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ABSTRACT

This thesis contains three parts. Part 1 presents a model of negotiation under
bounded creativity. New ideas for proposals occur to the parties as negoti-
ations progress. Under bounded creativity, proposing an early settlement
can reveal a high valuation of the actions the other player would perform in
the settlement. This can encourage the other player to hold out for a better
agreement. Bounded creativity also provides a new explanation of delay. Pa-
tient negotiators may delay making serious proposals in the hope that time
will produce ideas that are more favorable to them.

Part 2 presents a model of sequential search in which a buyer can call a firm,
before visiting, to ask for a price quote. Because of product differentiation,
buyers learn their valuations only when they visit. There are outcomes in
which all, some, or no buyers call ahead. Qutcomes in which more buyers call
ahead have lower prices. Because search is sequential, prices do not converge
to marginal cost as search costs shrink. Results also suggest that a fall in
traveling costs need not improve consumer welfare and may actually reduce
it. A fall in marginal calling costs also need not make consumers better off.

Part 3 examines the effect of commitment on the optimal taxation of capital
income and wages in a closed, representative agent economy. A government
with commitment is able eventually to substitute wage taxes for capital in-
come taxes. A government with commitment may actually subsidize future
capital income. Without commitment, a government must tax capital in-
come at 100% as long as revenue is needed. With commitinent, for a class
of utility functions. the wage tax increases when capital income is taxed and
decreases when it is subsidized.



Part 1

NEGOTIATION AND
BOUNDED CREATIVITY



Chapter 1
INTRODUCTION

Negotiating parties are usually not aware of the full range of actions they
or others may take to address the issues under negotiation. New ideas for
such actions occur to the parties as negotiations progress, typically during
adjournments. Lincoln and O’Donnell [16, pages 36,38] hold that a mediator
should meet with negotiating teams during adjournments, in part to come up
with ideas for new positions and offers. Karrass [14, page 235] also stresses
the importance of adjournments to give negotiators time to think how best
to respond to proposals or demands.! He counsels patience and states [14,
page 143]:

Before a negotiation begins it is not possible for either to know
the best way to resolve problems, issues and risks.

Kennedy et al [15, page 91] present an example that illustrates the use of
adjournments to generate new ideas and responses. (These are summaries,
provided in Kennedy et al [15], of the negotiators’ actual words.)

1Winham [26, page 194] also stresses the importance of creativity in large scale, complex
negotiations:

Mediation in [such negotiations] is a matter of puzzle solving; that is, helping
the parties to find a solution that will accommodate their overlapping and
conflicting interests.



Mgt: If you agree to drop the claims for meal allowances,
shift payment improvements and increased holidays, then we are
prepared to make an improved offer on basic rates of pay.

Union: We would be prepared to consider dropping these
items but this would be dependent upon the size of your offer on
basic rates ... (adjournment)

Mgt: If you confirm your willingness to remove these items
from the table, then we will improve our offer from 10 to 12
percent.

Union: That proposal is not acceptable. However, if you
would be prepared to consider an increase to 15 percent then we
might be in a position to reach some accommodation with you
... (adjournment)

Mgt: We cannot accept your proposal. However, [...] we
would be prepared to improve our last position on condition
that your side unanimously recommended acceptance of the total
package; that the agreement would have a duration of 12 months
and you were able to accept the additional payment 3 months
after implementation of the deal.

Beginning with Nash [18, 19], economists have assumed perfect creativ-
ity. In formulating proposals, agents have acces~ to the full set of Pareto
dominant agreements. Every proposal is on the Pareto frontier. This pa-
per presents a model of bargaining under bounded creativity. The parties do
not have immediate access to the Pareto frontier of possible agreements. As
they negotiate, they get new ideas for actions that could be part of a final
settlement. To distinguish it from the perfect creativity case, we refer to
bargaining under bounded creativity as negotiation.?

Some actions are costly to one party and benefit the other. We will call
these actions demands or offers, depending on whether or not it is the benefi-
ciary who first mentions the idea. In the above example, the union’s demands
include the “claims for meal allowances, shift payment improvements and in-
creased holidays”, and the 15 percent wage increase. Management’s demands
include the unanimous acceptance recommendation, the deferred onset of the

2This differs from the definition some other authors have used (e.g., Myerson [17]).



raise, and the implicit promise of 12 months of labor peace. Management
also offers a 12% wage increase.

There are also actions that either hurt or benefit both parties.” These
are not usually the subject of negotiations. However, a party could threaten
to perform a mutually harmful action unless the other party makes certain
concessions. A party could also threaten not to perform a mutually beneficial
action. For simplicity, we assume that parties do not think of mutually
beneficial or harmful actions.

In principle, a party can get an idea for either an offer or a demand.
There is some evidence that parties originate demands more often than offers.
The union-management negotiation above provides one example. Another
appears in Kennedy et al [15, page 84]. A training course was being held in
a hotel. The hotel was fully booked. The hotel manager asked the course
trainer to permit some guests to use two rooms that had been reserved for
a course segment that was finished. The course trainer agreed on condition
that the hotel provide a champagne lunch for the seminar participants. The
manager accepted this proposal.

Parties do sometimes originate offers. Sometimes this happens because
one party has experience in similar negotiations. Nierenberg {20, page 11]
recounts a negotiation in which a “broad-ranging investor and speculator”
~ offers to buy out a businessman with stock rather than cash. A party may
originate some offers if the other party has a strong emotional commitment
to its initial demands. Kennedy et al [15, pages 32-33] cite an example in
which a firm originates several offers in a negotiation with irate workers. In
our model, we will assume for simplicity that the parties can think only of
demands.

We also assume that parties cannot propose monetary transfers. This
usaally holds when the parties hold joint assets. A married couple is one
example. Monetary transfers are usually prohibited between two parties in
an organization, neither of whom has salary or budgetary authority over the
other. Kennedy et al [15, page 49] give an example of such a negotiation. A
computer company was moving. The heads of two departments each wanted
to maximize their floor space. Kennedy et al [15, page 114] note that mon-
etary transfers are often excluded in negotiations “between governments on



diplomatic or political matters”.?

We also assume that parties are negotiating under an exogenous deadline.*
For example, two parties may negotiate over what to do at or before a certain
date. They cannot continue to negotiate after the date passes. Different
members of an organization may negotiate under a deadline imposed from
above. Deadlines are common in international negotiations [15, page 135].
Nuclear arms treaties are often completed in the waning hours before an
impending summit meeting.

We also assume that the cost of an action to one player is independent
of its value to the other. It would be straightforward to extend the model
to the more realistic case of conditional independence. By “conditional” we
mean the following. Consider a negotiator who thinks of an action that her
opponent could perform. The negotiator knows her own valuation of the
action. She also has certain beliefs about the action’s cost to her opponent.

Suppose her opponent can infer these beliefs from a description of the
action alone. Suppose also that the first player knows what her opponent
will believe about her (the first player’s) valuation. These two conditions
hold if and only if each action is associated with a distribution of costs and
values in which cost is independent of value. Cost and value can be correlated
across actions, but not for a given action. It would be routine to extend the
analysis to this more realistic case. We think that little would be gained from
the exercise, however.

Some of the literature on bargaining with perfect creativity has been
concerned with explaining delay tactics. If a player places a low value on an
agreement, she may delay in order to signal her valuation and thus obtain
better terms [4, 23, 10, 1, 12].

Bounded creativity is another explanation of delay. In our model, a player
may refrain from proposing a settlement that would give her a positive payoff.
She does so hoping that, in the next, period, the other player will propose an
agreement that is even better for her.

Under bounded creativity, if one player proposes a settlement early in the
game, the other may become more reluctant to accept. By proposing early,
the first player reveals that she places a high valuation on the actions the

3Kennedy et al [15, page 114] note several exceptions: “Common Market member
negotiations, trade deals and funding of foreign currency transactions”.

4Parties may also negotiate under a deadline that one of the parties imposes [14, pages
44-45)]. Since such deadlines are endogenous, our model does not apply.
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second player would perform in the proposed settlement. This makes the
second player more likely to hold out for a more favorable agreement.

An early proposal may signal that the other player’s initial demands could
be satisfied at low cost. It may signal that the proposal would give the
proposer a positive payoff.> Or it may signal nothing. However, there are
some things an early proposal never signals in our model. It never signals
that the proposal would give the proposer a negative payoff. It never signals
that the other player’s initial demands would be hard to satisfy.

5The other player’s demands may be high cost in this case, as long as the proposer
places an even higher value on her own demands.
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Chapter 2
THE MODEL

The model has four periods. Player 1 is active in periods 1 and 3. Player 2
is active in periods 2 and 4. Each period, including the first, begins with an
adjournment. During the adjournment, the active player (say, j) thinks of a
new action that the inactive player (say, k) might perform as part of a final
settlement. Player k£ does not get any ideas during this adjournment. We
refer to the action conceived in adjournment n € {1,2,3,4} as ™.

Associated with i" is a pair (v",c"). v" is the value of the action to player
j. c™ is the cost of the action to player k. Player j knows v™ immediately
upon thinking of the action. Player k learns ¢™ if and when player j describes
the action to k. Player j never observes c*, although player k's actions may
reveal it. Likewise, player k never observes v™.

We also assume that ¢ € {cL,cy} and v™ € {vr, vy}, where

0<cL<cH (2.1}

and
0<v <vy (2.2)

¢" = ¢y, with probability p. v™ = v, with probability q. ¢* is independent of
v", as well as of ¢™ and v™ for all m # n. Likewise, v" is independent of c"
and of ¢c™ and v™ for all m # n.

There are several possible orders of cr,cy,vr, and vy. We impose two
desiderata. First, between the two costs there should be a value. Second,
between the two values there should be a cost. These conditions are desirable
becauvse they approximate continuous distributions in which v and ¢ have
overlapping support.



Two orders satisfy these conditions:
c, <vp<cyg<vyg (23)

v <cr <vyg<cy (2.4)

Under order (2.4), an agreement would have a positive payoff for a player
only if the cost of her action were c¢;, and the value of the other player’s
action were vg. All other combinations would be worse than no agreement.
With order (2.3), there would be three ways that an agreement could have a
positive payoff. This is likely to give richer results. We select order (2.3).

After the adjournment, the players meet. The active player, j, can do one
of several things. She can accept the suggestion, if any. that £ made in the
prior period. A suggestion is a proposal, a demand, or an offer. A proposal
is a statement by one party of the form “if you do action A, I will do action
B.” A demand is a statement of the form “I want you to do action A.” An
offer is a statement of the form “I will do action B if you desire.”

Note that we do not permit suggestions to include more than one action
of a given player. This restriction is appropriate when a given player’s actions
are mutually exclusive. More generally, the marginal value of a second action
by one player 1aust always be less than ¢;. Even under these assumptions,
our restriction does limit the signals players can send.

If j accepts k’s suggestion, the game ends. Suppose the suggsastion com-
mits player j to perform an action with cost ¢ and value v. (Set ¢ =v =0 if
the agreement contains no action for j to perform.) Suppose also that player
k is to perform an action with cost ¢’ and value v'. (Set ¢’ = v’ = 0 if the
agreement contains no action for k to perform.) Then j’s payoff is

uj =83 (v' —¢) (2.5)

and k’s payoff is
up = (v —¢) (2.6)

where n is the period. We assume that the discount factors §;, 6; fall in the
interval [0,1]. If the game ends without any suggestion having been accepted,
both players receive zero payofis.

If j rejects k’s suggestion, then j must make a suggestion of her own.
(Player j cannnt ‘pass’.) The suggestion can include any action that j has
thought of, as well as any action that £ has mentioned in a prior suggestion.
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The fourth period is like the first three. However, if player 2 makes a
suggestion in period 4, there is no period 5 in which player 1 could respond.
For simplicity, we assume that player 2 can accept or reject any period 3
suggestion of player 1, but cannot make a new suggestion.

We also assume that

v > vy — C (27)

This guarantees that any ofter would be accepted, giving the offerer a negative
payoff. Since a player can guarantee herself a payoff of zero, players will never
make offers.

11



Chapter 3
FINDING THE EQUILIBRIA

We look for pure strategy perfect Bayesian equilibria (7, pages 331 fl.]. We
also restrict attention to games with generic extensive forms. That is, we
ignore equilibria that occur only on parameter sets of measure zero.

The concept of equilibrium assurnes that players can be certain about
their opponents’ strategies. While such certainty may be plausible in our
game, it seems a poor approximation to the intricate and uncertain activity
that we are trying to model. Thus, we also assume that players do not choose
weakly dominated strategies. This assumption gives outcomes that rely less
heavily on common knowledge.

Everything in the game is aiscrete. Completeness would require a descrip-
tion of the mixed strategy equilibria as well. Although the mixed equilibria
are easy to find with our technique, we do not describe them here. Most of the
important features are already present in the pure equilibria. In addition,
a grid search shows that some pure equilibrium occurs in (approximately)
97.5% of the parameter space.

Lemma 1 describes common features of the pure equilibria.

Lemma 1 In any pure strategy perfect Bayesian equilibrium,

1. Players never make offers.
2. Players never accept demands.

3. In period 1, player 1 demands idea i'.

12



4. In period 2, player 2 either demands i* or proposes (i*,1?).

5. If 2 proposes (i',1%) in period 2, 1 may accept in period 3. If 1 accepts,
the game ends. If I rejects, or if 2 demands i? in period 2, then I either
demands i' or i3, or proposes (i,1%) or (i3,12).

6. In period §, player 2 accepts the proposal (i',1%) iff ¢! < v?. Player 2
accepts the proposal (¢3,1%) iff ¢ < v?. Player 2 rejects any demand.

Proof

1 Any offer would be accepted by (2.7). The offerer’s payoff would be neg-
ative. But a player can guarantee a payoff of 0 by always demanding
and never accepting.

2 To accept a demand would also give a negative payoff.

3 Player 1 has no alternative.

4 Claims 1 and 2 of this Lemma rule out player 2’s other choices.

5 Player 1 rejects any demand by Claim 2. The rest follows from Claim 1.
" 6 This follows from Claim 2, (2.5), and (2.6).

Lemma 1 specifies players’ strategies in periods 1 and 4. Strategies can
vary in periods 2 and 3 only. We now describe the form these strategies take.

Player 2’s period 2 action may signal something about 2’s private infor-
mation, or “type”, (c',v?). Let D be the action of demanding i* in period
2. Let P be the action of proposing (i',:?). Suppose player 2 demands :*
in period 2. Player 1 first rejects 2's demand, by Lemma 2. If v' < ¢* and
v® < ¢2, then player 1 demands ¢! or i3, since any other response is weakly
dominated. Otherwise, player 1 proposes either (:!,:%) or (¢3,:%), depending
on whether or not

61(v' = ¢*) Proh (v? > ¢'| D)
> 6 (v® = c?) Prob (v* > ¢®| D) (3.1)

13



where these probabilities are based on !'s updated beliefs about 2’s type,
(v3, ).

Now suppose 2 proposes (i!,1%) in period 2. If v! < ¢? and v® < ¢?,
then player 1 rejects and again demands either ! or i3, by weak dominance.
Otherwise, player 1 either accepts or proposes (i3, %), depending on whether
or not

v' — ¢ > 6(v® = ¢*) Prob (v2 > | P)
Player 1 will never reject (:!,7%) and then propose (:,:%). If v! < c?, it is at
least weakly better to demand something. If v* > ¢%, then

v' = c® > §(v' — ¢?) Prob (v > ¢! | P)

so it is strictly better to accept 2’s initial proposal.
We can also say something about player 2's optimal period 2 action.
Given 1’s strategy and the distribution over 1’s period 3 information, or

type, (v!,c?, v?), player 2 can compute the probabilities of 1’s various period
3 responses. Let

r = Prob( 1 accepts| P) (3.2)

s = Prob ( 1 rejects and proposes(i®.:*)| P) (3.3)

t = Prob ( 1 proposes(i',i%)| D) (3.4)

u = Prob ( 1 proposes(:®,i*)| D) (3.5)

If 2 proposes, 2 gets

Uy = (v =c')r
1 proposes (z°,42)
+ 828Es | max(v? — ¢3,0) | in response to (3.6)
2’s proposal |

where Es denotes the expectation over ¢3. If 2 demands, 2 gets

Uy =
b2t [max(v® — c',0)]
1 proposes (z3,12)
+6uEs | max(v? — ¢?,0) | in response to (3.7)
2’s demand

14



Player 2 proposes if U’ > UP and demands if Uf < UP.

We have seen how player 1’s posteriors determine 1’s best response, as
a function of (v',¢%v%). 1's best response function determines player 2’s
expectations, which are summarized by r, s, t, and u. Player 2's expectations
determine 2’s best period 2 action, as a function of (v2,¢'). This function
in turn generates posteriors for 1.! Every perfect Bayesian equilibrium is a
fixed point of this circular process. To find the equilibria, we must explore
the details nf the best response correspondences. We do so in Appendix A.
The equilibrium actions are given in Tables 3.1 and 3.2. Equilibrium codes
such as “ZS8” will be defined in Theorems 1-7. The full list of equilibria is
ZS, SS, TSZ, DSZ, TZZ, DZZ, and B.

We now describe all pure equilibria. We use colorful names to make the
equilibria easier to remember. In the first equilibrium, player 1’s discount
facior is large, so 1 is patient. In Yiddish, a patient person is said to have
good zitzflaysh (literally, “sitting flesh”). Player 2’s discount factor is small,
so 2 is anxious for an agreement. In Yiddish, a restless, antsy person is said
to be on shpilkes (literally, “pins”).

Theorem 1 (The Zitzflaysh—Shpilkes (ZS) Equilibrium)

The actions given in Tables 3.1 and 3.2 under “ZS" are a perfect Bayesian
equilibrium if

(vr —eL)(1 — g+ pg)
b > (vg —cL)(l — ¢ + p?q) (3:8)
and
Vg — CH
b < max{vﬂ — (per + (1 — p)er)’
(ver — cu)(1 — q + pq?)
(v —cu)(1 — g+ pg?) + (cw —cL)pl(1 — q)2 + pq]} (3.9)

The two ratios on the right hand side of (3.9) are both in the interval (0,1).
There is a nonempty, open region of the parameter space in which both of
the ezogenous requirements are satisfied,

Proof
Appendiz B.

'Of course, player 1’s posteriors are indeterminate following a probability zero action
of player 2.
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[ 2’s Type: (+2,¢") | Equilibria | 2’s Period 2 Action ||
(v, cH) 75,SS,B Propose (z!,1%)
TSZ,DSZ,TZZ,DZZ Demand 2
(ve,cr) All Propose (z!,4%)
(v, ch) 7S8,SS,TSZ,DSZ,TZZ,DZZ | Demand 3*
B Propose (i!,12)
(vr,cL) All Propose (z!,2?)

Table 3.1: PLAYER 2’s ACTIONS IN ALL EQUILIBRIA

1’s Period 3 Action if 2:
1’s Type: (v!',c%,v%) | Equilibria | Proposes | Demands
(v, cH,vH) All but B Accept Propose (2°,4%)
B Accept Propose (i!,:?)
(ve, cH,vL) All Accept Propose (z!,:%)
(ve,crL,ve) All but B Accept Propose (23, :%)
B Accept Propose (z!,1%)
(ve,cL,vr) 7S,SS,TSZ,T77Z | Accept Propose (z°,1%)
DSZ,DZZ,B | Accept Propose (i!,42)
(vr,cy,vg) All Propose (i3,i%) | Propose (z*,1%)
(vr,cH,vL) All Demand Demand
(vL,cL, vH) 7S, TZZ,D7Z | Propose (i°,:%) | Propose (z°,1°)
SS,TSZ,DSZ | Accept Propose (z3,:2)
B Propose (i3,i2) | Propose (z!,:%)
(v, crL,vL) All but B Accept Propose (z°,%%)
B Accept Propose (i!,12)

Table 3.2: PLAYER 1'’s PERIOD 3 ACTION IN ALL EQUILIBRIA

16




In the next equilibrium, both players’ discount factors must be small.
Both players are on shpilkes.

Theorem 2 (The Shpilkes-Shpilkes (SS) Equilibrium)
The actions given in Tables 3.1 and 3.2 under “SS” are a perfect Bayesian
equilibrium if
5 < Lor—c)(d — g+ pg)
1

(ve —cL)(1 — q + p?q) (3.10)
and
Uy — CH
b < ‘“a"{vu —(per + (1 - penr)’
(v — cr)(1 — g+ pq) }
(ve — cr)(1 — q + pq) + (car — cL)p(1 — ¢)* + pa(2 — q))]
(3.11)

The two ratios on the right hand side of (3.11) are both in (0,1).
There is a nonempty, open region of the parameter space in which both of
the erogenous requirements are satisfied.

Proof
Appendiz B.

A comparison between ZS and SS shows the effect of 1’s discount factor. If
player 2 proposes, player 1 must choose between (i!,i?) right away and (i°, %)
(together with the risk that 2 will reject) one period later. If player 1’s type is
(v}, c?,v®) = (vr,cL, vr), player 1 prefers (i%,¢%) to (:',i%). However, player
1 prefers either proposal to no agreement. With these preferences, player 1
rejects and proposes (¢3,¢2) in ZS, where 1 has good :itzflaysh. But player 1
accepts 2's proposal in SS, because 1 is on shpilkes.

In the next four equilibria, 2 proposes if 1’s initial demand is low cost
(¢' = c) and demands if it is high cost (¢! = cx). Player 2’s period 2 action
reveals ¢! perfectly, but tells 1 nothing about v In period 3, player 1 still
believes that v = vy, with probability q. In the next equilibrium, q cannot be
too small. Suppose player 1’s type is (vg,cr,vL). Player 1 likes (i',1%) more
than (:%,4%), but prefers either to no agreement. If 2 demands rather than

17



proposes, player 1 does not propose his preferred (i!,1%) because ¢! = ¢y for
sure and v? is very likely vr. Thus, we say that 1 is timid about proposing
(il,iz). . .
Player 1’s discount factor cannot be too close to 1 in this equilibrium.
Player 1 is on shpilkes. When player 1’s type is (vL,cr,vy) and 2 proposes
(¢',42), player 1 impatiently accepts, even though he prefers (i3, 72).

Finally, player 2’s discount factor cannot be close to 0. Player 2 has good
zitzflaysh.

Theorem 3 (The Timid Shpilkes-Zitzflaysh (TSZ) Equilibrium)

The actions given in Tables 3.1 and 3.2 under “TSZ” are a perfect Bayesian
equilibrium if
v — CL

o < (1 =g+ pg)(vy —cr) (312)
Vg — v
17 - (1 = p)vr —per (3.13)
and
VH —CH
b > m“{vy —(pez + (1= p)enr)’
(ve —cu)(1 — g+ pg) }
(vw —cu)(1 — ¢+ pq) + (cu — cL)p[(1 — ¢)* + pg(2 - q))
(3.14)

The ratios on the right hand side of (3.14) both lie in (0,1).
There is a nonempty, open region of the parameter space in which all the
erogenous requirements are satisfied.

Proof
Appendiz B.

This equilibrium is the first to illustrate the use of delay to obtain a
more favorable settlement. When player 2’s type is (v2,¢!) = (vg,cy), the
agreement (i',72) would give her a positive payoff. However, if player 2

demands 22, player 1 will be more likely to propose (i%,¢?). And while ! is a

18



high cost action for player 2, there is some chance that i* will not be. Since
player 2 is patient in TSZ, she does demand 2 in the hope that player 1 will
propose (i3,1%). Player 2 is willing to delay because she has zitzflaysh.

In the next equilibrium, as in TSZ, player 1 always thinks that v? = v,
with probability ¢ in period 3. But ¢ is small in the next equilibrium, unlike
in TSZ. Thus, player 1 thinks it likely that 2 puts a high value on :2. When
1 is of type (vy,cr,vr) and player 2 demands 2, this belief leads player 1 to
propose his preferred (¢!,72). Player 1 does so even though he knows ¢! = cy.
Player 1 is very daring.

In addition, plaver 1’s discount factor is small in the next equilibrium, so
1 is on shpilkes. When player 1’s type is (v, cr,vy) and 2 proposes (i!,:?),
player 1 impatiently accepts, even though he prefers (z*,12).

Player 2’s discount factor cannot be close to 0, so 2 has zitzflaysh. Player

2 displays the clever delay behavior we saw in TSZ when (v?,c!') = (vy,ch).

Theorem 4 (The Daring Shpilkes—Zitzflaysh (DSZ) Equilibrium)

The actions given in Tables 3.1 and 3.2 under “DSZ" are a perfect Bayesian
equilibrium if
v —CL,

o < (1 —q+pg)(ve —cr) (3.15)
. vy — VL
TS o - (1 —p)vr — per (3.16)
and
VH —CH
b > max{vH_ (per + (1 — p)enr)’
(v —cr)(1 — ¢ +pq) ‘
(ve —cu)(1 —q+pqg) + (cu — c)pl(l — q)% + pq]} (3.17)

The ratios on the right hand side of (3.17) both lie in (0,1).
There is a nonempty, open region of the parameter space in which all the
ezogenous requirements are satisfied.

Proof
Appendiz B.
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In the next equilibrium, ¢ is large. As in TSZ, this makes player 1 timid
about proposing (:',:2) when player 1’s type is (vy,cr,vr) and 2 demands

z2

Player 2 has zitzflaysh in TZZ, so she cleverly delays agreement by de-
manding i* when (v% c') = (vy,cy). Player 1 also has zitzflaysh, so when
his type is (vr,cr,vy) and 2 proposes, 1 does not accept. Instead, he shows
his patience by proposing (z2,42), which he prefers.

Theorem 5 (The Timid Zitzflaysh~Zitzflaysh (TZZ) Equilibrium)

The actions given in Tables 3.1 and 3.2 under “TZZ” are a perfect Bayesian
equilibrium if

YH — vy,
> 3.18
1 vy — (1 — p)vr — peL (3-18)
as well as " c
6 > L—°L 3.19
' {1 - g+ pg)(vn — cr) (3.19)
and
Vg —CH
62 > max ,
’ {UH — (per + (1 — p)en)
('UH—CH)(]. —Q+pq2) } (3 20)
(vw —cn)(1 — g+ pg*) + (ew — cr)p[(1 — )2 + pq]

Both ratios in (3.20) lie in (0,1).
There is a nonempty, open region of the parameter space in which all the
ezogenous requirements are satisfied.

Proof
Appendiz B.

In the next equilibrium, q is small. This makes player 1 daring as we dis-
cussed in DSZ. As in TSZ, DSZ, and TZZ, player 2 has zitzflaysh in DZZ and
shrewdly demands i? when (v?,¢!) = (vg,ch). Player 1 also has zitzflaysh.
When 1’s type is (v, cr,vy) and 2 proposes, 1 rejects and proposes (z°,:%),
as in ZS and TZZ.
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Theorem 6 (The Daring Zitzflaysh—Zitzflaysh (DZZ) Equilibrium)

The actions given in Tables 3.1 and 3.2 under “DZZ” are a perfect Bayesian
equilibrium if
vy — VL

<
q vy — (1 = p)vr — per
v —CL,
5 > 3.22
'> T g pa)(on — 1) (3-22)
and
VH — CH
6 > ) )
? m“{wVme+u—Mm)
(vg — cu)(1 — ¢ + pg®) + (e — cL)p[(1 — q)* + pq?) '

Both ratios in (3.23) lie in (0,1).
There is a nonemply, open region of the parameter space in which all the
exogenous requirements are satisfied.

Proof
Appendiz B.

The next equilibrium is unlike all the others. It is a bit bizarre.

Theorem 7 (The Bizarre (B) Equilibrium)

The strategies given in Tables 3.1 and 3.2 under “B” are a perfect Bayesian
equilibrium if

vV, —CL,
o > 3.24
R i —— (3.24)
p< LTCL (3.25)

vy — CL

and

pq(1 — q)(vr — cz)

1 —q+ pg® ) .
3.96
1 —q+ pg%+ pq(1 —p)(1 —q) (3.26)

5, € ((CH — v )(1 — g + pg?)
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This interval may be empty.
There is a nonempty, open region of the parameter space in which all the
exogenous requirements are satisfied.

Proof
Appendiz B.

One unique feature of equilibrium B is that player 2 proposes even when
(v?,c') = (vL, ch), so that (i!,4i%) would give 2 a negative payoff. The reason
is that player 2 is actually more likely to obtain the agreement (z3,:2) by
proposing (z',7%) than by demanding :>. When (v2,c') = (v, cy), player 2
is willing to accept the risk that 1 will accept (z',7%) in the hope that 1 will
propose (z3,1%). Of course, |v;, — cy| must be very small relative to vy, — cf,
for this tradeoff to be desirable. This is implicit in (3.26).

Why does player 1 propose (i!,1%) so insistently if 2 demands (which 2
never does)? If 2 mistakenly demands, player 1 concludes that (v?c') =
(vr,cr) is quite likely. Thus, 1 believes that 2 is likely to accept (z',:2) but,
since v? is probably v, 2 is less likely to accept (i%,i?). This leads 1 to
propose (i',7%) in all cases but two. The exceptions are when

(UI’CQ, ,v3) € {('U[,,CH, ‘UH), (vLa CH, I'L)}

so that (z!,42) would give 1 a negative payoff.

Player 1’s strategy is remarkable when (v!,¢?,v3) = (vr,cr,vy). In this
case, 1 prefers (23,4%) to (z!, %), but he likes either beiter than no agreement.
When 2 proposes (i',i?), player 1 rejects and proposes (i3,12), which 1 prefers.
However, when 2 demands 72,1 actually proposes (:!,:?) rather than (3,42).
Player 1 does this because he is convinced that 2 is especially likely to demand
i? when (v?,¢c') = (vg,cL), so that 2 is much more likely to accept (i!,:2)
than (¢3,12).

Equilibrium B raises the exotic possibility that a player may be more
likaly to obtain a given settlement by not proposing it. Below, we discuss a
pair of multiple equilibria that jointly display a similar feature.

Now we show that there are no other pure perfect Bayesian equilibria.

Theorem 8 (“That’s All, Folks”)
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Theorems 1-7 describe the only pure perfect Bayesian equilibria.

Proof
Appendiz B.
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Chapter 4
MULTIPLE EQUILIBRIA

The parameter restrictions are too complex to capture in a 2 dimensional
chart. We performed a grid search to determine which equilibria can occur
for the same parameters. The search turned up open regions in which either
equilibrium ZS or TSZ may occur; in whick either TZZ or B may occur; and
in which DZZ or B may occur. We give examples in the following table.
The search turned up no other instances of multiple equiiibria for generic
parameters. (Without loss of generality, we assumed ¢, = 1 and vy = 2.)

In equilibrium B, player 2 was more likely to obtain the settlement (z!,7?)
by demanding :*> than by proposing (:!,:2) itself. In a given equilibrium,
making a proposal early on can make the players less likely to settle on the
proposal.

Comparing ZS and TSZ reveals a different but analogous property. In
either ZS or TSZ taken alone, making a proposal early on does make the
players more likely to settle on the proposal. However, player 2 is more
likely to prcpose early in ZS than in TSZ. Since the types of player 2 who

Parameter Examples
Pair of Equilibria| p | ¢ | & | & | o | v | eu | vu
ZS,TSZ 0.353 | 0.941 | 0.412 | 0.882 | 1.000 | 1.176 | 1.294 | 2.000
TZZ,B 0.529 | 0.588 [ 0.882 | 0.882 | 1.000 | 1.588 | 1.647 | 2.000
DZZ,B 0.588 | 0.353 | 0.765 | 0.882 | 1.000 | 1.647 | 1.706 | 2.000

Table 4.1: Examples of Multiple Equilibria
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propose early are different, proposing early has a different meaning (signalling
content) in the two equilibria. This difference in meanings actually makes
player 1 less likely to accept in ZS than in TSZ.

In particular, an early proposal is a stronger signal in ZS than in TSZ
that player 2 places a high valuation on her demand (the action she wants
player 1 to perform). If player 1 does not like 2's offer (the action 2 offers
to perform), player 1 knows 2 is more likely (in ZS than in TSZ) to accept
a substitute for this offer. This makes player 1 less likely to accept an early
proposal.

Why is player 2 more likely to propose in ZS, even though 1 is less likely
to accept? Player 2’s action differs only when (v?, c!) = (vy,vg). For the
parameters in which both ZS and TSZ can occur, player 2 has the following
preferences over outcomes when (v, c!) = (vy,vy):!

e Best Outcome: 1 proposes (z°,12).
e Second Best: 1 accepts (z!,72).
e Third Best: 1 proposes (i!,:2).

Thus, player 2 actually wants 1 to reject her proposal and then propose (i3, i2)
when (v2,c') = (vg,vy). Since 1 is more likely to do so in ZS than TSZ, 2
is willing to propose in ZS but not in TSZ when (v?,c') = (vy,vy).

B and TZZ can also occur for the same parameters, as can B and DZZ.
These multiplicities underscore the finding that, for given parameters, the
meaning of an early proposal may depend on the equilibrium. In TZZ and
DZZ, an early proposal signals that player 2 likes 1’s initial demand (i.e., that
¢! = ¢1). This is what we would expect, since player 2 is more likely to obtain
the settiement (:',7%) by proposing it and since 2 is somewhat impatient.?

!Player 1’s change in ZS (relative to TSZ) raises s, lowers r, and leaves t and u un-
changed. From the formulae in the proof of Lemma 2, this can raise U (2’s payoff to
proposing) when (v2,c') = (vg,cq) only if

vg —cy <bxlvw — (per + (1 — plen)]

(This uses the fact that r + s is constant [Lemma 4].) This can happen in both equilibria.
It implies the preferences over outcomes that we claim for 2, by the proof of Lemma 4.
’By equation (3.26). We are talking about parameters for which B is also possible.
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But in B, player 1 changes his respense to a demand because his beliefs
change. Given the parameters, 1’s strategy in B makes it unwise for player 2
to demand, regardless of her type. This changes the meaning of an early pro-
posal. An early proposal signals nothing in B, in the sense that 1’s posteriors
equal his priors following a proposal.
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Chapter 5
DISCUSSION

Bounded creativity offers a new explanation of delay in bargaining. It is
common for a player to refrain from making an early proposal because she
kuows the other player may come up with an even more favorable proposal.
If she is patient, she may do so even if the prefers the early proposal to no
agreement.

We also find that an excessive eagerness for a particular proposal can
make the proposal a less likely outcome of negotiations. In equilibrium B,
player 2 is actually more likely to obtain the agreement (¢!,:?) by demanding
12 than by proposing (z!,:?) directly. (She proposes anyway.) A similar
property holds of the multiple equilibria ZS and TSZ. Player 2 is more likely
to propose in ZS than in TSZ. Proposing is also a stronger signal in ZS (than
in TSZ) that player 2 places a high value on the action she wants player 1
to perform. If player 1 can think of proposal he likes hetter, he will suggest
it in ZS. In TSZ, player 1 is less optimistic that 2 would accept a different
proposal, so he accepts 2’s initial proposal.

In general, an early proposal can signal one of three things in the pure
equilibria of the model. It can signal that the other player’s initial demands
could be satisfied at low cost (equilibria TSZ, DSZ, TZZ, and DZZ). It can
signal that the proposal would give the proposer a positive payoff (equilibria
7S and SS). It can also signal nothing (equilibrium B). In the pure equilibria
of this model, an early proposal never signals that the proposal would give
the proposer a negative payoff, or that the other player’s initial demands
would be hard to satisfy.
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Appendix A

Properties of the Best
Response

This appendix derives the properties of the best response correspondence in
a sequence of Lemmas.

Player 2’s period 2 action may signal something about 2’s private infor-
mation, (c!,v?). Let D be the action of demanding i* in period 2. Let P
be the action of proposing (i!,1%). Let p(c,v|a) be the posterior probability
that 1 places on the event (c!,v?) = (c,v) when 2 selects action a € {D, P}.

For brevity, define

op = p(cr,vr|D) (A1)
ap = p(cp,vr|P) (A.2)
vp = p(cw,vi|D) (A.3)

vp = p(cn,vr|P) (A.4)

The following Lemmas give player 1’s period 3 action as a function of these

beliefs.

Lemma 2 Suppose player 2 demands 1% in period 2.
1. Player 1 first rejects 2’s demand.

2. If v! < c? and v3® < c? then player I demands i' or 3.
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3. Ifv! > c? and
(' =) (1 =0} > (v" = *)(ep +p)p + 1 =~ ap — 7p]
then player I proposes (i',1%).
4. vaé > c? and
(v! = ¢*)(1 =) < (v’ = )[(ep + yp)p+ 1 ~ @p — 7p]

then player 1 proposes (3,12).
Proof

1 Follows from Lemma 1.

2 If (v', %, v%) = (vg,ch,vL), player 1 strictly prefers that there be no agree-
ment. By weak dominance, player 1 demands i' or :* rather than
proposing anything.

3 By demanding i' or 13,1 receives a payoff of zero. By proposing (i,:?), I
receives the payoff

61(v' —c?) Prob (v > ¢! | D)

where this probability is based on 1’s posteriors. By proposing (i3,1%),
I receives the payoff

6;(v® —c*) Prob (v2 > ¢ | D)

By definition, 1 — yp is the probability 1 places on v? > c' when 2
selects action D. (ap +vp)p+ 1 — ap — vp is the probability 1 places
on v? > ¢ when 2 selects D. Lemma 3 follows by substituting these
probabilities into 1’s payoffs.

4 See proof of 3.

Lemma 3 Suppose player 2 proposes (i!,1%) in period 2.
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1. If v! < c? and v3 < c? then player 1 rejects and demands either i or

.

o

If v > ¢? and
vl —c* > 8(v° - ) [(ap +7p)p + 1~ ap — 1P|
then player 1 accepts 2’s proposal.
3. If v3 > c* and
v' =t <& =) [(ap +p)p+ 1 - ap — 7P]
then player 1 rejects 2’s proposal and proposes (i3,12).
Proof
1 Follows by weak dominance.

2 By accepting, 1 gets v* — c¢?. By rejecting and proposing (i',i?),1 gets
Y P g 1 g

61(v' —c?) Prob (v2 > ¢ | P)
By rejecting and proposing (13,12), 1 gets
61(v® —c?) Prob (v2 > & | P)

Player 1 will never reject and propose (i',i2). If v! < c%, it is at least
weakly better to demand something. If v' > ¢?, it is strictly better
to accept 2’s initial proposal. Player [ either accepts or rejects and
proposes (13,1%).

The probability that v? > ¢ given that 2 proposes is (ap + vp)p+ 1 —
ap — vp. 2 follows by substitution.

3 See proof of 2.

We can also say something about player 2’s optimal period 2 action. Let

r, s, t, and u be as defined in (3.2)-(3.5). Also define the function ¢(v,c) by

#(v,e) = (v—2c) [r ~bxt1(v > c)]
+63(t = 7) [p(o — e1) + (1 = p)(v = er) L(v = vir)] (A5)
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where 1 is the indicator function, which equals 1 if its argument is true and
0 otherwise.

Lemma 4 L.r4+s=1t+u.

2. Player 2 proposes (i',i%) if ¢(v? c') > 0 and demands i? if $(v? c') <
0.

Proof

1 1 —r — s is the probability that player 1 demands something in response
to a proposal of (:',1%). By Lemma 3, this happens if and only if-
(v, c2,v3) = (vr,ch,vr). Similarly, 1 —t — u is the probability that
player 1 demands something in response to a demand of i*. By Lemma
2, this happens if and only if (v!, ¢?,v3) = (vp,cqy,vr). Thus, 1—r—s =
-t —u.

2 If 2 proposes, 2 gets UL, defined in (3.6). Since ¢® and v® are independent,

UP = (v® = c')r + 6,5 [p(1)2 —cr)+ (1 =p)(v* —cy)1l(0? = vn)]
(A.6)
If 2 demands, 2 gets UP, defined in (3.7). Again, ¢® and v® are inde-
pendent. Using this and the definition of 1, 2’s payoff becomes

up = 52‘ [t[v2 —cl(? > &Y
+u (p(v? — o) + (1= P = en) 1 (0* = wm) | (A7)

Now subtract A.7 from A.6. By Claim 1 of this Lemma, we can sub-
stitute t —r for s — u. This establishes that UY — UP = ¢(v?,ct).

Lemmas 3 and 2 show how player 1's beliefs ap, yp, ap, and yp determine
1’s best response, as a function of (v!, ¢?,v®). This function determines player
2’s expectations, which are summarized by ¢ and r. Lemma 4 shows how ¢
and r determine 2’s best period 2 action, as a function of (v%,c!). This
function generates values of ap, vp, ap, and yp. Every perfect Bayesian
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equilibrium is a fixed point of this circular process. To find the equilibria,
we must explore the details of the best response correspondences.

Lemma 5 explores player 1’s best response when 2 demands :2. First
define the functions

—(vg —v) + vplve — (1 — p)vr — per)

w(yp) = 01— ) (vr - ep) (A.8)
_ vy — v —7p|[(1 — p)vg — vr + pci]

z(vp) = 0= p)om — o) (A.9)

y(vp) = [Tf_p D (A.10)

Lemma 5 Suppose player 2 demands i* and player 1’s beliefs are ap and
D

1. Suppose
(vl,C‘Z,vS) € {(’UL,CL,’UL),(‘UH,CL,’UH),(UH, CH, ’UH)}

From 2’s perspective, this has probability pq® + (1 — q)2. 1 will propose
(21,4%) if ap > y(yp). 1 will propose (i3,1%) if ap < y(yp). 1 will miz
between the two if the two quantities are equal.

2. Suppose (v',c?,v3) = (vr,cu,vL) (probability (1 —p)q?). ! will demand
1

it or i3,

3. Suppose (v!,c?,v3) = (vi,cL,vy) (probability pg(1 — q)). Player 1 will
propose (i*,1%) if ap > z(yp). Player 1 will propose (i3,i%) if ap <
z(yp). 1 will miz between the two if ap = z(yp).

4. Suppose (v',c%,v®) = (vy,cL,vr) (probability pq(l — q)). Player 1 will
propose (i',i?) if ap > w(yp). Player 1 will propose (i*,7%) if ap <
w(yp). I will miz between the two if ap = w(yp).

5. Suppose (v!',c?,v3) = (v, cy,vy) (probability ¢(1 — p)(1 — q)). 1 will
propose (i3,1%).
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6. Suppose (v!,c?* v®) = (vn,ch,vr) (probability q(1 — p)(1 — q)). 1 will

propose (i',%).

Proof
The probabilities are all derived from the independence of v!, ¢*, and v3
from each other and from any of 2’s information.

1 Since v' — ¢ = v3 —c® > 0 in each case, 1 will propose (i',i%) if 1 —
7p > 1— (1 —p)(ap + D). (See Lemma 2). 1 will propose (i%,1?) if
1—9p <1—(1—-p)ap+vp). I will miz between the two if the two

sides are equal.

2 Lemma 1.

3 v! > ¢? and v® > %, so I will propose (i',i%) if (vp — cL)(l — D) >
(vg—cr)(1=(1~p)(ap+17p)) and (:3,i%) if the opposite holds (Lemma

2). 1 will miz between the two if the two sides are equal.

4 Analogous to 3.

5,6 In each case, one proposal gives either zero or less while the other gives
either zero or more. Weak dominance implies that player 1 will always
pick the latter.

Lemma 6 explores player 1’s best response when 2 proposes (!,7%). For
future convenience, define

_ lej-[ —vr + (1 — 51)6[,
= =6 (on —c1) (A.11)

Lemma 6 Suppose 2 proposes (i

,1%) in period 2.
1. Suppose

(vl’c'l,v3) € {(’UL,C‘IAvL),(vH'pCL’vH)!(ijcH,vH),
(vH,cL,vL), (v, ¢y vL)}

The probability of this is 1 — q+ pq®. Player 1 will accept 2’s proposal.
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2. Suppose (v',c?,v®) = (vr,cu,vL) (probability (1—p)q?). 1 will demand
something.

3. Suppose (v!,c* v®) = (v, cL,vy) (probability pq(1 — q)). Player 1 will
accept if ap +vp > z, where z is defined above. I will propose (:°,1%)
if ap + vp < z. 1 will miz between the two if ap + yp = z. ‘

(vi,ch,vy) (probability (1 — p)e(l —q)). I will

4. Suppose (v!,c?,v)
always propose (i*,

[ V]

i2).
Proof
1 In each case, 1 will accept by Lemma 2.
2 Lemma 1.
3 By Lemma 3, 1 will accept if
v —cr > &i(vw —eL)(1 = (1 = p)(ap + 7P)

1 will propose (:3,1?) if the opposite holds and miz if an equality holds.

4 This holds by Lemma 3, using v* < ¢ < v3.

We can use Lemmas 5 and 6 to express player 1's best response as a
function from (ap,vp,ap,vp) to (r,s,t,u). Lemmas 7, 8, and 9 do this.

Lemma 7
(1-q+pg®q(1—q)) if ap +7p < 2
(r,s) = (1-q+pg,q(1-p)(l-4q) ifap+vyp >z
’ (1 —q+pg®+vpq(l — q),q(1 — q) — vpg(1 — q)) for any v € [0,1]
fap+yp =2
Proof

This follows directly from Lemma 6.
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To characterize ¢t and u as functions of ap and 7yp, we first need to
establish some properties of the conditions on ap and 4p given in Lemma 5.

Consider the functions w(-), z(-), and y(-) in (ap,vp) space. Let ap take
the vertical axis. See Chart A.

Lemma 8 1. ap = w(yp) is a line eztending from the ap azis, below the

origin, to the point (£, 1).

2. ap = z(7p) is a line extending from the ap azis, above the origin, to

the point (%, 1).

3. ap = y(7p) is a line extending from the origin to the point (&, 1).

1-p?
Proof
This can be verified with simple algebra.

We can now specify t and u as functions of ap and yp. Let the open
regions W, X, Y, and Z be as given in Chart A. The slope of z(yp) may
be either positive or negative. Define T as the triangular region {(ap,yp) €
[0,1])z[0,1}; @p + vp < 1}. The regions are defined by:

W = {(ap,vp) € T : ap € [0,w(yp))} (A.12)
X = {(ap,vp) € T : ap € (w(vp),¥(7vp))} (A.13)
Y = {(ep,10) € T : ap € (y(70), z(7p))} (A.14)

Z = {(ap,yp) € T : ap € (z(vp),1]} (A.15)

From Chart A, Region Z is nonempty if and only if 2(0) < 1.

Ir all regions, 1 demands ¢! or 2 if and only if (v}, c%. v3) = (v, cq,vL). In
Lernma 9, we will specify when 1 proposes (z!,4%) and when 1 proposes (i3, 12).

Understand “all other cases” to exclude the case (v!,c?, v*) = (v, cq, vL).

Lemma 9 If (ap,p) is contained in:

1. Region W; then (t,u) = (q(1 —p)(1 —q),1 —q+pq). I proposes (i*,?)
iff (v}, c%,v®) = (vh,ch,vL). 1 proposes (i%,1%) in all other cases.
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2. The W /X Border, then 1 proposes (i',i%) iff (v*,c?,v®) = (vu,cn,v1)
c =

2
and mizes between the two proposals iff (v',c*,v®) = (vu,cr,vr). I

proposes (13,4%) in all other cases.

3. Region X, then (t,u) = (q(1 —q),1 — q + pqg?). I proposes (i*,%) iff
(v', %, v®) € {(va, o, vL), (Va, cr,vL)}
1 proposes (i3,42) in all other cases.
4. The X/Y Border, then 1 proposes (i!,:?) iff
(v', %03 e {(very cur,vL), (va, e, ve)}
and mizes between the two proposals iff
(v', %, v°) € {(vL,cr,vL), (va,cL,vn), (e, ca,vm)}
1 proposes (13,i%) in all other cases.
5. Region' Y, then (t,u) = (1 — q + pqg® q(1 — q)). I proposes (i3,i?) iff
(v', &, v%) € {(ve, e, vm), (vi, car, ve)}
1 proposes (i',1%) in all other cases.

6. The Y/Z Border, then I proposes (i%,1%) iff (v',c?,v®) = (vr,cH,vy)
and mizes between the two proposals when (v}, c? v3) = (vr,cr,vy). 1

proposes (i1,1%) in all other cases.

7. Region Z, then (t,u) = (1 — ¢+ pq,q(1 — q)(1 — p)). I proposes (i3,4?)
iff (v!, %, v3) = (vp,cu,vl). 1 proposes (i',:?) in all other cases.

Proof
This follows directly from Lemmas 5 and 8.

Lemmas 7 and 9 completely specify (r, s, ¢, u) as functions of (ep, vp, ap, 1p)-
It now remains to specify (ap,vp,ap,yp) as functions of (r,s,t,u). For
brevity, define

_ p(cu —cr)
"= cq — (1 — b2)vey — 82(per, + (1 — p)ey) (A.16)
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(1 = p)(cr —cL)

L= A.17
(1 = ba)vy — e, + b2(per, + (1 — p)en) (A-17)
p(vr —c1)
U = A.18
cy —vr + 8p(vp —cr) ( )
_1-»p
k=T 5p (A.19)

Lemma 10 1. n may be positive or negative. If positive, it ezceeds 1/6,.
$(va, cu) > 0 if either n <0 orn > 5. $(vm,en) <0 if £ > 7 > 0.

2. 1€ (0,1). d(va,cL) > (<) 0 if e < (>) &
3. P € (0,1/63). (v, em) > (<) 0 if ¢ > (<) &

4o K E(0,1). dlocr) > ()0 if k< (>) . Also, &> ¢.
Proof

These are simple applications of algebra. One can derive the properties
of n, ¢, ¥, and k using (2.3) and the facts that p, q, 6,, 6; € (0,1). One
can ezxpress the condition ¢ > (<) 0 in terms of 51 and n, ¢, ¥, and k by
manipulating the definition of ¢ in (A.5).
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Appendix B

Proofs of Theorems

To prove that the list of equilibria is complete, we classify equilibria according
to the relations between r, t, é,, 7, ¢, ¥, and x. Equations (A.16), (A.17),
(A.18), and (A.19) define 7, ¢, ¥, and &, respectively. Theorems 1-6 discuss
the cases in which ﬁ > ¢,%, and k. Theorem 7 discusses one equilibrium
in which this does not hold. Theorem 8 shows that there is no other such
equilibrium.
Proof of Theorem 1 We will show that ZS is the only pure equilibrium that
satisfies the three properties

r

5 >, 9, and K (B.1)

EMMrn<00rn>é%>0 (B.2)
2

and (3.8). Then we will show that (3.9) is equivalent to (B.2).

(B.1) and (B.2) imply the description of 2’s actions in Table 3.1, by
Lemma 9.

Given 2’s actions, we compute:

Pq
ap = —————
l—q+pq
p =0
ap =0
Y =1
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These use Bayes’s rule and the definitions in (A.1),(A.2),(A.3), and (A.4).
(3.8) is equivalent to

> Pq

1-q+pg
Thus, ap + yp < 2. Using this, Lemma 6 provides 1’s responses when 2
proposes. From Lemma 7 we find

z

r=1-q+pg

(ap,vp) = (0,1) must fall in region W in Chart A. Lemma 9 then provides
I’s responses when 2 demands, as well as:

t=q(l-p)(1—q)

Finally, (3.9) is an algebraic transformation of (B.2) that uses (A.16) and
the formulae for r and t. By (2.3), the two ratios in (3.9) fall in (0,1).

We know the erogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly at, for example,

(p,4q,61,62,cL,vL,cH,vH) = (0.2,0.2,0.4,0.2,1.0,1.2,1.4,2.0)

Proof of Theorem 2
We will show that SS is the only pure equilibrium that satisfies the three

properties

r
v > ¢,%, and & (B.3)
Either n < 0 or g > = >0 (B.4)

8ot
and (3.10). The proof is analogous to that of Theorem 1. The only difference
is (3.10), which is equivalent to
< Pq
1-q+pq
This condition confirms 1’s acceptance of 2’s proposal when (v!,c? v?) =
(ve,cL,vh) by Lemma 3. By Lemmas 7 and 9, respectively, we find

z

r=1-q+pq
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and

t=g(1-p)1-9q)
(3.11) is an algebraic transformation of (B.4) that uses (A.16) and the for-
mulae for v and t. The two ratios in (3.11) are in (0,1) by (2.3).
We know the ezogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly at, for ezample,

(P, q, 61,62, €Ly VL CH vy) = (0.2,0.2,0.2,0.2,1.0,1.2,1.4, 2.0)

Proof of Theorem 3
We will show that TSZ is the only pure equilibrium that satisfies

n>0 (B.5)
r
6_2—t > (B.6)

and (3.12). Then we will show that (B.5) and (B.6) are equivalent to (3.14).

By Lemma 10, when > 0, 7 also exceeds ¢, ¥, and k. By (B.6), then,
E;—: ezceeds 1, ¢, ¥, and k. Given this, Lemma 10 verifies that 2’s strategy is
as claimed.

Given 2's strategy, 1’s beliefs must be (ap,vp) = (0,q) and (ap,vpP) =
(q,0) by Bayes’s rule. One can show that (3.13) is equivalent to w(q) >
0. Thus, (ap,yp) must be in region W(see Chart A ). This establishes 1’s
strategy when 2 demands i2. In addition, (3.12) is equivalent to ¢ > 2. But
ap+7p = q¢ > 2 This establishes 1’s strategy when 2 proposes (21,2%).
Inspection shows that 1’s strategy is the same as in Theorem 2. Since v and

t depend on 1's strategy only, they must be the same as well:
r=1-q+pq

t=q(1-p)(1—4q)

(3.14) is equivalent to (B.5) and (B.6) by an algebraic manipulation.
We know the ezogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly at, for example,

(p 61, 82, ¢, vE, e, ver) = (06,0.8,0.2,0.6,1.0,1.4, 1.6, 2.0)
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Proof of Theorem 4
We will show that DSZ is the only pure equilibrium that satisfies

n>0 (B.7)
r
5ot >n (B.8)

and (3.15). The proof is directly analogous to that of Theorem 3. Player 2’s
strategy is the same, so (ap,7p,ap, p) is also the same. However, (3.16)
15 equivalent to w(q) < 0. Thus, (ap,vyp) must now be in region X(see Chart
A). Lemma 9 then gives 1’s strategy when 2 demands i®. Lemma 9 also gives

t=q(l1-gq)

(3.15) is equivalent to q > z. Thus, we still have ap + vp = q¢ > z as in

Theorem 3, so 1’s strategy when 2 proposes (i',1%) is as in Theorem 3. Thus,

r=1-q+pq

(3.17) is equivalent to (B.7)-(B.8) by the formulae for r and t and the usual
algebraic manipulation. The two ratios in (3.17) fall in (0,1) by (2.3).

We know the ezogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly at, for example,

(p,q,61,02,cL,vr,cH, vy) = (0.6,0.2,0.2,0.8,1.0,1.2,1.4, 2.0)

Proof of Theorem 5
We will show that TZZ is the only pure equilibrium that satisfies

n>0 (B.9)
r
5_2t >n (B].O)

as well as (3.18) and (3.19). The proof is analogous to that of Theorem 3.
However, (3.19) is equivalent to q < z. This implies that, if 2 proposes (i*,i?)
and (v',c?,v®) = (vg,cL,vy), player 1 will propose (i3,i?). This is the only
difference in strategies from Theorem 3. Coincidentally, 1’s strategy is now
equal to 1’s strategy in Theorem 1. This implies that r and t will be the same
as in Theorem I:

r:=1—q+pg’
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t=q(1-p)(1-q)
(3.20) is equivalent to (B.9) and (B.10), using the formulae for r and t and
the usual algebraic manipulation.
We know the exogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly at, for example,

(p, q, 51 , 52, Cr,VL,CH, 'DH) = (0.6, 0.8, 0.6, 0.6, 1.0., 1.4, 1.6, 2.0)

Proof of Theorem 6
We will show that DZZ is the only pure equilibrium that satisfies

n>0 (B.11)
r
5 > (B.12)

as well as (3.21) and (3.22). This proof is also analogous to that of Theorem
3, except that (3.21) and (3.22) are the opposites of (3.12) and (3.13), respec-
tively. Since (ap,vp) = (¢,0), (3.22) implies that 1 will propose (i%,:2) if 2
proposes (i',1%). Thus, 1’s response to a proposal is thc same as in Theorem
1, and
r=1-q+pg’
(3.21) implies that (ap,vp) = (0,q) is in Region X on Chart A. This es-
tablishes that 1’s response to a demand will be as in Theorem 1, with the
ezception that (vy,cL,vL) proposes (i',i%) rather than (i3,1%). Lemma 9 also
implies:
t=q(l-gq)

(3.23) is equivalent to (B.11) and (B.12) by the formulae for r and t, using
the usual algebraic manipulation.

We know the ezogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly at, for erample,

(P, q,61,62,cL,vL, cH,vp) = (0.6,0.2,0.4,0.8,1.0,1.2, 1.4, 2.0)

Proof of Theorem 7
We will show that B is the only pure equilibrium in which

0<LI€<’—<1/J (B.13)
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and that (3.24)-(3.26) are both necessary and sufficient for B to be an equi-
librium.

(B.18) implies that 2 always proposes, by Lemma 10.

(B.13) holds only if r < t, since ¢ < 1/6, by Lemma (10. Bul the only
way to obtain r <t in a pure equilibrium is

r=1-gq+pq’

and
t=1-q+pg

by Lemmas 7 and 9. These values of r and t imply a particular strategy for
player 1. First, ap +yp < z, by Lemma 7. By Bayes’s rule, (ap,yp) =
(pq, (1 —p)q). This confirms that q < z is necessary. And q < z is equivalent
to (3.24).

Given that ap + vp < z, Lemma 6 shows that 1’s strateqy is as claimed
when 2 proposes. The value for 1 implies

(ap,yp) € Z

as well as 1’s response when 2’s demands, by Lemma 7.

Player 1’s posteriors (ap,yp) are arbitrary following the probability zero
event of 2 demanding i*. Thus, (ap,vp) € Z implies only that Z be nonemply.
But by (A.15) or Chart A,Z is nonempty if and only if

vy — VL

(1 —p)(vg —cL) <!

which is equivalent to (3.25).
" (3.26) follows from (B.13), the necessary values of r and t, and the fact
that k >+ (Lemma 4).

We know the exogenous requirements hold in a nonempty, open region of
the parameter space because they hold strictly al, for example,

(p1 q, 617 627 cL,VL,CH, ’UH) =
(0.529,0.588, 0.882, 0.882, 1.000, 1.588, 1.647, 2.000)

Proof of Theorem 8
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In Lemma 10, we show that n > ¢, %, and k. Thus, Theorems 1 through
6 cover all equilibria in which 35 > +,%, and &. (See the proofs of these
Theorems.) We claim that Theorem 7 covers the only pure equilibrium in
which # is less than either ¢, v, or k.

Suppose == is less than at least one of ¢,%, and k. Since 1,1, and k are

Sat
all less than 51—2, we must have v < t. This can happen only if
r=1-q+pg (B.14)
t=1—q+pq (B.15)

in a pure strategy equilibrium (Lemmas 7 and 9). By Lemma 7, we must
have

ap+yp < z (B.16)
By Lemma 9, we must have (ap,yp) contained in Region Z. This implies
ap € (z(7p), 1] (B.17)

where z(-) is defined in (A.9).

Since ¢ < k by Lemma 4, there are only 5 possibilities:
1.0<L,1/)<g’2—t<fc
2.0< 1, k< 57 <%
3.0<L<-5;—t<1,b,/~:
4. 0<9Yp <z <y K
'5’0<6:_t<t” Y, K

(Commas indicate that an inequality applies to several variables. For exam-
ple, (1) means that 0 < 1 < &5 <k and 0 < ¥ < &5 < k.)
2t~ 2
Order (2) can occur in equilibrium (Theorem 7). The others cannot:

1. By (B.14), (B.15), (A.17), and (A.19), ¢ < 5 < & can occur only if

1—q+ pg?
b € (1 —q+pg*+pg(1 —p)(1 —q)’
(1 —q+ pg*)(vr —cL) )
(1 —q+pg*)(ve — c) + pg(1 — q)(1 — p)(en — cv)
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A bit of manipulation shows that this interval is nonempty only if vy, >
cH, contrary to assumption.

. This can occur. See Theorem 7.
. See (1).

. By Lemma 10, 2 proposes only if (v?,c!) = (vy,cy). 2 demands in the
other cases. By Bayes’s rule,

Pq q—pq
ap,vD) = )
( ) (p+q—Pq p+q—p<1)

By (B.17), we must have ap > z(yp). Using the definition of z(-) in
(A.9), this can be shown to require p < 0.

. By Lemma 10, player 2 proposes when (v*,c') € {(vaH,cn),(vL,cH)}
and demands in the other cases. Bayes’s rule implies that (ap,vp) =
(0,9). By (B.16), we must have q < 2. Bayes’s rule also implies that
(ap,vp) = (¢,0). By (B.17) and (A.9), this implies that

Uy — VL
7€ ((1—P)(UH—CL)’1

But z falls strictly below this interval since we can rewrite (A.11) as

61(vy —vr) + (1 —61)(er —v)
61(1 — p)(vr — cL)

and since (1 — é;)(cr — vr) < 0. This contradicts q < z.

~y —
pog—
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Part IT

SEARCH WITH
TELEPHONES AND
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1.- INTRODUCTION

Before Stigler (1961) and Diamond (1971), the auction
was the dominant paradigm for market activity. Economists
assumed that markets behaved as if there was an auctioneer
who, with full knowledge of all demand and supply functions,
selected a market clearing price vector.

In fact, most consumer markets are decentralized.
Buyers must collect price information at a cost. They may
do this by visiting firms, calling, reading advertisements,
or talking to friends. Conversely, firms cannot spread
information about their prices costlessly. They must pay
for advertising or rely on word of mouth.

Search theory tries to create a new foundation for
economics while explicitly modelling the costs of gathering
price information. Most search theorists have assumed, for
simplicity, that buyers have only one method of search. A
few authors have relaxed this assumption to include
advertising (Butters 1977; Salop and Stiglitz 1977; Varian
1980). This paper presents a model in which buyers can also
call firms on the telephone prior to visiting. This permits
a buyer to visit only firms that have sufficiently low
prices.

Calling ahead is most common in markets for consumer
durables and services. There are four assumptions that are
appropriate to most such markets. The first is that buyers

have unit demands. This means that each buyer wants to buy
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only one good or service. The second assumption is that a
firm makes a take it or leave it offer to a buyer. The
buyer cannot "haggle". Third, we assume that each search
has a discrete, positive cost. This is appropriate when
search has costs other than delayed consumption.

Finally, we assume sequential search. Buyers collect
prices from one firm after another, rather than several
firms at once. Search may be nonsequential if buyers can
obtain a concise list of prices (Salop and sStiglitz 1977;
Varian 1980). Without such a list, a buyer cannot usually
commit to continue searching if her first search turns up a
particularly good price. In a market with many anonymous
buyers, such a commitment would also be inferior to a
sequential strategy. Thus, sequential search is appropriate
when a concise price list is not available.

These four assumptions fit many markets for consumer
durables and services. But as Salop and Stiglitz (1976)
first noted, together the assumptions lead to complete
market failure. Why? Let 6 be the lowest valuation among
buyers who search. No firm will charge less than 6. Else
the lowest price firm could raise its price just a bit.
Since prices elsewhere would be at best only slightly lower,
all the firm’s visitors would still purchase. So the lowest
price must be at least 6. But then, since search is costly,
a buyer with valuation 6 would not even enter the market.
Therefore, there cannot be a lowest valuation buyer who

searches. All buyers stay out. There is no trade (Salop
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and Stiglitz 1976).

This irritating but profound result spurred research in
search theory. We now know that trade can occur if any of
the four assumptions is relaxed. Trade is sustainable if
buyers have demand curves.rather than unit demands (Diamond
1971; Reinganum 1979; Salop and Stiglitz 1982; Benabou
1990), can bargain with firms (Rubinstein and Wolinsky 1985;
Wolinsy 1987; Bester 1988), or can search nonsequentially
(Butters 1977; Salop and Stigl:itz 1977; Varian 1980; Burdett
and Judd 1980; MacMinn 1980). Trade can also occur if the
only cost of search is delayed consumption (e.g., Diamond
[1982a]).

Although they give better outcomes, these approaches do
not appiy to all retail markets for consumer durables and
services. Such markets often feature unit demands, posted
prices, sequential search, and search costs other than
delay. Our explanation is that buyers do not know their
valuations ex ante. A buyer does not know precisely how
much she is willing to pay for an item until she sees it}
If her valuation at a given store is low enough, her
realized payoff will be negative. She accepts this risk if
her expected payoff is positive. Other models with unknown

valuations appear in Wolinsky (1987), Bester (1988), Diamond

(1990), and Daughety and Reinganum (1991).

1 This reduces the relative value of calling. A buyer can

learn more about a product by visiting than by calling.
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Prior work on alternate modes of search has
concentrated on advertising. Butters (1977) presents a
model in which firms first send price offers to buyers by
mail. Buyers then purchase at the lowest price they
receive. Trade is sustained because search is nonsequential
and costless. There can be price dispersion.

Salop and Stiglitz (1977) and Varian (1980) assume that
buyers can purchase a newspaper or magazine that contains
every firm’s price. With this information, a buyer can
visit the lowest price firm. Without the information, a
buyer can visit only a random firm. Trade occurs in these
models because some buyers search nonsequentially. There
can be price dispercion as well.

In our model, each buyer is matched to a single firm in
each period. The buyer has a valuation, 6, for the firm’s
product. 6 takes one of two possible values. The firm
never observes 6 directly. The buyer does not know 6 until
she visits the firm.

At a cost, the buyer may call the firm to ask for a
price quote. The firm may refuse to quote. If the firm
quotes, it incurs a small cost of price retrieval. Whether
or not she called ahead, the buyer may then visit the firm.
Visiting is also costly. If she visits, the firm reveals
its price. The buyer then discovers 6. She decides whether
or not to buy. If she buys, she leaves the market. If not,
she can search again in the next period.

The model has four equilibrium outcomes. Purchases may
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take place at one, two, or three different prices. There is
also a no trade outcome.

In the three price outccme, some firms select the
reservation price. (A caller who is quoted the reservation
price is indifferent about visiting. We assume all callers
will visit if quoted this price.) Another group of firms
picks a lower price. Both groups of firms are willing to
give telephone quotes. A third group of firms selects a
price above the reservation price. These firms do not
quote. Some buyers call ahead and visit only firms that
quote. Other buyers visit firms without calling ahead.

In the two price outcome, some firms select a price
below the reservation price, and some pick a price above it.
No buyers call ahead in this outcome. Firms believe that
callers are likely to visit even if a firm refuses to quote.
This belief leads all firms to refuse to quote. Thus,
calling is not worthwhile. Since refusing is not a signal
ot price, a buyer who did call ahead would indeed be willing
to visit a refusing firm.

There is a range of parameters for which either outcome
can occur. Holding parameters constant, prices are higher
in the two price outcome than in the three price outcome.
Buyer payoffs are lower and profits are higher in the two
price outcome. As Salop and Stiglitz (1977) note, informed
buyers create a positive externality. The more buyers who
call ahead, the more sensitive a firm’s volume is to its

price. This leads firms to select lower prices, which helps
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all buyers. Conversely, buyers who do not call ahead hurt
other buyers by encouraging firms to charge higher prices.

There is also an outcome in which all buyers call
ahead. Some firms quote and some refuse. Firms that quote
set price equal to marginél cost, including the cost of
quoting. Firms that refuse select from any price
distribution that is high enough to make buyers prefer to
call ahead. Buyers visit only firms that quote. Thus, all
purchases take place at a marginal cost. This is lower than
any price in the two and three price outcomes. For fixed
parameters, buyer payoffs are also higher in this outcome
and firm profits are lower. Since all buyers call ahead,
the positive externality is stronger here than in the other
outcomes.

Finally, there is a no trade outcome. This outcome can
occur for any parameters. There is a range of parameters
for which no other outcome is possible. The explanation for
this may lie in our restrictive assumptions about what firms
can do. If there were a potentially profitable market that
would not exist with calling and visiting alone, firms could
advertise.

We have sketched how prices and payoffs vary across
outcomes, for fixed parameters. Prices and payoffs also
vary with parameters in a given outcome. These results are
sensitive to the assumption that 6 has only two possible
values. However, they do illustrate some unusual

possibilities.
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Calling costs have no effect on payoffs in any of the
outcomes. Buyers are indifferent to a decrease in calling
costs because more firms select high prices in the
distribution. However, the support of the price
distribution is unchanged. This leaves firms indifferent.
This suggests that a fall in marginal calling costs due to
the spread of telephones or "Yellow Pages" need not make
consumers better off or firms worse off.

Lower visiting costs have the same effects, with one
exception. In the three price outcome, lower visiting costs
raise the support of the price distribution. Firms benefit,
while buyers are actually worse off. 1In the real world,
this result suggests that retail expansion may sometimes be
funded in part by a reduction in consumer surplus due to
higher prices.

Our model differs from models of search with
advertising in a critical respect. 1In the two and three
price outcomes, the lowest price is bounded above marginal
cost as search and quoting costs shrink to zero. In models
of search with advertising, the lowest price always equals
marginal cost (Butters 1977; Salop and Stiglitz 1977).

Since we model both calling and visiting as sequential
processes, a firm that undercut the lowest price would not
increase its sales volume. Butters (1977) and Salop and
Stiglitz (1977) assume that buyers read advertisements
nonsequentially. Under this assumption, the same firm would

increase its volume. This creates a competitive pressure



that drives the lowest price to marginal cost in the

advertising models.
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2. THE MODEL

There is a countably infinite number of firms. The
firms exist forever. There is also a countably infinite
number of buyers. Buyers enter the market and remain until
they buy or voluntarily exit. A buyer who exits in one
period, for either reason, is replaced in the next.

Corresponding to each buyer-firm pair, there is a
valuation 6 of the buyer for the firm’s product. We assume

1 2
probability that a buyer will have valuation 61 is p €

that @ € {61,62}, where 6. < 6,. For each firm, the

(0,1). For each buyer, the probability that 6 = 61 at a
firm is also p. A buyer can discover her valuation at a
firm only by visiting that firm.

In each period, firms first select prices.2 Then
buyers are matched to stores. Each buyer has a single
store, and vice versa. The matching scheme is described in
Appendix A. The buyer may first call the store to request a

price quote. Calling costs the buyer s®. The firm may

quote its price. Quoting costs the firm gq. The firm may

2 We assume that firms set their prices before calls or

visits are received. This forces the firm to quote the same
price that it offers. This consequence is realistic because
the cost of tracking different quotes is likely to be high

in a large store.
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also refuse to quote, at zero cost.3

Whether or not she called ahead, the buyer may then
visit the store. Visiting costs the buyer s'. If a buyer
visits, the firm costlessly4 reveals its price. We call
this action an "offer", as opposed to a "quote", which is
given over the telephone. The buyer then inspects the good
and discovers her valuation, 6. If the buyer purchases the
good, the firm incurs a constant production cost of c.

Buyers cannot call or visit firms from prior periods.
This assumption is not essential. Since the distribution of
firm strategies is stationary, callers would have fixed
reservation prices with recall as well.

If a buyer visits n’ times and calls n€ times before
paying p for an item for which she has valuation 8, her
payoff is

6 - p - s'nY - s®n®
Buyers maximize expected payoffs.

For the firm, let Sq equal 1 if a firm quotes to a

given buyer, and 0 otherwise. Let 8, equal 1 if the buyer

q includes time costs of retrieving and dispensing
information about the price and what exactly it buys. These
costs can be considerable for firms with many products. We
normalize the cost of refusing to quote at zero. (Firms

must answer the telephone.)

In practice, firms often post prices. Each offer thus

incurs no additional cost.
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visits and buys, and 0 otherwise. Let, the firm’s price be
p- Then the firm’s payoff in a period is

ab(P -c)-464

q
In each period, a firm maximizes the expectation of its

payoff in that period.

We assume that a given player uses a pure strategy.
Different players may have different pure strategies. We
also impose the requirements of Markov perfection (Fudenberg
and Tirole 1991, pp. 501 ff.; Maskin and Tirole 1993) and
perfect Bayesian equilibrium, or "PBE" (Fudenberg and Tirole
1991, pp. 331 ff.). In our model, equilibria always exist
even with these restrictions.

Markov perfection requires that strategies can depend
only on payoff-relevant aspects of histories. Since buyers
cannot revisit or recall firms, players’ experiences in
prior periods are not relevant to their payoffs. 1In
addition, there are no enduring, payoff-relevant quantities
in this model. Thus, Markov perfection implies that the
equilibria will all be steady states.

We also assume that a buyer always buys or visits if
offered or quoted, respectively, a price that makes her
indifferent. Any lower price would always secure a sale or
a visit, so this assumption is necessary for firms to have

optimal prices.
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3. CHARACTERIZATION OF EQUILIBRIA

The model has parameters (sc,sv,el,az,p,q,c) € R7. We
ignore equilibria that can occur only on parameter sets of -
measure zero in R7.

We assume:

(3.1) s’ >0
(3.2) s€ > 0
(3.3) q>0
(3.4) 0<p<1

Since quoting costs are likely to be small in most markets,

we assume

(3.5) q < %[92 - 91]

Finally, we assume that
(3.6) 8, >c +gq

Let V be a buyer’s expected payoff. Let m be a firm’s
expected per-period payoff. 1In equilibrium, all buyers must
receive V and all firms must receive m. Also define
(3.7) g = (1-p)(6, - 8,)
This is the gap between a buyer’s expected valuation, pe, +
(1 - p)92, and a buyer’s lowest possible valuation, 61.
The first lemma derives formulae for the reservation

price, p*. It also shows that p* is unique.
LEMMA 3.1

Let p* be a price such that, if quoted p*, a buyer is

indifferent about visiting. Then
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and 6, - V

a) if 0 < s¥ < g, then p* =608, -V -
1-p

< p* < 92 -V

b) if 0 < g < sv, then p*

g+e6e, -V~ s¥ and p* <
61 -V
PROOF

Appendix B.®

The next lemma establishes an upper bound on buyers’

payoffs. We use this result in the proof of Lemma 3.3.

LEMMA 3.2
In any equilibrium, V < 6, - c.
PROOF

Appendix B.®

If a firm has the price p = 8 - V, then a visitor with
valuation 6 would have continuation payoff 6 - p = V from
purchasing. But V is also the continuation payoff from not
purchasing. Thus, such a visitor would be just willing to
purchase.

This shows that there are only three prices at which
transactions can take place in any equilibrium. One is 6, -
V, the price at which low valuation visitors are just
willing to buy. Another is 8, -V, the price at which high

valuation visitors are just willing to buy. The third is

p*, the price at which callers are just willing to visit.
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Any other price could be increased without affecting the
visiting or purchasing decisions of any buyer. (Note that
there may be other prices at which no units are sold, since
firms are indifferent among all such prices.)

Firms that select among these three prices may or may
not be willing to quote. Lemma 3.3 gives the relation

between possible prices and willingness to quote.

LEMMA 3.3

(a) If there are visitors who do not call ahead, then
any firm that would refuse to quote, should a
buyer call, selects a price in the set {91 -V, 92
- V}.

(b) If there are buyers who call ahead, then a firm
that quotes selects either 91 - V or p*.

(c) 1If there are only visitors who do not call ahead,
then any firm that would be willing to quote if a
buyer were to call selects 6. - V.

1

PROOF

(a) Consider a firm that receives visitors, but that would
refuse to quote if a buyer called. Lemma 3.2 shows
that selecting 8, = V would give positive profits.
Thus, the firm will select a price at which some
visitors purchase. By the above argument, the price
must be either 61 - V, p*, or 92 = V. But the firm

will not select p* because it could raise its price
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without changing the purchase decision of any visitor.
(b) Quoting has a positive cost. Thus, a firm will quote
only if it has a positive chance of a transaction.

This shows that the firm must select 8, - V, p*, or e,

2
- V. But if the firm selects 6, - V, it will

2
subsequently refuse to quote, since p* < 6, - V (Lemma
3.1).

(c) Now éuppose a firm receives visitors and no callers,
but would be willing to quote. As in (a), such a firm
must select either 6, - V, p*, or 6, - V. It cannot
select p* because a higher price would not change the
behavior of any buyer in equilibrium. And if the firm

selected 8, -V, it would not be willing to quote

should a buyer call.®

Let V® be the expected payoff to a buyer who first
calls a store and, after the call, follows an optimal
strategy. Let vV be the expected payoff to a buyer who
first visits a store without calling ahead and, once in the
store, follows an optimal strategy. Since buyers can also
exit,

(3.8) V = max <v%, vY, o>

Let n9 be the optimal per-period payoff to a firm that
is forced to quote. Let ™ be the optimal per-period
payoff to a firm that is prevented from quoting. Due to the

pure strateqgy and Markov assumptions, firms will either

always quote or never quote. Thus,
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(3.9) n = max <n3, "9

We present the four equilibrium outcomes in Theorems
4.1-7.1. Proofs are in Appendix B. The outccmes are
classified according to values of VV,Vc,nq, and n™9, n

Theorem 8.1, this classification leads to a very brief proof

that there are no other outcomes.
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4. A THREE PRICE EQUILIBRIUM

For some parameters, there is an intuitive three price
equilibrium. Some buyers visit and some call. Some firms’
quote. These firms mix between the prices 6, -V and p*.
Some firms select 92 - V and refuse to quote. Callers incur
calling costs but avoid wandering into high-price stores.

Theorem 1 describes the three price equilibrium. It
also gives restrictions that the parameters must satisfy.

We use the following notation:
(4.1) B = —
\

(4.2) v = PS =
g-(1-p)s-pq

THEOREM 4.1
There is a unique equilibrium that satisfies
(4.3) v =v® =20
and
(4.4) d=a"5 0

In this equilibrium,

(4.5) B of firms select 8, -V
sC v
(4.6) 1-8- ;V of firms select p* = 8, =V - 1= 5

Both groups of firms quote. There is a third group of

firms:

(o]

(4.7) 53 of firms select 8, =V
s

These firms do not quote.
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A proportion v of buyers always call ahead and 1 - v
never call ahead. Callers have reservation price p* for
visiting. Callers never visit firms that refuse to quote.
Visitors with valuation 8, facing price p, buy if and only’
if e -pzvV.

Payoffs in this equilibrium are:

(4.8) V=9-c-9-—s

i

|

0]
|
<
Yo}

(4.9) n

This strategy profile is an equilibrium if and only if

the following conditions hold:

(4.10) s +s<g
Vv
(o v S
4.11 < 1 - 2.
(4.11) € <s¥[1 - £
(4.12) s¥ > g+ p(c - 6,)
(4.13) s’ < g - pq

The lowest price, 61 - V, equals
v

c + E_E_E_
It rises as s’ falls and is insensitive to s€. Prices do
not converge to marginal cost as frictions dwindle.
Calling costs have no effects on payoffs. However,
higher visiting costs leave buyers better off and firms
worse off. This occurs because the support of the price

distribution falls.
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5. A TWO PRICE OUTCOME

The model also has a two price outcome. No buyers call
ahead. Two equilibria support this outcome. 1In one, low
price firms are willing to quote, but buyers do not call
because s® is too high. 1In the other equilibrium, no firms
are willing to quote. ‘Firms believe that, even if they
refuse to quote, a caller will visit anyway with a
"sufficiently high" probability. Since refusing signals
nothing, visiting a refuser is indeed a weak best response,
conditional on calling.

For the second equilibrium, parameters need satisfy
only two requirements. First, search costs cannot be too
high:

sV < g
Second, the probability of a low valuation must be large
relative to the dispersion of valuations:

1 -p . 91 -cC

[ 62 - 91
Otherwise, prices would be so high that buyers would prefer

not to search.

The first equilibrium has the additional condition:

c v sv
s >s8 |1 - —
[ g ]

Theorem 5.1 omits this requirement because the outcome can

occur without it.

THEOREM 5.1
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There is a unique outcome satisfying

(5.1) vW > 0; VW v©
In this outcome,
5V
(5.2) g of firms offer 8, -V
sV
(5.3) 1 - g of firms offer 62 -V

Buyers visit without calling ahead. A buyer who is offered
price p and has valuation 6 buys if and only if p=6-1V.

Payoffs are

B g
(5.4) V—el—c-s
5 5 B g
(.) TT—E

This outcome is supported by an equilibrium if and only

if
1 -p 91 - C
(5.6) <
fo) 62 - 61
and
(5.7) s’ < g
[

The lowest price, c + g/p, exceeds c and does not
approach it as frictions decrease. In addition, the price
distribution has a higher support than in the three price
outcome. (That is, the lowest price and the highest price
are both higher in the two price outcome than in the three
price outcome.) This is because no buyers call ahead, so

firms face a less elastic demand than in the three price
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outcomne.

A change in visiting costs does not affect payoffs,
profits, or the support of the price distribution. This
contrasts with the three price outcome. An increase in s’
does lead mofe firms to charge the low price. Since no

buyers call, a small change in s® has no effect on the

outcome.
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6. A ONE PRICE OUTCOME

The model also has an outcome in which all transactions
take place at price ¢ + q. Some firms do select other
prices. These firms do not quote. Since all buyers call
ahead and no buyers visit refusers, these firms have no
sales. The prices of refusers must be high enough to make
buyers call ahead. These prices are not uniquely

determined.

THEOREM 6.1
There is an outcome satisfying
(6.1) ve = vY; v€ > o
(6.2) nd = 7" =9
All buyers call ahead. No buyers visit refusers. g of

firms quote. These firms select the price 6, - V = ¢ + q.

1

1. - B of firms do not quote. These firms select any

distribution of prices that guarantees that vV = vE.
Payoffs are

(6.3) V=6, -c-q

(6.4) m=0

This outcome is supported by equilibria if and only if
c v

(6.5) s  +s <g
(6.6) s’ > g - pq
C v Sv
.7 1 - —
(6.7) s° < s [ 3 ]
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Since all buyers call ahead, demand is more elastic
than in the prior two outcomes. This leads to the lowest
price distribution, the highest buyer payoffs, and the
lowest profits. 1In particular, the price, ¢ + q, is lower
than the lowest price in éhe three price outcome, c +
(g-sv)/p, when that outcome can occur, by (4.13). And c + gq
is always lower than the lowest price in the two-price
outcome, c + g/p, by (3.5).

Also by (3.5), the one price buyer payoff, 8, -~ ¢ -gq,
is greater than the two price buyer payoff, given in (5.4).
By (4.13), the one price buyer payoff is also greater than
the three price buyer payoff, given in (4.8), when the three
price outcome can occur. Firm profits are also clearly the

lowest in the one price outcome.
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7.- A NO TRADE OUTCOME

The model also has a no trade outcome.

'THEOREM 7.1

There is a unique outcome that satisfies either

(7.1) v <o, vW<o
or the pair

(7.2) vC=v' =0
(7.3) nd = 7" = o

All buyers exit immediately. There is no trade. V = mw = 0.
There is an equilibrium satisfying (7.1) and supporting

this outcome for any parameters in R7.-

The no trade outcome occurs if firms select a
distribution of prices that is high enough that vV and v©
are both strictly negative. Firms are willing to select
such prices because they do not expect to receive any
callers or visitors. Obviously, this outcome can occur for

any parameters.
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8. NONEXISTENCE OF OTHER OUTCOMES

Theorem 8.1 shows that there are no outcomes other than

those we have already described.
THEOREM 8.1

Theorems 4.1-7.1 give a complete list of possible

outcomes, except on a parameter set of measure zero.®
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9. A MAP OF THE OUTCOMES IN PARAMETER SPACE

Charts 1 and 2 map which outcomes occur in the various
regions of parameter space. The curve in each chart, which

is given by

(9.1) s€ < s"[l - g—v],
is strictly concave and has a slope of 1 at the origin.

This shows that outcomes with calling occur only if s < §Y.
Since calling gives a buyer less information than visiting,
visiting dominates calling if s® = sV.

The widest range of outcomes occurs under the curve,
when s€ is small and s’ is of moderate size. These are
plausible conditions for most retail markets. Trade is not
sustainéble in a neighborhood of the origin in Chart 2.

This may be due to our assumption that there are no other

ways of conveying and gathering information, such as

advertising.
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10. DISCUSSION

We have presented a model of sequential search with
telephones and differentiated products. The model has some
unusual features. First, a decline in calling costs never
affects buyer or firm payoffs. 1In the two price outcome,
this is because no one calls ahead. In the three price
outcome, lower calling costs lead more firms to charge the
middle price. Since the support of the price distribution
does not change, firm profits are unchanged. Curiously, the
shift in price weights leaves buyer payoffs unchanged as
well. In the one price outcome, a fall in calling costs
leads precisely enough firms stop quoting to leave buyer
payoffs unchanged.

Changes in visiting costs also have unusual effects.
In the two price outcome, lower visiting costs lead exactly
enough firms to switch to the high price to leave buyer
payoffs unaffected. In the one price outcome, lower
visiting costs lead precisely enough firms to switch to
marginal cost and to quote that buyers are neither harmed
nor helped. In the three price outcome, higher visiting
costs lower the support of the price distribution. Firm
profits are lower. Buyers’ payoffs actually increase.
Salop and Stiglitz (1982, p. 126) report the same finding in
a different model.

We can provide no obvious dynamic story for these

results. Since we assume perfect foresight and have no
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state variables, the players simply jump to a new steady
state in response to a change in the environment. The
results are novel enough that work on the dynamics might be
worthwhile.

We have found price distributions that differ markedly
from the competitive model and even from other search
models. 1In the two and three price outcomes, the lowest
price is bounded above marginal cost as search costs shrink
to zero. Models of search with advertising have quite
different features. 1In Butters (1977), the lowest price
always equals marginal cost even with positive advertising
costs (p. 270). All purchases take place at marginal cost
in the limit as advertising costs go to zero (Butters 1977,
P. 471). The model of Salop and Stiglitz (1977, pp. 494,
503) has the same properties.

The difference comes from these authors’ assumption
that buyers can search nonsequentially. In Butters (1977),
buyers may receive several advertisements simultaneously.

In Salop and Stiglitz (1977), buyers can purchase a complete
price list. With nonsequential search, a firm can always
increase its expected sales volume by lowering its price.
This drives the lowest price to marginal cost.

In our model, calling and visiting are both sequential.
Thus, a firm that charged the lowest price would not receive
any new callers or visitors if it lowered its price. (It
receives no new visitors in the two and three price outcomes

because the lowest price is already below the reservation
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price.) This makes demand perfectly inelastic below the
lowest price. The lowest price can easily exceed marginal
cost.

When search costs shrink under nonsequential search,
the price distribution converges to a competitive
uniformity. As the cost of the price list goes to zero in
Salop and Stiglitz (1977), all buyers purchase the list.

The resulting competition leads all firms to charge marginal
cost. In Butters (1977), lower advertising costs lead firms
to send out more price offers. 1In the limit, each buyer
receives at least one offer of marginal cost. Firms do
advertise higher prices in the limit, but all purchases are
at marginal cost (Butters 1977, pp. 470-471).

In cur model, demand remains perfectly inelastic below
the lowest price even as search costs go to zero. The
lowest price does not converge to marginal cost. Sequential
search blocks convergence to the competitive outcome as

search costs shrink.

79



APPENDIX A
THE MATCHING SCHEME

Assume p is rational. We suppose that there is one
firm for each element of N = {1,2,...}. Similarly, there is
one buyer for each element of N. When buyers leave the
market, they are replaced by new buyers.

Let p = m/n for some m € {0,1,...} and n € {1,2,...}.
Each firm offers a product with a bundle of features in the
set {Pysr---/P,} = P. The differences between the
feature-bundles can only be distinguished in person and
cannot be described over the telephone. Each bundle P; is
offered by an infinite number of firms. Let af:N > P be a
function such that af(i) is the feature-bundle carried by
firm i.

Buyers have taste parameters that take on one of the n
possible values in the set {tl,...,tn} = T. For any ti,
there is an infinite number of buyers with tastes ti. The
function ab:N » T gives the taste parameter of each buyer.
For i € {1,...,n}, a buyer with tastes ti has valuation 61‘
for the m consecutive features that start with P; and wrap
around after P, is reached. The buyer has valuation 92 for
the other features. There are many other assignments that
would work.

The random matching procedure is as follows. First,

each buyer rolls a fair n-sided die, as does each firm. Let

80



the outcome of this process be given by {of(-),ab(-)}, where
af,ab are functions from N to {1,...,n}. of(i) = j if firm
i rolls j and ab(i) = j if buyer i rolls j.

We seek to match each buyer i €e N with a firm of type -
ob(i), and each firm i € ﬁ with a buyer of type af(i), such
that no buyer is matched with a firm that she visited in a
prior period. For i = 1,2,..., match buyer i with the
lowest-indexed firm j such that ob(i) = af(j), of(j) =
ab(i), and buyer i has not yet visited firm j. Then each
buyer has probability p of having valuation 8,/ and each
firm has probability p that a visitor or caller will have

valuation ;- This matching procedure is a variation of one

given by Boylan (1992, p. 482).
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APPENDIX B

PROOFS OF LEMMAS AND THEOREMS

PROOF OF LEMMA 3.1

When quoted p*, a buyer is indifferent between visiting
and not visiting. Visiting must give the buyer expected
payoff V. 1If the buyer visits and buys, she has payoff -s’

+ 6 - p*. If she visits and does not buy, she has payoff

-sV + V. Once in the store, the buyer will choose the

higher of these two payoffs. Thus,

v

V==5s + p max <91 - p*, V> + (1 - p) max <68, - p*, V>

2
so

0 = -s’ + p max <91 -p*x -V, 0>

+ (1 - p) max <92 - p* -V, 0>

Since 62 > 91 and s’ > 0, the second maximum is nonzero.
There are two cases:
v
a) If 6, - p* - V<0, then p* = 6, -V - s .
1 -p

Substituting the second equation into the first,

we obtain s’ < g.
b) If 91 - p* -V >0, then p* = g + 91 - p* - V.

Substituting, we obtain s’ > g.=

PROOF OF LEMMA 3.2
Suppose V = 92 - c. By (3.6), V> 0. Buyers do not
exit until they purchase. Firms that quote or receive

visitors in equilibrium will pick only prices p = 92 - V.
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Hence a visitor will never buy if her valuation is @ A

1-

visitor with valuation 6, may buy, but only if

2
6, -p=V
Both types have continuation payoff V after.sinking visiting
costs. Calling ahead cannot improve these payoffs, since no
quoted price is below 6, - V. But a buyer’s payoff when
entering ;he game is V. This implies
vs-s'+v

which is impossible.®

PROOF OF THEOREM 4.1

Claims 4.1 through 4.10 show that (4.3-4.4) imply the
given strategies, and that (4.10-4.13) are necessary
conditions for the strategies to form an equilibrium. Claim

4.11 shows that (4.10-4.13) are sufficient as well.

Claim 4.1

If (4.3) holds, then some firms must quote and some
must refuse.
Proof

By perfection, a firm can quote only if its price would
attract the caller. Thus, all firms quote only if all firms
have prices less than or equal to p*. But then every call
will lead to a visit, so ve < vY. Conversely, if no firms
quote, then v® < vV because calling does not reveal any

information about the firm. These contradict (4.3).8
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Claim 4.2

If (4.3) holds, buyers strictly prefer not to visit
firms that refuse to quote.
Proof

Let VY be the expected payoff from visiting a quoter
and following an optimal strategy once in the store. V9 is
the weighted average expected payoff over all prices that
are quoted. Let vT be the expected payoff from visiting a
refuser and following an optimal strategy once in the store.
v? and V' do not include the initial calling cost -s€.

Since quoters quote only prices p = p*, callers always
visit quoters. A caller who is refused can either visit
anyway and obtain vE or follow an optimal strategy and
obtain V. Thus,

ve = ~s€ + sv¥ + (1-8)max <v%,v>
Since a buyer who does not call ahead will visit a quoter
with probability & and a refuser with probability 1 - &,

vV = svd + (1-8)VF

If v° = v, then V° < VY, contradicting (4.3). Thus, V° < V.

The claim follows.®

Claim 4.3
Assuming (4.4),
(a) Firms that would not quote on receiving a caller
select either 91 - poré, - p.
(b) Firms that would quote select either el - p or p*.

Proof
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Since ™ > 0 and by Claim 4.2, there must be visitors
who do not call ahead in equilibrium. Both claims follow by

Lemma 3.3.8

The intuition for the next claim is that a buyer who is
willing to visit a refuser does not obtain any advantage
from calling ahead. Let § ¢ (0,1) be the proportion of

firms that quote.

Claim 4.4

Assuming (4.3-4.4),

(a) Some firms that are willing to quote select the

price 6, - V.

(b) p*>61—V.

(c) sV < g.
Proof

Some firms that are willing to quote must select a
price strictly less than p*. If not, all such firms select
P*. (Firms will only quote a price that draws buyers in.)
The payoff to visiting a firm that quotes p* is just V (see
Lemma 3.1). Since V > Vr,

Ve = =s% + sV + (1-8)V = s+v<cy
which contradicts (4.3) and (3.8). So some that are willing
to quote must select a price below P*. With this, (a) and

(b) follow from Claim 4.3. Claim (c) then follows from

Lemma 3.1.8
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Let m(p) denote the expected profit in one period for a
firm that selects price p and then behaves optimally. Also
let m € [0,1] be the proportion of buyers who always call
ahead. 1 - m of buyers never call before visiting. Because
strategies are Markov, a given buyer does not call ahead in

some periods but not in others.

Claim 4.5

Assuming (4.3-4.4), all firms that select 8, = v
strictly prefer to quote if called.
Proof

Suppose not. By Claim 4.4(a), firms that select 8, -V
must be indifferent about quoting. BY Claim 4.2, buyers
will ndt visit if a firm does not quote. I1f a firm quotes
6, ~ v, all the firm’s callers will ultimately purchase.
Thus, if a buyer calls, profits from quoting are

91 -V-c¢c-~-4q
Indifference about quoting implies that

v = 8, - ¢~ q
Firms thac charge 6, - v must earn their profits from
visitors who do not call ahead:

ne, - V) = (1 -m)(e;, ~V-¢) = (1 - ma

Some firms must select 6, - v. Else all prices are
less than or equal to p*. Thus any caller will visit, so v©
< vY. This contradicts (4.3). A firm that selects 6, = \'

obtains profits

me, - V) = (1= m(l=-p)6y =V e
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Substituting for V,
m@e, - V) = (1 -m(g+ (1-p)q)

Since there are such firms,
me, - V) = m®e; - V)

If n < 1, this implies a strict equality on the parameters:
g =rq

We are not considering such parameter sets. If 7 = 1, ™ =

0, which contradicts (4.4). This proves the claim.®

Suppose that a proportion ¥ > 0 of firms offer 8, -V
and are willing to quote. Suppose that u offer 92 - V and
are not willing to quote, and 1 - ¥ - u offer p* and are
willing. By Claims 4.3 and 4.5, these exhaust the possible
firm strategies. We now compute y and u, verifying
equations (4.5-4.7). Claim 4.6(b) also verifies equation

(4.10).

Claim 4.6
(4.3-4.4) imply that

(a) ¥ = B (B is defined in [4.4])

(b) s¢ + s¥ < y

Proof

Let Vl be the continuation payoff of a caller after

being quoted the price 8, - V. Since the buyer will always

visit and purchase,

e _  _V _ _ _
v = s + pe1 + (1 p)e2 (91 V)

= -8 +g+V
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A caller has continuation payoff V after being quoted
p* (see Lemma 3.1). A buyer also has continuation payoff V
after calling a firm that refuses to quote (Claim 4.2).
Using these facts,
Ve = s+ y(-sY + g+ V) + (1 -9V
Since V€ = V, we obtain (a). ¥ > 0 by equation (3.2) and
Claim 4.4(c). Claim (b) follows from the requirement that ¥

= 1 and the rejection of the measure zero parameter set

given by ¥ = 1.8

Claim 4.7

If (4.3-4.4),

sC
(a) M=§
(b) 0 < s% < sY
Proof
Since V’8 = -s¥ + g + v, a visitor who is offered 91 -V

has continuation payoff g + V. A caller who is quoted p*
has continuation payoff V and will visit. Thus, a visitor
who discovers that the price is p* must have continuation
payoff Vv + sY. A visitor of either valuation has
continuation payoff V if the price is 8, - V. Therefore,

vWo= sV 4+ (gt V) +uv+ (1L -7 - u)(V+s)
Because V' = V, this implies

(v + w)s' = 1g

SO

|0!

u = B(g/s’ - 1)

<
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(b) holds because p € [0,1] and because of equations (3.1)

and (3.2).®

We now verify equations (4.8) and (4.9). Claim 4.8(c)
also verifies equation (4.12). Recall that n is the

proportion of buyers who call ahead.

Claim 4.8

Assuming (4.3-4.4),

\
(a) V = 91-0-9-_5
P
(b) m = 9"3——— - nq
(c) s’ > g + p(c - 61)
Proof
Profits from selecting 6, - V are
n(e1 -V) = 91 -V-c¢c-n1nq

Since p* > 8, -V by Claim 4.4(b), profits from selecting p*
are

m(p*) = (1 - p)(p* - c) - nq
By Claim 4.4(c) and Lemma 3.1,

m(p*) = (1 -p)(6, -V =-c)-s -nq

Claims 4.6 and 4.7 together imply that ¥ # 0 and ¥ + u

# 1 except on sets cf measure zero, which we ignore. Thus,
some firms select p* and some select 91 - V. This implies
that n(e1 - V) = m(p*). Claim (a) follows. Substitute V
from (a) into fhe formula for (e, - V) to obtain (b).

Claim (c) holds because V > 0.®
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We now verify (4.13) and compute 7.

Claim 4.9

(4.3-4.4) hold only if
(a) m =v (v is defined in [4.7])

(b) s’ < g - pq

Proof

Claim (b) follows from (a), m = 1, and the rejection of
measure zero parameter sets. A firm that selects 92 -V
sells only to high valuation buyers who do not call ahead.
Profits are

n@e, - V) = (1-m)(1-p)(6, =V =-cC)
Profits from selecting 6, - V are

me, -v) = 6, -V-c-ng

Since ¥ > 0 and u > 0, these must be equal. Using Claim

4.8(a) to eliminate V, we obtain (a).®
We must still verify (4.11).

Claim 4.10

(4.3-4.4) require that

V-

C v S
< s |1l - —

S [ 9]

Proof

For 1 - ¥y - u =z 0, we require
cll 1
s |—+ —/—— = 1
Lv g - SV]
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We can replace this with a strict inequality by the

rejection of sets of measure zero. The claim follows.®

Claims 4.1 through 4.10 show that the three price
equilibrium is the only oﬁe that satisfies (4.3) and (4.4).
They show also that (4.10) through (4.13) are necessary
conditions for the equilibrium. We must also verify that
(4.10) through (4.13) are sufficient for the strategy

profile to be an equilibrium.

Claim 4.11
Equations (4.10) through (4.13) are sufficient for the
strategy profile described in Theorem 1 to be an equilibrium
satisfying (4.3) and (4.4)-
Proof
For the strategy profile to be an equilibrium
satisfying (4.3) and (4.4), we require:
(a) ¥, 4, 1 - ¥ - u, and M must all lie between 0 and
1, inclusive.
(b) Buyer indifference: vC=v=v>o0
(c) Firm indifference: n(e1 - V) = n(p*) = n(6, - V)
>0
(d)y Firms that select 91 - V and p* must strictly
prefer to quote.
(e) Firms that select 62 - V must strictly prefer not
to quote.

For (a), ¥ € [0,1] is guaranteed by (3.2) and (4.10),

91



as noted in Claim 4.6. u € [0,1] is guaranteed by (3.1) and

(3.2), as well as (4.11) which implies s® < s8¥. This uses

the fact, from (3.2) and (4.10), that s’ < g. Claim 4.10
shows that 1 - ¥ - u € [0,1] is guaranteed by (4.11). By
Claim 4.9, n =1 if (4.13) holds. One can verify that
(4.13) implies m = 0 as well.

For (b), the proofs of Claims 4.6 and 4.7 can be
reversed to show that, if ¥ and y are as in Claims 4.6(a)
and 4.7(a), then

vC=v=v
The proof of Claim 4.8 shows that equation (4.12) implies V
> 0.

For (c), the proof of Claim 4.8 shows that 1t(91 -V) =
n(p*) if (4.8) holds. The proof of Claim 4.9 shows that
n(e1 -V) = n(e2 - V) if (4.2) holds. By Claim 4.8(b), w >
0 if

v

L;_S—vq>0

Using (4.2) to substitute for v, this is equivalent to

(g -s")(g - (1-p)s¥ - pq) - qp?s’
(4.11.1) . > 0
pP(g = (1 - p)s’ - pq)

The denominator is positive by (4.13). (4.13) and (4.10)

also imply that
(@ -s")(g-s" -pq) >0
and so the numerator of (4.11.1) is positive if
(g - sV)ps’ - gp%s’ > 0
which also follows from (4.13), using (3.1) to cancel sV.

For (d), the claim respecting 6, - V was verified in
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Claim 4.5. For p*, the expected profit from quoting p*,

conditional on a buyer calling, is
(1-p)(6,-V=-c)-s -q

Using (4.8), this is positive if and only if (4.13) holds. -

(e) holds because no buyer visits if 6, =V is quoted.®

END OF PROOF

PROOF OF THEOREM 5.1
Note that (5.1) implies V' = V. By (5.1), no buyers
call ahead. Firms select either 61 - V or 62 - V (Lemma

3.1).

Claim 5.1 verifies (5.2-5.3) and that (5.7) is

necessary.

Claim 5.1

If (5.1) holds, then

\
(a) %— of firms offer 8, - v

v
(by 1 - g— of firms offer 62 -V

(c) s’ <g

Proof

Let a be the proportion of firms that offer 6, - V.
Then
vWo= sV +a(g+V)+ (1-a)V

This proves (a). (b) and (c) follow from (a).®
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The next claim verifies that payoffs are given by

(5.4-5.5) and that (5.6) is necessary.

Claim 5.2

If (5.1) holds,

= - 1 - -
(a) Vv = c + p[el (1 p)92]
b g
Tt = f—
(b) 5
p e, - o
(c) s _2 1
1 -p 81 - cC
Proof
Profits from selecting 61 - V are
n(91 -VvV) = 6, -V-c
while profits from 6, - V are
me, - V) = (1-p)(6,-V-c)

By Claim 5.1, these must be equal. Equating them gives (a).
(b) follows by substituting V from (a) into the expression

for n(e1 - V). (c) comes from rearranging the equation V >

0..

Claims 5.1-5.2 show that, if (5.1) holds, then any
equilibrium outcome must be of the given form, and (5.6-5.7)
are necessary conditions for the outcome to be supported by
an equilibrium. We must also show that (5.6-5.7) are
sufficient for the outcome to be supported and to satisfy

(5.1).
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There is one equilibrium in which low price firms
quote. No buyers call ahead because calling costs are too
high. This equilibrium imposes additional requirements on
the parameters. We present instead a set of equilibria in’
which no firms quote because firms believe callers are
likely to visit anyway. No buyers call ahead because no

firms quote.

Claim 5.3
If (5.6-5.7) hold, there is a two dimensional continuum

of equilibria that support the two price outcome.

Proof

If no firm is willing to quote, refusing would signal
nothing. If a buyer called ahead, she would thus be
indifferent about visiting the firm if it refused. Suppose
that some proportion a € (0,1) of buyers would visit a firm
if they called and the firm refused.

If no firm quotes, noone calls in equilibrium. Since «
e (0,1), if a buyer did call, a firm could put any
probability on the buyer’s willingness to visit the firm if
it refused. Suppose all firms put probability ¢ on this
event.

Firms with price 6, =V will never quote. If a buyer
calls and a firm with price 6, -V quotes, the buyer will
visit. The firm obtains

61 -V-c-4g
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If the firm refuses, its expected payoff is
(8, =V -0
Use (5.4) to eliminate V. The firm prefers to refuse for

any

Thus, every such {, together with an a € (0,1), gives an
equilibrium that supports the two price outcome.®

END OF PROOF

PROOF OF THEOREM 6.1
(6.4) follows from (6.2). The first claim proves some

basic properties that (6.1-6.2) imply.

Claim 6.1

Assuming (6.1-6.2), all buyers call ahead and no buyers
visit refusers. Some firms are willing to quote.
Proof

No buyers exit before purchasing because V = v® > o.
Let { = 0 be the proportion of buyers who call and who visit
refusers. Let £ =z 0 be the pronortion of buyers who visit
without calling ahead. If a firm selected the price 8, =V
and refused to quote, its profits would be no less than

(€ + &§)(1 - p)(6, =V =rc)
Since ™ = 0, this cannot be positive. By Lemma 3.2, { = £

= 0.
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Some firms must quote since v® > 0 and no callers visit

refusers.®

Let 8 be the proportion of firms that quote. Claim 6.2
shows what prica these firms select and verifies (6.3).

Claim 6.3 verifies that & = B.

Claim 6.2
Assuming (6.1-6.2),

(a) p* >86, - V;

1

(b) All quoting firms select e, - V.

(c) V=86, -V-=-c
Proof

Some firms that are willing to quote must select a
price below p*. If not,

ve = sC + sv+ (1-8)V = -sC+vV<v
since no buyers visit refusers. But v = v by (6.1). By
Lemma 3.3, this establishes (a) and shows that some quoting
firms select 8, - V.

Suppose some quoting firms select p*. By (a) and Lemma
3.1, p* = 6, - v - sv/(l - p). Firms that select 91 - V and
p* earn equal profits:

v

e, - VvV-c-gqg = (1- p)(e2 -V-c¢)-s8 -4q

1
But nd = 0, so both sides equal zero. Since only V is
endogenous, this can happen only on a parameter set of
measure zero. Thus, quoting firms do not select p* except

perhaps on such a parameter set. This shows (b). Setting

97



the left hand side to zero, we obtain (c).®

Proof
By Claim 6.1 and 6.2(b),
ve = -s€ + 5(-s¥ + g+ V) + (1 - 8)V

The claim follows by setting ve€ = v.m

We now prove that (6.5) and (6.6) are necessary for the

one price outcome.

Claim 6.4

Assuming (6.1-6.2),

(a) s€C+s’<g

(b) s >g - pq
Proof
Since 8§ = B = 1 and we ignore measure zero parameter
sets, (a) holds. For quoters to prefer 91 - V over p*, we
must have
61 -V-c-qg > (1- p)(e2 -V=-c) - sV - q

Yubstituting V from (6.3), we obtain (b).®

We now verify that (6.7) is necessary as well.

Claim 6.5

If (6.5-6.6), then
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Proof

Since m = 0, firms are willing to pick any price and
then to refuse to quote it. Any visitor to one of the 1 - 8
of firms that refuse can leave without purchasing. Thus,
such a visitor receives a continuation payoff of no leés
than V after sinking visiting costs. vV must satisfy

vW oz -sV +B8(g+ V) + (1 -8V
Because V' = V, we must have s’ = Bg. Multiply both sides

by g - sv, which is positive by (6.5). (6.7) follows.®

We have shown that (€.1-6.2) imply that any equilibrium
outcome must be the one price outcome, and that (6.5-6.7)
are necessary conditions for this outcome to be supported by
an equilibrium. We now show that, if (6.5-6.7) hold, then
there is an equilibrium supporting the one price outcome and
satisfying (6.1-6.2).

Consider the strategy profile in which g of firms quote
c + qand 1 - B select 62 + £ and refuse to quote, where £ >
0. Suppose all buyers call ahead. No sale can occur at the

price 6, + €, so no buyers visit refusers.

2

Claim 6.6
If (6.5-6.7) hold, then under the given strategy

profile,
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(c) ve = 81 -c-q

Proof

First, we show (a). Let v9 be the expected payoff to
visiting a quoter, including visiting costs:

vl = -s' + pmax <6, - ¢c-gq, V>

+ (1 - p) max <92 -c-gq, V>

Note that

vl = sV +pe, + (1 -p)e,-c-q
which is strictly positive by (6.5) and (3.5). Thus,
visiting a quoter must be strictly preferable to exiting.
Since no sale at 6, + ¢ is possible, ve > vV as well. Thus,
callers always visit quoters. This implies |

vC = s +gvi+ (1 - )V
Also,

vWo= gvd+ (1 - B)(V - sY)
After some manipulation of the equation Ve = VV, we find
that (6.7) implies it.

Now, (b). By (a), V = max <0, v°>. If V = 0 then,
ﬁsing (3.6) to simplify the formula for vd,

v¢ = s +g(-s' +g+e -c-q

= B(6; - c - q)
which is positive by (3.6) and since sV < g by (6.5). So V
+# 0. This shows v = V°©.

We now show (c). A buyer with valuation CPY facing
price ¢ + q, will buy, since the buyer’s surplus is positive
and cannot be higher. Thus,

o]

\Y = -s% + B[—sv + p max <6, - ¢c - q, ve>

1
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F (1= p)E, - e -]+ (1= R)vE

Regardless of which value the max takes, (c) must hold.®

Claim 6.6 shows that, under the given strategy profile,
it is indeed optimal to call ahead. By Lemma 3.3, quoters
guote either 91 - V or p*. Claim 6.7 shows that 61 - V is
strictly better than p¥*.

Claim 6.7

Assuming (6.5-6.7), firms earn negative profits from
quoting p* under the given strategy profile.
Proof

By (6.5) and Lemma 3.1, p* = 6, - V - sV/(1-p) > 8, -
V. Profits from quoting p* are thus

(1-p)e, -6, +a -s -q
= g-pg-s

which is negative by (6.6).8

Since quoters strictly prefer 6, - V=c+q to any
other price, nd = 0. Thus, firms are willing to select 8, *+
¢ and not quote. Together with Claim 6.6, this verifies
that the strategy profile is an equilibrium satisfying
(6.1-6.2). We have shown that (6.5-6.7) are sufficient as
well as necessary.

END OF PROOF

PROOF OF THEOREM 7.1
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First, assume (7.1). All buyeré must exit immediately.
This shows that only the no trade outcome is possible.

There are no visitors or callers, so firms are willing
select any prices. Suppose all firms select 6,- This
supports the outcome and satisfies (7.1).

Now assume (7.2-7.3). No buyers can call or visit.
Wwhy? By (7.2), V = 0. If a visitor encounters the price
Ch she will buy. But 8, > c. The firm would earn positive
profits from the visitor. Now suppose there are callers.
The arqument in Claim 4.4 applies here also. Thus, some
quoters select 8, < p*. Since callers always visit and

purchase at 8,/ these quoters earn 6, — c - q > 0. This

1
again contradicts (7.3).

END OF PROOF

PROOF OF THEOREM 8.1

We divide all possible pairs (VV,VC) into five sets:

(a) v’ <o, v° < o0;

by vV >0, vV > v

(c) v >0, v¢>V';
(dy vV =v® > 0;
v C

(e) V' =V  =0.
oy . q .ng, . .

We also partition pairs (m?,m °) into five sets. We
use the fact that n"9 = o. (Any price over 92 guarantees
zero profits.) There are three sets in which 9 > o:

(1) nnq > 0, nnq > nq;

(2) g > o, " = nq;
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3y 7" > o0, n™ < a9,

There are also two sets in which n"9 = o:

(4) ™ = o, a"d . nq;

(5) " = 0, " = o9,

Theorem 1 covers (d,2) and (e,2). Theorem 2 covers
(b,1-5). Theorem 6.1 covers (c,5) and (d,5). Theorem 7.1
covers (a,1-5) and (e,5).

No other pairs are possible. Firms will only quote
prices that draw callers in. But if 4 = 1”9, then either
all firms are willing to quote or none are. This implies vV
> v¢ (Claim 4.1). This rules out any pairing of 1, 3, or 4
with a, ¢, d, or e. We are left only with (c,2).

(c) implies that all buyers call ahead. If buyers are
willing to visit refusers, then we cannot have ve > vY
(Claim 4.2). If buyers are not willing to visit refusers,
then n™¥ = 0. This contradicts (2). So (c,2) is
impossible.

END OF PROOF
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Part II1

- COMMITMENT AND
OPTIMAL CAPITAL
TAXATION
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1. INTRODUCTION

Commitment often permits government policies that are
better for the private sector. However, the optimal policﬁ
with commitment is not time consistent, unless it coincides
with the optimal policy without commitment. (Kydland and
Prescott 1977; Calvo 1978). Most prior work on optimal
capital taxation with a representative agent has assumed
commitment (Brock and Turnovsky 1981; Judd 1985a; Chamley
1986; Lucas 1990). This paper contrasts the commitment case
with the no-commitment case. We find that optimal tax
policies look very different in the two cases.

Governments do have a limited ability to commit to
policies fo- some period of time. A president or governor
can repeat a campaign promise over and over, until a
reversal would amount to political suicide. A legislature
can commit itself not to change a law for a few months by
going out of session.l For longer periods, a legislature
can pass a constitutional amendment. Amendments have
commitment value because they require overwhelming
opposition to reverse. They also require overwhelming
support to pass. The doctrine of precedent gives the courts
commitment power. However, judges have neither the mandate
nor the resources needed to formulate fiscal policy.

We contrast optimal policies in the polar cases of

1 If laws can be retroactive, this will not work.
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perfect commitment and no commitment. The results are not
directly applicable to the real world, which lies somewhere
between the two cases. The value of the contrast is to
iliuminate the effects of greater commitment power on
optimal policy and social welfare.

Oour capital income tax is equivalent to a uniform
personal tax on all investment income, including accrued
capital gains. It would be desirable to distinguish between
old and new capital by giving the government an investment
tax credit as well. We do not do so here.

In optimal capital taxation, one must take account of
firms’ and individuals’ ability to avoid and evade capital
income taxes. Otherwise, there is no finite optimal capital
income tax (Chamley 1986). For tractability, we permit tax
avoidance rather than evasion. Firms can reduce or suspend
operations if they desire. They must pay taxes on all
capital income actually earned. If the marginal product of
capital is positive, then profit maximizing firms will
employ all of their capital so long as the capital income
tax rate does not exceed 100%.2 If it exceeds 100%, firms
will suspend operations. An optimal capital income tax rate

will never exceed 100%.

2 The marginal product of capital is measured net of

depreciation throughout this paper. We assume that economic
depreciation is fully deductible from capital income for tax

purposes.
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We assume that the government does not initially
possess a stock of capital sufficient to fund all of future
expenditures. Chamley (1986) shows that the capital income
tax rate is 100% initially with commitment. He shows also
that there is no capital income tax in the steady state if
the optimal path is convergent. This is true for general
utility functions. When the utility function is additively
separable in consumption and labor and CRRA in consumption,
Chamley shows that the tax rate is 100% for an initial
period. At some point, the tax jumps to zero, and remains
there ever after.3

We add some new results in the commitment case. First,
the optimal capital income tax does not usually jump from
100% to zero. Assume the utility function is separable in
consumption and leisure. Suppose utility is IRRA in
consumption. Let 8 be the rate of time preference. Let Fr
be the marginal product of capital. Let T, be the capital
tax per unit of capital income. A 100% capital income tax
corresponds to T. = Fk' Suppose that T, < Fk' Then the
signs of F,. - 86 and T are the same. One is zero only if
the other is.

The intuition? Tf utility is IRRA, then consumption is
less sensitive to its price when consumption is high than

when it is low. Goods that are less price elastic should be

3 Chamley (1986, p. 608) notes that this does not hold for

general utility functions.
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taxed more heavily than others. Let r = fk - Tor the after
tax interest rate. If r > 6, then consumption grows. Later
consumption should be taxed more heavily than earlier
consumption. However, a capital income tax at time t is
equivalent to a tax on all consumption that occurs after t.
Thus, there should be a positive capital income tax whenever
r > 6. In the IRRA case, r - 6 and Fk - 6 are of the same
sign, so the result follows.

Oon the other hand, suppose the utility function is
separable and DRRA in consumption. Whenever T, < Fk’ T, is
zero if and only if Fk = 6. As before, consumption is taxed
the same in different periods if and only if its price
elasticity is constant.

One might expect the relation between the signs of T,

and F, - 6 to be the opposite of the IRRA case.

k
Unfortunately, we could not verify this. The difficulty is
that r - 6 and Fk - 6 need not be of the same sign when
utility is DRRA in consumption.

This paper also contains some new results about the
wage tax in the commitment case. Let F, be the marginal
product of labor. Let Ty be the wage tax per unit of 1abor,
so that a 100% wage tax would correspond to T, = Fpe T, is
strictly positive whenever T, < Fp (whenever r > 0). This

holds for any utility function. If @ > 0, this result

implies that there is a positive wage tax in steady state.?

4 his is because r = 6 is necessary for consumption to be
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The intuition is that there is no first order
deadweight loss from an infinitesimal tax on labor, no
matter how far in the future. Since revenue is needed,
marginal deadweight losses must be positive on all
commodities. This principle is consistent with the lack of
a capital income tax in steady state. A capital income tax
at date t is a tax on all consumption that occurs after t.
Steady state consumption bears the burden of all prior taxes
on capital income.

We present more results in the case of a utility
function that is additively separable and CRRA in labor
supply. With such a function, Ty rises when T, > 0 and
falls whenever t . < 0. The condition that the utility
function be CRRA in labor supply means that

euee

Ye
is constant, where u is the utility function, ¢ is labor
supply, and subscripts indicate a partial derivative. An
example of such a function is

u(c,t) = v(c) - aﬁg
where a and B are constants.

why does this result hold? A wage tax cut stimulates
labor supply. This leads to increased production and thus
adds to national capital (private wealth less government

debt). Higher labor supply also lowers instantaneous

constant.
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utility, since people prefer not to work (we assume!).
Finally, a wage tax cut increases private wealth through
both the labor supply response and a transfer on existing
labor supply. (Controlling for national capital, an
increase in private wealth is bad because it amounts to a
loss to the treasury and leads to higher taxes later.)

wWhile T, 0, the social rate of return exceeds the
private rate. Optimizing behavior implies that the shadow
values of social quantities fall over time, relative to the
shadow values of private quantities. 1In particular, the
shadow value of national capital falls relative to the
shadow value of marginal utility and the (negative) shadow
value of private wealth. To equate the value of a small
change in T, over time, the effect of such a change on
national capital must increase, relative to its effects on
instantaneous utility and on private wealth. When utility
is separable in consumption and labor supply, and CRRA in
labor supply, the only way this can happen is for Ty itself
to increase over time. A higher wage tax increases the
effect of labor supply on social quantities relative to
private quantities because of a larger tax revenue
externality. The same intuition works in reverse when T, <
0.

We also examine the no-commitment case. Capital income
is taxed at 100% until the government has collected enough
revenue to fund all future spending. There is no taxation

at all thereafter. This contrasts with the commitment case,
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in which wages are taxed, and capital income may be taxed or
subsidized, when the capital income tax rate is less than
100%.

An immediate capital income tax is as efficient as a
lump-sum tax. If the government requires revenue, it must
fully exploit this efficient revenue source. Commitment
raises welfare by permitting the government to lower capital
income taxes, and to subsidize capital income if desirable,
in the future. This difference suggests that the social
value of commitment may be high. There may be substantial
social value in devising new ways for governments to commit
to future tax rates.

The representative agent approach of this paper
captures the dual role of capital as a factor of production
and a store of wealth. This makes it suitable for examining
the efficient taxation of capital income. However, the
representative agent approach neglects equity issues. One
such issue is the distribution of wealth between capitalists
and workers; broadly defined. A model like Judd’s (1985a)
two-class, capitalist-worker model would allow one to
examine optimal taxation without commitment while taking
this issue into account.

The representative agent model also presumes that
families will offset the 100% capital income tax through
smaller bequests or gifts from children to parents. In
reality, any such adjustments would almost surely be

inadequate. To address this objecticn, it may be useful to
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revisit the question of optimal taxation in overlapping
generations models (Diamond 1973; Atkinson and Sandmo 1980).

A 100% capital income tax rate would also give rise to
widespread tax evasion and costly allocative distortions. A
more realistic model, with costly evasion, would undoubtably
feature a lower capital income tax.

The rest of the paper is organized as follows. We
describe the economy and the models in Sections 2 and 3. We
prove what'we can about the optimal policies in Sections 4

and 5. We end with a brief discussion in Section 6.
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2. COMMON FEATURES OF THE MODELS

The private sector is represented by a single,
infinitely-lived agent. At time t, the agent supplies labor
et (0 = &t = 1) and consumes Ce units of a homogeneous good.
The economy has a twice continuously differentiable, CRTS,
per capita, net production function F(k,f). k is per-capita
national capital. To ensure an interior solution for labor
supply, we also assume that, for k > 0,

(2.1) lim Fe(k,E) = o
£-0

The government can borrow or lend. Government capital
is a perfect substitute for private capital in the
production function. Thus, national capital k equals
private wealth, kP, plus government capital kG (both per
capita).5

The government can also levy linear taxes on wages and
on capital income. We assume perfect competition, so
(2.2) r = Fk - T,

(2.3) w = F,-T
where r and w are the after tax interest rate and wage,

respectively, and T, and T, are the taxes.

The government must finance time t per capita public

> This is equivaleat to the conventional formulation in

which national capital equals private capital less
government debt. Government capital is just the negative of

government debt.
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consumption at an exogenous rate Gt' The government
purchases the consumption good only. Government spending
affects neither marginal utility nor marginal factor
productivity.

The agent and the government share the objective

function
2]

: -6t
(2.4) J e u(ct,ﬂt)dt
t=0

The felicity function, u(c,?), is twice differentiable with
respect to both ¢ and ¢. As usual, u, > 0, U,. < o, u, < o,
and Uy, < 0.

To ensure an interior solution, we also assume that

(2.5) lim u_(c,?) = =
c
c-0

for all ¢ € [0,1], and

(2.6) lim ue(c,E) = -
e-51

for all c = 0.
The felicity function is strictly concave, so the
determinant of its Hessian is positive:
(2.7) UooYyp ~ Ugplpe >0
Both leisure and consumption are normal goods. For
consumption, this holds i~
(2.8) u_ U, T Upu >0
For leisure, normality holds if
(2.9) u,.u, -y u, > 0
(Killingsworth 1988, p. 223).

Firms maximize after-tax profits. Firms can limit or

suspend operations. Since the capital income tax is levied
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on income net of depreciation, firms will suspend operations
if the tax rate exceeds 100%. We assume that firms do not
limit operations if the capital income tax rate is exactly
100%. This is necessary for there to be an optimal policy.

We use a short cut to model tax avoidance. Capital
income tax revenue is zero if the tax exceeds 100%. Thus,
permitting tax avoidance is equivalent to requiring that r =
0. This restriction is easier to work with.

In this paper, time subscripts (if any) appear after
any partial derivative or descriptor sukscripts. For
example, the marginal product of capital at time t is
written

Frt |
and the capital income tax at time v is written

T

rv
Time subscripts will often be omitted.
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3. THE GOVERNMENT’S PROBLEM

If the government has a commitment technology, *then at

time zero it chooses taxes {rrt,t t=0} to maximize

wt:
private utility
[2¢]
-6t
(3.1) I e u(ct,et)dt
t=0

subject to initial conditions:

P _.
(3.2) ko, ko given
the transversality condition for national capital:
t
—iFkvdv
(3.3) lim e k = 0

tow t

the solution to the private problemG:
t

-fr_dv
. oV P
(3.4) lim e kt = 0
tow
(3.5) u, = (e—r)uc
(3.6) u, = -wu,

the equations of motion for national and private capital:

(3.7) k = F(k,l) - c -G

(3.8) kP = rkP + w - c

the conditions for market clearance:
(3.9) r=F -1
(3.10) W= F2 - Ty

and the tax avoidance constraint:

Assuming there is an interior solution that satisfies the

usual first order conditions (see Appendix A).
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(3.11) r=20

1f the government does not have a commitment
technology, Cohen and Michel (1988) show that one can obtain
the optimal policy by requiring the government to play a
stationary strategy.7 The state variables are k and kF.
Any equilibrium strategy in such a game is time consistent.
Since it is optimal starting from any k and kP, it also
remains optimal as k and kP change over time. Since the
government plays a stationary strategy, the agent has an
optimal strategy that is stationary as well.

We assume that the government moves first at each point

in time. That is, the agent observes T, and Tut before

t

deciding on c_ and ¢, . This is a conventional assumption

t
for fiscal policy, though not for monetary policy (Cohen and
Michel 1988). The government’s strategy is a pair
[tr(k,kp), tw(k,kp)]
of functions that depend only on the state variables k and
K. The agent’s strategy is a pair
[c(k,kp,tr,tw), e(k,kp,rr,rw)]
of functions that depend on the state variables k and kP, as

well as on the current observed taxes.

The government without commitment solves the problem

7 This is also known as a Markov strateqgy. The equilibrium

concept we are using is also known as Markov perfection
(Fudenberg and Tirole 1991, pp. 513-515; Maskin and Tirole

1993).
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(3.12) max J e-etu(ct,et)dt
tw(')ltr(‘) t=0
subject to initial conditions:

(3.13) ko, kg given

the transversality condition for national capital:
t

-IFkvdv

(3.14) lim e ° k, = 0
t-w

the equations of motion for national and private capital:

(3.15) kK = F(k,) - c -G

(3.16) kP = kP + we - ¢

the conditions for market clearance:
{3.17) r=F -t

(3.18) w = Fe - T
the representative agent’s equilibrium strategy:

(3.19) c = c(k,kP,tr,tw)

(3.20) &= e(k,kP,tr,‘cw)

and the tax avoidance constraint:

(3.21) rz=o0

Note that the solution equations for the private problem,
(3.4-3.6), are replaced by (3.19) and (3.20).

The agent takes aggregate variables as given. To
formalize this, suppose there are many agents, all playing
[c(-), e(-)] with wealth kP, and consider a particular agent
who plays [g(-), g(-)] and has wealth EP. At time t, the

agent observes (trt,t kt,kz) and uses knowledge of the

wt'
equilibrium strategies, [c(-), £(-)] and [tr(-), tw(-)], to

predict the current and future interest rates and wages she
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will face, {rs,ws: s 2z t}. The agent maximizes

(3.22) I e ®u(e,, 2, )at

t=0
given these current and predicted interest rates and wages,

as well as the law of motion for the agent’s wealth:

(3.23) EP = rgP +wd -c

and the usual transversality condition for EP. Finally, all
agents are identical, so we set c(:) = c(+), &(*) = &{*),

and k¥ = EP.
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4. . OPTIMAL POLICY: COMMITMENT CASE

The following theorems address the commitment case.

The proof of these theorems apply the first order conditions
of Pontryagin’s Maximum Principle (Pontryagin et al 1962).
As Seierstad and Sydsater (1987, pp. 85-87) note, there are
degenerate systems in which these first order conditions are
not necessary for an optimum. Degeneracy is analogous to
the failure of constraint qualification in the Kuhn-Tucker
theorem (Seierstad and Sydsater 1987, p. 87). The problem
could be degenerate if, for example, there were only one
path of taxes that raised enough revenue to cover planned
spending.8

We assume the system given in (3.1-3.11) is not
degenerate. We also assume nondegeneracy in the solution to
the private problem (Appendix A) and in no-commitment
problem (Appendix C).

Finally, we assume that kz > 0 for all t =z 0 in the
optimal path. If k¥ were negative, r would become the
interest rate the agent payed on her debt to the government.
The goverment could raise arbitrary revenue by letting r

approach infinity if KF ever dropped below 0.9 This would

8 1 am grateful to Peter Diamond for bringing this example,

as well as the general issue, to my attention.

The government is increasing the agent’s debt essentially

by fiat.
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clearly be efficient. Rather than adding another constraint
on r, we restrict attention to economies in which ki > 0 for
all t on the optimal path.

Theorem 4.1, parts (a) and (b), restate Chamley’s

(1986) results. Part (c) is new.

Theorem 4.1
Suppose the government’s problem is given by
(3.1-3.11). The following hold under the assumptions of
Section 2.
(a) Iy = 0 if the government initially requires
revenue (Chamley 1986).
(b) If the optimal policy gives rise to a convergent
path, then T, = 0 and Fk = @ in steady state
(Chamley 1986).
(c) If the government initially requires revenue, then

the wage tax is strictly positive whenever T, <

.
Fk.

Proof

Appendix B.

As Chamley (1986) remarks, an immediate capital income
tax is equivalent to a capital levy. This explains (a). 1In
steady state, consumption at different dates has the same
price elasticity. It should be taxed equally. & brief
capital income tax at time t is equivalent to a tax on all

consumption after t. The only way to tax all consumption
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equally is to set'tr = 0. This explains (b).10

Small taxes have no first order deadweight loss. If
future wage taxes were nonpositive, one could therefore
reduce the excess burden of taxation by raising future wage
taxes and lowering other éaxes. This explains (c).

Theorem 4.2 derives the wage tax path in a special

case.

Theorem 4.2
Suppose the utility function is additively separable:
(4.1) u(c,t) = a(c) + B(L)

and CRRA in labor supply. The second condition means that11

10 As noted earlier, the total of earlier capital income

taxes constitute a tax on steady state consumption.

11 phere is a class of utility functions that satisfy both

(4.2) and (2.6). First it is necessary to redefine labor
supply so that it ranges from 0 to «. The transformed
variable ¢ satisfies this:

4

e = -
1-¢
We then define a new production function F(k,¢):

F(k,¢) = F|k, -4«
140

It can be verified that F satisfies (2.1) and the usual
concavity conditions, if F does. Then any utility function

~

of the following form is CRRA in transformed labor, ¢:
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¢8
wn s
def "e

Then the wage tax for any time t =z 0 is given by:

T t
(4.3) Wt A*exp[.r-twdv] -1

w v=0
t

where A is a positive constant and Ty is the capital income
tax at time v € [0,t]. This holds regardless of whether Tt
= Fkt or not.

Proof

Appendix B.

In this special case, the wage tax rises while capital
income is taxed and falls while it is subsidized. An
increase in w affects social welfare through three effects:

(a) Current labor supply rises, lowering instantaneous
utility.

(b) Private wealth, kP, increases directly through a
transfer on existing labor supply, as well as
indirectly through a labor supply increase.
Holding national capital constant, any such
increase represents lost potential revenue and is
undesirable.

(c) National capital increases through a labor supply

response. When the wage tax is high, more of the

u(c,?) = a(c) - pe¥

where ¥ > 1 and 8 > 0.
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increase in production accrues to the treasury
than to the private sector, so the effect on
national capital is large relative to the effect
on private wealth in (b).

Each of these effects may be countered by an increase
in consumption if consumption and leisure are substitutes.
Since we assume utility is separable in consumption and
labor supply, we ignore such effects.

While capital income is taxed, the social rate of
return exceeds the private rate. Therefore, when bocth the
government and- the agent are maximizing, the social value of
an increase in national capital in (c), resulting from an
increase in w, falls over time, relative to the
instantaneous disutility from greater labor supply in (a)
and the welfare loss from the transfer to the private sector
in (b) that also result from the increase in w.

Oon the other hand, the maximum principle implies that a
small change in w (or, equivalently, in T,) should have no
effect on social welfare at any time. This implies that Ty
must rise over time if capital income is taxed. Why? A
higher wage tax strengthens the external effect of a change
in the wage tax on national capital, relative to its private
effects on either private wealth or instantaneous utility.
This greater externality balances the lower shadow value of
national capital relative to the cost of a transfer to the
private sector or a decrease in instantaneous utility. For

analogous reasons, T must fall if capital income is
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subsidized.

The strong assumptions on the utility function in (4.1)
and (4.2) ensure that the relative effects of a change in Ty
on national capital, private wealth, and instantaneous ’
utility remain constant over time, for given T, That is,
the changes over time in variables other than Ty (such as c
and ¢) must not alter the relation between these effects.

We now consider what happens to the capital income tax

rate if and when it falls below 100%. Suppose the utility

function is separable (4.1) and CRRA in consumption:
ca
(4.4) d—[— acc] =0
dc

c
Chamley (1986) shows that, if the capital income tax rate

ever falls below 100%, it must jump directly to zero and
remain there forever. Theorem 4.3 examines what happens if
utility is IRRA or DRRA in consumption. Our results for

DRRA utility are rather limited.

Theorem 4.3

Suppose the utility function is separable (4.1) and

IRRA in consumption:

cax
(4.5) d—[— acc] > 0
dc c

Then T, and Fk - 8 are of the same sign whenever T, < Fk'
and one is zero only if the other is.
On the other hand, if the utility function is separable

(4.1) and DRRA in consumption:
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ca
(4.6) d [— c"] <.0
a

then whenever T, < Fk’ T, = 0 only if Fk = 6.
Proof

Appendix B.

A brief capital income tax at time t is equivalent to a
tax on all consumption that occurs after t. If utility is
IRRA, then consumption is less sensitive to its price when
consumption is high than when it is low. Ceteris paribus,
consumption should be taxed more heavily when it is less
price elastic. Consider what would happen if T, were to
drop directly to 0 when Fk > 8. Since r > 8, consumption
would then grow. The sensitivity of consumption to its
price would decline. Future consumption should be taxed
more heavily than current consumption. T, should be
positive. The reverse ('cr < 0) holds if Fk < 6, since
consumption would decline if T. were zero.

In the DRRA case, the preceding arqgument is not
conclusive. Consumption is more sensitive to its price when
consumption is high than when it is low. Suppose F. > 6.
One possibility is that r < 6. Consumption decreases.

Since T, > 0, later consumption is taxed more heavily than
early consumption. Fine so far. But suppose r > Fk‘ Since
r > 6, consumption rises. Because T, <0, later consumption
is taxed less heavily than early consumption. These are

also consistent. Thus, this line of reasoning does not
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establish the sign of T,-
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5. OPTIMAL POLICY: NO-COMMITMENT CASE

We now turn to the optimal policy without commitment.
The problem is not very tractable and our results are
modest. We continue to assume that the first order
conditions of Pontryagin’s Maximum Principle (Pontryagin et

12 We also

al 1962) give necessary conditions for an optimum.
assume that an optimum exists. We assume that a solution

exists to the agent’s problem in (3.22-3.23) and in the

P

accompanying discussion. We also continue to assume that ki

> 0 for all t =z 0 in the optimal path.

Theorem 5.1

Under the above assumptions, the capital income tax
rate is 100%Z until the government has raised enough revenue
to finance all subsequent expenditures. There is no
taxation after this point.
Proof

Appendix C.

The chief contrast with the commitment case is that an
immediate capital income tax must be used as long as revenue

is needed, due to the short run efficiency of such a tax.

12 gee the discussion preceding Theorem 4.1.
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6. DISCUSSION

The no-commitment model is not easy to analyze. This
prevented us from deriving the path of the wage tax while
capital income is taxed. A different framework might
provide richer results.

It would also be worthwhile to permit the government to
distinguish between old and new capital with an investment
tax credit. The results of Judd (1987) and Goulder and
Summers (1989), among others, suggest that a
revenue-neutral, permanent increase in both the corporate
profits tax and the investment tax credit might enhance
welfare by shifting the tax burden to old capital.13 In the
right proportion, such an increase would be equivalent to a
capital levy.

The threat of capital flight also constrains capital
income taxes. Most prior work on optimal capital taxation
in an open economy has used static or two-period models
(Gordon 1991; Razin and Sadka 1989; Bond and Samuelson 1989;
Feldstein and Hartman 1979). Such models do not capture
intertemporal tradeoffs very well. The OLG simulation by Ha

and Sibert (1992) does not suffer from this shortcoming, but

13 on the other hand, Fullerton and Henderson (1989, pp.

439-440) find that this policy might reduce efficiency by
increasing the pre-existing tax preterence for capital

equipment.
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lacks generality.

The model also assumes that government spending is
unaffected by the timing of revenue. Results on the

nflypaper effect" (Fisher 1982) suggest weakening this

assumption.
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APPENDIX A.
THE INDIVIDUAL’S PROBLEM

This section characterizes the behavior of the
representative agent. Lemma 1 gives the first order
conditions for a private optimum. Lemma 2 uses these
conditions to compute the changes in consumption and labor
supply that would result from small changes in r and w.

Suppose that the representative agent solves

-6t
(A.1) max I e u(ct,et)dt

{Cprtpit=0} 7

subject to:

(A.2) kg given
(A.3) kP = k¥ +w - c

t

-fr dv
. o " P
(A.4) lim e kt = 0
t o w

(A.5) c=20; 0=¢=1

Also suppose that the individual knows she will face
wages and interest rates {wt,rt:tZO}. Assume that this
problem is not degenerate in the sense given in Seierstad
and Sydsater (1987, p. 85 and pp. 86-87, Note 5). Finally,
assume that there is at least one path {(ct,et): t =z 0} that
satisfies (A.2-A.4) while also being an interior path:

i.e., while aléo satisfying

(A.6) Cp 2 0 and 0 < Bt <1 for all t
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Lemma 1
Under the above assumptions, necessary conditions for a

solution to (A.1-5) include

t
I(é - r )dv
_ 0
(A.7) U = Ugg€
and
(A.8) U = W u
Proof

The proof that any interior optimal path satisfies
(A.7) and (A.8) is a standard application of Pontryagin’s
Maximum Principle (Pontryagin et al 1962; Seierstad and
Sydsatef 1987). By (2.1), (2.5) and (2.6), the existence of
an interior path that satisfies (A.2-A.4) and (A.6) implies
that any optimal path will also be interior (will also
satisfy (A.6)) and thus be characterized by (A.7) and

(A.8).®

Define u = u,- Also let

(A.9) A = U U = Uy,

A

A is positive by (2.7). Define u = du/u, and w = dw/w.

Lemma 2
Suppose at time t the agent discovers that current and
future interest rates and wages will change by {drx, dwx: X

= t}. The changes in consumption and labor, dcx and d%ﬂ
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are:

~

X
(A.10) dc = -Y;[“t - I(drv)dv] + Siw

p:4 X
v=t
X
_ e er
(A.11) dex = Yx[ut I(drv)dv] + wax
v=t
c 2 c 2 . .
where Y, Y, 87, and S  are given by the following
formulas.
u_,u, - u,,u
(A.12) ¥ = ceeA e o
u_u, - u, u
(A.13) YE — cct - lcc > 0
u, u
(A.14) - s = - eg ¢
u_u
(a.15) st = cze > 0

The sign of s€¢ depends on whether leisure and consumption

are net substitutes or net complements.

Proof
This proof is taken from Killingsworth (1988). From
Lemma 1, the solution of the agent’s problem includes the

equation

I(e—rv)dv
_ t
(A.16) uc(cx,ex) = u.e

By (2.1) and (2.6), we may assume an interior solution for

labor: 0 < ex < 1. Then from Lemma 1,
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X
I(G—rv)dv
— r— L] t
We totally differentiate these two equations to find the new

paths of consumption and labor:

X
(A.18) uccxdctx * ucbfutx - ucx[ut - I(drv)dv]
v=t
X
(A.19) ullcxdcx + uw{dex = qu[ut tow, - J‘(drv)dv]
v=t

This is a system of two equations in the two unknowns
dcx and d%{. The solution of this system is the formulas
given above. ¥® and Y2 are positive by (2.7-2.9). The sign
of Si follows by (2.7) and the assumptions that U, < 0, and

u, < 0. This completes the proof.®
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APPENDIX B.
PROOFS OF THEOREMS 4.1-4.3

PROOF OF THEOREM 4.1

We can eliminate T, and Ty from the government'’s

problem by letting the government work with r and w

directly. The government solves
[ o]
(B.1) max I e %%u(c,, b, )at
{rt,wt:t=0} t=0

subject to the constraints:

(B.2) ko, kg given
t
-iFkvdv
(B.3) lim e kt = 0
tow :

(B.4) gL = (6-r)u

where u_;

CI

S
[}

(B.5) k =F(k,8) —c -G

(B.6) kP = rkP + wtl - c

(B.7) ¢ = c(i,W)
(B.8) ¢ = 8¢(u,w)
(B.9) r=20

(B.4) and (B.7-B.8) are equivalent to (3.5-3.6). There
is a one-to-one relation between consumption and labor
supply, on the one hand, and u and w, on the other.
Normality of consumption and leisure implies that all

income-expansion paths (Varian 1984, pp. 118-9) are strictly
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upward sloping in (c,1-¢) space. The income-expansion path
is uniquely determined by w. u then picks out a unique
consumption-leisure bundle on this path.
The present-value Hamiltonian for this problem is
(B.10) H = e-at[u(c,e) + v(F(k,8) - ¢ - G)
+ n(rkP + we - c) + Lu(é - r) + 7r]
We write c and ¢ for c(u,w) and &(u,w), respectively. First

order conditions, all multiplied by eet, are

(B.11) O = u_c_ + uypl +n(£+w£w-cw)+v(Fe£w-c

cw w w)

(B.12) 0 = nkf - cu + 7

(B.13) 71 - M8 = -7r
(B.14) v - ve = -VF,
(B.15) F - fe = —uccu - ugu - n(wﬂi- cu)

- V(Ffu - c“) - (6 - r)

(B.11) and (B.15) can be simplified. From (A.6) we

find that, for any times t and x,

X
(B.16) My = Hyp = I(drv)dv
v=t

Thus, we can rewrite (A.3) and (A.4) in Lemma 1 as

(B.17) dc = -¥u + sCw
and
(B.18) d¢ = vou + shw

where u = du/p and w = dw/w. All variables in (B.17-B.18)

are measured at a given time.
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Using these formulas, (B.11) can be written

(B.19) 0 = -p(ws® - s€) + n(we + ws® - s + v(F,s’ - s

and (B.15) implies that

¢

(B.20) Cu = Cur = (u = m) (W + ¥€) - v(Fy’

+ v%)

First we will explain why Ty = 0 and why, if the path
is convergent, r = F_ =20 in steady state. There is no way
to satisfy a finite revenue requirement instantaneously,
given the constraint on r and the assumption that kg > 0.
Thus, the initial shadow value of a marginal transfer from
government to agent, 7., must be strictly negative.
However, CO = 0 since Hg is free. Thus, by (B.12), 79 > 0
initially, which establishes that r, = 0. If the path is
convergent, then in steady state we must also have n=v=
0, sor = F = eiby (B.13) and (B.14).14 These observations
are due to Chamley (1986).

We will now show that the wage tax is positive when r >

14 rhis also requires n_* 0 and v _ # 0, where the subscript

"o" denotes the limit as t - ». Recall that v is the shadow
value of national capital, k. Since the path is convergent,
u,, * 0, so the value of consuming a marginal increase in

national capital remains strictly positive in steady state.

n, * 0 because, by (B.13) and (B.4), n/uc is constant, and

because Mg * 0 and u,, * 0.
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Claim
Ifr >0,
(a) The wage tax can be expressed as

Ty L cYe + ZYC t
(B.25) = = — exp| St _dv
e e rvy

w VolsCy® + s¢y¢€ v=0

(b) The wage tax is strictly positive.
Proof

We first show that (a) implies (b). By (A.11-A.14),

u_u
(B.26) syt + sh® = - €t 5 o
A

2

Also, Ny < 0, v, >0, Y > 0, and Y© > o. Together with

0
(a), these imply (b).

We now prove (a). When r > 0 in an interval of time, 7
= ¥ = 0 in the interior of that interval. But by (B.12), it

always holds that

(B.27) 7 = Cu + Cu - k" - nk"

=0y + (UL -V - n)(WYe-+ Yc) - V'ch8 - n(we - ¢c)
We have used (B.13), (B.20-21), and (B.6). Thus, when ¥ =7
= 0, (B.27) implies that

_ - v - mwyt+ ¥%) - qut - ¢

(B.28) T .
VY

w
But by (B.19), it always holds that

- (- v ~- n)wYe - nwe

%/ Vse

(B.29) T

We have used the fact that

(B.30) wst - 8¢ = wyt
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which follows directly from (A.7) and (A.12-14).

Equate the right hand sides of (B.28) and (B.29) to

obtain

(B.31) (- v - 1n)[wsre(y'Z - g4 - che]

= an(Ye - Se) + 'ncse

Now use (B.30) to eliminate the Yt - Se terms. We find that

n(es® - csb

v%s€ + yCst

(B.32) (L =-v-1m) =

Substitute this expression into (B.29) to obtain

e c
tw n| cY + ¢Y

(B.33)

¢ ¢

w V1sCy® + g%¢©

Then use (B.13-14) to obtain (B.25).8

END OF PROOF OF THEOREM 4.1

PROOF OF THEOREM 4.2
If we solve (B.19) for tw/w and then use (B.13-14) and
(B.4) to express u, m, and v as exponential multiples of TR

LY, and Vor we obtain:

(B.22) = - 4

By (4.1), U, = 0, so

IS
|
[y

(B.23) =
S

(3

using (A.12) and (A.14). Mg < 0 and v, > 0 from the proof

0
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of Theorem 4.1. u_,, =0 implies that

(B.24)

which is positive and constant if u is CRRA in labor supplf.
These facts prove (4.3) and verify that the quantity A in
(4.3) is a positive constant. |

END OF PROOF OF THEOREM 4.2

PROOF OF THEOREM 4.3
First, substitute the expression for Ty in (B.29) into

equation (B.27). This gives us
(B.34) sty - o) = (u - n - v)(sS¢ + 5K

+ n(cs® - s°)
In the proof of Theorem 4.1 we showed that, if r > 0 in a
time interval, ¥ = ¥ = 0 in the interior of the interval.

Thus, when r > 0, (B.34) implies that

H=m-v oyt gtyc c
(B.35) _ = S — = -
n £8” - ¢S cu + fu
cc ic

This uses (B.26) and (A.11-14).

Utility is separable in consumption and labor supply,
so u,, = 0. The right hand side of (B.35) equals 1/R(c),
where R(c) is the coefficient of relative risk aversion:

cu
cC

u
C

(B.36) R(c) = -

Differentiate (B.35) with respect to time. By
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(B.13-14) and (B.4) this gives

(B.37) YIp, - | = 4|2
"[ k ] dt[R(c)]

Since v/n < O, T.=F -r is positive, negative, or zero, .

depending on whether R(c) is respectively increasing,
decreasing, or unchanging over time (not with respect to c).
In particular, if R(c) is‘constant, then T, = 0 (Chamley
1986).

Now divide (B.17) by dt and use (A.13) to eliminate S°.

We find that

(B.38) ¢ = -Yc[e - ]
Consumption is increasing, decreasing, or constant if r - 6
is respectively positive, negative, or zero.

Now suppose, as in the statement of Theorem 4.1, that u
is IRRA (R’(c) > 0). 1If Fk # 6, then there are six orders

for r, Fk’ and 6. We can rule out four of these.

Q-
1A

1A

then = 0, so R 0, so T_ = 0.

r

a) r e < Fk
F r

Q-

b) 8 < : then >0, soR >0, sotT_ > 0.

K =
c) 6 <r < Fk: then

Q-

>0, soR >0, totT_ > 0.

Qe

d) r <F,_ < 8: then < 0, so R< 0, sotT_ <O0.

Q-

e) Fk < 8 =r: then = 0, so R

v
o
-

so T = 0.
f) Fk <r <@6: then ¢ < 0, so R < 0, so T, < 0.
Only (c) and (f) are internally consistent. If F, =6,
then r = Fk = 6 is the only possibility. We have confirmed
that Fk - 6 and T, are of the same sign if r > 0.

The argument when u is DRRA in consumption is

analogous, though less conclusive. There are six possible
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cases:

a) r <o s=F,: then ¢ < 0, so R > 0, so T, > 0.

b) ©=F,<r: thenc >0, soR<0, soT_<O0.
k . r

c¢) 6 =r=F.: then cz0, soR =0, to T_ = 0.

d) r <F <Bé6: then ¢ < 0, soR > 0, so T_ > 0.

e) Fk <@ <r: thenc > 0, so R< 0, soT_ < 0.

£f) Fk < r =6: then C = 0, so Rz 0, sot_ =z 0.

(c) and (f) are possible only if Fk = r = 6. Thus, T.
= 0 only if F, = 6. This establishes what was claimed for

the DRRA case.

END OF PROOF OF THEOREM 4.3
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APPENDIX C.
PROOF OF THEOREM 5.1

As in the commitment case, we let the government set r

and w directly. The problem in (3.12-3.21) becomes

[><]
-6t ,
(C.1) max I g u(ct,et)dt
=0

{rt,wt:tzO} N

subject to:
P

(C.2) ko, ko given,
t
-iFkvdv
(C.3) lim e k, = 0
tow

(C.4) k = F(k,l) - c - G
(C.5) kP = rkP + wt - c
(C.6) c = C(M,W)
(C.7) &= ¢(u,w)
(c.8) u = u(k,kF,r,w)
(C.8a) r=0

(C.6-C.8) are equivalent to (3.19-3.20). By the
argument in the proof of Theorem 4.1, c and ¢ are determined
uniquely by p and w. However, w is under the government'’s
direct control. Thus, only u depends on k, kP, and r, so we
can rewrite (3.19) and (3.20) as (C.6-C.8).

We first show that u(k,kp,r,w) depends on k and kP

alone.
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Claim C.1

For any (k,k',r,w) € (0,@) X (0,=) X [0,m) X (-w,®),

su(k, k-, r,w) = su(k, k°,r,w)
ér w

(C.9)

Proof

Integrate (A.3) subject to (A.4) to obtain
‘ @

P _ |zt _
(C.10) kt = J&S[cs wses]ds
s=t

where we define

(c.11) 3C = exp[- Irvdv]

v=t

Totally differentiate (C.10) to obtain

(C.12) dk [ [ I(dr )dv][ -w 8]

+ dcS - wsdl!s - stws} ds

Reverse the order of integration and apply (C.10) to obtain

2} ©

(C.13) JE;[- I(drv)dv][c -w 8 ]ds = - JSSkE(drV)dv
v=t
s=t v=t

Now apply (4.3-4.4) and (C.13) to (C.12) to obtain

]
P _ |[st]|_,P _
(C.14) dkt = [as[ ksdrs esdwS

s=t

151



~ [wsyi + Yg][ut - I(drv)dv]
v=t

Consider a local perturbation of (rt,wt) to (rt + drt,
w, t dwt). Since the change has zero duration, it has no
effect on.(ks,kz) for s =z t. But by stationarity, the
government’s policy at time s is a function of (ks,kz)

alone. The agent must anticipate that (CgrWg) will be

£

unchanged for any s > t. Moreover, wSYS

+ Y: >0 for s > t

by (A.12-A.13). (C.14) can only be satisfied by setting ;t

= 0.-

The present-value Hamiltonian for (C.1-C.8a) is
(C.15) H = e'et[u(c,e) + v(F(k,2) - ¢ - G)

+ n(rkP + wl -c) + wr]
Time subscripts are omitted. We now give the first order
conditions for an optimum. For (C.16-C.17), we rely in part

on Claim C.1.

(C.16) 0 = u.c, + ufw + n(¢ + “ww - cw) + V(}?Z&w - C

w’
(C.17) 0 = kP + ¥
(C.18) 7 - 78 =
-[uc +utl + v(Fl - c ) + n(we -c)]aL
c u e &u M M K p
ak
-T,r
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(C.19) v - ve =
—[uc +ul + v(Fe =~ c ) + n(wt -c)]é‘i
CTi tu Eu u M A P
- ka
n is the shadow value of a transfer from government to

agent, also known as the excess burden of taxation.

Claim C.2
For any t > 0, either r, = 0 or My = 0.
Proof
By complementary slackness, either ry = 0 or Ve = 0.
= 0 if and

But by (C.17) and the assumption that kz >0, 7,

only if n_ = o.m

" Since Ne is the excess burden of taxation, Ny = 0 if
and only if the government has enough wealth at time t to
fund all future expenditures. If this holds, The first best
is attainable from time t on. There is no further taxation.
Thus, Claim C.2 implies that, at any time t, either capital
income is taxed at 100% (rt = 0) or there is no taxation at
times t’ =z t. This concludes the proof.

END OF PROOF OF THEOREM 5.1
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