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Abstract

Emerging network traffic requires a more agile network management and control
system to deal with the dynamic network environments than today’s networks use.
The bursty and large data transactions introduced by new technological applications
can cause both high costs and extreme congestion in networks. The prohibitive cost
of massive over-provisioning will manifest as huge congestions during peak demand
periods. The network management and control system must be able to sense the
traffic changes and reconfigure in a timely manner (in tens of milliseconds instead of
minutes or hours) to use network resources efficiently. We propose the use of cognitive
techniques for fast and adaptive network management and control of future optical
networks. The goal of this work is to provide timely network reconfigurations in
response to dynamic traffic environments and prevent congestion from building up.

We make a simplified model of the expected traffic arrival rate changes as a multi-
state Markov process based on the characteristics of the dynamic, bursty, and high
granularity traffic. The traffic is categorized into different network traffic environ-
ments by the length of the network coherence time, which is the time that the traffic
is unvarying. The tunneled network architecture is adopted due to its supremacy in
reducing the control complexity when the traffic volume is at least one wavelength.

In the long coherence time regime where traffic changes very slowly, the traffic
detection performances of two Bayesian estimators and a stopping-trial (sequential)
estimator are examined, based on the transient behaviors of networks. The stopping-
trial estimator has the fastest response time to the changes of traffic arrival statis-
tics. We propose a wavelength reconfiguration algorithm with continuous assessment
where the system reconfigures whenever it deems necessary. The reconfiguration can
involve addition or subtraction of multiple wavelengths. Using the fastest detection
and reconfiguration algorithm can reduce queueing delays during traffic surges with-
out over-provisioning and thus can reduce network capital expenditure and prevent
wasting resources on erroneous decisions when surges occur.

For traffic with moderate coherence time (where traffic changes at a moderate
rate) and the short coherence time (where traffic changes quickly), the stopping-
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trial estimator still responds to the traffic changes with a short detection time. As
long as the inter-arrival times of traffic transactions are independent, the algorithm
is still optimum. The algorithm provides no prejudice on the exact network traffic
distribution, avoiding having to sense and estimate detailed arrival traffic statistics.

To deal with fast-changing traffic, we model the transient convergent behaviors
of network traffic drift as a result of traffic transition rate changes and validate the
feasibility and utility of the traffic prediction. In a simple example when the net-
work traffic rate changes monotonically in a linear model, the sequential maximum
likelihood estimator will capture the traffic trend with a small number of arrivals.
The traffic trend prediction can help to provide fast reconfiguration, which is very
important for maintaining quality of service during large traffic shifts.

We further investigate the design of an efficient rerouting algorithm to maintain
users’ quality of service when the incremental traffic cannot be accommodated on the
primary path. The algorithm includes the fast reconfiguration of wavelengths in the
existing lit and spatially routed fibers, and the setting up and lighting of new fibers.
Rerouting is necessary to maintain users’ quality of service when the queueing delay
on the primary path (determined by shortest path routing) exceeds the requirement.
Our algorithm triggers reconfiguration when a queueing delay threshold is crossed on
the primary path. The triggering by a threshold on the queueing delay is used due to
its simplicity, and it is directly measurable by the exact traffic transaction sizes and
the queue size, which reflect both the current network traffic environment and the
network configurations. A dynamic rerouting algorithm implemented with a shortest-
path algorithm is proposed to find the secondary paths for rerouting. We make
the conjecture that it is desirable that the alternate paths for rerouting have small
numbers of hops and are disjoint with other busy paths when the hops on the path
are independent. In addition, the conjecture suggests that a good candidate network
topology should have high edge-connectivity. Wavelength reservation for rerouted
traffic does not maximize wavelength utilization. We make the conjecture that traffic
with different sizes should be broken up into multi-classes with dedicated partitioned
resources and the queueing delay should be normalized by the transmission time for
rerouting triggering to realize better network utilization.

Thesis Supervisor: Vincent W. S. Chan
Title: Joan and Irwin Jacobs Professor of Electrical Engineering and Computer Sci-
ence
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Chapter 1

Introduction

The dynamic large traffic generated by diverse technology applications will drive the

architecture of future optical networks. The bursty, unscheduled, and large data

transactions introduced by new technological applications can cause both high costs

and extreme congestions in networks. In the current quasi-statically configured net-

work, lack of over-provisioning will manifest as huge congestions during peak demand

periods. The dynamic and bursty (unpredictable) nature of large traffic transactions

either requires over-provisioning of the networks, which is costly, or a more agile

network control and management system that adaptively allocates resources by re-

configuring the network in a timely manner in reaction to the offered traffic. The

network management and control system should be able to sense traffic changes and

make reconfigurations to use network resources efficiently. Specifically, reconfigura-

tions should be done on a subsecond time scale with no human involvement. To

meet these demands, cognitive networking is proposed as a candidate architectural

construct that can provide fast, dynamic, and efficient control using cognitive tech-

niques.

1.1 Increasing Traffic

Emerging network applications will make the offered traffic in future optical networks

more bursty with high granularity sessions from megabytes to terabytes. The high
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granularity indicates the increased volume of large traffic. Compared to the past when

major traffic is only in the range of bits to megabytes, now much larger traffic occurs in

gigabytes or even in terabytes. Within five to ten years, current optical networks are

predicted to have an approximately three to four orders of magnitude increase in data

rates, mostly due to large transactions. It is reported in [16] that IP video traffic will

be 82% of all IP traffic (both business and consumer) by 2022 globally. As indicated

in [15], an Internet-enabled High-Definition (HD) television that draws two to three

hours of content per day from the Internet would generate a similar amount of traffic

on average as the Internet traffic generated by an entire household today. Moreover,

the increasing demands of Ultra-High-Definition (UHD) with 4K or even 8K video

streaming will have more profound effects on the traffic growth due to the increase in

the bit rate. The bit rate for 4K video is about 15 to 18 Mbps, which is more than

double the HD video bit rate and nine times more than the bit rate of Standard-

Definition (SD) video [15]. It is estimated in [15] that two-thirds of the installed

flat-panel TV sets will be UHD by 2023, up from 33% in 2018. Besides, various new

devices and new applications make the traffic patterns more diverse. Among them,

Machine-to-Machine (M2M) applications are the major contributors, such as video

surveillance, healthcare monitoring, smart meters, transportation, package or asset

tracking, etc [15]. It is predicted in [15] that M2M connections will be half of the

total devices and connections by 2023. All the dynamic large traffic generated by

the diversity of technology applications will drive the architecture of future optical

networks.

The extreme burstiness and high granularity of the network traffic is challenging

today’s optical networks, as it requires optical network control to be much more dy-

namic unless expensive large over-provisioning is used. Due to the dynamic traffic,

statistical multiplexing to smooth quiescent flows between major nodes will not occur

most of the time. The highly complex and dynamic networking environments will pose

serious challenges for physical and higher network layers architecture, and greatly in-

crease the network operating costs. The current network management and control

systems of the backbone optical networking is much too slow to handle the variety
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of traffic that comes from modern integrated global heterogenous networks, which

include but are not limited to wireless networks, satellites networks, etc. It is because

the current architectures of optical networks were designed for the quasi-static sta-

tistically multiplexed traffic of the past. Even for current software-defined-networks

(SDN), network function virtualization (NFV), and orchestration, their network re-

configuration times range from tens of minutes to hours and even to days, which are

inadequate to deal with current second-scale traffic changes [44]. The backbone opti-

cal networking needs to support different infrastructures from many access networks

for millions of mobile users, and various traditional and new network services, such

as data centers/private clouds [23], Software as a Service (SaaS), Infrastructure as a

Service(IaaS), Internet-of-Things(IoT) [1], video-based searches [22], etc.

The increasing dynamic and high-granularity traffic will require a much smarter

network management and control system to rapidly adapt to bursty applications and

their service needs, especially for the increasingly large-volumed “elephants”. Un-

predictable dynamic traffic changes require quick network adaptation on a scale of

seconds to maintain users’ quality of service, such as the service delay. Moreover,

service-based architecture requires dynamically tailored network configurations. In

the near term (2020), we expect an active control plane in minutes for network orches-

tration [44], such as dynamic load balancing. In the mid term (2021+), a very active

control plane is expected with functions including agile access points, per-session

routing (segment routing), and the Internet of Things(IoT)/smart-city applications

[1]. In the far term(2023+), we expect more dynamic network functions such as mid-

session rerouting, etc. The control planes are designed for time critical services and

network security and safety[12]. Network adaptions are expected to be performed on

a scale of a second (∼ 100 milliseconds - 1 second). Therefore, efforts should be made

to develop a new optical network control and management scheme that can quickly

sense the network and reconfigure within a much shorter amount of time than before,

preferably as quickly as statistically viable. The new scheme should reduce human

involvement, since humans in the loop of current networks contribute to the most

reconfiguration time and control costs. Meanwhile, the network control and man-
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agement system should be kept simple and efficient enough to reduce the burdens of

network operations.

1.2 Cognitive Optical Networking

Cognitive networking is a desirable architecture construct that can provide fast, dy-

namic, and efficient control using automated cognitive techniques to meet the above

requirements. As defined in [45][46], a cognitive network can sense current network

conditions, and then autonomously learn and make decisions from these conditions to

realize end-to-end goals. Its cognitive control and management scheme can respond

to network changes and reconfigure the networks in a short amount of time without

tedious network tuning by humans. For current network architectures, the intrinsic

system complexity will increase explosively in the near future, but the current prac-

tice has a limit that makes such increase computationally intractable and expensive.

When intelligence is introduced, the operational complexity will come down. In short,

intelligence enables the adaptive network to scale. The goal of cognitive networking

is ultimately fully automated networks without any human involvement [45][46].

The exploration of cognitive techniques on optical networks started only a decade

ago. The idea of incorporating cognitive techniques into networks was originally intro-

duced to wireless systems and networks to solve the spectrum sensing and allocation

problem in the 2000s [45] [35], such as the idea of cognitive radios. The idea of using

a large amount of information gained from the experience of network nodes to im-

prove the overall network and user performance is proposed in [34]. Increasingly, the

idea of cognitive networks is growing beyond the use of cognitive radios to improve

the performance of heterogeneous networks. The exploration of the use of cognitive

techniques in the domain of optical networks started around 2010. However, most

researchers have focused on using cognitive techniques to solve specific optical net-

work operating problems, and the design of comprehensive cognitive optical network

control and management schemes are still conceptual [53, 52, 48, 36, 19, 20, 43, 42, 6].

Several groups of researchers have proposed the designs of general cognitive con-
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trol and management schemes for optical networks, but these ideas are still far from

practical implementation. Zervas and Simeonidou have briefly provided a prototypical

distributed cognitive architecture called COGNITION [53, 52]. Cognition is expected

to be implemented from the bottom physical layer to the top application layer of the

network architecture across one or multiple domains. However, more implementation

details and verifications are needed, especially on the complicated network manage-

ment and control plane. Wei et al. have proposed a cognitive optical substrate with

a mesh topology only in the core networks. This substrate aims to provide high-

speed, bandwidth-on-demand and rapidly-adaptive wavelength services in a client-

service-aware approach [48]. However, the design of the substrate concerns only the

physical layer and has no coordination with higher-layer functionalities. The project

Cognitive Heterogeneous Reconfigurable Optical Networks (CHRON) has been pro-

posed by several groups of researchers in Europe [14] to improve the dynamicity of

the optical network control planes. The project has investigated in the intelligent

monitoring techniques, the cross-layer cognitive control architecture design, and the

multi-objective optimization of the performance in term of cost and energy efficiency

[14]. Monroy et al. have designed a network control plane architecture in CHRON

[36, 19]. The control plane of CHRON includes a cognitive decision system and a

network monitoring system. Later, de Miguel et al. have successively elaborated the

centralized cognitive framework and built a testbed [20, 43, 42, 6]. However, their

design has not comprehensively solved the efficient network monitoring problem or

the fast reconfiguration problem. Moreover, the four-node network topology in their

testbed is too simple to validate the performance of the design in real-life networks,

which usually have hundreds of nodes. In particular, there is no work that shows

that reconfiguration can be done based on observed traffic changes. In summary, a

comprehensive cognitive network management and control scheme for current optical

networks is needed.

Chan et al. have proposed a detailed cognitive all-optical network architecture

in [10, 9, 12]. Figure 1-1 shows the concept of the cognitive all-optical network with

optical gateways between hierarchical subnet, peering gateway control points, and
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isolation, reconstitution, re-optimization, insertion of key interconnects, … 

Figure 1-1: Cognitive all-optical network concept with optical gateways between hi-
erarchical subnet, peering gateway control points and cognitive engine sensing and
interacting with multiple layers for network control. Reproduced from [7, 9].

cognitive engine sensing and interacting with multiple layers for network control from

the works in [7, 9]. The cognitive engine senses and interacts with multiple layers to

perform the dynamic control of the whole network system, such as the scalable fault

management with dynamic probing of the network states in [50], the fast scheduling

algorithm with a probing approach to enable the setup of end-to-end connections [54].

It may reside at network nodes as well as at a centralized or distributed controller/s.

Figure 1-2 further elaborates a desired development of agile, responsive, and affordable

on-demand network services via new network management and control architecture

across all network layers from Layer 1 Physical Layer to Layer 7 Application Layer

[8] [10]. The cognitive network management and control architecture will incorporate

with the upgraded physical layer to support big and bursty “elephant” traffic [55, 56].

The major technology advances in physical layer include the massive integration via

silicon photonics and hybrids for reduction in footprints (increasing density) lower

costs, weight, and power consumption [55]. A dynamic transport layer protocol and

data center routing topology and partitioning of resources is required as shown in [26].
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A cognitive network management and control system can sense the current network

state conditions, such as traffic and flow patterns, and uses this information to decide

how to adapt the network to satisfy or improve overall performance and provide quick

responses to transaction requests [7, 9]. The cognitive network module is part of the

control plane that touches all layers of a network. Traditionally, users never interact

with the control plane [55, 56]. In the future optical network, users can interact via

Application Layer or Transport Layer, and off-band control network. Interactions

necessitated by sudden traffic changes of elephant traffic require fast adaptations.
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Figure 1-2: An agile control plane architecture of cognitive network management and
control system. Reproduced from [8, 10].

In summary, the desired new network management and control architecture in

cognitive optical networking should have the following features:

1. Inference of network states based on traffic and active probing often with sparse

and stale data [50, 54];

2. All-optically switched architecture that provides agility and efficient resource

usage [11, 55];

3. Decisions and actions taken on load balancing, reconfiguration, restoration [50,

55];
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4. Cognitive techniques that predict optimum configuration for fast adaptation

to improves network performance without detailed assumptions of channel and

traffic statistics [31, 10].

The first point is discussed in [38, 40] with the design of the cognitive significant

state sampling for a cost-effective network management system. It is shown in [38]

that the adaptive monitoring system can greatly reduce the network management

and control overhead if the network states information is only collected when it can

improve network performance. The second point is discussed in [11, 49, 24, 27, 28,

55, 56, 57] with the comprehensive design of Optical Flow Switching (OFS). OFS is

an agile all-optical end-to-end network service for users with large traffic flows that

bypass routers. The dynamic per flow on a time scale of 1−104 seconds scheduling can

prevent collisions, and off-band signaling is used for reservation, scheduling, and setup

on a time scale of < 100 milliseconds. The fourth point is mentioned in [31, 10], where

the cognitive method for routing with the potential for improvements in network

performance is discussed. In [31], the inference and estimation methods are used on

the network traffic to modify the parameters of their routing protocols and/or routing

tables to improve performance metrics such as packet delay or network throughput.

In this work, we will mainly focus on the third and fourth points as our design

goals to enable cognitive optical networking control and management to be done in

a timely manner. We will try to optimize network configurations to improve network

performance based on the traffic information.

1.3 Design Goals

The goal of this work is to provide insights into the design of a comprehensive and

practical cognitive control and management scheme for optical networks. Specifically,

the design should provide an efficient and simple way to implement architectures that

can avoid a big burden for network management and control, and to improve the cost

efficiency of dynamic large transactions.

As a result, the control system should be able to perform rapid adaptations to
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maintain a low queueing delay with the fastest possible algorithms (and that means no

human in the loop). This is extremely important for the network in terms of stability,

scalability, reliability, and evolvability. It not only guarantees that optical networks

can function well in the traffic with great granularity, but it has to be scalable when

the network grows larger and faster. With the fast dynamics noted, agile cognitive

optical network management and control systems will guarantee both the quality of

transmission and network robustness with little or no involvement of humans, and

will finally move towards intelligent automatic control of networks. All of these make

it more affordable to meet changing requirements and incorporate new technology as

the network evolves.

Based on the design goal mentioned above, this work will mainly focus on two

modules to enable cognitive optical networking control and management in a timely

manner with little or no human involvement as:

1. Traffic detection and estimation – fast recognition of the nonstation-

ary traffic changes;

2. Network reconfiguration – quick adaption based on input quality of

service metric (delay, cost, etc.) and optimum sequential decision

algorithm.

The traffic detection and estimation module focuses on an efficient way to detect

and estimate the network traffic state information for sequential accurate network

reconfiguration. Traditional approaches to traffic change detection and estimation

require the collection of excessive historical network traffic information to allow for

fast and agile reconfiguration of network resources. The prevalence of dynamic traffic

sessions in today’s networks, which manifest themselves through frequent and bursty

changes of the network states, makes such approaches ineffective and even infeasible

sometimes. Therefore, we need to design a traffic detection and estimation scheme

that can make a decision in the shortest possible time when the traffic statistics

provide enough confidence for reconfiguration to enhance the ability of the network

to respond to changes efficiently.
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The network reconfiguration module focuses on accurately adapting the network

configurations based on the current operating conditions. In this work, three major

reconfiguration options are used in order of preference for the reconfigurable network

architecture are:

1. Lighting up a wavelength in the same primary lightpath between a node pair;

2. Rerouting incremental traffic to a secondary path with open wavelengths be-

tween the node pair;

3. Lighting up a new fiber with multiple wavelengths together with optical switch-

ing to accommodate overflowing traffic.

The reconfiguration can leverage the historical data as well as the real-time infor-

mation acquired from monitoring to guide the decision process. Accurate prediction

of future network states based on past traffic as well as active probing algorithms are

essential for any modern management protocol.

1.4 Cognitive Optical Network Design Submodules

We further break down the two general modules in the previous section into the fol-

lowing submodules to guide the design of a fast-reconfigurable network. The core of

cognition in networking is self-initiated actions. To be more specific, the networks are

equipped with the capability to flexibly sense network conditions and then reconfigure

dynamically. Also, network costs need to be considered to guarantee that architecture

is affordable to be implemented widely. To complete this fast-reconfigurable and eco-

nomical cognitive optical network architecture design, the following points of network

management and control scheme needed to be stressed.

1. Define the dynamic network traffic environment. This section will focus

on how to depict different network traffic environments.

2. Detect and estimate current network traffic fast and efficiently. This

problem will focus on efficiently detecting current real-time traffic to gain information
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about traffic shifts for network reconfigurations. To upgrade the cognitive control

to the autonomous adaption to current and upcoming network conditions, a traffic

estimation based on previous traffic detection results is desired.

3. Monitor the changes of queues when traffic or network reconfigura-

tion changes. This problem will focus on depicting the transient behaviors of the

queues in the networks to gain an understanding of how the fast network changes

affect the whole systems on a real-time scale.

4. Design the efficient network reconfiguration scheme. With given traf-

fic information and network state information (NSI), the network can reconfigure to

improve network performances and save operating costs. Adjustment include both

network setting changes (wavelength changes, etc.) and dynamic traffic controls (net-

work load balancing, traffic congestion control, etc.). Continuous assessments on de-

cisions and network controls will be an attribute of the scheme to provide the dynamic

optimization of network performance.

5. Evaluate the performance of cognitive design. Questions to be solved

include what performance metrics are used and how the cognitive algorithms perform.

6. Estimate the cost of the architecture. Cost evaluations of the network in

terms of both capital expenditure (e.g., wavelengths) and operating expenditure (e.g.,

queueing delay) should be given. Also, recommendations on how to further reduce

control complexity should be given.

The architectural recommendation provided in this work will cover all six points

above.

1.5 Thesis Scope and Organization

The rest of the thesis is organized as follows.

In Chapter 2, we discuss the traffic model that captures the dynamic traffic en-

vironment, the tunneled network architecture, and the reconfiguration options. We

build a traffic model based on the characteristics of the dynamic, bursty, and high-

granularity traffic. The tunneled network architecture is adopted due to its supremacy
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in reducing the control complexity. Three major reconfiguration options in order of

preference for the reconfigurable network architecture are introduced.

In Chapter 3, we develop the design of fast-reconfigurable cognitive wavelength

management and control algorithms that can accurately adapt based on the traffic

conditions in the long coherence time environment, where the traffic changes very

slowly. We develop two Bayesian estimators and a stopping-trial estimator to detect

traffic changes. We model the transient behaviors of networks to evaluate the detec-

tion and queueing delay performances of different estimators. A network cost model

is also proposed to stress the trade-off between queueing delay performance and the

cost of the capacity plus the control resources used. Finally, the stopping-trial esti-

mator with continuous assessment is recommended due to the fastest response time

to traffic changes following by the lowest operating cost.

In Chapter 4, we discuss the fast detection in the moderate coherence time envi-

ronment, where the traffic changes at a moderate rate. We validate the efficacy of

the stopping-trial estimator and discuss its detection performance. As long as the

inter-arrival times of traffic sessions are independent but not necessarily identically

distributed, the stopping-trial estimator is still recommended as it can react effectively

to the traffic rate changes.

In Chapter 5, we discuss traffic trend detection in the short coherence time en-

vironment, where the traffic changes very quickly. We model the transient behavior

of the network traffic as it drifts towards convergence at a new steady state and val-

idate the feasibility of the traffic trend prediction. Given the fast-changing traffic

where the traffic rate changes monotonically in a linear model, we develop the de-

sign of predicting the traffic trend with a sequential maximum likelihood estimator

based on distribution of the inhomogeneous Poisson process. The algorithm can suf-

ficiently estimate the traffic trend with a reasonable number of arrivals and trigger

reconfigurations.

In Chapter 6, we discuss the rerouting algorithm. We develop the rerouting al-

gorithm implemented with the shortest-path algorithm. The rerouting is triggered

by a threshold on the queueing delay, and the threshold is directly determined by
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the current traffic situation and the network configurations. We also discuss the op-

tion to reserve wavelength for rerouted traffic only and do not recommend it due to

low resource utilization. The desired properties of paths for rerouting and network

topology are discussed. Traffic splitting with resources partitioned in rerouting is

recommended for better network utilization.

In Chapter 7, we conclude the thesis with a summary of the recommended archi-

tectural design of the cognitive optical networks in the dynamic traffic environments.

We also present some directions for future work.
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Chapter 2

Dynamic Traffic Environment,

Tunneled Architecture, and

Reconfigurations

In this chapter, we discuss the simplified traffic model that captures the dynamic traf-

fic environment, the tunneled network architecture, and the reconfiguration options.

We build a simplified traffic model to reflect the characteristics of dynamic, bursty,

and high-granularity traffic. The tunneled network architecture will be adopted due

to its supremacy in reducing the control complexity [55]. In the following chapter, we

design the detection and reconfiguration scheme to fulfill the traffic demands based

on this traffic model presented in this chapter.

2.1 Dynamic Traffic Model

One of the main contributions of this work is to build a model of the time-varying

stochastic traffic in the optical networks, which is usually ignored in the static or

quasi-static traffic model in previous work. Other traffic models depicting the time-

varying stochastic traffic can be discussed in future work. To capture the bursty

nature of traffic, we address the different changes in it. Traffic environments can be

categorized into three regimes as follows:
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1. Network traffic changes very slowly so adaption can be done while the traffic is

in the same state;

2. Network traffic changes at a moderate rate commensurate with the fastest adap-

tion times;

3. Network traffic changes very rapidly so adaptions can only be limited to trends

rather than to the detailed changes.

A comprehensive analysis of such dynamic network environments is a must for

the design of cognitive management and control of optical networks. In the following

chapters, we focus on the design of a traffic detection mechanism and the reconfigu-

ration scheme for all three regimes.

2.1.1 All-to-all Stochastic Traffic

Given a network in the topology form, each node sends a certain amount of traffic

to other nodes for transmission. For a well-planned network, the average traffic

should be balanced to maintain a low network operating cost [24]. For example, in

a Metropolitan Area Network (MAN), the average traffic volume generated in each

MAN node should be approximately the same because the network resources are

partitioned based on the traffic demands. Several areas with low traffic demands will

share the same MAN node, while an area with high traffic demands will be allocated

an entire MAN node [24, 58]. Besides, traffic transmission among different node pairs

should be considered as statistically independent, since traffic is aggregated from

different areas.

In the traffic model, we assume that every source-destination node pair has uni-

form all-to-all independent and identically distributed (I.I.D.) traffic as shown in Fig.

2-1. The I.I.D. property applies to both the traffic arrival pattern and the traffic trans-

action size. The I.I.D. arrival pattern comes from the evenly balanced traffic among

all the nodes. The I.I.D. traffic transaction size is adopted to facilitate analyses.
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Figure 2-1: All-to-all dynamic traffic.

2.1.2 Multi-state Markov Arrival Rate

The traffic arrivals between each source-destination pair is assumed to follow a doubly

stochastic point process with a changing arrival rate 𝜆(𝑡). Compared to a fixed arrival

rate, the current model with a changing rate can not only cover a wider range of

arrival patterns, but capture the burstiness of the traffic. Though the detection and

estimation of the changing arrival rate are much harder than the unvarying arrival

rate, our model with the changing arrival rate will provide a more generic solution.

We can describe the Poisson arrival process of the traffic in two ways. First, we

describe the number of arrivals 𝑁 in the observation interval. 𝑁 follows a Poisson

distribution with the rate of 𝜆(𝑡)𝑇 . By counting the number of arrivals in the ob-

servation time, we can estimate the arrival rate. Denote the observation interval as

[𝑡−𝑇, 𝑡] with the length of 𝑇 . To avoid ambiguity, we include both the epochs (𝑡−𝑇 )

and 𝑡. The number of arrivals in the interval [𝑡 − 𝑇, 𝑡] is denoted as 𝑁(𝑇 ) and we

have

𝑃𝑟[𝑁(𝑇 ) = 𝑛] =
(𝜆(𝑡)𝑇 )𝑛𝑒−𝜆(𝑡)𝑇

𝑛!
. (2.1)

The expectation of the number of arrivals in the observation time 𝑇 is
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𝐸[𝑁(𝑇 )] = 𝜆(𝑡)𝑇. (2.2)

The variance of the number of arrivals in the observation time 𝑇 is

𝑉 𝑎𝑟[𝑁(𝑇 )] = 𝜆(𝑡)𝑇. (2.3)

Second, we can describe the length of the inter-arrival time and further the total

length time of 𝑁 arrivals. Each inter-arrival time in {𝑇𝑖, 𝑖 ≥ 1} follows an exponential

distribution with parameter 𝜆(𝑡). We assume the first arrival always happens at the

starting time (𝑡− 𝑇 ), and 𝑇𝑖 is the inter-arrival time between the 𝑖𝑡ℎ arrival and the

(𝑖+ 1)𝑡ℎ arrival. The sum of 𝑁 inter-arrival times 𝑇 (𝑁) =
∑︀𝑁

𝑖=1 𝑇𝑖 follows an Erlang

distribution with 𝜆(𝑡) as

𝑃𝑟[𝑇 (𝑁) = 𝜏 ] =
𝜆(𝑡)𝑁𝜏𝑁−1𝑒−𝜆(𝑡)𝜏

(𝑁 − 1)!
. (2.4)

The expectation of the observation length with 𝑁 number of arrivals in the ob-

servation time 𝑇 is

𝐸[𝑇 (𝑁)] =
𝑁

𝜆(𝑡)
. (2.5)

The variance of the observation length with 𝑁 number of arrivals in the observa-

tion time 𝑇 is

𝑉 𝑎𝑟[𝑇 (𝑁)] =
𝑁

𝜆(𝑡)2
(2.6)
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We assume 𝜆(𝑡) follows a Markov process, where the traffic arrival rate 𝜆(𝑡)

switches among different states 𝜆1, 𝜆2, ..., 𝜆𝑙 as the embedded Markov chain of a

countable-state Markov process shown in Fig. 2-2, where 0 < 𝜆1 < 𝜆2 < ... < 𝜆𝑙. In

this model, the traffic arrival rate will not change dramatically in a short amount of

time. We assume the transitions only include a state that switches to its previous

state, its next state, or itself. The transition from 𝜆𝑖 to 𝜆𝑖+1(0 < 𝑖 < 𝑙−1) indicates a

traffic surge, and we want to detect it promptly to avoid potential traffic congestion

and large queueing delays. The transition from 𝜆𝑖+1 to 𝜆𝑖, (0 < 𝑖 < 𝑙− 1) indicates a

traffic drop, and we also want to detect it promptly to avoid any waste of resources.

When 𝜆(𝑡) is maintained at state 𝜆𝑖, there is no traffic change, and we assume the

holding interval associated with the state 𝜆𝑖 follows an exponential distribution with

a rate of 𝑣𝑖, which is called as the holding rate. Each state is associated with a

transition rate 𝑎𝑖,𝑗 from 𝜆𝑖 to 𝜆𝑗.

𝜆" 𝜆# 𝜆$%"

𝑎",# 𝑎#,( 𝑎$%",$	𝑎$%#,$%"

……

𝑎#,"
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Figure 2-2: Multi-state embedded Markov chain transition of the traffic arrival rate
𝜆(𝑡).

Later in Chapter 3, we will simplify the model and assume the traffic switch

between a non-surging state 𝜆0 and a surging state 𝜆1 to focus on the detection

analysis of the traffic changes.
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2.1.3 Network Coherence Time

In this work, we model the network coherence time as the holding interval where

the traffic arrival rate is maintained at a certain state, and we denote the average

coherence time as 𝐷𝑖. The average coherence time of the whole system is denoted as

𝐷. In our traffic arrival model, given the current state is 𝜆𝑖, the average coherence

time in state 𝜆𝑖 is

𝐷𝑖 =
1

𝑣𝑖
=

1

𝑎𝑖,𝑖−1 + 𝑎𝑖,𝑖+1

. (2.7)

It is because the network will remain in this state, and the time to the next

transition is the time until either a transition to the previous state or the next state.

With the steady state probability of state 𝜆𝑖 as 𝜋𝑖, the average coherence time for the

whole system is

𝐷 =
𝑙∑︁

𝑖=1

𝜋𝑖

𝑣𝑖
. (2.8)

We can categorize the network traffic environments using the coherence time 𝐷

and the time to make decisions into three regimes. Denote the average detection time

of the estimator as 𝜏1. The three regimes of the changing traffic represented in the

relation between the detection and the coherence time are:

1. long coherence time: 𝜏1 << 𝐷, where the traffic changes very slowly;

2. moderate coherence time: 𝜏1 ∼ 𝐷, where the traffic changes at a moderate rate;

3. short coherence time: 𝜏1 >> 𝐷, where the traffic changes very quickly.

Alternatively, we can quantize the coherence time with the holding rate 𝑣𝑖. We

assume 𝑣𝑖 is changing within a range of [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥]. The range of 𝑣𝑖 can be learned

and determined from the historical records of network traffic. The three regimes

become:
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1. long coherence time, where 𝑣𝑖 ∼ 𝑣𝑚𝑖𝑛;

2. moderate coherence time, where 𝑣𝑖 ∼ 𝑣𝑚𝑖𝑛+𝑣𝑚𝑎𝑥

2
;

3. short coherence time, where 𝑣𝑖 ∼ 𝑣𝑚𝑎𝑥.

In the long coherence time regime, the inter-arrival times 𝑇𝑖s after the traffic

change are a set of I.I.D. variables and the I.I.D. property can facilitate the detection

and the estimation of the traffic change. In the moderate coherence time regime, 𝑇𝑖s

are no longer identically distributed and this makes detection difficult. What is more,

the traffic can change again. In the short coherence time regime, it is hard to detect

every single traffic change. If the coherence time is extremely short, the detection

may no longer converge. In this case, we can only try to predict the trend of fast

traffic changes when the session arrival statistics provide enough confidence to do so.

2.2 Tunneled Architecture

We assume a tunneled network architecture, where each node pair is connected via

a preselected set of wavelengths within a single lightpath or multiple lightpaths for

traffic transmission as shown in Fig. 2-3. Zhang showed in [55] that tunneled archi-

tecture can reduce control plane traffic and processing complexity significantly with

little sacrifice in efficiency for heavy traffic volumes, compared to meshed architecture

that enables full switchability at all nodes. The capacity between each node pair is

reconfigurable by adjusting the number of wavelengths used by the node pair based

on the offered traffic.

Assume 𝑚(𝑡) wavelengths are assigned between a node pair at time 𝑡, and each

wavelength has a constant transmission rate of 𝑅 bits per second. The size of each

transaction 𝐿 is assumed to be exponentially distributed with the expectation 𝐿0

in the analysis, but any well-behaved real-life traffic distribution will yield the same

architecture recommendations. Given the average size of a transaction 𝐿0, the service

rate of each wavelength per transaction is 𝜇 = 𝑅
𝐿0

.
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Figure 2-3: An example of an all-to-all tunneled network connection between node
pairs in the form of wavelengths. (a) All-to-all tunneled network topology; (b) Re-
configurable wavelength assignment.

2.3 Traffic Load

We employ the traffic load to evaluate the traffic situation in the network. For a

node pair, given the arrival rate 𝜆(𝑡) and the traffic service 𝜇 with 𝑚(𝑡) wavelength

tunneled in use, we can define the network load between a node pair as

𝜌 =
𝜆(𝑡)

𝑚(𝑡)𝜇
. (2.9)

The traffic load of the whole network can be reflected by the load on each node

pair. The load of the whole network is the total arrival rate entering the network

divided by the total transmission rate of all the wavelengths in use in the network.

Given the uniform all-to-all traffic pattern, the average arrival rate of each node pair

is the same, and the same number of wavelengths will be assigned to each node pair.

Therefore, the average load of the whole network is the same as the average load on
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each node pair.

The arrival and transmission between the node pair is in a stable state when

𝜌 < 1. When 𝜌 ≥ 1, the network is overloaded, and the queue between the node pair

will grow. Network reconfigurations are needed to bring the system to a new steady

state. Otherwise, either long delays or excessive blocking will degrade users’ quality

of service.

2.4 Reconfigurations

When network traffic changes happen, network reconfigurations may be needed to

maintain users’ quality of service. An agile network reconfiguration scheme is re-

quired to accurately adapt based on the current operating conditions and maintain

high cost efficiency. Any mismatch between network conditions and the suggested

reconfigurations will increase network burdens and waste network resources.

It is not hard to see that the detection performance of the estimator will determine

the following reconfiguration performance since fast detection can avoid the following

severe network congestion. Also, high detection accuracy is required since high error

probability makes the system unstable and degrades users’ quality of service. On the

other hand, the network operating cost has to be taken into consideration to provide

a reasonable reconfiguration scheme design.

Our goal is to provide timely network reconfigurations in response to the dynamic

traffic environments. As discussed in Chapter 1, in the optical networks, with the

traffic changes detected, three reconfiguration options in order of preference for the

reconfigurable network architecture as shown in Fig. 2-4 are:

1. Lighting up a wavelength in the same primary lightpath between a node pair;

2. Rerouting incremental traffic to a secondary path with open wavelengths be-

tween the node pair;

3. Lighting up a new fiber with multiple wavelengths together with optical switch-

ing to accommodate overflowing traffic.
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Figure 2-4: The traffic transmission of three network reconfiguration options. (a)
The dynamic wavelength addition or subtraction on the primary path. Traffic will be
transmitted on the primary path. (b) The rerouting of the incremental traffic. Part
of the traffic will be transmitted on paths other than the primary path. (c) The new
fiber setup on the primary path. Traffic will be transmitted on the primary path.

The dynamic wavelength addition or subtraction is performed when the maxi-

mum number of wavelengths on the path has not been reached. The traffic is still

transmitted on the primary path between the source node and the destination node
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as shown in Fig. 2-4(a). The fast-reconfigurable cognitive wavelength management

and control algorithms aim to accurately adjust the number of assigned wavelengths

based on the observation of the operating conditions of the networks. When traffic

increases sharply, more wavelengths are expected to be assigned to avoid potential

traffic congestion and large queueing delays. When traffic drops, fewer wavelengths

are expected to avoid any waste of resources.

When the network traffic reaches a load threshold to satisfy delay requirements,

the incremental traffic has to go through other paths to the destination, as shown

in Fig. 2-4(b), which is called rerouting. In this work, it is performed when the

queueing delay of the traffic transaction exceeds the delay requirement. If the overall

system is heavily loaded, a new fiber with multiple wavelengths is needed to be

set up, as shown in Fig. 2-4(c), which is equivalent to logically adding a path on

the topology. This reconfiguration needs a longer cycle compared to the dynamic

wavelength addition/subtraction. We will brief mention the time to perform fiber

setup in Chapter 6.
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Chapter 3

Long Coherence Time Traffic

Environment

In the long coherence time traffic environment, network traffic changes very slowly

so adaption can be done while the traffic is in the same state. In other words, we

have long enough time for detection and reconfigurations without worrying about

more the traffic changes. For the detection of non-stationary traffic changes, we

need to find the detection algorithm that can detect the network changes within the

shortest possible time when the session arrival statistics provide enough confidence for

reconfiguration. An optimal sequential estimator that can make a decision as soon

as possible without any predetermined detection parameters is desired [12]. Also,

the estimator should rely on less or no historical data and experience to be able to

handle rare events effectively and efficiently [12]. This will remedy one of the blind

spots of current learning techniques, where historical data is heavily relied on and

unanticipated black-swan events are rarely recognized quickly and mitigated on time.

The detection algorithm should quickly respond to unanticipated network situations

and then avoid successive serious network catastrophes.

In this chapter, we present the design of fast-reconfigurable cognitive wavelength

management and control algorithms that can accurately adapt by observing the net-

work operating conditions of the networks. Two Bayesian estimators and a stopping-

trial estimator were proposed in [10, 12] to detect traffic changes. The Bayesian
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estimator with the fixed observation time to classify the traffic state of the node is

analyzed in [31]. Its average packet delay at a given node for various observation

times is also given in [31]. In this work, we further develop these estimators and ex-

amine their traffic detection and queueing delay performances based on the resulting

transient behaviors of networks. A network cost model is proposed to capture the

trade-off between reconfiguration performance (transient queueing delays) and the

cost of the capacity plus the control resources used. We recommend a wavelength

reconfiguration algorithm based on the stopping-trial estimator with continuous as-

sessment where the system reconfigures whenever necessary. The reconfiguration can

involve addition or subtraction of multiple wavelengths. Among the three estima-

tors, the stopping-trial estimator requires the smallest number of wavelengths to be

reconfigured because it responds the fastest and avoids a high peak queueing delay

[59].

The arrival traffic at the source is assumed to form a doubly stochastic Poisson

point process with a time-dependent rate of 𝜆(𝑡) as mentioned in Chapter 2. In

[31], the traffic arrival model is assumed to transit between a surging state and a non-

surging state. To facilitate the analysis in this chapter, we use a similar idea to assume

𝜆(𝑡) switches between a non-surging state 𝜆0 and a surging state 𝜆1, where 𝜆0 < 𝜆1

as shown in Fig.3-1. When 𝜆(𝑡) switches from 𝜆0 to 𝜆1, there is a traffic surge, and

we want to detect it promptly to avoid potential traffic congestion and large queueing

delays. When 𝜆(𝑡) switches from 𝜆1 to 𝜆0, there is a traffic drop, and we want to

detect it promptly to avoid any waste of resources. The size of each transaction 𝐿 is

exponentially distributed with the expectation 𝐿0 as defined in Chapter 2.

3.1 Two Bayesian Estimators

We first consider the commonly-used Bayesian estimators to detect the changes of

traffic statistics. Given the binary nature of 𝜆(𝑡), two possible hypotheses for the

decision are [31]:
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Figure 3-1: Two-state embedded Markov chain transition of the traffic arrival rate
𝜆(𝑡).

𝐻0 : 𝜆(𝑡) = 𝜆0; (3.1)

𝐻1 : 𝜆(𝑡) = 𝜆1. (3.2)

The false alarm probability 𝑃𝑓 is the probability that we accept 𝐻1 when 𝐻0 is

true. The missed detection probability 𝑃𝑚 is the probability that we accept 𝐻0 when

𝐻1 is true. The probability of detection is 𝑃𝑑 = 1− 𝑃𝑚. If the a priori probabilities

are known as 𝜋𝜆0 for 𝐻0 and 𝜋𝜆1 = 1− 𝜋𝜆0 for 𝐻1, the total error probability is

𝑃𝑟[𝑒] = 𝜋𝜆0𝑃𝑟[𝐻1|𝐻0] + 𝜋𝜆1 (3.3)

= 𝑃𝑟[𝐻0|𝐻1] = 𝜋𝜆0𝑃𝑓 + 𝜋𝜆1𝑃𝑚. (3.4)

We can observe the Poisson arrival process in two ways. First, we observe the

number of arrivals 𝑁 in the observation interval [𝑡 − 𝑇, 𝑡]. 𝑁 follows a Poisson

distribution with the rate of 𝜆(𝑡)𝑇 . Notice that 𝑇 should be less than the network

coherence time for effective adaptions in the long coherence time traffic environment.

Second, each inter-arrival time in {𝑇𝑖, 𝑖 ≥ 1} follows an exponential distribution with
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parameter 𝜆(𝑡). As assumed in Chapter 2, the first arrival always happens at the

starting time (𝑡 − 𝑇 ), and 𝑇𝑖 is the interarrival time between the 𝑖𝑡ℎ arrival and

the (𝑖 + 1)𝑡ℎ arrival. The sum of 𝑁 inter-arrival times
∑︀𝑁

𝑖=1 𝑇𝑖 follows an Erlang

distribution with 𝜆(𝑡).

Given the two ways of observing the arrival process, we can develop two Bayesian

estimators fixed-time estimator 𝜆̂𝑇 (𝑡) and fixed-count estimator 𝜆̂𝑁(𝑡) as follows.

3.1.1 Fixed-Time Estimator 𝜆̂𝑇 (𝑡)

For the fixed-time estimator 𝜆̂𝑇 (𝑡), we count the total number of arrivals in a fixed

time interval [𝑡−𝑇, 𝑡] denoted by 𝑁(𝑇 ) backwards in time to determine the validation

of the hypotheses [12]. The observation window is moving with time. Here, 𝑁 is a

random variable with the constant parameter 𝑇 . We define [12]

𝜆̂𝑇 (𝑡) =
𝑁(𝑇 )

𝑇
. (3.5)

A similar analysis of the Bayesian estimator with the fixed observation time to

classify the traffic state of the node with the arrivals in Poisson distribution as shown

in [31].

Bayesian Likelihood Ratio Test

Similar to the Bayesian likelihood ratio test in [31], the Bayesian likelihood ratio test

for 𝑁(𝑇 ) with a priori probabilities 𝜋𝜆0 and 𝜋𝜆1 is

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆1]

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆0]

𝜆1

≷
𝜆0

𝜋𝜆0

𝜋𝜆1

, (3.6)

where 𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆0] =
(𝜆0𝑇 )𝑛𝑒−𝜆0𝑇

𝑛!
, 𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆1] =

(𝜆1𝑇 )𝑛𝑒−𝜆1𝑇

𝑛!
.

We get
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⇔ 𝑛
𝜆1

≷
𝜆0

(𝜆1 − 𝜆0)𝑇 + ln
(︁

𝜋𝜆0

𝜋𝜆1

)︁
ln
(︁

𝜆1

𝜆0

)︁ , 𝛾𝑇 . (3.7)

Therefore, we observe the number of arrivals 𝑁(𝑇 ) in [𝑡− 𝑇, 𝑡]. If 𝑁(𝑇 ) ≥ 𝛾𝑇 , we

accept 𝐻1 and reject 𝐻0. If 𝑁(𝑇 ) < 𝛾𝑇 , we accept 𝐻0 and reject 𝐻1.

Similar to the Bayesian likelihood ratio test in [31], when all the a priori proba-

bilities are the same, i.e., 𝜋𝜆0 = 𝜋𝜆1 = 0.5, we have the test as

𝑛
𝜆1

≷
𝜆0

(𝜆1 − 𝜆0)𝑇

ln
(︁

𝜆1

𝜆0

)︁ , 𝛾𝑇 . (3.8)

The error probability 𝑃𝑟[𝑒𝑇 ] for 𝜆̂𝑇 (𝑡) is

𝑃𝑟[𝑒𝑇 ] = 𝜋𝜆0𝑃𝑟[𝐻1|𝐻0] + 𝜋𝜆1𝑃𝑟[𝐻0|𝐻1] (3.9)

= 𝜋𝜆0𝑃𝑟[𝑁(𝑇 ) ≥ 𝛾𝑇 |𝜆(𝑡) = 𝜆0] + 𝜋𝜆1𝑃𝑟[𝑁(𝑇 ) < 𝛾𝑇 |𝜆(𝑡) = 𝜆1] (3.10)

= 𝜋𝜆0

∞∑︁
𝑛=⌈𝛾𝑇 ⌉

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆0] + 𝜋𝜆1

⌈𝛾𝑇 ⌉−1∑︁
𝑛=0

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆1] (3.11)

= 𝜋𝜆0𝑒
−𝜆0𝑇

∞∑︁
𝑛=⌈𝛾𝑇 ⌉

(𝜆0𝑇 )
𝑛

𝑛!
+ 𝜋𝜆1𝑒

−𝜆1𝑇

⌈𝛾𝑇 ⌉−1∑︁
𝑛=0

(𝜆1𝑇 )
𝑛

𝑛!
. (3.12)

Neyman-Pearson Test

The Bayesian likelihood ratio test requires the knowledge of all the a priori prob-

abilities. In practice, a more general case is that all the a priori probabilities are

unknown. For the Neyman-Pearson test, it assumes all the a priori probabilities are

unknown. As mentioned in [31], instead, define a threshold 𝜂 for the likelihood ratio

test and we have
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𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆1]

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆0]

𝜆1

≷
𝜆0

𝜂, (3.13)

As mentioned in [31], similar to the expression in 3.7, the threshold expression is

𝑛
𝜆1

≷
𝜆0

(𝜆1 − 𝜆0)𝑇 + ln 𝜂

ln
(︁

𝜆1

𝜆0

)︁ , 𝛾𝑇 ′ . (3.14)

A Gaussian approximation to compute the error probabilities (and to create an

ROC curve) instead of the exact error probabilities is shown in [31]. In this work, we

prove the exact error probabilities as follows.

The type 1 error probability (false alarm probability) 𝑃𝑓𝑇 is the probability that we

accept 𝐻1 but actually 𝐻0 is true, which is the same idea as 𝑃𝑟[𝐻1|𝐻0] in the Bayesian

likelihood ratio test. Equivalently, it is the probability that we report 𝜆(𝑡) = 𝜆1 given

𝜆(𝑡) is actually in the level of 𝜆0. Since 𝑛 is an integer, we have

𝑃𝑓𝑇 = 𝑃𝑟[𝐻1|𝐻0] =
∞∑︁

𝑛=⌈𝛾𝑇𝑁 ⌉

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆0] (3.15)

=
∞∑︁

𝑛=⌈𝛾𝑇 ′⌉

(𝜆0𝑇 )
𝑛𝑒−𝜆0𝑇

𝑛!
, (3.16)

where ⌈·⌉ is the ceiling function.

The type 2 error probability (missed detection probability) 𝑃𝑚𝑇
is the probability

that we accept 𝐻0 but actually 𝐻1 is true, which is the same idea as 𝑃𝑟[𝐻0|𝐻1] in

the Bayesian likelihood ratio test. Equivalently, it is the probability that we report

𝜆(𝑡) = 𝜆0 given 𝜆(𝑡) is actually in the level of 𝜆1. Since 𝑛 is an integer, we have
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𝑃𝑚𝑇
= 𝑃𝑟[𝐻0|𝐻1] =

⌈𝛾𝑇𝑁 ⌉−1∑︁
𝑛=0

𝑃𝑟[𝑁(𝑇 ) = 𝑛|𝜆1] (3.17)

=

⌈𝛾𝑇 ′⌉−1∑︁
𝑛=0

(𝜆1𝑇 )
𝑛𝑒−𝜆1𝑇

𝑛!
. (3.18)

We can use Chernoff bounds to approximate the false alarm probability and the

missed detection probability. However, the detection time 𝑇 after a rate change needs

to be as short as possible to achieve the fast response that prevents the queue build-

up. A short detection time will inevitably cause higher false alarm/missed detection

rates, where the exponentially tight Chernoff bound is not a good approximation.

Though we will not use the Chernoff bound approximation in this work, it does

provide an easily calculable approximation when the requirement of the probability

of false alarm/missed detection is strict.

3.1.2 Fixed-Count Estimator 𝜆̂𝑁(𝑡)

The fixed-time estimator requires a fixed observation time, which may not be able to

adapt well to fast-changing traffic. A fixed-count estimator has been proposed in [10,

12] to enable the flexible observation time with the fixed number of counts. Here, we

further elaborate on this fixed-count estimator 𝜆̂𝑁(𝑡). For the fixed-count estimator

𝜆̂𝑁(𝑡), we observe the duration 𝑇 (𝑁), formed by the last 𝑁 arrivals (including the

one at (𝑡− 𝑇 )) backwards in time to determine the validation of the hypotheses [12].

We define the fixed-count estimator as [12]

𝜆̂𝑁(𝑡) =
𝑁

𝑇 (𝑁)
=

𝑁∑︀𝑁−1
𝑖=1 𝑇𝑖 + 𝑍(𝑡)

, (3.19)

where 𝑍(𝑡) is the age of the Poisson process of the observation interval ending at time

𝑡, which is defined as the interval from the most recent arrival (𝑁 𝑡ℎ arrival) before

(but not including) 𝑡 until 𝑡. Namely, 𝑍(𝑡) is the interval from the 𝑁 𝑡ℎ arrival until
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the epoch 𝑡. If the 𝑁 𝑡ℎ arrival happens at time 𝑡, 𝑍(𝑡) = 0. (𝑁 − 1) inter-arrivals are

included in the previous 𝑁 arrivals, so that

𝑍(𝑡) = 𝑇 −
𝑁−1∑︁
𝑖=1

𝑇𝑖. (3.20)

We can prove 𝑍(𝑡) also follows an exponential distribution with rate 𝜆(𝑡). If we

look at the arrivals of the Poisson process in [𝑡 − 𝑇, 𝑡] backward in time, it is still a

Poisson process due to its time-reversibility [21]. For the reversed Poisson process,

𝑍(𝑡) becomes the interval between a starting epoch (the epoch 𝑡 when looking for-

ward in time)and the first arrival (the 𝑁 𝑡ℎ arrival when looking forward in time).

Due to the memoryless property of exponential distribution, 𝑍(𝑡) follows an expo-

nential distribution with the arrival rate of 𝜆(𝑡) as the following inter-arrival intervals.

Therefore, we have

𝜆̂𝑁(𝑡) =
𝑁

𝑇 (𝑁)
=

𝑁∑︀𝑁
𝑖=1 𝑇𝑖

. (3.21)

Bayesian Likelihood Ratio Test

Similarly, the Bayesian likelihood ratio test for 𝑇 (𝑁) with a priori probabilities

𝑃𝑟[𝐻0] = 𝜋𝜆0 and 𝑃𝑟[𝐻1] = 𝜋𝜆1 is

𝑓𝑇 |𝜆(𝜏 |𝜆1)

𝑓𝑇 |𝜆(𝜏 |𝜆0)

𝜆1

≷
𝜆0

𝜋𝜆0

𝜋𝜆1

, (3.22)

where 𝑓𝑇 |𝜆(𝜏 |𝜆1) =
𝜆𝑁
1 𝜏𝑁−1𝑒−𝜆1𝜏

(𝑁−1)!
, 𝑓𝑇 |𝜆(𝜏 |𝜆0) =

𝜆𝑁
0 𝜏𝑁−1𝑒−𝜆0𝜏

(𝑁−1)!
.

We get

𝜏
𝜆0

≷
𝜆1

ln
(︀𝜋𝜆1

𝜋𝜆0

)︀
+𝑁 ln

(︀
𝜆1

𝜆0

)︀
(𝜆1 − 𝜆0)

, 𝛾𝑁 . (3.23)
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Therefore, we observe the length of time interval 𝑇 (𝑁) for 𝑁 arrivals. If 𝑇 (𝑁) ≥

𝛾𝑁 , we accept 𝐻0 and reject 𝐻1; if 𝑇 (𝑁) < 𝛾𝑁 , we accept 𝐻1 and reject 𝐻0.

When all the a priori probabilities are the same, i.e., 𝜋𝜆0 = 𝜋𝜆1 = 0.5, we have

the threshold as

𝜏
𝜆0

≷
𝜆1

𝑁 ln
(︀
𝜆1

𝜆0

)︀
(𝜆1 − 𝜆0)

, 𝛾𝑁 . (3.24)

Similarly, the error probability of decision making 𝑃𝑟[𝑒𝑁 ] for 𝜆̂𝑁(𝑡) is

𝑃𝑟[𝑒𝑁 ] = 𝜋𝜆0𝑃𝑟[𝐻1|𝐻0] + 𝜋𝜆1𝑃𝑟[𝐻0|𝐻1] (3.25)

= 𝜋𝜆0𝑃𝑟[𝑇 (𝑁) < 𝛾𝑁 |𝜆(𝑡) = 𝜆0] + 𝜋𝜆1𝑃𝑟[𝑇 (𝑁) ≥ 𝛾𝑁 |𝜆(𝑡) = 𝜆1](3.26)

= 𝜋𝜆0

∫︁ 𝛾𝑁

0

𝑓𝑇 |𝜆(𝜏 |𝜆0)𝑑𝜏 + 𝜋𝜆1

∫︁ ∞

𝛾𝑁

𝑓𝑇 |𝜆(𝜏 |𝜆1)𝑑𝜏 (3.27)

= 𝜋𝜆0

∫︁ 𝛾𝑁

0

𝜆𝑁
0 𝜏

𝑁−1𝑒−𝜆0𝜏

(𝑁 − 1)!
𝑑𝜏 + 𝜋𝜆1

∫︁ ∞

𝛾𝑁

𝜆𝑁
1 𝜏

𝑁−1𝑒−𝜆1𝜏

(𝑁 − 1)!
𝑑𝜏 (3.28)

=
𝜋𝜆0𝜆

𝑁
0

(𝑁 − 1)!

∫︁ 𝛾𝑁

0

𝜏𝑁−1𝑒−𝜆0𝜏𝑑𝜏 +
𝜋𝜆1𝜆

𝑁
1

(𝑁 − 1)!

∫︁ ∞

𝛾𝑁

𝜏𝑁−1𝑒−𝜆1𝜏𝑑𝜏. (3.29)

Neyman-Pearson Test

The Neyman-Pearson test assumes all the a priori probabilities are unknown. Define

a threshold 𝜂, and we have

𝑓𝑇 |𝜆(𝜏 |𝜆1)

𝑓𝑇 |𝜆(𝜏 |𝜆0)

𝜆1

≷
𝜆0

𝜂. (3.30)

Similar to the expression in 3.23, the threshold expression is

𝜏
𝜆0

≷
𝜆1

𝑁 ln
(︀
𝜆1

𝜆0

)︀
− ln 𝜂

(𝜆1 − 𝜆0)
, 𝛾𝑁 ′ . (3.31)
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The type 1 error probability (false alarm probability) 𝑃𝑓𝑇 is the probability that

we accept 𝐻1 but actually 𝐻0 is true, which is the same idea as 𝑃𝑟[𝐻1|𝐻0] in the

Bayesian LRT. Equivalently, it is the probability that we report 𝜆(𝑡) = 𝜆1 given 𝜆(𝑡)

is actually in the level of 𝜆0. We have

𝑃𝑓𝑁 = 𝑃𝑟[𝐻1|𝐻0] =

∫︁ 𝛾𝑁′

0

𝑓𝑇 |𝜆(𝜏 |𝜆0)𝑑𝜏 (3.32)

=

∫︁ 𝛾𝑁′

0

𝜆𝑁
0 𝜏

𝑁−1𝑒−𝜆0𝜏

(𝑁 − 1)!
𝑑𝜏. (3.33)

The type 2 error probability (missed detection probability) 𝑃𝑚𝑇
is the probability

that we accept 𝐻0 but actually 𝐻1 is true, which is the same idea as 𝑃𝑟[𝐻0|𝐻1] in

the Bayesian LRT. Equivalently, it is the probability that we report 𝜆(𝑡) = 𝜆0 given

𝜆(𝑡) is actually in the level of 𝜆1. We have

𝑃𝑚𝑁
= 𝑃𝑟[𝐻0|𝐻1] =

∫︁ ∞

𝛾𝑁′

𝑓𝑇 |𝜆(𝜏 |𝜆1)𝑑𝜏 (3.34)

=

∫︁ ∞

𝛾𝑁′

𝜆𝑁
1 𝜏

𝑁−1𝑒−𝜆1𝜏

(𝑁 − 1)!
𝑑𝜏. (3.35)

3.1.3 Comparison of the Two Bayesian Estimators

The simulated rate change detection shapes of both 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡) in a single run is

shown in Fig. 3-2. No assumption of 𝜆(𝑡) is made to better demonstrate the detection

process. The arrival samples are also plotted to better describe the detection process.

The fixed count 𝑁 in 𝜆̂𝑁(𝑡) is chosen such that 𝑁 = 𝜆0𝑇 for the fixed time 𝑇 in

𝜆̂𝑇 (𝑡). Due to the different detection mechanisms, the shape of the detection curves

of 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡) are different. 𝜆̂𝑇 (𝑡) will not change if the number of arrivals is not

changing in the moving observation time window, and the shape looks like a series

of steps. 𝜆̂𝑁(𝑡) will continuously decay if no arrival comes, and it will go up when

a new arrival is detected. From the shape, we can find 𝜆̂𝑁(𝑡) is more sensitive to

the change than 𝜆̂𝑇 (𝑡). Besides, 𝜆̂𝑁(𝑡) has a non-fixed observation time compared to
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𝜆̂𝑇 (𝑡), which has a fixed observation time window.
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Figure 3-2: The comparison of detection shapes of 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡) in a single run.
No assumption of 𝜆(𝑡) is made. 𝜆0 = 5 𝑇 = 1, 𝑁 = 𝜆0𝑇 = 5.

The simulated rate change detection performance comparisons of both 𝜆̂𝑇 (𝑡) and

𝜆̂𝑁(𝑡) with a step change in 𝜆(𝑡) in the average of different numbers of runs (1 run,

10 runs, 100 runs, and 1000 runs) are shown in Fig. 3-3. The simulated rate change

detection performance comparisons of both 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡) with a step change in 𝜆(𝑡)

in the average of 10000 runs are shown in Fig. 3-4. No assumption of 𝜆(𝑡) is made to

better demonstrate the detection process. The probability distribution is the same,

but each time the samples will be randomly generated, which incurs the zig-zag shapes

of the detection results. The fixed count 𝑁 in 𝜆̂𝑁(𝑡) is chosen such that 𝑁 = 𝜆0𝑇
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Figure 3-3: The comparison of the average detection results over different numbers
of runs of 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡): (a) a single run; (b) 10 runs; (c) 100 runs; (d) 1000
runs. No assumption of 𝜆(𝑡) is made. The probability distribution of 𝜆(𝑡) is the
same but each time the arrival samples will be randomly generated. 𝜆0 = 5, 𝜆1 = 10.
𝑇 = 1, 𝑁 = 𝜆0𝑇 = 5.

for the fixed time 𝑇 in 𝜆̂𝑇 (𝑡). From it, we find that a single-run result does not well

show the catch of the step change. The average of more runs gives a smoother results.

With the average results of over 10000 runs as shown in Fig. 3-4, both estimators

can successfully estimate the non-varying arrival rates. When a step traffic change of
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Figure 3-4: The comparison of the average detection results over 10000 runs of 𝜆̂𝑇 (𝑡)
and 𝜆̂𝑁(𝑡). No assumption of 𝜆(𝑡) is made. The probability distribution of 𝜆(𝑡) is the
same, but each time the arrival samples will be randomly generated. 𝜆0 = 5, 𝜆1 = 10.
𝑇 = 1, 𝑁 = 𝜆0𝑇 = 5.

𝜆(𝑡) (either traffic surge or traffic drop) happens, 𝜆̂𝑇 (𝑡) always takes a time of 𝑇 to

move to the new state as it uses the fixed observation time. 𝜆̂𝑁(𝑡) always responds

faster to sudden rate changes than 𝜆̂𝑇 (𝑡), though 𝜆̂𝑁(𝑡) may not be as accurate and

stable as 𝜆̂𝑇 (𝑡), which is also shown in the receiver operating characteristic (ROC)

comparisons of the two estimators in Fig. 3-5. From the ROC curves, given the same

probability of false alarm, we find that 𝜆̂𝑁(𝑡) has a worse probability of detection than

that of 𝜆̂𝑇 (𝑡) with the fixed count of 𝜆̂𝑁(𝑡) set to 𝑁 = 𝜆0𝑇 , where 𝑇 is the length

of the fixed time observation interval. Compared to the fixed time 𝑇 , the detection

time of 𝜆̂𝑁(𝑡) can flexibly adjust to the underlying 𝜆(𝑡). In the setting of the step
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change in Fig. 3-3 and Fig. 3-4, 𝜆̂𝑁(𝑡) can improve network efficiency by avoiding

both a long detection time for fast changes and a high sampling frequency for low

arrival rates. These simulation results indicate that 𝜆̂𝑁(𝑡) is superior for this arrival

rate changing scenario, but that may not be true if there is less separation in states

than here. Also, if the penalty of the error probability is high, 𝜆̂𝑁(𝑡)’s advantage in

fast detection time may not be desirable.
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Figure 3-5: The comparison of ROC curves of fixed-time estimator 𝜆̂𝑇 (𝑡) and fixed-
count estimator 𝜆̂𝑁(𝑡). 𝜆0 = 5, 𝜆1 = 10. The fixed count 𝑁 in 𝜆̂𝑁(𝑡) is chosen such
that 𝑁 = 𝜆0𝑇 for the fixed time 𝑇 in 𝜆̂𝑇 (𝑡).

Though both Bayesian estimators are simple to implement, they have the disad-

vantage of taking too much time to react when there are more arrivals than expected

and reacting to noisy data when there are not enough arrivals to give a good estimate
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of the underlying rate change. In both cases, this leads to inappropriate and even

disruptive reconfigurations.

Another major drawback is that both Bayesian estimators require the a priori

probability distribution 𝜋𝜆0 and 𝜋𝜆1 , which are not usually known and also can be

non-stationary. This can be estimated over the coherence time of the network from

prior traffic statistics using learning techniques. The caution with such learning tech-

niques is that it will not do well against an extremely rare or black-swan event. The

assumption, that the coherence time of the arrival process is longer than the times

that reconfigurations occur, is the regime where such algorithms are useful. In the

event that the coherence time is shorter than the times needed for reconfiguration,

adaptive techniques will not be effective. Therefore, we need to find an algorithm

that runs continuously, and adapts the system at any time scale and achieves the

delay performance of the lower envelope of the various estimators. We will explore

the efficacy of a sequential decision algorithm, the stopping-trial estimator, in the

next section.

3.2 Stopping-Trial Estimator

An estimator called the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) is proposed in [10, 12] to

detect traffic arrival rate changes in the shortest possible time so that the system

can be reconfigured at a fast time scale. For the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡), we

observe each inter-arrival time 𝑇𝑖 of the doubly stochastic Poisson point process as a

sequential test to trigger network reconfigurations. As opposed to 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡),

𝜆̂𝑆𝑇 (𝑡) does not require a predetermined observation time or count. It can make

a decision in the shortest possible time when the session arrival statistics provide

enough confidence for reconfiguration [21].

We elaborate the design of the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡). The detection

process of 𝜆̂𝑆𝑇 (𝑡) can be modeled as a random walk 𝑆𝐽 based on {𝑇𝑖, 𝑖 ≥ 1}, where

𝐽 is the time that a threshold is crossed and a reconfiguration is made. Based on

results in [12], if the process starts from a non-surging state, the random walk can be
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defined as

𝑆𝐽 =
𝐽∑︁

𝑖=1

(𝑇𝑖 −
1

𝜆0

). (3.36)

Define the random walk if the process starts from a surging state as

𝑆𝐽 =
𝐽∑︁

𝑖=1

(𝑇𝑖 −
1

𝜆1

). (3.37)

To avoid bias from the previous decision, the algorithm resets 𝑆𝐽 and starts from

the new state once a traffic rate change is detected. Two sample random walks

are shown in Fig. 3-6 [12], where 𝑛 is a discretized time index in the unit of arrivals.

Denote the threshold for adding a new wavelength as 𝜂+ and the threshold for tearing

down an existing wavelength as 𝜂−. Both 𝜂+ and 𝜂− are determined by the desired

error probabilities. The wavelength reconfiguration algorithm for two states is shown

in Algorithm 1. A generalized stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) for the multi-state

Markov chain will be discussed in Chapter 4.

We can get an exponentially tight upper bound of the missed detection probability

for a surge from Wald’s identity in [21] is

𝑃𝑚𝑆𝑇
≤ 𝑒−𝑟*𝜂− , (3.38)

where 𝑟* is the positive root for the semi-invariant moment generation function

(MGF) of the step variable 𝑇𝑖 − 1
𝜆0

as
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Figure 3-6: Sample functions of random walks 𝑆𝑛 with one for traffic surge and one
for traffic drop [12]. 𝑛 is a discretized time index in the unit of arrivals.

ln(𝐸[𝑒
𝑟(𝑇𝑖− 1

𝜆0
)
]) = 0 (3.39)

⇔ ln

[︂∫︁ ∞

0

𝑒
𝑟(𝑡− 1

𝜆0
) · 𝜆1𝑒

−𝜆1𝑡𝑑𝑡

]︂
= 0 (3.40)

⇔ 𝜆1𝑒
− 𝑟

𝜆0 + 𝑟 − 𝜆0 = 0, (3.41)

where 𝑟 is valid when 𝑟 < 𝜆1.
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Algorithm 1 Stopping-trial wavelength reconfiguration for Two-state changes
Input: arrivals

Output: 𝑚(𝑡)

1: if The (𝑖+ 1)𝑡ℎ arrival detected at 𝑡 then

2: if 𝑚(𝑡− 1) = 𝑚0 then

3: 𝑆𝑛(𝑡)← 𝑆𝑛(𝑡− 1) + 𝑇𝑖 − 1
𝜆0

4: if 𝑆𝑛(𝑡) < 𝜂+ then

5: 𝑆𝑛(𝑡)← 0

6: 𝑚(𝑡)← 𝑚(𝑡− 1) + 1

7: else

8: 𝑚(𝑡)← 𝑚(𝑡− 1)

9: end if

10: else

11: 𝑆𝑛(𝑡)← 𝑆𝑛(𝑡− 1) + 𝑇𝑖 − 1
𝜆1

12: if 𝑆𝑛(𝑡) > 𝜂− then

13: 𝑆𝑛(𝑡)← 0

14: 𝑚(𝑡) = 𝑚(𝑡− 1)− 1

15: else

16: 𝑚(𝑡)← 𝑚(𝑡− 1)

17: end if

18: end if

19: else

20: 𝑆𝑛(𝑡)← 𝑆𝑛(𝑡− 1)

21: 𝑚(𝑡)← 𝑚(𝑡− 1)

22: end if
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An upper bound on the false alarm probability after 𝜅 arrivals given no surge

happens from [12] is

𝑃𝑓𝑆𝑇
≤ 𝜅

[𝜆0𝜂+]2
. (3.42)

From the above results, we know the surge/drop thresholds are important, since

it not only decides when to reconfigure, but also decides the error probability. A way

to assign proper thresholds is to determine by the missed detection probability and

the false alarm probability, which is similar to the Neyman-Pearson test in Bayesian

estimator cases.

Figure 3-7 shows the detection performances of traffic surges/drops for two Bayesian

estimators 𝜆̂𝑇 (𝑡) and 𝜆̂𝑁(𝑡), and a stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) in a single run. The

similar results can be acquired from other runs. The fixed time for 𝜆̂𝑇 (𝑡), the fixed

count for 𝜆̂𝑁(𝑡), and the thresholds for 𝜆̂𝑆𝑇 (𝑡) are picked so that all three estima-

tors’ probabilities of missed detection are 1%. 𝑇 = 6.2 for 𝜆̂𝑇 (𝑡), 𝑁 = 43 for 𝜆̂𝑁(𝑡),

𝜂− = 0.575 for 𝜆̂𝑆𝑇 (𝑡). To better demonstrate the detection time and the detection

accuracy, it is already assumed that the traffic rate jumps between two states. There-

fore, the zig-zag shapes disappear from the plots in Fig. 3-2, Fig. 3-3, and Fig. 3-4.

From Fig. 3-7, 𝜆̂𝑆𝑇 (𝑡) has the shortest response time to rate changes either when a

traffic surge happens or a traffic drop happens. Besides, the memory reset upon the

detection helps to stabilize 𝜆̂𝑆𝑇 (𝑡) to avoid highly frequent erroneous reconfigurations.

Even if 𝜆̂𝑆𝑇 (𝑡) generates any false alarms, the error can be quickly corrected. 𝜆̂𝑆𝑇 (𝑡)

requires no knowledge of a priori probabilities, and its detection time is shortest when

the session arrival statistics provide enough confidence for reconfiguration. What is

more, the algorithm is applicable beyond the Poisson traffic arrival model. As long

as the inter-arrival times of traffic transactions are independent, the algorithm still

reacts swiftly as the traffic rate changes, which will be discussed in the following

Chapters.
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Figure 3-7: The comparison of traffic surge/drop detections among different estima-
tors with 𝑝𝑚 = 1%. 𝑇 = 6.2 for 𝜆̂𝑇 (𝑡), 𝑁 = 43 for 𝜆̂𝑁(𝑡), 𝜂− = 0.575 for 𝜆̂𝑆𝑇 (𝑡). Here
it is already assumed the traffic rate jumps between two states: (a) The fixed-time
estimator 𝜆̂𝑇 (𝑡); (b) The fixed-count estimator 𝜆̂𝑁(𝑡); (c) The stopping-trial estimator
𝜆̂𝑆𝑇 (𝑡); (d) All three estimators. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10. [59]

3.3 Network Transient Behaviors

A good understanding of the transient behavior of the queue between each node pair is

required for the design of the traffic rate change detection and network reconfiguration
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algorithms. When the traffic rate or the network configuration changes, the network

queueing delay also changes accordingly as one of the direct measurements of network

properties. Different detection and reconfiguration schemes perform differently, and

the duration of surge/drop times vary.

If no blocking happens, with the arrival rate and the service rate defined in Chapter

2, the queue between each node pair can be modeled as an 𝑀/𝑀/𝑚(𝑡) queue with the

arrival rate 𝜆(𝑡) and the service rate 𝜇. Based on the 𝑀/𝑀/𝑚(𝑡) queueing model,

we focus on both the peak queueing delay and the total duration of a surge/drop

from the time that a surge/drop happens to the time that the network reaches a new

steady state. Since the processes of traffic surge and traffic drop are quite similar,

without loss of generality, we only discuss the modeling of the traffic surge process,

where 𝜆(𝑡) switches from 𝜆0 to 𝜆1. The modeling of the traffic drop process can be

derived in a similar way and used in the final result.

As we focus on the transient behavior of the queue, the commonly used average

results for the 𝑀/𝑀/𝑚(𝑡) queue is no longer applicable in the analysis as they are

the average results over a period of time. The sudden changes after the overload

cannot be reflected correctly with the average results, such as the average queueing

size and the average queueing delay. Instead, we aim to find a way to model the

transient queue evolution of the 𝑀/𝑀/𝑚(𝑡) queue to directly show the performance

of different detection algorithms. A way to analytically model the transient queueing

delay for the 𝑀/𝑀/𝑚(𝑡) queues are presented in [39]. However, the expression is

too complicated and hard to use in practice. Instead, a way to approximate the

continuous-time 𝑀/𝑀/𝑚(𝑡) queue to use a sampled-time 𝑀/𝑀/𝑚(𝑡) Markov chain

with a very small sample unit time 𝛿 [21]. It can provide the numerical results on

𝑀/𝑀/𝑚(𝑡) queue. To get an analytical result, we can use the analytical results of

the 𝑀/𝑀/1/𝑋 queue with the service rate 𝑚(𝑡)𝜇 and a large 𝑋 to approximate the

𝑀/𝑀/𝑚(𝑡) queue, since their probability distributions are similar when the network

is heavily loaded or overloaded. When network load is low, we can use the 𝑀/𝑀/∞

to approximate the performance, since almost any incoming traffic transaction will

be transmitted immediately, and no queue will be built up.
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A similar work discussing the average packet delay at a given node for various

observation times in the time series is given in [31]. However, the results are based on

the steady states of the 𝑀/𝐷/1 queue and the discrete-time approximation but not

the exact analytical solution. In this section, all the transient results are developed

analytically.

3.3.1 Sampled-Time Markov Chain Approximation

A way to approximate the continuous-time 𝑀/𝑀/𝑚(𝑡) queue is using a sampled-time

𝑀/𝑀/𝑚(𝑡) Markov chain with a very small sample unit time 𝛿 as shown in Fig. 3-8.

Every state represents the number of transactions in the system. We have 𝛿 ≤ 1
𝜇+𝜆

to

make sure the transition probability is nonnegative. To simplify notations and avoid

ambiguity, denote 𝜆(𝑡) as 𝜆 in this section only. The probability of self-transitions

in the sampled-time 𝑀/𝑀/𝑚(𝑡) Markov chain become nontrivial due to the very

small unit sample time 𝛿. It is the similar method adopted in [21] to approximate an

𝑀/𝑀/1 queue with an 𝑀/𝑀/1 sampled-time Markov chain. The small 𝛿 guarantees

that there is at most one arrival or departure in every 𝛿-time increment. As stated in

[21], it is a relatively good approximation with the very small 𝛿, since the probability of

more than one arrival/departure, or both an arrival and a departure in a 𝛿 increment

is of order 𝛿2 for the actual continuous-time queue system with the Poisson process.

0 1 2 m(t)

𝜆𝛿 𝜆𝛿 𝜆𝛿 𝜆𝛿𝜆𝛿

1-𝜆𝛿

𝜇𝛿

…… ……

1-(𝜆 + 𝜇)𝛿

2𝜇𝛿

1-(𝜆 + 2𝜇)𝛿

3𝜇𝛿 𝑚(𝑡)𝜇𝛿 𝑚(𝑡)𝜇𝛿

𝜆𝛿

𝑚(𝑡)𝜇𝛿

1-[𝜆 + 𝑚 𝑡 𝜇]𝛿 1-[𝜆 + 𝑚 𝑡 𝜇]𝛿

m(t)+1

Figure 3-8: Sampled-time approximation to 𝑀/𝑀/𝑚(𝑡) queue with a very small time
increment 𝛿.

The stochastic matrix, which is the probability transition matrix of the 𝑀/𝑀/𝑚(𝑡)
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queue, corresponding to the Markov chain in Fig. 3-8, is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− 𝜆𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . . . . . . . .

𝜇𝛿 1− (𝜆+ 𝜇)𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . . . . .

0 2𝜇𝛿 1− (𝜆+ 2𝜇)𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . .
.
.
.

. . .
. . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

. . . . . . . . . 0 𝑚(𝑡)𝜇𝛿 1− (𝜆+𝑚(𝑡)𝜇)𝛿 𝜆𝛿 0 . . . . . .

. . . . . . . . . . . . 0 𝑚(𝑡)𝜇𝛿 1− (𝜆+𝑚(𝑡)𝜇)𝛿 𝜆𝛿 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

To facilitate analysis, we assume the whole system is finitely large with the length

of 𝑋 to avoid issues arising when handling infinity, and 𝑋 is finitely very large. There-

fore, we approximate the infinite Markov chain with a finitely large Markov chain with

the largest state as state 𝑋. For state 𝑋, its transition probability to state 𝑋 − 1 is

𝑚(𝑡)𝜇𝛿, and its transition probability to itself is 1 −𝑚(𝑡)𝜇𝛿. Therefore, we approx-

imate the infinite transition probability matrix with a finite transition probability

matrix, which is an 𝑋 ×𝑋 matrix with a very large 𝑋 as follows: 𝑃𝑠𝑎𝑚𝑝𝑙𝑒=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− 𝜆𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . . . . . . . .

𝜇𝛿 1− (𝜆+ 𝜇)𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . . . . .

0 2𝜇𝛿 1− (𝜆+ 2𝜇)𝛿 𝜆𝛿 0 . . . . . .
.
.
. . . . . . .

.

.

.
. . .

. . . . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

. . . . . . . . . 0 𝑚(𝑡)𝜇𝛿 1− (𝜆+𝑚(𝑡)𝜇)𝛿 𝜆𝛿 0 . . . . . .

. . . . . . . . . . . . 0 𝑚(𝑡)𝜇𝛿 1− (𝜆+𝑚(𝑡)𝜇)𝛿 𝜆𝛿 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . . . . . . . . . . . . . . . . . . . . 0 𝑚(𝑡)𝜇𝛿 1−𝑚(𝑡)𝜇𝛿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The steady-state probability of this Markov chain exists, and the distribution

follows the steady-state probability of a birth-death chain. Without loss of generality,

assume the queue is in a steady state initially, and assume the initial steady-state

probability matrix Π𝑠𝑎𝑚𝑝𝑙𝑒(0) at time 𝑡 = 0 is
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Π𝑠𝑎𝑚𝑝𝑙𝑒(0) = [𝜋0𝑠𝑎𝑚𝑝𝑙𝑒
(0), 𝜋1𝑠𝑎𝑚𝑝𝑙𝑒

(0), 𝜋2𝑠𝑎𝑚𝑝𝑙𝑒
(0), ..., 𝜋𝑀𝑠𝑎𝑚𝑝𝑙𝑒

(0)]. (3.43)

With the above probability transition matrix 𝑃𝑠𝑎𝑚𝑝𝑙𝑒, we can get the transient

steady-state probability of the 𝑀/𝑀/𝑚(𝑡) queue at time 𝑡 with the initial steady-

state probability matrix Π0𝑠𝑎𝑚𝑝𝑙𝑒
as

Π𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) = Π𝑠𝑎𝑚𝑝𝑙𝑒(0)𝑃
𝑡
𝛿
𝑠𝑎𝑚𝑝𝑙𝑒 (3.44)

= [𝜋0𝑠𝑎𝑚𝑝𝑙𝑒
(𝑡), 𝜋1𝑠𝑎𝑚𝑝𝑙𝑒

(𝑡), 𝜋2𝑠𝑎𝑚𝑝𝑙𝑒
(𝑡), ..., 𝜋𝑀𝑠𝑎𝑚𝑝𝑙𝑒

(𝑡)]. (3.45)

Therefore, we can get the transient mean queue size of the 𝑀/𝑀/𝑚(𝑡) queue at

time 𝑡 as

𝑄𝑠𝑎𝑚𝑝𝑙𝑒(𝑡) =
𝑋∑︁

𝑖=𝑚(𝑡)

(𝑖−𝑚(𝑡))𝜋𝑖𝑠𝑎𝑚𝑝𝑙𝑒
(𝑡) (3.46)

3.3.2 𝑀/𝑀/1/𝑋 Queue Transient Behavior Approximation

The 𝑀/𝑀/𝑚(𝑡) queue between each node pair can be approximated by the analytical

results of 𝑀/𝑀/1/𝑋 queue with the service rate 𝑚(𝑡)𝜇 and a large 𝑋, since their

probability distributions are similar when the network is highly loaded or overloaded.

When the network load is low, we can use the 𝑀/𝑀/∞ queue to approximate the

probability distribution. Since almost no queue will be built up in the low load

situation, the network performance is good in terms of no queueing delay. Therefore,

there is no need to discuss the transient queue behavior in the low load, and we only

focus on the 𝑀/𝑀/1/𝑋 queue transient behavior approximation.

The transient behavior of the 𝑀/𝑀/1/𝑋 queue can be developed from the real-

time probability distribution of the number of traffic transactions in the system.

Denote 𝑝𝑘𝑛(𝑡) as the probability that 𝑛 traffic transactions are in the system at the
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current time 𝑡 given 𝑘 transactions in the system at 𝑡 = 0. Assume 𝑋 as the maximum

number of transactions in the system, where 𝑋 is very large to approximate the

system with the infinite buffer. From the analytical results of transient behavior of

𝑀/𝑀/1/𝑋 queues in [37], the corresponding time-dependent solution to 𝑝𝑘𝑛(𝑡) is

𝑝𝑘𝑛(𝑡) = 𝜋𝑛 +
2𝜌

1
2
(𝑛−𝑘)

𝑋 + 1

𝑋∑︁
𝑖=1

(︁ 𝜇

𝛽𝑖

)︁
·
[︁
sin

𝑖𝑘𝜋

𝑋 + 1
−√𝜌 sin 𝑖(𝑘 + 1)𝜋

𝑋 + 1

]︁
·

·
[︁
sin

𝑖𝑛𝜋

𝑋 + 1
−√𝜌 sin 𝑖(𝑛+ 1)𝜋

𝑋 + 1

]︁
𝑒−𝛽𝑖𝑡. (3.47)

where 𝜌 = 𝜆(𝑡)
𝜇

, and 𝜋𝑛 is the steady-state probability for state 𝑛 in the 𝑀/𝑀/1/𝑋

queue in [37] as

𝜋𝑛 = 𝑝𝑘𝑛(∞) =
1− 𝜌

1− 𝜌𝑋+1
𝜌𝑛 𝑛 = 0, 1, ..., 𝑋. (3.48)

The expression for 𝛽𝑖 in [37] is

𝛽𝑖 = 𝜆(𝑡) + 𝜇− 2
√︀

𝜆(𝑡)𝜇 cos
(︁ 𝑖𝜋

𝑋 + 1

)︁
, (3.49)

where 𝑖 = 1, 2, ..., 𝑋, and 𝑛 = 0, 1, 2, ..., 𝑋.

The mean queue length at time 𝑡 in [37] is

𝑄(𝑡) =
𝑋∑︁

𝑛=1

(𝑛− 1)𝑝𝑘𝑛(𝑡). (3.50)

3.3.3 Transient Behavior of the Queue

Figure 3-9 shows both the analytical 𝑀/𝑀/1/𝑋 queue approximation and the simu-

lated transient behaviors of the queue for a traffic surge followed by a proper recon-

figuration. As shown in Fig. 3-9, when a traffic surge happens, the average queue
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size grows sharply as the change has not been detected so that the system is still in

the previous configuration with insufficient wavelengths. Once the estimator detects

the surge, it will report it to the system, and the system will allocate more wave-

lengths to digest the surging queue. When the reconfiguration is finished, the queue

in the system begins to diminish and finally reaches a new steady state with little

or no queueing delay. The simulated transient behavior is generated by simulating

the arrival process of the traffic and directly recording the transient queue size. The

analytical result and the simulated result agree with each other, and it shows that the

𝑀/𝑀/1/𝑋 queue with the service rate 𝑚(𝑡)𝜇 and a large 𝑋 is a good approximation

of the 𝑀/𝑀/𝑚(𝑡) queue analytically. We will adopt it in our analysis.

To better quantify the transient behavior of the queue, we describe the evolution

of the queue after a surge with several critical variables as shown in Fig. 3-9. Define

𝑡1 as the time that a traffic surge happens, where the traffic arrival rate switches from

𝜆0 to 𝜆1. 𝑡2 is the time that the change is detected and the network is reconfigured.

We assume that a reconfiguration is completed instantaneously when the surge is

detected to facilitate the analysis. Even if a certain delay happens between when

surge is detected and when the network is reconfigured, the delay is short and usually

constant compared to the time to detect the surge. It can be considered in addition

to the time it takes to detect the surge. 𝑡3 is the time that the network with the

new wavelength assignment (i.e., the new service rate) reaches the steady state. The

detection time is defined as 𝜏1 = 𝑡2 − 𝑡1. The queue settling time is defined as

𝜏2 = 𝑡3 − 𝑡2. The duration of a surge is defined as

𝜏𝑠𝑢𝑟𝑔𝑒 = 𝜏1 + 𝜏2, (3.51)

where we assume delays other than 𝜏1 and 𝜏2 can be ignored.

Since the average peak queue size 𝑄𝑝𝑒𝑎𝑘 is reached at 𝑡2, the average peak queueing

delay Γ𝑝𝑒𝑎𝑘 is also reached at 𝑡2. Obviously, both the average peak queueing delay

Γ𝑝𝑒𝑎𝑘 and 𝜏2 depend on 𝜏1. A long 𝜏1 can result in a large 𝑄𝑝𝑒𝑎𝑘 (and a large Γ𝑝𝑒𝑎𝑘) and
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Figure 3-9: (a) Simulated and analytical results of the evolution of queue size for a
network surge followed by a proper reconfiguration for an 𝑀/𝑀/1/𝑋 queue. 𝜋𝜆0 =
𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6.[59]

a long 𝜏2 if the mismatch between the traffic surge and the existing configuration is

large. What is worse, it also means more resources need to be allocated immediately

to digest the transiently large 𝑄𝑝𝑒𝑎𝑘 and the transiently long 𝜏2, which increases the

network management and control burdens. Therefore, an estimator that can quickly

respond to changes will lead to both a shorter peak queueing delay and a shorter queue

settling time, which is desired. The modeling of 𝜏1, 𝜏2, and Γ𝑝𝑒𝑎𝑘 will be discussed in

the following sections.

Figure 3-10 shows the comparison between the 𝑀/𝑀/1/𝑋 queue with the service

rate 𝑚(𝑡)𝜇 and a large 𝑋 approximation and the sampled-time 𝑀/𝑀/𝑚(𝑡) Markov
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Figure 3-10: The transient behavior of the average queue size when a surge occurs
and a proper reconfiguration is made later. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6.
[59]

chain. Given the 𝑀/𝑀/1/𝑋 queue with the service rate 𝑚(𝑡)𝜇 and a large 𝑋 is

good approximation with the simulation as shown in Fig. 3-9, the agreement of

the approximation results shows that the sampled-time 𝑀/𝑀/𝑚(𝑡) Markov chain is

a good numerical approximation. Two approximations agree with each other with

different 𝑚(𝑡)𝜇. Besides, we find that the queue can be quickly digested and 𝜏2 is

short if more wavelengths are assigned after the surge. Since the analytical results

of the 𝑀/𝑀/1 queue with the service rate 𝑚(𝑡)𝜇 and a large 𝑋 can successfully

approximate the transition behavior of the 𝑀/𝑀/𝑚(𝑡) queue with different 𝑚(𝑡), we
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will use the approximation in the following sections.
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Figure 3-11: Transient behavior of the average queue size with only one reconfigu-
ration for different detection times of the fixed-time estimator 𝜆̂𝑇 (𝑡). 𝜋𝜆0 = 𝜋𝜆1 =
0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6.

The transition of average queue size with one reconfiguration for different detection

times, averaging both detections and false alarms is shown in Fig. 3-11. Here the

fixed-time estimator 𝜆̂𝑇 (𝑡) is used to show the results of different detection time

lengths. The same conclusion can be drawn from the results of either the fixed-count

estimator or the stopping-trial estimator. A long detection time 𝜏1 will incur a long

queue settling time 𝜏2 and a large average queue size 𝑄𝑝𝑒𝑎𝑘. The curves diverge after

the peak in Fig. 3-11 because the probability of missed detection and false alarm
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Figure 3-12: Transient behavior of the average queue size with multiple reconfigu-
rations for different detection times of the fixed-time estimator 𝜆̂𝑇 (𝑡). 𝜋𝜆0 = 𝜋𝜆1 =
0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6.

differ. Since no further correction is allowed in Fig. 3-11, a missed detection can

happen and lead to the continuing increase of the queue. Though a short detection

time can lead to a fast reconfiguration, it also suffers from a high missed detection

probability so that the average queue size keeps increasing and makes the network

unstable. A long detection time incurs a high peak queueing delay in exchange for a

low missed detection probability, which also burdens the network control. Therefore,

a short detection time of network rate changes is one of the keys in designing the

cognitive control of wavelength assignment. Figures with shapes similar to the average
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packet delay for various observation times in the time series can be found in [31].

However, the results are based on the steady states of the 𝑀/𝐷/1 queue and the

discrete-time approximation but not the exact analytical solution.

The transition of average queue size with more than one reconfiguration allowed

for different detection times averaging both detections and false alarms are shown

in and Fig. 3-12. Again, the fixed-time estimator 𝜆̂𝑇 (𝑡) is used to show the results

of different detection time lengths. The same conclusion can be drawn from the

results of either the fixed-count estimator or the stopping-trial estimator. Similarly

as shown in Fig. 3-11, a long detection time 𝜏1 will incur a long queue settling

time 𝜏2 and a large average queue size 𝑄𝑝𝑒𝑎𝑘. Continuing assessment with multiple

reconfigurations enabled can help to reduce the peak queue delay as shown in Fig.

3-12, where the slightly zig-zag shapes are the results of correcting errors at different

times. Continuing reconfigurations compensate for the detection inaccuracy of the

estimators and should be enabled to increase the cognitive control performance.

3.3.4 Detection Time 𝜏1

Detection time 𝜏1 is the time that the estimator needs to detect the traffic change. It

is crucial in the network delay transition, since it decides both the queue settling time

𝜏2 and the peak queueing delay Γ𝑝𝑒𝑎𝑘. In this section, we develop the detection time 𝜏1

for different estimators developed in the previous sections. The value of 𝜏1 depends on

both the base detection duration and the detection accuracy. For example, without

error, 𝜆̂𝑇 (𝑡) needs at least the length of the fixed observation interval 𝑇 to detect a

traffic change, i.e., 𝜏1 = 𝑇 . Similarly, 𝜆̂𝑁(𝑡) needs at least a length of counting a

fixed number of arrivals 𝑁 to detect the traffic change, i.e., 𝜏1 = 𝑁
𝜆(𝑡)

. The actual

length varies depending on the detection accuracy. For example, a missed detection

will increase the detection time 𝜏1.
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Fixed-time estimator 𝜆̂𝑇 (𝑡)

𝜆𝑇 (𝑡) has a base detection duration 𝑇 . If no rate change is detected within 𝑇 , the

algorithm keeps working continuously until it catches a change. Let Δ𝑇 be the time

it takes the algorithm to detect a change after the miss within 𝑇 . We can model Δ𝑇

as a random walk where an arrival comes or leaves in a short unit time 𝛿.

In the event of missed detection, denote 𝜂 as the threshold of determining the

probability of detection 𝑝𝑑𝑇 and missed detection 𝑝𝑚𝑇
= 1 − 𝑝𝑑𝑇 . When a surge

occurs, we have the average detection of 𝜆𝑇 (𝑡) as

𝜏1𝑇 = 𝑝𝑑𝑇𝑇 + (1− 𝑝𝑑𝑇 )(𝑇 +Δ𝑇 ), (3.52)

where Δ𝑇 is the average delay beyond the base detection time 𝑇 modeled into a

random walk when finally the detection is found. We have Δ𝑇 as

Δ𝑇 =

⌊𝜂−1⌋∑︁
𝑛=0

𝑃 (𝑛)
(𝜂 − 𝑛)2

2𝜆1𝛿(1− 𝜆1𝛿)
, (3.53)

where 𝑃 (𝑛) follows a Poisson distribution with 𝜆1.

In the event of false alarms, we have the average detection of 𝜆𝑇 (𝑡) as

𝜏1𝑇 = (1− 𝑝𝑓𝑇 )𝑇 + 𝑝𝑓𝑇 (𝑇 +Δ𝑇 ), (3.54)

where the Δ𝑇 is

Δ𝑇 =
∞∑︁

𝑛=⌊𝜂⌋

𝑃 (𝑛)
(𝑛− 𝜂)2

2𝜆0𝛿(1− 𝜆0𝛿)
, (3.55)

and where 𝑃 (𝑛) follows a Poisson distribution with 𝜆0.
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Fixed-count estimator 𝜆̂𝑁(𝑡)

𝜆𝑁(𝑡) needs a duration of 𝑁 arrivals as the detection time. The results will be

updated with new arrivals. In the event of missed detection, denote the probability

of detection 𝑝𝑑𝑁 and missed detection 𝑝𝑚𝑁
= 1−𝑝𝑑𝑁 . The chance to catch the change

in an arrival is 𝑝𝑑𝑁 and the chance to miss it is 𝑝𝑚𝑁
. If missed, the detection needs

to wait until the next arrival, and the situation recurs until the change is caught. We

can formulate the average detection time when a surge occurs as

𝜏1𝑁 =
∞∑︁
𝑛=1

𝑝𝑑𝑁 (1− 𝑝𝑑𝑁 )
𝑛−1𝑁 + 𝑛− 1

𝜆1

. (3.56)

In the event of false alarms, denote the probability of false alarm as 𝑝𝑓𝑁 . Similarly,

we have

𝜏1𝑁 =
∞∑︁
𝑛=1

(1− 𝑝𝑓𝑁 )𝑝
𝑛−1
𝑓𝑁

𝑁 + 𝑛− 1

𝜆0

. (3.57)

Stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡)

Different from the fixed-time estimator 𝜆̂𝑇 (𝑡) and the fixed-count estimator 𝜆̂𝑁(𝑡)

with the pre-fixed base detection time, the stopping-trial estimator 𝜆𝑆𝑇 (𝑡)’s detection

time is totally based on the traffic arrivals. As discussed in [12], if the traffic comes

frequently, the detection time of 𝜆𝑆𝑇 (𝑡) will be short; if the traffic comes at a slow

rate, the detection time of 𝜆𝑆𝑇 (𝑡) will be long. The thresholds (determined by the

error probability) to add/drop wavelength also decides the detection time [12].

When a traffic surge occurs, 𝜆(𝑡) switches from the non-surging state 𝜆0 to the

surging state 𝜆1. 𝜆𝑆𝑇 (𝑡) needs the average stopping time 𝐸[𝑇𝑖]𝐸[𝐽 ] to make the

decision, where 𝐽 is the time in the unit of arrivals that a threshold is crossed [12].

𝐸[𝐽 ] is the average number of arrivals that a threshold is crossed, and 𝐸[𝑇𝑖] is the

average inter-arrival time. Based on [12], 𝐸[𝐽 ] could be derived from Wald’s equality
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as

𝐸[𝑆𝐽 ] = 𝐸[𝑇𝑖 −
1

𝜆0

]𝐸[𝐽 ] (3.58)

⇔ 𝐸[𝐽 ] =
𝐸[𝑆𝐽 ]

𝐸[𝑇𝑖 − 1
𝜆0
]
, (3.59)

where 𝐸[𝑇𝑖 − 1
𝜆0
] is the expected step size and the initial state is in 𝜆0 before a surge

happens. Notice that 𝐸[𝑇𝑖 − 1
𝜆0
] ̸= 0, as 𝐸[𝑇𝑖] =

1
𝜆1

.

Based on [12], with 𝐸[𝑇𝑖] =
1
𝜆1
, 𝐸[𝑆𝐽 ] = 𝜂+, the average detection time when a

surge occurs is

𝜏1𝑆𝑇
= 𝐸[𝑇𝑖]𝐸[𝐽 ] =

𝐸[𝑇𝑖]𝐸[𝑆𝐽 ]

𝐸[𝑇𝑖 − 1
𝜆0
]
=

𝜆0𝜂+
𝜆0 − 𝜆1

. (3.60)

In the event of false alarms, 𝐸[𝑇𝑖] =
1
𝜆0

as the traffic is still in the non-surging state

𝜆0. 𝐸[𝑇𝑖 − 1
𝜆0
] = 0, which makes Wald’s equality inapplicable as the denominator

cannot be zero. In this case, we can instead use the second derivative of Wald’s

identity as

𝐸[𝑆2
𝐽 ] = 𝐸[𝐽 ]𝜎2

(𝑇𝑖−𝜆0)
(3.61)

⇔ 𝐸[𝐽 ] =
𝐸[𝑆2

𝐽 ]

𝜎2
(𝑇𝑖−𝜆0)

, (3.62)

where 𝜎2
(𝑇𝑖−𝜆0)

is the variance of the variable (𝑇𝑖 − 𝜆0), which equals the variance

of 𝑇𝑖 in the non-surging state.

With 𝐸[𝑇𝑖] =
1
𝜆0
, 𝜎2

(𝑇𝑖−𝜆0)
= 1

𝜆2
0
, 𝐸[𝑆2

𝐽 ] = 𝜂2+, we have

𝜏1𝑆𝑇
= 𝐸[𝑇𝑖]𝐸[𝐽 ] =

𝐸[𝑇𝑖]𝐸[𝑆2
𝐽 ]

𝜎2
(𝑇𝑖−𝜆0)

= 𝜆0𝜂
2
+. (3.63)
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3.3.5 Peak Queueing Delay Γ𝑝𝑒𝑎𝑘

The peak queueing delay Γ𝑝𝑒𝑎𝑘 is an important measure of the network, as it indicates

the worst case of delay if a mismatch happens between the traffic pattern and the

configuration. Also, a large Γ𝑝𝑒𝑎𝑘 requires more resources, such as wavelengths, to go

to a new steady state quickly.

We can develop the average queueing delay from the average queue size. For

the 𝑀/𝑀/1 queue, the queueing delay of the incoming transaction with (𝑛 + 1)

transactions already in the system (i.e., 𝑛 in the queue) is the total transmission time

of all (𝑛 + 1) transactions. Given the average transmission delay per transaction as
1
𝜇

and the average queue length 𝑄(𝑡), the average queueing delay for the incoming

transaction at time 𝑡 is

Γ𝑞(𝑡) =
𝑄(𝑡) + 1

𝜇
=

[
∑︀𝑁

𝑛=1(𝑛− 1)𝑝𝑚𝑛 (𝑡)] + 1

𝜇
(3.64)

where the full expression of 𝑝𝑚𝑛 (𝑡) is shown in Equation 3.47.

Though Little’s Law is a common way to derive the average queueing delay with

the queue size and the average effective arrival rate [32], we will not adopt Little’s

Law in this work since it depicts the long-term average queue size in a stationary

system rather than the transient behaviors of the queue [3]. Our detection algorithm

has to react to the transient behavior of the system to catch any traffic change as

soon as possible.

For the 𝑀/𝑀/𝑚(𝑡) queue in our analysis, we can prove the following proposition

on its queueing delay.

Proposition 1 The queueing delay distribution for the (𝑛 + 1)𝑡ℎ transaction in

the 𝑀/𝑀/𝑚(𝑡) queue with the service rate 𝜇 is the same with that of the 𝑀/𝑀/1

queue with the service rate of 𝑚(𝑡)𝜇.

Proof. For the 𝑀/𝑀/1 system with the service rate of 𝑚(𝑡)𝜇, a transaction needs

to wait if the wavelength is occupied. Since the inter-arrival time is exponentially

distributed, the probability that an occupied wavelength is still busy with the current
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transmission by time 𝑇 is 𝑒−𝑚(𝑡)𝜇𝑇 . The probability that the current transmission is

finished by time 𝑇 is 1 − 𝑒−𝑚(𝑡)𝜇𝑇 . For the (𝑖 + 1)𝑡ℎ transaction in the queue, the

system must finish the transmission 𝑖 times in order that the (𝑖+ 1)𝑡ℎ transaction in

the queue start to be transmitted. Thus the result is to take the 𝑖−fold convolution

of 1− 𝑒−𝑚(𝑡)𝜇𝑇 [39].

Similarly, for a 𝑀/𝑀/𝑚(𝑡) system with a service rate of 𝜇, the probability that

an occupied wavelength is still busy with the current transmission by time 𝑇 is 𝑒−𝜇𝑇 .

The probability that a wavelength channel will complete the transmission of the

current transaction by time 𝑇 is 1− 𝑒−𝜇𝑇 . Given 𝑚(𝑡) wavelengths in the system, the

probability that all 𝑚(𝑡) wavelengths continue to be busy with the same transactions

by time 𝑇 is 𝑒−𝑚(𝑡)𝜇𝑇 , and the probability that any of the channels becomes available

is 1 − 𝑒−𝑚(𝑡)𝜇𝑇 . For the (𝑖 + 1)𝑡ℎ transaction in the queue, the system must finish

the transmission 𝑖 times in order that the (𝑖 + 1)𝑡ℎ transaction in the queue can be

transmitted, and similarly the result is 𝑖−fold convolution of 1−𝑒−𝑚(𝑡)𝜇𝑇 , which is the

same waiting time distribution of the 𝑀/𝑀/1 system with the service rate of 𝑚(𝑡)𝜇.

Therefore, we prove that the distribution of waiting time in the queue for the

(𝑖 + 1)𝑡ℎ transaction in the queue is the same for both queue systems. We can then

prove the following proposition.

Corollary of Proposition 1 The average queueing delay for an 𝑀/𝑀/𝑚(𝑡)

queue with the service rate 𝜇 is the same as that of an 𝑀/𝑀/1 queue with the

service rate of 𝑚(𝑡)𝜇.

Proof. The average queueing delay is the weight averaging of the queueing delay

distribution over time. Given the queueing delay distributions are the same for both

queue systems from Proposition 1, the average queueing delay of 𝑀/𝑀/𝑚(𝑡) queue

with the service rate 𝜇 and the 𝑀/𝑀/1 queue with a service rate of 𝑚(𝑡)𝜇 are the

same.

We can develop the peak average queueing delay Γ𝑝𝑒𝑎𝑘 from the average queue

size 𝑄𝑝𝑒𝑎𝑘 with the above analysis. Γ𝑝𝑒𝑎𝑘 is reached at time 𝑡2, when the traffic surge

is detected and the network is reconfigured. Therefore, we have the peak average

queueing delay Γ𝑝𝑒𝑎𝑘 for an 𝑀/𝑀/𝑚(𝑡) queue as
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Γ𝑝𝑒𝑎𝑘 = Γ𝑞(𝑡2) =
𝑄𝑝𝑒𝑎𝑘 + 1

𝑚(𝑡)𝜇
. (3.65)

Figure 3-13 shows the normalized average peak delays versus surge changes and

detection times 𝜏1. The normalized average peak delay is the peak queueing delay

normalized by the average transmission delay 𝜏𝑡𝑟𝑎𝑛𝑠 =
𝐿
𝑅
. The normalized peak delay

increases with the increase of detection time 𝜏1. Therefore, a fast response time can

help to avoid severe peak queueing delays. On the other hand, a larger surge traffic

rate yields a longer normalized delay, where the surge traffic rate is the new arrival

rate. A larger new arrival rate will build up the queue faster and thus have a longer

queueing delay.

The transients of the normalized average queueing delays with one reconfiguration

for different detection times 𝜏1 averaged over both detections and false alarms are

shown in Fig. 3-14. The performance of different 𝜏1 diverge after the peak in Fig.

3-14 because 𝑝𝑚 and 𝑝𝑓 differ. Though a short detection time can lead to a low Γ𝑝𝑒𝑎𝑘,

it also suffers from a high missed detection probability so that the average queue size

keeps increasing, making the network unstable. A long detection time incurs a high

Γ𝑝𝑒𝑎𝑘 in exchange for a low missed detection probability, and increases delays and

degrades users’ quality of service, which is not preferred. A similar work discussing

the average packet delay in the steady state of 𝑀/𝐷/1 queue at a given node for

various observation times based on the discrete-time approximation but not on the

analytical solution is given in [31].

Therefore, an optimized detection time is important in designing the cognitive

control of wavelength assignment as it results in a low peak queueing delay if the

detection algorithms without continuous assessments are used. However, the trade-

off between the detection time and the detection error requires an improvement in

the use of continuous assessments with multiple reconfigurations enabled.

The transients of the normalized average queueing delays with more reconfigura-

tions for different detection times 𝜏1 averaged over both detections and false alarms
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Figure 3-13: Normalized average peak delays versus surge changes and detection times
𝜏1. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜇 = 6. [59]

are shown in Fig. 3-15. As expected, an algorithm with continuous assessments and

reconfigurations will reduce the peak queueing delay as shown in Fig. 3-15. Even

if an error occurs in the first reconfiguration, the continuous assessments enable the

system to correct the errors in a timely manner. The zig-zag shapes come from cor-

recting errors previously made. Hence, continuous assessments and reconfigurations

algorithms can compensate for estimators’ detection inaccuracy and should be used.

3.3.6 Queue settling time 𝜏2

𝜏2 is the time that the network needs to serve the traffic transactions accumulated in

the queue up to 𝜏1 and settles to the steady state with the new service rate. We have
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Figure 3-14: Average normalized queueing delay for different detection times 𝜏1 with
one reconfiguration for different detection times of the fixed-time estimator 𝜆̂𝑇 (𝑡). The
results are the average of both detections and false alarms. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 =
5, 𝜆1 = 10, 𝜇 = 6.[59]

𝜏2 = 𝑡3 − 𝑡2, (3.66)

and where 𝑡3 is

𝑡3 = min
𝑡>𝑡2

𝑡, s.t. Γ𝑞(𝑡) = Γ𝑠𝑡𝑒𝑎𝑑𝑦, (3.67)

where Γ𝑠𝑡𝑒𝑎𝑑𝑦 is the new steady state queueing delay after a proper reconfiguration.
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Figure 3-15: Average normalized queueing delay for different detection times 𝜏1
with multiple reconfigurations for different detection times of the fixed-time esti-
mator 𝜆̂𝑇 (𝑡). The results are the average of both detections and false alarms.
𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6.[59]

We can find a bound on 𝜏2 using the convergence properties of the sampled-time

𝑀/𝑀/𝑚(𝑡) Markov chain, and it will be discussed detailedly in Chapter 5.

3.4 Cost-Driven Network Reconfiguration Scheme

Network reconfigurations are made not only based on performance, but on network

costs. There is a trade-off between the queueing delay and the cost of a wavelength

in determining the reconfiguration algorithm. More wavelengths can bring a lower
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queueing delay but come at a higher total cost. The cost of a wavelength includes

both the capital expenditure of fiber, switches, and amplifiers, and the operating

expenditure of setting up wavelengths. Sometimes, it is acceptable to make a wrong

decision as long as the incurred total cost is low. On the other hand, we may not

want to add a new wavelength for a transient traffic surge, since it may cost much

more to reconfigure the network than to tolerate the transient delay increase.

In this section, we will add the network cost into consideration when making the

reconfiguration. Also, the addition or subtraction of multiple wavelengths is discussed.

3.4.1 Network Operating Cost Model

The network operating cost model should include both the cost of delay and the cost

of wavelengths. Denote the cost parameter 𝐶𝑑 as the cost per unit of the normalized

queueing delay, and denote the cost parameter 𝐶𝑤 as the cost per wavelength. With

total 𝑚(𝑡) wavelengths assigned at time 𝑡 and the transient queueing delay Γ𝑞(𝑡) at

time 𝑡, the total cost is

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑤𝑚(𝑡) + 𝐶𝑑Γ𝑞(𝑡). (3.68)

where the full expression of Γ𝑞(𝑡) is shown in Equation 3.65.

Figure 3-16 shows the transient behaviors of the total costs of the different al-

gorithms if only one reconfiguration is allowed, averaging with detections and false

alarms. 𝐶𝑤 = 𝐶𝑑 = 100, and the target probability of missed detection for all three es-

timators is 10%. A short detection time will lead to a lower peak total cost. However,

even though the estimators respond differently to the surge, the single decision nature

of this particular case with no further correction upon erroneous actions will lead all

of them to higher costs eventually. It is driven by high queueing delay due to missed

detection errors. Therefore, continuous assessment with multiple reconfigurations is

encouraged.

Figure 3-17 show the transient behaviors of the total costs of the different algo-
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Figure 3-16: Cost transition versus time with one reconfiguration. The results are the
average of both detections and false alarms. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6.
𝐶𝑤 = 𝐶𝑑 = 100, 𝑝𝑚 = 10%. [59]

rithms if multiple reconfigurations are allowed, averaging with detections and false

alarms. 𝐶𝑤 = 𝐶𝑑 = 100, and the target probability of missed detection for all three

estimators is 10%. When continuous assessment with multiple reconfigurations is en-

abled, the system can effectively correct errors and bring down costs. Even though

missed detections/false alarms have occurred, the continuous reconfigurations are

able to correct the errors in a timely manner. Due to its fast response to changes, the

stopping-trial estimator requires the shortest time to reconfigure correctly, and yields

the lowest total cost. Therefore, we recommend the stopping-trial estimator 𝜆𝑆𝑇 (𝑡)

for traffic detection in terms of the low network operating cost.
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Figure 3-17: Cost transition versus time with multiple reconfigurations. The results
are the average of both detections and false alarms. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 =
10, 𝜇 = 6. 𝐶𝑤 = 𝐶𝑑 = 100, 𝑝𝑚 = 10%. [59]

3.4.2 Multiple Wavelengths Addition and Subtraction

A high peak queueing delay Γ𝑝𝑒𝑎𝑘 requires more resources to digest the cumulated

queue in a certain rate after the surge.The addition and subtraction of multiple

wavelengths can be used to deal with severe traffic surges, since more additional

wavelengths assigned at once can better reduce the queueing delay. Considering the

trade-off between the queueing delay and the cost of any additional wavelength, we

need to find an optimal combination of both factors to achieve the optimal total cost.

Figure 3-18 shows the cost comparisons of different estimators with different number
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of wavelengths assigned. The queueing delay is also decided by the number of wave-

lengths as in Equation 3.65. The stopping-trial estimator requests a smaller number

of wavelengths, realizing higher cost efficiency than the other two estimators, since

its fast response helps to avoid a high peak queueing delay.
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Figure 3-18: Cost comparison of different estimators with 𝑝𝑚 = 10%. 𝜋𝜆0 = 𝜋𝜆1 =
0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6. 𝐶𝑤 = 𝐶𝑑 = 100. [59]

When the assignment of multiple wavelengths is allowed, we further modify the

cost model, and use 𝑤 to denote the number of wavelengths that should be used. The

total cost is

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑤𝑤 + 𝐶𝑑Γ𝑝𝑒𝑎𝑘
𝑤0

𝑤
, (3.69)
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where 𝑤0 is the number of wavelength assigned before the surge occurs.

It is possible find the optimal number of wavelengths to assign, given the total

cost constraints. To optimize it, take the derivative on the total cost as

𝑑𝐶𝑡𝑜𝑡𝑎𝑙

𝑑𝑤
= 0 (3.70)

⇔
𝑑(𝐶𝑤𝑤 + 𝐶𝑑Γ𝑝𝑒𝑎𝑘

𝑤0

𝑤
)

𝑑𝑤
= 0 (3.71)

⇔ 𝐶𝑤 −
𝐶𝑑Γ𝑝𝑒𝑎𝑘

𝑤2
= 0. (3.72)

Then we have the optimal number of wavelengths 𝑤* as

𝑤* =

⌈︃√︂
𝐶𝑑Γ𝑝𝑒𝑎𝑘𝑤0

𝐶𝑤

⌉︃
, (3.73)

where the ceiling used as the number of wavelengths is an integer.

Figure 3-19 shows the optimal number of wavelengths comparison versus the cost

parameter ratio 𝐶𝑤/𝐶𝑑 of different estimators. The stopping-trial estimator uses

the smallest number of wavelengths for the same quality of service among all three

estimators for the different combinations of cost parameters. This is because the

stopping-trial estimator’s fast reaction to traffic changes helps save costs by reducing

the queueing delay, and therefore relaxes the demand on the number of wavelength

increments during surges.

Figure. 3-20 shows the optimal number of wavelength comparisons versus load

𝜌 of different estimators. The stopping-trial estimator uses the smallest number of

wavelengths for the same quality of service among all three estimators for different

network loads. The stopping-trial estimator is recommended as the algorithm for

reconfigurations.
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Figure 3-19: Optimal number of wavelengths comparison versus cost parameter ratio
𝐶𝑤/𝐶𝑑 of different estimators. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6. 𝐶𝑤 = 𝐶𝑑 =
100, 𝑤0 = 1, 𝑝𝑚 = 10%. [59]

3.5 Chapter 3 Summary

In this chapter, we address the design of a fast-response algorithm for wavelength

reconfiguration. Two Bayesian estimators and a stopping-trial sequential estimator

proposed in [12] are elaborated to detect changes of traffic arrival statistics. Based

on the network transient behaviors of the network, we have shown that the stopping-

trial estimator has the shortest detection time for traffic rate changes, and it requires

no knowledge of a priori probabilities. With continuous assessment, the system

reconfigures only when it is necessary. Allowing for the possibility of the addition
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Figure 3-20: Optimal number of wavelengths comparison versus load 𝜌 of different
estimators. 𝜋𝜆0 = 𝜋𝜆1 = 0.5, 𝜆0 = 5, 𝜆1 = 10, 𝜇 = 6. 𝐶𝑤 = 𝐶𝑑 = 100, 𝑤0 = 1,
𝑝𝑚 = 10%. [59]

and subtraction of multiple wavelengths, the stopping-trial estimator (among all three

estimators) requires the smallest number of wavelengths to be reconfigured due to its

fastest response that helps to avoid a high peak queueing delay. Our design can

reduce queueing delays during traffic surges without over-provisioning, which will

reduce network capital expenditures and waste network resources due to erroneous

decisions when surges occur.

91



92



Chapter 4

Moderate Coherence Time Traffic

Environment

The network coherence can vary a lot across different network environments, and

a comprehensive analysis of it is a must for the design of cognitive management

and control of optical networks. In Chapter 3, a stopping-trial estimator to fast

detect traffic changes was examined. When the network coherence time is long, it

was shown that the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) has the shortest detection time

given the session arrival statistics provide enough confidence for reconfiguration. In

this chapter, we keep exploring the efficacy of the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡)

in the moderate coherence time environment. If the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡)

works well in the moderate network regime, we can recommend the same wavelength

addition and subtraction scheme as the subsequent reconfiguration to deal with traffic

surges/drops.

In this chapter, the fast detection in the moderate coherence time regime with

a general multi-state Markov traffic model is discussed. We can show the stopping-

trial estimator 𝜆̂𝑆𝑇 (𝑡) can still make a decision in the shortest possible time when

the session arrival statistics provide enough confidence for reconfiguration without

a predetermined observation time or count. As long as the inter-arrival times of

traffic sessions are independent, the stopping-trial estimator can react effectively to

the traffic rate changes.
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4.1 Validation of Stopping-Trial Estimator

The major difference between the long network coherence time environment and the

moderate environment is the frequency of the network traffic changes. As analyzed in

Chapter 2, in the long coherence time environment, network traffic changes very slowly

so adaption can be done while the traffic is in the same state. The inter-arrival times

𝑇𝑖s after the traffic change are a set of I.I.D. variables, and the I.I.D. property can

facilitate detection and estimation of the traffic change. However, in the moderate

coherence environment, network traffic changes at a moderate rate commensurate

with the fastest adaption times. 𝑇𝑖s are no longer identically distributed, which

raises the question whether the threshold triggering of the random walk is still valid.

Therefore, we first need to validate the performance of the stopping-trial estimator

𝜆̂𝑆𝑇 (𝑡).

In the moderate network coherence time environment, we still observe the inter-

arrival times 𝑇𝑖 of the traffic arrival process as a sequential test to trigger network

reconfigurations for the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡). The change in the number of

wavelengths will be triggered by the detection of the arrival rate change. Similarly, the

random walk in the moderate coherence time environment is the same as the one in

the long coherence time but with a set of independent but nonidentically distributed

inter-arrival times 𝑇𝑖s. Therefore, the random walk is the sum of the each inter-arrival

time minus an offset determined by the starting state as in [60]

𝑆𝐽 =
𝐽∑︁

𝑖=1

(𝑇𝑖 −
1

𝜆𝑗

), (4.1)

where the process is assumed to start from state 𝜆𝑗 without loss of generality. 𝐽 is

the time that a threshold is crossed.

Notice the above formula for 𝑆𝐽 is the same as the random walk in moderate

network coherence time but with a set of independent but nonidentically distributed

inter-arrival times. Denote the threshold for adding a new wavelength as 𝜂+ and

the threshold for tearing down an existing wavelength as 𝜂−. Both 𝜂+ and 𝜂− are
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determined by the desired error probabilities. Once 𝑆𝐽 crosses a threshold, the cor-

responding reconfiguration will be made. 𝑆𝐽 will then reset, and the offset will be

changed from the new state. The wavelength reconfiguration algorithm for the multi-

state Markov arrival rate change is shown in Algorithm 2.

Algorithm 2 Stopping-trial wavelength reconfiguration for multi-state Markov

changes
Input: arrivals

Output: 𝑚(𝑡)

if The (𝑖+ 1)𝑡ℎ arrival detected at 𝑡 then

2: if 𝜆(𝑡− 1) = 𝜆𝑗 then

𝑆𝑛(𝑡)← 𝑆𝑛(𝑡− 1) + 𝑇𝑖 − 1
𝜆𝑗

4: if 𝑆𝑛(𝑡) < 𝜂+ then

𝑆𝑛(𝑡)← 0

6: 𝑚(𝑡)← 𝑚(𝑡− 1) + 1

else if 𝑆𝑛(𝑡) > 𝜂− then

8: 𝑆𝑛(𝑡)← 0

𝑚(𝑡)← 𝑚(𝑡− 1)− 1

10: else

𝑚(𝑡)← 𝑚(𝑡− 1)

12: end if

end if

14: else

𝑆𝑛(𝑡)← 𝑆𝑛(𝑡− 1)

16: 𝑚(𝑡)← 𝑚(𝑡− 1)

end if

4.1.1 Uncertain Start Counting Point

Our previous work assumes that the random walk counting starts from the point

of the traffic change. Therefore, all 𝑇𝑖s are identical, and 𝑆𝑛 is a random walk.
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However, more realistically the counting start point can start at any time, since we

cannot predict when traffic changes will occur. Also, the 𝑇𝑖s may not be identically

distributed since there could be a mix of different 𝜆𝑖s. Fortunately, we can prove

that the threshold trigger process with an earlier counting start point is the same as

counting starting from the point of traffic change.

𝐸 "𝑋$ 	−
1
𝜆)

�

�

≤ 𝜂 𝐸 "𝑋$ 	−
1
𝜆)

�

�

≤ 𝜂𝐸 𝑋$ −
1
𝜆)

= 0

(a) (b)

Figure 4-1: The threshold trigger processes with different counting start points. [60]

Without loss of generality, we demonstrate this in a two-state Markov process as

shown in Fig. 4-1. When the traffic rate is at 𝜆1, the average step size is zero as

𝐸[𝑇𝑖 −
1

𝜆1

] = 0, (4.2)

which contributes nothing to the 𝑆𝑛 for the threshold crossing on average. Therefore,

only the inter-arrival time at rate 𝜆2 contributes to the threshold crossing, since the

average step size is non-zero as
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𝐸[𝑇𝑖 −
1

𝜆1

] =
1

𝜆2

− 1

𝜆1

< 0. (4.3)

The statement also holds if later a traffic drop happens, since the inter-arrival

time at 𝜆1 contributes nothing to the 𝑆𝑛 on average. One tricky part is the inter-

arrival where the surge occurs. To deal with it, we can first look forward, starting

from the epoch of the surge to the next arrival with 𝜆2. Due to the memoryless

property of the exponential distribution, this interval follows an exponential distri-

bution with 𝜆2. If we look backwards, starting from the epoch of the surge to the

previous arrival with 𝜆2, this interval also follows an exponential distribution with

𝜆1 due to the reversibility of the Poisson process. It has no impact on 𝑆𝑛 on av-

erage. Therefore, the threshold trigger process with an earlier counting start point

on average is the same as the case of counting starting from the point of traffic change.

4.1.2 Detection Performance in Different Environments

Figure 4-2 shows 𝜆̂𝑆𝑇 (𝑡) can provide desired wavelength assignment schemes in dif-

ferent network traffic environments. When the coherence time is long or moderate

as shown in Fig. 4-2 (a) (b), 𝜆̂𝑆𝑇 (𝑡) can catch the traffic changes in a possible short

time interval before the underlying traffic statistics changes, and the reconfiguration

schemes match the requirements of the underlying traffic arrival patterns.

Though 𝜆̂𝑆𝑇 (𝑡) cannot successfully track the traffic changes within a super-short

coherence time as shown in Fig. 4-2 (c), it can still track the trend of the traffic

provided the estimation time is shorter than the trend. 𝜆̂𝑆𝑇 (𝑡) provides fewer frequent

reconfigurations since each of the super-fast traffic changes provides, at most, only

one observable arrival. Only the overall trend affects reconfigurations, which is the

desirable attribute of the algorithm. Coincidentally, this also reduces the network

control efforts, since the random walk accumulation and the memory reset upon the

detection of 𝜆̂𝑆𝑇 (𝑡) help to stabilize the reconfigurations, avoiding highly frequent
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changes. Even if a false alarm occurs, the error can be quickly corrected.
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Figure 4-2: The comparison of simulated wavelength assignment of 𝜆̂𝑆𝑇 (𝑡) and the
desired wavelength assignment in different network traffic environments: (a) long
network coherence time; (b) moderate network coherence time; (c) short network
coherence time. [60]
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4.2 Detection Performance in Moderate Network Co-

herence Time Environment

When the change frequency of the traffic rate is moderate, the network coherence

time is similar to the average detection time of 𝜆̂𝑆𝑇 (𝑡). In this case, the random walk

𝑆𝐽 can consist of independent but nonidentically distributed 𝑇𝑖s as 𝜆(𝑡) is a mixture

of different states. Since 𝑇𝑖s are no longer identically distributed, we cannot apply

Wald’s Identity to get the average detection time. Fortunately, we can generalize

Wald’s Identity with nonidentical but independent random variables as indicated

in [4]. [4] provided the Wald’s Identity in the form of moment-generating function

(MGF), which is hard to use to find the expected detection time. To facilitate the

following analysis, we provide the proof in an easily understandable form here as

follows:

Statement (Generalized Wald’s Identity) For a sequence of nonidentically

distributed but independent random variables 𝑧1, 𝑧2, ..., 𝑧𝑁 , denote

𝑍𝑁 =
𝑁∑︁
𝑖=1

𝑧𝑖, (4.4)

where 𝑁 is a nonnegative integer-valued random variable.

Define 𝑧 as

𝑧 =
1

𝑁

𝑁∑︁
𝑖=1

𝐸[𝑧𝑖]. (4.5)

We have

𝐸[𝑍𝑁 ] = 𝐸[𝑁 ]𝐸[𝑧]. (4.6)

Proof 1
𝑁

is a random variable with the distribution of 𝑁 ’s inverse distribution,
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since 𝑁 is a nonnegative integer-valued random variable. Then we have

𝐸[𝑍𝑁 ] = 𝐸[
𝑁∑︁
𝑖=1

𝑧𝑖] (4.7)

= 𝐸[𝑁 · 1
𝑁
·

𝑁∑︁
𝑖=1

𝑧𝑖] (4.8)

= 𝐸[𝑁 ]𝐸[
1

𝑁

𝑁∑︁
𝑖=1

𝑧𝑖] (4.9)

= 𝐸[𝑁 ]𝐸[𝑧], (4.10)

where Equation (4.9) results from that the expectation of the product of independent

random variables equal to the product of individual expectations of random variables.

The generalized Wald’s Identity validates the efficacy of 𝜆̂𝑆𝑇 (𝑡) in the moderate

and even short coherence time environments. With the generalized Wald’s Identity,

we can find the average stopping time 𝜏1𝑆𝑇
of 𝜆̂𝑆𝑇 (𝑡) in a multi-state Markov process

model as

𝜏1𝑆𝑇
=

𝐸[𝑇𝑖]𝐸[𝑆𝐽 ]

𝐸[𝑇𝑖 − 1
𝜆𝑜
]

(4.11)

(4.12)

where the expectation of the average inter-arrival time 𝐸[𝑇𝑖] is

𝐸[𝑇𝑖] = 𝐸[
1

𝐽

𝐽∑︁
𝑖=1

𝐸[𝑇𝑖]] =
1

𝐽

𝐽∑︁
𝑖=1

𝐸[𝑇𝑖] (4.13)

where the expected

𝐸[𝐽 ] =
𝐸[𝑆𝐽 ]

𝐸[𝑇𝑖 − 1
𝜆𝑜
]

(4.14)
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where 𝜆𝑜 is the starting state of the arrival rate. 𝐸[𝑆𝐽 ] = 𝜂+ if a traffic surge

happens, and 𝐸[𝑆𝐽 ] = 𝜂− if a traffic drop happens.

It is tricky to directly apply the generalized Wald’s Identity to get the average

detection time as in [59], since 𝐽 is also a random variable used in both the average

inter-arrival time 𝐸[𝑇𝑖] and the average step size 𝐸[𝑇𝑖 − 1
𝜆𝑜
]. To solve the problem,

we can develop the distribution of 𝐽 from

𝐽𝑇𝑖 =
𝐽∑︁

𝑖=1

𝐸[𝑇𝑖] (4.15)

The analytical solution of 𝐽 is too complicated and not elegant. Instead, we

provide easily calculable analytical upper and lower bounds for 𝐸[𝐽 ] in this work. If

we know the range where 𝜆(𝑡) potentially moves within as

𝜆(𝑡) ∈ [𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥] (4.16)

The bounds on 𝜏1𝑆𝑇
for a traffic surge are

𝜆𝑚𝑖𝑛 ≤ 𝜆(𝑡) ≤ 𝜆𝑚𝑎𝑥 (4.17)

⇔ 1

𝜆𝑚𝑎𝑥

≤ 𝐸[𝑇𝑖] ≤
1

𝜆𝑚𝑖𝑛

(4.18)

⇔ 𝜆𝑜𝜂+
𝜆𝑜 − 𝜆𝑚𝑎𝑥

≤ 𝜏1𝑆𝑇
≤ 𝜆𝑜𝜂+

𝜆𝑜 − 𝜆𝑚𝑖𝑛

(4.19)

Figure 4-3 shows the potential range of the average detection time 𝜏1 of 𝜆̂𝑆𝑇 (𝑡)

versus the probability of missed detection for three different arrival rate ranges. When

the traffic arrival rate changes into a higher state, the average detection time becomes

shorter to make reconfiguration faster, which reflects the adaptive detection time of

𝜆̂𝑆𝑇 (𝑡). A low missed detection probability requires a long detection time on a traffic

surge. It is important to pick a good error probability for the threshold crossing,
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Figure 4-3: The range of the average detection time 𝜏1 of 𝜆̂𝑆𝑇 (𝑡) versus probability
of missed detection (crossing thresholds) for different arrival rate ranges. [60]

since we want to maintain the desirable short detection time as well as the high

reconfiguration accuracy to reduce the burdens of network management and control.

The beauty of the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) is its capability to provide recon-

figuration without assuming any detailed traffic model or inference from the network

traffic statistics. It only makes a reconfiguration decision when it is necessary to do so

at the shortest possible time. Compared to other commonly used estimators requir-

ing the I.I.D. properties of traffic arrivals, 𝜆̂𝑆𝑇 (𝑡) can respond to the traffic changes

swiftly as long as the inter-arrival times of traffic transactions are independent. Also,

the adaptable detection time of 𝜆̂𝑆𝑇 (𝑡) enables the system to reconfigure on a fast
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time scale. A higher traffic arrival rate yields a shorter detection time as desired.

4.3 Reconfiguration in Moderate Coherence Time Traf-

fic Environment

Since the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) works well in the moderate network regime,

we recommend the same wavelength addition and subtraction scheme after the change

detection by the stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡). As shown in Chapter 2, the stopping-

trial estimator 𝜆̂𝑆𝑇 (𝑡) provides the short response time to the traffic changes, and it

can save costs by reducing the queueing delays. With continuous assessment enabled,

the system reconfigures only when it is necessary. Further configurations will be

discussed in Chapter 6.

4.4 Chapter 4 Summary

In this chapter, we validate the performance of the stopping-trial estimator in the

moderate network coherence time environment. The stopping-trial estimator can

provide the desired wavelength assignment scheme and make reconfiguration deci-

sions at the shortest possible time with independent but not necessarily identically

distributed inter-arrival times of traffic sessions.
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Chapter 5

Short Coherence Time Traffic

Environment

In the short coherence time traffic environment, network traffic can change very

rapidly. It is hard to detect every single traffic change, since the detection time of the

estimator can be much longer than the network coherence time. In Chapter 3 and

Chapter 4 respectively, we have shown a stopping-trial estimator 𝜆̂𝑆𝑇 (𝑡) to fast detect

traffic changes work well in both the long network coherence time environment and

the moderate coherence time environment. Wavelength addition/subtraction with

continuous assessments enabled is recommended as the subsequent reconfiguration

to deal with the traffic surges/drops. However, 𝜆̂𝑆𝑇 (𝑡) cannot track well the traf-

fic changes within a super-short coherence time. If the coherence time is extremely

short, the detection may no longer converge. In this case, we can only try to predict

the trend when the session arrival statistics provide enough confidence that the fast

traffic changes exhibit an underlying trend. So, the adaptions are limited to trends

rather than to detail changes.

In this chapter, we discuss the traffic trend detection in the short coherence time

traffic environment [60]. In the short coherence time regime, the coherence time can

change gently or abruptly depending on the shift in the offered traffic’s statistics.

A transient condition prevails until the system arrives at a new steady state. We

model the transient behavior of such network traffic drifts towards convergence to
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a new steady state analytically and validate the feasibility of the traffic prediction.

For a special case of fast-changing traffic where the traffic rate increases/decreases

monotonically in a linear model, we develop a sequential maximum likelihood esti-

mator that can predict the traffic trend in the super-short network coherence time

environment. It can sufficiently estimate the traffic trend with a reasonable number

of arrivals and trigger reconfigurations.

5.1 Fast Detection in Short Network Coherence Time

Environment

When the changing frequency of the traffic rate is high, the network coherence time

is much shorter than the detection time of the estimator. The simulation results of

the previous chapter have shown that it is hard to track all the super-fast changes.

Even though an optimal minimum mean square estimator on 𝜆(𝑡) is provided in [17],

the detection of the fast-changing traffic is still challenging if the details of 𝜆(𝑡) is

unknown. The optimal minimum mean square estimator requires the detailed model

of 𝜆(𝑡), which is hard to find with only several arrivals. As the minimum mean square

estimator in [17] is too complicated, a simple way to approximate the real-time arrival

rate is to use the average arrival rate over the time as

𝜆 =
1

𝑡2 − 𝑡1

∫︁ 𝑡2

𝑡1

𝜆(𝑡)𝑑𝑡, (5.1)

where 𝑡1 is the start time and 𝑡2 is the end time.

With our multi-state traffic arrival model, we define Λ𝑖 as the average arrival rate

over the corresponding inter-arrival time 𝑇𝑖, and we have

Λ𝑖 =
1

𝑋𝑖

∫︁
𝑋𝑖

𝜆(𝑡)𝑑𝑡. (5.2)
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For 𝑛 inter-arrival times 𝑇1, 𝑇2, ..., 𝑇𝑛, we assume the corresponding arrival rates

are Λ1,Λ2, ...,Λ𝑛. This is because the real-time arrival rate changes too fast to be

reflected in an inter-arrival time interval so that a quasi-statically constant intensity

substitute Λ𝑖 is a good approximation. When the observation interval is the sum of

the several inter-arrival times, we have

𝑆𝑛 =
𝑛∑︁

𝑖=1

(𝑇𝑖 −
1

Λ𝑜

) (5.3)

⇔
𝑛∑︁

𝑖=1

𝑇𝑖 = 𝑆𝑛 +
𝑛

Λ𝑜

, (5.4)

where Λ𝑜 is the starting arrival rate before the threshold is crossed. The distribu-

tion of 𝑆𝑛 follows the convolution of 𝑛 exponential distributions where each one has

a unique rate, as shown in Equation (5.3). Therefore, the distribution of 𝑆𝑛 is

𝑓𝑆𝑛(𝑡) =
𝑛∑︁

𝑖=1

Λ1...Λ𝑛∏︀𝑛
𝑗=1,𝑗 ̸=𝑖(Λ𝑗 − Λ𝑖)

𝑒−Λ𝑖𝑡, 𝑡 > 0. (5.5)

It is extremely difficult to track the totally random process of the arrival rate

transition in the short network coherence time regime, since the network arrival rate

changes again almost from one arrival to the next. Though an optimal minimum

mean square estimator on 𝜆(𝑡) is provided in [17], its performance on a fast-changing

total random process can be bad. It is also not necessary because the result is the

short-term average of these rates that will affect the length of the queues. However,

if the fast-changing traffic follows a certain pattern, we can try to predict the trend,

which is the relevant parameter to track and affects the queues in the network.

A simple nontrivial case is that the traffic changes so fast that the traffic arrival

rate increases/decreases monotonically as a linear function. Intuitively, the traffic is

drifting in the direction of the embedded Markov chain, and we define the duration of

the traffic’s drift in one direction as the network drifting time. The network usually

drifts in a direction when the embedded Markov chain is converging to a new steady
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state as the result of transition rate changes. Though the changing frequency of

the steady state is low practically, it can cause severe network congestion and cause

burdens for subsequent reconfigurations if it is not detected promptly. Therefore,

it is necessary to analyze the transient behaviors of network drifts. Moreover, we

should try to predict the traffic trend and develop the corresponding reconfiguration

algorithm for network traffic drifts. Sometimes, a network traffic drifting can happen

as the normal transition of the Markov process without the change of the steady state.

However, such drifts are temporary and will not last for a long time, which will not

be discussed in this work. Other traffic rate changing patterns can be stuided

5.2 Network Drifting Time

When the network traffic drifts due to a shift of the Markov process transition rates,

we want to know the transient behavior of the system on how the drift converges and

how long it takes to achieve the new steady state. Both metrics are determined by

the new transition probability matrix 𝑃 . The transition probability matrix can be

represented with each entry 𝑝𝑖𝑗 indicating the transition probability from state 𝜆𝑖 to

state 𝜆𝑗. It has the same form as the in the stochastic matrix 𝑃𝑠𝑎𝑚𝑝𝑙𝑒 of 𝑀/𝑀/𝑚(𝑡)

queue in Chapter 3. Denote 𝑏 wavelengths that are assigned during the drift. If the

value does not vary, then the new transition probability matrix 𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− 𝜆𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . . . . . . . .

𝜇𝛿 1− (𝜆+ 𝜇)𝛿 𝜆𝛿 0 . . . . . . . . . . . . . . . . . .

0 2𝜇𝛿 1− (𝜆+ 2𝜇)𝛿 𝜆𝛿 0 . . . . . .
.
.
. . . . . . .

.

.

.
. . .

. . . . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
. . . .

. . . . . . . . . 0 𝑏𝜇𝛿 1− (𝜆+ 𝑏𝜇)𝛿 𝜆𝛿 0 . . . . . .

. . . . . . . . . . . . 0 𝑏𝜇𝛿 1− (𝜆+ 𝑏𝜇)𝛿 𝜆𝛿 0 . . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

. . . . . . . . . . . . . . . . . . . . . 0 𝑏𝜇𝛿 1− 𝑏𝜇𝛿

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The convergent rate to achieve a new steady state is largely determined by the
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second largest eigenvalue in magnitude of 𝑃 , since the largest eigenvalue is always 1

and corresponds to the steady state [21]. A larger second largest eigenvalue of 𝑃 in

magnitude yields a lower convergent rate, which means the system takes a longer time

to converge. Apart from the convergent rate, the total convergent time also greatly

depends on the initial steady-state probability distribution. If the final steady-state

probability distribution differs more from the initial distribution, it will take a longer

time to converge.

We can find the settling time 𝜏2 to the new steady state with the eigenvalues of

𝑃 , the eigenvectors of 𝑃 , and the initial steady state probability distribution. We

assume 𝑃 is invertible to facilitate the analysis, and 𝑃 has 𝑙 distinct eigenvalues. To

get the eigenvalues and the eigenvectors of 𝑃 , we decompose 𝑃 as

𝑃 = 𝑈Γ𝑈−1 (5.6)

where Γ is the diagonal matrix with entries 𝛾1, ..., 𝛾𝑙 as all the eigenvalues as

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛾1 0 0 . . . 0

0 𝛾2 0 . . . 0

0 0 𝛾3 . . . 0
...

...
... . . . ...

0 0 0 . . . 𝛾𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

𝑈 is a matrix whose columns are the corresponding eigenvectors of the eigenvalues

on the diagonal of Γ. 𝑈−1 is the inverse of 𝑈 .

The transition probability matrix 𝑃 must have the largest eigenvalue with the

value as 1 [21]. It is also the only value equals to 1, since all 𝑙 eigenvalues are

assumed distinct. Without loss of generality, denote 𝛾1 = 1, then |𝛾𝑖| < 1 for 𝑖 ̸= 1,

and denote 𝛾2 as the second largest eigenvalue in magnitude.

Denote the initial steady-state probability distribution Π(0) when the network

drift begins as
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Π(0) = [𝜋1(0), 𝜋2(0), ..., 𝜋𝑙(0)]. (5.7)

The new steady state is reached when time tends to infinity. Assume 𝑃 does not

change again after the drift happens. Denote the new steady-state distribution Π(∞)

as

Π(∞) = [𝜋1(∞), 𝜋2(∞), ..., 𝜋𝑙(∞)]. (5.8)

With an arbitrarily small positive quantity 𝜖 and a sample unit time 𝛿, we now

can represent Π(0) approximately close to Π(∞) within a time length of 𝜏2 as

||Π(0)𝑃
𝜏2
𝛿 − Π(∞)|| ≤ 𝜖 (5.9)

⇔ ||Π(0)(𝑈Γ𝑈−1)
𝜏2
𝛿 − Π(0)(𝑈Γ𝑈−1)∞|| ≤ 𝜖 (5.10)

⇔ ||Π(0)𝑈Γ
𝜏2
𝛿 𝑈−1 − Π(0)𝑈Γ∞𝑈−1|| ≤ 𝜖 (5.11)

⇔ ||Π(0)𝑈(Γ
𝜏2
𝛿 − Γ∞)𝑈−1|| ≤ 𝜖 (5.12)

where

Γ
𝜏2
𝛿 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

0 𝛾
𝜏2
𝛿
2 0 . . . 0

0 0 𝛾
𝜏2
𝛿
3 . . . 0

...
...

... . . . ...

0 0 0 . . . 𝛾
𝜏2
𝛿
𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,Γ∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
... . . . ...

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By solving the inequality (5.12), we can get the settling time 𝜏2. We can also

get an elegant analytical upper bound on 𝜏2 with the second largest eigenvalue 𝛾2 by

applying an upper bound on
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Γ
𝜏2
𝛿 − Γ∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

0 𝛾
𝜏2
𝛿
2 0 . . . 0

0 0 𝛾
𝜏2
𝛿
3 . . . 0

...
...

... . . . ...

0 0 0 . . . 𝛾
𝜏2
𝛿
𝑙

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0

0 𝛾
𝜏2
𝛿
2 0 . . . 0

0 0 𝛾
𝜏2
𝛿
2 . . . 0

...
...

... . . . ...

0 0 0 . . . 𝛾
𝜏2
𝛿
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.13)

To facilitate the notation, we denote a matrix 𝑊 as

𝑊 = Π(0)𝑈 = [𝑤1, 𝑤2, ..., 𝑤𝑙]. (5.14)

We can get an upper bound on the left-hand side of equation (5.12) as

Π(0)𝑈(Γ
𝜏2
𝛿 − Γ∞)𝑈−1 ≤ [0, 𝑤2𝛾

𝜏2
𝛿
2 , ..., 𝑤𝑙𝛾

𝜏2
𝛿
2 ]𝑈−1 (5.15)

= 𝛾
𝜏2
𝛿
2 [0, 𝑤2, ..., 𝑤𝑙]𝑈

−1 (5.16)

, 𝛾
𝜏2
𝛿
2 𝑊 ′𝑈−1. (5.17)

where we denote 𝑊 ′ = [0, 𝑤2, ..., 𝑤𝑙] to facilitate the notation. Notice the only differ-

ence between 𝑊 ′ and 𝑊 is that the first value in 𝑊 ′ is 0, but all other values are the

same as that in 𝑊 in the corresponding positions.

Then we have

||Π(0)𝑈(Γ
𝜏2
𝛿 − Γ∞)𝑈−1|| ≤ ||𝛾

𝜏2
𝛿
2 𝑊 ′𝑈−1|| (5.18)

≤ ||𝛾
𝜏2
𝛿
2 𝑊 ′|| · ||𝑈−1|| (5.19)

= 𝛾
𝜏2
𝛿
2 ||𝑊 ′|| · ||𝑈−1||, (5.20)
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where ||𝑊 ′|| is the Euclidean norm (or 2-norm) of the vector 𝑊 ′, and ||𝑈−1|| is the

2-norm of the matrix 𝑈−1. Using the upper bound in (5.20), an upper bound on 𝜏2 is

𝛾
𝜏2
𝛿
2 ||𝑊 ′|| · ||𝑈−1|| ≤ 𝜖 (5.21)

⇔ 𝑠
𝜏2
𝛿
2 ≤ 𝜖

||𝑊 ′|| · ||𝑈−1||
(5.22)

⇔ 𝜏2
𝛿
log 𝑠2 ≤ log

𝜖

||𝑊 ′|| · ||𝑈−1||
(5.23)

⇔ 𝜏2 ≤ log𝛾2
𝜖𝛿

||𝑊 ′|| · ||𝑈−1||
(5.24)

⇔ 𝜏2 ≤ log𝛾2
𝜖𝛿

||𝑊 ′||𝜎𝑚𝑎𝑥(𝑈−1)
, (5.25)

where 𝜎𝑚𝑎𝑥(𝑈
−1) represents the largest singular value of 𝑈−1.

To evaluate the convergent times of different initial steady states, we use the idea of

Kullback-Leibler divergence [18] to represent the distance between the initial steady-

state probability distribution and the new steady-state probability distribution after

the network drift 𝐷𝑖𝑠𝑡.(Π(0)||Π(∞)) as

𝐷𝑖𝑠𝑡.(Π(0)||Π(∞)) =
∑︁
𝑥∈𝒳

Π(0) log

(︂
Π(0)

Π(∞)

)︂
, (5.26)

where both Π(0) and Π(∞) are defined on the same probability space 𝒳 . The distance

𝐷𝑖𝑠𝑡.(Π(0)||Π(∞)) is a measure of how Π(0) is different from Π(∞), where we set

Π(∞) as the reference probability distribution. A larger 𝐷𝑖𝑠𝑡.(Π(0)||Π(∞)) represents

a larger difference.

Figure 5-1 shows that our analytical upper bound on the settling time 𝜏2 can

approximate 𝜏2 well. The settling time 𝜏2 increases with the increase of the distance

between the initial steady-state probability distribution and the new steady-state

probability distribution after the network traffic drift. Besides, a larger second largest

eigenvalue in magnitude 𝛾2 of the probability transition matrix results in a longer set-

tling time as expected. A small amount of increase in 𝛾2 can result in a noticeable
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Figure 5-1: Analytical upper bounds and numerical results on the settling time 𝜏2 ver-
sus different distances between the initial steady-state probability distribution and the
new steady-state probability distribution after the network drift with different con-
vergent rates (the second largest eigenvalue in magnitude of the probability transition
matrix). 𝑙 = 100, 𝑎𝑖,𝑖+1 = 10 (0 < 𝑖 < 𝑙 − 1), 𝛿 = 0.01𝑠, 𝜖 = 10−5. [60]

increase in the settling time due to the iterative multiplication of the transition prob-

ability matrix. By modeling the transient behavior of the network drifts analytically,

we can know whether the network traffic drift will maintain a long enough network

settling time for us to predict the traffic trend. It will be good if we can predict the

trend before the new steady state is reached and allocate resource in advance to avoid

the foreseeable network congestion.
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5.3 Prediction of the Network Traffic Drifting Trend

We depict a simple but nontrivial case of the network traffic drifts in a linear model,

where the network coherence time is so short that the arrival rate changes at every

epoch with the same rate. Notice here the linear model is a special case to demonstrate

the possibility of estimating the trend of the traffic. Other changing models, such as

the exponential model or even more complicated models, can be discussed as the

extension of this work. Without loss of generality, we only discuss the process of

increasing network traffic drifts in the following sections since the decreasing process

is the same, just in reverse. We assume the arrival rate increases in a constant slope

of 𝑘 as

𝜆(𝑡) = Λ𝑜 + 𝑘𝑡, 𝑘 > 0, (5.27)

where 𝑘 > 0 to indicate it is an increasing process, and Λ𝑜 is the starting arrival rate.

Our goal is to determine 𝑘 with a given time interval of arrivals. We can estimate

𝑘 by the maximum likelihood estimation based on the probability of the arrivals

sequentially. To reduce the computation complexity, we limit 𝑘 to a certain range as

𝑘𝑚𝑖𝑛 ≤ 𝑘 ≤ 𝑘𝑚𝑎𝑥. (5.28)

If 𝑘 is too large such as tending to infinity, the traffic arrival rate increases too

sharply to be reconfigured. If 𝑘 is too small such as tending to zero, there are almost

no traffic arrival change and no reconfiguration is needed. The probability density

function of an inhomogeneous Poisson process with arrivals at epoch 𝑡1, 𝑡2, ..., 𝑡𝑛 in a

time interval with length of 𝑇0 as described in [21] is

𝑓(𝑡1, 𝑡2, ..., 𝑡𝑛|𝜆(𝑡)) =
[︁ 𝑛∏︁

𝑖=1

𝜆(𝑡𝑖)
]︁
exp

{︁
−
∫︁ 𝑇0

0

𝜆(𝜂)𝑑𝜂
}︁
. (5.29)
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The probability that 𝑛 arrivals happen in the time interval (0, 𝑇0) is

𝑃𝑟(𝑁 = 𝑛) =

∫︁
0<𝑡1<...<𝑡𝑛<𝑇0

𝑓(𝑡1, ..., 𝑡𝑛|𝜆(𝑡))𝑑𝑡1...𝑑𝑡𝑛, (5.30)

where 0 < 𝑡1 < ... < 𝑡𝑛 < 𝑇0 indicate the order of arrivals, which cannot be ignored.

Therefore, we have the maximum likelihood estimator as

𝑘 = argmax𝑘𝑚𝑖𝑛≤𝑘≤𝑘𝑚𝑎𝑥
𝑓(𝑡1, 𝑡2, ..., 𝑡𝑛|𝜆(𝑡)). (5.31)

Given the linear arrival rate change model as 𝜆(𝑡) = Λ𝑜 + 𝑘𝑡, we get 𝑘 as

𝑑

𝑑𝑘
𝑓(𝑡1, 𝑡2, ..., 𝑡𝑛|𝜆(𝑡)) = 0 (5.32)

⇔ 𝑑

𝑑𝑘
𝑓(𝑡1, 𝑡2, ..., 𝑡𝑛|Λ𝑜 + 𝑘𝑡) = 0 (5.33)

⇔ 𝑑

𝑑𝑘

𝑛∏︁
𝑖=1

(Λ𝑜 + 𝑘𝑡𝑖) exp
{︁
−
∫︁ 𝑇0

0

𝜆(𝜂)𝑑𝜂
}︁
= 0. (5.34)

Obviously, the exp{·} part is the area of density function during [0, 𝑇0]. By taking

log of the equation (5.34), we have

𝑑

𝑑𝑘

[︁ 𝑛∑︁
𝑖=1

ln(Λ𝑜 + 𝑘𝑡𝑖)−
∫︁ 𝑇0

0

𝜆(𝜂)𝑑𝜂
}︁
= 0 (5.35)

⇔ 𝑑

𝑑𝑘

[︁ 𝑛∑︁
𝑖=1

ln(Λ𝑜 + 𝑘𝑡𝑖)− (Λ𝑜 +
𝑘𝑇0

2
)𝑇0

]︁
= 0 (5.36)

⇔
[︁ 𝑛∑︁

𝑖=1

𝑡𝑖
Λ𝑜 + 𝑘𝑡𝑖

]︁
− 𝑇 2

0

2
= 0 (5.37)

It is hard to find the analytical results of 𝑘 from equation (5.37), and we can

also prove that there is no closed-form solution for the roots of a fifth or higher

degree polynomial equation by the Abel-Ruffini Theorem [47]. Instead, we can use
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the numerical methods to find the only positive root.

Apart from finding the only possible root with numerical methods, we can find

closed-form analytical bounds on 𝑘 to facilitate the calculation. For the lower bound,

we apply Arithmetic Mean-Harmonic Mean (AM-HM) inequality as

𝑛∑︁
𝑖=1

𝑡𝑖
Λ𝑜 + 𝑘𝑡𝑖

=
𝑛∑︁

𝑖=1

1
Λ𝑜

𝑡𝑖
+ 𝑘

(5.38)

≥ 𝑛2∑︀𝑛
𝑖=1(

Λ𝑜

𝑡𝑖
+ 𝑘)

(5.39)

Combining with the equation in (5.37), we have

𝑛∑︁
𝑖=1

(
Λ𝑜

𝑡𝑖
+ 𝑘) ≥ 2𝑛2

𝑇 2
0

(5.40)

⇔ 𝑘 ≥
2𝑛2

𝑇 2
0
−

∑︀𝑛
𝑖=1

Λ𝑜

𝑡𝑖

𝑛
(5.41)

⇔ 𝑘 ≥ 2𝑛

𝑇 2
0

− Λ𝑜

𝑛

𝑛∑︁
𝑖=1

1

𝑡𝑖
. (5.42)

We can use the proof by contradiction to find an upper bound. Let’s first make

the assumption on 𝑘 as 𝑘 > 2𝑛
𝑇 2
0
− Λ0

𝑡𝑛
. Given the fact 0 < 𝑡1 < 𝑡2 < ... < 𝑡𝑛, we have

Λ0

𝑡1
>

Λ0

𝑡2
> ... >

Λ0

𝑡𝑛
> 0. (5.43)

Therefore, we have
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𝑘 +
Λ0

𝑡𝑖
≥ 𝑘 +

Λ0

𝑡𝑛
(5.44)

>
2𝑛

𝑇 2
0

(5.45)

⇔ 1

𝑘 + Λ0

𝑡𝑖

<
𝑇 2
0

2𝑛
(5.46)

⇔
𝑛∑︁

𝑖=1

1

𝑘 + Λ0

𝑡𝑖

<
𝑇 2
0

2
. (5.47)

where the inequality (5.47) contradicts to the equation (5.37). Therefore, our as-

sumption 𝑘 > 2𝑛
𝑇 2
0
− Λ0

𝑡𝑛
is wrong, and it thus gives us an upper bound on 𝑘 as

𝑘 ≤ 2𝑛

𝑇 2
0

− Λ0

𝑡𝑛
. (5.48)

It is interesting to find that the forms of the upper bound and the lower bound

on 𝑘 are very similar. Both of them are 2𝑛
𝑇 2
0

minus a value. 2𝑛
𝑇 2
0

conveys the general

information of the length of the observation interval and the counts of arrival in the

interval. The value that makes the difference conveys more detailed information on

the epochs of the arrivals. Compared to the lower bower, the upper bound only uses

the information of the last arrival time.

Figure 5-2 shows the slope estimation of our sequential maximum likelihood esti-

mator 𝑘 in a time period of 𝑇0 with different random numbers of arrivals. It is the

average result over 200 runs, where the probability distribution of the arrivals is the

same but the arrival samples in each run are randomly generated. The sequential

maximum likelihood estimator 𝑘 can estimate the slope sufficiently well with a rea-

sonable number of arrivals, even though there is a bias as shown in Fig. 5-2. The

bias comes from the exponential part of the inhomogeneous poisson process. The

estimated value is above the true value, which indicates that the estimator estimates

the trend aggressively during the fast-rate change. The aggressive estimation can

help to allocate more resources in advance to avoid network performance degrada-
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tion. However, it should be carefully handled, because the overestimation will incur

large over-provisioning, which will be costly.

Both the lower bound 𝑘𝑙𝑜𝑤𝑒𝑟 and the upper bound 𝑘𝑢𝑝𝑝𝑒𝑟 together give a good

approximation to 𝑘 analytically. The difference between the upper bound and the

lower bound is the product of the value of the starting arrival rate and the difference

between the average of the reciprocals of the arrival epochs and the reciprocal of the

latest arrival epoch as Λ𝑜(
1
𝑛

∑︀𝑛
𝑖=1

1
𝑡𝑖
− 1

𝑡𝑛
). Since the upper bound is simpler and only

depends on 𝑛 and 𝑡𝑛 (only the last arrival time is needed), it is a useful exact analytical

approximation to the optimum estimate. The convex curve shape indicates that fewer

samples make the results inaccurate, and more samples can cause overfitting.

With the prediction of the network traffic drift trend, we can design the proper

reconfiguration algorithm and allocate more resources in advance to avoid potential

traffic congestion. This enables the system to quickly and accurately adapt to net-

work traffic conditions to save overly jittery control efforts, minimize queueing delays

due to late reconfigurations, and use network resources efficiently.

5.4 Summary of Chapter 5

In this chapter, we discuss the traffic detection and predict in the short coherence time

environment. We model the transient behavior of the network traffic drifts towards

convergence to a new steady state analytically for the super-fast traffic rate changes

to validate the feasibility of the traffic prediction. Given a specific network drift,

we provide a traffic trend estimation technique for the super-fast traffic rate changes

approximated by a simple but nontrivial linear model. The linear model is a special

case of the fast-changing rate where the arrival rate changes at every epoch with the

same rate. The rate changes can be more complicated as in the exponential model

or other uncommon models. With a reasonable number of arrivals, the sequential

maximum likelihood estimator can estimate the network traffic drifting trend in a

linear model well and enable reconfigurations in advance to minimize congestion.
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Figure 5-2: Slope estimation of the network traffic drifting trend in a linear increasing
model versus different number of arrivals over 200 runs. The probability distribution
of the arrivals is the same but each time the arrival samples will be randomly gener-
ated. Λ𝑜 = 5, 𝑘 = 0.2. [60]

With the traffic trend predicted, network management and control efforts can be

more efficient and thus more affordable to meet the requirements of future dynamic

traffic.
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Chapter 6

Rerouting

When increasing traffic cannot be fully handled by fast wavelength reconfiguration,

new reconfigurations should be made to maintain users’ quality of service. With the

traffic changes detected, three reconfiguration options, in order of preference, are:

1. Lighting up a wavelength in the same primary lightpath between a node pair;

2. Rerouting incremental traffic to a secondary path with open wavelengths between

the node pair; 3. Lighting up a new fiber with multiple wavelengths together with

optical switching to accommodate overflowing traffic. In the previous chapters, we

have proposed a scheme for fast wavelength reconfigurations after the detection and

estimation of the dynamic traffic. In this chapter, we further investigate the design

of a rerouting algorithm. The time to perform the new fiber setup is also mentioned.

When the incoming traffic has a high queueing delay that exceeds the threshold,

the traffic has to go through secondary paths to the destination node, which is called

rerouting. Both the primary path of routing and the secondary paths for rerouting

are generated by the shortest-path algorithm. Hence, the primary path is the shortest

path between the source node and the destination node. To achieve a high successful

rate of rerouting, the paths for rerouting are recommended to have a small number of

hops and be disjoint with other busy paths. high edge-connectivity network topology

is preferred. With the shortest-path algorithm, wavelength reservation for the traffic

to be rerouted is not recommended to achieve a good utilization of resources. We

adopt the triggering by a threshold on the queueing delay due to its operating sim-
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plicity rather than other complicated algorithms, which greatly reduce control efforts.

The reason to choose the queueing delay on the primary path is because it is directly

measurable by the queue size, which is determined by the current traffic situation and

the network configurations. With the same queueing delay threshold, the schedule

holder can hold different numbers of transactions for traffic with different sizes when

the rerouting is triggered. It is also shown in [29, 30, 26] that partitioning of resources

will improve average normalized delay, where the average delay is the performance

metric. Per [26], if the network has the mixed traffic, where each traffic category

follows an exponential distribution with the corresponding average size, the optimal

wavelength assignment to minimize the average delay is to allocate the wavelengths

proportioned by the ratio of average traffic sizes. Based on this conclusion in [26]

and our analysis of the number of transactions in the schedule holder using the real-

time delay deadline as the metric, we make the conjecture that traffic with a great

spread of size differences should be split into multi-classes with resources partitioned

for rerouting, and the delay for any session should be normalized by its transmission

time. Though it may result in different splits as the metrics in this work and in [26]

are different, the idea of splitting the traffic to relax the delay requirement will hold

in both cases. Therefore, more large transactions can be transmitted on the primary

path for better network utilization.

6.1 Rerouted Traffic and Shortest-Path Rerouting

As depicted in Chapter 2, 𝑚 tunnels of traffic exist between all node pairs in uniform

all-to-all independent and identically distributed (I.I.D.) traffic, and each wavelength

tunnel has a constant transmission rate 𝑅. The size of each transaction 𝐿 is assumed

to be exponentially distributed with the expectation 𝐿0, but any well behaved real-

life traffic distribution will yield the same architecture recommendations. The service

rate per tunnel per transaction is 𝜇 = 𝑅
𝐿0

. We previously assume the traffic arrivals

form a doubly stochastic Poisson point process with a time-dependent rate of 𝜆(𝑡)

and provide the detection methods for different changing 𝜆(𝑡). In this chapter, we
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use a stationary 𝜆 to facilitate the demonstration of the queueing system. This can

be considered as the real-time short-term value of 𝜆(𝑡) at time 𝑡.

Sometimes, the incremental traffic between a node pair has to go through other

paths from the source node to the destination node, which is called rerouting. Denote

the traffic that can be transmitted between the node pair using the shortest path as

the primary traffic, and the path as the primary path. The primary path of routing

is the shortest path between the source node and the destination node. Denote the

traffic needs to be rerouted via other paths as the rerouted traffic and the new paths

as the secondary paths. Rerouting can be triggered when the certain queueing delay

is reached. Therefore, the schedule holder between each node pair can only hold a

certain number of transactions.

The primary path of routing is generated by the shortest-path algorithm and

the primary path is the shortest path between the source node and the destination

node. In this work, the secondary paths for rerouting are also generated based on

the shortest-path algorithm. Apart from the primary path, a rerouting table records

all the secondary paths for a node pair in the order of preference generated by the

shortest-path algorithm depending on the immediate wavelengths availability. The

routing algorithm has been widely studied since the 1990s [13, 41]. The reason to use

the shortest path algorithm is its simplicity and the efficiency in both cost and energy

[41, 55]. It has been shown in [55] that the shortest-path algorithm is both energy-

efficient and cost-efficient with adaptive-to-traffic-demand deployment or lighting-up

new fibers.

We use the Petersen graph to demonstrate the rerouting algorithm as shown in

Fig. 6-1. The Petersen graph is a Moore graph. Moore graphs and generalized Moore

graphs are good network topology candidates for handling the optimal cost efficiency

and supporting uniform all-to-all traffic with the least number of wavelengths [24].

For the Petersen graph, the length of the primary path can be 1 hop or 2 hops due to

the shortest-path routing. Without loss of generality, we use node pair 𝐴 − 𝐵 with

the 1-hop primary path to demonstrate. The primary path between node pair 𝐴−𝐵

is the 1-hop path 𝐴 − 𝐵, and the secondary paths can be 4-hop, 5-hop, 7-hop, and
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8-hop. If 𝐴−𝐵 is not available, the next shortest-length path, which is a 4-hop path,

will be examined. If all 4-hop paths are blocked, 5-hop paths will examined. If 5-hop

paths are blocked, then 7-hop paths are examined and finally 8-hop paths. Figure.

6-2 shows all 4-hop paths and all 5-hop paths between node pair 𝐴 to 𝐵. A full list

of secondary paths for rerouting between node pair 𝐴 to 𝐵 can be found in Table 1.

For a node pair with the 2-hop primary path, the length of secondary paths are from

3-hop to 10-hop. In the following sections, we use the number of hops of a path and

the length of a path interchangeably.

1-hop	tunnel
4-hop	tunnel
5-hop	tunnel
more-hop	tunnel

(a) (b)
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Figure 6-1: The Petersen graph with several secondary paths for rerouting between
node pair 𝐴−𝐵 with 1-hop primary path.

6.2 Blocking of Secondary Paths for Rerouting

The unavailability of wavelengths on one or more hops of a secondary path for rerout-

ing will lead to the blocking of the entire path. When the overall network load is high,

the blocking probability of a hop can be high, which reduces the chance of finding

an open secondary path, especially for the longer secondary paths. Therefore, we
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Table 6.1: Table of secondary paths for rerouting for the node pair A to B in a
Petersen graph.

Number of hops Secondary Path
4 A-C-G-E-B
4 A-C-H-F-B
4 A-D-I-F-B
4 A-D-J-E-B
5 A-C-G-I-F-B
5 A-C-H-J-E-B
5 A-D-I-G-E-B
5 A-D-J-H-F-B
7 A-C-G-E-J-H-F-B
7 A-C-G-I-D-J-E-B
7 A-C-H-F-I-G-E-B
7 A-C-H-J-D-I-F-B
7 A-D-I-F-H-J-E-B
7 A-D-I-G-C-H-F-B
7 A-D-J-E-G-I-F-B
7 A-D-J-H-C-G-E-B
8 A-C-G-E-J-D-I-F-B
8 A-C-G-I-D-J-H-F-B
8 A-C-G-I-F-H-J-E-B
8 A-C-H-F-I-D-J-E-B
8 A-C-H-J-D-I-G-E-B
8 A-C-H-J-E-G-I-F-B
8 A-D-I-F-H-C-G-E-B
8 A-D-I-G-C-H-J-E-B
8 A-D-I-G-E-J-H-F-B
8 A-D-J-E-G-C-H-F-B
8 A-D-J-H-C-G-I-F-B
8 A-D-J-H-F-I-G-E-B
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Figure 6-2: Secondary paths for rerouting for the Petersen graph. (a) All the 4-hop
paths; (b) All the 5-hop paths.

can further optimize our rerouting algorithm by eliminating the long paths. If all

potential short paths are blocked, we need to directly light up new fiber to bring

extra wavelengths between the node pair.

6.2.1 Blocking of Long Paths for Rerouting

We analyze the conditional blocking probability of the long secondary paths given

that all the short paths are blocked. The blocking probability in optical networks

has been widely studied [2, 51, 33, 25, 55, 56]. In most of these works, it is assumed

that the blocking of hops is statistically independent of others as an approximation

to facilitate the analysis. Similarly, in this work, we assume the blocking on each

hop is statistically independent with each other as an approximation and denote the

blocking probability of a hop as 𝑃𝑏ℎ . The analysis of the dependent hop-blocking

model is proposed in the future work.

Denote the probability that all 𝑖-hop secondary paths are blocked as 𝑃𝑏−𝑖. The

probability of all 𝑗-hop paths blocked, given that all 𝑖-hop paths are blocked 𝑃𝑏−𝑗|𝑏−𝑖
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is

𝑃𝑏−𝑗|𝑏−𝑖 =
𝑃𝑏−𝑗 ∩ 𝑃𝑏−𝑖

𝑃𝑏−𝑖

, (6.1)

where 𝑖 <= 𝑗 to indicate the order of secondary paths.
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Figure 6-3: Conditional blocking probabilities of different secondary paths on the
Petersen graph for the node pair 𝐴 − 𝐵 with 1-hop primary path. The blocking on
each hop is assumed to be statistically independent of each other.

Figure 6-3 shows the conditional blocking probabilities of long secondary paths

given all short secondary paths are blocked on a Petersen graph for node pair 𝐴−𝐵

with the 1-hop primary path. Here, it is assumed that each hop is statistically
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independent of others. If the 1-hop primary path is full, the chance of getting rerouted

by a secondary 4-hop path is fairly high. 𝑃𝑏−4|𝑏−1 is low when 𝑃𝑏ℎ is low due to

the independency between all 4-hop paths and the primary path. In contrast, both

curves 𝑃𝑏−5|𝑏−4 and 𝑃𝑏−7|𝑏−5 start with a high path blocking probability due to the

dependency with the previous short paths. There is little need to find a longer

secondary path when all 4-hop paths are blocked when 𝑃𝑏ℎ is high. The reduction in

blocking probability is insignificant as shown in Fig. 6-3. Similar analysis is valid for

node pairs with 2-hop primary paths.

Two reasons are behind the high blocking probability of the long secondary paths.

First, more hops mean a higher chance for a path to be blocked, since a path can be

blocked if at least one hop in the path is blocked, given the statistical independency

among hops. Second, a path with many hops has a high chance of sharing busy

hops with the blocked paths. Therefore, if the blocking of hops can be modeled

as statistically independent, we make the conjecture that the secondary paths for

rerouting are desirable to have two properties: 1. the paths should have small number

of hops; 2. the paths should be disjoint with other busy paths. The first property has

already been reflected in our rerouting algorithm that implemented with the shortest-

path algorithm. The second property provides an improved secondary path ordering

for the same-length secondary paths.

6.2.2 Topology Recommendation for Efficient Rerouting

The desirable properties of secondary paths for rerouting provide a hint of the de-

sirable network topology. We examine the path blocking probability on two extreme

network topologies as shown Fig. 6-4: 1. the ring topology, where a node only con-

nects to its neighbors; 2. the full mesh topology, where a node connects to every

other node. With 𝑉 nodes in the topology, the ring has the most number of shared

paths, and the full mesh has the most number of independent paths. Again, we as-

sume the blocking of hops is statistically independent. We only consider the blocking

probability of the shortest secondary paths, since the blocking probability of a long

secondary path is high, especially for high-dependency paths.
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Figure 6-4: Secondary paths for rerouting for two extreme five-node topologies. (a)
Ring topology; (b) Full mesh topology.

For a 𝑉 -node ring topology, there is only one secondary path for each node pair,

as a ring can only go either clockwise or counterclockwise. Among all node pairs,

the best case (shortest) of a secondary path length is ⌈𝑉
2
⌉, where ⌈·⌉ is the ceiling

function. With the blocking probability of a hop 𝑃𝑏ℎ and the assumption that all

hops are independent, the best case of the probability that all the shortest secondary

paths are blocked for a node pair in a 𝑉 -node ring topology is

𝑃𝑏𝑝,𝑟−𝑏𝑒𝑠𝑡 = 1− (1− 𝑃𝑏ℎ)
⌈𝑉

2
⌉. (6.2)

For a 𝑉 -node ring topology, the worst case (longest) of the secondary path length

is 𝑉 −1. With the blocking probability of a hop 𝑃𝑏ℎ and the assumption that all hops

are independent, the worst case of the probability that all shortest secondary paths

are blocked for a node pair in a 𝑉 -node ring topology is

𝑃𝑏𝑝,𝑟−𝑤𝑜𝑟𝑠𝑡 = 1− (1− 𝑃𝑏ℎ)
𝑉−1. (6.3)
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For a 𝑉 -node full mesh topology, there are 𝑉 −2 different 2-hop shortest secondary

paths, as the rerouted traffic can go via any of the other 𝑉 − 2 nodes from the source

to the destination. With the blocking probability of a hop 𝑃𝑏ℎ and the assumption

that all hops are independent, the probability that all shortest secondary paths are

blocked for a node pair in a 𝑉 -node full mesh topology is

𝑃𝑏𝑝,𝑚𝑒𝑠ℎ = [1− (1− 𝑃𝑏ℎ)
2]𝑉−2. (6.4)
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Figure 6-5: Path blocking probability versus the blocking probability on a hop for dif-
ferent topologies. The blocking on each hop is assumed to be statistically independent
with each other.
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As shown in Fig. 6-5, a full mesh topology has a lower path blocking probability

than a ring topology with the same number of nodes given the assumption that all

hops are independent. A long path has a high blocking probability as reflected in

the ring topology. More independent paths are efficient in reducing the blocking

probability as reflected in the full mesh topology. To increase the chance of successful

transmission, we make the conjecture that secondary paths are expected to be short

and hop-disjoint (edge-disjoint) with the primary path. Both properties require the

topology to have good connectivity, which is indicated by the corollary of Menger’s

Theorem [5] as

Corollary of Menger’s Theorem A graph is 𝑘-edge-connected if and only if it

has at least two nodes and any two nodes can be joined by 𝑘 edge-disjoint paths.

We can make the conjecture to recommend the topology with high edge-connectivity

to increase the rerouting successful rate when the blocking of hop is independent, as

the network will have more hop-disjoint paths. Minimum node degree provides an

upper bound on the edge-connectivity. That is, if a graph is 𝑘-edge-connected, it is

necessary that

𝑘 ≤ 𝜎(𝐺), (6.5)

where 𝜎(𝐺) is the minimum degree of any node 𝑣 ∈ 𝑉 . Obviously, deleting all edges

connecting to a node 𝑣 will disconnect 𝑣 from the graph.

6.3 Wavelength Reservation for Rerouted Traffic

A way to improve the successful rate of rerouting is to reserve wavelengths for the

rerouted traffic only. As we discussed, shortest-path routing is adopted to find both

the primary path and the secondary paths. When the network load is high, reserv-

ing wavelength for rerouted traffic can lead to low resource utilization. Assume 𝑠

wavelengths of traffic can be transmitted between a node pair. If 𝑠𝑟 wavelengths
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are reserved for the rerouted traffic from other node pairs, only 𝑠 − 𝑠𝑟 wavelengths

are available for the primary traffic between the node pair. We can argue that the

rerouted traffic will occupy more resources, as the length of the secondary path for

rerouting is always the same or longer than the length of the primary path due to the

shortest-path algorithm. Define ℎ𝑟𝑖,𝑗 as the length of the secondary path for node pair

𝑖 to 𝑗, and ℎ𝑝𝑖,𝑗 is the length of the primary path. For a 𝑉 -node topology with the

all-to-all traffic, there are 𝑉 (𝑉 −1) source-destination node pairs. The whole network

can support at most 𝑉 (𝑉 − 1)𝑠 traffic as the theoretical limit with the balanced traf-

fic. Define the traffic supporting ratio 𝛼 as the ratio of the actual maximum traffic

supported to the theoretical limit of the network. For a general 𝑉 -node topology,

the best case of rerouting is bounded by the condition that the network is fully used

without any idle wavelengths as

𝛼𝑏𝑒𝑠𝑡 ≤
𝑉 (𝑉 − 1)(𝑠− 𝑠𝑟) +

∑︀
𝑖,𝑗∈𝑉 (𝐺),𝑖 ̸=𝑗

𝑠𝑟ℎ𝑝𝑖,𝑗

ℎ𝑟𝑖,𝑗

𝑉 (𝑉 − 1)𝑠
(6.6)

= (1− 𝑠𝑟
𝑠
) +

𝑠𝑟
𝑠

∑︀
𝑖,𝑗∈𝑉 (𝐺),𝑖 ̸=𝑗

ℎ𝑝𝑖,𝑗

ℎ𝑟𝑖,𝑗

𝑉 (𝑉 − 1)
(6.7)

= 1− (
𝑠𝑟
𝑠
)

⎛⎜⎜⎝1−
∑︀

𝑖,𝑗∈𝑉 (𝐺),𝑖 ̸=𝑗

ℎ𝑝𝑖,𝑗

ℎ𝑟𝑖,𝑗

𝑉 (𝑉 − 1)

⎞⎟⎟⎠ , (6.8)

where 𝑉 (𝐺) denotes the nodes set of the 𝑉 -node topology 𝐺. Notice that
ℎ𝑝𝑖,𝑗

ℎ𝑟𝑖,𝑗
≤ 1

since the shortest-path algorithm is used to find both the primary paths and the

secondary paths. There are at most 𝑉 (𝑉 − 1) terms in the sum, at most because

some routes may not be feasible, and there are unused resources in some links. Thus

the overall term is less than 1. Hence the inequality indicates an upper bound. The

upper bound above is monotonically decreasing in 𝑠𝑟 and thus achieves its maximum

at the origin.

We can also find a simple upper bound on the 𝛼𝑏𝑒𝑠𝑡 using the maximum of
ℎ𝑝𝑖,𝑗

ℎ𝑟𝑖,𝑗

(the shortest secondary path length) as
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𝛼𝑏𝑒𝑠𝑡 ≤
𝑠− 𝑠𝑟 + 𝑠𝑟

(︁
ℎ𝑝𝑖,𝑗

ℎ𝑟𝑖,𝑗

)︁
𝑚𝑎𝑥

𝑠
, 𝛼𝑏𝑒𝑠𝑡𝑢𝑝𝑝𝑒𝑟 . (6.9)

The worst case of rerouting is that only 𝑠𝑟 units of rerouted traffic from a node pair can

be fulfilled in the whole network. The secondary path of the rerouted traffic occupies

part or even whole secondary paths for other node pairs, and many wavelengths have

to be idle. The worst case is

𝛼𝑤𝑜𝑟𝑠𝑡 =
𝑉 (𝑉 − 1)(𝑠− 𝑠𝑟) + 𝑠𝑟

𝑉 (𝑉 − 1)𝑠
. (6.10)

In Fig.6-6, the region confined by the upper bound of the best case with ℎ𝑟𝑖,𝑗𝑚𝑖𝑛 =

1.5 and the worst case indicates the possible traffic supporting ratio range for a 10-

node topology, where the shortest-path algorithm is adopted to find both the primary

paths and the secondary paths for rerouting. The best case of the Petersen graph is

also shown in Fig.6-6, where only the shortest secondary paths are used due to the

high blocking probability of the long secondary paths. The wavelength reservation for

rerouted traffic sacrifices the traffic supporting ratio for guaranteeing the transmission

of some but not all rerouted traffic. In the worst case, a great amount of network

resources are wasted as only 𝑠𝑟 units of traffic can be supported, compared to totally

𝑉 (𝑉 − 1)𝑠𝑟 traffic in the whole network needs to be rerouted when the network is

fully loaded(∼ 100%). With the increase of the network size, such portion is small,

and it can be considered as no rerouting is available.

From the above analysis, reserving wavelength for the rerouted traffic will incur the

waste of resources if the shortest-path algorithm is adopted to find both the primary

path and the secondary path for rerouting. Reserving wavelength is not recommended

if we aim to achieve the high resource utilization. If the wavelength reservation has to

be performed to guarantee successful transmission of certain traffic, secondary path

planning should be careful to avoid the worst case of the traffic supporting.
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Figure 6-6: The traffic supporting ratio versus percentage of reserved wavelength
for a 10-node network topology. The shortest-path algorithm is adopted to find the
secondary path for rerouting and only the shortest secondary paths are used.

6.4 Delay Threshold to Reroute

Rerouting can be triggered by a threshold of queueing delay on the primary path,

where the queue is first-come-first-serve (FCFS). This rerouting trigger is easier to

use than many other more complicated algorithms to save the control efforts. As

indicated in [55], a scalable, efficient, and easy-to-implement control plane without

compromising too much of the network performance is important in future network

design. The queueing delay on the primary path is directly measurable by the queue

size and the sizes of the transaction in the queue, which can reflect both the current
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network traffic environment and the network configurations.

6.4.1 Triggering Algorithm with the Delay Threshold

Define the queueing delay of the traffic transaction that is going to join the queue as

𝜏𝑄. With the queueing delay threshold 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
, the threshold algorithm to trigger

rerouting is to reroute when

𝜏𝑄 ≥ 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
(6.11)

Triggering by 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
can make a rerouting decision as soon as possible without

any predetermined parameters. It is easy to implement as it requires no detail on the

traffic arrival patterns.

To facilitate the implementation, we elaborate the triggering algorithm with the

queue size and the transmission times of the transactions in the queue. The trans-

mission time of a transaction depends on the size of the transactions. Denote 𝐾

transactions are in the holder when the rerouting is triggered, and 𝐾 is a random

variable. 𝐾 can be considered as the maximum number of transactions in the sched-

ule holder, which is determined by the exact traffic transaction sizes in the holder

and 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
. Define the transmission time of 𝑘th transaction in the holder between

node pairs as 𝑇𝑘, 1 ≤ 𝑘 ≤ 𝐾. With the fixed transmission rate 𝑅 and the size of the

𝑘th transaction as 𝐿𝑘, 𝑇𝑘 is decided by the size of the 𝑘th transaction as

𝑇𝑘 =
𝐿𝑘

𝑅
(6.12)

Denote the shortest remaining time of ongoing transmission when the (𝐾 + 1)th

transaction is going to join the queue as 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔. With a single wavelength assigned

between the node pair, we have
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𝜏𝑄 = 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 +
𝐾∑︁
𝑘=1

𝑇𝑘 (6.13)

With multiple wavelengths assigned between the node pair, 𝜏𝑄 is the time that

the first wavelength is available after all 𝐾 transactions in the holder enters the

transmission as shown in Algorithm 1. 𝐾 is a random variable depending on the

situation when 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
is crossed and the rerouting is triggered. 𝜏𝑄 can be calculated

case by case with 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 and 𝑇𝑘, 𝑘 = 1, 2, ..., 𝐾. Since the transmission times of all

sessions are available and the FCFS schedule is known, the first available wavelength

is known at the time of session arrival at the node. Thus, it is a deterministic decision

to reroute or not.

Algorithm 3 Rerouting Triggering by 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
with Multiple Wavelengths Assigned

Between the Node Pair
𝜏𝑄 ← 0

Δ𝑡← 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔

3: for each 𝑇𝑘 do

𝑖← index of the first open wavelength after Δ𝑡

𝜏𝑄 ← 𝜏𝑄 +Δ𝑡

6: Substract Δ𝑡 from all ongoing transmission times

Assign the 𝑘th traffic transaction to the wavelength 𝑖

Δ𝑡← shortest remaining time of ongoing transmission

9: end for

𝜏𝑄 ← 𝜏𝑄 +Δ𝑡

if 𝜏𝑄 ≥ 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
then

12: Reroute to the secondary path

else

Wait in the queue

15: end if

The triggering by 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
enables the high resource utilization on the primary

136



path, as the queue will not accumulate until the lack of wavelengths. In other words,

rerouting will not be triggered until the resources on the primary path are fully used.

It is consistent with the design of not reserving wavelength for the rerouted traffic for

the purpose of high resource utilization.

Traffic in different transaction sizes may have different 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
. Without loss of

generality, we highlight two types of traffic as in [26] but on a larger scale:

1. mice traffic with the average size ∼ 104 bits;

2. elephant traffic with the average size ∼ 1 Gigabytes.

The size of an elephant traffic transaction is approximately 106 times larger than

the size of a mouse traffic transaction. To facilitate the analysis, we define a mouse

traffic transaction size as a unit in the following analysis. So the size of the an

elephant traffic transaction is 106 units. With the same transmission rate 𝑅, if we

define the transmission delay of a mouse traffic transaction as a unit of delay, then

the transmission delay of an elephant traffic is 106 units of delay.

6.4.2 Performance for Node Pair with Single Wavelength

When a single wavelength is assigned between the node pair, the 𝜏𝑄 before rerouting

is the sum of the transmission times of 𝐾 transactions and the shortest remaining

time of ongoing transmission at time 𝑡. Each 𝑇𝑘 follows the exponential distribution

with the average size 𝐿0, as defined in Chapter 2. Due to the memoryless property of

the exponential distribution, 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 also follows the exponential distribution with the

expectation of 𝐿0. Therefore, we can consider 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 as another 𝑇𝑘, and we denote

it as 𝑇0. With a single wavelength assigned between the node pair, we have

𝜏𝑄 =
𝐾∑︁
𝑘=0

𝑇𝑘. (6.14)

Obviously, 𝜏𝑄 is therefore a random walk based on 𝑇𝑘 as a sequential test to trigger

rerouting. Once 𝜏𝑄 crosses 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
, rerouting will be triggered. 𝐾 is the random
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variable to depict the number of transactions in the holder when the threshold is

crossed, which is also the stopping time of the random walk. With Wald’s equality,

we have the average number of transactions in the holder when the threshold is crossed

𝐾 with a single wavelength assigned between node pairs as

𝐸[𝜏𝑄] = 𝐸[𝑇𝑘]𝐸[𝐾] (6.15)

⇔ 𝐸[𝐾] =
𝐸[𝜏𝑄]

𝐸[𝑇𝑘]
(6.16)

⇔ 𝐸[𝐾] =
𝐸[𝜏𝑄]𝑅

𝐿0

. (6.17)

Figure 6-7 shows the average number of transactions in the holder when the thresh-

old is crossed 𝐾 versus the queueing delay threshold 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
for different traffic situ-

ations. The maximum number of transactions in the schedule holder is determined by

the exact traffic transaction sizes in the holder and 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
. A large 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.

allows

more traffic transactions to stay in the holder, and a small exact transaction size also

enables more traffic transactions to stay. The holder is allowed to hold a large number

of transactions if all the transactions queueing in the holders are mice traffic, which

is the upper bound. In contrast, with the same 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
, the holder is only allowed to

hold a small number of transactions if all the transactions are elephants, which is the

lower bound. The total number of transactions of different sizes in the holder lies in

the shade between the upper bound and the lower bound.

A small 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
can allow a reasonable number of mice traffic transactions to be

held in the holder, but a small 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
is too strict for the elephant traffic and results

in a low number in the holder for the elephant traffic. For example, 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
= 106

only allows an elephant to wait in the holder, as shown in Fig. 6-7, and any following

incoming elephant traffic has to be rerouted. If 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
< 106, no elephant can

join the holder if the wavelength is not idle. If both mice and elephant traffic are

transmitted together, the same strict 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
gives the elephant traffic a slight chance

to wait in the queue, which impedes the transmission of elephant traffic. As indicated

in [29, 30, 26], elephant traffic can only come at an extremely low load when the
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Figure 6-7: The expected number of transactions in the holder when the thresh-
old is crossed 𝐸[𝐾] versus the queueing delay threshold 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.

for different traffic
situations. The wavelength number is 1 per node pair. A unit delay is defined as
the transmission delay of a mouse traffic transaction. The transmission delay of an
elephant traffic transaction is 106 units of delay.

average queueing delay limit is low. The low operating load will lead to the waste of

network resources. It is also shown in [29, 30, 26] that partitioning of resources will

improve average normalized delay, as the average delay is the performance metric. Per

[26], the optimal wavelength assignment to minimize the average delay is to allocate

the wavelengths proportioned by the ratio of average traffic sizes, if the network has

the mixed traffic with different average sizes. In our case of using the real-time delay

deadline as the metric, we conjecture that the same result will hold. Though it may

result in different splits as the metrics in this work and in [26] are different, the idea
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of splitting the traffic to relax the delay requirement will hold in both cases.

6.4.3 Performance for Node Pair with Multiple Wavelengths

We further discuss the performance of our queueing delay threshold triggering al-

gorithm when multiple wavelengths are assigned between node pairs. Though the

algorithm becomes more complicated than that in the single wavelength situation

shown in Algorithm 3, we can find that 𝜏𝑄 is still a random walk. 𝜏𝑄 is 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 plus

the sum of every shortest remaining time of ongoing transmission when each trans-

action in the holder is going to be transmitted. As we argued in the previous section,

𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 follows the exponential distribution due to the memoryless property of the

exponential distribution. Therefore, every subsequent shortest remaining time of on-

going transmission is also exponentially distributed. Denote the shortest remaining

time of ongoing transmission when the 𝑘th transaction in the holder is going to be

transmitted as 𝑇 ′
𝑘, and denote 𝜏𝑜𝑛𝑔𝑜𝑖𝑛𝑔 as 𝑇 ′

0. Therefore, we have 𝜏𝑄 when multiple

wavelengths assigned are between the node pairs as

𝜏𝑄 =
𝐾∑︁
𝑘=0

𝑇 ′
𝑘. (6.18)

As no wavelength reservation is recommended, we assume 𝑚 wavelengths in total

are available between each node pair. Different from the single wavelength assigned

between a node pair, more wavelengths assigned can reduce the queueing time as

traffic transactions can be transmitted in parallel. With 𝑚 wavelengths assigned,

𝑚 transactions can be transmitted at the same time. As stated in the Corollary

of Proposition 1 that we proved in Chapter 3, the average queueing delay for an

𝑀/𝑀/𝑚(𝑡) queue with a service rate 𝜇 is the same as that of an 𝑀/𝑀/1 queue with

the service rate of 𝑚(𝑡)𝜇. Given the transmission rate for a transaction on the single

wavelength as 𝜇 = 𝑅
𝐿
, we can approximately use 𝑚𝜇 as the transmission rate of queue

with multiple wavelengths when calculating 𝑇 ′
𝑘. Therefore, with Wald’s equality, we

have the average number of transactions in the holder when the threshold is crossed
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𝐾 with 𝑚 wavelengths assigned between node pairs as

𝐸[𝜏𝑄] = 𝐸[𝑇 ′
𝑘]𝐸[𝐾] (6.19)

⇔ 𝐸[𝐾] =
𝐸[𝜏𝑄]

𝐸[𝑇 ′
𝑘]

(6.20)

⇔ 𝐸[𝐾] =
𝐸[𝜏𝑄]𝑚𝑅

𝐿0

. (6.21)
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Figure 6-8: The expected number of transactions in the holder when the threshold
is crossed 𝐸[𝐾] versus the number of wavelengths assigned between each node pair
for different traffic situations. A unit delay is defined as the transmission delay of a
mouse traffic transaction. The transmission delay of elephant traffic is 106 units of
delay. 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.

= 106.
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Figure 6-8 shows the number of transactions in the holder when the threshold

is crossed 𝐾 versus the number of wavelengths assigned between each node pair for

different traffic situations with 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
= 106. The maximum number of transactions

in the schedule holder is determined by the exact traffic transaction sizes in the holder

and 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
. With more wavelengths assigned between the node pair, the number of

traffic transactions that can be held increases. Multiple wavelengths improve the total

transmission rate between the node pair, and multiple transactions can be transmitted

in parallel.

Similarly, with the same 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
, the schedule holder can hold a large number of

mice traffic transactions but only a small number of elephant traffic transactions. The

small 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
is too strict for the elephant traffic and requests the elephant traffic

to be rerouted at a low load [29, 30, 26]. There is a trade-off among the queueing

delays, load, and blocking probability. A high blocking probability indicates that the

network only allows a small number of traffic transactions to be held in the schedule

holders on each node pair. Therefore, the traffic have a greater chance to be rerouted

rather than waiting in the holder on the primary path, and the queueing delay on

the primary path is reduced. With the increase of the load, the queueing delay also

increases [29, 30, 26]. If a low 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
is required, it is reasonable to expect the

maximum network load to be low, which may result in low resource utilization. If

the requirements on queueing delay and blocking probability are strict, the load must

be low and thus will be costly. If we can relax performance requirements, then the

network can be handled at high loads.

Splitting the transmission between mice traffic and elephant traffic will solve the

problem, as indicated in [29, 30, 26]. A normalized queueing delay requirement should

be expected, where the queueing delay is normalized by the transmission time. Mice

traffic and elephant traffic usually come from different network services, and they usu-

ally have different performance requirements of 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
. To perform the normalized

queueing delay requirement, we can split the transmission of the mice traffic and the

elephant traffic with a method similar to that in [29, 30, 26]. In [26], Huang recom-

mends partitioning the resources to traffic of different sizes to improve the average
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normalized delay, as the average delay is the performance metric. Though the real-

time queueing delay is used as the metric in this work, we conjecture that the idea

of splitting traffic with different sizes will help to improve the network performance

in this work. Splitting the transmission will be a great relief as the absolute 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.

of the elephant traffic will be relaxed, and the network will be able to hold more of

it. In other words, more elephant traffic will avoid being rerouted or even blocked.

As also shown in [26], the optimal wavelength assignment to minimize the delay is

to allocate the wavelengths proportioned by the ratio of average traffic sizes, if the

network has the mixed traffic with different average sizes. It may result in different

splits in this work as the metrics in this work and in [26] are different.

Therefore, we make the conjecture to recommend splitting the traffic with a great

spread of transaction sizes into classes with resources dedicated to the class, as shown

in [29, 30, 26]. The delay for any session should be normalized by its transmission

time. Notice that the traffic split in [26] is based on the optimized expected delays and

is different from the metric in this work, which may result in different detailed splits.

It is reasonable to wait a few transmission times for the size of the session (either

mice or elephants) and therefore partition the resources. 𝜏𝑄𝑇ℎ𝑟𝑒𝑠ℎ.
will be relaxed

as larger size traffic are expected to have longer transmission delay. Therefore, the

elephant traffic can be transmitted at a high load to save costs. On the other hand,

more elephants traffic can be transmitted on the primary path rather than rerouted

to secondary paths. This will help to better utilize the network resources, as the

length of the primary path is always shorter than the secondary path due to the

shortest-path algorithm.

6.5 Summary of Chapter 6

In this chapter, we constructed and discussed a dynamic rerouting scheme. Rerout-

ing is triggered when the queueing delay crosses a threshold, and the threshold is

determined by the users’ quality of service requirements. Both the primary path for

routing and the secondary paths for rerouting will be generated based on the shortest
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path algorithm. We make the conjecture that the secondary paths for rerouting are

recommended to have as few hops as possible and be disjoint with other busy paths

to increase the rate of successful rerouting, if hops are assumed to be statistically

independent. The conjecture also suggests a high edge-connectivity topology. With

the shortest-path algorithm used to find both the primary path for routing and sec-

ondary path for rerouting, we do not recommend reserving wavelengths for rerouted

traffic because it yields poor resource utilization. Traffic in different sizes should have

different normalized delay deadlines for rerouting. With the same queueing delay

threshold, a large traffic transaction has to be rerouted when a very small number of

transactions are in the holder, while small traffic transactions can be rerouted when

a large number of transactions are held in the holder. We make the conjecture to

recommend splitting the traffic into multi-classes and partitioning the resources sim-

ilarly as in [29, 30, 26]. This will allow the reasonable queueing delay threshold to

achieve more frequent use of the primary path before rerouting happens. The delay

for any session should be normalized by its transmission time. This is the key to

improving resource utilization and making the network affordable.
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Chapter 7

Conclusion

In this thesis, we have provided the design of a practical fast-reconfigurable cognitive

optical networking management and control scheme. The design aims to quickly

catch traffic changes and perform rapid adaptations to maintain a low queueing delay

without large over-provisioning.

Based on the simplified characteristics of dynamic, bursty, and high-granularity

traffic, we have built a simplified traffic model where the traffic arrival rate changes

follow a multi-state Markov process. The traffic is categorized into different network

traffic environments by the length of the network coherence time, which is the time

that it takes the traffic to change. An end-to-end tunneled network architecture is

used to reduce the control complexity.

We have addressed the design of a fast-response algorithm for wavelength recon-

figuration in the long network coherence time environment. Two Bayesian estimators

and a stopping-trial sequential estimator are further elaborated from [12] and exam-

ined to detect changes of traffic arrival statistics. Based on the transient behaviors of

the network, we have shown that the stopping-trial estimator has the shortest detec-

tion time for traffic rate changes, and it requires no knowledge of a priori probabilities,

except the inter-arrival times of the sessions have to be independent. With continu-

ous assessment, the system reconfigures only when it is necessary. Allowing for the

possibility of the addition and subtraction of multiple wavelengths, the stopping-trial

estimator (among all three estimators) requires the smallest number of wavelengths
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to be reconfigured due to its fastest response that helps to avoid a high peak queueing

delay.

In the moderate network coherence time environment and the short network co-

herence time environment, we have shown that the stopping-trial estimator can still

provide the desired wavelength assignment scheme. The stopping-trial estimator can

make reconfiguration decisions in the shortest possible time with independent but not

necessarily identically distributed inter-arrival times of traffic sessions. The beauty

of the stopping-trial estimator is that it can trigger reconfigurations without having

to infer or estimate the network traffic statistics.

To deal with the super-fast traffic rate changes, we have modeled the transient

behavior of the network traffic drifts towards convergence to a new steady state an-

alytically to validate the feasibility of the algorithm to predict traffic changes. As

an example of a specific network drift, we have provided a traffic trend estimation

technique for the fast traffic rate changes approximated by a simple linear model.

With a few arrivals, the sequential maximum likelihood estimator based on distribu-

tion of the inhomogeneous Poisson process can estimate the network traffic drifting

trend and enable reconfigurations in advance to minimize the buildup of congestion.

The algorithm makes network management and control more efficient to avoid large

over-provisioning and yields more affordable architecture in dynamic environments to

meet the requirement of future dynamic traffic.

When increasing traffic can not be fully handled by the fast wavelength reconfigu-

ration, we have constructed a cognitive dynamic rerouting scheme. We have designed

rerouting that is triggered when the queueing delay crosses a threshold, and the

threshold is determined by users’ quality of service requirements. Both the primary

path for routing and the secondary paths for rerouting will be generated based on the

shortest-path algorithm. We have made the conjecture that the secondary paths for

rerouting are recommended to have as few hops as possible and to be disjoint with

other busy paths to increase the successful rerouting rate, when hops on the paths are

assumed statistically independent, which is simplification. The conjecture also sug-

gests that a high edge-connectivity topology should be used. We do not recommend
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reserving wavelengths for rerouted traffic because it yields poor resource utilization

when the shortest-path algorithm is used to find both the primary path for routing

and the secondary paths for rerouting. With the same queueing delay threshold, the

queue (the schedule holder) can only accept a small number of large traffic transac-

tions, while a large number of small traffic transactions can be be held in the holder.

As is shown in [29, 30, 26], partitioning of resources will improve average normalized

delay. Based on this and our analysis of the number of transactions in the schedule

holder, we make the conjecture to recommend splitting the traffic into multi-classes

and partitioning the resources and normalize the queueing delay for any session by its

transmission time. The reasonable normalized queueing delay threshold can increase

the number of transactions that can be held in the schedule holders before rerouting

occurs. This will allow the most frequent use of the primary path and is the key to

improving resource utilization and making the network affordable.

Possible future work is as follows:

1. In our non-stationary traffic model, we assume a doubly stochastic Poisson pro-

cess with changing arrival rates. When the actual traffic distribution has a

heavy tail, which encourages more frequent arrivals of large traffic, one could

study to what extent our algorithms still provide good performance in both de-

tection and reconfiguration. Besides, we assume the change of the traffic arrival

rates follows a Markov process and also provide the traffic trend estimation in

the fast change environment if the arrival rate changes in a linear model. One

could also study the performance of other arrival rate change patterns.

2. In our rerouting algorithm design, we make the conjecture that the dependen-

cies among paths will affect the availability of the long secondary paths. One

could study how the dependency among the hops affects the availability of the

secondary paths analytically. Besides, we assume the blocking of a hop is in-

dependent with each other. In many other scenarios, the availability of hops

on a path can be partially correlated or even completely correlated. One could

study the blocking of the secondary paths given that the blocking of the hop is
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not independent.

3. We adopt a queueing delay threshold to trigger the rerouting. A more compre-

hensive analysis of its performance should be conducted. One could study the

impacts of different queueing delay thresholds on the allowable network load

and the blocking probability. Since this is a heuristic algorithm, a performance

comparison with other rerouting triggering mechanisms should be also studied.
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