In order to ensure that the analysis was sufficiently thorough, all states were included in the study, even if 

they did not make intuitive sense (e.g. a hub in Alaska would be too far removed to serve as a proper hub, 

but was included in the study regardless).  

As the goal of this initial step was to identify general location trends, hubs could be placed at a relatively 

central point in each state. Although these centralized locations may not be the ideal position for the hub, 

they would provide the necessary benchmarking data to guide for further analysis. Detailed selection of hub 

location would be possible once optimal locations (i.e. states) were identified.  

As FC locations are available in longitude and latitude, hub locations were also similarly identified by their 

longitude and latitude (taken from https://developers.google.com/public-data/docs/canonical/states_csv). 

The table below shows examples of hub locations in five states.  

https://developers.google.com/public-data/docs/canonical/states_csv
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Figure 6.1: Selection of Potential Hub Locations 

 

6.2.2. Distance Calculations 

In order to calculate the shipping cost between the hub and FCs, the distance between the potential hub(s) 

and FCs were needed. As the longitudes and latitudes for potential hub locations were found in Section 

6.2.1, they could be mapped to the known FC locations. When testing network configurations that involved 

multiple hubs, FCs were supported by the hub that was closest to it. 

There are two available methods for computing distances: Vincenty’s formula and the Haversine formula. 

Vincenty is generally regarded as more accurate at estimating distances when compared to Haversine as it 

accounts for the Earth not being perfectly spherical. However, this accuracy results in Vincenty being more 

computationally intensive. Since precise measures are not yet required at this stage, the model calculates 

distance between hubs and FCs through the Haversine formula, which provides the straight-line distance 

between two sets of longitudes and latitudes.  

𝑑12 = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑃𝑜𝑖𝑛𝑡𝑠 1 𝑎𝑛𝑑 2 

𝑑12 = 2 ∗ 𝐸𝑎𝑟𝑡ℎ 𝑅𝑎𝑑𝑖𝑢𝑠 ∗ arcsin (√𝑠𝑖𝑛2 (
𝑙𝑎𝑡2 − 𝑙𝑎𝑡1

2
) + 𝑐𝑜𝑠(𝑙𝑎𝑡1) 𝑐𝑜𝑠(𝑙𝑎𝑡2) 𝑠𝑖𝑛2 (

𝑙𝑜𝑛𝑔2 − 𝑙𝑜𝑛𝑔1

2
)) 

As most roads aren’t straight, a 25% multiplier is further added onto this distance to more accurately 

represent the road distance between sites. This 25% multiplier was found to be a reasonable ballpark after 

testing several distances and comparing it to known road distances. Applying this formula to all hub/FC 

combinations then develops a full set of distances between all hubs and FCs.  
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6.2.3. Zone Modelling 

Once distances between proposed hub locations and FCs are known, it is possible to calculate expected 

shipping costs. It is assumed that third-party shipping (e.g. USPS) is used as it is immediately available and 

has minimal barriers to implementation. Additionally, for purposes of a feasibility study, it provides an 

upper-bound estimate for shipping costs (i.e. other shipping methods will only be used if they result in 

lower costs). Standard ground shipping was used as a baseline as it provides the optimal balance between 

lead time (lower inventory levels) and shipping costs. 

Third-party shipping typically calculates shipping rates based on weight and zones (distance bandings) as 

shown in the table below. Essentially, as long as two FCs are within the same zone from a hub, the shipping 

price from the hub to the FCs is the same even if one FC is slightly further away. Although Amazon’s third-

party shipping rates have been masked for the purposes of this thesis, the table below of retail rates provide 

an upper bound estimate of shipping prices between two sites based on the number of zones between them.  

Weight Zone 1-2 Zone 3 Zone 4 Zone 5 

10lbs $10.84 $11.51 $12.60 $13.76 

20lbs $13.08 $14.75 $15.06 $18.19 

30lbs $15.86 $18.61 $20.64 $24.49 

40lbs $18.07 $22.05 $25.01 $30.15 

Table 6.1: Example of Third-Party Shipping Rates 

Although shipping costs vary by weight, they have relatively consistent pricing ratios between zones 

(independent of weight). This paper assumes that packages are approximately 10lbs (the most common 

weight of parts shipments).  

Based on a standardized package weight, the table below shows the shipping price for a single package 

from hub to FC based on the zones travelled. The shipping price shown in Table 6.2 is an approximate 

average of several third-party shipping prices for a 10lbs package. The price differential is also provided as 

a “zone multiplier” which provides comparative ratios between shipping prices for various zones. In this 

instance, the zone multiplier is found by dividing each zone’s shipping price by the base shipping price of 
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$10. This is used over the shipping price as it provides more flexibility in price adjustments (as will be seen 

in Section 6.4.2 on shipping prices).  

Zones Travelled Distance Travelled [mi] Shipping Price [$] Zone Multiplier 

1-2 0 – 150 10 1 

3 150 – 300 11.50 1.15 

4 300 – 600 12.50 1.25 

5 600 – 1000 15.00 1.5 

6 1000 – 1400 18.00 1.8 

7 1400 – 1800 21.00 2.1 

8 1800+ 24.00 2.4 

Table 6.2: Shipping Zone Multipliers 

Due to zone pricing, the optimization function should no longer be for minimum distance, but rather for the 

lowest zone multiplier between the selected hub(s)s to the FCs. Since the zone multiplier is reflective of the 

distances between sites, the new objective function can be given by: 

min (∑|𝑇𝑜𝑡𝑎𝑙 𝑍𝑜𝑛𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 |) 

 

6.3. (S-1, S) vs (R, Q) Inventory Models in Multi-Echelon Networks 

The (R,Q) model determines the minimum number of parts to stock (through the Reorder Point), and the 

optimal ordering quantity (Q) that minimizes overall costs associated with placing an order. This model is 

especially important in the current system as parts are ordered from multiple suppliers. However, nodal 

warehousing introduces a central hub that holds parts from every supplier, which means that FCs can 

receive all of its required parts in one shipment. This means that minimizing costs for an individual shipment 

is no longer the most efficient method at an FC level.  

Nodal warehousing could make it cheaper to stock parts using an (R,Q) model where Q = 1 (i.e. FCs reorder 

parts as soon as they are consumed). More specifically, this is a return to the Min/Max inventory model 



62 

 

where the minimum is the Reorder Point, and FC reorder every day to stay one part above the minimum. 

This is known as the (S-1, S) model, or the base stock model. In the (S-1, S) model, inventory levels are 

lower as FCs only reorder what is required, as opposed to purchasing Q and running down that inventory 

over time. As inventory levels are given by R+Q, a smaller Q would result in lower inventory levels.  

Since the model deviates from the optimal ordering quantity, there may be an increase in total shipping 

costs. However, most sites will likely require daily shipments from the hub to restock any parts consumed 

on the day. Notice in the table above that sending a 20lbs package is significantly cheaper than sending two 

separate 10lbs packages. As such, FCs also benefit from pooled shipping when using a multi-echelon supply 

chain. 

This model is only feasible within a nodal network due to short lead times between the hub and FCs, and 

the fact that hubs will restock FCs on an almost-daily basis. The analyses in the following sections will 

explore how the multi-echelon supply chain performs using both the (R,Q) and (S-1, S) inventory models 

in FCs. Hubs always operate under an (R,Q) policy as they still order directly from suppliers. 

 

6.4. Hub Selection 

Although nodal warehouses can serve as an intermediate point for inventory, not all inventory should be 

stocked centrally. As shown in Figure 6.2 below, a nodal network actually increases the total lead time 

between the supplier to the FCs due to the additional shipping leg between the hub and the FCs. The 

inventory reduction from a nodal warehousing strategy comes from the reduction in variability by 

combining multiple sites, which allows for a reduction of network safety stock.  
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Figure 6.2: Current Structure vs Multi-Echelon Network 

Due to this increase in lead time, if a hub does not actually reduce total inventory held within the network 

for a particular part, it would be better for that part to held directly at the FC (which then orders those parts 

directly from the supplier rather than the hub). Not only does this reduce logistical complexity, but it also 

removes one leg of shipping (and cost) from the supply chain. As such, there has to be a method to determine 

if a part should be stocked at the FC or at the hub before the savings from a hub can be calculated. 

 

6.4.1. Inventory Placement 

The inventory level of a hub captures the entire system downstream of it. As such, a hub’s inventory is the 

combination of its inventory on-hand, the inventory in transit to FCs, and the inventory of all the FCs that 

it supports.  

𝐼ℎ𝑢𝑏 = 𝐼ℎ𝑢𝑏,𝑜𝑛−ℎ𝑎𝑛𝑑 + 𝐼𝑡𝑟𝑎𝑛𝑠𝑖𝑡 + ∑ 𝐼𝑓𝑐𝑗

𝑁

𝑗=1

           (𝑁 = # 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝐹𝐶𝑠) 

Accordingly, for every part, the model calculates the amount of parts required if it were stocked centrally, 

and compare that to if it were stocked at an FC-level. If the inventory reduction from central stocking makes 

up for the increased shipping cost, then the part is stocked centrally. If nodal warehousing does not lower 

net inventory, or if the savings does not make up for increased shipping cost, then the part is not pooled.  
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First, each FC is assigned to a hub based on proximity (if there is only one hub, all FCs are assigned to the 

same hub). This allows populates a list of potential parts that the hub will need to stock (i.e. In a two-hub 

configuration, if none of the sites supported by one hub use part “10000”, that hub will not need to stock 

part “10000”).  

In order to calculate the required inventory level for each part, the combined demand for the part within the 

hub’s network must be known. As before, it is assumed that the central limit theorem holds and that the 

distribution is normal. The average demand in the hub is the sum of the downstream demands. To put this 

in plain terms – if one site uses 3 parts/week, and another site uses 4 parts/week, the combined usage is, on 

average, 7 parts/week. 

µℎ𝑢𝑏 =  ∑ µ𝐹𝐶𝑗

𝑁

𝑗=1

              (𝑁 = # 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝐹𝐶𝑠) 

The variance, represented by Var(.), of two independent random variables can be combined through: 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) + 2𝐶𝑜𝑣(𝑋, 𝑌) 

As the utilization of parts between sites are independent of each other, part usage are not correlated and 

Cov(X,Y) = 0. This simplifies the above equation to a more manageable equation, which can be expanded 

to capture a wider range of parts. 

𝑉𝑎𝑟(𝑋 + 𝑌) = 𝑉𝑎𝑟(𝑋) + 𝑉𝑎𝑟(𝑌) 

𝑉𝑎𝑟(𝑋1, 𝑋2, 𝑋3 … 𝑋𝑛) = ∑ 𝑉𝑎𝑟(𝑋𝑖) 

𝑛

𝑖=1

                 (𝑛 = 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) 

The standard deviation for any given part within the hub can thus be calculated as 

𝜎ℎ𝑢𝑏 =  √∑ 𝜎𝐹𝐶𝑖

2

𝑁

𝑖=1

                       (𝑁 = # 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝐹𝐶𝑠) 
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The new lead time for a centrally stocked part is now the maximum time between the supplier to the FC 

(through the FC): 

𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒𝐻𝑢𝑏 = 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒𝑆𝑢𝑝𝑝𝑙𝑖𝑒𝑟 𝑡𝑜 𝐻𝑢𝑏 + max(𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒𝐻𝑢𝑏 𝑡𝑜 𝐹𝐶) 

Once these parameters have been calculated, it is possible to determine the (R,Q) inventory policy required 

within the hub. This is done in the same way as for individual FCs. The critical factor, k, is based on the 

highest criticality of the part seen in all FCs. 

𝑅 =  (µℎ𝑢𝑏 ∗ 𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒ℎ𝑢𝑏 +  𝜎ℎ𝑢𝑏 ∗ √𝐿𝑒𝑎𝑑 𝑇𝑖𝑚𝑒ℎ𝑢𝑏 ∗ 𝑘)  

𝑄 = √
2 ∗ 𝜇 ∗ 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑂𝑟𝑑𝑒𝑟

𝑊𝑒𝑒𝑘𝑙𝑦 𝐻𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡
 (𝑜𝑟 1, 𝑖𝑓 𝑏𝑎𝑠𝑒 𝑠𝑡𝑜𝑐𝑘 𝑚𝑜𝑑𝑒𝑙) 

However, the (R,Q) model was developed for supply chains with large, varying demands, and simply 

applying the (R,Q) model will result in several issues for parts with low weekly demands. For example, 

imagine a part that is located at two sites, each with identical demand of 0.1 units/week (assume negligible 

SD) and a lead time of 4 weeks. The table below shows the calculation for the reorder point for each of the 

FCs and the hub. 

 FC1 FC2 Hub 

µ 0.1 parts / week 0.1 parts / week 0.2 parts / week 

σ 0 0 0 

Lead Time 4 weeks 4 weeks 4 weeks 

R 0.4 ≈ 1 part 0.4 ≈ 1 part 0.8 ≈ 1 part 

Table 6.3: Example of Inventory Policies for One Part 

Recall that the inventory level of the hub consists of its own inventory, as well as all inventory downstream 

of it. If FC1 and FC2
 both had one part on hand, the hub would consider its inventory level for that part to 

be at two (although it has no parts on hand). As such, the hub would not replenish its inventory until a part 

is needed downstream, but it is not able to fulfill the order (which would lead to downtime).  
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It is not possible to modify the (R,Q) model such that the hub’s inventory is considered by itself. This would 

result in double counting of inventory, and typically lead to higher inventory levels than in a single-echelon 

system. This means that modifications have to be made to the (R,Q) model for this system. 

For any given part in an FC, the lowest steady-state inventory level at any point is time is right before it 

hits its reorder point (i.e. R+1).  As such, for any combination of warehouses, the lowest possible inventory 

level in the network (excluding the hub) is given by:  

𝐿𝑜𝑤𝑒𝑠𝑡 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝐿𝑒𝑣𝑒𝑙 = ∑ 𝑅𝐹𝐶𝑖
+ 1

𝑁

𝑖=1

                (𝑁 = # 𝑜𝑓 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑒𝑑 𝐹𝐶𝑠) 

At the very minimum, the hub’s reorder point should be at this value to ensure that it restocks prior to any 

of the downstream FCs requiring inventory. This is true for both (R,Q) and (S-1, S). Additionally, the hub 

must hold sufficient inventory to fill the expected cycle stock over the lead time, or the highest reorder 

quantity that could come in from a particular FC. This requires the warehouse R to be, at a minimum: 

𝑅ℎ𝑢𝑏 = max ((∑ 𝜇𝐹𝐶) ∗ 𝐿𝑇ℎ𝑢𝑏 , 𝑚𝑎𝑥(𝑄𝐹𝐶)) + ∑(𝑅𝐹𝐶 + 1) 

However, the (R,Q) model works in most cases. The above formula is only required to prevent stock-outs 

at the hub, and is only required when the (R,Q) model prescribes a restocking level that is lesser than this 

minimum quantity. In this instance, the goal is not to further lower inventory levels, but to ensure there is 

sufficient safety built into the model. Accordingly, the reorder point (R) for any part in the hub is given by: 

𝑅ℎ𝑢𝑏 =  max  

Where the second term is the standard formulaic representation of the Reorder Point. 

It is now possible to compare the two scenarios (multi-echelon vs single stage) for every part, to determine 

the optimal stocking options through the following objective function: 
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min (𝑃𝑟𝑖𝑐𝑒 ∗ ((𝑅ℎ𝑢𝑏 + 𝑄ℎ𝑢𝑏) − ∑ (𝑅𝐹𝐶 + 𝑄𝐹𝐶)

𝐴𝑙𝑙 𝐹𝐶𝑠

𝐹𝐶1

) , ∆ 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡) 

However, this is a time-consuming process, as it requires calculating the shipping cost for both scenarios 

(see 6.4.2) before deciding on a stocking configuration. It is possible to simplify the objective function and 

use a configuration that would minimize the total number of parts across the network as shown below.  

min ( ∑ (𝑅𝐹𝐶 + 𝑄𝐹𝐶)

𝐴𝑙𝑙 𝐹𝐶𝑠

𝐹𝐶1

, (𝑅ℎ𝑢𝑏 + 𝑄ℎ𝑢𝑏)) 

Although the second objective function is less accurate, tests on Amazon data showed that the latter process 

stayed within ±5% of the total value calculated using the first objective function. Due to the price 

sensitivity of the data, specific outcomes cannot be shared. However, both objective functions are presented 

to show both options available (where the user has to decide between precision and speed). This study 

assumes that parts are stocked based on minimizing parts rather than total cost (i.e. the latter objective 

function presented above), and is able to identify where each part should be stocked. 

Regardless of the method chosen, this allows the model to determine which parts should be stocked at the 

FC (and ordered directly from the supplier) and which parts should be stocked centrally (where FCs order 

from the hub). Without considering shipping costs, correct identification of where parts should be stocked 

could reduce Amazon’s total inventory volume by approximately 14%.  

The table below shows the proportion of parts that are stocked centrally vs at an FC-level for both the (R,Q) 

inventory policy and the (S-1, S) policy. As expected, the (S-1, S) policy pushes more parts towards 

centralized stocking (and thus keeps fewer total parts kept on-hand) but it is expected that this reduction in 

inventory would result in higher shipping costs due to more shipments between the hub and FCs (Again, 

data has been masked, but ratios kept relatively consistent).  
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% of Parts 

(Centrally Stocked) 

% of Parts 

(FC-Level) 
Total Value of Parts 

(R,Q) 43.71% 56.29% $112,392,500 

(S-1, S) 58.91% 41.09% $100,000,000 

Table 6.4: (R,Q) vs (S, S-1) Breakdown for Multi-Echelon System (No Shipping) 

 

6.4.2. Shipping Costs 

Once the optimal storage location for each part is known, it is possible to calculate to calculate the expected 

incremental shipping cost for each hub. Any other costs (e.g. labor and real estate) are independent of 

shipping costs and can be considered once the incremental costs are known. 

Only incremental shipping costs (from hub to FC) are considered as it is assumed that the current supplier 

to FC costs will be fairly equivalent to the new supplier to hub costs. It is likely that nodal warehousing 

will lower shipping costs from supplier to hub (as suppliers only have to ship to the hub) which would 

provide economies of scale. However, this provides a conservative estimate that would not overstate 

potential savings.  

In order to calculate the incremental shipping costs, the number of shipments per week of all centrally 

stocked parts has to be known. This is given by:  

# 𝑜𝑓 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑊𝑒𝑒𝑘 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑒𝑒𝑘𝑙𝑦 𝐷𝑒𝑚𝑎𝑛𝑑 (𝜇)

𝑄
 

The incremental annual shipping cost for every part that is stocked centrally can then be calculated based 

on the known distances between hubs and FCs and the total number of shipments per week. Assuming a 

base shipping price of $10 per package and 52 weeks per year, the annual shipping costs for any given part 

comes to: 
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𝐴𝑛𝑛𝑢𝑎𝑙 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

=  𝐵𝑎𝑠𝑒 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒 ∗ 𝑍𝑜𝑛𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ (# 𝑜𝑓 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑊𝑒𝑒𝑘)

∗ (# 𝑜𝑓 𝑊𝑒𝑒𝑘𝑠) 

However, in order to assess the efficacy of a multi-echelon network, this annual shipping cost must be 

converted into a perpetuity so that it can be compared to the immediate savings from a reduction in 

inventory in terms of net present value (NPV).  

𝑃𝑒𝑟𝑝𝑒𝑡𝑢𝑖𝑡𝑦 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡

𝐶𝑜𝑠𝑡 𝑜𝑓 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 (%)
 

If a perpetuity is calculated for every part that is centrally stocked, it is possible to calculate the incremental 

cost of implementing a multi-echelon system through the sum of all the incremental shipping perpetuities. 

This is shown in the table below (data normalized such that (R,Q) perpetuity cost is $8MM) 

 # of Shipments Perpetuity Costs 

(R,Q) 1,223 $8,000,000 

(S-1, S) 2,421 $15,574,238 

Table 6.5: Total Incremental Shipping Costs (Perpetuity) 

As expected, the (R,Q) is significantly cheaper than the (S-1, S) model as it sends almost half as many 

packages. However, the formula above assumes that each package is sent separately (i.e. sending another 

package is an increase in price of 100%). In reality, parts going to the same site will be sent together and, 

as shown in the shipping pricing table above, combining shipments (i.e. adding an additional 10lbs) 

increases costs by ~30% rather than 100% - a significant reduction in shipping costs.  

For the sake of being conservative, the model assumes 40% increase when “combining” a package. The 

first shipment that an FC receives every day is charged the “full” price of $10. Any subsequent part required 

in the same day is added on at a cost of $4 as opposed to paying the full delivery cost for a new package.  

Based on the above, the shipping cost can be approximately by assuming that, for a $10 shipment, $6 (60%) 

is the cost of sending an empty box, and every addition of 10lbs (one shipment) is an additional $4 (40%). 
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In order to simplify the calculations, it is assumed that all parts are reordered as soon as they hit their reorder 

point, FCs will reorder all parts at or below their reorder point from the hub on a daily basis. For any given 

site, the weekly shipping costs is then given by: 

𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 =  𝐷𝑎𝑦𝑠 𝑖𝑛 𝑊𝑒𝑒𝑘 ∗ (((0.6 ∗ 𝐵𝑎𝑠𝑒 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒) ∗ 𝑍𝑜𝑛𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟)

+ ((0.4 ∗ 𝐵𝑎𝑠𝑒 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑃𝑟𝑖𝑐𝑒) ∗ 𝑍𝑜𝑛𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ # 𝑜𝑓 𝐷𝑎𝑖𝑙𝑦 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠)) 

The zone multiplier helps to convert the base shipping price into a shipping price based on the number of 

zones between the hub and the FC. Annual shipping costs are thus calculated by the formula below: 

7 ∗ 52 ∗ ∑ (6 ∗ 𝑍𝑜𝑛𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 + 4 ∗ 𝑍𝑜𝑛𝑒 𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ # 𝑜𝑓 𝐷𝑎𝑖𝑙𝑦 𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡𝑠)

𝐴𝑙𝑙 𝐹𝐶𝑠

𝑖=1

 

Using this formula to calculate shipping costs accounts for the benefits of pooled shipping and lowers the 

total shipping perpetuity costs quite significantly. Note that the reduction for the (S-1, S) inventory policy 

is much higher than the savings for the (R,Q) inventory model. 

 # of Shipments Total Perpetuity Costs  

(Single Shipments) 

Total Perpetuity Costs  

(Pooled Shipments) 

(R,Q) 1,223 $8,000,000 $6,858,576 

(S-1, S) 2,421 $15,574,238 $9,956,541 

Table 6.6:Shipping Costs with Updated Pricing Model 

The perpetuity costs from Table 6.6 can be added to the total value of parts from Table 6.4 to compare the 

two different inventory policies for this particular scenario (See Table 6.7). 

 Shipping Costs Total Value of Parts Total Cost 

(R,Q) $6,858,576 $112,392,500 $119,251,076 

(S-1, S) $9,956,541 $100,000,000 $109,956,541 

Table 6.7: Inventory Value and Shipping Costs 

From the table above, it becomes clear that the inventory reduction from using the (S-1, S) inventory model 

is more than able to make up for the perpetual increase in shipping costs associated with the base stock 

model. As such, it makes sense for FCs to stock parts using the (S-1, S) inventory model, whilst the hub 
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continues to manage parts using a (R, Q) inventory model (the hub does not benefit from the same benefits 

as FCs since they interface with multiple suppliers).  

Although the model currently proposes that all parts at the FC are stocked using the (S-1, S) model, some 

parts may still benefit from being stocked using the (R,Q) model (e.g. parts with high demand). However, 

this adds a layer of complexity to the system, and should only be considered once the EAM usage data has 

been thoroughly verified and its accuracy can be assured. 

 

6.4.3. Frequency of Delivery 

In all instances above, it is assumed that hubs deliver parts to FCs on a daily. If shipments are delayed (e.g. 

delivered every two days), this would allow for more parts to be consolidated and sent together, further 

reducing shipping costs. However, this study finds that daily delivery results in better performance and 

lower total costs.  

This is modelled by adding the shipping delay to the lead times of the parts (note that this may change 

whether parts should be stocked centrally or at an FC-level). For example, if it takes 5 days for a part to go 

from the hub to the FC, a shipping frequency of two days would increase that lead time to 6 days. Intuitively, 

if an FC requires a part on Day 1, but shipments will not happen until Day 2, it will take 6 days before the 

FC receives its parts.  

It is acknowledged that this is an upper bound (since requests could actually fall on the day of shipment, 

and will not have to wait the full frequency duration). For example, some parts will be ordered on the day 

of shipment, and will still only take 5 days to arrive at the FC. However, to maximize conservativeness of 

estimates, it was chosen to apply the safety factor to all parts.  

Table 6.8 and Figure 6.3 below shows how the shipping costs drop as the shipping frequency is increased 

(assuming base stock model).  



72 

 

Shipping Frequency Shipping Costs (Perpetuity) 

1 day $9,956,541 

2 day $8,093,118 

3 day $7,471,976 

4 day $7,161,406 

5 day $6,975,063 

6 day $6,850,836 

7 day $6,762,102 

14 day $6,495,898 

Table 6.8: Shipping Frequency to Shipping Costs 

 

Figure 6.3: Shipping Costs vs. Shipping Frequency (days) 

As expected, shipping costs decrease as the delay increases as more parts are pooled together in each 

shipment. The majority of savings occur if shipments are delayed between 1-4 days. This is also as expected 

as every additional day of delayed shipment adds proportionally fewer parts to the parts already being 

shipped, reducing the impact of pooled shipping.  

However, there is a tradeoff in that the longer duration between shipments, the more inventory that sites 

will have to hold to cover that additional delay. As such, delaying shipments will decrease shipping costs, 

but will also increase the lead time (and total inventory required on-hand) for that part. As such, delaying 

shipments only make sense if the reduction in shipping costs is greater than the increase in inventory.  
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Due to the high service level requirements, all inventory planning for this study was based on the worst-

case scenario (i.e. for a 3-4 day lead time range, the inventory model would plan for a 4 day lead time) and  

any shipment delays will require FCs to hold additional inventory to accommodate the extra lead time.  

Table 6.9 below shows how inventory and shipping costs change when a shipping delay is added to a one-

hub configuration. A one-hub configuration has the most to gain from delayed shipping (lowest inventory 

and highest shipping costs).  

Shipping Frequency Total Value of Parts Shipping Costs Total Costs 

1 day $100,000,000 $9,956,541 $109,956,541 

2 days $102,041,918 $8,093,118 $110,135,036 

3 days $103,892,373 $7,471,976 $111,364,349 

4 days $105,575,502 $7,161,406 $112,736,908 

Table 6.9: Total Cost vs Shipping Frequency 

From the table, it becomes clear that it is not worth postponing shipping as the additional inventory that 

gets moved to an FC-level (due to the increased lead time) outweighs the savings of delayed shipping. It is 

worth noting that this finding is independent of changes to shipping costs as the model uses the “upper 

bound” for shipping (i.e. third-party). Cheaper shipping costs will make it even better to minimize delays 

as it moves more parts to the hub (since inventory cost reductions will outweigh shipping costs by an even 

greater margin).  

As such, in all scenarios, the optimal solution is to provide FCs with daily replenishments unless there is 

an operational reason to delay shipments.  

 

6.5. Number and Location of Hubs 

Another key decision that has to be made is the network’s configuration: more specifically, the number of 

hubs in the network and where those hubs are located. In general, as the number of hubs increase, hubs will 

be located closer to FCs, which will decrease lead times and shipping costs. On the other hand, increasing 
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the number of hubs will result in less inventory being pooled at each warehouse, resulting in the network 

needing to carry more inventory due to greater demand variability. The selected nodal configuration should 

carefully balance the two factors, and aim to maximize risk-pooling within the network while minimizing 

lead times and shipping costs.  

Figure 6.4 below show total costs (y-axis) against total shipping zones between hub and FCs (x-axis) for 

different hub configurations. Although shipping costs will generally increase as hubs get further away from 

FCs, the lead times do not change enough to lower inventory volumes. Although costs generally increase 

with distance, the difference was typically ±2%. Also note that minimizing zones/distance does not always 

minimize costs as seen by the fluctuations in total cost. 

As more hubs are introduced in the system, lead times for FCs are further shortened and shipping costs 

decrease. However, the overall costs increase as the increased inventory levels (due to reduced pooling) 

outweigh the gains in reduced lead time and lower shipping costs. Total Cost 

 

Figure 6.4:Cost vs Total # of Zones (Various Hub Configurations) 
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 Inventory Costs Lifetime Shipping Costs Total Costs 

1 Hub $100MM - $101.10MM $9.96MM - $11.09MM $109.96MM- $112.19MM 

2 Hubs $103.85MM - $104.95MM $7.81MM - $8.04MM $111.65MM - $112.98MM 

3 Hubs $107.14MM - $107.91MM $6.90MM - $7.13MM $114.04MM - $115.04MM 

4 Hubs $109.89MM - $110.88MM $6.45MM - $6.56MM $116.34MM - $117.44MM 

5 Hubs $111.65MM - $113.30MM $6.00MM - $6.23MM $117.64MM - $119.52MM 

Table 6.10: Cost Ranges for 30 Potential Hub Locations 

The main benefit of having more hubs comes from lower lead times to FCs. If lead times are sufficiently 

low (within hours), FCs could run inventory levels (for some parts) down to zero and pull parts from the 

hub when required. However, even a 5-hub network does not provide the necessary coverage for FCs to 

hold zero quantities while still meeting service level requirements.  

Furthermore, since CAPEX/OPEX increase with the number of hubs, it is even more undesirable to have a 

large number of hubs. As such, a one-hub system was found to be optimal for the Amazon FC network. 

Since the differences between hub locations are quite minimal, the selection of hub location should be based 

on other cost factors (e.g. real estate costs etc.) rather than shipping considerations.  

The table below shows a comparison between the current system, the current system with an (R,Q) 

inventory policy implemented, and a multi-echelon system. All costs have been normalized on a total 

inventory cost of $100MM for the multi-echelon system.  

Hub Location 

Proportion of 

Inventory 

(Pooled) 

Proportion of 

Inventory 

(FC Only) 

Shipping 

(Perpetual) 
Total Costs 

Current System N/A 100% N/A $144,416,073 

No Hub (R,Q) N/A 100% N/A $131,466,159 

Multi-Echelon 

(S-1,S) 
58.91% 41.09% $9,956,541 $109,956,541 

Table 6.11: Cost Comparison of Inventory Policies 
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6.6. Sensitivity Analysis 

Based on the model developed above, different scenarios were tested to test how certain parameters would 

affect the overall inventory level and shipping costs of a multi-echelon supply chain. Ideally, this would 

identify trends and highlight specific areas that are worth investigating further. For the purposes of this 

sensitivity analysis, this paper considers a single-hub located within the continental United States. 

All tables in this section show results with the baseline total cost normalized to $100,000,000. Inventory 

levels are presented a percentage of total cost rather than an absolute value to better highlight how inventory 

volumes change as parameters are changed.  

 

6.6.1. Lead Time Reduction 

Lead times affect cycle stock for all parts and any reduction in lead time (whether between the supplier and 

the hub, or the hub and the FCs) is expected to reduce the amount of inventory held in the network.  

Supplier Lead Time Reduction 

The table below shows how the overall costs change as lead time from suppliers shrink. As is expected, any 

reductions in supplier lead time will reduce total costs as less inventory needs to be held as cycle stock.  

Interestingly, a reduction in supplier lead time shifts more parts back towards the FC as opposed to central 

stocking. This is because parts without a high variation become less appealing to pool as lead times shrink.  

Lead Time Hub Inventory FC Inventory Shipping Costs Total Costs 

Baseline 57.63% 42.37% $9,616,848 $100,000,000 

½ week reduction 53.75% 46.25% $9,319,189 $97,706,118 

1 week reduction 48.97% 51.03% $8,937,050 $95,313,955 

2 week reduction 41.52% 58.48% $8,441,276 $92,808,701 

3 week reduction 37.65% 62.35% $8,186,758 $91,442,048 

Table 6.12: Sensitivity Analysis: Supplier Lead Time 
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Hub to FC Lead Time Reduction 

Alternatively, lead times can also be reduced between the hub and the FCs. The current expectations for 

hub to FC shipping is shown in the table below. In this scenario, a reduction of even a day results in drops 

in both hub and FC inventory. Although, shipping costs increase (as the reorder point for parts is now lower) 

but is more than made up for by the lower inventory volumes held.  

Zones Lead Time 

Zones 2-4 3 Days 

Zones 5-6 4 Days 

Zones 7-8 5 Days 

Table 6.13: Hub to FC Lead Times 

 

Lead Time Hub Inventory FC Inventory Shipping Costs Total Costs 

Baseline 

[3/4/5 Days] 
57.63% 42.37% $9,616,848 $100,000,000 

1 Day Reduction 

[2/3/4 Days] 
58.61% 41.39% $9,696,785 $98,044,223 

2 Day Reduction 

[1/2/3 Days] 
58.34% 41.66% $9,758,269 $95,972,219 

2 Day Shipping 

[2/2/2 Days] 
58.14% 41.86% $9,775,385 $95,223,128 

1 Day Shipping 

[1/1/1 Day] 
58.37% 41.63% $9,812,041 $93,179,873 

Table 6.14: Sensitivity Analysis - Hub to FC Lead Time 

 

6.6.2. Cost Reductions 

There are two major ways in which costs can be reduced. The first method is by lowering delivery costs 

between the hub and FCs (which could be accomplished through bulk shipping discounts, or internal 

shipping options), and the second method is through negotiation lower part prices with suppliers.  
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Lower Hub to FC Delivery Costs 

Based on the objective function used to allocate inventory (i.e. minimize volume without considering 

shipping costs), lower shipping costs do not affect inventory volumes. Instead, shipping costs see an 

equivalent reduction in overall costs (i.e. a 10% reduction results in a 10% drop in shipping costs).  

Delivery Cost Hub Inventory FC Inventory Shipping Costs Total Costs 

Baseline 57.63% 42.37% $9,616,848 $100,000,000 

10% Reduction 57.63% 42.37% $8,655,164 $99,038,315 

20% Reduction 57.63% 42.37% $7,693,479 $98,076,631 

Table 6.15: Sensitivity Analysis - Delivery Costs 

Price Reduction (All Parts) 

The effects of an overall price reduction are as expected. Any drops in price are reflected in a similar drop 

in total cost. Additionally, there is a minimal shifting of inventory from hubs to FCs due to price reductions 

is fairly minor and does not follow any particular trend. 

Price Hub Inventory FC Inventory Shipping Costs Total Costs 

Baseline 57.63% 42.37% $9,616,848 $100,000,000 

95% 57.52% 42.48% $9,486,658 $95,657,979 

90% 57.57% 42.43% $9,371,371 $91,318,452 

85% 57.71% 42.29% $9,261,992 $86,977,123 

80% 57.71% 42.29% $9,135,468 $82,614,838 

Table 6.16: Sensitivity Analysis - Price Reduction 

 

6.6.3. Criticality Service Levels 

The table below shows how the total costs change as the required service level for Criticality 1 parts is 

lowered. In general, reductions in service level requirements will move inventory from the hub to FCs as 

variance has a lower impact and pooling is less effective. The observed trends are similar for Criticality 2/3 

parts, and also for multi-echelon systems.  
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Service Level Inventory Costs FC Inv. Costs Shipping Costs Total Costs 

99.9% 60.63% 39.37% $8,905,067 $103,102,475 

Baseline (99.5%) 58.93% 41.07% $8,813,333 $100,000,000 

99% 57.60% 42.40% $8,757,773 $98,506,937 

98% 56.36% 43.64% $8,685,439 $96,949,448 

95% 52.98% 47.02% $8,567,743 $94,626,391 

Table 6.17: Sensitivity Analysis - Criticality 

 

6.7. Operations Within a Nodal System 

In this system, it is imperative that orders are placed immediately once a part hits its Reorder Point and 

hubs fill FC’s orders once a day. This is because all inventory levels are optimized based on its expected 

consumption vs. lead time. If a site does not replenish its parts when it hits its Reorder Point, it may not 

have sufficient inventory to meet future demand. Additionally, since demand profiles are combined across 

sites, any shortages in inventory will affect the entire system. As such, it is highly recommended that orders 

are managed by an automatic system that reorders all the required parts once a day. 

EAM admins should not place orders for their own sites. A centrally managed system will ensure that all 

required parts are reordered every day. This is essential as inventory levels are based on demand profiles. 

If FCs try to order more parts than required, they will consume parts intended for other sites. Conversely, 

if FCs try to under-order, the hub may not be equipped to supply the larger compensating order at a later 

date (as the hub would also have under-ordered from suppliers based on the FC’s previous order – this is 

the bullwhip effect). This could result in the hub not having sufficient inventory to meet the network’s 

demands at a later date.  
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6.8. Risks and Challenges 

However, there are also several risks and challenges to be cognizant of while implementing a nodal 

warehousing system: 

Inaccurate Data: The inventory models are based on data pulled from EAM. Any inaccuracies in price, 

usage data or lead time will result in inaccurate stocking numbers. 

Backend System: Nodal warehouses work as an entire system. As such, there has to be a reliable way to 

track the inventory position across the various FCs and hubs.  

Lost Inventory: Currently, many RME parts get lost with other non-inventory items and may not be put 

into inventory for days (or end up getting stowed within the FC). Given the lower inventory levels and short 

turnaround times, parts have to enter the spares cage as soon as possible.  

Part Counts: In a similar vein to above, EAM admins must ensure that parts are signed out every time they 

are used. This is to ensure that parts are reordered from the hub at the end of the day.  

Inventory Turnover: In a one-hub configuration, there may be large volumes of parts to be moved on a 

daily basis. The hub has to be properly equipped to deal with the potential traffic volume.  

6.9. Summary 

Nodal warehousing presents a further opportunity to lower inventory volumes by 17% through the 

balancing of demand variations between different sites. As a nodal warehouse will lower the lead time of 

parts, the (S-1, S) inventory model performs better than the (R,Q) model at an FC level.  

It was found that hub locations did not significantly alter costs. As such, hub locations should be chosen 

based on other factors such as CAPEX and OPEX. However, the number of hubs are significant and a one-

hub network performs best for Amazon as the inventory reduction from risk-pooling outweighed the 

increased shipping costs.   
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7. Conclusion and Recommendations 

The chapters above presented a way in which an inventory policy can be developed, and how a single-stage 

supply chain can be converted into a multi-echelon network. This chapter provides a summary of the 

findings, next steps for implementation, as well as potential areas for future work.  

 

7.1. Summary of Findings 

Amazon does not currently employ the usage of data in developing its inventory policies for spare parts 

management. Historical data on consumption of spare parts was used to develop a single-stage (R,Q) 

inventory model that could be applied to FCs. Through the (R,Q) model, it was found that a large number 

of parts (~29% of total value) are currently being under-ordered and require a higher stocking level to 

prevent potential stockouts. However, the inventory model was still able to reduce total inventory levels by 

approximately 9% by adjusting the other inventory levels to more reasonable levels. 

The model then considered a multi-echelon system in order to reduce lead times to FCs, and to better 

position Amazon to respond to emergency stockouts. As an overall network, it was found that an 

introduction of nodal warehousing can reduce costs by 15%, and this saving would only continue to increase 

as Amazon continues to build more FCs. With a multi-echelon system in place, it was found that the (S-1, 

S) inventory policy performs better than the (R,Q) model at the FC-level as the network benefits from 

pooled shipping (the EOQ model considers each part individually, and does not consider combined 

shipping). Using the base stock model over the (R,Q) inventory policy is responsible for almost half of the 

15% of realized cost savings from a multi-echelon network. 

Once parts are stocked centrally, FCs can order any replacement parts from the central warehouse on a daily 

basis. It was found that shipments should not be delayed in order to consolidate deliveries, as the reduced 

shipping costs do not make up for the higher levels of inventory required at the FC-level. 
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At the network level, it was found that overall costs generally increased as the hubs increased due to the 

pooling effect getting diluted between more hubs. As such, a one-hub configuration performed better than 

other configurations, even before CAPEX/OPEX costs were considered (which would increase as the 

number of hubs increase). The location of the central warehouse was also found to be fairly inconsequential, 

with most reasonable locations performing within a ±2% range of each other. As such, the location of the 

central warehouse should be decided based on other factors such as cost and ease of implementation.  

The results from this study show that implementing an inventory model, even without a multi-echelon 

network, would result in immediate savings. However, a central warehousing strategy would further 

increase those savings, while also better positioning Amazon for responding to emergencies at any FCs 

(due to having a central repository for any replacement parts).  

 

7.2. Next Steps 

This thesis serves as a proof of concept for the multi-echelon supply chain. The next phase of this project 

will involve running a pilot program to verify the data from EAM and test the validity of the model.   

The next phase of this project will involve running a pilot program out of a currently empty Amazon facility 

in Texas. With just five FCs involved in the pilot, inventory levels could immediately fall by over $1MM. 

If successful, the pilot site will have the capacity to grow and support the rest of the NAFC network. 

There is no specific combination of sites that should be involved in the pilot, as any form of pooling will 

reduce inventory levels. However, if insufficient sites are pooled, the inventory reduction may not be 

significant enough to outweigh the additional shipping costs. As a minimum, four medium sized sites should 

be used for the pilot. The FCs chosen for the pilot should be relatively large and use similar parts in order 

to maximize the benefits of pooling, and shipping should be done from a third-party provider (e.g. UPS) on 

standard ground shipping. Preliminary calculations show that a one-hub configuration supporting five FCs 

could deliver savings of over $1 million.  
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The central warehouse for the pilot program should be run out of a re-purposed Amazon site that is currently 

unused. This would minimize the upfront capital costs required to implement the warehouse. Additionally, 

an unused site has the ability to be scaled up to support more FCs over time, whereas building the hub in 

an operational site with excess capacity (e.g. sort center) would eventually run into capacity constraints. 

Due to the high stock-out costs, the central warehouse should hold more inventory than the model 

recommends during the pilot. This will ensure that the system is equipped in the event that the model 

recommends an incorrect stocking quantity. Any usages of these extra parts should be tracked to diagnose 

if the incorrect recommended numbers were due to a model failure, inaccuracies in the data, or statistical 

chance. 

 In the long term, costs can be further decreased by improving data reliability to allow for less conservative 

assumptions, or by using the buying power of a centralized hub to negotiate bulk discounts with suppliers. 

 

7.3. Future Work 

Although the model was able to return a workable result, there are several areas in which modifications can 

be made to further improve the output of the model.  

Parts In-Use 

The model currently looks at historical data to plan future demands. However, it was unable to draw 

correlations between usages at different sites as there was no data on the number of parts in-use at any given 

time. If the number of parts in-use were known, it may be possible to identify some correlation between 

demand and parts in-use. This should not only improve the accuracy of the model, but opens up 

opportunities to use machine-learning to identify cross-site trends. Additionally, this would also allow the 

model to be used to predict required inventory levels at new sites (new sites don’t have demand data, so it 

is not possible to develop an inventory policy for them using this method at present).  
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Empirical Distribution 

Another area for improvement is the assumed distribution used for demand curves. Although a normal 

distribution was used in this scenario as a compromise between accuracy and speed, it may be beneficial to 

compare the results to an empirical distribution which does not simplify the overall distribution.  

The empirical distribution was not used in this case as there were insufficient data points to achieve the 

required service level with any level of accuracy, and there were sufficient doubts regarding the accuracy 

of the current data.  

Once there is sufficient confidence in the available data, it may be worth using the daily demand data to 

create an empirical distribution for each part, and to use that empirical distribution to build an inventory 

model. This eliminates any bias that could be introduced by reducing the demand profiles to a mean and 

standard deviation.  
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