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Abstract

We study the problem of implementing an infrastructure for secure multiparty com-
putation (MPC). The goal of our infrastructure is to enable reliable communication,
secure computation and fair computation in a network. The desiderata for an in-
frastructure include reusability, transferability and fault-tolerance. It is not hard to
see that the above criteria are fulfilled for infrastructures that we use in daily life,
for e.g., the infrastructure for online communication (e-mail, instant messaging, etc.)
consisting of transatlantic undersea cables, routers, wireless access points, etc. We
consider which cryptographic primitives would be good building blocks for a secure
computation infrastructure.

The first, reliable communication. We study the problem of almost-everywhere re-
liable message transmission. The goal is to design low-degree networks which allow a
large fraction of honest nodes to communicate reliably even while linearly many nodes
can experience byzantine corruptions and deviate arbitrarily from the assigned proto-
col. We consider both the worst-case and randomized corruption scheduling models.
In the worst-case model, we achieve a log-degree network with a polylogarithmic
work complexity protocol improving over the state-of-the-art results that required a
polylogarithmic-degree network and had a linear work complexity. In the randomized
model, we improve upon the state of the art protocols, both in work-efficiency and in
resilience.

Next, we propose an infrastructure for secure computation, which would consist
of OT channels between some pairs of parties in the network. We devise information-
theoretically secure protocols that allow additional pairs of parties to establish secure
OT correlations using the help of other parties in the network in the presence of a
dishonest majority. Our main technical contribution is an upper bound that matches
known lower bounds regarding the number of OT channels necessary and sufficient
for MPC. In particular, we characterize which 𝑛-party OT graphs 𝐺 allow 𝑡-secure
computation of OT correlations between all pairs of parties, showing that this is
possible if and only if the complement of 𝐺 does not contain the complete bipartite
graph 𝐾𝑛−𝑡,𝑛−𝑡 as a subgraph.
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Finally, we study the problem of building an infrastructure for fair secure com-
putation, where we guarantee that if any party receives the output of the secure
computation, then all honest parties do as well. Toward this goal, we introduce a
new 2-party primitive ℱSyX (“synchronizable fair exchange”) and show that it is com-
plete for realizing any 𝑛-party functionality with fairness in a setting where all 𝑛
parties are pairwise connected by independent instances of ℱSyX. Additionally, a pair
of parties may reuse a single instance of ℱSyX in any number of multiparty protocols
(possibly involving different sets of parties).

Thesis Supervisor: Shafrira Goldwasser
Title: RSA Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Many real world applications involve computing functions on large data sets that are

distributed across machines in a global network. In many such applications, the data

held by any particular agent may need to be kept private. For instance, hospitals

across the world have confidential patient data that can be used to create accurate

disease models and improve treatment plans.

Protocols for secure multiparty computation [126, 68, 17, 37] allow a set of mutu-

ally distrusting parties to carry out a distributed computation without compromising

the privacy of inputs or the correctness of the end result. The problem of construct-

ing protocols for secure multiparty computation gained much attention in the ’80s.

Yao [126] came out with the first two-party protocol using oblivious transfer, quickly

followed by Goldreich, Micali and Wigderson [68] who came out with an 𝑛-party pro-

tocol for all 𝑛 ≥ 2, also using oblivious transfer. Ben-Or, Goldwasser and Wigderson

[17] went on to show that in the presence of an honest majority (assuming broadcast),

one could construct information-theoretically secure protocols. Yet another question

that emerged was that of fairness. In fair secure computation, not only are we con-

cerned with the privacy of inputs or the correctness of the end result, but also the

delivery of output. We would like that if any party receives the output of a fair secure

computation, then so do all the parties. This isn’t true of the protocols of [126] or

[68], and in general, such protocols are impossible to construct, as was demonstrated

by the impossibility result of Cleve [41] with regards to fair coin-tossing.
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As a research area, secure computation has witnessed several breakthroughs in

the last decade [127, 94, 84, 113, 104, 103, 81, 110, 82, 106]. However, despite a wide

array of potential game-changing applications, there is nearly no practical adoption

of secure computation today (with the notable exceptions of [24, 25]). Computations

wrapped in a secure computation protocol do not yet deliver results efficiently enough

to be acceptable in many cloud-computing applications. For instance, state-of-the-

art semi-honest 2-party protocols incur a factor ≈ 100 slowdown even for simple

computations. The ubiquitous need for such distributed private computations has

motivated research on efficient multiparty computation (MPC) [125, 68, 17, 37].

In the absence of practical real-world protocols for secure computation which

are secure in the presence of any number of dishonest parties, there is a need for

relaxations that are meaningful and yet provide significant performance benefits. As

an example, classic protocols for secure computation [17, 37, 119] (with subsequent

improvements e.g., [43, 19, 12, 47, 45, 44]) offer vastly better efficiency at the cost

of tolerating only a small constant fraction of adversaries. The resilience offered

is certainly acceptable when the number of participating parties is large, e.g., the

setting of large-scale secure computation [27, 49, 128, 28]. Although large-scale secure

computation is well-suited for several interesting applications (such as voting, census,

surveys), we posit that typical settings involve computations over data supplied by a

few end users. In such cases, the overhead associated with interaction among a large

number of helper parties is likely to render these protocols more expensive than a

standard secure computation protocol among the end users. If the number of helper

parties is small, security against a small fraction of corrupt parties may be a very

weak guarantee, since a handful of corrupt parties could render the protocol insecure.

Thus, in the presence of a larger fraction of corrupted parties, several avenues for

theoretical and practical research remain open:

∙ Is it possible to get faster protocols, either through better assumptions, primi-

tives, or special hardware?

∙ Is it possible to reduce the amount of communication (number of bits) in the
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protocol [91, 49, 28, 34]?

∙ Is it possible to reduce the number of rounds in the protocol [11]?

∙ Is it possible to alleviate the need for synchronicity of nodes in the network?

∙ Is it possible to minimize the use of physical resources?

Indeed, each of these questions have been considered in the past and remain hotbeds

of fruitful research.

An orthogonal approach for reducing the online cost of secure computation proto-

cols is the use of preprocessing [9, 48, 20, 3]. This approach can dramatically reduce

the cost of secure computation: for instance, given preprocessing [9], the ≈ 100 fac-

tor slowdown for simple computations no longer applies. Recent theoretical research

has shown that many primitives can even be made reusable (e.g. [71]). Perhaps the

most important drawback of this approach (other than the fact that the preprocess-

ing phase is typically very expensive) is that the preprocessing is not transferable.

Clearly, a pair of parties that want to perform a secure computation cannot benefit

from this approach without performing the expensive preprocessing step. Moreover,

this seems to hold even if each of the two parties have set up the preprocessing with

multiple others. Typically, the cost of the preprocessing phase is quite high, present-

ing a barrier for the practical use of preprocessed protocols. This is especially true

in settings where parties are unlikely to run many secure computations that would

amortize the cost of preprocessing.

Motivated by the discussion above, we conclude that some directions that seem to

offer efficiency benefits for secure computation are (1) highly resilient protocols that

use only a small number of helper parties, and (2) a preprocessing procedure that

allows a notion of transferability between users. Taken together, these two ideas have

the potential to provide an infrastructure for efficient secure computation. Some sets

of parties might run a preprocessing phase among themselves. These parties can then

act as helper parties and “transfer” their preprocessing to help users who want to run

a secure computation protocol. We informally describe some desiderata for such an

infrastructure.
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∙ Reusability/Amortization. Setting up an infrastructure component could be

expensive, but using it and maintaining it should be inexpensive relative to

setting up a new component.

∙ Transferability/Routing. It should be possible to combine different components

of the infrastructure to deliver benefits to the end users.

∙ Robustness/Fault-tolerance. Failure or unavailability of some components of the

infrastructure should not nullify the usefulness of the infrastructure.

It is not hard to see that the above criteria are fulfilled for infrastructures that we

use in daily life, for e.g., the infrastructure for online communication (e-mail, instant

messaging, etc.) consisting of transatlantic undersea cables, routers, wireless access

points, etc. What cryptographic primitives would be good candidates for a secure

computation infrastructure? In answering this question, it is instructive to discover

the components of the infrastructure.
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1.1 Infrastructure for Reliable Communication

MPC protocols for various important tasks, such as elections, were discovered in the

twentieth century, but most of these protocols have not seen practical application

as they were designed for densely connected networks. For MPC to see widespread

use, it is important for protocols to rely only on the sparse connectivity that is

available in modern large scale networks while simultaneously meeting the efficiency

needs of practice. All secure distributed protocols rely on the ability of machines to

communicate. In particular, if 𝐴 and 𝐵 are two nodes in a network, 𝐴 must be able

to send a message to 𝐵 in a way that satisfies the following two properties: (1) reliable

transmission: 𝐵 receives the message that 𝐴 intended to send, and (2) authentication:

𝐵 must be able to confirm that 𝐴 was indeed the sender of the received message

[8]. The first—reliable transmission—is the focus of our work. Reliable transmission

becomes trivial if we assume every pair of nodes has a dedicated secure link to pass

messages over. However, it is impractical to create pairwise secure links in modern

large scale networks—a network on even just a thousand nodes would need half a

million secure links!

In a seminal work, Dwork, Peleg, Pippenger and Upfal [54] considered the question

of designing sparse networks that are tolerant to nodes experiencing byzantine failures

- nodes that fail can deviate arbitrarily from the protocol. The problem is to design a

network 𝐺 of degree 𝑑 on 𝑛 nodes in which honest nodes can continue to communicate

and execute protocols, even after 𝑡 nodes are corrupted, i.e., experience byzantine

failures. The challenge is to make the degree 𝑑 as small as possible (ideally constant),

even while allowing up to 𝑡 = 𝜀𝑛 corruptions for some constant 𝜀. Since we allow

many more corruptions, 𝑡, than the degree of the graph, 𝑑, any set of Ω(𝑡/𝑑) honest

nodes can be isolated from the other nodes if all of their neighbors are corrupted.

Thereby, it is impossible for all the honest nodes to communicate with each other in

this failure model. So, [54] allow 𝑥 honest nodes to become doomed, and only require

that a set of 𝑛− 𝑡− 𝑥 honest nodes be able to pairwise communicate with each other

after 𝑡 corruptions occur. This set of honest nodes are called privileged nodes, and the
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class of primitives that work on these privileged nodes in the presence of byzantine

failures are called almost-everywhere (AE) primitives. Our main result is the design

of a new sparse graph and a corresponding communication protocol that improve the

state of the art in AE reliable message transmission.

Our protocol for AE reliable message transmission immediately implies an im-

proved protocol for AE Secure Multi-party Computation (MPC) in the following

way. The problem of byzantine agreement [115, 100] is one where nodes start with

an initial value but wish to agree, at the end of execution of some protocol, on some

value, despite malicious or byzantine behavior of some subset of nodes. Prior to

[54], this problem was considered assuming all pairs of nodes had a secure link for

communication [115, 100, 51]. [54] introduced the notion of almost-everywhere agree-

ment where only privileged nodes need to reach agreement. We note that AE reliable

message transmission, which would guarantee that a large subset of the network can

transmit messages to each other reliably, implies a protocol for AE agreement, and an

AE agreement protocol implies a protocol for AE secure MPC that is unconditionally

or information-theoretically secure as formulated in the work of Garay and Ostrovsky

[64].

Previous Work on Reliable Communication Protocols

AE reliable transmission protocols are generally compared by the following three

properties:

1. degree: the degree, 𝑑, of graph of secure links needed for the protocol.

2. resilience: a protocol is (𝑓(𝑛), 𝑔(𝑡))-resilient if it can sustain up to 𝑡 = 𝑓(𝑛)

corruptions while dooming at most 𝑥 = 𝑔(𝑡) nodes when 𝑡 nodes are corrupted.

3. work complexity : the total amount of work (both local and message passing)

required for a single communication from node 𝑢 to node 𝑣 in the network.

The ideal solution would give a protocol on a constant degree graph that is

(𝜀𝑛,𝑂(𝑡))-resilient for a small constant 𝜀 ∈ (0, 1), and have low work complexity.
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This ideal remains an open problem. In the remainder of this section, we discuss the

three previous results which are mutually incomparable, and thereby, jointly form the

state-of-the-art for the AE reliable transmission problem. We remark that 𝜀 contin-

ues to be used in resilience guarantees throughout the work, and it simply represents

some constant in (0, 1) when it appears.

[54] introduced the AE reliable transmission problem, and gave the first solution

to the problem. Their famous Butterfly network is a constant degree graph and

their protocol is (𝜀𝑛/ log 𝑛,𝑂(𝑡))-resilient, and has linear work complexity. While the

Butterfly network is a simple network and [54]’s protocol, the possibility of increasing

the resilience of the network to be resistant to a linear number of corruptions spurred

further research into the AE reliable transmission.

Upfal [122] showed the remarkable result that both optimal graph degree and

optimal resilience were simultaneously possible. He produced a constant degree graph

and a protocol that is (𝜀𝑛,𝑂(𝑡))-resilient on that graph. While these advantages make

[122] of great information theoretic importance, his protocol is practically intractable,

since it requires nodes to do an exponential amount of computation. In particular,

when a node 𝑢 is sending a message to a node 𝑣, [122]’s algorithm requires 𝑣 to loop

through all possible subsets of corrupted nodes before it can correctly decipher the

message it has received (even when 𝑢 and 𝑣 are both privileged). Thus, the work

complexity of [122]’s algorithm is the exponential 𝑂
(︀(︀

𝑛
𝑡

)︀)︀
.

The third work at the frontier of the field was that of Chandran, Garay and

Ostrovsky [35]. This work tries to combine the work efficiency of [54]’s protocol with

the resiliency of [122]’s work. [35] succeed in getting a linear work protocol, and

in fact achieve the very strong property of (𝜀𝑛,𝑂(𝑡/ log 𝑛))-resilience. However, the

significant weakness of their work is the complexity and degree of their graph. Unlike

the other two works, their protocol is designed for a graph of polylogarithmic-degree.

In summary, the state-of-the-art on the AE reliable transmission problem con-

sisted of three incomparable results: [54] linear work protocol with low resiliency on

a constant degree graph, [122]’s exponential work protocol with high resiliency on

a constant degree graph, and [35]’s linear work protocol with high resiliency on a
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polylogarithmic degree graph.

1.1.1 Our Contributions

The results presented here also appear in a joint work with Siddhartha Jayanti and

Nikhil Vyas [87]. The primary contribution of our work is an AE reliable trans-

mission protocol on a graph of logarithmic degree that is (𝜀𝑛,𝑂(𝑡/ log 𝑛))-resilient

while requiring only polylogarithmic work per communication. The significance of

our result lies in the low degree of the graph and the work-efficiency of the proto-

col. Our result is a strict improvement over [35]’s result, as our graph’s degree is

smaller - only logarithmic, compared to polylogarithmic—and our protocol’s work

complexity is polylogarithmic as opposed to linear, while our protocol’s resiliency is

the same as their protocol’s. Also, our protocol is the first AE reliable transmis-

sion protocol to achieve sublinear work complexity. In particular, the small work

complexity of our message-passing protocol enables us to simulate any protocol on

a (dense) complete graph with only polylogarithmic multiplicative overhead on our

nearly-sparse logarithmic degree graph, while all previous protocols required at least

linear multiplicative overhead. The primary result of our work is stated as a theorem

below.

Theorem (Main Theorem for Communication Infrastructure: Worst-case

Corruptions). For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑤𝑐 = (𝑉,𝐸),

a protocol Π𝑤𝑐,𝑒𝑓𝑓 for message transmission on it, and constants 𝛼 and 𝛽, such that:

1. The network 𝐺𝑤𝑐 is of degree 𝑂(log 𝑛).

2. The Work complexity of Π𝑤𝑐,𝑒𝑓𝑓 is 𝑂(polylog(𝑛)).

3. Π𝑤𝑐,𝑒𝑓𝑓 is (𝛼𝑛, 𝛽𝑡/ log 𝑛)-resilient.

We compare our work to previous works in Table 1.1.1.

A secondary contribution of our work is an improvement over the state of the art

in AE reliable transmission when the adversary corrupts nodes at random. Ben-or

and Ron [18] introduced the random corruption model in which nodes are corrupted
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Result Degree Corruptions Doomed Total Work
Dwork et. al. [54] 𝑂(1) 𝜀𝑛/ log 𝑛 𝑂(𝑡) 𝑂(𝑛)
Upfal [122] 𝑂(1) 𝜀𝑛 𝑂(𝑡) 𝑂

(︀(︀
𝑛
𝑡

)︀)︀
Chandran et. al. [35] polylog(𝑛) 𝜀𝑛 𝑂(𝑡/ log 𝑛) 𝑂(𝑛)
This work 𝑂(log 𝑛) 𝜀𝑛 𝑂(𝑡/ log 𝑛) polylog(𝑛)

Table 1.1: In general, total work can be further broken down into message passing
work and internal computations of the nodes. For [122]’s protocol the message passing
work is linear, and internal computations take exponential work. For the rest of the
protocols, message passing work and internal computation work are identical.

independently and at random and the protocol only needs to be resilient with some

large probability, called the probability of resiliency. So, algorithms in this model are

evaluated by four parameters: degree, resiliency, work complexity, and probability of

resiliency. (If the probability of resiliency becomes equal to one, then the protocol

is resilient in the standard model.) [18] exhibited a constant degree network that

is (𝜀𝑛,𝑂(𝑡))-resilient with high probability, and thereby almost resolved the random

corruption model. En route to our main construction, we produce a different con-

stant degree network that has the same (𝜀𝑛,𝑂(𝑡))-resilience, just with even higher

probability than [18]. The result of our work is stated as a theorem below.

Theorem (Main Theorem for Communication Infrastructure: Random

Corruptions). For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑟𝑎𝑛𝑑 =

(𝑉,𝐸), a protocol Π𝑟𝑎𝑛𝑑 for message transmission on it, and constants 𝛼3 and 𝛽3,

such that:

1. The network 𝐺𝑟𝑎𝑛𝑑 is of constant degree.

2. The Work complexity of Π𝑤𝑐,𝑒𝑓𝑓 is 𝑂(polylog(𝑛)).

3. If a subset of nodes 𝑇 ⊂ 𝑉 is randomly corrupt, where |𝑇 | ≤ 𝛼3𝑛, with probabil-

ity 1− (𝑡/𝑛)𝛼2𝑡/(4 log(𝑛)), there exists a set of nodes 𝑆 ⊂ 𝑉 where |𝑆| ≥ 𝑛−𝛽3|𝑇 |

such that every pair of nodes in 𝑆 can communicate reliably with each other by

invoking Π𝑟𝑎𝑛𝑑.
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Arriving at the main theorems

At a high level, our AE transmission protocol is constructed in two parts.

1. Achieving high resilience and low degree: The first part yields a network and

protocol that have the (𝜀𝑛,𝑂(𝑡/ log 𝑛))-resilience and logarithmic-degree; this

immediately yields an improvement over [35]’s protocol, which has the same

resiliency but polylogarithmic degree. Our construction in the first part, uses

the protocol of [54] on the Butterfly Network as a black box.

2. Achieving work-efficiency: In the second part, we improve this communica-

tion protocol significantly—reducing the linear work to only polylogarithmic

work, while maintaining the resiliency parameters. Modularly replacing the

protocol from [54] with the new efficient protocol immediately yields our main

theorem: a logarithmic degree graph and a polylogarithmic work protocol with

(𝜀𝑛,𝑂(𝑡/ log 𝑛))-resilience.

Step 1: Achieving high resilience and low degree. We achieve a highly re-

silient graph with low degree in two steps.

(a) Achieving high resilience against random corruptions: In the first step, we com-

bine the ideas of [54] and [122] to construct a constant degree graph that is

resilient to a linear number of corruptions with high probability in the random

corruption model.

(b) Reducing worst-case corruptions to random corruptions: In the second step, we

strengthen the graph from the first step by adding multiple (perturbed) copies

of the edges to it and modify the protocol to get a graph that is resilient to

linearly many worst-case corruptions.

Step 2: Achieving work-efficiency. Our protocols for network resiliency used

the 𝐺𝐵𝑢𝑡 and [54]’s protocol designed for the graph as primitives. In this part of

the work we design a communication protocol on the Butterfly Network that is more
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work-efficient than [54]’s protocol. A communication from node 𝑢 to node 𝑣 in [54]’s

protocol floods many paths between 𝑢 and 𝑣 in 𝐺𝐵𝑢𝑡 with the message and makes 𝑣

take the majority of the messages it receives to decipher the true message reliably.

In this step of our work, we show that if paths are chosen correctly, it suffices to use

only polylogarithmically many paths per pair of nodes.

Putting it all together: Substituting [54]’s protocol in the highly resilient network

from Step 1 with the more efficient protocol on the Butterfly graph from Step 2 yields

the main results of our work.

1.1.2 Other Related work

There have been a plethora of works asking for various different measures of quality

of an agreement or MPC protocol. A sequence of works seek to improve the round

complexity of protocols for byzantine consensus [22, 23]. Another goal is to optimize

the communication complexity of byzantine agreement protocols [52, 93, 92, 90]. An-

other model of corruptions is that of edge corruptions [36]. As observed in [35], an

almost-everywhere secure computation protocol for node corruptions can be read-

ily transformed into a corresponding almost-everywhere protocol also tolerating edge

corruptions, for a reduced fraction of edge corruptions (by a factor of 𝑑, the degree of

the network). We note that all our results hence also extend to the edge corruption

model, both worst-case and random.
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1.2 Infrastructure for Secure Computation

The results thus far provide various insights into establishing a sparse yet functional

authenticated communication network in the presence of various kinds of adversaries.

While this is by no means a complete characterization, it provides a basis for setting

up communication and authentication links in our network. Following this stage,

we turn to another primitive, namely oblivious transfer [118, 55]. Oblivious transfer

(OT) is a two-party primitive that involves a sender and a receiver. The sender holds

two bits 𝑥0, 𝑥1 while the receiver holds a single bit 𝑏. Using OT, the sender can send

𝑥𝑏 to the receiver without learning 𝑏 while simultaneously hiding 𝑥1−𝑏. We know that

OT is necessary and sufficient for performing secure computations in the presence of

a dishonest majority assuming an authenticated communication network.

OT is a fundamental building block of secure computation [89, 86]. As discussed

in [86], a few benefits of basing secure computation on OT include:

∙ Preprocessing. OT enables precomputation in an offline stage before the inputs

or the function to be computed are known. The subsequent online phase is

extremely efficient [9].

∙ Amortization. The cost of computing OTs can be accelerated using efficient OT

extension techniques [10, 84, 86, 113].

∙ Security. OTs can be realized under a wide variety of computational assump-

tions [116, 55, 118, 111, 39] or under physical assumptions.

Infrastructure as an OT graph. In this work, we consider 𝑛 parties connected

by a synchronous network with secure point-to-point private communication channels

between every pair of parties. In addition, some pairs of parties on the network have

established OT channels between them providing them with the ability to perform

arbitrarily many OT operations. We represent the OT channel network via an OT

graph 𝐺. The vertices of 𝐺 represent the 𝑛 parties, and pairs of parties that have an

established OT channel are connected by an edge in 𝐺. Since OT can be reversed
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unconditionally [123], we make no distinction between the sender and the receiver in

an OT channel. This OT graph represents the infrastructure we begin with. The OT

channels could either represent poly(𝜆) 1-out-of-2 OT correlations for a computational

security parameter 𝜆, or a physical channel (e.g., noisy channel) that realizes, say 𝛿-

Rabin OT [118].1 We are interested in obtaining security against adaptive semihonest

adversaries. We also discuss security against adaptive malicious adversaries under

computational assumptions.

Two parties that are connected by an edge can use the corresponding existing

OT channel to run a secure computation protocol between themselves. What about

parties that are not connected by an edge? Clearly, they can establish an OT channel

between themselves via an OT protocol [116, 39] or perhaps using a physical chan-

nel. The latter option, if possible, is likely to be expensive and the costs of setting

up a physical channel may be infeasible unless the two parties are likely to execute

many secure computation protocols. The former option is also expensive as it in-

volves use of public-key cryptography which is somewhat necessary in the light of

[83].2 This motivates the question of whether additional parties can use an existing

OT infrastructure to establish an OT channel between themselves unconditionally or

relying only on the existence of symmetric-key cryptography. A positive result to

this question would show that expensive cryptographic operations are not required

to set up additional OT channels. In this work we construct OT protocols with

information-theoretic security against a threshold adversary.

The generality of an OT infrastructure. Consider the following candidate for

an infrastructure. Suppose there is a channel between a pair of parties that allows

them to securely evaluate any function. Since OT is complete for secure computation,

one can apply the results of [86, 89] to use the OT channel to implement a secure

evaluation channel. In the other direction, one can use a secure evaluation channel

1Recall that 𝜆 1-out-of-2 OT correlations can be extended to poly(𝜆) 1-out-of-2 OT correlations
via OT extension using just symmetric-key cryptography (e.g. one-way functions [10] or correlation-
robust hash functions [84]).

2As a rule of thumb, use of public-key cryptography is computationally around 4-6 orders of
magnitude more expensive than using symmetric-key cryptography [16].
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to trivially implement OT channels. Consequently, such a channel is equivalent to

an OT channel. The same argument extends to channels that implement any 2-party

primitive that is complete for secure computation [108, 14]. Furthermore, the above

argument also applies to the setting where a set of parties have a secure evaluation

channel. Such a channel is equivalent to an OT graph where parties in the set have

pairwise OT channels with everyone in the set.

Assuming a full network of secure channels. We have already discussed emu-

lating secure communication channels using a relatively sparse infrastructure of secure

channels. We note that that the secure channels between two parties in the sparse

infrastructure can be implemented either via non-interactive key exchange and hybrid

encryption or via a physical assumption. We emphasize that the one-time setup cost

of emulating a secure channel (e.g. via Diffie-Hellman key exchange) is much lower

than the one-time setup cost of emulating an OT channel that allows unbounded

OT calls via an OT protocol even using OT extension. Furthermore, our assumption

of secure channels is identical to the setting of [89, 70, 86], who show that secure

computation reduces to OT under information-theoretic reductions.

1.2.1 Our Contributions

The results presented here also appear in a joint work with Ranjit Kumaresan and

Adam Sealfon [96]. We introduce our main result for OT protocols with information-

theoretic security against a threshold adversary.

Theorem (Main Theorem for OT Infrastructure). Let 𝐺 = (𝑉,𝐸) be an OT

graph on 𝑛 parties 𝑃1, . . . , 𝑃𝑛, so that any pair of parties 𝑃𝑖, 𝑃𝑗 which are connected

by an edge may make an unbounded number of calls to an OT oracle. Let A be the

class of semi-honest 𝑡-threshold adversaries which may adaptively corrupt at most 𝑡

parties.3 Then two parties 𝐴 and 𝐵 in {𝑃1, . . . , 𝑃𝑛} can information-theoretically

emulate an OT oracle while being secure against all adversaries 𝒜 ∈ A if and only if
3Combining our work with results from [76, 69], we can also obtain computational security against

malicious adversaries in both the nonadaptive and adaptive settings.
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1. (honest majority) it holds that 𝑡 < 𝑛/2; or

2. (trivial) 𝐴 and 𝐵 are connected by an edge in 𝐺; or

3. (partition) there exists no partition 𝑉1, 𝑉2, 𝑉3 of 𝐺 such that all of the following

conditions are satisfied: (a) |𝑉1| = |𝑉2| = 𝑛 − 𝑡 and |𝑉3| = 2𝑡 − 𝑛; (b) 𝐴 ∈ 𝑉1

and 𝐵 ∈ 𝑉2; and (c) for every 𝐴′ ∈ 𝑉1 and 𝐵′ ∈ 𝑉2 it holds that (𝐴′, 𝐵′) ̸∈ 𝐸.

Our main theorem gives a complete characterization of networks for which a pair

of parties can utilize the OT network infrastructure to execute a secure computation

protocol. The first two conditions in our theorem are straightforward: (1) if 𝑡 < 𝑛/2,

then we are in the honest majority regime, and thus it is possible to implement

secure computation (or emulate an OT oracle) using the honest majority information-

theoretically secure protocols of [119]; (2) clearly if 𝐴 and 𝐵 are connected by an OT

edge then by definition they can emulate an OT oracle.

Condition (3) applies when 𝑡 ≥ 𝑛/2 and when 𝐴 and 𝐵 do not have an OT edge

between them. This condition is effectively the converse of the impossibility result of

[77], which states that any 𝑛-party OT graph whose complement contains 𝐾𝑛−𝑡,𝑛−𝑡 as

a subgraph cannot allow a 𝑛-party secure computation that tolerates 𝑡 semi-honest

corruptions. Condition (3) implies that any 𝑛-party OT graph whose complement

does not contain 𝐾𝑛−𝑡,𝑛−𝑡 as a subgraph can run 𝑛-party secure computations toler-

ating 𝑡 semi-honest corruptions.

Applying our main theorem

We first compare our positive results to those of [77]. They investigate how to con-

struct an OT graph with the minimum number of edges allowing 𝑛 parties to ex-

ecute a secure computation protocol. They show a construction for a graph with

(𝑛+𝑜(𝑛))
(︀⌈1/𝛿⌉

2

)︀
edges which they prove is sufficient for resilience against an adversary

that corrupts (1−𝛿)𝑛 parties. Our result provides a complete, simple characterization

of which OT graphs on 𝑛 vertices are sufficient to run a 𝑡-secure protocol generating

OT correlations between all pairs of vertices for any 𝑡 ≥ 𝑛/2, which is sufficient to
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obtain a protocol for secure computation among the 𝑛 parties [89, 86]. Our main

theorem also implies that determining the minimum number of OT edges needed to

execute a secure computation protocol for general 𝑛, 𝑡 ≥ 𝑛/2 is equivalent to an open

problem in graph theory posed by Zarankiewicz in 1951 [95].

Our results immediately imply that for some values of 𝑡, extremely simple sparse

OT graphs suffice for achieving secure multiparty computation. For 𝑛 even and

𝑡 = 𝑛/2, we have that the 𝑡-claw graph (cf. Fig. 4-4(a)) has 𝑡 edges and suffices to

achieve 𝑡-secure multiparty computation. For 𝑛 odd and 𝑡 = (𝑛 + 1)/2, the (𝑡 + 1)-

cycle has 𝑡 + 1 edges and suffices to achieve 𝑡-secure multiparty computation. We

show in Chapter 4.9 that these examples are the sparsest possible graphs which can

achieve ⌊(𝑛+ 1)/2⌋-secure multiparty computation.

Next, our results are also well-suited to make use of an OT infrastructure for secure

computation. Specifically, let 𝐺𝐼 denote the OT graph consisting of existing OT edges

between parties that are part of the infrastructure. Now suppose a pair of parties

𝐴,𝐵 not connected by an OT edge wish to execute a secure computation protocol.

Then they can find a subgraph 𝐺 of 𝐺𝐼 with 𝐴,𝐵 ∈ 𝐺 and |𝐺| = 𝑛 such that they

agree that at most 𝑡 out of the 𝑛 parties can be corrupt and the partition condition

in our main theorem holds for 𝐺. Since it is possible to handle a dishonest majority,

parties do not have to settle for a lower threshold and can enjoy increased confidence

in the security of their protocol by making use of the infrastructure. Surprisingly, it

turns out the OT subgraph 𝐺 need not even contain 𝑡 OT edges to offer resilience

against 𝑡 corruptions (cf. Fig. 4-2(c) with 𝑛 = 4, 𝑡 = 2).

A pair of parties may use the OT correlations generated as the base OTs for an

OT extension protocol and inexpensively generate many OT correlations that can be

saved for future use or to add to the OT infrastructure. In any case, it should be

clear that our protocols readily allow load-balancing across the OT infrastructure and

are also abort-tolerant in the sense that if some subgraph 𝐺 ends up not delivering

the output, then one can readily use a different subgraph 𝐺′. Thus we believe that

our results can be used to build a scalable infrastructure for secure computation that

allows (1) amortization, (2) routing, and (3) is robust.
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An important caveat regarding efficiency

In the special cases 𝑡 = 𝑛/2 +𝒪(1) and 𝑡 = 𝑛−𝒪(1), determining whether a graph

satisfies the partition condition requires at most poly(𝑛) time. However, in general

the problem is coNP-complete, since it can be restated in the graph complement as

subgraph isomorphism of a complete bipartite graph [66]. Our protocols are efficient

in 𝑛 only for 𝑡 = 𝑛/2 +𝒪(1) and 𝑡 = 𝑛−𝒪(1).4 In particular, our protocol is quite

efficient for small values of 𝑛, a setting in which computing OT correlations in the

presence of a dishonest majority may be especially useful in practice.

1.2.2 Other Related work

As mentioned previously, there is a large body of work on secure computation in

the offline/online model (cf. [105, 101, 48, 20, 113] and references therein). These

protocols exhibit an extremely fast online phase at the expense of a slow preprocessing

phase (sometimes using MPC [105] or more typically, OT correlations [113] or a

somewhat homomorphic encryption scheme [48]). To the best of our knowledge, the

question of transferability of preprocessing has not been explicitly investigated in the

literature with the notable exception of [77], which we will discuss in greater detail

below. There is a large body of work on secure computation against a threshold

adversary (e.g. [17, 37, 119, 68]). Popular regimes where secure computation against

threshold adversaries have been investigated are for 𝑡 < 𝑛/3, 𝑡 < 𝑛/2, or 𝑡 = 𝑛 −

1. In this work we are interested in threshold adversaries for a dishonest majority,

that is, adversaries which can corrupt 𝑡 out of 𝑛 parties for 𝑛/2 ≤ 𝑡 < 𝑛.5 Such

regimes were investigated in other contexts such as authenticated broadcast [61] and

fairness in secure computation [15, 80, 85]. Infrastructures for perfectly secure message

transmission (PSMT) were investigated in the seminal work of [50] (see also [56] and

references therein). While the task of PSMT is similar to our question regarding OT

channels, there are inherent differences. For example, our protocols can implement
4For 𝑡 = 𝑛/2 + 𝒪(1), we achieve efficiency using computationally-secure OT extension (e.g.

[10, 84]). Our protocol with information-theoretic security is quasi-polynomial-time for 𝑡 = 𝑛/2 +
𝒪(1). We do, however, achieve information-theoretic security in polynomial time for 𝑡 = 𝑛−𝒪(1).

5When 𝑡 < 𝑛/2, there is no need to rely on an OT infrastructure [119].
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OT even between two parties that are isolated in the OT graph (i.e., not connected

to any other party via an OT channel).6 In PSMT, on the other hand, there is no

hope of achieving secure communication with a node that is not connected by any

secure channel.

Most relevant to our results is the work of Harnik, Ishai, and Kushilevitz [77]. The

main question in their work is an investigation of the number of OT channels sufficient

to implement a 𝑛-party secure computation protocol. In a nutshell, they show against

an adaptive 𝑡-threshold adversary for 𝑡 = (1− 𝛿)𝑛, an explicit construction of an OT

graph consisting of (𝑛 + 𝑜(𝑛))
(︀⌈1/𝛿⌉

2

)︀
OT channels that suffices to implement secure

computation among the 𝑛 parties. They note further that against a static adversary,(︀⌈𝑠/𝛿⌉
2

)︀
OT channels suffice, where 𝑠 denotes a statistical security parameter. On the

negative side, they show that a complete OT graph is necessary for secure computation

when dealing with an adversary that can corrupt 𝑡 = 𝑛− 1 parties. They derive this

result by showing that in a 3-party OT graph with two OT channels, it is not possible

to obtain OT correlations between the third pair of parties with security against two

corruptions. Moreover they generalize their 3-party negative result to any OT graph

whose complement contains the complete bipartite graph 𝐾𝑛−𝑡,𝑛−𝑡 as a subgraph. In

this work we extend the results of [77], fully characterizing the networks for which it

is possible to obtain OT correlations between a designated pair of parties.

6Recall that the model considered in this work, we assume a full network of secure private
communication channels.
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1.3 Infrastructure for Fair Computation

Finally, we turn to fair computation. Fairness means that either all parties get the

output of the secure computation or none do. Definitions of secure computation do

vary across models, in part owing to the general impossibility results for fair coin-

tossing [41]. In settings where the majority of the participating parties are dishonest

(including the two party setting), a protocol for secure computation only provides

security-with-abort, and in particular is not required to guarantee important properties

such as guaranteed output delivery (all parties get the output) or even fairness. On

the other hand, when up to 𝑡 < 𝑛/3 parties are corrupt, then there exist protocols

for 𝑛-party secure computation that guarantee output delivery [17, 37]. This result

can be extended to a setting where up to 𝑡 < 𝑛/2 parties are corrupt assuming the

existence of a broadcast channel [68, 119].

Given the state of affairs, there has been extensive research to better understand

the problem of fairness and guaranteed output delivery in secure computation in

setting where 𝑡 ≥ 𝑛/2. For instance, while Cleve [41] showed that two-party fair

coin tossing is impossible, the works of Gordon et al. [72, 74, 4, 5] showed the

existence of non-trivial functions for which fair secure computation is possible in the

dishonest majority setting. On the other hand, partially fair secure computation

[75, 13] provides a solution for a relaxed notion of fairness in secure computation

where fairness with respect to any honest party may be violated (the honest party

does not receive its output although some other party does) but only with some

parameterizable (inverse polynomial) probability.

Fitzi, Garay, Maurer, and Ostrovsky [57] studied complete primitives for secure

computation with guaranteed output delivery. We recall The cardinality of a primi-

tive is the number of parties that participate in an invocation of the primitive. For

instance, OT is a primitive of cardinality 2. They showed that no primitive of cardi-

nality 𝑛−1 is complete for 𝑛-party secure computation. More generally, for 𝑛 ≥ 3 and

𝑘 < 𝑛, they show that no primitive of cardinality 𝑘 is complete when 𝑡 ≥ ⌈𝑘−1
𝑘+1
· 𝑛⌉.

It follows that when 𝑡 ≥ ⌈𝑛/3⌉, no primitive of cardinality 2 is complete for secure
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computation. Also, when 𝑡 ≥ 𝑛− 2, no primitive of cardinality 𝑘 < 𝑛 is complete for

secure computation. They also show a primitive of cardinality 𝑛 that is complete for

𝑛-party secure computation when 𝑡 ≥ 𝑛− 2.

It is interesting to note that the above impossibility results are derived in [57] by

showing the impossibility of broadcast (or Byzantine agreement) given a primitive of

cardinality 𝑘. In this context, note that Cohen and Lindell [42] showed that the pres-

ence of a broadcast channel is inconsequential to achieving the goal of fairness, i.e.,

they showed that any protocol for fair computation that uses a broadcast channel can

be compiled into one that does not use a broadcast channel. They also showed that

assuming the existence of a broadcast channel, any protocol for fair secure computa-

tion can be compiled into one that provides guaranteed output delivery. Importantly,

all these transformations only require primitives of cardinality 2.

1.3.1 Our Contributions

The results presented here also appear in a joint work with Ranjit Kumaresan and

Adam Sealfon [97]. The impossibility result of [57] essentially implies that one can-

not hope to build an infrastructure for secure computation with guaranteed output

delivery. We, however, restrict our attention to fair secure computation alone. In

this work, we introduce a new 2-party primitive ℱSyX (“synchronizable fair exchange,”

or simply “synchronizable exchange”) and show that it is complete for realizing any

𝑛-party functionality with fairness in a setting where all 𝑛 parties are pairwise con-

nected by independent instances of ℱSyX. Additionally, a pair of parties may reuse

a single instance of ℱSyX in any number of multiparty protocols, possibly involving

different sets of parties.

Synchronizable exchange ℱSyX is a two-party symmetric primitive that is reac-

tive (like the commitment functionality ℱcom [31]) and works in two phases.

1. Load phase: In the first phase, which we call the load phase, parties submit their

private inputs 𝑥1, 𝑥2 along with public inputs (𝑓1, 𝑓2, 𝜑1, 𝜑2). Here 𝑓1, 𝑓2 are 2-

input 2-output functions, and 𝜑1, 𝜑2 are boolean predicates. The public input
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must be submitted by both parties, and the submitted values must match. Upon

receiving these inputs, ℱSyX computes 𝑓1(𝑥1, 𝑥2) and delivers the respective

outputs to both parties.

2. Trigger phase: Next, in the trigger phase, which can be initiated at any later

time after the load phase, party 𝑃𝑖 can send a “witness” 𝑤𝑖 to ℱSyX following

which ℱSyX checks if 𝜑𝑖(𝑤𝑖) = 1. If that is indeed the case, then ℱSyX computes

𝑓2(𝑥1, 𝑥2) and delivers the respective outputs along with 𝑤𝑖 to both parties. We

stress that ℱSyX guarantees that both parties get the output of 𝑓2.

The result of our work is stated as a theorem below.

Theorem (Main Theorem for Fair Computation Infrastructure). Consider 𝑛

parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then, assuming the existence of one-

way functions, there exists a protocol 𝜋 which securely computes ℱMPC with fairness

in the presence of 𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛 in the ℱSyX-hybrid model.

To use multiple pairwise instances of synchronizable exchange to achieve 𝑛-wise

fair secure computation, the main idea is to keep different instances of ℱSyX “in sync”

with each other throughout the protocol execution. That is, we need to ensure that

all pairwise ℱSyX instances are, loosely speaking, simultaneously loaded, and if so,

simultaneously triggered. Ensuring this in the presence of byzantine adversaries is

somewhat tricky, and we outline our techniques below.

Arriving at the main theorems

Reduction to fair reconstruction. First, we let parties run an (unfair) MPC pro-

tocol for a function 𝑓 that accepts parties’ inputs and computes the function output,

then computes secret shares of the function output, and then computes commitments

on these secret shares. Finally, the MPC outputs to all parties the set of all commit-

ments computed above, and to each individual party the corresponding share of the

function output. Since the MPC protocol itself does not guarantee fairness, it may be
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that some honest party does not receive the output. In that case, all parties terminate

and abort the protocol, and no party learns the function output. If the protocol has

not terminated, then all that is left to perform a fair reconstruction of the function

output from the secret shares. The above technique of reducing fair computation of

a function to fair reconstruction of a (non-malleable) additive secret sharing scheme

is a well-known technique [73].

Synchronization via trigger conditions. The commitments generated in the

above step are used to define the trigger conditions, specifically the trigger witness

must include (among other things) openings to the commitments (i.e., the secret

shares). That is, each pair of parties initiate the load phase with their ℱSyX instance.

We will need to ensure that the protocol proceeds only if all ℱSyX instances were

loaded. To do this, we let the load phase of each ℱSyX instance to output a receipt

(think of these as signatures on some special instance-specific message) that indicates

that the ℱSyX instance has been loaded. Following this parties broadcast to all other

parties the receipts they have obtained in the load phase. (Note that by [42], we can

assume a broadcast channel while developing our protocol, and then use their compiler

to remove the broadcast channel from our protocol.) In an honest execution, at the

end of this broadcast step, each party would possess receipts from every pairwise

ℱSyX. On the other hand, corrupt parties may not broadcast some receipts, resulting

in a setting where corrupt parties possess all receipts, but honest parties do not.

To maintain that ℱSyX instances remain in sync, we let the trigger conditions ask

for all receipts (each individual ℱSyX instance can verify these load receipts using,

e.g., digital signature verification). This way, we ensure that any ℱSyX instance can

be triggered only if all ℱSyX instances were loaded. Recall that by definition, ℱSyX

outputs the trigger witness along with the output of 𝑓2. This in turn ensures that if,

say an ℱSyX instance between 𝑃𝑖 and 𝑃𝑗 was triggered by 𝑃𝑖, then 𝑃𝑗 would obtain

the load receipts which it can then use as part of trigger witnesses for other ℱSyX

instances associated with 𝑃𝑗. Finally, because parties only receive additive secret

shares of the output, to get the final output the adversary will need to trigger at least
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one ℱSyX instance associated with an honest party. The ideas outlined above ensures

that that honest party (and consequently every honest party) will be able to continue

triggering other ℱSyX instances associated with it, and obtain the final output. An

additional detail to note is that in our constructions, we let the boolean predicates

𝜑1, 𝜑2 depend on time. This is required to ensure termination of our protocols (i.e.,

force a time limit on when the adversary must begin triggering the ℱSyX instances

to obtain output). Therefore, in the terminology of [114], our functionality ℱSyX is

clock-aware. The techniques we use to ensure termination may be reminiscent of

techniques used in the design of broadcast protocols from point-to-point channels in

the dishonest majority setting [53].

Complexity, preprocessing, assumptions, and implementation. The com-

plexity of ℱSyX is the sum of the complexities of the functions 𝑓1, 𝑓2, and the predicates

𝜑1, 𝜑2. In our constructions, the complexity of each ℱSyX instance is 𝒪(𝑛2𝜆ℓout) and

is independent of the size of the function that is being computed.7 With additional

assumptions, specifically with a non-interactive non-committing encryption [112] (al-

ternatively, a programmable random oracle), the use of ℱSyX can be preprocessed in a

network-independent manner to support any number of executions.8 That is, a pair

of parties can preprocess an instance of ℱSyX by loading it once, and then re-using it

across multiple independent (possibly concurrent) executions of secure computation

involving different sets of parties. This type of preprocessing is reminiscent of OT

preprocessing [86, 96]. Of course, to enable this type of preprocessing, we rely on

a variant of ℱSyX which can be triggered multiple times (but loaded only once). In

this case, the complexity of 𝑓1 is 𝒪(𝜆), while the complexity of 𝑓2 is 𝒪(𝜆) per trigger

invocation, and the complexities of 𝜑1, 𝜑2 would be 𝒪(𝑛2𝜆) per trigger invocation

for a protocol involving 𝑛 parties. We emphasize that in the preprocessing setting,

ℱSyX need not be triggered when the protocol participants behave honestly. Using

ideas similar to [40, 121], a follow-up work [citation redacted for anonymity] shows,

7The dependence on ℓout can be removed in the programmable random oracle model.
8 Preprocessing for a bounded number of executions may be achieved by assuming only receiver

non-committing encryption [32].
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among other things, how to implement a single ℱSyX instance using trusted execution

environments (e.g., Intel SGX) and a bulletin board abstraction. Note that different

ℱSyX instances can use different bulletin boards, and still be usable by our protocols.

1.3.2 Other Related work

[57] investigate a number of interesting primitives that are complete for secure com-

putation with guaranteed output delivery for various parameter regimes. (See [57]

for a discussion of complete primitives for secure computation with abort.) For

𝑡 < 𝑛/3, they identify secure channels (with cardinality 2) as a complete primi-

tive. For 𝑡 < 𝑛/2, they identify two complete primitives converge cast and oblivious

cast. Both these have cardinality 3. For 𝑡 < 𝑛, they identify universal black box

(UBB) as a complete primitive of cardinality 𝑛. Improving on this, [73] show fair

reconstruction of a non-malleable secret sharing scheme as a complete primitive of

cardinality 𝑛, whose complexity is independent of the function being computed (this

was not the case for UBB). In addition, [73] investigate the power of primitives that

guarantee fairness but are restricted in other ways (i.e., inapplicable to fairly comput-

ing arbitrary functions). For instance, they study fair coin flipping and simultaneous

broadcast, and show that neither of them are complete for fair computation. Note

that simultaneous broadcast was shown in [88] to be complete for partial fairness

[75]. Continuing, [73] show that (1) no primitive of size 𝒪(log 𝜆) is complete for fair

computation (where 𝜆 is the security parameter), and (2) for every “short” 𝑚 (when

the adversary can run in time poly(𝑚)), no 𝑚-bit primitive can be used to construct

even a 𝑚+ 1-bit simultaneous broadcast. Note that none of the primitives discussed

in [57, 73, 88] are reactive.

Timed commitments [26] (and numerous related works such as [60, 65]) can be

used to enable a fair exchange of digital signatures, fair auctions, and more under a

somewhat non-standard security notion. Other works with similar security notions

that consider fairness in secure computation include [117, 63, 114] (see also numerous

references therein). Another line of research investigates the use of physical/hardware

assumptions to enforce fairness. For example, [102] relies on physical envelopes which
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provide some form of synchronizability. Recent work [40, 121] (following [114]) has

shown that fair secure computation is possible assuming the existence of trusted exe-

cution environments (alternatively, witness encryption [40]) and a blockchain to which

all parties have read/write access. In these works, the blockchain can be interpreted

as a component that helps in synchronizing the TEEs. We note that the above works

use blockchain and envelopes as a cardinality 𝑛 primitive in their constructions. There

are numerous works in the optimistic model (cf. [6, 7] and several follow-up works)

that minimize the use of a trusted third party to restore fairness when breached.

Another line of research [1, 2, 21] investigates a non-standard notion of fair secure

computation, called secure computation with penalties [21] where participants who

do not obtain output are instead compensated monetarily (via cryptocurrency). [21]

identifies a cardinality 2 primitive called claim-or-refund which is complete for this

notion. (The presentation in [21] is strictly speaking not cardinality 2, but follow-up

works clarify this.) That said, claim-or-refund shares many features with synchro-

nizable exchange in that (1) both primitives operate in two phases (in the context of

claim-or-refund, these phases are deposit and claim/refund), (2) the second phase is

triggered via witnesses, (3) are clock-aware, and (4) both primitives can be prepro-

cessed. Note that the claim-or-refund primitive locks up monetary funds which can

be claimed by a designated receiver within a certain time by providing a witness to

the trigger conditions, else the funds are refunded to the sender. Implicit in [1] is a

primitive that releases monetary funds after a certain time has elapsed but during

which time, the funds can be reversed by providing a trigger witness. This primitive

is complete for fair coin tossing and fair lottery under the relaxed notion of secure

computation with penalties [1].
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1.4 Organization

In Chapter 2, we will introduce some preliminaries that are common to all the sub-

sequent chapters. All results regarding communication in incomplete networks are

discussed in Chapter 3. Chapter 4 contains all the results pertaining to oblivious

transfer in an incomplete network and how one would go about building an OT infras-

tructure for MPC. Finally, Chapter 5 deals with fair computation and synchronizable

fair exchange. We present our conclusions in Chapter 6.

The presentation of each chapter is self-contained. A summary of the results con-

tained in the chapter is presented at the beginning. The definitions and preliminary

material required for the chapter are presented right after. This is followed by a re-

minder of the formal theorems proved in the chapter. Following this, we present the

technical details.
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Chapter 2

Common Preliminaries

In this chapter, we will introduce some preliminaries that are common to Chapters 3,

4 and 5. Each of the chapters will also have a preliminaries section that will briefly

recall the relevant concepts from this chapter, as well as some preliminaries that are

specific to that chapter itself.

2.1 Notation and definitions

∙ For 𝑛 ∈ N, let [𝑛] = {1, 2, . . . , 𝑛}.

∙ We assume that all logarithms are taken to the base 2.

∙ Let 𝜆 ∈ N denote the security parameter.

∙ Symbols in with an arrow over them such as −→𝑎 denote vectors. By 𝑎𝑖 we denote

the 𝑖-th element of the vector −→𝑎 . For a vector −→𝑎 of length 𝑛 ∈ N and an index

set 𝐼 ⊆ [𝑛], we denote by −→𝑎 |𝐼 the vector consisting of (ordered) elements from

the set {𝑎𝑖}𝑖∈𝐼 .

∙ By poly(·), we denote any function which is bounded by a polynomial in its

argument.

∙ An algorithm 𝒯 is said to be PPT if it is modeled as a probabilistic Turing

machine that runs in time polynomial in 𝜆.
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∙ Informally, we say that a function is negligible, denoted by negl, if it vanishes

faster than the inverse of any polynomial.

∙ If 𝑆 is a set, then 𝑥
$← 𝑆 indicates the process of selecting 𝑥 uniformly at random

over 𝑆 (which in particular assumes that 𝑆 can be sampled efficiently). Simi-

larly, 𝑥 $← 𝒜(·) denotes the random variable that is the output of a randomized

algorithm 𝒜.

∙ Let 𝒳 ,𝒴 be two probability distributions over some set 𝑆. Their statistical

distance is

SD (𝒳 ,𝒴) def
= max

𝑇⊆𝑆
{|Pr[𝒳 ∈ 𝑇 ]− Pr[𝒴 ∈ 𝑇 ]|}

We say that 𝒳 and 𝒴 are 𝜖-close if SD (𝒳 ,𝒴) ≤ 𝜖 and this is denoted by

𝒳 ≈𝜖 𝒴 . We say that 𝒳 and 𝒴 are identical if SD (𝒳 ,𝒴) = 0 and this is

denoted by 𝒳 ≡ 𝒴 .

2.2 Approximation and Concentration Inequalities

Chernoff bound. Let 𝑋 be a random variable with E[𝑋] = 𝜇. For 0 ≤ 𝛿 ≤ 1,

Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ 𝑒−
𝛿2𝜇
3 (2.1)

Stirling’s approximation. For any 𝑛, 𝑡 ∈ N with 𝑡 ≤ 𝑛,

(︂
𝑛

𝑡

)︂
≤
(︁𝑒𝑛

𝑡

)︁𝑡

2.3 Secure Computation

We recall most of the definitions regarding secure computation from [72] and [42].

We present them here for the sake of completeness and self-containedness. Consider
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the scenario of 𝑛 parties 𝑃1, . . . , 𝑃𝑛 with private inputs 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 1. We denote

x = (𝑥1, . . . , 𝑥𝑛) ∈ 𝒳 𝑛.

2.3.1 Functionalities

A functionality 𝑓 is a randomized process that maps 𝑛-tuples of inputs to 𝑛-tuples of

outputs, that is, 𝑓 : 𝒳 𝑛 → 𝒴𝑛2. We write 𝑓 = (𝑓 1, . . . , 𝑓𝑛) if we wish to emphasize

the 𝑛 outputs of 𝑓 , but stress that if 𝑓 1, . . . , 𝑓𝑛 are randomized, then the outputs of

𝑓 1, . . . , 𝑓𝑛 are correlated random variables.

2.3.2 Adversaries

We consider security against several classes of adversaries. We define them below:

∙ Based on the number of parties corrupted

– 𝑡-threshold Adversaries: The adversary can corrupt a set of at most 𝑡

parties, where 0 ≤ 𝑡 < 𝑛.

∙ Based on how parties are corrupted

– Worst-case Adversary: The subset of corrupt nodes can be chosen adver-

sarially after the network topology and protocols have been fixed.

– Random Adversary: The subset of corrupt nodes must be chosen uniformly

at random from the set of 𝑛 nodes.

∙ Based on when parties are corrupted

– Static Adversary: The adversary must corrupt nodes before the protocol

is begun.

1Here we have assumed that the domains of the inputs of all parties is 𝒳 for simplicity of notation.
This can be easily adapted to consider setting where the domains are different.

2Here we have assumed that the domains of the outputs of all parties is 𝒴 for simplicity of
notation. This can be easily adapted to consider setting where the domains are different.
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– Adaptive Adversary: The adversary can corrupt nodes before the protocol

is begun, during the execution of the protocol or even after the protocol is

completed.

∙ Based on how corrupted parties behave

– Honest-but-Curious, or, Semi-honest Adversary: The corrupted nodes must

follow the protocol, however, they may try to learn additional information

about the inputs of the honest parties while doing so.

– Malicious Adversary: The corrupted nodes can deviate arbitrarily from

the protocol.

2.3.3 Network Model

We define here some of the network configurations that we will be considering through-

out this thesis.

∙ point-to-point model: All parties are connected via a fully connected point-to-

point network of communication channels. The communication lines between

parties are assumed to be ideally authenticated and private (and thus an ad-

versary cannot read or modify messages sent between two honest parties). Fur-

thermore, the delivery of messages between honest parties is guaranteed.

∙ broadcast model: All parties are given access to a physical broadcast channel

(defined in Section 2.7)3 in addition to the point-to-point network.

∙ OT-network model: All parties are connected via a fully pairwise connected

network of oblivious transfer channels (defined in Section 2.6)4 in addition to a

fully connected point-to-point network.

∙ OT-broadcast model: All parties are given access to a physical broadcast channel

in addition to the complete pairwise oblivious transfer network and a fully
3This can also be viewed as working in the ℱbc-hybrid model. See Section 2.4.
4This can also be viewed as working in the ℱOT-hybrid model. See Section 2.4.
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connected point-to-point network5.

2.3.4 Protocol

An 𝑛-party protocol for computing a functionality 𝑓 is a protocol running in poly-

nomial time and satisfying the following functional requirement: if for every 𝑖 ∈ [𝑛],

party 𝑃𝑖 begins with private input 𝑥𝑖 ∈ 𝒳 , then the joint distribution of the outputs

of the parties is statistically close to (𝑓 1(−→𝑥 ), . . . , 𝑓𝑛(−→𝑥 )). We assume that the proto-

col is executed in a synchronous network, that is, the execution proceeds in rounds:

each round consists of a send phase (where parties send their message for this round)

followed by a receive phase (where they receive messages from other parties). The ad-

versary, being malicious, is also rushing which means that it can see the messages the

honest parties send in a round, before determining the messages that the corrupted

parties send in that round.

2.3.5 Security

The security of a protocol is analyzed by comparing what an adversary can do in a real

protocol execution to what it can do in an ideal scenario that is secure by definition.

This is formalized by considering an ideal computation involving an incorruptible

trusted party to whom the parties send their inputs. The trusted party computes the

functionality on the inputs and returns to each party its respective output. Loosely

speaking, a protocol is secure if any adversary interacting in the real protocol (where

no trusted party exists) can do no more harm than if it were involved in the above-

described ideal computation.

Security with Guaranteed Output Delivery

The security of a protocol is analyzed by comparing what an adversary can do in a real

protocol execution to what it can do in an ideal scenario that is secure by definition.

This is formalized by considering an ideal computation involving an incorruptible

5This can also be viewed as working in the (ℱbc,ℱOT)-hybrid model. See Section 2.4.
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trusted party to whom the parties send their inputs. The trusted party computes the

functionality on the inputs and returns to each party its respective output. Loosely

speaking, a protocol is secure if any adversary interacting in the real protocol (where

no trusted party exists) can do no more harm than if it were involved in the above-

described ideal computation.

Execution in the ideal model. The parties are 𝑃1, . . . , 𝑃𝑛, and there is an adver-

sary 𝒜 who has corrupted at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛. Denote by ℐ ⊆ [𝑛] the

set of indices of the parties corrupted by 𝒜. An ideal execution for the computation

of 𝑓 proceeds as follows:

∙ Inputs: 𝑃1, . . . , 𝑃𝑛 hold their private inputs 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 ; the adversary 𝒜

receives an auxiliary input 𝑧.

∙ Send inputs to trusted party: The honest parties send their inputs to the

trusted party. The corrupted parties controlled by 𝒜 may send any values of

their choice. Denote the inputs sent to the trusted party by 𝑥′
1, . . . , 𝑥

′
𝑛.

∙ Trusted party sends outputs: If 𝑥′
𝑖 ̸∈ 𝒳 for any 𝑖 ∈ [𝑛], the trusted party

sets 𝑥′
𝑖 to some default input in 𝒳 . Then, the trusted party chooses 𝑟 uniformly

at random and sends 𝑓 𝑖(𝑥′
1, . . . , 𝑥

′
𝑛; 𝑟) to party 𝑃𝑖 for every 𝑖 ∈ [𝑛].

∙ Outputs: The honest parties output whatever was sent by the trusted party.

The corrupted parties output nothing and 𝒜 outputs an arbitrary (probabilistic

polynomial-time computable) function of its view.

We let Idealg.d.
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) be the random variable consisting of the output of the

adversary and the output of the honest parties following an execution in the ideal

model described above.

Execution in the real model. We next consider the real model in which an 𝑛-

party protocol 𝜋 is executed by 𝑃1, . . . , 𝑃𝑛 (and there is no trusted party). In this

case, the adversary 𝒜 gets the inputs of the corrupted party and sends all messages
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on behalf of these parties, using an arbitrary polynomial-time strategy. The honest

parties follow the instructions of 𝜋.

Let 𝑓 be as above and let 𝜋 be an 𝑛-party protocol computing 𝑓 . Let 𝒜 be

a non-uniform probabilistic polynomial-time machine with auxiliary input 𝑧. We

let Real𝜋,ℐ,𝒜(𝑧)(𝑥1, . . . , 𝑥𝑛, 𝜆) be the random variable consisting of the view of the

adversary and the output of the honest parties following an execution of 𝜋 where 𝑃𝑖

begins by holding 𝑥𝑖 for every 𝑖 ∈ [𝑛].

Security as emulation of an ideal execution in the real model. Having

defined the ideal and real models, we can now define security of a protocol. Loosely

speaking, the definition asserts that a secure protocol (in the real model) emulates

the ideal model (in which a trusted party exists). This is formulated as follows.

Definition 1. Protocol 𝜋 is said to securely compute 𝑓 with guaranteed output delivery

if for every non-uniform probabilistic polynomial-time adversary 𝒜 in the real model,

there exists a non-uniform probabilistic polynomial-time adversary 𝒮 in the ideal model

such that for every ℐ ⊆ [𝑛] with |ℐ| ≤ 𝑡,

{︁
Idealg.d.

𝑓,ℐ,𝒮(𝑧)(
−→𝑥 , 𝜆)

}︁
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

≡
{︀
Real𝜋,ℐ,𝒜(𝑧)(

−→𝑥 , 𝜆)
}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

We will sometimes relax security to statistical or computational definitions. A pro-

tocol is statistically secure if the random variables Idealg.d.
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) and Real𝜋,ℐ,𝒜(𝑧)(
−→𝑥 , 𝜆)

are statistically close, and computationally secure if they are computationally indis-

tinguishable.

Security with Fairness

In this definition, the execution of the protocol can terminate in two possible ways:

the first is when all parties receive their prescribed output (as in the case of guaranteed

output delivery) and the second is when all parties (including the corrupted parties)

abort without receiving output. The only change from the definition in Section 2.3.5

is with regard to the ideal model for computing 𝑓 , which is now defined as follows:
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Execution in the ideal model. The parties are 𝑃1, . . . , 𝑃𝑛, and there is an adver-

sary 𝒜 who has corrupted at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛. Denote by ℐ ⊆ [𝑛] the

set of indices of the parties corrupted by 𝒜. An ideal execution for the computation

of 𝑓 proceeds as follows:

∙ Inputs: 𝑃1, . . . , 𝑃𝑛 hold their private inputs 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 ; the adversary 𝒜

receives an auxiliary input 𝑧.

∙ Send inputs to trusted party: The honest parties send their inputs to the

trusted party. The corrupted parties controlled by 𝒜 may send any values of

their choice. In addition, there exists a special abort input. Denote the inputs

sent to the trusted party by 𝑥′
1, . . . , 𝑥

′
𝑛.

∙ Trusted party sends outputs: If 𝑥′
𝑖 ̸∈ 𝒳 for any 𝑖 ∈ [𝑛], the trusted party sets

𝑥′
𝑖 to some default input in 𝒳 . If there exists an 𝑖 ∈ [𝑛] such that 𝑥′

𝑖 = abort, the

trusted party sends ⊥ to all the parties. Otherwise, the trusted party chooses

𝑟 uniformly at random, computes 𝑧𝑖 = 𝑓 𝑖(𝑥′
1, . . . , 𝑥

′
𝑛; 𝑟) for every 𝑖 ∈ [𝑛] and

sends 𝑧𝑖 to 𝑃𝑖 for every 𝑖 ∈ [𝑛].

∙ Outputs: The honest parties output whatever was sent by the trusted party.

The corrupted parties output nothing and 𝒜 outputs an arbitrary (probabilistic

polynomial-time computable) function of its view.

We let Idealfair
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) be the random variable consisting of the output of the

adversary and the output of the honest parties following an execution in the ideal

model described above.

Definition 2. Protocol 𝜋 is said to securely compute 𝑓 with fairness if for every

non-uniform probabilistic polynomial-time adversary 𝒜 in the real model, there exists

a non-uniform probabilistic polynomial-time adversary 𝒮 in the ideal model such that

for every ℐ ⊆ [𝑛] with |ℐ| ≤ 𝑡,

{︀
Idealfair

𝑓,ℐ,𝒮(𝑧)(
−→𝑥 , 𝜆)

}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

≡
{︀
Real𝜋,ℐ,𝒜(𝑧)(

−→𝑥 , 𝜆)
}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*
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We will sometimes relax security to statistical or computational definitions. A pro-

tocol is statistically secure if the random variables Idealfair
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) and Real𝜋,ℐ,𝒜(𝑧)(
−→𝑥 , 𝜆)

are statistically close, and computationally secure if they are computationally indis-

tinguishable.

Security with Fairness and Identifiable Abort

This definition is identical to the one for fairness, except that if the adversary aborts

the computation, all honest parties learn the identity of one of the corrupted parties.

The only change from the definition in Section 2.3.5 is with regard to the ideal model

for computing 𝑓 , which is now defined as follows:

Execution in the ideal model. The parties are 𝑃1, . . . , 𝑃𝑛, and there is an adver-

sary 𝒜 who has corrupted at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛. Denote by ℐ ⊆ [𝑛] the

set of indices of the parties corrupted by 𝒜. An ideal execution for the computation

of 𝑓 proceeds as follows:

∙ Inputs: 𝑃1, . . . , 𝑃𝑛 hold their private inputs 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 ; the adversary 𝒜

receives an auxiliary input 𝑧.

∙ Send inputs to trusted party: The honest parties send their inputs to the

trusted party. The corrupted parties controlled by 𝒜 may send any values of

their choice. In addition, there exists a special abort input. In case the adversary

instructs 𝑃𝑖 to send abort, it chooses an index of a corrupted party 𝑖* ∈ ℐ and

sets 𝑥′
𝑖 = (abort, 𝑖*). Denote the inputs sent to the trusted party by 𝑥′

1, . . . , 𝑥
′
𝑛.

∙ Trusted party sends outputs: If 𝑥′
𝑖 ̸∈ 𝒳 for any 𝑖 ∈ [𝑛], the trusted party sets

𝑥′
𝑖 to some default input in 𝒳 . If there exists an 𝑖 ∈ [𝑛] such that 𝑥′

𝑖 = (abort, 𝑖*)

and 𝑖* ∈ ℐ, the trusted party sends (⊥, 𝑖*) to all the parties. Otherwise, the

trusted party chooses 𝑟 uniformly at random, computes 𝑧𝑖 = 𝑓 𝑖(𝑥′
1, . . . , 𝑥

′
𝑛; 𝑟)

for every 𝑖 ∈ [𝑛] and sends 𝑧𝑖 to 𝑃𝑖 for every 𝑖 ∈ [𝑛].

∙ Outputs: The honest parties output whatever was sent by the trusted party.
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The corrupted parties output nothing and 𝒜 outputs an arbitrary (probabilistic

polynomial-time computable) function of its view.

We let Idealid-fair
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) be the random variable consisting of the output of the

adversary and the output of the honest parties following an execution in the ideal

model described above.

Definition 3. Protocol 𝜋 is said to securely compute 𝑓 with fairness and identifiable

abort if for every non-uniform probabilistic polynomial-time adversary 𝒜 in the real

model, there exists a non-uniform probabilistic polynomial-time adversary 𝒮 in the

ideal model such that for every ℐ ⊆ [𝑛] with |ℐ| ≤ 𝑡,

{︀
Idealid-fair

𝑓,ℐ,𝒮(𝑧)(
−→𝑥 , 𝜆)

}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

≡
{︀
Real𝜋,ℐ,𝒜(𝑧)(

−→𝑥 , 𝜆)
}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

We will sometimes relax security to statistical or computational definitions. A pro-

tocol is statistically secure if the random variables Idealid-fair
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) and Real𝜋,ℐ,𝒜(𝑧)(
−→𝑥 , 𝜆)

are statistically close, and computationally secure if they are computationally indis-

tinguishable.

Security with Abort

This definition is the standard one for secure computation [67] in that it allows early

abort ; that is, the adversary may receive its own output even though the honest party

does not. However, if one honest party receives output, then so do all honest parties.

Thus, this is the notion of unanimous abort. The only change from the definition in

Section 2.3.5 is with regard to the ideal model for computing 𝑓 , which is now defined

as follows:

Execution in the ideal model. The parties are 𝑃1, . . . , 𝑃𝑛, and there is an adver-

sary 𝒜 who has corrupted at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛. Denote by ℐ ⊆ [𝑛] the

set of indices of the parties corrupted by 𝒜. An ideal execution for the computation

of 𝑓 proceeds as follows:
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∙ Inputs: 𝑃1, . . . , 𝑃𝑛 hold their private inputs 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 ; the adversary 𝒜

receives an auxiliary input 𝑧.

∙ Send inputs to trusted party: The honest parties send their inputs to the

trusted party. The corrupted parties controlled by 𝒜 may send any values of

their choice. In addition, there exists a special abort input. Denote the inputs

sent to the trusted party by 𝑥′
1, . . . , 𝑥

′
𝑛.

∙ Trusted party sends outputs to the adversary: If 𝑥′
𝑖 ̸∈ 𝒳 for any 𝑖 ∈ [𝑛],

the trusted party sets 𝑥′
𝑖 to some default input in 𝒳 . If there exists an 𝑖 ∈ [𝑛]

such that 𝑥′
𝑖 = abort, the trusted party sends ⊥ to all the parties. Otherwise, the

trusted party chooses 𝑟 uniformly at random, computes 𝑧𝑖 = 𝑓 𝑖(𝑥′
1, . . . , 𝑥

′
𝑛; 𝑟)

for every 𝑖 ∈ [𝑛] and sends 𝑧𝑖 to 𝑃𝑖 for every 𝑖 ∈ ℐ (that is, to the adversary 𝒜).

∙ Trusted party sends outputs to the honest parties: After receiving its

output (as described above), the adversary either sends abort or continue to

the trusted party. In the former case the trusted party sends ⊥ to the honest

parties, and in the latter case the trusted party send 𝑧𝑗 to 𝑃𝑗 for every 𝑗 ∈ [𝑛]∖ℐ.

∙ Outputs: The honest parties output whatever was sent by the trusted party.

The corrupted parties output nothing and 𝒜 outputs an arbitrary (probabilistic

polynomial-time computable) function of its view.

We let Idealabort
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) be the random variable consisting of the output of the

adversary and the output of the honest parties following an execution in the ideal

model described above.

Definition 4. Protocol 𝜋 is said to securely compute 𝑓 with abort if for every non-

uniform probabilistic polynomial-time adversary 𝒜 in the real model, there exists a

non-uniform probabilistic polynomial-time adversary 𝒮 in the ideal model such that

for every ℐ ⊆ [𝑛] with |ℐ| ≤ 𝑡,

{︀
Idealabort

𝑓,ℐ,𝒮(𝑧)(
−→𝑥 , 𝜆)

}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

≡
{︀
Real𝜋,ℐ,𝒜(𝑧)(

−→𝑥 , 𝜆)
}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*
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We will sometimes relax security to statistical or computational definitions. A pro-

tocol is statistically secure if the random variables Idealabort
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) and Real𝜋,ℐ,𝒜(𝑧)(
−→𝑥 , 𝜆)

are statistically close, and computationally secure if they are computationally indis-

tinguishable.

Security with Identifiable Abort

This definition is identical to the one for abort, except that if the adversary aborts

the computation, all honest parties learn the identity of one of the corrupted parties.

The only change from the definition in Section 2.3.5 is with regard to the ideal model

for computing 𝑓 , which is now defined as follows:

Execution in the ideal model. The parties are 𝑃1, . . . , 𝑃𝑛, and there is an adver-

sary 𝒜 who has corrupted at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛. Denote by ℐ ⊆ [𝑛] the

set of indices of the parties corrupted by 𝒜. An ideal execution for the computation

of 𝑓 proceeds as follows:

∙ Inputs: 𝑃1, . . . , 𝑃𝑛 hold their private inputs 𝑥1, . . . , 𝑥𝑛 ∈ 𝒳 ; the adversary 𝒜

receives an auxiliary input 𝑧.

∙ Send inputs to trusted party: The honest parties send their inputs to the

trusted party. The corrupted parties controlled by 𝒜 may send any values of

their choice. In addition, there exists a special abort input. In case the adversary

instructs 𝑃𝑖 to send abort, it chooses an index of a corrupted party 𝑖* ∈ ℐ and

sets 𝑥′
𝑖 = (abort, 𝑖*). Denote the inputs sent to the trusted party by 𝑥′

1, . . . , 𝑥
′
𝑛.

∙ Trusted party sends outputs to the adversary: If 𝑥′
𝑖 ̸∈ 𝒳 for any 𝑖 ∈ [𝑛],

the trusted party sets 𝑥′
𝑖 to some default input in 𝒳 . If there exists an 𝑖 ∈ [𝑛]

such that 𝑥′
𝑖 = (abort, 𝑖*) and 𝑖* ∈ ℐ, the trusted party sends (⊥, 𝑖*) to all the

parties. Otherwise, the trusted party chooses 𝑟 uniformly at random, computes

𝑧𝑖 = 𝑓 𝑖(𝑥′
1, . . . , 𝑥

′
𝑛; 𝑟) for every 𝑖 ∈ [𝑛] and sends 𝑧𝑖 to 𝑃𝑖 for every 𝑖 ∈ ℐ (that

is, to the adversary 𝒜).
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∙ Trusted party sends outputs to the honest parties: After receiving its

output (as described above), the adversary either sends (abort, 𝑖*) where 𝑖* ∈ ℐ,

or continue to the trusted party. In the former case the trusted party sends

(⊥, 𝑖*) to the honest parties, and in the latter case the trusted party send 𝑧𝑗 to

𝑃𝑗 for every 𝑗 ∈ [𝑛] ∖ ℐ.

∙ Outputs: The honest parties output whatever was sent by the trusted party.

The corrupted parties output nothing and 𝒜 outputs an arbitrary (probabilistic

polynomial-time computable) function of its view.

We let Idealid-abort
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) be the random variable consisting of the output of the

adversary and the output of the honest parties following an execution in the ideal

model described above.

Definition 5. Protocol 𝜋 is said to securely compute 𝑓 with identifiable abort if for

every non-uniform probabilistic polynomial-time adversary 𝒜 in the real model, there

exists a non-uniform probabilistic polynomial-time adversary 𝒮 in the ideal model such

that for every ℐ ⊆ [𝑛] with |ℐ| ≤ 𝑡,

{︀
Idealid-abort

𝑓,ℐ,𝒮(𝑧)(
−→𝑥 , 𝜆)

}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

≡
{︀
Real𝜋,ℐ,𝒜(𝑧)(

−→𝑥 , 𝜆)
}︀
−→𝑥 ∈𝒳𝑛,𝑧∈{0,1}*

We will sometimes relax security to statistical or computational definitions. A pro-

tocol is statistically secure if the random variables Idealid-abort
𝑓,ℐ,𝒮(𝑧)(

−→𝑥 , 𝜆) and Real𝜋,ℐ,𝒜(𝑧)(
−→𝑥 , 𝜆)

are statistically close, and computationally secure if they are computationally indis-

tinguishable.

2.4 The Hybrid Model

We recall the definition of the hybrid model from [72] and [42]. The hybrid model

combines both the real and ideal worlds. Specifically, an execution of a protocol

𝜋 in the 𝒢-hybrid model, for some functionality 𝒢, involves parties sending normal

messages to each other (as in the real model) and, in addition, having access to a
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trusted party computing 𝒢. The parties communicate with this trusted party in

exactly the same way as in the ideal models described above; the question of which

ideal model is taken (that with or without abort) must be specified. In this work, we

always consider a hybrid model where the functionality 𝒢 is computed according to

the ideal model with abort. In all our protocols in the 𝒢-hybrid model there will only

be sequential calls to 𝒢, that is, there is at most a single call to 𝒢 per round, and

no other messages are sent during any round in which 𝒢 is called. This is especially

important for reactive functionalities, where the calls to 𝑓 are carried out in phases,

and a new invocation of 𝑓 cannot take place before all the phases of the previous

invocation complete.

Let type ∈ {g.d., fair, id-fair, abort, id-abort}. Let 𝒢 be a functionality and let 𝜋 be

an 𝑛-party protocol for computing some functionality 𝑓 , where 𝜋 includes real mes-

sages between the parties as well as calls to 𝒢. Let 𝒜 be a non-uniform probabilistic

polynomial-time machine with auxiliary input 𝑧. 𝒜 corrupts at most 𝑡 parties, where

0 ≤ 𝑡 < 𝑛. Denote by ℐ ⊆ [𝑛] the set of indices of the parties corrupted by 𝒜. Let

Hybrid𝒢,type
𝜋,ℐ,𝒜(𝑧)(

−→𝑥 , 𝜆) be the random variable consisting of the view of the adversary

and the output of the honest parties, following an execution of 𝜋 with ideal calls to

a trusted party computing 𝒢 according to the ideal model “type” where 𝑃𝑖 begins by

holding 𝑥𝑖 for every 𝑖 ∈ [𝑛]. Security in the model “type” can be defined via natural

modifications of Definitions 1, 2, 3, 4 and 5. We call this the (𝒢, type)-hybrid model.

The hybrid model gives a powerful tool for proving the security of protocols.

Specifically, we may design a real-world protocol for securely computing some func-

tionality 𝑓 by first constructing a protocol for computing 𝑓 in the 𝒢-hybrid model.

Letting 𝜋 denote the protocol thus constructed (in the 𝒢-hybrid model), we denote by

𝜋𝜌 the real-world protocol in which calls to 𝒢 are replaced by sequential execution of

a real-world protocol 𝜌 that computes 𝒢 in the ideal model “type”. “Sequential” here

implies that only one execution of 𝜌 is carried out at any time, and no other 𝜋-protocol

messages are sent during the execution of 𝜌. The results of [29] then imply that if 𝜋

securely computes 𝑓 in the (𝒢, type)-hybrid model, and 𝜌 securely computes 𝒢, then

the composed protocol 𝜋𝜌 securely computes 𝑓 (in the real world). For completeness,
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we state this result formally as we will use it in this work.

Lemma 1. Let type1, type2 ∈ {g.d., fair, id-fair, abort, id-abort}. Let 𝒢 be an 𝑛-party

functionality. Let 𝜌 be a protocol that securely computes 𝒢 with type1, and let 𝜋 be

a protocol that securely computes 𝑓 with type2 in the (𝒢, type1)-hybrid model. Then

protocol 𝜋𝜌 securely computes 𝑓 with type2 in the real model.

Sometimes, while working in a hybrid model, say the (𝒢, type)-hybrid model, we

will suppress type and simply state that we are working in the 𝒢-hybrid model. This

is because type is implied by the context, 𝒢. For instance, unless specified otherwise:

∙ When 𝒢 = ℱbc
6, type = g.d..

∙ When 𝒢 = ℱOT
7, type = abort.

∙ When 𝒢 = ℱ2PC
8, type = abort.

∙ When 𝒢 = ℱMPC
9, type = abort.

∙ When 𝒢 = ℱSyX
10, type = g.d..

When working in a hybrid model that uses multiple ideal functionalities, 𝒢1, . . . ,𝒢𝑘
with associated types type1, . . . , type𝑘 for some 𝑘 ∈ N, we call it the (𝒢1, type1, . . . ,𝒢𝑘, type𝑘)-

hybrid model. Furthermore, we will suppress type𝑗 when type𝑗 is implied by the

context, 𝒢𝑗 for 𝑗 ∈ [𝑘].

2.5 Computing with an Honest Majority

We recall here some of the known results regarding feasibility of information-theoretic

multiparty computation in the presence of an honest majority.

6See Section 2.7.
7See Section 2.6.
8See Section 5.2.
9See Section 2.6.

10See Section 5.2.
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Preliminaries: 𝑥0, 𝑥1 ∈ {0, 1}𝑚; 𝑏 ∈ {0, 1}. The functionality proceeds as follows:

∙ Upon receiving inputs (𝑥0, 𝑥1) from the sender 𝑃1 and 𝑏 from the receiver 𝑃2, send
⊥ to 𝑃1 and 𝑥𝑏 to 𝑃2.

Figure 2-1: The ideal functionality ℱOT.

Lemma 2. [68] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then, there

exists a protocol 𝜋 which securely computes ℱMPC with guaranteed output delivery in

the presence of 𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛/3.

Lemma 3. [58] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then,

there exists a protocol 𝜋 which securely computes ℱMPC with fairness in the presence

of 𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛/2.

Lemma 4. [68, 119] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the broadcast model. Then,

there exists a protocol 𝜋 which securely computes ℱMPC with guaranteed output delivery

in the presence of 𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛/2.

2.6 Oblivious Transfer

Oblivious transfer, or OT, refers to 1-out-of-2 oblivious transfer defined as in Figure

2-1. We note that in the definition of ℱOT, one party, namely 𝑃1, is seen as the

sender, while the other, namely 𝑃2, is seen as the receiver. However, from [123],

OT is symmetric, which implies that the roles of the sender and the receiver can

be reversed. Thus, if two parties 𝑃1 and 𝑃2 have access to the ideal functionality

ℱOT, they can perform 1-out-of-2 oblivious transfer with either party as a sender and

the other as the receiver. It is known that OT is complete for secure multiparty

computation with abort. We state this result formally below.

Lemma 5. [89, 70, 86] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the OT-network model. Then,

there exists a protocol 𝜋 which securely computes ℱMPC with abort in the presence of

𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛.
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Preliminaries: 𝑥1, . . . , 𝑥𝑛 ∈ {0, 1}*; 𝑓1, . . . , 𝑓𝑛 is an 𝑛-input, 𝑛-output functionalities.
The functionality proceeds as follows:

∙ Upon receiving inputs (𝑥𝑖, 𝑓𝑖) from 𝑃𝑖 for all 𝑖 ∈ [𝑛], check if 𝑓 = 𝑓𝑖 for all 𝑖 ∈ [𝑛].
If not, abort. Else, send 𝑓 𝑖(𝑥1, . . . , 𝑥𝑛) to 𝑃𝑖 for all 𝑖 ∈ [𝑛].

Figure 2-2: The ideal functionality ℱMPC.

Preliminaries: 𝑥 ∈ {0, 1}*. The functionality proceeds as follows:

∙ Upon receiving the input 𝑥 from the sender 𝑃1, send 𝑥 to all parties 𝑃1, . . . , 𝑃𝑛.

Figure 2-3: The ideal functionality ℱbc.

2.7 Broadcast

Broadcast is defined as in Figure 2-3. We recall that the ideal functionality for

broadcast, namely ℱbc, can be securely computed with guaranteed output delivery

in the presence of 𝑡-threshold adversaries if and only if 0 ≤ 𝑡 < 𝑛/3 [115, 100].

Furthermore, ℱbc can be securely computed with fairness in the presence of 𝑡-threshold

adversaries for any 0 ≤ 𝑡 < 𝑛 [59]. Furthermore, these results hold irrespective of the

model we are working in so long as we do not have explicit access to ℱbc.

2.8 Honest-Binding Commitment Schemes

We recall the notion of honest-binding commitments from [62]. Commitment schemes

are a standard cryptographic tool. Roughly, a commitment scheme allows a sender

𝑆 to generate a commitment 𝑐 to a message 𝑚 in such a way that (1) the sender can

later open the commitment to the original value 𝑚 (correctness); (2) the sender cannot

generate a commitment that can be opened to two different values (binding); and (3)

the commitment reveals nothing about the sender’s value 𝑚 until it is opened (hiding).

For our application, we need a variant of standard commitments that guarantees

binding when the sender is honest but ensures that binding can be violated if the

sender is dishonest. (In the latter case, we need some additional properties as well;
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these will become clear in what follows.) Looking ahead, we will use such commitment

schemes to enable a simulator in security proofs to generate a commitment dishonestly.

This will give the simulator the flexibility to break binding and open the commitment

to any desired message (if needed), while also being able to ensure binding (when

desired) by claiming that it generated the commitment honestly.

We consider only non-interactive commitment schemes. For simplicity, we define

our schemes in such a way that the decommitment information consists of the sender’s

random coins 𝜔 that it used when generating the commitment.

Definition 6. A (non-interactive) commitment scheme for message space ℳ𝜆 is a

pair of PPT algorithms (Com,Open) such that for all 𝜆 ∈ N, all messages 𝑚 ∈ ℳ𝜆,

and all random coins 𝜔 it holds that

Open(Com(1𝜆,𝑚;𝜔), 𝜔,𝑚) = 1

A commitment scheme for message space ℳ𝜆 is honest-binding if it satisfies the

following:

Binding (for an honest sender). For all PPT algorithms 𝒜 (that maintain state

throughout their execution), the following probability is negligible in 𝜆:

Pr

⎡⎢⎢⎢⎣
𝑚

$← 𝒜(1𝑘);𝜔 $← {0, 1}*

𝑐 = Com(1𝜆,𝑚;𝜔)

(𝑚′, 𝜔′)
$← 𝒜(𝑐, 𝜔)

: Open(𝑐,𝑚′, 𝜔′) = 1 ∧ 𝑚 ̸= 𝑚′

⎤⎥⎥⎥⎦

Equivocation. There is a pair of algorithms
(︁̃︂Com, Õpen

)︁
such that for all PPT

algorithms 𝒜 (that maintain state throughout their execution), the following quantity

is negligible in 𝜆:

⃒⃒⃒⃒
⃒⃒ Pr

[︁
𝑚

$← 𝒜(1𝜆);𝜔 $← {0, 1}*; 𝑐 = Com(1𝜆,𝑚;𝜔) : 𝒜(1𝜆, 𝑐, 𝜔) = 1
]︁

−Pr
[︁
(𝑐, state)

$← ̃︂Com(1𝜆),𝑚
$← 𝒜(1𝜆);𝜔 $← Õpen(state,𝑚) : 𝒜(1𝜆, 𝑐, 𝜔) = 1

]︁
⃒⃒⃒⃒
⃒⃒
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Equivocation implies the standard hiding property, namely, that for all PPT algo-

rithms 𝒜 (that maintain state throughout their execution) the quantity is negligible in

𝜆: ⃒⃒⃒
Pr
[︁
(𝑚0,𝑚1)

$← 𝒜(1𝜆); 𝑏 $← {0, 1}; 𝑐 $← Com(1𝜆,𝑚𝑏) : 𝒜(𝑐) = 𝑏
]︁ ⃒⃒⃒

We also observe that if (𝑐, 𝜔) are generated by
(︁̃︂Com, Õpen

)︁
for some message 𝑚

as in the definition above, then binding still holds: namely, no PPT adversary given

(𝑚, 𝑐, 𝜔) can find (𝑚′, 𝜔′) with 𝑚′ ̸= 𝑚 such that Open(𝑐,𝑚′, 𝜔′) = 1.

We will sometimes use the notation (𝑐, 𝜔)
$← Com(𝑚) to mean 𝑐 = Com(1𝜆,𝑚;𝜔),

suppressing 𝜆 when it is clear from the context and having the committing algorithm

Com return the commitment and the decommitment information or opening. [62]

provides constructions of honest-binding commitments for bits assuming the existence

of one-way functions.

2.9 Digital Signatures

Definition 7. A (digital) signature scheme for message space ℳ𝜆 is triple of PPT

algorithms 𝒱 = (Gen, Sign,Verify) such that for all 𝜆 ∈ N and all messages 𝑚 ∈ℳ𝜆,

Pr

⎡⎣ (vk, sk)
$← 𝒱 .Gen(1𝜆)

𝜎
$← 𝒱 .Sign(𝑚; sk)

: 𝒱 .Verify(𝜎,𝑚; vk) = 1

⎤⎦ = 1

A signature scheme for message spaceℳ𝜆 is existentially unforgeable if for any PPT

adversary 𝒜, the following probability is negligible in 𝜆:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(vk, sk)
$← 𝒱 .Gen(1𝜆)

𝒬 = ∅⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚𝑖

$← 𝒜(1𝜆,𝒬)

𝜎𝑖
$← 𝒱 .Sign(𝑚𝑖; sk)

𝒬 = 𝒬∪ {(𝑚𝑖, 𝜎𝑖)}

⎫⎪⎪⎪⎬⎪⎪⎪⎭
𝑖

: 𝒱 .Verify(𝜎,𝑚; vk) = 1 ∧ (𝑚,𝜎) ̸∈ 𝒬

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[120] provides constructions of existentially unforgeable signatures assuming the
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existence of one-way functions.

2.10 Receiver Non-Committing Encryption

We recall the notion of receiver non-committing encryption from [32]. On a high

level, a receiver non-committing encryption scheme is one in which a simulator can

generate a single “fake ciphertext” and later “open” this ciphertext (by showing an

appropriate secret key) as any given message. These “fake ciphertexts” should be

indistinguishable from real ciphertexts, even when an adversary is given access to a

decryption oracle before the fake ciphertext is known.

Formally, a receiver non-committing encryption scheme ℰ consists of the following

five PPT algorithms:

∙ ℰ .Gen(1𝜆): Given the security parameter, 𝜆, the key generation algorithm out-

puts a key-pair and some auxiliary information. This is denoted by: (pk, sk, 𝑧) $←

ℰ .Gen(1𝜆). The public key pk defines a message spaceℳ𝜆.

∙ ℰ .Enc(𝑚; pk): Given the public key pk and a message 𝑚 ∈ℳ𝜆, the encryption

algorithm returns a ciphertext ct
$← ℰ .Enc(𝑚; pk).

∙ ℰ .Dec(ct; sk): Given the secret key sk and a ciphertext ct, the decryption algo-

rithm returns a message 𝑚
$← ℰ .Dec(ct; sk), where 𝑚 ∈ℳ𝜆 ∪ {⊥}.

∙ ℰ .̃︂Enc(pk, sk, 𝑧): Given the triple (pk, sk, 𝑧) output by ℰ .Gen, the fake encryption

algorithm outputs a “fake ciphertext” ̃︀ct $← ℰ .̃︂Enc(pk, sk, 𝑧).
∙ ℰ .̃︂Dec(pk, sk, 𝑧, ̃︀ct,𝑚): Given the triple (pk, sk, 𝑧) output by ℰ .Gen, a “fake ci-

phertext” ̃︀ct output by ℰ .̃︂Enc and a message 𝑚 ∈ ℳ𝜆, the “fake decryption”

algorithm outputs a “fake secret key” ̃︀sk $← ℰ .̃︂Dec(pk, sk, 𝑧, ̃︀ct,𝑚). (Intuitively,̃︀sk is a valid-looking secret key for which ̃︀ct decrypts to 𝑚.)

We make the standard correctness requirement; namely, for any (pk, sk, 𝑧) output

by ℰ .Gen and any 𝑚 ∈ ℳ𝜆, we have ℰ .Dec(ℰ .Enc(𝑚; pk); sk) = 𝑚. Our definition of

security requires, informally, that for any message 𝑚 an adversary cannot distinguish
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whether it has been given a “real” encryption of 𝑚 along with a “real” secret key, or a

“fake” ciphertext along with a “fake” secret key under which the ciphertext decrypts to

𝑚. This should hold even when the adversary has non-adaptive access to a decryption

oracle. We now give the formal definition.

Definition 8. Let ℰ be a receiver non-committing encryption scheme. We say that

ℰ is secure if the advantage of any PPT algorithm 𝒜 in the game below is negligible

in 𝜆:

1. The key generation algorithm ℰ .Gen(1𝜆) is run to get (pk, sk, 𝑧).

2. The algorithm 𝒜 is given 1𝜆 and pk as input, and is also given access to a

decryption oracle ℰ .Dec(·; sk). It then outputs a challenge message 𝑚 ∈ℳ𝜆.

3. A bit 𝑏 is chosen at random. If 𝑏 = 1 then a ciphertext ct
$← ℰ .Enc(𝑚; pk)

is computed, and 𝒜 receives (ct, sk). Otherwise, a “fake” ciphertext ̃︀ct $←

ℰ .̃︂Enc(pk, sk, 𝑧) and a “fake” secret key ̃︀sk $← ℰ .̃︂Dec(pk, sk, 𝑧, ̃︀ct,𝑚) are com-

puted, and 𝒜 receives (̃︀ct, ̃︀sk). (After this point, 𝒜 can no longer query its

decryption oracle.) 𝒜 outputs a bit 𝑏 ∈ {0, 1}.

The advantage of 𝒜 is defined as 2 ·
⃒⃒
Pr[𝑏 = 𝑏′]− 1

2

⃒⃒
.

2.11 Non-interactive Non-Committing Encryption

We recall the notion of non-interactive non-committing encryption from [112]. We do

so in two ways. The first way of looking at non-interactive non-committing encryp-

tion is that it is the same as receiver non-committing encryption, except that it can

equivocate multiple ciphertexts as opposed to one. On a high level, a non-interactive

non-committing encryption scheme is one in which a simulator can generate multiple

“fake ciphertexts” and later “open” them (by showing an appropriate secret key) as

any given message vector. We first note that the receiver non-committing encryption

scheme of [32] can be extended, as noted by them, to support equivocation of any

bounded number of ciphertexts. However, the size of the key of the scheme would
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grow linearly with the number of outstanding ciphertexts. Such schemes can be con-

structed based on standard assumptions such as the quadratic residuosity assumption.

If no bound on the number of outstanding texts is known apriori, then as noted in

[112], constructing such schemes is impossible in the standard model. The other way

of looking at non-interactive non-committing encryption is that it is a realization of

the ideal functionality for public key encryption, namely, ℱPKE. We refer the reader

to [33, 32] for further details.

For the sake of completeness and ease of later presentation, we recall the non-

interactive non-committing encryption scheme of [112] in the random-oracle model.

Let ℱ = (𝒦, 𝐹 ) be a collection of trapdoor permutations, where 𝒦 denotes an index

set and 𝐹 = {𝑓𝑘}𝑘∈𝒦 is a set of permutations with efficiently samplable domains.

For every 𝑘 ∈ 𝒦, we denote by 𝑡𝑘 the trapdoor associated with 𝑘 which enables

inversion of 𝑓𝑘. We assume the existence of a generation algorithm 𝒢 which on input

the security parameter 𝜆 outputs a key-trapdoor pair (𝑘, 𝑡𝑘) uniformly at random.

Let 𝐻 : {0, 1}* → {0, 1}ℓ(𝜆) be a random oracle (instantiated by an appropriate hash

function). The non-interactive non-committing encryption scheme ℰ consists of the

following algorithms:

∙ ℰ .Gen(1𝜆): Given the security parameter, 𝜆, the key generation algorithm ob-

tains (𝑘, 𝑡𝑘) by executing 𝒢 with the security parameter 𝜆 as input. It then

outputs the public and private keys pk = (𝑘, 𝑓𝑘, 𝐻) and sk = 𝑡𝑘. The message

space is defined to beℳ𝜆 = {0, 1}ℓ(𝜆).

∙ ℰ .Enc(𝑚; pk): Given the public key pk and a message 𝑚 ∈ ℳ𝜆, the encryp-

tion algorithm samples 𝑥 from the domain of 𝑓𝑘 and returns a ciphertext

ct = (𝑓𝑘(𝑥), 𝐻(𝑥)⊕𝑚).

∙ ℰ .Dec(ct; sk): Given the secret key sk and a ciphertext ct = (ct1, ct2), the de-

cryption algorithm computes 𝑥 by inverting ct1 using 𝑡𝑘 and returns the message

𝑚 = 𝐻(𝑥)⊕ ct2.

We refer the reader to [112] for a complete proof that the scheme defined above

is a non-interactive non-committing encryption scheme. The sketch the proof here.
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The scheme is clearly non-interactive. We now need to design a simulator 𝒮 which

can generate multiple “fake ciphertexts” and later “open” them to an arbitrary se-

quence of messages. Note that this is easy to do. To generate 𝑛 “fake ciphertexts”,

𝒮 samples 𝑥1, . . . , 𝑥𝑛 independently at random from the domain of 𝑓𝑘. It then sam-

ples 𝑦1, . . . , 𝑦𝑛
$← {0, 1}ℓ(𝜆). The 𝑚 ciphertexts are defined to be {ct𝑖}𝑖∈[𝑛] where

ct𝑖 = (𝑓𝑘(𝑥𝑖), 𝑦𝑖). Then, in order to open the 𝑛 ciphertexts to a message vec-

tor −→𝑚 = (𝑚1, . . . ,𝑚𝑛) ∈ ℳ𝑛
𝜆, 𝒮 would program the random oracle 𝐻 such that

𝐻(𝑥𝑖) = 𝑚𝑖 ⊕ 𝑦𝑖. Note that this ensures that the “fake ciphertexts” do in fact “open”

to the message vector −→𝑚. We also stress, as this will be required for us later, that

the simulator need not know 𝑛 in advance, that is, it can produce any (polynomially

bounded) number of “fake ciphertexts” and later “open” them as required. This is also

precisely the difference from receiver non-committing encryption as described earlier

which necessitates the use of random oracles as noted in [112].
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Chapter 3

Infrastructure for Reliable

Communication

We study the problem of almost-everywhere reliable message transmission; a key com-

ponent in designing efficient and secure MPC protocols for sparsely connected net-

works. The goal is to design low-degree networks which allow a large fraction of

honest nodes to communicate reliably even while linearly many nodes can experience

byzantine corruption and deviate arbitrarily from the assigned protocol.

In this work, we achieve a log-degree network with a polylogarithmic work com-

plexity protocol, thereby improving over the state-of-the-art result of Chandran et al.

(ICALP 2010) who required a polylogarithmic-degree network and had a linear work

complexity. In addition, we also achieve:

∙ A work efficient version of Dwork et. al.’s (STOC 1986) butterfly network.

∙ An improvement upon the state of the art protocol of Ben-or and Ron (Infor-

mation Processing Letters 1996) in the randomized corruption model—both in

work-efficiency and in resilience.

The results presented in this chapter also appear in a joint work with Siddhartha

Jayanti and Nikhil Vyas [87].
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3.1 Preliminaries

3.1.1 Graphs: Expanders

Definition 9. A graph 𝐺 = (𝑉,𝐸) is an expander if there exists a constant 𝜃 < 1

such that for every subset 𝑈 ⊂ 𝑉 of vertices of size |𝑈 | ≤ |𝑉 |
2

, the set of vertices

outside 𝑈 that have at least one neighbor in 𝑈 is at least 𝜃|𝑈 |.

Constructions of expanders of constant degree are known [107].

3.1.2 Adversaries

We consider security against malicious adaptive 𝑡-threshold adversaries, that is, ad-

versaries that adaptively corrupt a set of at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛.1 We will

be working with both worst-case and random adversaries. The randomized adversary

model assumes that the 𝑡 corrupted nodes are chosen uniformly at random from the

set of 𝑛 nodes. We call this model of picking a random subset of size 𝑡 the Hamming

Random Model or corruption. Alternately, a randomized adversary may make each

node corrupt with probability 𝑡/𝑛; we call this the Shannon model. Basic Chernoff

bounds show that the Shannon and Hamming models are equivalent up to a constant

factor difference in 𝑡 with all but exponentially small probability. Thus, we freely

switch between the two models in our exposition. While this model of corruption is

primarily good for simulating phishing and password guessing attacks, our probabilis-

tic approaches show that it can be the starting point for state of the art protocols

against corporation and worst-case adversaries.

3.1.3 Protocoled-Network

Given a graph 𝐺 = (𝑉,𝐸), a message transmission protocol or simply protocol Π on

the graph, is a specification for how messages are routed between every pair of nodes.

In particular, Π(𝑢, 𝑣) is the protocol for node 𝑢 ∈ 𝑉 to transmit to node 𝑣 ∈ 𝑉 . A

protocol is comprised of discrete synchronous rounds. In each round, we allow each
1Note that when 𝑡 = 𝑛, there is nothing to prove.
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node 𝑤 ∈ 𝑉 to perform local computations and pass a different one bit message to

each of its neighbors in 𝐺.

We call a pair 𝑁 = (𝐺,Π) a protocoled-network if Π is a protocol for graph 𝐺.

We define the following complexity measures of a protocoled-network, where 𝑢 and 𝑣

are two different nodes in 𝐺:

1. Work complexity, or, Total work: The total work of Π(𝑢, 𝑣) is the number

computations, 𝑊 (𝑢, 𝑣), performed across all processors in the network in a

transmission from 𝑢 to 𝑣. The total work of Π is 𝑊 = max𝑢,𝑣∈𝑉 𝑊 (𝑢, 𝑣).

2. Graph degree: The degree of 𝑢 is the number of neighbors, 𝑑(𝑢), that 𝑢 has

in 𝐺. The degree of 𝐺 is 𝑑 = max𝑢∈𝑉 𝑑(𝑢).

3. Resilience: We say a network (𝐺,Π) is resilient to a set of nodes 𝑇 , of size

𝑡 = |𝑇 |, being corrupted while dooming only 𝑥 nodes if there is a subset 𝑆 ⊆ 𝑉

of 𝑛− 𝑡− 𝑥 privileged nodes that can reliably transmit messages between each

other, after the nodes in 𝑇 experience byzantine failure. Nodes in set 𝑆 are

called privileged, nodes in 𝑋 = 𝑉 − (𝑆 ∪ 𝑇 ) are called doomed, and nodes in

𝑋 ∪ 𝑇 are called unprivileged. We say a network is (𝑓(𝑛), 𝑔(𝑡))-resilient if it

can sustain an arbitrary set of up to 𝑡 ≤ 𝑓(𝑛) corruptions while dooming at

most 𝑥 = 𝑔(𝑡) nodes. When corruptions are randomized (see Section 3.1.2), we

say that a network is (𝑓(𝑛), 𝑔(𝑡))-resilient with probability 𝑝, if it can sustain a

random subset of up to 𝑡 ≤ 𝑓(𝑛) corruptions, and at most 𝑥 = 𝑔(𝑡) nodes get

doomed with probability at least 𝑝. Informally speaking, a network is highly

resilient if 𝑓(𝑛) is large while 𝑔(𝑡) is not too large, and thus the set of privileged

nodes is large.

Our goal is to design a highly resilient low degree network of low work complexity.

3.1.4 Almost-everywhere Security

The notion of almost-everywhere secure primitives was introduced by Dwork, Peleg,

Pippenger, Upfal [54]. In this setting, we consider a sparse communication network on
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the nodes. We assume a synchronous network and that the communication is divided

into rounds. In every round, each node can send (possibly different) messages on its

incident edges; these messages are delivered before the next round. Suppose a certain

subset of the nodes may be adversarially corrupt, in particular adaptive, rushing and

computationally unbounded. This implies that a protocol for any task on this network

must “give up” a certain number of honest nodes on account of their poor connectivity

to other honest nodes. We set up the following notation. Consider a network of 𝑛

nodes connected by a communication network 𝐺 = (𝑉,𝐸) of degree 𝑑. On executing

a protocol Π on this network in the presence of a subset 𝑇 ⊂ 𝑉 of adversarial or

corrupt nodes, let 𝑋 ⊂ 𝑉 be the set of honest nodes that are given up, or doomed,

and let 𝑃 ⊂ 𝑉 be the set of honest nodes for whom the protocol requirements of

correctness and security hold, or privileged nodes. The nodes that are not privileged

are unprivileged nodes. Let |𝑇 | = 𝑡, |𝑋| = 𝑥 and |𝑆| = 𝑠. We have 𝑡+ 𝑥+ 𝑠 = 𝑛.

3.1.5 Almost-everywhere Reliable Message Transmission

We present some prior networks for almost-everywhere reliable message transmission

that will be useful in our constructions.

Protocoled-Network Construction 1 ([54]). The butterfly protocoled-network (𝐺𝐵𝑢𝑡,Π𝐵𝑢𝑡)

is as follows.

Graph: 𝐺𝐵𝑢𝑡 = (𝑉𝐵𝑢𝑡, 𝐸𝐵𝑢𝑡) where 𝑉𝐵𝑢𝑡 = {(𝑖, 𝑗)} where 0 ≤ 𝑖 ≤ 𝑚 − 1 and

𝑗 ∈ {0, 1}𝑚 is a set of 𝑛 = 𝑚2𝑚 nodes, and 𝐸𝐵𝑢𝑡 = {(𝑖, 𝑗), (𝑖′, 𝑗′)} is the set of

edges where 𝑖′ = (𝑖+ 1) mod 𝑚 and 𝑗 and 𝑗′ only possibly differ in the 𝑖th bit.

Protocol: Let 𝑢 and 𝑣 be distinct vertices in 𝑉𝐵𝑢𝑡. There exists as set of paths

𝑃𝑢,𝑣 from 𝑢 to 𝑣 such that |𝑃𝑢,𝑣| = 2𝑚 = Θ(𝑛/ log 𝑛). The message transmission

protocol Π from 𝑢 to 𝑣 in 𝐺𝐵𝑢𝑡 is as follows: 𝑢 sends the message along all paths

𝑃𝑢,𝑣, 𝑣 receives all the messages and takes majority.

Theorem 1 ([54]). For the 𝑛 = 𝑚2𝑚-node network 𝐺𝐵𝑢𝑡 = (𝑉,𝐸) and the protocol

Π𝐵𝑢𝑡 for message transmission on it, there exists constants 𝛼1 and 𝛽1, such that:
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1. The network 𝐺𝐵𝑢𝑡 is of constant degree, namely 11.

2. The work complexity is 𝑂̃(𝑛).

3. If a subset of nodes 𝑇 ⊂ 𝑉 is corrupt, where |𝑇 | ≤ 𝛼1𝑛/ log 𝑛, there exists a set

of nodes 𝑆 ⊂ 𝑉 where |𝑆| ≥ 𝑛− 𝛽1|𝑇 | log |𝑇 | such that for every pair of nodes

(𝑢, 𝑣) in 𝑆, (2/3)𝑟𝑑 of the paths in 𝑃𝑢,𝑣 have no corrupted nodes in them which

implies that all pairs of nodes in 𝑆 can communicate reliably with each other by

invoking Π𝐵𝑢𝑡.

Theorem 2 ([122]). For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑈𝑝𝑓𝑎𝑙 =

(𝑉,𝐸), a protocol Π𝑈𝑝𝑓𝑎𝑙 for message transmission on it, and constants 𝛼2 and 𝛽2,

such that:

1. The network 𝐺𝑈𝑝𝑓𝑎𝑙 is of constant degree2.

2. The work complexity is Π𝑈𝑝𝑓𝑎𝑙 is 𝑂(2𝑛).

3. Π𝑈𝑝𝑓𝑎𝑙 is (𝛼2𝑛, 𝛽2𝑡)-resilient.

2𝐺𝑈𝑝𝑓𝑎𝑙 is an 𝑛 node Ramanjuan graph, and we know such graphs with large enough constant
degree.
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3.2 Our contributions

We introduce our main result:

Theorem (Main Theorem for Communication Infrastructure). For suffi-

ciently large 𝑛, there exists an 𝑛-node network 𝐺𝑤𝑐 = (𝑉,𝐸), a protocol Π𝑤𝑐,𝑒𝑓𝑓 for

message transmission on it, and constants 𝛼 and 𝛽, such that:

1. The network 𝐺𝑤𝑐 is of degree 𝑂(log 𝑛).

2. The Work complexity of Π𝑤𝑐,𝑒𝑓𝑓 is 𝑂(polylog(𝑛)).

3. Π𝑤𝑐,𝑒𝑓𝑓 is (𝛼𝑛, 𝛽𝑡/ log 𝑛)-resilient.
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Organization: Roadmap to our main result

The remainder of this chapter is organized as follows:

∙ We describe our construction for the randomized adversary model in Section

3.3.

∙ We describe our construction for the worst-case adversary model in Section 3.4.

∙ Our polylogarithmic work-efficiency protocol on the Butterfly Network is spec-

ified in Section 3.5.

∙ Our main result which combines resiliency in the face of worst-case corruptions

with work-efficiency is described in Section 3.5.
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3.3 Constant-degree Networks in the Random Model

In this section we will build a network that is resistant to linearly many random

corruptions with an improved success probability as compared to Ben-or and Ron’s

work [18].

We turn our attention to the protocol of Chandran, Garay and Ostrovsky [35].

Their protocol builds on the following observation. Consider the protocols of [54] and

[122] where if node 𝐴 wishes to communicate with node 𝐵, 𝐴 floods all paths from 𝐴

to 𝐵 (possibly of a bounded length) with the message. In [54], the parameters are set

to ensure that a majority of such paths contain no corrupt nodes (for most pairs of

nodes 𝐴, 𝐵) while [122] employs an exhaustive search to determine which paths may

have contained corrupt nodes. These protocols face the disadvantage that paths that

pass through even one corrupt node are lost. [35] introduced the idea of local correc-

tion through the use of Bracha committees. If we were able to create committees that

had the ability to locally correct the message transmission, we can potentially tolerate

a lot more corruptions than in [54] and perform the final decoding more efficiently

than in [122]. [35] however considers many overlapping committees in order to ensure

that even if a constant fraction of the nodes are corrupt, a sub-constant fraction of the

committees are corrupt, where a committee is considered corrupt if a certain fraction

of its nodes is corrupt. This calls for a larger degree. We show in this section that in

our model of random corruptions, it suffices to construct fewer committees to achieve

the same goal. Going forward, we refer to the networks (protocol, resp.) of [122] by

𝐺𝑈𝑝𝑓𝑎𝑙 (Π𝑈𝑝𝑓𝑎𝑙 resp.) respectively.

Let the set of nodes that wish to communicate be 𝑉 = [𝑛] for 𝑛 ∈ N. We arbitrarily

divide the nodes of 𝑉 into 𝑛/𝑠 committees of size 𝑠 = (2/𝛼2) log log 𝑛 where 𝛼2 is from

Theorem 2. Within each committee, we instantiate 𝐺𝑈𝑝𝑓𝑎𝑙, which is an expander of

constant degree 𝑑 = 𝑂(1). We then connect the 𝑛/𝑠 committees using the network

𝐺𝐵𝑢𝑡 from Theorem 1, where in order to connect two committees, we connect them

by means of a perfect matching between the two sets of 𝑠 nodes.

74



Protocoled-Network Construction 2 (protocoled-network for random cor-

ruption model).

Graph: Our graph that is resistant to random errors is 𝐺𝑟𝑎𝑛𝑑 = (𝑉,𝐸), where

𝑉 = [𝑛]. The edge set is as follows. Arbitrarily partition the nodes of 𝑉 into

𝑛/𝑠 committees of size 𝑠 = (2/𝛼2) log log 𝑛. We let 𝐶𝑣 denote the committee

containing node 𝑣, where 𝐶𝑢 = 𝐶𝑣 if 𝑢 and 𝑣 are in the same committee. Within

each committee, we instantiate 𝐺𝑈𝑝𝑓𝑎𝑙, which is an expander of constant degree

𝑑 = 𝑂(1). We then connect the 𝑛/𝑠 committees using the network 𝐺𝐵𝑢𝑡, where

in order to connect two committees, we connect them by means of a perfect

matching between the two sets of 𝑠 nodes.

Protocol: We now describe the communication protocol Π𝑟𝑎𝑛𝑑 over this net-

work. To this end, we first describe two building block protocols Π𝑒𝑑𝑔𝑒 and Π𝑚𝑎𝑗.

∙ Π𝑒𝑑𝑔𝑒 is the protocol that is invoked when we wish to send a message from

one committee, 𝐶 to another 𝐶 ′ that are connected in the 𝐺𝐵𝑢𝑡 network

(connected by means of a perfect matching). We will assume that each node

in 𝐶 is initialized with some message. In the protocol Π𝑒𝑑𝑔𝑒, each node in

𝐶 sends its message to the node it is matched to in 𝐶 ′.

∙ Π𝑚𝑎𝑗 is a majority protocol invoked within a committee 𝐶. We will assume

that each node 𝑖 in 𝐶 is initialized with some message 𝑚𝑖. The goal of

the Π𝑚𝑎𝑗 protocol is for each node in 𝐶 to compute the majority function

𝑚 = maj{𝑚𝑖}𝑖. The protocol proceeds as follows: every node in 𝐶 invokes

Π𝑈𝑝𝑓𝑎𝑙 to send its message to every other node in 𝐶. Each node then simply

computes (locally) the majority of the messages it received.

Now, if a node 𝐴 wishes to send a message 𝑚 to node 𝐵:

(a) If 𝐴 and 𝐵 are in the same committee 𝐶, then 𝐴 simply sends the message

to 𝐵 by invoking Π𝑈𝑝𝑓𝑎𝑙 within the committee 𝐶.

(b) If 𝐴 and 𝐵 are in different committees, 𝐶𝐴 and 𝐶𝐵 respectively, then:
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i. 𝐴 invokes Π𝑈𝑝𝑓𝑎𝑙 to send 𝑚 to every other node in its committee 𝐶𝐴.

ii. The committee 𝐶𝐴 then invokes Π𝐵𝑢𝑡 to send a message to the commit-

tee 𝐶𝐵. In the invocation of Π𝐵𝑢𝑡, whenever two committees 𝐶 and 𝐶 ′

connected by 𝐺𝐵𝑢𝑡 wish to communicate with each other, they invoke

Π𝑒𝑑𝑔𝑒 and then 𝐶 ′ invokes Π𝑚𝑎𝑗.

iii. Finally, every node other than 𝐵 in committee 𝐶𝐵 invokes Π𝑈𝑝𝑓𝑎𝑙 to

send the message they received to 𝐵. 𝐵 computes (locally) the majority

of the messages it received.

We set out to prove the following theorem.

Theorem 3. For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑟𝑎𝑛𝑑 = (𝑉,𝐸),

a protocol Π𝑟𝑎𝑛𝑑 for message transmission on it, and constants 𝛼3 and 𝛽3, such that:

1. The network 𝐺𝑟𝑎𝑛𝑑 is of constant degree.

2. If a subset of nodes 𝑇 ⊂ 𝑉 is randomly corrupt, where |𝑇 | ≤ 𝛼3𝑛, with probabil-

ity 1− (𝑡/𝑛)𝛼2𝑡/(4 log(𝑛)), there exists a set of nodes 𝑆 ⊂ 𝑉 where |𝑆| ≥ 𝑛−𝛽3|𝑇 |

such that every pair of nodes in 𝑆 can communicate reliably with each other by

invoking Π𝑟𝑎𝑛𝑑.

Note that at 𝑡 = Θ(𝑛) we get that the protocol works with probability 1− 2−Ω( 𝑛
log(𝑛))

which improves upon [18] which achieved 1− 2
−Ω

(︁
𝑛

log2(𝑛)

)︁
.

We now prove Theorem 3.

Part 1 of Theorem 3: Degree. The network constructed is of constant degree,

namely 𝐷 = 𝑑+ 11.

Part 2 of Theorem 3: Resilience. We now wish to argue that in the presence

of a set 𝑇 ⊂ 𝑉 of randomly corrupt nodes with |𝑇 | ≤ 𝛼3𝑛, there exists a set 𝑆 ⊂ 𝑉

with |𝑆| ≥ 𝑛 − 𝛽3|𝑇 | such that every pair of nodes in 𝑆 can communicate reliably
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with each other, for appropriately chosen universal constants 𝛼3, 𝛽3 to be determined

later. The proof proceeds as follows. Under these choices of 𝛼3, 𝛽3, we first show that

most committees must in fact contain less than an 𝛼2-fraction of corrupt nodes. In

such committees, Π𝑈𝑝𝑓𝑎𝑙 works successfully for all but an 𝜖 = 𝑂(𝛼2)-fraction of nodes

in that committee by Theorem 2. Call such committees as good committees. From

Theorem 2, in good committees there exists a set of privileged nodes of size at least

𝑠−𝑂(𝛼2𝑠) that can communicate reliably with each other.

We now consider nodes 𝐴, 𝐵 that wish to communicate with each other, and are

privileged nodes in good committees. Hence, all but an 𝜖-fraction of the nodes in

𝐶𝐴 (the committee containing 𝐴) receive 𝐴’s message correctly on executing Π𝑈𝑝𝑓𝑎𝑙.

On any execution of Π𝑒𝑑𝑔𝑒 between 𝐶𝐴 and another committee 𝐶 ′, all but at most

an 𝜖-fraction of the nodes in 𝐶 ′ receive the correct value. Now, if 𝐶 ′ is good, in the

execution of the Π𝑚𝑎𝑗 protocol in 𝐶 ′, all but at most a 𝜖 + 𝛼2 = 𝑂(𝛼2)-fraction of

the nodes begin with the correct value and Π𝑈𝑝𝑓𝑎𝑙 works successfully for all but an

𝜖-fraction of nodes. This ensures that as long as 𝜖 + 𝛼2 < 1/2, all but at most an

𝜖-fraction of the nodes compute the majority of the incoming messages correctly. In-

ductively, this would show that at the end of the emulation of the Π𝐵𝑢𝑡 protocol, all

but an 𝜖-fraction of the nodes in the committee containing 𝐵 receive 𝐴’s message

correctly and since 𝐶𝐵 is a good committee and 𝜖+𝛼2 < 1/2, 𝐵 receives 𝐴’s message

correctly as 𝐵 is privileged.

We now formalize this argument. We call a committee good if the fraction of corrupt

nodes in it is at most 𝛼2 and bad otherwise. Let 𝑇 ⊂ 𝑉 be a set of randomly corrupt

nodes with |𝑇 | = 𝑡 = 𝛼3𝑛 where 𝛼3 ≤ min{𝛼1, (𝛼2/𝑒)
2} where the constant 𝛼2 is from

Theorem 2.

Lemma 6. The probability that a committee is good is at least 1− (𝑡/𝑛)log log𝑛.
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Proof. The probability that a committee is bad is

Pr[A committee is bad] ≤
(︂

𝑠

𝛼2𝑠

)︂(︂
𝑡

𝑛

)︂𝛼2𝑠

≤
(︂

𝑒𝑠

𝛼2𝑠

)︂𝛼2𝑠(︂ 𝑡

𝑛

)︂𝛼2𝑠

≤
(︂

𝑒𝑡

𝛼2𝑛

)︂𝛼2𝑠

Taking 𝛼3 ≤ (𝛼2/𝑒)
2 which implies 𝑒𝛼3

𝛼2
≤ √𝛼3, i.e., 𝑒𝑡

𝛼2𝑛
≤
√︁

𝑡
𝑛
, we get

Pr[A committee is bad] ≤
(︂
𝑡

𝑛

)︂𝛼2𝑠
2

≤
(︂
𝑡

𝑛

)︂log log(𝑛)

as 𝑠 = (2/𝛼2) log log(𝑛).

Lemma 7. The number of bad committees is at most 𝑡/𝑠
log(𝑛)

with probability at least

1− (𝑡/𝑛)𝛼2𝑡/(4 log(𝑛)).

Proof. Let 𝜁 = (𝑡/𝑛)log log𝑛. Note that

1/
√︀
𝜁 = (𝑡/𝑛)− log log𝑛/2

= (1/𝛼3)
log log𝑛/2

= (1/𝛼3)(1/𝛼3)
log log𝑛/2−1

≥ (1/𝛼3) · (8)log log𝑛/2−1

= (1/𝛼3) · 21.5 log log𝑛−3

≫ (1/𝛼3) · 2log log𝑛+log2(𝑒)

= (1/𝛼3) · 𝑒 log(𝑛) = 𝑒𝑛 log(𝑛)/𝑡 (3.1)
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The probability that the number of bad committees is more than 𝑡/𝑠
log(𝑛)

is

≤
(︂

𝑛/𝑠

𝑡/(𝑠 log(𝑛))

)︂
𝜁𝑡/(𝑠 log(𝑛))

≤
(︂

𝑒𝑛/𝑠

𝑡/(𝑠 log(𝑛))

)︂𝑡/(𝑠 log(𝑛))

𝜁𝑡/(𝑠 log(𝑛))

=

(︂
𝜁 · 𝑒𝑛 log(𝑛)

𝑡

)︂𝑡/(𝑠 log(𝑛))

≤
(︁√︀

𝜁
)︁𝑡/(𝑠 log(𝑛))

from (3.1)

=

(︂
𝑡

𝑛

)︂ log log(𝑛)𝑡
2𝑠 log(𝑛)

=

(︂
𝑡

𝑛

)︂ 𝛼2𝑡
4 log(𝑛)

= (𝑡/𝑛)𝛼2𝑡/(4 log(𝑛))

We have that if 𝐶 is a good committee with 𝑡′ ≤ 𝛼2𝑠 corrupt nodes, from Theorem

2, there exists a set 𝑆𝐶 (privileged nodes) of at least 𝑠 − 𝛽2𝑡
′ nodes in 𝐶 that can

communicate reliably with each other. We say that a committee holds value 𝑣 if all

the privileged nodes in the committee hold value 𝑣.

Lemma 8. If 𝐶 and 𝐶 ′ are good committees connected by an edge in 𝐺𝐵𝑢𝑡 and if 𝐶

holds value 𝑣, after invoking Π𝑒𝑑𝑔𝑒 and Π𝑚𝑎𝑗, 𝐶 ′ holds value 𝑣.

Proof. Since 𝐶 holds value 𝑣, at least 𝑠− 𝛽2𝛼2𝑠 nodes in 𝐶 ′ receive the value 𝑣 after

invoking Π𝑒𝑑𝑔𝑒. Since 𝐶 ′ is good at most 𝛼2𝑠 nodes in 𝐶 ′ are corrupt. Hence, at

least 𝑠 − (𝛽2 + 1)𝛼2𝑠 nodes in 𝐶 ′ begin with the value 𝑣 while invoking Π𝑚𝑎𝑗 in 𝐶 ′.

Consider a node 𝑍 in the set 𝑆𝐶′ of privileged nodes in 𝐶 ′. As 𝐶 ′ is good, we have

|𝑆𝐶′| ≥ 𝑠 − 𝛽2𝛼2𝑠. Nodes in 𝑆𝐶′ receive messages reliably from each other. Out

of the messages received by 𝑍 from nodes in 𝑆𝐶′ during the execution of Π𝑚𝑎𝑗, at

most (𝛽2 + 1)𝛼2𝑠 may be unequal to 𝑣. The messages received by 𝑍 from the 𝛽2𝛼2𝑠

non-privileged nodes may not be equal to 𝑣. Still each node in 𝑆𝐶′ will receive at

least 𝑠 − (2𝛽2 + 1)𝛼2𝑠 copies of 𝑣. Hence, if (2𝛽2 + 1)𝛼2 < 1/2, the claim follows.
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We note from [122] that it is possible to take 𝛼2 = 1/72 and 𝛽2 = 6 which satisfies

(2𝛽2 + 1)𝛼2 < 1/2.

Considering the bad committees as corrupt nodes in 𝐺𝐵𝑢𝑡, there are at most 𝑡/𝑠
log𝑛

of

them with overwhelming probability by Lemma 7. From Theorem 1, there exists a

set of committees 𝑃 (privileged committees) that can communicate with each other

reliably.

Lemma 9. Let 𝐴 and 𝐵 be two nodes in privileged (good) committees 𝐶𝐴 ∈ 𝑃 and

𝐶𝐵 ∈ 𝑃 respectively. If 𝐴 ∈ 𝑆𝐶𝐴
and 𝐵 ∈ 𝑆𝐶𝐵

, then the above protocol guarantees

reliable message transmission from 𝐴 to 𝐵.

Proof. Note that if 𝐶𝐴 = 𝐶𝐵, we are done by Theorem 2 as 𝐴 and 𝐵 are privileged.

We consider the case 𝐶𝐴 ̸= 𝐶𝐵. Since 𝐴 ∈ 𝑆𝐶𝐴
, all nodes in 𝑆𝐶𝐴

receive 𝐴’s message,

𝑚, correctly and 𝐶𝐴 holds 𝑚. Since 𝐶𝐴, 𝐶𝐵 ∈ 𝑃 , after the invocation of Π𝐵𝑢𝑡, 𝐶𝐵

holds 𝑚. Since 𝐵 ∈ 𝑆𝐶𝐵
, it receives 𝑚 from each node in 𝑆𝐶′ . Hence 𝐵 will receive

at least 𝑠 − 𝛽2𝛼2𝑠 copies of 𝑣. If 𝛽2𝛼2 < 1/2, the claim follows. We note from [122]

that it is possible to take 𝛼2 = 1/72 and 𝛽2 = 6 which satisfies 𝛽2𝛼2 < 1/2.

Lemma 10. With probability 1− (𝑡/𝑛)𝛼2𝑡/(4 log(𝑛)), there exists a set of nodes 𝑆 ⊂ 𝑉

where |𝑆| ≥ 𝑛 − 𝛽3|𝑇 | such that every pair of nodes in 𝑆 can communicate reliably

with each other.

Proof. The set 𝑆 consists of nodes that are privileged nodes in privileged committees.

We have that the total number of committees is 𝑁𝐶 = 𝑛/𝑠. Let 𝑡𝐶 denote the number

of bad committees. Note that with probability at least 1−(𝑡/𝑛)𝛼2𝑡/(4 log(𝑛)), 𝑡𝐶 ≤ 𝑡/𝑠
log𝑛

.

Furthermore, since 𝑡 = 𝛼3𝑛 ≤ 𝛼1𝑛 (by the choice of 𝛼3 ≤ min{𝛼1, (𝛼2/𝑒)
2}), 𝑡𝐶 ≤

𝑡/𝑠
log𝑛
≤ 𝛼1 · 𝑛/𝑠

log𝑛
≤ 𝛼1 · 𝑁𝐶

log𝑁𝐶
. This implies that Theorem 1 is now applicable. From

Theorem 1, the number of unprivileged committees is bounded by 𝑂(𝑡𝐶 log 𝑡𝐶) =

𝑂(𝑡/𝑠). Thus, the number of nodes in unprivileged committees is bounded by 𝑠 ·

𝑂(𝑡/𝑠) = 𝑂(𝑡). Finally, we consider the unprivileged nodes in privileged committees.

Let 𝑡𝑖 denote the number of corrupt nodes in committee 𝐶𝑖 for 𝑖 ∈ [𝑛/𝑠]. The number
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of unprivileged nodes in privileged committees is upper bounded by

∑︁
𝑖

𝑂(𝑡𝑖) = 𝑂

(︃∑︁
𝑖

𝑡𝑖

)︃
= 𝑂(𝑡)

from Theorem 2. Thus, |𝑆| ≥ 𝑛− 𝛽3𝑡 for some constant 𝛽3.

This completes the proof of Theorem 3. We end this section with the following remark.

Let |𝑇 | = 𝑡. Note that in [35], the number of nodes that can communicate with each

other reliably is 𝑛 − 𝑡 − 𝑂(𝑡/ log 𝑛), that is, we give up at most 𝑂(𝑡/ log 𝑛) = 𝑜(𝑡)

nodes. We remark that this is not achievable in networks of constant degree even in

the random model. In an adversarial corruption setting, one can corrupt the neighbors

of 𝑂(𝑡/𝑑) nodes, and hence if 𝑑 = 𝑂(1), any protocol must give up 𝑂(𝑡) nodes. This

is true even in the random corruption model: a node has corrupt neighbors with some

constant probability if 𝑡 = 𝑂(𝑛) and hence any protocol must give up 𝑂(𝑡) nodes.

Similarly, in networks of log log 𝑛 degree, any protocol must give up 𝑂(𝑡/(log 𝑛)Θ(1))

nodes.
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3.4 Logarithmic degree Networks in the Worst-case

Model

In the worst-case model, the current best networks are those constructed by [35].

They construct a graph with degree 𝑑 = log𝑞 𝑛 for some fixed constant 𝑞 > 1, that is

resilient to 𝑡 = 𝑂(𝑛) adversarial corruptions. We show using a probabilistic argument

the existence of a network of degree 𝑂(log 𝑛) that is resilient to 𝑡 = 𝑂(𝑛) adversarial

corruptions. Furthermore, the probabilistic construction works with all but negligibly

small probability.

Our construction is also rather simple. and uses our network that is resilient to

random errors as a black box. This style of our argument provides further motivation

for studying the random corruption model, even if the ultimate goal is to be resilient

to adversarial corruptions.

Protocoled-Network Construction 3 (protocoled-network for worst-case

corruption model).

Graph: Our graph that is resistant to worst-case errors is 𝐺𝑤𝑐 = (𝑉,𝐸), where

𝑉 = [𝑛]. The edge set is as follows. Let {𝐺𝑖
𝑟𝑎𝑛𝑑}𝑖 = {(𝑉 𝑅

𝑖 , 𝐸𝑖)}𝑖 be our network,

𝐺𝑟𝑎𝑛𝑑, resilient to random corruptions on a randomly permutation 𝑉 𝑅
𝑖 of the

vertex set 𝑉 , for 1 ≤ 𝑖 ≤ 𝑧 , 𝑘 · log 𝑛 for 𝑘 = 40/𝛼2, where 𝛼2 is the constant

from Theorem 2. Define 𝐸 ,
⋃︀𝑧

𝑖=1𝐸𝑖.

Protocol: We now describe the communication protocol Π𝑤𝑐 over this network.

Let Π𝑖
𝑟𝑎𝑛𝑑 be the reliable transmission protocol associated with the network 𝐺𝑖

𝑟𝑎𝑛𝑑

as described in Definition 2, for each 1 ≤ 𝑖 ≤ 𝑧. Now, if a node 𝐴 wishes to

send a message 𝑚 to node 𝐵:

(a) 𝐴 will invoke the protocol Π𝑖
𝑟𝑎𝑛𝑑 to transmit the message 𝑚 to 𝐵 over the

network 𝐺𝑖
𝑟𝑎𝑛𝑑.

(b) 𝐵 receives 𝑧 messages, corresponding to the 𝑧 executions of Π𝑖
𝑟𝑎𝑛𝑑 for 1 ≤

𝑖 ≤ 𝑧. 𝐵 takes the majority of all these messages.
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We set out to prove the following theorem.

Theorem 4. For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑤𝑐 = (𝑉,𝐸),

a protocol Π𝑤𝑐 for message transmission on it, and constants 𝛼4 and 𝛽4, such that:

1. The network 𝐺𝑤𝑐 is of degree 𝑂(log 𝑛).

2. Π𝑤𝑐 is (𝛼4𝑛, 𝛽4𝑡/ log 𝑛)-resilient.

Part 1 of Theorem 4: Degree. The network constructed is of degree 𝑂(log 𝑛),

since the network is constructed using 𝑧 = 𝑂(log 𝑛) copies of the constant degree

network 𝐺𝑟𝑎𝑛𝑑 from Definition 2.

Part 2 of Theorem 4: Resilience. We proceed to prove resiliency of the protocol.

We will first consider an arbitrary fixed adversary 𝑇 ⊂ 𝑉 , estimate the probability of

resilience against it and finally perform a union bound over all adversaries. Consider

an arbitrary fixed adversary. We will say that the 𝑖𝑡ℎ layer is bad for this fixed

adversary if the conditions in Theorem 3 do not hold for 𝐺𝑖
𝑟𝑎𝑛𝑑. Correspondingly we

call a layer good for this adversary if the conditions in Theorem 3 hold. In Lemma

11, we prove that with high probability only at most (1/5)th of the layers are bad.

Consider a good layer 𝑖, for some 1 ≤ 𝑖 ≤ 𝑧. We define 𝐷𝑖 to be set of doomed

nodes in protocol Π𝑖
𝑟𝑎𝑛𝑑. By Theorem 3, |𝐷𝑖| ≤ 𝛽3|𝑇 |. For an arbitrary fixed ad-

versary, we will show that the set 𝐷𝑖 behaves as a small random set as a result of

permuting the vertex set 𝑉 to obtain 𝑉 𝑅
𝑖 over which 𝐺𝑖

𝑟𝑎𝑛𝑑 is constructed. For any

honest node 𝑣 ∈ 𝑉 , let 𝐿𝐷
𝑣 denote the set of all good layers 𝑖 such that 𝑣 ∈ 𝐷𝑖, that

is, 𝑣 is doomed in layer 𝑖. We will finally show that, with high probability, for most

nodes 𝑣, |𝐿𝐷
𝑣 | is small.

To wrap up the proof, we designate a node 𝑣 ∈ 𝑉 as doomed for Π𝑤𝑐 with respect

to this fixed adversary if |𝐿𝐷
𝑣 | > (1/10)𝑧. Consider a pair of privileged nodes (nodes

that are honest and not designated as doomed for Π𝑤𝑐) 𝐴,𝐵 ∈ 𝑉 . Since, with high

probability, at most (1/5)th of the layers are bad and, by definition, 𝐴,𝐵 are doomed
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in at most (1/10)th of the good layers, 𝐴,𝐵 are both privileged in at least (3/5)th

of the good layers with respect to this adversary. Hence a majority of the messages

sent by 𝐴 in Π𝑤𝑐 reach 𝐵 correctly and 𝐵’s majority is computed correctly. By our

earlier claim, with high probability, the number of doomed nodes is small, that is,

most nodes are privileged and can hence communicate reliably in the presence of this

fixed adversary with high probability. Performing a union bound over all possible

adversaries, we get our final result.

We now formalize this argument. Let 𝑇 ⊂ 𝑉 be an arbitrary set of corrupt nodes

with |𝑇 | = 𝑡 = 𝛼4𝑛 where 𝛼4 ≤ min{𝛼3, 1/10,
1

114/3𝑒3/2𝛽
4/3
3

≈ 0.01

𝛽
4/3
3

} where the constant

𝛼3 is from Theorem 3.

Lemma 11. For a fixed adversary, with probability at least 1− 𝑛
32
𝛼2 ·
(︀
𝑛
𝑡

)︀−2𝑡, at most

𝛿 = 1
5

fraction of the layers are bad.

Proof. Note that the 𝑖th layer is constructing by randomly and independently permut-

ing the vertex set 𝑉 to obtain 𝑉 𝑅
𝑖 over which 𝐺𝑖

𝑟𝑎𝑛𝑑 is constructed. This is equivalent

to constructing 𝐺𝑖
𝑟𝑎𝑛𝑑 over 𝑉 and thinking of the adversary as being a random subset

of 𝑉 of size |𝑇 |. This enables to apply Theorem 3. By Theorem 3, for a fixed ad-

versary, the 𝑖th layer is bad independently with probability ≤ (𝑡/𝑛)𝛼2𝑡/(4 log𝑛). So the
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probability that 𝛿𝑧 out of the 𝑧 layers are bad is

Pr[𝛿𝑧 out of the 𝑧 layers are bad] ≤
(︂
𝑧

𝛿𝑧

)︂(︃(︂
𝑡

𝑛

)︂𝛼2𝑡/(4 log𝑛)
)︃𝛿𝑧

≤
(︁𝑒𝑧
𝛿𝑧

)︁𝛿𝑧(︃(︂ 𝑡

𝑛

)︂𝛼2𝑡/(4 log𝑛)
)︃𝛿𝑘 log𝑛

=
(︁𝑒
𝛿

)︁𝛿𝑘 log𝑛
(︃(︂

𝑡

𝑛

)︂𝛼2𝑡/4
)︃ 8

𝛼2

= (5𝑒)(8/𝛼2)·log𝑛
(︂
𝑡

𝑛

)︂2𝑡

= (5𝑒)(8/𝛼2)·log𝑛
(︁𝑛
𝑡

)︁−2𝑡

= 𝑛(8/𝛼2)·log(5𝑒)
(︁𝑛
𝑡

)︁−2𝑡

≤ 𝑛32/𝛼2 ·
(︁𝑛
𝑡

)︁−2𝑡

Lemma 12. For a fixed adversary and a fixed layer 𝑖, the probability that 𝐷𝑖 = 𝑆 ⊂

𝑉 ∖ 𝑇 only depends on |𝑆|.

Proof. Consider a fixed adversary and a fixed layer 𝑖. Let 𝜋𝑖 be a permutation of 𝑉

and let 𝜋𝑖(𝑉 ) = 𝑉 𝑅
𝑖 . Also, let 𝜋𝑖(𝑇 ) = 𝑇𝑅

𝑖 . Let 𝐷𝑅
𝑖 ⊂ 𝑉 𝑅

𝑖 ∖ 𝑇𝑅
𝑖 be the doomed nodes

in 𝑉 𝑅
𝑖 with respect to this adversary. Note that 𝐷𝑅

𝑖 is fixed by the choice of 𝑇𝑅
𝑖 , or

equivalently, by the choice of 𝜋𝑖(𝑇 ). Let 𝐷𝑖 ⊂ 𝑉 ∖ 𝑇 be the set of doomed nodes in

𝑉 . Note that 𝜋𝑖(𝐷𝑖) = 𝐷𝑅
𝑖 . By symmetry, for any two subsets 𝑆1, 𝑆2 ⊂ 𝑉 ∖ 𝑇 with

|𝑆1| = |𝑆2| = |𝐷𝑅
𝑖 |, the number of permutations 𝜋 such that:

∙ 𝜋(𝑇 ) = 𝑇𝑅
𝑖 and 𝜋(𝑆1) = 𝐷𝑅

𝑖

∙ 𝜋(𝑇 ) = 𝑇𝑅
𝑖 and 𝜋(𝑆2) = 𝐷𝑅

𝑖

is the same, and is equal to the number of permutations of the remaining |𝑉 | − |𝑇 | −

|𝐷𝑅
𝑖 | nodes. Hence, the probability that 𝐷𝑖 = 𝑆 ⊂ 𝑉 ∖ 𝑇 only depends on |𝑆|.

For a fixed adversary and a fixed honest node 𝑣 ∈ 𝑉 ∖ 𝑇 , let 𝐿𝐷
𝑣 denote the set of

all good layers 𝑖 such that 𝑣 ∈ 𝐷𝑖, that is, 𝑣 is doomed in layer 𝑖.
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Lemma 13. For a fixed adversary, with probability 1−
(︀
11𝑒𝛽3𝑡

𝑛

)︀8𝑡
, the number of honest

nodes 𝑣 such that |𝐿𝐷
𝑣 | ≥ 𝑧/10 is at most 𝛽4𝑡/ log 𝑛 (𝛽4 = 2𝛼2).

Proof. Let layer 𝑖 be good. This implies that |𝐷𝑖| ≤ 𝛽3𝑡 by Theorem 3. Without loss

of generality we can assume that |𝐷𝑖| = 𝛽3𝑡 as more doomed nodes is worse for us.

Let 𝑣 be an arbitrary honest node. By Lemma 12,

Pr[𝑣 ∈ 𝐷𝑖] =
𝛽3𝑡

𝑛− 𝑡

as all subsets of honest nodes of size 𝛽3𝑡 are equally likely and the number of honest

nodes is 𝑛− 𝑡.

As all layers are sampled independently, we have

Pr[|𝐿𝐷
𝑣 | ≥ 𝑧/10] ≤

(︂
𝑧

𝑧/10

)︂(︂
𝛽3𝑡

𝑛− 𝑡

)︂𝑧/10

≤
(︂

𝑒𝑧

𝑧/10

)︂𝑧/10(︂
𝛽3𝑡

𝑛− 𝑡

)︂𝑧/10

≤
(︂
10𝑒𝛽3𝑡

𝑛− 𝑡

)︂𝑧/10

≤
(︂
11𝑒𝛽3𝑡

𝑛

)︂𝑧/10

where the last inequality follows from 𝑡 ≤ 𝑛/10.

Let 𝑢, 𝑣 be two honest nodes. We have that Pr[𝑣 ∈ 𝐷𝑖] =
𝛽3𝑡
𝑛−𝑡

, while Pr[𝑢 ∈ 𝐷𝑖|𝑣 ∈

𝐷𝑖] =
𝛽3𝑡−1
𝑛−𝑡−1

< 𝛽3𝑡
𝑛−𝑡

. Hence the events 𝑢 ∈ 𝐷𝑖 and 𝑣 ∈ 𝐷𝑖 are anti-correlated. This

implies that |𝐿𝐷
𝑣 | ≥ 𝑧/10 and |𝐿𝐷

𝑢 | ≥ 𝑧/10 are also anti-correlated. As we want to

upper bound the number of nodes 𝐴 which satisfy |𝐿𝐷
𝐴 | ≥ 𝑧/10, we can assume that

the events |𝐿𝐷
𝑣 | ≥ 𝑧/10 and |𝐿𝐷

𝑢 | ≥ 𝑧/10 are independent.

The probability that for more than 𝛽4𝑡/ log 𝑛 honest nodes |𝐿𝐷
𝑣 | ≥ 𝑧/10 with 𝛽4 =
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𝛼2/2 is

Pr
[︀
For more than 𝑡/ log 𝑛 honest nodes, |𝐿𝐷

𝑣 | ≥ 𝑧/10
]︀
≤

(︃(︂
11𝑒𝛽3𝑡

𝑛

)︂𝑧/10
)︃𝛽4𝑡/ log𝑛

=

(︂
11𝑒𝛽3𝑡

𝑛

)︂𝑘𝛽4𝑡/10

=

(︂
11𝑒𝛽3𝑡

𝑛

)︂4𝛽4𝑡/𝛼2

=

(︂
11𝑒𝛽3𝑡

𝑛

)︂8𝑡

We now prove Theorem 4.

Proof of Theorem 4. For a fixed adversary 𝒜, let 𝐸𝒜
1 be the event that less than 𝑧/5

of the layers are bad. Then by Lemma 11, Pr[𝐸𝒜
1 ] ≥ 1− 𝑛

32
𝛼2 ·

(︀
𝑛
𝑡

)︀−2𝑡. Let 𝐸1 be the

event that 𝐸𝒜
1 holds for all adversaries 𝒜 with 𝑡 corruptions. By a union bound over

all such adversaries,

Pr[𝐸1] ≥ 1−
(︂
𝑛

𝑡

)︂
· 𝑛

32
𝛼2 ·

(︁𝑛
𝑡

)︁−2𝑡

≥ 1−
(︁𝑒𝑛

𝑡

)︁𝑡
·
(︁𝑛
𝑡

)︁−2𝑡

· 𝑛
32
𝛼2

= 1−
(︂
𝑒𝑡

𝑛

)︂𝑡

· 𝑛
32
𝛼2

≥ 1−
(︂
𝑡

𝑛

)︂.5𝑡

· 𝑛
32
𝛼2 As 𝑡 = 𝑛/10 which implies 𝑒 ≤

√︂
𝑛

𝑡

≥ 1− 1/𝑛𝜔(1) [For 𝑡 = 𝜔(1)]3

Let 𝐸𝒜
2 be the event that the number of honest nodes 𝑣 such that |𝐿𝐷

𝑣 | ≥ 𝑧/10 is

at most 𝛽4𝑡/ log 𝑛. Then by Lemma 13 for a fixed adversaryPr[𝐸𝒜
2 ] ≥ 1−

(︀
11𝑒𝛽3𝑡

𝑛

)︀8𝑡
.

Let 𝐸2 be the event that 𝐸𝒜
2 holds for all adversaries 𝒜 with 𝑡 corruptions. By a
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union bound over all such adversaries,

Pr[𝐸2] ≥ 1−
(︂
𝑛

𝑡

)︂(︂
11𝑒𝛽3𝑡

𝑛

)︂8𝑡

≥ 1−
(︁𝑒𝑛

𝑡

)︁𝑡
·
(︂
11𝑒𝛽3𝑡

𝑛

)︂8𝑡

≥ 1−
(︂
118 · 𝑒9 · 𝛽8

3 · 𝑡7

𝑛7

)︂𝑡

≥ 1−
(︂
𝑡

𝑛

)︂𝑡

As 𝑡 ≤ 𝑛

114/3𝑒3/2𝛽
4/3
3

≥ 1− 1/𝑛𝜔(1) [For 𝑡 = 𝜔(1)]

Hence by union bound Pr[𝐸1 ∧ 𝐸2] ≥ 1− 1/𝑛𝜔(1) − 1/𝑛𝜔(1) = 1− 1/𝑛𝜔(1).

𝐸1 implies that for any adversary ≤ 1/5 fraction of the layers are bad. 𝐸2 implies

that for any adversary there exists a set of honest nodes 𝑆, |𝑆| ≥ 𝑛 − 𝑡 − 𝛽4𝑡 log 𝑛

such that for all 𝑣 ∈ 𝑆, |𝐿𝐷
𝑣 | ≤ 𝑧/10. Hence for any two nodes 𝐴,𝐵 ∈ 𝑆 they are

both privileged in at least 1− 1/5− 1/10− 1/10 > 1/2 fraction of the layers. Hence

the message from 𝐴 to 𝐵 will be correctly delivered on > 1/2 fraction of the layers

hence 𝐵 will find the correct message after taking majority. The set 𝑆 behaves as the

privileged set for the network 𝐺𝑤𝑐,Π𝑤𝑐.
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3.5 Low-work Protocols in the Worst-case Model

In this section, we will design low degree graphs with efficient communication pro-

tocols for AE reliable message transmission. Our final networks are constructed by

composing several simpler graph structures. An important graph that our work builds

on is [54]’s butterfly network. The diameter of a graph is a fundamental lower bound

on the amount of work required for message transmission. Any graph with constant

degree will necessarily have work complexity Ω(log 𝑛). Thus, the logarithmic diame-

ter of the butterfly network is optimal up to constant factors. Since the diameter is a

fundamental lower bound on the work complexity of point to point transmissions in a

network, we think of a polynomial work complexity in the diameter—polylogarithmic

work complexity—as a reasonable definition for work-efficient in this context. [54]’s

protocol which requires Ω(𝑛) work complexity for a single point to point message

transmission is thereby work-inefficient. Another weakness of [54]’s protocol, is that

it floods the network, and thus nearly every node in the network is necessarily in-

volved in every point to point message transmission. It would aid both efficiency and

parallelizability of higher level protocols to significanlty limit the number of nodes

used for a point to point transmission.

We make simple modifications to [54]’s ideas to achieve a work-efficient protocol

that requires only polylogarithmically many nodes to be active in any point to point

communication in this section. Our main observation is that a 𝑢 to 𝑣 transmission

over the Butterfly network need not flood all Θ(𝑛/ log 𝑛) paths in the network to

ensure reliable transmission. In fact, we show that picking a set of just Θ(log 𝑛)

paths between every pair of vertices, and sending the message only over those paths

suffices. This reduces both the number of nodes used per point to point transmission

and total work to 𝑂(log2 𝑛).

Protocoled-Network Construction 4 (work-efficient Butterfly protocoled-net-

work). The efficient Butterfly protocoled-network 𝑁𝐸𝑓𝑓 = (𝐺𝐵𝑢𝑡,Π𝐸𝑓𝑓 ) is as follows:

Graph: We use the Butterfly graph 𝐺𝐵𝑢𝑡 = (𝑉,𝐸) as defined in Definition 1

such that |𝑉 | = 𝑛 = 𝑚2𝑚. For every pair 𝑢, 𝑣 of distinct vertices in 𝑉 , there
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exists a set of paths 𝑃𝑢,𝑣 as defined in Definition 1 between 𝑢 and 𝑣. Let 𝑄𝑢,𝑣

be a random subset of 𝑃𝑢,𝑣 of size Θ(log 𝑛). The subset 𝑄𝑢,𝑣 is sampled before

the protocol and is fixed, in particular it is known to all the nodes as well as the

adversary.

Protocol: The message transmission protocol Π𝐸𝑓𝑓 from 𝑢 to 𝑣 in 𝐺𝐸𝑓𝑓 is as

follows: 𝑢 sends the message along all paths in 𝑄𝑢,𝑣, 𝑣 receives all the messages

and takes majority.

We set out to prove the following theorem.

Theorem 5. For the 𝑛 = 𝑚2𝑚-node network 𝐺𝐵𝑢𝑡 = (𝑉,𝐸) there is a protocol Π*
𝐸𝑓𝑓

for message transmission on it such that the following holds:

1. The network 𝐺𝐵𝑢𝑡 has degree 11.

2. The total work of the protocol is 𝑂(polylog(𝑛)).

3. There is a constant 𝜀 ∈ (0, 1) such that Π*
𝐸𝑓𝑓 is (𝜀𝑛/ log 𝑛,𝑂(𝑡 log 𝑡))-resilient.

In proving Theorem 5, we will need the following lemma.

Lemma 14. For the 𝑛 = 𝑚2𝑚-node network 𝐺𝐵𝑢𝑡 = (𝑉,𝐸) and the protocol Π𝐸𝑓𝑓

for message transmission on it the following statements hold:

1. The network 𝐺𝐵𝑢𝑡 has degree 11.

2. The total work is 𝑂(polylog(𝑛)).

3. There is a constant 𝜀 ∈ (0, 1) such that Π𝐸𝑓𝑓 is (𝜀𝑛/ log 𝑛,𝑂(𝑡 log 𝑡))-resilient

with probability 1− 𝑜(1).

Proof. It is clear that the degree of the network is 11 and that the work complexity

in the protocol are 𝑂(polylog(𝑛)) as we send Θ(log 𝑛) messages on paths of length

Θ(log 𝑛).

We now prove the resilience guarantee. Consider any fixed subset 𝑇 ⊂ 𝑉 with

𝑡 = |𝑇 | ≤ 𝛼1𝑛/ log 𝑛, where 𝛼1 is that of Theorem 1. By Theorem 1, we know that

90



there is a set 𝑉 ′ of size 𝑛 − 𝛽1𝑡 log 𝑡 that can communicate reliably with each other

by invoking Π𝐵𝑢𝑡. For any pair of vertices 𝑢, 𝑣 ∈ 𝑉 ′, we let 𝑃𝑢,𝑣 be the set of paths

used in message transmissions from 𝑢 to 𝑣 by protocol Π𝐵𝑢𝑡. By Theorem 1 property

(3) we know that at least a 2/3 fraction of the paths in each 𝑃𝑢,𝑣 contain no corrupt

node. We will assume that exactly 2/3 fraction of the paths in each 𝑃𝑢,𝑣 contain no

corrupt node as that is only worse for us. If a message is sent through a path with

no corrupt nodes, the correct message reaches 𝑣. Let 𝑄𝑢,𝑣 be a random sample of

ℎ = 144 log𝑒(𝑛) ≈ 100 log 𝑛 paths from 𝑃𝑢,𝑣. The protocol Π𝐸𝑓𝑓 sends a message from

𝑢 to 𝑣 as follows:

1. 𝑢 sends the message along all the paths 𝑄𝑢,𝑣,

2. 𝑣 receives all ℎ messages that were sent along the paths in 𝑄𝑢,𝑣 and takes the

majority.

We now argue when this majority will be the correct message with high probability.

Fix two nodes 𝑢, 𝑣 ∈ 𝑉 ′ and fix an adversary (the subset of corrupted nodes). We

look at the paths 𝑄𝑢,𝑣 in a communication from 𝑢 to 𝑣. The expected number of

paths, 𝜇, in 𝑄𝑢,𝑣 with a corrupted node is 𝜇 = ℎ/3. So, we define 𝛿 = 1/2
1/3
− 1 and by

the Chernoff bound from Equation 2.1, the probability that a majority of the paths

𝑄𝑢,𝑣 contain a corrupt node is:

Pr[majority of paths 𝑄𝑢,𝑣 are incorrect] ≤ 𝑒−𝛿2𝜇/3

≤ 𝑒−(1/2)2·(ℎ/9)

[As 𝛿 =
1/2

1/3
− 1 and 𝜇 = ℎ/3]

= 𝑒−ℎ/36

= 𝑒−4 log𝑒(𝑛)

= 1/𝑛4

We call a pair of vertices {𝑢, 𝑣} a doomed-pair if a majority of paths between them

contain a corrupt node. For a fixed adversary, the probability that there are more
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than 𝑔 doomed-pairs is bounded above by

(︂
𝑛2

𝑔

)︂(︂
1

𝑛4

)︂𝑔

≤
(︂
𝑒𝑛2

𝑔

)︂𝑔 (︂
1

𝑛4

)︂𝑔

<
(︁ 𝑒

𝑛2

)︁𝑔
since the probability of pair corruptions is independent conditioned on the adversary.

To show that the construction works for an adversarially chosen set of corruptions, we

take a union bound over all adversaries. The probability that there is an adversary

with 𝑡 corruptions for which the number of doomed-pairs is at least 𝑔 is bounded

above by: (︂
𝑛

𝑡

)︂(︁ 𝑒

𝑛2

)︁𝑔
Setting 𝑔 = 𝑡 we get

(︀
𝑛
𝑡

)︀ (︀
𝑒
𝑛2

)︀𝑔 ≤ (︀ 𝑒𝑛
𝑡

)︀𝑡 (︀ 𝑒
𝑛2

)︀𝑡 ≤ (︁ 𝑒2

𝑛

)︁𝑡
= 𝑜(1). Hence the number of

doomed-pairs 𝑢, 𝑣 ∈ 𝑉 ′ is ≤ 𝑡 with probability 1− 𝑜(1). Let 𝑆 be the set of vertices

𝑣 ∈ 𝑉 ′ which are not in any doomed-pair. The set 𝑆 is privileged for 𝑁𝑒𝑓𝑓 as for any

𝐴,𝐵 ∈ 𝑆 the majority of paths 𝑄𝐴,𝐵 have no corrupt nodes and hence 𝐵 decodes

the correct message by taking majority. As with probability 1 − 𝑜(1) the number of

doomed-pairs is ≤ 𝑡 which implies that number of nodes in any doomed-pair is ≤ 2𝑡.

Hence |𝑆| ≥ |𝑉 ′| − 2𝑡 with probability 1 − 𝑜(1). By Theorem 1, |𝑉 ′| ≥ 𝑛 − 𝛽1𝑡 log 𝑡

hence |𝑆| ≥ 𝑛−(𝛽1+2)𝑡 log 𝑡 with probability 1−𝑜(1) which implies that the number

of doomed nodes is 𝑂(𝑡 log 𝑡).

Lemma 14 shows that the network 𝑁𝐸𝑓𝑓 = (𝐺𝐵𝑢𝑡,Π𝐸𝑓𝑓 ) satisfies resilience only

with high probability - not deterministically. We now show, via the probabilistic

method, that the resilience guarantee can be made deterministic; yet we state it ex-

plicitly, because this is the protocol that we use to enable our main theorem.

Proof of Theorem 5. Since Lemma 14 holds with probability greater than 0, and the

randomness is just over the protocol Π𝐸𝑓𝑓 , there is some specific protocol Π*
𝐸𝑓𝑓 in the

support of Π𝐸𝑓𝑓 that has properties (1-3).
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3.5.1 Resilient and Efficient Networks

We now show how to modularly substitute-in our work-efficient protocol on the But-

terfly network, in order to get work-efficient versions of Theorems 3 and 4. The high

level idea is simple. The protocol Π𝑟𝑎𝑛𝑑 uses Π𝐵𝑢𝑡 as a blackbox, and the protocol

Π𝑤𝑐 uses a Π𝑟𝑎𝑛𝑑 as a blackbox. Substituting the efficient protocol Π*
𝐸𝑓𝑓 in for Π𝐵𝑢𝑡

into Π𝑟𝑎𝑛𝑑 creates an efficient version of Π𝑟𝑎𝑛𝑑, which we call Π𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 below; and sub-

stituting Π𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 into Π𝑤𝑐 creates an efficient version of Π𝑤𝑐, which we call Π𝑤𝑐,𝑒𝑓𝑓

below. We describe the details of these subsitutions in the following theorems.

We substitute Π*
𝐸𝑓𝑓 in for Π𝐵𝑢𝑡 in Π𝑟𝑎𝑛𝑑 to strengthen Theorem 3 to the following:

Theorem 6. For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑟𝑎𝑛𝑑 = (𝑉,𝐸),

a protocol Π𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 for message transmission on it, and constants 𝛼3 and 𝛽3, such

that:

1. The network 𝐺𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 is of constant degree.

2. The Work complexity of Π𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 is 𝑂(polylog(𝑛)).

3. If a subset of nodes 𝑇 ⊂ 𝑉 is randomly corrupt, where |𝑇 | ≤ 𝛼3𝑛, with probabil-

ity 1− (𝑡/𝑛)𝛼2𝑡/(4 log(𝑛)), there exists a set of nodes 𝑆 ⊂ 𝑉 where |𝑆| ≥ 𝑛−𝛽3|𝑇 |

such that every pair of nodes in 𝑆 can communicate reliably with each other by

invoking Π𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 .

Proof. In Theorem 3 we note that work done inside a single committee was expo-

nential in the size of the committee as we instantiate 𝐺𝑈𝑝𝑓𝑎𝑙 (from Theorem 2) in-

side every committee. But as the size of the committee is 𝑠 = 𝑂(log log(𝑛)) this

is only 𝑂(polylog(𝑛)). Thinking of committees as super-nodes we had instantiated

𝐺𝐵𝑢𝑡 over super-nodes. The total number of super-nodes used in a single message

transmission was Ω(𝑛/𝑠) as we have 𝑛/𝑠 super-nodes. By using Π𝑒𝑓𝑓 instead of

Π𝐵𝑢𝑡 we can bring this down to polylog(𝑛/𝑠) ≤ polylog(𝑛), Sending a single mes-

sage from a super-node to its neighbor requires running 𝐺𝑈𝑝𝑓𝑎𝑙 inside the committee

which takes 𝑂(polylog(𝑛)) work. Thus the total work is 𝑂(polylog(𝑛) ·polylog(𝑛)) =

𝑂(polylog(𝑛)).

93



Finally, we substitute Π*
𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 in for Π𝑟𝑎𝑛𝑑 in Π𝑤𝑐 to strengthen Theorem 4 to

our main theorem:

Theorem 7. For sufficiently large 𝑛, there exists an 𝑛-node network 𝐺𝑤𝑐 = (𝑉,𝐸),

a protocol Π𝑤𝑐,𝑒𝑓𝑓 for message transmission on it, and constants 𝛼 and 𝛽, such that:

1. The network 𝐺𝑤𝑐 is of degree 𝑂(log 𝑛).

2. The Work complexity of Π𝑤𝑐,𝑒𝑓𝑓 is 𝑂(polylog(𝑛)).

3. Π𝑤𝑐,𝑒𝑓𝑓 is (𝛼𝑛, 𝛽𝑡/ log 𝑛)-resilient.

Proof. The protocol Π𝑤𝑐 uses Π𝑟𝑎𝑛𝑑 as a blackbox 𝑂(log 𝑛) times, one for each layer.

We substitute Π𝑟𝑎𝑛𝑑 with Π𝑟𝑎𝑛𝑑,𝑒𝑓𝑓 . This brings down the work complexity to 𝑂(log 𝑛·

polylog𝑛) = polylog𝑛.
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Chapter 4

Infrastructure for Secure

Computation

We propose an infrastructure for secure multiparty computation (MPC) based on obliv-

ious transfer (OT), which would consist of OT channels between some pairs of par-

ties in the network. We devise information-theoretically secure protocols that allow

additional pairs of parties to establish secure OT correlations using the help of other

parties in the network in the presence of a dishonest majority. Our main technical

contribution is an upper bound that matches a lower bound of Harnik, Ishai, and

Kushilevitz (Crypto 2007), who studied the number of OT channels necessary and

sufficient for MPC. In particular, we characterize which n-party OT graphs 𝐺 allow

𝑡-secure computation of OT correlations between all pairs of parties, showing that this

is possible if and only if the complement of 𝐺 does not contain the complete bipartite

graph 𝐾𝑛−𝑡,𝑛−𝑡 as a subgraph.

The results presented in this chapter also appear in a joint work with Ranjit Kumare-

san and Adam Sealfon [96].

95



4.1 Preliminaries

4.1.1 Graphs: Unsplittability

All graphs addressed in this chapter are undirected. We denote a graph as 𝐺 = (𝑉,𝐸)

where 𝑉 is a set of vertices and 𝐸 is a set of edges. We denote an edge 𝑒 as 𝑒 = {𝑣1, 𝑣2},

where 𝑣1, 𝑣2 ∈ 𝑉 .

For 𝑛 ∈ N, let 𝐾𝑛 denote the complete graph on 𝑛 vertices. Let Λ𝑠
𝑎 denote the

graph 𝐺 = (𝑉,𝐸) on 2𝑎+ 𝑠 vertices with 𝑉 = 𝑉𝐴

⋃̇︀
𝑉𝑆

⋃̇︀
𝑉𝐵, where |𝑉𝐴| = |𝑉𝐵| = 𝑎

and |𝑉𝑆| = 𝑠, and

𝐸 = {{𝑣1, 𝑣2} : 𝑣1 ̸∈ 𝑉𝐴 ∨ 𝑣2 ̸∈ 𝑉𝐵}

We will sometimes consider subgraphs of Λ𝑠
𝑎 which preserve labels of vertices. In this

case we will always label the vertices so that vertex 𝐴 ∈ 𝑉𝐴 and vertex 𝐵 ∈ 𝑉𝐵.

For two graphs 𝐺1 = (𝑉,𝐸1) and 𝐺2 = (𝑉,𝐸2) with the same vertex set 𝑉 ,

we say that 𝐺1 and 𝐺2 are (𝑣1, . . . , 𝑣ℓ)-isomorphic, denoted by 𝐺1 ≃𝑣1,...,𝑣ℓ 𝐺2, if

the two graphs are isomorphic to one another while fixing the labelings of vertices

𝑣1, . . . , 𝑣ℓ ∈ 𝑉 , that is, there exists an map 𝜎 such that 𝜎(𝑣𝑖) = 𝑣𝑖 for all 𝑖 ∈ [ℓ].

Similarly, given graphs 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) with 𝑉1 ⊆ 𝑉2 and

𝑣1, . . . , 𝑣ℓ ∈ 𝑉1, we say that 𝐺1 is a (𝑣1, . . . , 𝑣ℓ)-subgraph of 𝐺2, denoted 𝐺1 ⊆𝑣1,...,𝑣ℓ 𝐺2,

if 𝐺1 is (𝑣1, . . . , 𝑣ℓ)-isomorphic to some subgraph of 𝐺2.

In particular, in the special case that graph 𝐺 = (𝑉,𝐸) contains vertices 𝐴,𝐵 ∈

𝑉 , we say that 𝐺 is an (𝐴,𝐵)-subgraph of Λ𝑠
𝑎 (or that 𝐺 ⊆𝐴,𝐵 Λ𝑠

𝑎) if there is an

isomorphism 𝜎 between 𝐺 and a subgraph of Λ𝑠
𝑎 such that 𝐴 is mapped into set 𝑉𝐴

and 𝐵 is mapped into set 𝑉𝐵 (that is, 𝜎(𝐴) ∈ 𝑉𝐴 and 𝜎(𝐵) ∈ 𝑉𝐵).

Call an 𝑛-vertex graph 𝐺 = (𝑉,𝐸) 𝑘-unsplittable for 𝑘 ≤ 𝑛/2 if any two disjoint

sets of 𝑘 vertices have some edge between them. That is, 𝐺 is 𝑘-unsplittable if for all

partitions of the vertices 𝑉 into three disjoint sets 𝑉1, 𝑉2, 𝑉3 of sizes |𝑉1| = |𝑉2| = 𝑘

and |𝑉3| = 𝑛 − 2𝑘, there exists some edge (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2. It is

immediate from this definition that 𝐺 is 𝑘-unsplittable if and only if 𝐺 ̸⊆ Λ𝑛−2𝑘
𝑘 .

Similarly, call 𝐺 (𝑘,𝐴,𝐵)-unsplittable for 𝑘 ≤ 𝑛/2 and 𝐴,𝐵 ∈ 𝑉 if any two disjoint
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sets of 𝑘 vertices containing 𝐴 and 𝐵, respectively, have some edge between them.

That is, 𝐺 is (𝑘,𝐴,𝐵)-unsplittable if for all partitions of the vertices of 𝑉 into three

disjoint sets 𝑉1, 𝑉2, 𝑉3 of sizes |𝑉1| = |𝑉2| = 𝑘 and |𝑉3| = 𝑛− 2𝑘 such that 𝐴 ∈ 𝑉1 and

𝐵 ∈ 𝑉2, there exists some edge (𝑢, 𝑣) ∈ 𝐸 with 𝑢 ∈ 𝑉1, 𝑣 ∈ 𝑉2. From this definition

we have immediately that 𝐺 is (𝑘,𝐴,𝐵)-unsplittable if and only if 𝐺 ̸⊆𝐴,𝐵 Λ𝑛−2𝑘
𝑘 .

4.1.2 Adversaries

We consider security against semi-honest adaptive 𝑡-threshold adversaries, that is,

adversaries that adaptively corrupt a set of at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛.1

We assume the adversary to be semi-honest (i.e., honest-but-curious). That is, the

corrupted parties follow the prescribed protocol, but the adversary may try to infer

additional information about the inputs of the honest parties. As noted in [77], in

the computational setting, using zero-knowledge proofs, it is possible to generically

compile a protocol which is secure against semi-honest adversaries into another pro-

tocol which is secure against adaptive malicious adversaries [69].2 This justifies our

focus on the semi-honest setting here.

We will consider secure computation with perfect information-theoretic security

and a non-adaptive adversary. By [30], in the semi-honest setting with information-

theoretic security, any protocol which is non-adaptively secure is also adaptively se-

cure. Consequently, satisfying this definition suffices to achieve adaptive security.

4.1.3 Oblivious Transfer

In this chapter OT refers to 1-out-of-2 oblivious transfer defined as follows.

Definition 10. We define 1-out-of-2 oblivious transfer 𝑓OT for a sender 𝐴 = 𝑃1 with

inputs 𝑥0, 𝑥1 ∈ {0, 1}𝑚, a receiver 𝐵 = 𝑃2 with input 𝑏 ∈ {0, 1} and 𝑛 − 2 parties

1Note that when 𝑡 = 𝑛, there is nothing to prove.
2We note that in the computational setting, it is also possible to transform, in a black-box way,

a protocol which is secure against semi-honest adversaries into another protocol which is secure
against static malicious adversaries [76].
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𝑃3, . . . , 𝑃𝑛 with input ⊥ as

𝑓OT((𝑥0, 𝑥1), 𝑏,⊥, . . . ,⊥) = (⊥, 𝑥𝑏,⊥, . . . ,⊥)

Note that while OT is typically defined as a 2-party functionality, the definition

above adapts it our setting and formulates OT as an 𝑛-party functionality where only

two parties supply non-⊥ inputs.

Definition 11. Let 𝐺 be a network consisting of 𝑛 parties 𝐴 = 𝑃1, 𝐵 = 𝑃2, 𝑃3, . . . , 𝑃𝑛.

Then a 𝑡-secure OT protocol Π𝐺,𝑡
𝐴→𝐵 is a protocol that 𝑡-securely computes the function

𝑓OT on the inputs of the parties with 𝐴 as the sender and 𝐵 as the receiver.

We note that OT is symmetric, in the following sense.

Lemma 15. [123] If there exists a 𝑡-secure OT protocol Π𝐺,𝑡
𝐴→𝐵 for an 𝑛-party network

𝐺 with 𝑛 parties 𝐴 = 𝑃1, 𝐵 = 𝑃2, 𝑃3, . . . , 𝑃𝑛 with 𝐴 as the sender and 𝐵 as the

receiver, then there exists a 𝑡-secure OT protocol ̂︀Π𝐺,𝑡
𝐵→𝐴 for the same 𝑛 parties with

𝐵 as the sender and 𝐴 as the receiver.

We represent parties as nodes of a graph 𝐺 where an edge {𝐴,𝐵} indicates that

parties 𝐴 and 𝐵 may run a 1-secure OT protocol with 𝐴 as the sender and 𝐵 as the

receiver. By Lemma 15, the roles of the sender and receiver may be reversed, so it

makes sense to define 𝐺 as an undirected graph.

We note the following result regarding the completeness of OT for achieving ar-

bitrary secure multiparty computation.

Lemma 16. [89, 70, 86] Consider the complete network 𝐺 ≃ 𝐾𝑛 on 𝑛 vertices.

Then, for any function 𝑓 : 𝒟𝑛 → ℛ𝑛, there exists a protocol Π which (𝑛− 1)-securely

computes 𝑓 , where party 𝑖 receives the 𝑖th input 𝑥𝑖 ∈ 𝒟 and produces the 𝑖th output

(𝑓(𝑥))𝑖 ∈ ℛ.
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4.2 Our contributions

We introduce our main result:

Theorem (Main Theorem for OT Infrastructure). Let 𝐺 = (𝑉,𝐸) be an OT

graph on 𝑛 parties 𝑃1, . . . , 𝑃𝑛, so that any pair of parties 𝑃𝑖, 𝑃𝑗 which are connected

by an edge may make an unbounded number of calls to an OT oracle. Let A be the

class of semi-honest 𝑡-threshold adversaries which may adaptively corrupt at most 𝑡

parties.3 Then two parties 𝐴 and 𝐵 in {𝑃1, . . . , 𝑃𝑛} can information-theoretically

emulate an OT oracle while being secure against all adversaries 𝒜 ∈ A if and only if

1. (honest majority) it holds that 𝑡 < 𝑛/2; or

2. (trivial) 𝐴 and 𝐵 are connected by an edge in 𝐺; or

3. (partition) there exists no partition 𝑉1, 𝑉2, 𝑉3 of 𝐺 such that all of the following

conditions are satisfied: (a) |𝑉1| = |𝑉2| = 𝑛 − 𝑡 and |𝑉3| = 2𝑡 − 𝑛; (b) 𝐴 ∈ 𝑉1

and 𝐵 ∈ 𝑉2; and (c) for every 𝐴′ ∈ 𝑉1 and 𝐵′ ∈ 𝑉2 it holds that (𝐴′, 𝐵′) ̸∈ 𝐸.

3Combining our work with results from [76, 69], we can also obtain computational security against
malicious adversaries in both the nonadaptive and adaptive settings.
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Organization: Roadmap to our main result

The remainder of this chapter is organized as follows:

∙ We give an overview of some of our techniques in Section 4.3, where we show

solutions for the simple case when 𝑛 = 4 and 𝑡 = 2.

∙ Following this we briefly sketch the lower bound in Section 4.4 and describe the

building blocks required for our upper bounds in Section 4.5.

∙ We prove our main result for the specific case of 𝑡 = 𝑛/2 in Section 4.6.

∙ We then prove our main result for the specific case of 𝑡 = 𝑛− 2 (Section 4.7).

∙ We then use each of the protocols in two different solutions to prove our main

result the general case of 𝑡 ≥ 𝑛/2 in Section 4.8.

∙ Finally, in Section 4.9, we discuss minimal networks for 𝑡 ≈ 𝑛
2
.
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𝐴′ 𝐵′

(a) 𝐺CK

𝐴′ 𝐵′

𝐶 ′

(b) 𝐺HIK

Figure 4-1: Known impossibility results. Securely computing 𝑓OT between 𝐴′ and 𝐵′

is impossible for 𝑡 = 1 in 𝐺CK and is impossible for 𝑡 = 2 in 𝐺HIK.

4.3 Constructions for the simple case of 𝑛 = 4, 𝑡 = 2

Let 𝐺 = (𝑉,𝐸) be an 𝑛-vertex graph representing a network with 𝑛 parties, where

an edge {𝑃𝑖, 𝑃𝑗} ∈ 𝐸 indicates that parties 𝑃𝑖 and 𝑃𝑗 may run a 1-secure 2-party OT

protocol with 𝑃𝑖 as the sender and 𝑃𝑗 as the receiver. Let 𝑡 < 𝑛 be an upper bound on

the number of corruptions made by the adversary. The central question considered in

this work is the following. For which graphs 𝐺 and which pairs of parties 𝐴,𝐵 ∈ 𝑉

does there exist a 𝑡-secure OT protocol with 𝐴 as the sender and 𝐵 as the receiver?

We begin by discussing some simple special cases of small networks. These will

provide useful intuition for our main results. For 𝑡 < 𝑛/2, it is possible to obtain a

𝑡-secure OT protocol for any 𝑛-vertex graph 𝐺 = (𝑉,𝐸) between any 𝐴,𝐵 ∈ 𝑉 , since

we can perform secure multiparty computation without any pre-existing OT channels

if there is an honest majority [119]. It remains to consider the setting where 𝑡 ≥ 𝑛/2.

A few small cases have been resolved in prior work. For 𝑛 = 2, 𝑡 = 1, a 1-secure

OT protocol (with perfect security) between the vertices of the two-vertex graph 𝐺

does not exist unless the parties were already connected by an OT channel [38, 99].

This result is illustrated in Figure 4-1(a).

For 𝑛 = 3, 𝑡 = 2, it is known that we can obtain a 2-secure OT protocol between

a pair of vertices 𝐴,𝐵 only if those vertices are already connected by an OT channel,

even if there are OT channels from both 𝐴 and 𝐵 to the third vertex 𝐶 as depicted in

Figure 4-1(b). More generally, for any 𝑛 ≥ 2 and 𝑡 = 𝑛−1, there exists a 𝑡-secure OT

protocol with sender 𝐴 and receiver 𝐵 only if those vertices are already connected

by an OT channel, even if all other
(︀
𝑛
2

)︀
− 1 pairs of vertices are connected by OT

channels [77]. This also resolves the question for 𝑛 = 4, 𝑡 = 3.
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𝐴 𝐵

𝑃3

𝑃4

(a) 𝐺1

𝐴 𝐵

𝑃3

𝑃4

(b) 𝐺2

𝐴 𝐵

𝑃3

𝑃4

(c) 𝐺3

𝐴 𝐵

𝑃3

𝑃4

(d) 𝐺4

Figure 4-2: Cases for 𝑛 = 4 parties with 𝑡 = 2 corruptions.

The remainder of this section is devoted to exploring the setting 𝑛 = 4, 𝑡 = 2.

This is the smallest case not resolved by prior techniques, and will illustrate many of

the tools used in subsequent sections to obtain our general protocols. The key cases

for 𝑛 = 4, 𝑡 = 2 are shown in Figure 4-2. As discussed below, these cases are sufficient

to completely resolve the four-party setting.

4.3.1 Case 1 : Figure 4-2(a)

We first show that if 𝐺 ≃𝐴,𝐵 𝐺1 then there does not exist a 2-secure OT protocol

for 𝐺 with 𝐴 as the sender and 𝐵 as the receiver.4 This is a consequence of the

impossibility result of [38, 99]. An outline of the argument is as follows.

Consider components 𝒞1 = {𝐴,𝑃3} and 𝒞2 = {𝐵,𝑃4} of 𝐺, and let Π be a 2-secure

protocol computing 𝑓OT in 𝐺 with 𝐴 as the sender and 𝐵 as the receiver. Then we

can use Π to construct a 2-secure protocol Π′ for the 2-party network in Figure 4-1(a)

with 𝐴′ as the sender and 𝐵′ as the receiver. In protocol Π′, party 𝐴′ runs Π for both

parties of component 𝒞1 of 𝐺, and 𝐵′ runs Π for both parties of component 𝒞2. OT

channel invocations can be handled locally, since all OT channels in 𝐺 are between

parties in the same component. Since protocol Π is 2-secure, in particular it is secure

against corruptions of parties in 𝒞1 or the parties in 𝒞2. Consequently Π′ is a 1-secure

OT protocol for a network 𝐺′ ≃𝐴′,𝐵′ 𝐺CK with 𝐴′ as the sender and 𝐵′ as the receiver.

However, from [38, 99], we know that no such protocol exists with perfect security.

Consequently there is no 2-secure protocol Π for a network 𝐺 ≃𝐴,𝐵 𝐺1.

4Recall that 𝐻 ≃𝐴,𝐵 𝐻 ′ for two graphs 𝐻,𝐻 ′ if there exists an isomorphism between 𝐻 and 𝐻 ′

preserving the labels of vertices 𝐴 and 𝐵.
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Note that this impossibility holds not only for 𝐺 ≃𝐴,𝐵 𝐺1 but for any (𝐴,𝐵)-

subgraph of 𝐺1. In particular, any four-vertex graph 𝐺 = (𝑉,𝐸) with |𝐸| ≤ 1 cannot

have a 2-secure protocol computing 𝑓OT between vertices 𝐴 and 𝐵 except in the

trivial case when there is already an edge {𝐴,𝐵} ∈ 𝐸. This technique of reducing

to the known impossibility results of [38, 99, 77] to obtain lower bounds is described

formally in Chapter 4.4.

4.3.2 Case 2 : Figure 4-2(b)

In this example we obtain a positive result, showing that there exists a 2-secure OT

protocol with 𝐴 as the sender and 𝐵 as the receiver. Let the degree of party 𝑃 denote

the degree of the corresponding vertex in the OT network. Since 𝐵 has degree 2 in

𝐺2, we have that either 𝐵 or at least one of its OT neighbors must be honest, and so

one of the two OT channels must contain an honest party. This suggests the idea of

using secret-sharing to ensure security against 2 corruptions.

Consider the following OT protocol where sender 𝐴 has inputs 𝑥0, 𝑥1 ∈ {0, 1}𝑚

and receiver 𝐵 has input 𝑏 ∈ {0, 1}. 𝐴 computes 2-out-of-2 shares (𝑥1
0, 𝑥

2
0) and (𝑥1

1, 𝑥
2
1)

of its inputs 𝑥0, 𝑥1, respectively. 𝐴 then sends shares 𝑥1
0 and 𝑥1

1 to party 𝑃3 and 𝑥2
0 and

𝑥2
1 to party 𝑃4. Parties 𝑃3 and 𝐵 invoke their secure OT channel with inputs (𝑥1

0, 𝑥
1
1)

and 𝑏, and parties 𝑃4 and 𝐵 invoke their secure OT channel with inputs (𝑥2
0, 𝑥

2
1) and

𝑏 respectively. 𝐵 uses the obtained shares 𝑥1
𝑏 , 𝑥

2
𝑏 to reconstruct 𝑥𝑏.
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We informally argue the 2-security of this protocol assuming that exactly one of 𝐴

and 𝐵 is corrupt.5 Consider the case where 𝐴 is corrupt and 𝐵 is honest. The input

of 𝐵 is only used over secure OT channels, so by the 1-security of the OT channels

with 𝑃3 and 𝑃4, the corrupt parties can learn nothing about 𝐵’s input bit 𝑏. Now

consider the case where 𝐵 is corrupt and 𝐴 is honest. Either 𝑃3 or 𝑃4 must be honest.

If 𝑃3 is honest then the security of OT channel {𝑃3, 𝐵} implies that 𝐵 learns nothing

about share 𝑥1
1−𝑏, so the security of the secret sharing scheme implies that the corrupt

parties do not use 𝑥1−𝑏. By symmetry, the same argument applies if 𝑃4 is honest.

This completes the argument.

Note that by Lemma 15, we can also obtain a 2-secure OT protocol from 𝐴 to

𝐵 whenever 𝐴 has degree 2 in OT network. Furthermore, we can extend this idea

to construct a 𝑡-secure OT protocol whenever either the sender or the receiver has

degree at least 𝑡. We call this protocol the 𝑡-claw protocol and describe it in detail in

Chapter 4.5.1.

4.3.3 Case 3 : Figure 4-2(c)

Somewhat surprisingly, we can also show a positive result for graphs 𝐺 ≃𝐴,𝐵 𝐺3 even

though the OT network has no edges involving either the sender 𝐴 or the receiver

𝐵. The protocol is as follows. Since parties 𝑃3 and 𝑃4 have an OT channel between

them, by Lemma 16, they can perform 1-secure MPC between them. 𝑃3 and 𝑃4 use an

MPC to compute 2-out-of-2 shares of OT correlations with uniformly random inputs

and send corresponding shares to 𝐴 and 𝐵 who can then reconstruct the correlations.

More concretely, the MPC protocol computes 2-out-of-2 shares (𝑟10, 𝑟
2
0), (𝑟11, 𝑟

2
1) of

two randomly sampled 𝑚-bit strings 𝑟0, 𝑟1, 2-out-of-2 shares (𝑐1, 𝑐2) of a random bit

𝑐 ∈ {0, 1}, and independent 2-out-of-2 shares (𝑠1, 𝑠2) of the string 𝑟𝑐. Party 𝑃3 receives

the first share of each secret, and party 𝑃4 receives the second share. Party 𝑃3 then

5An additional step is needed to address the case in which 𝐴 and 𝐵 are both honest. Then 𝑃3

and 𝑃4 can both be corrupt and learn 𝑥0 and 𝑥1, the inputs of 𝐴. This can be handled with the
technique of OT correction, using a one-time pad and the secure point-to-point channel between 𝐴
and 𝐵. Equivalently, we could run the protocol on random inputs, and then use method of [9] to
obtain 1-out-of-2 OT from random OT. If 𝐴 and 𝐵 are both corrupt then there is nothing to prove.
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sends shares 𝑟10, 𝑟11 to 𝐴 and 𝑠1, 𝑐1 to 𝐵, while 𝑃4 sends shares 𝑟20, 𝑟21 to 𝐴 and 𝑠2, 𝑐2 to

𝐵. 𝐴 can then reconstruct 𝑟0 and 𝑟1, and 𝐵 can reconstruct 𝑐 and 𝑟𝑐. Parties 𝐴 and

𝐵 have now established a random OT correlation, which they can use to perform OT

with their original inputs using OT correction [9].6

We now informally argue the 2-security of this protocol. If 𝐴 and 𝐵 are both

honest, then the corrupt parties receive no information about their inputs, while if 𝐴

and 𝐵 are both corrupt then there is nothing to prove. Consequently we can assume

that exactly one of 𝐴 and 𝐵 is corrupt and that either 𝑃3 or 𝑃4 is honest. If 𝐴

is corrupt and 𝑃3 or 𝑃4 is honest, then the adversary learns nothing about 𝑐 and

𝑟𝑐, since it only sees one of the two shares of each. The OT correction phase uses

these strings as one-time pads for inputs which are unknown to the adversary, and

consequently are information-theoretically hidden from the adversary. Consequently

𝐴 learns nothing about 𝐵. The case where 𝐵 is corrupt and 𝑃3 or 𝑃4 is honest follows

from the same argument.

This construction can be extended to obtain a 𝑡-secure OT protocol whenever the

OT graph contains a 𝑡-clique consisting of 𝑡 parties which are not the OT sender

or receiver. We call this protocol the 𝑡-clique protocol and describe it in detail in

Chapter 4.5.2.

4.3.4 Case 4 : Figure 4-2(d)

We also obtain a positive result for graphs 𝐺 ≃𝐴,𝐵 𝐺4. We introduce here a technique

we call cascading. The idea is as follows. Using the protocol described in Chapter

4.3.2 for network 𝐺2 of Figure 4-2(b), we have 2-secure OT protocol with 𝑃3 as the

sender and 𝑃4 as the receiver. This effectively gives us an OT channel between 𝑃3

and 𝑃4. Applying the protocol from Chapter 4.3.3 on the augmented network, we

now have a 2-secure OT protocol with 𝐴 as the sender and 𝐵 as the receiver. We

describe this pictorially in Figure 4-3.

The 2-security of the protocol follows from the 2-security of the underlying pro-

6This OT correction step can be performed as follows. Party 𝐵 sends 𝑏′ = 𝑏⊕ 𝑐 to 𝐴. 𝐴 responds
with 𝑦0 = 𝑥0 ⊕ 𝑟𝑏′ and 𝑦1 = 𝑥1 ⊕ 𝑟1−𝑏′ . Finally, 𝐵 computes 𝑦𝑏 ⊕ 𝑟𝑐 = 𝑥𝑏.
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𝐴 𝐵

𝑃3

𝑃4

(a)

𝐴 𝐵

𝑃3

𝑃4

(b)

𝐴 𝐵

𝑃3

𝑃4

(c)

Figure 4-3: The cascading protocol for Case 4 : Figure 4-2(d); (a) → (b) → (c)

tocols of Sections 4.3.2 and 4.3.3. The technique of cascading for combining 𝑡-secure

protocols is described in detail in Chapter 4.5.3.

4.3.5 Cases 1–4 are exhaustive

Note that a 𝑡-secure OT protocol with sender 𝐴 and receiver 𝐵 in an OT network

𝐺 trivially yields a 𝑡-secure protocol for any network 𝐺′ such that 𝐺 ⊆𝐴,𝐵 𝐺′. From

cases 1 and 4, we can securely compute 𝑓OT in a network 𝐺 containing at most a

single edge if and only if the edge is {𝐴,𝐵} or {𝑃3, 𝑃4}. From cases 1, 2, and 3, we

can compute 𝑓OT in a network 𝐺 containing two or more edges including neither of

{𝐴,𝐵} or {𝑃3, 𝑃4} if and only if there is some vertex with degree at least 2 in the OT

graph. This completes the characterization of 4-party networks with 2 corruptions.
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4.4 Reformulating the Lower Bound of [77]

We now describe a family of impossibility results by a generic reduction to the im-

possibility result in [77], which we restate in our language below.

Lemma 17. [77] Consider any three party network 𝐺 with 𝐺 ≃𝐴′,𝐵′ 𝐺HIK, the graph

in Figure 4-1(b). Then any 2-secure OT protocol with 𝐴′ as the sender and 𝐵′ as the

receiver can be used (as a black box) to obtain a 1-secure OT protocol for a network

𝐺′ with 𝐺′ ≃𝐴′,𝐵′ 𝐺Kus, the graph in Figure 4-1(a), with 𝐴′ as the sender and 𝐵′ as

the receiver.

The theorem below describes a family of impossibility results over a corresponding

family of networks. We note that this result was observed in [77]; we restate it our

language and provide a formal proof.

Theorem 8. Let 𝑛 ≥ 2 and 𝑛/2 ≤ 𝑡 < 𝑛, and let 𝐺 be an 𝑛 party network such that

𝐺 ⊆ Λ2𝑡−𝑛
𝑛−𝑡 , with 𝑃1 ∈ 𝑉𝐴 and 𝑃2 ∈ 𝑉𝐵. Any 𝑡-secure OT protocol for 𝐺 with 𝑃1 as

the sender and 𝑃2 as the receiver can be used (as a black box) to obtain a 1-secure

OT protocol for a network 𝐺′ with 𝐺′ ≃𝐴,𝐵 𝐺Kus with 𝐴′ as the sender and 𝐵′ as the

receiver.

Proof. Let 𝐺 be an 𝑛 party network with 𝐺 = (𝑉,𝐸) such that 𝐺 ⊆ Λ2𝑡−𝑛
𝑛−𝑡 . Then,

we may write 𝑉U = 𝑉𝐴

⋃̇︀
𝑉𝑆

⋃̇︀
𝑉𝐵, where |𝑉𝐴| = |𝑉𝐵| = 𝑛 − 𝑡 and |𝑉𝑆| = 2𝑡 − 𝑛,

with 𝑃1 ∈ 𝑉𝐴 and 𝑃2 ∈ 𝑉𝐵 and 𝐸(𝑉𝐴, 𝑉𝐵) = ∅, where 𝐸(𝑉𝐴, 𝑉𝐵) represents the set of

edges with one endpoint in 𝑉𝐴 and the other in 𝑉𝐵.

Let Π be a 𝑡-secure OT protocol for 𝐺 with 𝑃1 as the sender and 𝑃2 as the receiver.

If 𝑡 > 𝑛/2, then we can use Π to construct a 2-secure OT protocol Π′ for any three

party network 𝐺′ with 𝐺′ ≃𝐴′,𝐵′ 𝐺HIK with 𝐴′ as the sender and 𝐵′ as the receiver

below. Combining this with Lemma 17, the conclusion follows. We describe the

construction of Π′ below. If 𝑡 = 𝑛/2, then we can use Π to construct a 1-secure OT

protocol Π′′ for any two party network 𝐺′′ with 𝐺′′ ≃𝐴′′,𝐵′′ 𝐺CK with 𝐴′′ as the sender

and 𝐵′′ as the receiver. The construction of Π′′ is exactly the same as that of Π′ and

hence we omit its description here.
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In protocol Π′, party 𝐴′ simulates the parties of component 𝑉𝐴, party 𝐶 ′ simulates

the parties of component 𝑉𝑆, and party 𝐵′ simulates the parties of component 𝑉𝐵.

Executions of 1-secure OT protocols between parties of the same component are be

handled locally and executions of 1-secure OT protocols between parties in different

components is handled as follows:

∙ If the parties are in components 𝑉𝐴 and 𝑉𝑆, then executions of 1-secure OT

protocols between the parties are carried out using the OT edge {𝐴′, 𝐶 ′} in the

network 𝐺′.

∙ If the parties are in components 𝑉𝐵 and 𝑉𝑆, then executions of 1-secure OT

protocols between the parties are carried out using the OT edge {𝐵′, 𝐶 ′} in the

network 𝐺′.

Since 𝐺 ⊆ Λ2𝑡−𝑛
𝑛−𝑡 , there are no executions of 1-secure OT protocols between parties

in components 𝑉𝐴 and 𝑉𝐵 in the protocol Π.

Correctness of Π′ is obvious. We now prove 2-security of Π′. Intuitively, since

Π is 𝑡-secure, in particular, it is secure against corruptions of parties 𝑉𝐴 ∪ 𝑉𝑆 or the

parties 𝑉𝐵 ∪ 𝑉𝑆. Consequently protocol Π′ is secure against corruptions {𝐴′, 𝐶 ′} or

{𝐵′, 𝐶 ′} and hence Π′ is a 2-secure protocol.
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Figure 4-4: Building block networks – (a) 𝑡-claw; (b) 𝑡-clique; (c) 2-path

4.5 Building Blocks

In this chapter, we describe a few key protocols and techniques which we use in the

subsequent sections to prove our main theorem.

4.5.1 The 𝑡-claw Protocol

The first protocol we describe is the 𝑡-claw protocol, where the graph 𝐺 describing

the network is such that 𝐺 ≃𝐴,𝐵 𝐺𝑡
claw. The protocol is described in Protocol 1. The

protocol is a straightforward generalization of the one described in Chapter 4.3.2. The

idea is for 𝐴 to compute 𝑡-out-of-𝑡 shares of its inputs and distribute them among the

𝑡 parties connected to 𝐵. These 𝑡 parties then perform OT with 𝐵 so that 𝐵 receives

the shares to reconstruct his output.

Lemma 18. Protocol 1 is an efficient 𝑡-secure OT protocol for a network 𝐺 ≃𝐴,𝐵

𝐺𝑡
claw with 𝐴 as the sender and 𝐵 as the receiver.

Proof Intuition. The 𝑡-security of the protocol can be seen as follows. Steps 1,

2 and 7 perform OT correction, that is, they perform a random OT to 1-out-of-2

OT transformation. This transformation protects against the case that the parties

𝑃3, . . . , 𝑃𝑡+2 (that is, all but 𝐴 and 𝐵) are corrupt. Suppose 𝐴 were corrupt and

𝐵 were honest. Clearly, 𝐴 colluding with any of the parties 𝑃3, . . . , 𝑃𝑡+2 provides 𝐴

with no additional information since all they possess are shares sent by 𝐴. Next, if 𝐴
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Protocol 1: 𝑡-claw Protocol

Preliminaries: Let 𝐴,𝐵, 𝑃3, . . . , 𝑃𝑡+2 be the 𝑡 + 2 parties in a network 𝐺 ≃𝐴,𝐵 𝐺𝑡
claw. 𝐴

has inputs 𝑥0, 𝑥1 ∈ {0, 1}𝑚 and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. 𝐵 chooses a random bit 𝑐 ∈ {0, 1} and sends 𝑏′ = 𝑏⊕ 𝑐 to 𝐴.

2. 𝐴 chooses two random one-time pads 𝑟0, 𝑟1 ∈ {0, 1}𝑚 and sends 𝑦0 = 𝑥0 ⊕ 𝑟𝑏′ and
𝑦1 = 𝑥1 ⊕ 𝑟1−𝑏′ to 𝐵.

3. 𝐴 then computes 𝑡-out-of-𝑡 shares (𝑟10, . . . , 𝑟
𝑡
0) and (𝑟11, . . . , 𝑟

𝑡
1) of 𝑟0, 𝑟1, respectively.

4. For each 𝑖 ≥ 3, 𝐴 sends shares 𝑟𝑖0 and 𝑟𝑖1 to party 𝑃𝑖.

5. For each 𝑖 ≥ 3, parties 𝑃𝑖 and 𝐵 execute the OT protocol Π𝐺,1
𝑃𝑖→𝐵 with inputs (𝑟𝑖0, 𝑟

𝑖
1)

and 𝑐 respectively.

6. 𝐵 uses the obtained shares 𝑟1𝑐 , . . . , 𝑟
𝑡
𝑐 to reconstruct 𝑟𝑐.

7. 𝐵 finally computes 𝑦𝑏 ⊕ 𝑟𝑐 = 𝑥𝑏.

were honest and 𝐵 corrupt, at least one of the parties 𝑃3, . . . , 𝑃𝑡+2 must be honest.

𝐵 has no information about those shares and hence does not learn anything. Finally,

if both 𝐴 and 𝐵 were corrupt, there is nothing to prove.

Proof. Let 𝒜 be a 𝑡-threshold adversary which corrupts parties 𝑇 , |𝑇 | ≤ 𝑡. We

will construct a simulator 𝒮 which plays the role of the uncorrupted parties. If

{𝐴,𝐵} ⊂ 𝑇 then the uncorrupted parties receive no input, so 𝒮 can perfectly simulate

the uncorrupted parties. If {𝐴,𝐵} ∩ 𝑇 = ∅ then 𝒮 chooses arbitrary inputs 𝑥0, 𝑥1, 𝑏

and runs the protocol, invoking the OT simulator for each OT invocation with an

uncorrupted party in step 5. Since corrupted parties only learn secret shares of

independently random values, the view of the adversary is independent of the choice

of 𝑥0, 𝑥1, 𝑏 and is identical to the real world.

Otherwise, we have that the corrupted parties 𝑇 include exactly one of 𝐴,𝐵. If

𝐴 ∈ 𝑇 but 𝐵 /∈ 𝑇 , then 𝒮 chooses arbitrary input 𝑏 and runs the protocol, invoking

the OT simulator for each OT invocation with an uncorrupted party in step 5. Since

the OT simulator does not reveal the input 𝑐, and since the adversary only learns the

direct sum of 𝑏 with the random bit 𝑐, the view of the adversary is identical regardless

of the value of 𝑏 and in particular is identical to the real world.

Finally we have the case 𝐵 ∈ 𝑇,𝐴 /∈ 𝑇 . Here the simulator 𝒮 is given the output
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value 𝑥𝑏. 𝒮 runs the protocol with (𝑥𝑏, 𝑥𝑏) as the input to 𝐴, again invoking the OT

simulator for each OT invocation with an uncorrupted party in step 5. Since |𝑇 | ≤ 𝑡

and 𝐵 ∈ 𝑇 , at most 𝑡−1 of the 𝑡 parties 𝑃3, . . . , 𝑃𝑡+2 are corrupted. Consequently the

adversary observes at most 𝑡− 1 shares of the random one-time pads 𝑟0, 𝑟1, so by the

security of 𝑡-out-of-𝑡 secret sharing, conditioned on the remaining shares being hidden,

the distribution of the observed shares is independent of 𝑟0, 𝑟1. The adversary learns

the shares of 𝑟𝑐, but by the security of the OT channels, the view of the adversary in

step 3 and onward is independent of the remaining shares of 𝑟1−𝑐 and consequently

is independent of the choice of 𝑟1−𝑐. Consequently the view of the adversary in step

3 and onward is independent of 𝑟1−𝑐. In step 2, the adversary sees 𝑦𝑏 = 𝑥𝑏 ⊕ 𝑟𝑐 and

𝑦1−𝑏 = 𝑥1−𝑏 ⊕ 𝑟1−𝑐, so by the security of the one-time pad, the view of the adversary

is independent of 𝑥1−𝑏. Consequently the overall view of the adversary is identical in

the real and ideal worlds.
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Protocol 2: 𝑡-clique Protocol

Preliminaries: Let 𝐴,𝐵, 𝑃3, . . . , 𝑃𝑡+2 be the 𝑡+ 2 parties in a network 𝐺 ≃𝐴,𝐵 𝐺𝑡
clique. 𝐴

has inputs 𝑥0, 𝑥1 ∈ {0, 1}𝑚 and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. Parties 𝑃3, . . . , 𝑃𝑡+2 use their pairwise OT channels to run 𝑡-secure MPC for the function

𝑓 using the protocol from Lemma 16 for the function 𝑓 described ahead. The function 𝑓
is to securely compute 𝑡-out-of-𝑡 shares (𝑟10, . . . , 𝑟𝑡0), (𝑟11, . . . , 𝑟𝑡1) of two randomly sampled
one-time pad keys 𝑟0, 𝑟1, (𝑐1, . . . , 𝑐𝑡) of a random bit 𝑐 ∈ {0, 1}, and independent shares
(𝑠1, . . . , 𝑠𝑡) of key 𝑟𝑐, so that party 𝑖+ 2 receives only shares 𝑟𝑖0, 𝑟

𝑖
1, 𝑠

𝑖, 𝑐𝑖 for each 𝑖.

2. Each party 𝑃𝑖+2 for 𝑖 ≥ 1 sends shares 𝑟𝑖0, 𝑟
𝑖
1 to 𝐴 and 𝑠𝑖, 𝑐𝑖 to 𝐵.

3. 𝐴 uses shares (𝑟10, . . . , 𝑟
𝑡
0) and (𝑟11, . . . , 𝑟

𝑡
1) to reconstruct 𝑟0 and 𝑟1.

4. 𝐵 uses shares (𝑐1, . . . , 𝑐𝑡) and (𝑠1, . . . , 𝑠𝑡) to reconstruct 𝑐 and 𝑟𝑐 and sends 𝑏′ = 𝑏⊕ 𝑐 to
𝐴.

5. 𝐴 computes 𝑦0 = 𝑥0 ⊕ 𝑟𝑏′ and 𝑦1 = 𝑥1 ⊕ 𝑟1−𝑏′ and sends both to 𝐵.

6. 𝐵 computes 𝑦𝑏 ⊕ 𝑟𝑐 = 𝑥𝑏.

4.5.2 The 𝑡-clique Protocol

The next protocol we describe is the 𝑡-clique protocol, where the graph 𝐺 describing

the network is such that 𝐺 ≃𝐴,𝐵 𝐺𝑡
clique. The protocol is described in Protocol 2. The

protocol is a straightforward generalization of the one described in Chapter 4.3.3. The

idea is for the parties 𝑃3, . . . , 𝑃𝑡+2 to compute 𝑡-out-of-𝑡 shares of OT correlations and

send them to 𝐴 and 𝐵 respectively. This is done via multiparty computation since

the parties have a complete network of OT channels (Lemma 16). 𝐴 and 𝐵 then

perform OT correction using their secure channel.

Lemma 19. Protocol 2 is an efficient 𝑡-secure OT protocol for a network 𝐺 ≃𝐴,𝐵

𝐺𝑡
clique with 𝐴 as the sender and 𝐵 as the receiver.

Proof Intuition. The 𝑡-security of the protocol can be seen as follows. Steps 4,

5 and 6 perform OT correction, that is, they perform a random OT to 1-out-of-2

OT transformation. This transformation protects against the case that the parties

𝑃3, . . . , 𝑃𝑡+2 (that is, all but 𝐴 and 𝐵) are corrupt. If one of 𝐴 and 𝐵 were corrupt,
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there exists at least one honest party among the parties 𝑃3, . . . , 𝑃𝑡+2. Hence, even by

colluding, 𝐴 or 𝐵 would have no information about those shares and would not learn

anything. Finally, if both 𝐴 and 𝐵 were corrupt, there is nothing to prove.

Proof. Let 𝒜 be a 𝑡-threshold adversary which corrupts parties 𝑇 , |𝑇 | ≤ 𝑡. We will

construct a simulator 𝒮 which plays the role of the uncorrupted parties. As above, if

{𝐴,𝐵} ⊂ 𝑇 then the uncorrupted parties receive no input, so 𝒮 can perfectly simulate

the uncorrupted parties. If {𝐴,𝐵} ∩ 𝑇 = ∅ then 𝒮 chooses arbitrary inputs 𝑥0, 𝑥1, 𝑏

and runs the protocol. Since the only steps which depend at all on the inputs are on

point-to-point channels between 𝐴 and 𝐵, the view of the adversary in the real and

ideal worlds is identical.

Otherwise, we have that the corrupted parties 𝑇 include exactly one of 𝐴,𝐵. If

𝐴 ∈ 𝑇 but 𝐵 /∈ 𝑇 , then 𝒮 chooses arbitrary input 𝑏 and runs the protocol, invoking

the MPC simulator for the protocol in step 1 (the existence of this simulator follows

from Lemma 16). Since at least one of the parties 𝑃3, . . . , 𝑃𝑡+2 is uncorrupted, the

security of the MPC protocol implies that the view of the adversary is independent of

the uncorrupted parties’ shares 𝑠𝑖 and 𝑐𝑖, and so by the security of the secret sharing

scheme is independent of the value of the bit 𝑐. The only message received by the

adversary which depends on 𝑏 is the bit 𝑏′ = 𝑏⊕ 𝑐, so it follows that the view of the

adversary is independent of the bit 𝑏 and therefore is identical in the real and ideal

worlds.

Finally we have the case 𝐵 ∈ 𝑇,𝐴 /∈ 𝑇 . Here the simulator 𝒮 is given the output

value 𝑥𝑏. 𝒮 runs the protocol with (𝑥𝑏, 𝑥𝑏) as the input to 𝐴, again invoking the MPC

simulator for the protocol in step1. Since at least one of the parties 𝑃3, . . . , 𝑃𝑡+2 is

uncorrupted, the security of the MPC protocol implies that the view of the adversary

is independent of the uncorrupted parties’ shares 𝑟𝑖0 and 𝑟𝑖1, so by the security of 𝑡-out-

of-𝑡 secret sharing, conditioned on the remaining shares being hidden, the distribution

of the observed shares is independent of 𝑟0, 𝑟1. The adversary learns the shares of

𝑟𝑐, but by the security of the OT channels, the view of the adversary through step

4 is independent of the remaining shares of 𝑟1−𝑐 and consequently is independent of

the choice of 𝑟1−𝑐. In step 5, the adversary sees 𝑦𝑏 = 𝑥𝑏 ⊕ 𝑟𝑐 and 𝑦1−𝑏 = 𝑥1−𝑏 ⊕ 𝑟1−𝑐,
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so by the security of the one-time pad, the view of the adversary is independent of

𝑥1−𝑏. Consequently the overall view of the adversary is identical in the real and ideal

worlds.

4.5.3 Cascading

The following building block is a generalization of the technique described in Chapter

4.3.4. The technique describes a general method of combining protocols iteratively.

In our context, this can be thought of a tool for transforming a network described by

a graph 𝐺 to one described by a graph 𝐺′, where 𝐺 ⊆𝑉 𝐺′ and 𝐺 and 𝐺′ are both

graphs on the same vertex set 𝑉 . In other words, it describes protocols as adding new

edges indicating the establishment of OT correlations between new pairs of parties

in the network. With this abstraction, it is easy to view the technique of cascading

as one which combines protocols iteratively to transform the underlying network by

adding new edges. This is described formally below.

Definition 12. Let 𝐺 = (𝑉,𝐸) and 𝐺′ = (𝑉,𝐸 ′) be two graphs on the same set of

vertices, 𝑉 , with 𝐺 ⊆𝑉 𝐺′. We say that a protocol Π 𝑡-transforms a network 𝐺 into

the network 𝐺′ if for each {𝑃𝑖, 𝑃𝑗} ∈ 𝐸 ′∖𝐸, Π is a 𝑡-secure OT protocol for a network

𝐺 with 𝑃𝑖 as the sender and 𝑃𝑗 as the receiver.7

Lemma 20. If Π1 is a protocol that runs in time 𝑇1 and 𝑡-transforms network 𝐺1

into 𝐺2, and Π2 is a protocol that runs in time 𝑇2 and 𝑡-transforms network 𝐺2 into

𝐺3, then there exists a protocol Π that runs in time 𝑇1𝑇2 and 𝑡-transforms 𝐺1 into

𝐺3.

Proof. The protocol Π simply runs Π2, running protocol Π1 to obtain correlations

whenever Π2 invokes OT on an edge of 𝐺2 ∖ 𝐺1. Let 𝒮1 and 𝒮2 be the simulators

associated with Π1 and Π2 respectively. The simulator for Π simply runs 𝒮2, invoking

𝒮1 for OT calls made on edges in 𝐺2 ∖𝐺1.

7Note that a single protocol Π may set up independent OT correlations for several pairs of parties
{𝑃𝑖, 𝑃𝑗} ∈ 𝐸′ ∖ 𝐸.
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Using OT extension [10, 84], we can also obtain a computationally secure version

of cascading with improved efficiency.

Lemma 21. Let 𝜆 be a computational security parameter. Assuming the existence of

one-way functions or correlation-robust hash functions, if Π1 is a protocol that runs

in time 𝑇1 and 𝑡-transforms network 𝐺1 into 𝐺2, and Π2 is a protocol that runs in

time 𝑇2 and 𝑡-transforms network 𝐺2 into 𝐺3, then there exists a computationally

secure protocol Π that runs in time 𝜆 · 𝑇1 + 𝑇2 · poly(𝜆) and 𝑡-transforms 𝐺1 into 𝐺3.

Proof. First, run protocol Π1 𝜆 times on random inputs to obtain 𝜆 independent OT

correlations for each edge of 𝐺2 ∖ 𝐺1. Then run Protocol Π2, using OT extension

[10, 84] to obtain OT correlations for OT calls made on edges in 𝐺2 ∖𝐺1.

4.5.4 The 2-path graph

The protocol described here is a commonly used subroutine in several of the protocols

which follow. It is a particular combination of the tools encountered in Chapters

4.5.1, 4.5.2 and 4.5.3). The subroutine, which we call 2-path, is the same as the one

described in Chapter 4.3.4. It is used to obtain OT correlations between parties who

have a common neighbor in a four-party network with at most two corruptions (see

Figure 4-4(c)).

Lemma 22. Protocol 3 is an efficient 2-secure OT protocol for a network 𝐺 ≃𝐴,𝐵

𝐺2
2-path with 𝐴 as the sender and 𝐵 as the receiver.

Proof. This follows immediately from Lemma 20 and the 2-security of Protocols 1

and 2 for 𝑡 = 2 (Lemmata 18 and 19).
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Protocol 3: 2-path

Preliminaries: Let 𝐴,𝐵,𝐶,𝐷 be the parties, and let there exist OT channels (𝐴,𝐶) and
(𝐵,𝐶). 𝐴 has input (𝑥0, 𝑥1), and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. Invoke Protocol 1 (2-claw) on parties (𝐷,𝐶,𝐴,𝐵) to obtain OT correlations on edge

(𝐷,𝐶).

2. By Lemma 20, we have an OT channel between 𝐷 and 𝐶.

3. Invoke Protocol 2 (2-clique) on parties (𝐴,𝐵,𝐶,𝐷).

4.5.5 Combiners [109, 78]

The notion of OT combiners is one which aims at combining several candidate pro-

tocols for establishing OT correlations between two parties with the property that

a majority of them remain secure in the presence of any adversary 𝒜 from a class

of adversaries A into a single protocol which remains secure in the presence of any

adversary from the same class A. The following lemma is due to [109, 78], relying on

prior work by [79, 124] based on a construction by [46].

Lemma 23. [109, 78] Let A be an adversary class. Suppose there exist 𝑚 pro-

tocols Π1, . . . ,Π𝑚 for 𝑓𝑂𝑇 (𝐴,𝐵, 𝑃1, . . . , 𝑃𝑛) such that for any adversary 𝒜 ∈ A a

majority of the protocols are secure. Then, there exists a protocol Π*(Π1, . . . ,Π𝑚) for

𝑓𝑂𝑇 (𝐴,𝐵, 𝑃1, . . . , 𝑃𝑛) which is secure against all adversaries 𝒜 ∈ A. Moreover, if

each protocol Π𝑖 is efficient and perfectly secure, then so is Π*.
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4.6 The case 𝑡 = 𝑛/2

We now consider the specific case of 𝑡 = 𝑛/2, that is, at most half the parties are

corrupt. We note that this is the smallest value of 𝑡 for which the question is non-

trivial. From the lower bounds proven in Theorem 8, we already have that for all

𝑛-party networks 𝐺 containing 𝐴 and 𝐵 such that 𝐺 ⊆𝐴,𝐵 Λ0
𝑛/2, there exists no 𝑛/2-

secure OT protocol with 𝐴 as the sender and 𝐵 as the receiver. Quite surprisingly, we

show ahead, in Theorem 9, that all other networks 𝐺 ̸⊆𝐴,𝐵 Λ0
𝑛/2 admit an 𝑛/2-secure

OT protocol with 𝐴 as the sender and 𝐵 as the receiver. In fact, we show an explicit

𝑛/2-secure OT protocol with 𝐴 as the sender and 𝐵 as the receiver whenever the

network 𝐺 is (𝑛/2, 𝐴,𝐵)-unsplittable, that is, when 𝐺 ̸⊆𝐴,𝐵 Λ0
𝑛/2.

Theorem 9. Consider an 𝑛-party network 𝐺, which contains 𝐴 and 𝐵 as two of the

parties. Protocol 5 is an 𝑛/2-secure OT protocol with 𝐴 as the sender and 𝐵 as the

receiver if and only if 𝐺 is (𝑛/2, 𝐴,𝐵)-unsplittable.
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Protocol 4: Completing Triangles

Preliminaries: Let 𝐴,𝐵,𝐶, 𝑃4, . . . , 𝑃𝑛 be the 𝑛 parties, and let there exist OT channels
(𝐴,𝐶) and (𝐵,𝐶). 𝐴 has input (𝑥0, 𝑥1), and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. Run a combined protocol Π*(Π4, . . . ,Π𝑛) on the 𝑛− 3 protocols Π4, . . . ,Π𝑛, where

∙ For each 𝑖 ≥ 4, Π𝑖 denotes an invocation of Protocol 3 (2-path) with the four parties
𝐴,𝐵,𝐶, 𝑃𝑖 with 𝐴 as the sender and 𝐵 as the receiver.

The protocol we describe proceeds in two stages. In the first stage, the protocol

transforms every connected component of the network into a clique. This transfor-

mation is very specific to the case of 𝑡 = 𝑛/2, in particular, that each connected

component can actually function as a clique is true only in this case. This transfor-

mation is carried out by means of repeatedly calling a protocol we call “Completing

Triangles” which obtains OT correlations between parties who have a common neigh-

bour. We have already seen a special case of this protocol in the analysis for 𝑛 = 4

and 𝑡 = 2 in Chapter 4.5.4. In fact, the protocol which achieves the same goal in the

case of general 𝑛 ≥ 4 and 𝑡 = 𝑛/2 uses the building block Protocol 3 along with the

building block of OT combiners described in Chap 4.5.5. Protocol 4 achieves this.

Lemma 24. Let 𝐺 be an 𝑛-vertex OT network with edges {𝐴,𝐶} and {𝐵,𝐶}. Pro-

tocol 4 is an 𝑛/2-secure OT protocol for the network 𝐺 with 𝐴 as the sender and 𝐵

as the receiver.

Proof. We consider cases depending on the number of corrupted parties in the set 𝑇 =

{𝐴,𝐵,𝐶}. If 𝑇 contains at most one corrupted party, then each tuple (𝐴,𝐵,𝐶, 𝑃𝑖) for

𝑖 ≥ 4 contains at most 2 corrupted parties, so each protocol Π𝑖 in step 1 is secure. If

𝑇 contains two corrupted parties, then there are at most 𝑡− 2 = (𝑛− 4)/2 corrupted

parties among 𝑃4, . . . , 𝑃𝑛, so a majority of these parties are honest. Consequently

a majority of the protocols Π𝑖 which are combined in step 1 are secure. Thus, in

either case, by Lemma 23 the protocol is secure. Finally, if all three parties of 𝑇

are corrupted, then all uncorrupted parties receive no input, so the simulator 𝒮 can
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perfectly simulate the uncorrupted parties by running the honest protocol. Therefore

Protocol 4 is 𝑛/2-secure.

Proof Intuition (Theorem 9): It is easy to see that by executing Protocol 4 repeatedly,

one can obtain OT correlations between any pair of parties in the same connected

component. In other words, for 𝑡 = 𝑛/2, we can assume that we are given a network

which consists of disjoint cliques (Lemma 20). This is done in step 1 of Protocol 5.

Hence, if 𝐴 and 𝐵 were in the same connected component in 𝐺, this process would

end up with correlations between 𝐴 and 𝐵 and we can terminate the protocol.

Assume this is not the case. A natural next step to try is to run the clique protocol

described in Chapter 4.5.2 with each of the cliques and parties 𝐴 and 𝐵 with the intent

of setting up OT correlations between 𝐴 and 𝐵. The troubling aspect, however, is

that we are unable to fix the parameter 𝑡 in any of the cliques. Indeed, in many of

these invocations, the number of corrupted parties may be more than what Protocol

2 can handle in order to guarantee security. However, for an invocation to be secure,

we only require that the clique contains at least one honest party. This is because

we can assume without loss of generality that at least one of 𝐴 or 𝐵 is honest since

otherwise we have nothing to prove. But now, this gives us that a majority of the

cliques actually contain at least one honest party. Hence, if we invoke Protocol 2 for

each of the parties on their respective cliques, a majority of them would be secure and

now we can combine these candidate invocations to obtain a secure protocol following

Lemma 23. This is performed in step 5 of the Protocol 5. Finally, we note that steps

3, 4 and 6 perform OT correction, that is, they perform a random OT to 1-out-of-2

OT transformation. This describes 𝑛/2-security of Protocol 5.

Proof of Theorem 9. The “only if” part of theorem has been proved by virtue of the

lower bound proven in Theorem 8 with 𝑡 = 𝑛/2. We now prove the “if” part. We note

that in the case where 𝐴 and 𝐵 are in the same connected component in the network

𝐺, by the 𝑛/2-security of Protocol 4 and Lemma 20, we note that Protocol 5 is an

𝑛/2-secure OT protocol with 𝐴 as the sender and 𝐵 as the receiver.
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Protocol 5: 𝑛/2 corruptions

Preliminaries: Let 𝑃1 = 𝐴,𝑃2 = 𝐵,𝑃3, . . . , 𝑃𝑛 be the 𝑛 parties in a network 𝐺 = (𝑉,𝐸).
𝐴 has input (𝑥0, 𝑥1), and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. While there exist parties 𝑃𝑖, 𝑃𝑗 , 𝑃𝑘 ∈ 𝑉 such that {𝑃𝑖, 𝑃𝑗} ∈ 𝐸, {𝑃𝑗 , 𝑃𝑘} ∈ 𝐸, but
{𝑃𝑖, 𝑃𝑘} /∈ 𝐸:

(a) Let 𝑆 be the set of triples of distinct vertices (𝑋,𝑌, 𝑍) ∈ 𝑉 3 which satisfy the
conditions {𝑋,𝑌 } ∈ 𝐸, {𝑌,𝑍} ∈ 𝐸, and {𝑋,𝑍} /∈ 𝐸.

(b) For each triple (𝑋,𝑌, 𝑍) ∈ 𝑆, invoke Protocol 4 with independent random inputs
(𝑟𝑖,𝑘0 , 𝑟𝑖,𝑘1 ) and 𝑏𝑖,𝑘, to obtain OT correlations along edge {𝑋,𝑍}.

(c) Invoking cascading (Lemma 20), we can add {𝑋,𝑍} to the edge set 𝐸 for all triples
(𝑋,𝑌, 𝑍) ∈ 𝑆.

The OT network 𝐺 now consists of disjoint cliques 𝒞1, . . . , 𝒞ℓ.

2. If 𝐴 and 𝐵 are in the same clique, then halt.

3. 𝐵 samples a random bit 𝑐 and sends 𝑏′ = 𝑏⊕ 𝑐 to 𝐴.

4. 𝐴 chooses random one-time pads 𝑟0, 𝑟1 and sends 𝑦0 = 𝑥0⊕ 𝑟𝑏′ and 𝑦1 = 𝑥1⊕ 𝑟1−𝑏′ to 𝐵.

5. Let 𝒞1 be the clique containing 𝐴 and 𝒞2 be the clique containing 𝐵. For each party
𝑃𝑖, 𝑖 ≥ 3, let 𝒞(𝑖) denote the clique containing party 𝑖, and let 𝑃𝑗1 , . . . , 𝑃𝑗|𝒞(𝑖)| denote
the parties in clique 𝒞(𝑖). Run a combined protocol Π*(Π1, . . . ,Π𝑛) on the 𝑛 protocols
Π1, . . . ,Π𝑛, where

∙ For each 𝑖 ∈ [𝑛], Π𝑖 denotes an invocation of Protocol 2 on the |𝒞(𝑖)| + 2 parties
𝐴,𝐵, 𝑃𝑗1 , . . . , 𝑃𝑗|𝒞(𝑖)| with inputs (𝑟0, 𝑟1) and 𝑐.a

6. Finally, 𝐵 computes 𝑥𝑏 = 𝑦𝑏 ⊕ 𝑟𝑐.

aIn the case 𝒞(𝑖) = 𝒞1, 𝐴 is both the OT sender and a member of the clique. A similar
condition holds for 𝐵 in the case 𝒞(𝑖) = 𝒞2.

We now proceed to the case where 𝐴 and 𝐵 are not in the same connected compo-

nent in 𝐺. We must show that the protocol is secure against 𝑡-threshold adversaries

as long as the vertices cannot be partitioned into two sets 𝑉𝐴, 𝑉𝐵 each of size 𝑡 = 𝑛/2

with 𝐴 ∈ 𝑉𝐴, 𝐵 ∈ 𝑉𝐵 such that there are no edges between 𝑉𝐴 and 𝑉𝐵. Let 𝒜 be a

𝑡-threshold adversary which corrupts parties 𝑇 , |𝑇 | ≤ 𝑡. We will construct a simulator

𝒮 which plays the role of the uncorrupted parties.

If {𝐴,𝐵} ⊂ 𝑇 then the uncorrupted parties receive no input, so the simulator

can perfectly simulate the uncorrupted parties. If {𝐴,𝐵} ∩ 𝑇 = ∅ then 𝒮 chooses

arbitrary inputs 𝑥0, 𝑥1, 𝑏 and runs the protocol. Since the only steps which depend

on the input at all are on point-to-point channels between 𝐴 and 𝐵, the view of the

120



adversary in the real and ideal worlds is identical.

Otherwise, we have that the corrupted parties 𝑇 include exactly one of 𝐴,𝐵. If

𝐴 ∈ 𝑇 but 𝐵 /∈ 𝑇 , then 𝒮 chooses an arbitrary bit 𝑏 and runs the protocol, invoking

the OT simulator for each invocation of Protocol 4. It follows that as long as the

combined protocol Π* in step 5 is secure against 𝒜, Protocol 5 is secure against 𝒜. It

remains to show that a majority of the 𝑛 protocols Π1, . . . ,Π𝑛 are secure against 𝒜.

Since party 𝐵 is honest, by Lemma 19, protocol Π𝑖 is secure against 𝒜 as long as at

least one of the parties in clique 𝒞(𝑖) is honest. In particular, if party 𝑃𝑖 is honest then

protocol Π𝑖 is secure against 𝒜. At most 𝑡 of the parties 𝑃1, . . . , 𝑃𝑛 are corrupt, so the

only protocols which may be insecure against 𝒜 are the 𝑡 protocols Π𝑖 corresponding

to the corrupted parties 𝑃𝑖. Assume that all all 𝑡 of these protocols are insecure

against 𝒜. We then have the corrupted parties lie in completely corrupted cliques

who sizes sum up to 𝑛/2. This then gives a set 𝑉𝐴 = 𝑇 of 𝑛/2 parties containing 𝐴

but not 𝐵 such that there are no edges from 𝑉𝐴 to the remaining vertices 𝑉𝐵 = 𝑇 .

However, we know that 𝐺 possesses no such partition. Hence, at most 𝑡 − 1 < 𝑛/2

of the 𝑛 protocols are insecure against 𝒜 and hence by Lemma 23, the combined

protocol Π* in step 5 is secure and hence Protocol 5 is secure against 𝒜.

The remaining case that 𝐵 ∈ 𝑇 but 𝐴 /∈ 𝑇 is similar. Here, the simulator 𝒮 is

given the output value 𝑥𝑏. 𝒮 runs the protocol with (𝑥𝑏, 𝑥𝑏) as the input to 𝐴, again

invoking the OT simulator for each invocation of Protocol 4. As above, as long as the

combined protocol Π* in step 5 is secure against 𝒜, Protocol 5 is secure against 𝒜.

By the same argument, the only protocols Π𝑖 which may be insecure against 𝒜 are

the 𝑡 protocols corresponding to the corrupted parties 𝑃𝑖. If all 𝑡 of these protocols

are insecure against 𝒜, as above, we have a set 𝑉𝐴 = 𝑇 of 𝑛/2 parties containing 𝐴

but not 𝐵 such that there are no edges from 𝑉𝐴 to the remaining vertices 𝑉𝐵 = 𝑇 .

However, we know that 𝐺 possesses no such paritition. Hence, at most 𝑡 − 1 < 𝑛/2

of the 𝑛 protocols are insecure against 𝒜 and hence by Lemma 23, the combined

protocol Π* in step 5 is secure and hence Protocol 5 is secure against 𝒜.

We analyze the efficiency of the protocol in Theorem 10 below. The protocol as stated

runs in quasi-polynomial time. We can also obtain a computationally secure protocol
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which runs in polynomial time.

Theorem 10. Protocol 5 runs in quasi-polynomial time. Assuming one-way func-

tions, we can obtain a computationally secure protocol which runs in polynomial time

using computationally secure cascading (Lemma 21).

Proof. Each iteration of step 1 decreases the length of a path between any pair of

vertices from ℓ to ⌈ℓ + 1⌉/2. Consequently, after 𝑂(log 𝑛) iterations the graph will

consist of a collection of disjoint cliques, and the protocol will move on to the next

step. By Lemma 20 (Cascading), if each iteration can be performed in time at most

𝑇 assuming the augmented graph, then the full cascaded protocol runs in time at

most 𝑇𝑂(log𝑛). Since 𝑇 = poly(𝑛) and each other step of the protocol is efficient, this

implies that Protocol 5 runs in quasi-polynomial time.

Replacing the cascading of step 1 with the more efficient but computationally se-

cure cascading of Lemma 21, we have the cascaded protocol runs in time 𝑂(𝑇poly(𝜆) ·

log 𝑛). Since each other step of the protocol is efficient, this implies that assuming

one-way functions, we have a computationally-secure version of Protocol 5 that runs

in quasi-polynomial time.
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4.7 The case 𝑡 = 𝑛− 2

On account of the lower bound proven in [77], we note that 𝑡 = 𝑛 − 2 is the largest

value of 𝑡 which the question is non-trivial. In this section we present an improved

efficient protocol for the special case 𝑡 = 𝑛−2 for all networks 𝐺 with 𝐴 as the sender

and 𝐵 as the receiver whenever the network 𝐺 satisfies 𝐺 is (2, 𝐴,𝐵)-unsplittable.

Theorem 11. Consider an 𝑛-party network 𝐺, which contains 𝐴 and 𝐵 as two of

the parties. Let 𝑡 = 𝑛 − 2. Protocol 6 is an efficient 𝑡-secure OT protocol with 𝐴 as

the sender and 𝐵 as the receiver if and only if 𝐺 is (2, 𝐴,𝐵)-unsplittable.

Protocol 6 is built upon the following structural aspect of the network 𝐺 under

consideration. We are only concerned with networks 𝐺 that are (2, 𝐴,𝐵)-unsplittable.

This means that for any two sets vertices 𝑉𝐴 and 𝑉𝐵 such that |𝑉𝐴| = |𝑉𝐵| = 2, 𝐴 ∈ 𝑉𝐴

and 𝐵 ∈ 𝑉𝐵, there exists an edge crossing the sets 𝑉𝐴 and 𝑉𝐵. In particular, by

definition, this implies that for any two parties 𝑃𝑖, 𝑃𝑗 where 𝑖, 𝑗 ≥ 3, the sub-network

𝐺𝑖,𝑗 induced by the parties 𝐴, 𝐵, 𝑃𝑖 and 𝑃𝑗 is (2, 𝐴,𝐵)-unsplittable. Flipping the

argument on its head, this also means that for any two parties 𝑃𝑖, 𝑃𝑗, 𝐺𝑖,𝑗 is (2, 𝑃𝑖, 𝑃𝑗)-

unsplittable. Hence, we could try to obtain OT correlations between every pair of

vertices 𝑃𝑖, 𝑃𝑗 by running Protocol 5 on every 𝐺𝑖,𝑗 for 𝑛 = 4 parties. Notice that if

these invocations were secure, then we would obtain an (𝑛− 2)-clique in the network

after which we can execute Protocol 2 in order to obtain OT correlations between

𝐴 and 𝐵. This describes Protocol 6. The only concern however is that each of the

executions of Protocol 5 would be secure only if each of them contained at most two

corrupt parties. While this need not be true in general, and hence we cannot leverage

the security of the executions of Protocol 5, we will argue that Protocol 6 still remains

secure against 𝑡 = 𝑛− 2 corruptions.

Proof Intuition (Theorem 11): We take off from the description of Protocol 6 above.

It is easy to see that in order to analyze the (𝑛 − 2)-security of Protocol 6, we need

to analyze whether the invocations of Protocol 5 on sub-networks 𝐺𝑖,𝑗 are secure.

In particular, we know if at most two of the four parties in 𝐺𝑖,𝑗 are honest, then
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Protocol 6: 𝑛− 2 corruptions

Preliminaries: Let 𝑃1 = 𝐴,𝑃2 = 𝐵,𝑃3, . . . , 𝑃𝑛 be the 𝑛 parties, and let graph 𝐺 = (𝑉,𝐸)
be the OT network among the parties. 𝐴 has input (𝑥0, 𝑥1), and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. For all pairs of parties 𝑃𝑖, 𝑃𝑗 ∈ 𝑉 with 𝑖, 𝑗 ≥ 3 such that {𝑃𝑖, 𝑃𝑗} /∈ 𝐸:

(a) Invoke Protocol 5 (or any 2-secure protocol for 𝑛′ = 4) on the induced OT subgraph
𝐺𝑖,𝑗 := 𝐺 ∩ {𝑃𝑖, 𝑃𝑗, 𝐴,𝐵} with independent random inputs (𝑟𝑖,𝑗0 , 𝑟𝑖,𝑗1 ) and 𝑏𝑖,𝑗 , to
obtain OT correlations along edge {𝑃𝑖, 𝑃𝑗}.

(b) By virtue of cascading (Lemma 20), we can add edge {𝑃𝑖, 𝑃𝑗} to the graph 𝐺.a

The OT network 𝐺 now contains a (𝑛− 2)-clique among vertices 𝑃3, . . . , 𝑃𝑛.

2. Invoke Protocol 2 (𝑡-clique) with input (𝑥0, 𝑥1) and 𝑏.

aWe will only have OT security over this edge when at least two of the parties 𝑃𝑖, 𝑃𝑗 , 𝐴,𝐵
are honest, but we obtain the functionality of the edge regardless. We address security of the
overall protocol in the proof.

that particular invocation of Protocol 5 is secure and yields secure OT correlations

between the parties 𝑃𝑖 and 𝑃𝑗. And then, appealing to Lemma 20, we have that the

network 𝐺 now possesses the edge {𝑃𝑖, 𝑃𝑗}.

Note however that each 𝐺𝑖,𝑗 has at least one honest party since at most one of 𝐴

or 𝐵 is corrupt (otherwise, there is nothing to prove). We now consider a sub-network

𝐺𝑖,𝑗 in which three of the parties are corrupt. Since at least one of 𝐴 or 𝐵 is honest,

this would mean that both 𝑃𝑖 and 𝑃𝑗 are corrupt. Thus, there is nothing to prove

regarding the security of the invocation of Protocol 5 on 𝐺𝑖,𝑗 since we are looking to

establish OT correlations between 𝑃𝑖 and 𝑃𝑗 and they are both corrupt. Combining

these claims, we have that each of the invocations of Protocol 5 is secure and yields

secure OT correlations between the pairs of parties 𝑃𝑖, 𝑃𝑗 for all 𝑖, 𝑗 ≥ 3. By virtue

of Lemma 20, we obtain an (𝑛− 2)-clique in the network and the (𝑛− 2)-security of

Protocol 2 with 𝑡 = 𝑛− 2 proves the (𝑛− 2)-security of Protocol 6.

Proof of Theorem 11. The “only if” part of theorem has been proved by virtue of the

lower bound proven in Theorem 8 with 𝑡 = 𝑛− 2. We now prove the “if” part. Let 𝒜

be a 𝑡-threshold adversary which corrupts parties 𝑇 , |𝑇 | ≤ 𝑡 = 𝑛− 2. If 𝐴 and 𝐵 are

both corrupt then the uncorrupted parties receive no input, so the simulator 𝒮 can
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perfectly simulate the uncorrupted parties.

Otherwise we have that at least one of 𝐴 or 𝐵 is uncorrupted. We first show how

to simulate step 1. Since 𝐺 is (2, 𝐴,𝐵)-unsplittable, for each pair of parties 𝑃𝑖, 𝑃𝑗

considered in step 1, we have that 𝐺𝑖,𝑗 is (2, 𝐴,𝐵)-unsplittable. Since {𝑃𝑖, 𝑃𝑗} /∈ 𝐸,

this implies that some vertex among 𝐴,𝐵, 𝑃3, and 𝑃4 has degree at least 2 in 𝐺𝑖,𝑗.

In particular, we have 𝐺𝑖,𝑗 ̸⊆𝑃3,𝑃4 Λ0
2, where Λ0

2 is labeled so that 𝑃3 and 𝑃4 are in

separate components. By Theorem 9, we securely obtain OT correlations between 𝑃3

and 𝑃4 whenever at most two of the parties 𝐴,𝐵, 𝑃3, 𝑃4 are corrupt.

We have that 𝐴 and 𝐵 are not both corrupt. Therefore, if 𝑃3 and 𝑃4 are not

both corrupt, then at most two of the parties 𝐴,𝐵, 𝑃3, 𝑃4 are corrupt. Consequently

we securely obtain OT correlations between 𝑃3 and 𝑃4. On the other hand, 𝑃3 and

𝑃4 are both corrupted, then there is nothing to prove. More formally, there is a

simulator which can perfectly simulate the invocation of Protocol 5 in step 1a by

executing the protocol of the honest parties, since the honest parties receive no input.

Consequently we securely obtain OT correlations between the corrupted parties 𝑃3

and 𝑃4. In both cases, by Lemma 20, we have an OT simulator which can simulate

subsequent invocations of the OT channel between 𝑃3 and 𝑃4.

Therefore, by the end of step 1 we 𝑡-securely obtained an OT channel between

every pair of parties 𝑃𝑖, 𝑃𝑗 for 𝑖, 𝑗 ≥ 3. Then by Lemma 19, the invocation of Protocol

2 in step 2 is a 𝑡-secure OT protocol with 𝐴 as the sender and 𝐵 as the receiver.
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4.8 The General Case: 𝑡 ≥ 𝑛/2

In this section, we investigate the question for general 𝑡 ≥ 𝑛/2. Note that from the

protocols in Chapters 4.6 and 4.7 we already have tight answers for the cases 𝑡 = 𝑛/2

and 𝑡 = 𝑛 − 2. We address the question from both ends of the spectrum, namely

for 𝑡 larger than 𝑛/2 and 𝑡 smaller than 𝑛 − 2. These analyses culminate in the

descriptions of two distinct protocols using the protocols from Chapters 4.6 and 4.7

as their respective base cases. In particular, we note that the protocols we describe

are efficient closer to their respective ends of the spectrum. That is, the protocol

described in Chapter 4.8.1 is quasi-polynomially efficient8 when 𝑡 = 𝑛/2 + 𝒪(1),

while the protocol described in Chapter 4.8.2 is efficient when 𝑡 = 𝑛 − 𝒪(1). We

describe these protocols ahead and observe that the combination of these protocols

yields one which is efficient under computational security when either 𝑡 = 𝑛/2+𝒪(1)

or 𝑡 = 𝑛 − 𝒪(1). We note that the problem of recognizing whether there exists

a 𝑡-secure OT protocol is efficient in these cases, while the recognition problem for

general 𝑛, 𝑡 is coNP-complete.

4.8.1 General Protocol (Quasi-poly for 𝑡 = 𝑛/2 +𝒪(1))

We now describe a 𝑡-secure OT protocol for all networks 𝐺 with 𝐴 as the sender and

𝐵 as the receiver whenever the network 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable. Notice that

on account of the lower bound described in Chapter 4.4, this result is tight.

Theorem 12. Consider an 𝑛-party network 𝐺 which contains parties 𝐴 and 𝐵. Let

𝑡 ≥ 𝑛/2. Protocol 7 is a 𝑡-secure OT protocol with 𝐴 as the sender and 𝐵 as the

receiver if and only if 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable. The protocol achieves perfect

security and runs in quasi-polynomial time for 𝑡 = 𝑛/2 + 𝒪(1). Assuming one-way

functions, we can also obtain a protocol which achieves computational security and

runs in polynomial time for 𝑡 = 𝑛/2 +𝒪(1).

The main idea behind the protocol is recursion, that is, to reduce the problem of

obtaining an OT protocol on an 𝑛-vertex graph with 𝑡 > 𝑛/2 corrupted parties to
8or polynomially efficient under computational security
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a number of instances of (𝑛 − 1)-vertex graphs, most of which have at most 𝑡 − 1

corrupted parties. An important point to note, which we prove ahead, is that the

(𝑛 − 1)-vertex sub-graphs, say 𝐺′, have structure similar to 𝐺, in the sense that, 𝐺′

is (𝑛′ − 𝑡′, 𝐴,𝐵)-unsplittable if 𝐺 is (𝑛− 𝑡, 𝐴,𝐵)-unsplittable, where 𝑛′ = 𝑛− 1 and

𝑡′ = 𝑡− 1. We can now try the natural strategy of recursing on these smaller problem

instances and invoking an OT combiner to obtain the final protocol.

More precisely, the protocol constructs 𝑛 − 2 instances of subgraphs on 𝑛 − 1

vertices each where each one is obtained by deleting exactly one of the vertices other

than 𝐴 and 𝐵. It is these sub-graphs which preserve the structure in 𝐺, as described

above. The candidate 𝑛− 2 protocols, each run on one of the subgraphs, are (𝑡− 1)-

secure OT protocols with 𝐴 as the sender and 𝐵 as the receiver. The final protocol is

to simply run the protocol which combines all the candidate protocols. What remains

to be proven is that a majority of the subgraphs defined actually possesses at most

𝑡− 1 corrupt parties.

Proof Intuition (Theorem 12): We may assume that at least one of 𝐴 or 𝐵 is honest

since otherwise there is nothing to prove. As described above, we wish to argue

that a majority of the sub-graphs defined actually possesses at most 𝑡 − 1 corrupt

parties. Note that this claim combined with the observation that these specially

chosen sub-graphs preserve the structure of 𝐺 (that is, for any of these sub-graphs

𝐺′, 𝐺′ is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable if 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable) complete the

proof. Furthermore, the claim can be proved rather easily as follows. Since 𝑡 > 𝑛/2,

if exactly 𝑡 parties are corrupt then a majority of the sub-graphs definitely contain at

most 𝑡− 1 corrupt parties since 𝐴 and 𝐵 are not both corrupt. If strictly fewer than

𝑡 parties are corrupt then all of the sub-graphs contain at most 𝑡− 1 corrupt parties.

In either case, for a majority of sub-graphs, at most 𝑡− 1 of the parties are corrupt.

Invoking Lemma 23 completes the argument.

We first present and prove a structure lemma.

Lemma 25. Given graph 𝐺 = (𝑉,𝐸) and a vertex 𝑖, let 𝐺𝑖 be the induced graph
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Protocol 7: General Protocol I

Preliminaries: Let 𝐴,𝐵, 𝑃3, . . . , 𝑃𝑛 be the 𝑛 parties in a network 𝐺 and let 𝑡 ≥ 𝑛/2 be
the maximum number of corruptions. 𝐴 has input (𝑥0, 𝑥1), and 𝐵 has input 𝑏 ∈ {0, 1}.

Protocol:
1. If 𝑡 = 𝑛/2, then invoke Protocol 5 and halt.

2. Otherwise, run a combined protocol Π*(Π3, . . . ,Π𝑛), where

∙ For each 𝑖 ≥ 3, Π𝑖 denotes the recursive invocation of this protocol on the 𝑛 − 1
parties excluding party 𝑃𝑖 with the induced sub-network 𝐺 ∖ {𝑃𝑖} and 𝑡′ = 𝑡 − 1
corruptions.

on the 𝑛 − 1 vertices 𝑉 ∖ {𝑖}. If 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable, then 𝐺𝑖 is also

(𝑛− 𝑡, 𝐴,𝐵)-unsplittable.

Proof. We will prove the contrapositive. Suppose that 𝐺𝑖 ⊆𝐴,𝐵 Λ2𝑡−𝑛−1
𝑛−𝑡 . This means

there exists a partition of the vertex set of 𝐺𝑖 as 𝑉 ∖ {𝑖} = 𝑉𝐴

⋃̇︀
𝑉𝑆

⋃̇︀
𝑉𝐵 where

𝐴 ∈ 𝑉𝐴, 𝐵 ∈ 𝑉𝐵, |𝑉𝐴| = |𝑉𝐵| = 𝑛 − 𝑡 and |𝑉𝑆| = 2𝑡 − 𝑛 − 1. Now, we note that

there exists a partition of the vertex set of 𝐺 as 𝑉 = 𝑉𝐴

⋃̇︀
𝑉 ′
𝑆

⋃̇︀
𝑉𝐵 where 𝐴 ∈ 𝑉𝐴,

𝐵 ∈ 𝑉𝐵, 𝑉 ′
𝑆 = 𝑉𝑆 ∪{𝑖} and hence |𝑉𝐴| = |𝑉𝐵| = 𝑛− 𝑡 and |𝑉 ′

𝑆| = 2𝑡−𝑛. This implies

that 𝐺 ⊆𝐴,𝐵 Λ2𝑡−𝑛
𝑛−𝑡 , which is a contradiction.

Using the lemma, we now prove Theorem 12.
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Proof of Theorem 12: The “only if” part of theorem has been proved by virtue of the

lower bound proven in Theorem 8. The efficiency claim follows immediately from

Theorem 10. We now prove the “if” direction by induction on 2𝑡− 𝑛. The base case

of 2𝑡− 𝑛 = 0 follows from Theorem 9. Now assume for induction that the statement

holds for 𝑛′ = 𝑛− 1, 𝑡′ = 𝑡− 1 with 𝑡 > 𝑛/2.

Let 𝒜 be a 𝑡-threshold adversary which corrupts parties 𝑇 , |𝑇 | ≤ 𝑡. If {𝐴,𝐵} ⊂ 𝑇

then the uncorrupted parties receive no input, so the simulator can perfectly simulate

the uncorrupted parties. Consequently it suffices to consider the case {𝐴,𝐵}∩𝑇 ≤ 1.

By Lemma 25, each sub-network 𝐺∖{𝑃𝑖} is (𝑛′−𝑡′, 𝐴,𝐵)-unsplittable. For each 𝑖 ≥ 3,

let 𝑇𝑖 = 𝑇 ∖ {𝑃𝑖} denote the corrupted parties in sub-network 𝐺 ∖ {𝑃𝑖}. If |𝑇 | < 𝑡

then |𝑇𝑖| ≤ |𝑇 | ≤ 𝑡′ for all 𝑖. Otherwise, |𝑇 | = 𝑡. In this case, since {𝐴,𝐵}∩𝑇 ≤ 1, it

follows that at least 𝑡−1 of the 𝑛−2 parties 𝑃3, . . . , 𝑃𝑛 are corrupted. Since 𝑡 > 𝑛/2,

this is a majority of the parties 𝑃3, . . . , 𝑃𝑛. For each corrupted party 𝑃𝑖, |𝑇𝑖| = 𝑡′.

Hence, in each case, we have that a majority of the sets 𝑇3, . . . , 𝑇𝑛 satisfy |𝑇𝑖| ≤ 𝑡′.

Therefore by our inductive assumption, a majority of the protocols Π3, . . . ,Π𝑛 in step

2 are secure against 𝒜. Consequently, by Lemma 23, we have that the combined

protocol Π* is secure against 𝒜. Hence, by induction, the theorem holds for all 𝑛, 𝑡

with 𝑡 ≥ 𝑛/2.

Corollary 1. Let 𝐺 be an 𝑛-party network. For 𝑡 ≥ 𝑛/2, we can 𝑡-securely generate

OT correlations between all pairs of parties (thus, completing the OT network) if and

only if the 𝐺 is (𝑛− 𝑡)-unsplittable.

Proof. If 𝐺 is (𝑛−𝑡)-unsplittable, then for all pairs of vertices 𝐴,𝐵, 𝐺 is (𝑛−𝑡, 𝐴,𝐵)-

unsplittable and hence from Theorem 12, we can generate OT correlations between 𝐴

and 𝐵. Conversely, if 𝐺 ⊆ Λ2𝑡−𝑛
𝑛 , then choosing vertices 𝐴 ∈ 𝑉𝐴 and 𝐵 ∈ 𝑉𝐵, we have

that 𝐺 ⊆𝐴,𝐵 Λ2𝑡−𝑛
𝑛−𝑡 and hence Theorem 12 rules out the existence of such a protocol.

Hence, there exist a pair of vertices between whom we cannot 𝑡-securely generate OT

correlations. This completes the proof.
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Protocol 8: General protocol II

Preliminaries: Let 𝑃1 = 𝐴,𝑃2 = 𝐵,𝑃3, . . . , 𝑃𝑛 be the 𝑛 parties in a network 𝐺 = (𝑉,𝐸).
𝐴 has input (𝑥0, 𝑥1), and 𝐵 has input 𝑏 ∈ {0, 1}. Let 𝑘 = 𝑛− 𝑡.

Protocol:
1. Invoke Protocol 6 with 𝑡′ = 𝑛− 2 on the 𝑛′-node network 𝐺′ with inputs (𝑥0, 𝑥1) and 𝑏,

where 𝑛′ =
(︀
𝑛−2
𝑘−1

)︀
+ 2, and

∙ 𝑆𝑘−1 is the set of subsets of {𝑃3, . . . , 𝑃𝑛} of size 𝑘 − 1.

∙ The 𝑛′ vertices of 𝐺′ correspond to 𝐴,𝐵, and the
(︀
𝑛−2
𝑘−1

)︀
subsets of 𝑆𝑘−1.

∙ The edges of 𝐺′ are defined as follows. Two subsets 𝑋,𝑌 ∈ 𝑆𝑘−1 will have an edge
if either 𝑋 ∩ 𝑌 ̸= ∅ or there exists a pair of parties 𝑃𝑖 ∈ 𝑋 and 𝑃𝑗 ∈ 𝑌 with
{𝑃𝑖, 𝑃𝑗} ∈ 𝐸.

∙ Invocation of 𝑂𝑇 over an edge {𝑋,𝑌 } in 𝐺′ with inputs (𝑧0, 𝑧1) and 𝑐 is performed
as follows.

– If 𝑋 ∩ 𝑌 ̸= ∅, then choose some party 𝑃𝑖 ∈ 𝑋 ∩ 𝑌 . 𝑃𝑖 ∈ 𝑋 and hence knows
(𝑧0, 𝑧1); similarly, 𝑃𝑖 ∈ 𝑌 and knows 𝑐. Consequently 𝑃𝑖 knows 𝑧𝑐, and sends
it to the other members of set 𝑌 .

– If 𝑋 ∩𝑌 = ∅, there is a pair of parties 𝑃𝑖 ∈ 𝑋,𝑃𝑗 ∈ 𝑌 such that {𝑃𝑖, 𝑃𝑗} ∈ 𝐸.
𝑃𝑖 knows (𝑧0, 𝑧1) and 𝑃𝑗 knows 𝑐, so they can invoke OT over the channel
(𝑃𝑖, 𝑃𝑗) in 𝐺, and 𝑃𝑗 can then send the value 𝑧𝑐 to the other members of 𝑌 .

4.8.2 General Protocol (Efficient for 𝑡 = 𝑛−𝒪(1))

We now describe another 𝑡-secure OT protocol for all networks 𝐺 with 𝐴 as the

sender and 𝐵 as the receiver whenever the network 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable.

This protocol uses, in spirit, a reduction in the opposite sense that than the one

described in Chapter 4.8.1. The protocol is efficient whenever 𝑡 = 𝑛−𝒪(1).

Theorem 13. Consider an 𝑛-party network 𝐺, which contains 𝐴 and 𝐵 as two of

the parties. Let 𝑡 ≥ 𝑛/2. Protocol 8 is a 𝑡-secure OT protocol with 𝐴 as the sender

and 𝐵 as the receiver if and only if 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable. The protocol is

efficient for 𝑡 = 𝑛−𝒪(1).

The idea behind this protocol is the following. We blow up the network in order

to obtain a large number, 𝑁 , of parties apart from 𝐴 and 𝐵 such that at least one

them is guaranteed to be honest. With this guarantee in mind, the protocol descrip-
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tion is straightforward. We may assume that at least one of 𝐴 and 𝐵 is honest, as

otherwise there is nothing to prove. Now, the total number of parties is 𝑛′ = 𝑁 + 2

and the number of honest parties is at least 2 since one of 𝐴 or 𝐵 and one of the other

parties is guaranteed to be honest. This corresponds to the case that 𝑡′ = 𝑛′ − 2.

We can now apply the protocol from Chapter 4.7. What remains to be discussed

is the construction of these parties, a structural lemma that if the network 𝐺 we

began with were (𝑛− 𝑡, 𝐴,𝐵)-unsplittable, then the newly constructed network 𝐺′ is

(2, 𝐴,𝐵)-unsplittable, and why 𝐺′ is guaranteed to have at least two honest parties,

in particular, why one of the parties other than 𝐴 and 𝐵 is honest.

Proof Intuition (Theorem 13): We first describe the new network generated by Pro-

tocol 8. The parties other than 𝐴 and 𝐵 in the newly constructed network are

constructed as subsets of the parties in 𝐺 other than 𝐴 and 𝐵. The sizes of these

subsets are 𝑛− 𝑡−1, that is, in 𝐺′, the parties other than 𝐴 and 𝐵 are all (𝑛− 𝑡−1)-

size subsets of the remaining parties in 𝐺. It can be proved that this new network

𝐺′ is (2, 𝐴,𝐵)-unsplittable if 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable, where the edges of 𝐺′

are as in described in Protocol 8 (Lemma 26). A party 𝑋, which is formed as a

(𝑛− 𝑡− 1)-size subset will be considered honest if all constituent parties 𝑃𝑖 ∈ 𝑋 are

honest. Now, the reason for there being one honest party among these (𝑛− 𝑡−1)-size

subset parties is the following trivial observation. Since one of 𝐴 and 𝐵 is honest

and at most 𝑡 parties are corrupt, at least 𝑛− 𝑡 parties are honest and in particular,

at least 𝑛 − 𝑡 − 1 of the non-𝐴,𝐵 parties must be honest. This means that one of

the subsets is completely honest. In particular, one of the parties other than 𝐴 and

𝐵 are honest in 𝐺′ and hence 𝐺′ is guaranteed to have at least two honest parties.

Combining these facts and invoking Theorem 11 completes the argument.

We will use the following structural lemma about the network 𝐺′ constructed in

Protocol 8.
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Lemma 26. If 𝐺 is (𝑛 − 𝑡, 𝐴,𝐵)-unsplittable, then 𝐺′ is a (2, 𝐴,𝐵)-unsplittable

network on 𝑛′ =
(︀

𝑛−2
𝑛−𝑡−1

)︀
+2 vertices, where 𝐺′ is the network produced in Protocol 8.

Proof. We prove the contrapositive. Assume that 𝐺′ ⊆𝐴,𝐵 Λ𝑛′−2
2 . Then there exist

vertices 𝑋, 𝑌 ∈ 𝑆𝑘−1 such that there are no edges in 𝐺′ between any of the parties in

{𝐴,𝑋} and any of the parties in {𝐵, 𝑌 }. In particular, 𝑋 ∩ 𝑌 = ∅, since otherwise

{𝑋, 𝑌 } would be an edge of 𝐺′. This implies that we have 2𝑘 = 2(𝑛 − 𝑡) parties

{𝐴,𝐵} ∪𝑋 ∪ 𝑌 such that there are no edges in 𝐺 from the 𝑛− 𝑡 parties {𝐴} ∪𝑋 to

any of the 𝑛− 𝑡 parties {𝐵}∪𝑌 . By definition, this means that 𝐺 ⊆𝐴,𝐵 Λ2𝑡−𝑛
𝑛−𝑡 , which

is a contradiction.

Using this lemma, we will now prove the correctness of Protocol 8.

Proof of Theorem 13. As before, we only need to prove the “if” part. Let 𝒜 be a

𝑡-threshold adversary which corrupts parties 𝑇 , |𝑇 | ≤ 𝑡. If 𝐴 and 𝐵 are both corrupt,

then the honest parties have no input, so the simulator 𝒮 can perfectly simulate the

uncorrupted parties. If 𝐴 and 𝐵 are both honest, then 𝒮 chooses arbitrary inputs

𝑥0, 𝑥1, 𝑏 and runs the protocol. Since the only steps which depend at all on the inputs

are on point-to-point channels between 𝐴 and 𝐵, the view of the adversary in the

real and ideal worlds is identical.

Otherwise, we have that at most 𝑡−1 of the parties 𝑃3, . . . , 𝑃𝑛 are corrupt and that

either 𝐴 or 𝐵 is honest. In particular, for 𝑘 = 𝑛−𝑡, there are at least 𝑘−1 uncorrupted

parties among 𝑃3, . . . , 𝑃𝑛. Consequently, 𝑆𝑘−1 contains some set 𝑋 consisting only of

honest parties. We treat a party 𝑋 in 𝐺′ as honest if all constituent parties 𝑃𝑖 ∈ 𝑋

are honest. Since 𝐴 and 𝐵 are not both corrupt, we have that 𝐺′ contains at least two

honest parties. By Lemma 26, 𝐺′ is (2, 𝐴,𝐵)-unsplittable. Consequently by Theorem

11 there is a simulator 𝒮 ′ which simulates the roles of the honest parties in the

invocation of Protocol 6 on 𝐺′ in step 1. We define a simulator 𝒮 for Protocol 8 which

behaves exactly as an honest party for communication within each party 𝑋 ∈ 𝑆𝑘−1

and invokes 𝒮 ′ for any communication between parties in 𝐺′. The behavior of this

protocol is identical to the behavior of 𝒮 ′. Hence, by the correctness of simulator 𝒮 ′,

we have that the view of the adversary is identical in the real and ideal worlds.
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4.9 Bounding the number of edges in ≈ 𝑛
2-unsplittable

graphs.

In this section we discuss the minimum number of edges in a graph which is (𝑛− 𝑡)-

unsplittable for 𝑡 = ⌊(𝑛+1)/2⌋. We show that the minimum edge count is 𝑛/2 if 𝑛 is

even and 𝑡 = 𝑛/2, and (𝑛+3)/2 if 𝑛 is odd and 𝑡 = (𝑛+1)/2. These bounds give the

minimum number of OT channels required to obtain 𝑡-secure MPC among 𝑛 parties

in a network for 𝑡 = ⌊(𝑛 + 1)/2⌋. They constitute the first nontrivial cases, since no

OT channels are needed in the case of an honest majority.

Theorem 14. Let 𝑛 be even and 𝑡 = 𝑛/2. Then any (𝑛− 𝑡)-unsplittable graph must

contain at least 𝑡 edges. This bound is tight.

Proof. To show that the bound is tight, note that the 𝑡-claw graph (Figure 4-4(a)) (or

any graph with a tree on 𝑡+1 vertices and no other edges) has 𝑡 edges and contains a

connected component consisting of 𝑡+1 = 𝑛/2+1 vertices, so it is (𝑛/2)-unsplittable.

We now show that every graph with fewer edges can be split.

Let 𝐺 be a graph containing 𝑡 − 1 edges. Let 𝑚 be the number of connected

components of 𝐺, let 𝐶1, 𝐶2, . . . , 𝐶𝑚 be the components in non-increasing order of

size, and let 𝛼𝑖 = |𝐶𝑖|, so that 𝛼1 ≥ 𝛼2 ≥ · · · ≥ 𝛼𝑚 and
∑︀𝑚

𝑖=1 𝛼𝑖 = 𝑛. 𝐺 is (𝑛 − 𝑡)-

splittable if and only if there is some subset 𝐼 ⊂ [𝑛] such that
∑︀

𝑖∈𝐼 𝛼𝑖 = 𝑛/2, that is,

some subset of the values 𝛼𝑖 sum to 𝑛/2.

For all natural numbers 𝑥, let 𝑎𝑥 = |{𝑖 : 𝛼𝑖 ≥ 𝑥}| denote the number of connected

components with size at least 𝑥, and let 𝑏𝑥 = |{𝑖 : 𝛼𝑖 < 𝑥}| denote the number of

vertices in connected components with size smaller than 𝑥. Note that 𝑎𝑥 counts the

components of certain sizes, while 𝑏𝑥 counts the vertices contained in components of

certain sizes. Since a component of size 𝑠 must contain at least 𝑠 − 1 edges, for any

𝑥 > 1 we have that 𝑎𝑥 ≤ (𝑡 − 1)/(𝑥 − 1) < 𝑛/(2𝑥 − 2). In particular, we have that

𝑎2 < 𝑛/2, 𝑎3 < 𝑛/4, and 𝑎4 < 𝑛/6. Since 𝐺 has at most 𝑛/2 − 1 edges, at least two

vertices have degree zero, so 𝛼1 = 𝛼2 = 1. Consequently 𝑏2 ≥ 2. For any 𝑥 > 1, we
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have that

𝑏𝑥 ≥ 𝑛− (𝑎𝑥 + 𝑡− 1) =
𝑛

2
+ 1− 𝑎𝑥

This gives us that 𝛼3 ≤ 𝑛/3 and hence 𝛼𝑖 ≤ 𝑛/2 for all 𝑖.

Consider the following greedy algorithm. Initially let 𝑆2 = 𝐶2. For 𝑖 from 3 to 𝑛,

if |𝑆𝑖−1 ∪ 𝐶𝑖| ≤ 𝑛/2 then set 𝑆𝑖 = 𝑆𝑖−1 ∪ 𝐶𝑖, and otherwise set 𝑆𝑖 = 𝑆𝑖−1. We show

that at the end of this loop, the set 𝑆𝑚 will always have size 𝑛/2. Since |𝐶𝑚| ≤ 𝑛/2,

the sum of the sizes of the other components is at least 𝑛/2, so if |𝑆𝑖+1 ∪ 𝐶𝑖| ≤ 𝑛/2

for every 𝑖 considered in the loop then the loop must terminate with |𝑆1| = 𝑛/2.

Otherwise there is some 𝑖 such that |𝑆𝑖−1 ∪ 𝐶𝑖| > 𝑛/2. Choose the last iteration 𝑖

for which this is true. Since 𝑖 ≥ 3, we must have that 𝛼𝑖 ≤ 𝛼3 ≤ 𝑛/3. If 𝛼𝑖 > 3,

then since 𝑛/2 − |𝑆𝑖| ≤ 𝛼𝑖 − 1 ≤ 𝑛/3 − 1 and 𝑏4 > 𝑛
3
+ 1, we reach a contradiction

with the assumption that 𝑖 is the last such iteration, since there are enough vertices

in components 𝐶𝑖+1, . . . , 𝐶𝑚 to make some subsequent |𝑆𝑗−1 ∪ 𝐶𝑗| > 𝑛/2. Otherwise

𝛼𝑖 ≤ 3, so since 𝑛/2−|𝑆𝑖| ≤ 𝛼𝑖−1 ≤ 2, so since 𝑏2 ≥ 2, we must have that |𝑆𝑚| = 𝑛/2.

Consequently at the end of the loop we always have that |𝑆𝑚| = 𝑛/2. Since 𝑆𝑚

consists only of entire connected components, 𝑆𝑚 consists of 𝑛/2 vertices with no

edges to the rest of the graph, so 𝐺 ⊂ Λ0
𝑛/2 cannot be (𝑛/2)-unsplittable.

Using similar techniques, we can also prove the following theorem.

Theorem 15. Let 𝑛 be odd and 𝑡 = (𝑛 + 1)/2. Then any (𝑛 − 𝑡)-unsplittable graph

must contain at least 𝑡+ 1 edges. This bound is tight.
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Chapter 5

Infrastructure for Fair Computation

Fairness in secure multiparty computation refers to the property that if any party

obtains the output of the computation, then so do all other parties. In this work, we

introduce a new 2-party primitive ℱSyX (“synchronizable fair exchange”) and show that

it is complete for realizing any 𝑛-party functionality with fairness in a setting where

all 𝑛 parties are pairwise connected by independent instances of ℱSyX.

In the ℱSyX-hybrid model, the two parties load ℱSyX with some input, and following

this, either party can trigger ℱSyX with a suitable “witness” at a later time to receive

the output from ℱSyX. Crucially the other party also receives output from ℱSyX when

ℱSyX is triggered. The trigger witnesses allow us to synchronize the trigger phases of

multiple instances of ℱSyX, thereby aiding in the design of fair multiparty protocols.

Additionally, a pair of parties may reuse a single a priori loaded instance of ℱSyX in

any number of multiparty protocols (possibly involving different sets of parties).

The results presented in this chapter also appear in a joint work with Ranjit Kumare-

san and Adam Sealfon [97].
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5.1 Preliminaries

5.1.1 Adversaries

We consider security against malicious static 𝑡-threshold adversaries, that is, adver-

saries that corrupt a set of at most 𝑡 parties, where 0 ≤ 𝑡 < 𝑛1. We assume the

adversary to be malicious. That is, the corrupted parties may deviate arbitrarily

from an assigned protocol.

5.1.2 Fairness versus Guaranteed Output Delivery

We recall here some of the results from [42].

Lemma 27. [42] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in a model without a broadcast chan-

nel. Then, there exists a functionality 𝑓 : 𝒳 𝑛 → 𝒴𝑛 such that 𝑓 cannot be securely

computed with guaranteed output delivery in the presence of 𝑡-threshold adversaries

for 𝑛/3 ≤ 𝑡 < 𝑛.

Lemma 28. [42] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in a model with a broadcast channel.

Then, assuming the existence of one-way functions, for any functionality 𝑓 : 𝒳 𝑛 →

𝒴𝑛, if there exists a protocol 𝜋 which securely computes 𝑓 with fairness, then there

exists a protocol 𝜋′ which securely computes 𝑓 with guaranteed output delivery.

Lemma 29. [42] Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in a model with a broadcast channel.

Then, assuming the existence of one-way functions, for any functionality 𝑓 : 𝒳 𝑛 →

𝒴𝑛, if there exists a protocol 𝜋 which securely computes 𝑓 with fairness, then there

exists a protocol 𝜋′ which securely computes 𝑓 with fairness and does not make use of

the broadcast channel.

1Note that when 𝑡 = 𝑛, there is nothing to prove.
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Preliminaries: 𝑥1, 𝑥2 ∈ {0, 1}*; 𝑓1, 𝑓2 are 2-input, 2-output functionalities. The func-
tionality proceeds as follows:

∙ Upon receiving inputs (𝑥1, 𝑓1) from 𝑃1 and (𝑥2, 𝑓2) from 𝑃2, check if 𝑓 = 𝑓1 = 𝑓2.
If not, abort. Else, send 𝑓1(𝑥1, 𝑥2) to 𝑃1 and 𝑓2(𝑥1, 𝑥2) to 𝑃2.

Figure 5-1: The ideal functionality ℱ2PC.

5.2 Synchronizable Exchange

We are interested in solving the problem of securely computing functionalities with

fairness, most commonly referred to as fair secure computation. We begin with the

case of two parties. It is known that fair two-party secure computation is impossible

in the standard model as well as in the (ℱbc,ℱOT)-hybrid model [41]. This result

generalizes to the setting of 𝑛 parties that are trying to compute in the presence of a

𝑡-threshold adversary for any 𝑛/2 ≤ 𝑡 < 𝑛.

One could define the ideal functionality, ℱ2PC as in Figure 5-1. Clearly, any 2-

party functionality can be securely computed with fairness in the (ℱ2PC, fair)-hybrid

model. One can then ask the following question in the context of 𝑛 > 2 parties:

Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the OT-broadcast model. Does there exist a protocol

that securely computes ℱMPC with fairness in the (ℱ2PC, fair)-hybrid model?

We are interested in security in the presence of a 𝑡-threshold adversary for any 𝑛/2 ≤

𝑡 < 𝑛. While we do not know the answer to this question, it seems that the answer to

this question would be negative. The intuition for this is that the various invocations

of the ideal functionality ℱ2PC cannot “synchronize” with each other and thus we

would run into issues similar to the those highlighted by the impossibility result in

[41], namely, some party/parties obtain information about the output of the protocol

before the others and if these parties were corrupt, they may choose to abort the

protocol without the honest parties receiving their outputs.

Equipped with this intuition, we propose the primitive, ℱSyX, which we call “syn-

chronizable exchange”. We define the ideal functionality for ℱSyX in Figure 5-2. We

associate the type g.d. to the ideal functionality ℱSyX when working in the ℱSyX-hybrid
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Preliminaries: 𝑥1, 𝑥2 ∈ {0, 1}*; 𝑓1, 𝑓2 are 2-input, 2-output functions; 𝜑1, 𝜑2 are
boolean predicates. The functionality proceeds as follows:

∙ Load phase. Upon receiving inputs (𝑥1, 𝑓 = (𝑓1, 𝑓2, 𝜑1, 𝜑2)) from 𝑃1 and
(𝑥2, 𝑓

′) from 𝑃2, check if 𝑓 = 𝑓 ′. If not, abort. Else, compute 𝑓1(𝑥1, 𝑥2). If
𝑓1(𝑥1, 𝑥2) = ⊥a, abort. Else, send 𝑓1(𝑥1, 𝑥2) to both parties, and go to next
phase.

∙ Trigger phase. Upon receiving input 𝑤 from party 𝑃𝑖, check if 𝜑𝑖(𝑤) = 1.
If yes, then send (𝑤, 𝑓2(𝑥1, 𝑥2, 𝑤)) to both 𝑃1 and 𝑃2.

aWe crucially require that ⊥ is a special symbol different from the empty string. We use
⊥ as a means of signalling that the load phase of ℱSyX did not complete successfully. We will
however allow parties to attempt to invoke the load phase of the functionality at a later time.
However, as we proceed, we will also have our functionality be clock-aware and thus only accept
invocations to the load phase until a certain point in time. After the load phase times out, the
functionality is rendered completely unusable. Similarly, if the load phase has been completed
successfully, a clock-oblivious version of the functionality can be triggered at any point in time
as long as a valid witness is provided, no matter the number of failed attempts. The clock-aware
version of the functionality, however, will only accept invocations of the trigger phase until a
certain point in time. After the trigger phase times out, the functionality is rendered completely
unusable.

Figure 5-2: The ideal functionality ℱSyX.
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model. When interacting with this functionality, parties first submit their inputs to

ℱSyX which then gives them a “receipt” acknowledging the end of the input submis-

sion phase. Following this, the functionality simply waits for a trigger from one of

the parties. Once the trigger is received (we specify conditions for the validity of a

trigger), then the functionality will deliver the outputs according to the specification.

In the formal specification, we allow parties 𝑃1, 𝑃2 to submit two functions 𝑓1, 𝑓2

and two Boolean predicates (that check validity of a trigger value) 𝜑1, 𝜑2 along with

their inputs 𝑥1, 𝑥2. ℱSyX then computes 𝑓1(𝑥1, 𝑥2) and sends this value as a “receipt”

that the input submission phase has ended. The actual output of the computation

is 𝑓2(𝑥1, 𝑥2) and this will be provided to the parties at the end of the trigger phase.

Note that the trigger phase can be activated by either party 𝑃𝑖. However, 𝑃𝑖 would

need to provide a “witness” 𝑤 that satisfies 𝜑𝑖.

Note that ℱSyX is at least as strong as ℱ2PC. In order to realize ℱ2PC in the

ℱSyX-hybrid model, we set 𝑓1 = 𝜀 (the empty string), 𝑓2 = 𝑓 , 𝜑1 = 𝜑2 = 1. The

hope in defining this reactive functionality, however, is to achieve synchronization of

multiple invocations of the ideal functionality ℱSyX. In a nutshell, the synchronization

of multiple invocations of the ideal functionality ℱSyX is enabled by the “trigger” phase

of functionality. We will be using 𝑓1 to provide a proof to parties other than 𝑃1, 𝑃2 that

the input submission phase has ended for parties 𝑃1, 𝑃2. In other words, if we wish

to synchronize multiple invocations of the ideal functionality ℱSyX, we set the witness

for the trigger phase of each of the invocations to be the set of all receipts obtained

from the inputs phases of the invocations. The set of all receipts acts as a proof that

every invocation of the ideal functionality completed its load phase successfully. We

use this feature of ℱSyX in order to design a protocol for fair secure computation.

Multiple Triggers and Witnesses. Note that as described, the load phase of the

functionality ℱSyX can only be executed successfully once. And, once it has been

successfully executed, the functionality is in the trigger phase. However, whilst in

the trigger phase, the primitive may be triggered any number of times successfully

or unsuccessfully. Furthermore, triggering the primitive with different witnesses may
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actually produce different outputs, as modeled by having the output 𝑓2 depend on

the witness 𝑤 in addition to 𝑥1, 𝑥2. This will be important for us in Section 5.5.

Clock-awareness. A technicality that arises in the protocol is that of guaranteed

termination. Specifically, we will need our ideal functionality to be “clock-aware”. The

issue of modeling a trusted clock has been studied in the literature. In this work, we

stick to the formalism outlined in [114]. We recall the main ideas here. We assume a

synchronous execution model, where protocol execution proceeds in atomic time steps

called rounds. We assume that the trusted clocks of attested execution processors and

the network rounds advance at the same rate. It is easy to adapt our model and results

if the trusted clocks of the processors and the network rounds do not advance at the

same rate. In each round, the environment must activate each party one by one, and

therefore, all parties can naturally keep track of the current round number. We will

use the symbol 𝑟 to denote the current round number. A party can perform any

fixed polynomial (in 𝜆) amount of computation when activated, and send messages.

We consider a synchronous communication model where messages sent by an honest

party will be delivered at the beginning of the next round. Whenever a party is

activated in a round, it can read a buffer of incoming messages to receive messages

sent to itself in the previous round. To model trusted clocks in attested execution

processors, we will provide a special instruction such that ideal functionalities, in

particular ℱSyX can query the current round number. We say that a functionality ℱ

is clock-aware if the functionality queries the local time; otherwise we say that the

functionality ℱ is clock-oblivious. For the rest of the work, we will always assume

that ℱSyX is clock-aware. We would also like to stress that we require only relative

clocks - in other words, trusted clocks of all functionalities need not be synchronized,

since our protocol will only make use of the number of rounds that have elapsed since

initialization. Therefore, we will assume that when a functionality reads the clock,

a relative round number since the first invocation of the functionality is returned.

Thus, when working in this model, we assume that every party and every invocation

of the ideal functionality ℱSyX has access to a variable 𝑟 that reflects the current round
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Preliminaries: 𝑥1, 𝑥2 ∈ {0, 1}*; 𝑓1, 𝑓2 are 2-input, 2-output functions; 𝜑1, 𝜑2 are
boolean predicates; 𝑟 denotes the current round number; INPUT_TIMEOUT <
TRIGGER_TIMEOUT are round numbers representing time outs. The function-
ality proceeds as follows:

∙ Load phase. If 𝑟 > INPUT_TIMEOUT, abort. Otherwise, upon receiving
inputs of the form (𝑥1, 𝑓 = (𝑓1, 𝑓2, 𝜑1, 𝜑2)) from 𝑃1 and (𝑥2, 𝑓

′) from 𝑃2,
check if 𝑓 = 𝑓 ′. If not, abort. Else, compute 𝑓1(𝑥1, 𝑥2, 𝑟). If 𝑓1(𝑥1, 𝑥2, 𝑟) =
⊥, abort. Else, send 𝑓1(𝑥1, 𝑥2, 𝑟) to both parties, and go to next phase.

∙ Trigger phase. If 𝑟 > TRIGGER_TIMEOUT, abort. Otherwise, upon
receiving input 𝑤 from party 𝑃𝑖, check if 𝜑𝑖(𝑤, 𝑟) = 1. If yes, send
(𝑤, 𝑓2(𝑥1, 𝑥2, 𝑤, 𝑟)) to both 𝑃1 and 𝑃2.

Figure 5-3: The clock-aware ideal functionality ℱSyX.

number. More generally, every function and predicate that is part of the specification

of ℱSyX may also take 𝑟 as an input. Finally, the functionality may also time out

after a pre-programmed amount of time. We describe this clock-aware functionality

in Figure 5-3.

Infinite Timeouts. We note here that it is possible to set either one or both of

INPUT_TIMEOUT and TRIGGER_TIMEOUT to be ∞. What this means is that the

functionality retains its state even if it goes offline. Its state would comprise (𝑥1, 𝑥2)

and which phase (input or trigger) it is currently in. We also require that if the func-

tionality does go offline and come back online, it can still access the current value of

the clock, 𝑟. The only time we use this feature of the primitive is in Section 5.5 where

we are able to preprocess the functionality for an unbounded number of fair multiparty

computations that would be run in the future. In this case, we would need to trigger

this functionality whenever an adversary attempts to break fairness. Since we have no

bound on how many computations we will run, we will set the TRIGGER_TIMEOUT

to be ∞. In practice, one could also just set TRIGGER_TIMEOUT to be a very large

number. We stress however that the functionality is stateful and able to read time

irrespective of whether it goes offline intermittently.
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5.3 Our contributions

We introduce our main result:

Theorem (Main Theorem for Fair Computation Infrastructure). Consider

𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then, assuming the existence of

one-way permutations, there exists a protocol 𝜋 in the programmable random oracle

model which securely preprocesses for and computes an arbitrary (polynomial) number

of instances of ℱMPC with fairness in the presence of 𝑡-threshold adversaries for any

0 ≤ 𝑡 < 𝑛 in the ℱSyX-hybrid model.
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Organization: Roadmap to our final result

The remainder of this chapter is organized as follows:

∙ In Section 5.4, we present our protocol for fair secure computation in the ℱSyX-

hybrid model.

∙ Finally, in Section 5.5, we show how ℱSyX can be preprocessed.
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5.4 Fair Secure Computation in the ℱSyX-hybrid model

In this section, we will describe how a set of 𝑛 parties in the OT-network model that

have pairwise access to the ideal functionality ℱSyX can implement 𝑛-party fair secure

function evaluation. To begin with, we will assume that the 𝑛-parties are in the

point-to-point model and develop a protocol in the (ℱbc,ℱMPC,ℱSyX)-hybrid model.

We first provide some intuition for our construction.

5.4.1 Intuition

We first start with the 3-party case as a warm-up. Let 𝑃1, 𝑃2, and 𝑃3 be the three

parties with inputs 𝑥1, 𝑥2 and 𝑥3 respectively. For 𝑖, 𝑗 ∈ {1, 2, 3} with 𝑖 < 𝑗, we have

that parties 𝑃𝑖 and 𝑃𝑗 have access to the ideal functionality ℱSyX. In particular, let

ℱ 𝑖,𝑗
SyX represent the instantiation of the ℱSyX functionality used by parties 𝑃𝑖, 𝑃𝑗. We

wish to perform fair secure function evaluation of some 3-input 3-output functionality

𝐹 .

Reduction to single output functionalities. Let (𝑦1, 𝑦2, 𝑦3)
$← 𝐹 (𝑥1, 𝑥2, 𝑥3) be

the output of the function evaluation. We define a new four input single output

functionality 𝐹 ′ such that

𝐹 ′(𝑥1, 𝑥2, 𝑥3, 𝑧) = 𝐹 1(𝑥1, 𝑥2, 𝑥3)‖𝐹 2(𝑥1, 𝑥2, 𝑥3)‖𝐹 3(𝑥1, 𝑥2, 𝑥3)⊕ 𝑧 = 𝑦1‖𝑦2‖𝑦3 ⊕ 𝑧

where 𝑧 = 𝑧1‖𝑧2‖𝑧3 and |𝑦𝑖| = |𝑧𝑖| for all 𝑖 ∈ [3]. The idea is that the party 𝑃𝑖 will

obtain 𝑧′ = 𝐹 ′(𝑥1, 𝑥2, 𝑥3, 𝑧) and 𝑧𝑖. Viewing 𝑧′ = 𝑧′1‖𝑧′2‖𝑧′3 where |𝑧′𝑖| = |𝑧𝑖|2 for all

𝑖 ∈ [3], party 𝑃𝑖 reconstructs its output as

𝑦𝑖 = 𝑧𝑖 ⊕ 𝑧′𝑖

2We may assume without loss of generality that the lengths of the outputs of each party are
known beforehand.
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Now, we may assume that the input of party 𝑃𝑖 is (𝑥𝑖, 𝑧𝑖) (or we can generate random

𝑧𝑖s as part of the computation) which determines 𝑧. It thus suffices to consider fair

secure function evaluation of single output functionalities.

Reduction to fair reconstruction. We will use ideas similar to [73, 98] where

instead of focusing on fair secure evaluation of an arbitrary function, we only focus

on fair reconstruction of an additive secret sharing scheme. The main idea is to let

the three parties run a secure computation protocol that computes the output of the

secure function evaluation on the parties’ inputs, and then additively secret shares the

output. Given this step, fair secure computation then reduces to fair reconstruction

of the underlying additive secret sharing scheme.

The underlying additive secret sharing scheme. We use an additive secret

sharing of the output 𝑦. Let the shares be 𝑦𝑖 for 𝑖 ∈ [3]. That is, it holds that

𝑦 =
⨁︁
𝑖∈[3]

𝑦𝑖

We would like party 𝑃𝑖 to reconstruct 𝑦 by obtaining all shares 𝑦𝑖 for each 𝑖 ∈ [3].

Initially, each party 𝑃𝑖 is given 𝑦𝑖. Therefore, each party 𝑃𝑖 only needs to obtain 𝑦𝑗

and 𝑦𝑘 for 𝑗, 𝑘 ̸= 𝑖.

Fair reconstruction via ℱSyX. We assume that the secure function evaluation also

provides commitments to all the shares of the output. That is, 𝑃𝑖 receives (𝑦𝑖,−→𝑐 ) for

each 𝑖 ∈ [3], where Com is a commitment scheme and

−→𝑐 = {Com(𝑦1),Com(𝑦2),Com(𝑦3)}

Furthermore, we assume that each party 𝑃𝑖 picks its own verification key vk𝑖 and

signing key sk𝑖 with respect to a signature scheme with a signing algorithm Sign and

a verification algorithm Verify, for each 𝑖 ∈ [3]. All parties then broadcast their
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verification keys to all parties. Let

−→
vk = {vk1, vk2, vk3}

Each pair of parties 𝑃𝑖 and 𝑃𝑗 then initializes ℱ 𝑖,𝑗
SyX with inputs

𝑥𝑖 =
(︁−→
vk, sk𝑖, 𝑦𝑖,

−→𝑐
)︁

and

𝑥𝑗 =
(︁−→
vk, sk𝑗, 𝑦𝑗,

−→𝑐
)︁

The function 𝑓1 checks if both parties provided the same value for
−→
vk,−→𝑐 and checks

the 𝑦𝑖 and 𝑦𝑗 are valid openings to the corresponding commitments. It also checks

that the signing keys provided by the parties are consistent with the corresponding

verification keys (more precisely, we will ask for randomness provided to the key

generation algorithm of the signature scheme). If all checks pass, then ℱ 𝑖,𝑗
SyX computes

𝜎𝑖,𝑗 = Sign((𝑖, 𝑗); sk𝑖)‖Sign((𝑖, 𝑗); sk𝑗)

This completes the description of 𝑓1.

Synchronization step. The output of 𝑓1 for each of the ℱ 𝑖,𝑗
SyX will provide a way to

synchronize all ℱSyX instances. By synchronization, we mean that an ℱ 𝑖,𝑗
SyX instance

cannot be triggered unless every other instance has already completed its load phase

successfully. We achieve synchronization by setting the predicate 𝜑𝑘(𝑤) (for 𝑘 ∈

{𝑖, 𝑗}) to output 1 if and only if 𝑤 consists of all signatures

−→𝜎 = {𝜎𝑖,𝑗}𝑖<𝑗

That is, each instance ℱ 𝑖,𝑗
SyX will accept the same trigger 𝑤 = −→𝜎 . We define 𝑓2 to

simply output both 𝑦𝑖 and 𝑦𝑗 to both parties if 𝜑𝑘(𝑤) = 1.
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Protocol intuition. We briefly discuss certain malicious behaviors and how we

handle them. From the description above, it is clear that parties have no information

about the output until one of the ℱSyX instances is triggered. Furthermore, note that

this implies that the corrupt parties must successfully complete the load phases of

the instances of ℱSyX that it shares with all of the honest parties in order to obtain

the witness that can be used to trigger the ℱSyX instances. Following the load phases

of all of the ℱSyX instances, we ask each party to broadcast the receipt 𝜎𝑖,𝑗 obtained

from ℱ 𝑖,𝑗
SyX. Now suppose parties 𝑃𝑖 and 𝑃𝑗 are both dishonest, and suppose they do

not broadcast 𝜎𝑖,𝑗. Note also that since 𝑃𝑖 and 𝑃𝑗 collude, they do not need the help

of ℱSyX to compute 𝜎𝑖,𝑗. Since honest 𝑃𝑘 does not know the synchronizing witness −→𝜎 ,

it will not be able to trigger any of the ℱSyX instances. However, note that for the

adversary to learn the output of the computation, the corrupt party 𝑃𝑖 (without loss

of generality) will need to trigger ℱ 𝑖,𝑘
SyX to obtain 𝑃𝑘’s share of the key. However, once

𝑃𝑖 triggers ℱ 𝑖,𝑘
SyX, it follows that 𝑃𝑘 would obtain the synchronizing witness −→𝜎 using

which it can trigger both ℱ 𝑖,𝑘
SyX and ℱ 𝑗,𝑘

SyX and learn its output.

Termination. The protocol as described up until this point does not have guaran-

teed termination. In particular, the honest parties will need to wait for the corrupted

parties to broadcast their receipts in order to be able to trigger the instances of ℱSyX

and obtain the output. Time outs do not help in this case as the adversary may sim-

ply wait until the last moment to trigger instances of ℱSyX and obtain their outputs

leaving only insufficient time for the honest parties to trigger their instances of ℱSyX

and obtain their outputs. In order to ensure termination, we make use of the clock.

The main invariant that we want to guarantee is that if an instance of ℱSyX involving

an (honest) party is triggered, then every other instance of ℱSyX that the (honest)

party is involved in, also needs to be triggered. One way to implement this idea is to

assume that all instances of ℱSyX time out after

𝑇 =

(︂
3

2

)︂
= 3
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rounds. Furthermore, an instance of ℱSyX accepts triggers in some round 𝜏 ∈ [𝑇 ]

(that is, until it times out) if and only if you provide a proof that 𝑡−1 other instances

of ℱSyX were triggered until now. As before, we will have ℱSyX leak the triggering

witness to the parties. Thus, if ℱ 𝑖,𝑗
SyX is triggered in some round 𝑡, then 𝑃𝑖 (and/or 𝑃𝑗)

can trigger all the other ℱ 𝑖,𝑘
SyX (and/or ℱ 𝑗,𝑘

SyX) channels that it is involved in, in round

𝜏 + 1.

Suppose some honest party, say 𝑃𝑖, does not obtain the output of the computation

while the adversary has learned the output. Since the adversary learned the output,

this means that the adversary triggered ℱ 𝑖,𝑗
SyX for some 𝑗 (otherwise the adversary

would not have learnt 𝑦𝑖 and would not have received the output). That means 𝑃𝑖

would have been able to trigger all the other channels that it is involved in and

generate the final output in the next round. The only issue with this argument would

be when ℱ 𝑖,𝑗
SyX was triggered last, that is, in round 𝜏 = 𝑇 . However this is not possible

since until this time, at most 𝑇 − 𝑛 + 1 < 𝑇 − 1, assuming 𝑛 ≥ 3, instances of ℱSyX

could have been be triggered. This is because 𝑛 − 1 instances of ℱSyX must be left

untriggered in round 𝜏 = 𝑇 − 1 since the honest party didn’t get its output.

Reducing the duration of time outs. A more clever solution will allow us to

terminate within 𝑇 = 𝑛 rounds. In order to trigger an instance of ℱSyX in some

round 𝜏 ∈ [𝑇 ], you must provide a proof that other instances of ℱSyX involving at

least 𝜏 different parties have been triggered. Consider the first round 𝜏 in which

𝑃𝑖 is an honest party and ℱ 𝑖,𝑗
SyX is triggered for some 𝑗. If 𝜏 = 1, then the single

invocation already gives a proof that channels involving two parties, namely, 𝑖, 𝑗, have

been triggered. Otherwise, by assumption, proofs of invocations of instances of ℱSyX

involving 𝜏 different parties were needed to trigger ℱ 𝑖,𝑗
SyX. But 𝑃𝑖 is not one of these

parties as 𝜏 is the first round in which ℱ 𝑖,𝑗
SyX was triggered for any 𝑗. Consequently,

𝑃𝑖, on this invocation, obtains a proof that instances of ℱSyX involving at least 𝜏 + 1

parties have been triggered, and can thus trigger all channels in round 𝜏 + 1. As

before, the only gap in the argument is the case 𝜏 = 𝑇 . One can trivially see that

since ℱ 𝑖,𝑗
SyX has not been triggered for any 𝑗, it is impossible to obtain a proof that
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instances of ℱSyX involving at least 𝑇 different parties have been triggered.

Simulation. We look ahead for the issues that come up while trying to prove se-

curity, that is, during the simulation. The simulator will release to the adversary,

the adversary’s shares of the output, which can be simulated. But, it also releases

commitments to all the shares of the output. Since the simulator does not know the

output apriori, and does not know whether the adversary is going to abort the com-

putation, in which case, no one knows the output, it has to produce commitments

that it can later equivocate. In this context, we use, not regular commitments, but

honest-binding commitments. In this case, the simulator can produce commitments

to garbage but can later open them to be valid shares of the output. The rest of the

computations can be trivially simulated. The only other detail to be looked into is

that of the clock. We need to determine if the adversary has decided to abort the

computation, that is, if the adversary is going to receive the output of the compu-

tation of not. This is done by noticing if and when the adversary decides to trigger

the instances of ℱSyX that involve honest parties. We know that if the adversary ever

triggers an instance of ℱSyX involving an honest party, then all parties will be in a

position to receive the output. Thus, the simulator can simply run the adversary to

determine whether it has decided to enable parties to obtain the output, in which the

simulator would ask the trusted party to continue, or not, in which case the simulator

would ask the trusted party to abort.

5.4.2 Protocol

We now present the protocol for fair secure computation in the (ℱbc,ℱMPC,ℱSyX)-

hybrid model.

Preliminaries. 𝐹 is the 𝑛-input 𝑛-output functionality to be computed; 𝑥𝑖 is the

input of party 𝑃𝑖 for 𝑖 ∈ [𝑛]; ℱ𝑎,𝑏
SyX represents the instantiation of the ℱSyX functionality

used by parties 𝑃𝑎, 𝑃𝑏 with time out round numbers INPUT_TIMEOUT = 0 and

TRIGGER_TIMEOUT = 𝑛 for 𝑎 < 𝑏, where 𝑎, 𝑏 ∈ [𝑛];
(︁
Com,Open, ̃︂Com, Õpen

)︁
is an
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honest-binding commitment scheme; 𝒱 = (Gen, Sign,Verify) is a signature scheme; 𝑟

denotes the current round number.

Protocol. The protocol ΠFMPC proceeds as follows:

∙ Define 𝐹 ′ to the be the following 𝑛-input 𝑛-output functionality: On input
−→𝑥 = (𝑥1, . . . , 𝑥𝑛):

– Let (𝑦1, . . . , 𝑦𝑛) = 𝐹 (𝑥1, . . . , 𝑥𝑛) and let

𝑦 = 𝑦1‖ . . . ‖𝑦𝑛

Sample random strings 𝛼𝑖
$← {0, 1}* such that |𝛼𝑖| = |𝑦𝑖| for each 𝑖 ∈ [𝑛].

Let

𝛼 = 𝛼1‖ . . . ‖𝛼𝑛

Let 𝑧 = 𝑦 ⊕ 𝛼.

– Sample a random additive 𝑛-out-of-𝑛 secret sharing 𝑧1, . . . , 𝑧𝑛 of 𝑧 such

that

𝑧 =
⨁︁
𝑖∈[𝑛]

𝑧𝑖

– Compute commitments along with their openings (𝑐𝑧𝑖 , 𝜔
𝑧
𝑖 )

$← Com(𝑧𝑖) to

each of the shares 𝑧𝑖 for each 𝑖 ∈ [𝑛]. Let

−→
𝑐𝑧 = (𝑐𝑧1, . . . , 𝑐

𝑧
𝑛)

– Sample random proof values 𝜋1, . . . , 𝜋𝑛
$← {0, 1}𝜆. Compute commitments

along with their openings (𝑐𝜋𝑖 , 𝜔
𝜋
𝑖 )

$← Com(𝜋𝑖) to each of the proof values

𝜋𝑖 for each 𝑖 ∈ [𝑛]. Let
−→
𝑐𝜋 = (𝑐𝜋1 , . . . , 𝑐

𝜋
𝑛)

– Party 𝑃𝑖 receives output
(︁
𝛼𝑖,
−→
𝑐𝑧 , 𝜔𝑧

𝑖 , 𝑧𝑖,
−→
𝑐𝜋 , 𝜔𝜋

𝑖 , 𝜋𝑖

)︁
for each 𝑖 ∈ [𝑛].
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∙ The parties invoke the ideal functionality ℱMPC with inputs ((𝑥1, 𝐹
′), . . . , (𝑥𝑛, 𝐹

′)).

If the ideal functionality returns ⊥ to party 𝑃𝑖, then 𝑃𝑖 aborts for any 𝑖 ∈ [𝑛]3.

Otherwise, party 𝑃𝑖 receives output
(︁
𝛼𝑖,
−→
𝑐𝑧 , 𝜔𝑧

𝑖 , 𝑧𝑖,
−→
𝑐𝜋 , 𝜔𝜋

𝑖 , 𝜋𝑖

)︁
for each 𝑖 ∈ [𝑛].

∙ Each party 𝑃𝑖, for each 𝑖 ∈ [𝑛], picks a random 𝛽𝑖 ∈ {0, 1}* and uses this

randomness to pick a signing and verification key pair (sk𝑖, vk𝑖) = 𝒱 .Gen(1𝜆; 𝛽𝑖).

It then invokes the ideal functionality ℱbc and broadcasts vk𝑖 to all other parties.

If it does not receive vk𝑗 for all 𝑗 ̸= 𝑖, it aborts. Otherwise, it obtains

−→
vk = (vk1, . . . , vk𝑛)

∙ For each 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏, define the following functions.

– Let 𝑓𝑎,𝑏
1 be the function that takes as input (𝛾, 𝛾′) and parses

𝛾 =
(︁−→
vk, sk, 𝛽,

−→
𝑐𝑧 , 𝜔𝑧, 𝑧,

−→
𝑐𝜋 , 𝜔𝜋, 𝜋

)︁
and

𝛾′ =
(︁−→
vk′, sk′, 𝛽′,

−→
𝑐𝑧 ′, 𝜔𝑧 ′, 𝑧′,

−→
𝑐𝜋 ′, 𝜔𝜋 ′, 𝜋′

)︁
It checks that:

*
−→
vk =

−→
vk′,
−→
𝑐𝑧 =

−→
𝑐𝑧 ′,
−→
𝑐𝜋 =

−→
𝑐𝜋 ′

* (sk, vk𝑎) = 𝒱 .Gen(1𝜆; 𝛽), (sk′, vk𝑏) = 𝒱 .Gen(1𝜆; 𝛽′)

* Open(𝑐𝑧𝑎, 𝜔
𝑧, 𝑧) = Open(𝑐𝑧𝑏 , 𝜔

𝑧 ′, 𝑧′) = 1

* Open(𝑐𝜋𝑎 , 𝜔
𝜋, 𝜋) = Open(𝑐𝜋𝑏 , 𝜔

𝜋 ′, 𝜋′) = 1

3In the ℱOT-hybrid model, let 𝜋𝐹 ′ denote the protocol for the functionality 𝐹 ′ defined in Lemma
16. The parties execute 𝜋𝐹 ′ . If the execution of 𝜋𝐹 ′ aborts, we are assuming that all (honest) parties
are aware of the round when the execution of 𝜋𝐹 ′ aborts, that is, when the adversary has decided
to abort the execution of 𝜋𝐹 ′ . Since we are working in the ℱMPC-hybrid model, we know that in
the ideal model, this is the case when the honest parties receive ⊥ as their output. If we assume
that in the case when the the adversary decides to let the honest parties obtain their outputs, no
honest party ever receives ⊥, this could be used to identify the scenario when the adversary has
decided to abort the execution of 𝜋𝐹 ′ . Thus, we could, in principle, replace this instruction with:
If party 𝑃𝑖 receives ⊥ as its output, it aborts. Furthermore, since we are considering the case of
unanimous abort, if the adversary has decided to abort the execution of 𝜋𝐹 ′ , all honest parties abort
the protocol.
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If all of these checks pass, then 𝑓𝑎,𝑏
1 outputs

𝜎𝑎,𝑏 = (𝒱 .Sign((𝑎, 𝑏); sk𝑎),𝒱 .Sign((𝑎, 𝑏); sk𝑏))

and otherwise it outputs ⊥.

– Let 𝜑𝑎,𝑏
1 be the function that takes as input a witness 𝑤, which is either of

the form (0,−→𝜎 ) or of the form
(︁
1,−→𝑧 ,−→𝜔𝑧,−→𝜋 ,

−→
𝜔𝜋,
−→
ind
)︁
.

* If 𝑤 is of the first form, then it tests if 𝑟 = 1 and

𝒱 .Verify (𝜎𝑎,𝑏,1, (𝑎, 𝑏); vk𝑎) = 1

and

𝒱 .Verify (𝜎𝑎,𝑏,2, (𝑎, 𝑏); vk𝑏) = 1

for all 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏, outputting 1 if so and 0 if not.

* If 𝑤 is of the second form, then it checks that:

· |−→𝜋 | =
⃒⃒⃒−→
𝜔𝜋
⃒⃒⃒
=
⃒⃒⃒−→
ind
⃒⃒⃒
= 𝑟

·
−→
ind consists of distinct indices in [𝑛].

· Open
(︁
𝑐𝑧ind𝑗 , 𝜔

𝑧
𝑗 , 𝑧𝑗

)︁
= 1 for every 𝑗 ∈ [𝑟].

· Open
(︁
𝑐𝜋ind𝑗 , 𝜔

𝜋
𝑗 , 𝜋𝑗

)︁
= 1 for every 𝑗 ∈ [𝑟].

If all of these checks pass, then 𝜑𝑎,𝑏
1 outputs 1 and otherwise it outputs

0.

– Let 𝜑𝑎,𝑏
2 be identical to 𝜑𝑎,𝑏

1 .

– Let 𝑓𝑎,𝑏
2 be the function that takes as input (𝛾, 𝛾′) where 𝛾, 𝛾′ are as above,

and outputs (𝜔𝑧, 𝑧, 𝜔𝜋, 𝜋, 𝜔𝑧 ′, 𝑧′, 𝜔𝜋 ′, 𝜋′).

∙ Set 𝑟 = 04. Each party 𝑃𝑎 for each 𝑎 ∈ [𝑛] will now run the load phase to set

up each instance of ℱSyX that it is involved in. For each pair of parties 𝑃𝑎, 𝑃𝑏

4This does not entail actually setting 𝑟 = 0, but rather viewing the current round as round zero
and henceforth referencing rounds with respect to it, that is, viewing 𝑟 as the round number relative
to the round number when this statement was executed.
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with 𝑎 ̸= 𝑏 for 𝑎, 𝑏 ∈ [𝑛], let 𝑎′ = min(𝑎, 𝑏) and 𝑏′ = max(𝑎, 𝑏). For each such

pair of parties 𝑃𝑎, 𝑃𝑏, party 𝑃𝑎 runs the load phase of ℱ𝑎′,𝑏′

SyX , providing inputs

(𝑥𝑎, 𝑓), where

𝑥𝑎 =
(︁−→
vk, sk𝑎, 𝛽𝑎,

−→
𝑐𝑧 , 𝜔𝑧

𝑎, 𝑧𝑎,
−→
𝑐𝜋 , 𝜔𝜋

𝑎 , 𝜋𝑎

)︁
and

𝑓 =
(︁
𝑓𝑎′,𝑏′

1 , 𝑓𝑎′,𝑏′

2 , 𝜑𝑎′,𝑏′

1 , 𝜑𝑎′,𝑏′

2

)︁
∙ If 𝑟 > 𝑛, abort. Otherwise, while 𝑟 ≤ 𝑛,

– If a party 𝑃𝑎 for 𝑎 ∈ [𝑛] receives 𝜎𝑎′,𝑏′ from each ℱ𝑎′,𝑏′

SyX it is involved in,

indicating that the load phase of all such ℱSyX functionalities were com-

pleted successfully, and 𝑟 = 0, it invokes the ideal functionality ℱbc and

broadcasts
−→𝜎𝑎 = {𝜎𝑎′,𝑏′}𝑎′=𝑎 ∨ 𝑏′=𝑎

to all the parties. Otherwise, it invokes the ideal functionality ℱbc when

𝑟 = 1 and broadcasts abort to all the parties and aborts.

– If a party 𝑃𝑎 for 𝑎 ∈ [𝑛] receives −→𝜎 such that

𝒱 .Verify (𝜎𝑎,𝑏,1, (𝑎, 𝑏); vk𝑎) = 1

and

𝒱 .Verify (𝜎𝑎,𝑏,2, (𝑎, 𝑏); vk𝑏) = 1

for all 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏, and 𝑟 = 1, then it uses the witness 𝑤 = (0,−→𝜎 )

to invoke the trigger phase of each instance of ℱSyX that it is involved in.

Once all such instances of ℱSyX involving party 𝑃𝑎 have been triggered,

use the shares 𝑧1, . . . , 𝑧𝑛 to reconstruct 𝑧, parses 𝑧 as 𝑧1‖ . . . ‖𝑧𝑛 where

|𝑧𝑖| = |𝑦𝑖| for all 𝑖 ∈ [𝑛]5 and computes 𝑦𝑖 = 𝑧𝑖 ⊕ 𝛼𝑖 to obtain the output

of the computation.

5We may assume without loss of generality that the lengths of the outputs of each party are
known beforehand.
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– If party 𝑃𝑎 for 𝑎 ∈ [𝑛] has not received the output of the computation and

an instance of ℱSyX involving party 𝑃𝑎 is first triggered in round 1 ≤ 𝑟 < 𝑛,

it triggers each instance of ℱSyX that it is involved in during round 𝑟 + 1

using the output out it receives from the instance of ℱSyX as follows:

* If out1 = (0,−→𝜎 ), then 𝑟 = 1. Let ℱ𝑎′,𝑏′

SyX be the instance of ℱSyX that was

triggered, where 𝑎′ = 𝑎 ∨ 𝑏′ = 𝑎. Parse out2 = (𝜔𝑧, 𝑧, 𝜔𝜋, 𝜋, 𝜔𝑧 ′, 𝑧′, 𝜔𝜋 ′, 𝜋′).

It prepares the witness

𝑤 =
(︀
1, (𝑧, 𝑧′),

(︀
𝜔𝑧, 𝜔𝑧 ′)︀ , (𝜋, 𝜋′),

(︀
𝜔𝜋, 𝜔𝜋 ′)︀ , (𝑎′, 𝑏′))︀

* If out1 =
(︁
1,−→𝑧 ,−→𝜔𝑧,−→𝜋 ,

−→
𝜔𝜋,
−→
ind
)︁
, it prepares the witness

𝑤 =
(︁
1,−→𝑧 ′,

−→
𝜔𝑧 ′,−→𝜋 ′,

−→
𝜔𝜋 ′,
−→
ind′
)︁

where

· |−→𝑧 ′| = 𝑟 + 1, −→𝑧 ′|[𝑟] =
−→𝑧 |[𝑟], 𝑧′𝑟+1 = 𝑧𝑎

·
⃒⃒⃒−→
𝜔𝑧 ′
⃒⃒⃒
= 𝑟 + 1,

−→
𝜔𝑧 ′
⃒⃒⃒
[𝑟]

=
−→
𝜔𝑧
⃒⃒⃒
[𝑟]

, 𝜔𝑧
𝑟+1

′ = 𝜔𝑧
𝑎

· |−→𝜋 ′| = 𝑟 + 1, −→𝜋 ′|[𝑟] =
−→𝜋 |[𝑟], 𝜋′

𝑟+1 = 𝜋𝑎

·
⃒⃒⃒−→
𝜔𝜋 ′
⃒⃒⃒
= 𝑟 + 1,

−→
𝜔𝜋 ′
⃒⃒⃒
[𝑟]

=
−→
𝜔𝜋
⃒⃒⃒
[𝑟]

, 𝜔𝜋
𝑟+1

′ = 𝜔𝜋
𝑎

·
⃒⃒⃒−→
ind′
⃒⃒⃒
= 𝑟 + 1,

−→
ind′
⃒⃒⃒
[𝑟]

=
−→
ind
⃒⃒⃒
[𝑟]

, ind′𝑟+1 = 𝑎

Once all instances of ℱSyX involving party 𝑃𝑎 have been triggered, it uses

the shares 𝑧1, . . . , 𝑧𝑛 to reconstruct 𝑧, parses 𝑧 as 𝑧1‖ . . . ‖𝑧𝑛 where |𝑧𝑖| = |𝑦𝑖|

for all 𝑖 ∈ [𝑛] and computes 𝑦𝑖 = 𝑧𝑖 ⊕ 𝛼𝑖 to obtain the output of the

computation.

– If party 𝑃𝑎 for 𝑎 ∈ [𝑛] has not received the output of the computation and

an instance of ℱSyX involving party 𝑃𝑎 is triggered and 𝑟 = 𝑛, it receives

all shares of 𝑧. It uses the shares 𝑧1, . . . , 𝑧𝑛 to reconstruct 𝑧, parses 𝑧 as

𝑧1‖ . . . ‖𝑧𝑛 where |𝑧𝑖| = |𝑦𝑖| for all 𝑖 ∈ [𝑛] and computes 𝑦𝑖 = 𝑧𝑖 ⊕ 𝛼𝑖 to

obtain the output of the computation.

154



Remark. It is possible to replace the 𝒪(𝑛2) signatures with 𝑛 other commitments

to 𝑛 other independent random proof values (akin to 𝜋) that can be used to prove

that all the instances of ℱSyX completed their load phases successfully.

5.4.3 Correctness

We sketch the proof of correctness of the above protocol. The correctness of the

computation of the functionality 𝐹 ′ follows by definition from the correctness of the

ideal functionality ℱMPC. Furthermore, we have that at the end of the invocation of

the ideal functionality ℱMPC, either all honest parties unanimously abort or all honest

parties unanimously continue. Thus, assuming that ℱMPC did not abort, every party

receives the output of 𝐹 ′. For every 𝑖 ∈ [𝑛], let
−→
vk𝑖 denote the set of verification keys

that were obtained by party 𝑃𝑖. Note that, by the correctness of the ideal functionality

ℱbc,
−→
vk =

−→
vk𝑖

for all 𝑖 ∈ [𝑛]. If
−→
vk does not contain vk𝑗 for every 𝑖 ∈ [𝑛], which would happen in

the case that some corrupt parties do not broadcast their verification keys, all hon-

est parties unanimously abort. Otherwise, all honest parties unanimously continue.

Assuming the honest parties have not aborted, we note that if the corrupt parties

do not provide valid inputs to the load phase of even one of the instances of ℱSyX

that they are involved in along with an honest party, say 𝑃𝑖 for some 𝑖 ∈ [𝑛], by the

correctness of the ideal functionality ℱSyX and the binding property for the honestly

generated commitments, that particular instance of ℱSyX will not complete its load

phase successfully. In this case 𝑃𝑖 will force all honest parties to unanimously abort,

since no party (not even the corrupt ones) can obtain their output. We thus consider

the case where all instances of ℱSyX have completed their load phases successfully. At

this point, if all parties broadcast all the signatures they obtained from the instances

of ℱSyX, all parties can trigger the instances of ℱSyX that they are involved in to re-

ceive all the shares of 𝑧, reconstruct 𝑧 and finally obtain their output correctly. The

issue arises when some corrupt parties do not broadcast the signatures they obtained
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from the instances of ℱSyX. If a corrupt party triggers any instance of ℱSyX involving

an honest party, say 𝑃𝑖 for some 𝑖 ∈ [𝑛], with a witness of the form (0,−→𝜎 ) in round

1, then the honest party obtains a tuple of values (𝑧, 𝜔𝑧, 𝜋, 𝜔𝜋) from the corrupt. In

addition its own such tuple of values, it obtains a valid witness to trigger all the

instances of ℱSyX that it is involved in in round 2. Since 𝑛 ≥ 2, 𝑃𝑖 succeeds in doing

this and obtaining the shares of 𝑧, 𝑧 and hence finally its output correctly. Consider

any honest party 𝑃𝑗 for 𝑗 ̸= 𝑖. Since 𝑛 > 2, 𝑃𝑗, as did 𝑃𝑖, proceeds to trigger all

the instances of ℱSyX that it is involved in in round 3. If no corrupt party triggers

any instance of ℱSyX involving an honest party with a witness of the form (0,−→𝜎 ) in

round 1, if the adversary is to obtain the output, it must instruct a corrupt party to

trigger an instance of ℱSyX that it is involved in along with an honest party, but now

using a witness of the form
(︁
1,−→𝑧 ,−→𝜔𝑧,−→𝜋 ,

−→
𝜔𝜋,
−→
ind
)︁
. Let 𝑟 be the first round when a

corrupt party triggers an instance of ℱSyX that it is involved in along with an honest

party, say 𝑃𝑖 for some 𝑖 ∈ [𝑛], using a witness of the form
(︁
1,−→𝑧 ,−→𝜔𝑧,−→𝜋 ,

−→
𝜔𝜋,
−→
ind
)︁
.

Then, it must be the case that 𝑖 ̸∈
−→
ind and that 𝑃𝑖 now obtains the tuple of values

(𝑧, 𝜔𝑧, 𝜋, 𝜔𝜋) corresponding to 𝑟 parties other than itself. Combining this information

with its own tuple of values (𝑧, 𝜔𝑧, 𝜋, 𝜔𝜋), it obtains a valid witness to trigger all the

instances of ℱSyX that it is involved in in round 𝑟 + 1. If 𝑟 < 𝑛, 𝑃𝑖 succeeds in doing

this and obtaining the shares of 𝑧, 𝑧 and hence finally its output correctly. Consider

any honest party 𝑃𝑗 for 𝑗 ̸= 𝑖. If 𝑟 + 1 = 𝑛, then 𝑃𝑗 receives all the shares of 𝑧 and

consequently its output correctly. If 𝑟+1 < 𝑛, then 𝑃𝑗, as did 𝑃𝑖, proceeds to trigger

all the instances of ℱSyX that it is involved in in round 𝑟 + 2. Finally, we note that

𝑟 < 𝑛 since 𝑟 is the first round when a corrupt party triggers an instance of ℱSyX that

it is involved in along with an honest party, which means that the witness it used to

trigger the instance of ℱSyX can have the tuple of values (𝑧, 𝜔𝑧, 𝜋, 𝜔𝜋) corresponding to

at most 𝑛− 1 parties as at least one of the parties is honest. If this does not happen,

then no party (not even the corrupt ones) obtains their output. This completes the

proof of correctness.
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5.4.4 Security

We now prove the following lemma.

Lemma 30. If
(︁
Com,Open, ̃︂Com, Õpen

)︁
is an honest-binding commitment scheme

and 𝒱 is a signature scheme, then the protocol ΠFMPC securely computes ℱMPC with

fairness in the (ℱbc,ℱMPC,ℱSyX)-hybrid model.

Proof. Let 𝒜 be an adversary attaching the execution of the protocol described in

Section 5.4.2 in the (ℱbc,ℱMPC,ℱSyX)-hybrid model. We construct an ideal-model ad-

versary 𝒮 in the ideal model of type fair. Let 𝐹 be the 𝑛-input 𝑛-output functionality

to be computed. Let ℐ be the set of corrupted parties. If ℐ is empty, then there is

nothing to simulate. 𝒮 begins by simulating the first step of the protocol, namely, the

invocation of the ideal functionality ℱMPC. Here, 𝒮 behaves as the ideal functionality

ℱMPC. Recall that the type of ℱMPC is abort. 𝒮 obtains the inputs {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ of the

corrupted parties from 𝒜. If (𝑥𝑖, 𝑓𝑖) = abort for any 𝑖 ∈ ℐ, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ
to the trusted party computing ℱMPC with fairness, receives ⊥ as the output of all

parties, which it forwards 𝒜. Suppose (𝑥𝑖, 𝑓𝑖) ̸= abort for all 𝑖 ∈ ℐ. If there exists

a 𝑗 ∈ ℐ such that 𝑓𝑗 ̸= 𝐹 ′ as defined in protocol ΠFMPC, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to

the trusted party computing ℱMPC with fairness, which aborts, and then aborts itself.

If there exists a 𝑗 ∈ ℐ such that (𝑥𝑗, 𝑓𝑗) is not of the specified format, 𝒮 replaces

(𝑥𝑗, 𝑓𝑗) with a default value. Going forward, we assume that for all 𝑖 ∈ ℐ, (𝑥𝑖, 𝑓𝑖) is

well-formed and that 𝑓𝑖 = 𝐹 ′ as defined in ΠFMPC.

𝒮 now needs to simulate the outputs received by the corrupted parties from the

ideal functionality ℱMPC. For each 𝑖 ∈ [𝑛], 𝒮 samples a random string 𝛼𝑖
$← {0, 1}*

of length equal to the length of the 𝑖th output of 𝐹 . Let

𝛼 = 𝛼1‖ . . . ‖𝛼𝑛

For each 𝑖 ∈ ℐ, 𝒮 samples a random string 𝑧𝑖
$← {0, 1}* of length equal to the sum

of the lengths of all the outputs of 𝐹 . It then computes commitments along with

their openings (𝑐𝑧𝑖 , 𝜔
𝑧
𝑖 )

$← Com(𝑧𝑖) to each of the shares 𝑧𝑖 for each 𝑖 ∈ ℐ. For each
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𝑖 ∈ [𝑛] ∖ ℐ, it samples a equivocable commitment (𝑐𝑧𝑖 , state𝑖)
$← ̃︂Com(1𝜆). Let

−→
𝑐𝑧 = (𝑐𝑧1, . . . , 𝑐

𝑧
𝑛)

For each 𝑖 ∈ [𝑛], 𝒮 samples random proof values 𝜋1, . . . , 𝜋𝑛
$← {0, 1}𝜆 and compute

commitments along with their openings (𝑐𝜋𝑖 , 𝜔
𝜋
𝑖 )

$← Com(𝜋𝑖) to each of the proof

values 𝜋𝑖. Let
−→
𝑐𝜋 = (𝑐𝜋1 , . . . , 𝑐

𝜋
𝑛)

and
−→
𝜔𝜋 = (𝜔𝜋

1 , . . . , 𝜔
𝜋
𝑛)

Thus, the simulator constructs the output
(︁
𝛼𝑖,
−→
𝑐𝑧 , 𝜔𝑧

𝑖 , 𝑧𝑖,
−→
𝑐𝜋 , 𝜔𝜋

𝑖 , 𝜋𝑖

)︁
for each 𝑖 ∈ ℐ

and forwards it to 𝒜. If 𝒜 then sends abort, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted

party computing ℱMPC with fairness, with (𝑥𝑗, 𝑓𝑗) replaced with abort for some 𝑗 ∈ ℐ,

receives ⊥ as the output of all parties, which it forwards 𝒜. Otherwise, 𝒜 responds

with continue. At this point, 𝒮 has completed simulating the invocation of the ideal

functionality ℱMPC.

For each 𝑖 ∈ [𝑛]∖ℐ, 𝒮 picks a random 𝛽𝑖 ∈ {0, 1}* and uses this randomness to pick

a signing and verification key pair (sk𝑖, vk𝑖) = 𝒱 .Gen(1𝜆; 𝛽𝑖). Now, 𝒮 must simulate

the invocations of the ideal functionality ℱbc by the corrupt parties. Here, 𝒮 behaves

as the ideal functionality ℱbc. Recall that the type of ℱbc is g.d.. For all 𝑖 ∈ [𝑛]∖ℐ, 𝒮

“broadcasts” vk𝑖 to all the corrupt parties. For any 𝑖 ∈ ℐ, if 𝒜 instructs 𝑃𝑖 to invoke

ℱbc with input vk𝑖, 𝒮 “broadcasts” vk𝑖 to all the corrupt parties and stores vk𝑖. At the

end of this round, if 𝒜 did not instruct some corrupt party to invoke ℱbc, 𝒮 forwards

{(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted party computing ℱMPC with fairness, with (𝑥𝑗, 𝑓𝑗) replaced

with abort for some 𝑗 ∈ ℐ, receives ⊥ as the output of all parties, and aborts itself.

Otherwise, 𝒮 successfully constructs

−→
vk = (vk1, . . . , vk𝑛)

At this point, 𝒮 has completed simulating the invocations of the ideal functionality
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ℱbc used to broadcast the verification keys of all the parties.

𝒮 maintains a virtual round counter and initializes it to zero. Now, 𝒮 has to

simulate the invocations of the load phases of the instances of the ideal functionality

ℱSyX that involve corrupt parties. Here, 𝒮 behaves as the ideal functionality ℱSyX.

Recall that the type of ℱSyX is g.d.. For any 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏 and 𝑎 ∈ ℐ and

𝑏 ∈ [𝑛] ∖ ℐ, if 𝒜 instructs 𝑃𝑎 to invoke the load phase of ℱ𝑎,𝑏
SyX with inputs

𝛾 =
(︁−→
vk′, sk𝑎, 𝛽𝑎,

−→
𝑐𝑧 ′, 𝜔𝑧, 𝑧,

−→
𝑐𝜋 ′, 𝜔𝜋, 𝜋

)︁
𝒮 computes 𝑓𝑎,𝑏

1 (𝛾, 𝛾′) as defined in ΠFMPC, where

𝛾′ =
(︁−→
vk, sk𝑏, 𝛽𝑏,

−→
𝑐𝑧 , 𝜔𝑧

𝑏 , 𝑧𝑏,
−→
𝑐𝜋 , 𝜔𝜋

𝑏 , 𝜋𝑏

)︁
Note that since 𝑏 ∈ [𝑛] ∖ ℐ, 𝒮 does in fact have sk𝑏, 𝛽𝑏, 𝜔

𝜋
𝑏 , 𝜋𝑏. The only values it does

not have are 𝜔𝑧
𝑏 , 𝑧𝑏. In the execution of 𝑓𝑎,𝑏

1 , 𝜔𝑧
𝑏 , 𝑧𝑏 are needed to check that

Open(𝑐𝑧𝑏 , 𝜔
𝑧
𝑏 , 𝑧𝑏) = 1

Note that since 𝑃𝑏 is an honest party, it would always supply inputs such that this

check passes. Furthermore, the outcome of this check does not depend on any input

that the adversary sends. Thus, in simulating the computation of 𝑓𝑎,𝑏
1 , 𝒮 performs

all the checks that 𝑓𝑎,𝑏
1 , except this one. If all the checks pass, 𝒮 computes

𝜎𝑎,𝑏 = (𝒱 .Sign((𝑎, 𝑏); sk𝑎),𝒱 .Sign((𝑎, 𝑏); sk𝑏))

and forwards 𝜎𝑎,𝑏 to the adversary. 𝒮 also stores sk𝑎, 𝛽𝑎. If any of the checks do not

pass, 𝒮 simply aborts simulating the load phase of this particular instance ℱ𝑎,𝑏
SyX. 𝒮

behaves symmetrically if for any 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏 and 𝑏 ∈ ℐ and 𝑎 ∈ [𝑛] ∖ ℐ, if 𝒜

instructs 𝑃𝑏 to invoke the load phase of ℱ𝑎,𝑏
SyX. The final case to consider is if for any

𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏 and 𝑎, 𝑏 ∈ ℐ, if 𝒜 instructs 𝑃𝑎, 𝑃𝑏 to invoke the load phase of
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ℱ𝑎,𝑏
SyX with inputs

𝛾 =
(︁−→
vk′, sk𝑎, 𝛽𝑎,

−→
𝑐𝑧 ′, 𝜔𝑧, 𝑧,

−→
𝑐𝜋 ′, 𝜔𝜋, 𝜋

)︁
and

𝛾′ =
(︁−→
vk′′, sk𝑏, 𝛽𝑏,

−→
𝑐𝑧 ′′, 𝜔𝑧 ′, 𝑧′,

−→
𝑐𝜋 ′′, 𝜔𝜋 ′, 𝜋′

)︁
𝒮 computes 𝑓𝑎,𝑏

1 (𝛾, 𝛾′) as defined in ΠFMPC. If all the checks pass, 𝒮 computes

𝜎𝑎,𝑏 = (𝒱 .Sign((𝑎, 𝑏); sk𝑎),𝒱 .Sign((𝑎, 𝑏); sk𝑏))

and forwards 𝜎𝑎,𝑏 to the adversary. 𝒮 also stores sk𝑎, 𝛽𝑎, sk𝑏, 𝛽𝑏. If any of the checks

do not pass, 𝒮 simply aborts simulating the load phase of this particular instance

ℱ𝑎,𝑏
SyX. At the end of this round, let LoadFailed denote the set of all 𝑖 such that 𝑃𝑖 is

an honest party and 𝒜 did not instruct some corrupt party to invoke the load phase

of an instance of ℱSyX that it was involved in with 𝑃𝑖. If LoadFailed is not empty,

for each 𝑖 ∈ LoadFailed, 𝒮 must simulate the invocations of the ideal functionality

ℱbc by party 𝑃𝑖 to broadcast abort. For each 𝑖 ∈ LoadFailed, 𝒮 “broadcasts” abort to

all the corrupt parties. 𝒮 then forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted party computing

ℱMPC with fairness, with (𝑥𝑗, 𝑓𝑗) replaced with abort for some 𝑗 ∈ ℐ, receives ⊥ as

the output of all parties, and aborts itself. Otherwise, 𝒮 successfully constructs

−→
sk = (sk1, . . . , sk𝑛)

and
−→
𝛽 = (𝛽1, . . . , 𝛽𝑛)

𝒮 computes

𝜎𝑎,𝑏 = (𝒱 .Sign((𝑎, 𝑏); sk𝑎),𝒱 .Sign((𝑎, 𝑏); sk𝑏))

for every 𝑎 < 𝑏 ∈ [𝑛] and defines

−→𝜎 = {𝜎𝑎,𝑏}𝑎<𝑏,𝑎,𝑏∈[𝑛]
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Now, 𝒮 must simulate the invocations of the ideal functionality ℱbc by the corrupt

parties. For all 𝑎 ∈ [𝑛] ∖ ℐ, 𝒮 “broadcasts”

−→𝜎𝑖 = {𝜎𝑎′,𝑏′}𝑎′=𝑖 ∨ 𝑏′=𝑖

to all the corrupt parties. For any 𝑖 ∈ ℐ, if 𝒜 instructs 𝑃𝑖 to invoke ℱbc with input
−→𝜎𝑖 , 𝒮 “broadcasts” −→𝜎𝑖 to all the corrupt parties.

Once round 0 is completed, 𝒮 has completed simulating the invocations of the load

phase of all the instances of the ideal functionality ℱSyX and the ideal functionality

ℱbc. What remains is to determine whether the adversary wishes to obtain its output

and to simulate the invocations of the trigger phases of the instances of the ideal

functionality ℱSyX that the adversary instructs corrupt parties to trigger. We consider

two cases. First, we make the following definition: a witness 𝑤 is valid if

𝑤 = (0,−→𝜎 )

in round 1 with

𝒱 .Verify (𝜎𝑎,𝑏,1, (𝑎, 𝑏); vk𝑎) = 1

and

𝒱 .Verify (𝜎𝑎,𝑏,2, (𝑎, 𝑏); vk𝑏) = 1

for all 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏, or

𝑤 =
(︁
1,−→𝑧 ,

−→
𝜔𝑧,−→𝜋 ,

−→
𝜔𝜋,
−→
ind
)︁

in round 1 ≤ 𝑟 ≤ 𝑛 with

∙ |−→𝜋 | =
⃒⃒⃒−→
𝜔𝜋
⃒⃒⃒
=
⃒⃒⃒−→
ind
⃒⃒⃒
= 𝑟

∙
−→
ind consists of distinct indices in [𝑛].

∙ Open
(︁
𝑐𝑧ind𝑗 , 𝜔

𝑧
𝑗 , 𝑧𝑗

)︁
= 1 for every 𝑗 ∈ [𝑟].

∙ Open
(︁
𝑐𝜋ind𝑗 , 𝜔

𝜋
𝑗 , 𝜋𝑗

)︁
= 1 for every 𝑗 ∈ [𝑟].
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Case A. The adversary instructed all corrupt parties to broadcast all of

their signatures. 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted party computing ℱMPC

with fairness. It receives the corrupt parties outputs, namely, {𝑦𝑖}𝑖∈ℐ . 𝒮 chooses the

outputs of the honest party completely at random, that is, it samples random strings

𝑦𝑖
$← {0, 1}* of length equal to the length of the 𝑖th output of 𝐹 , for 𝑖 ∈ [𝑛] ∖ ℐ. 𝒮

then constructs

𝑦 = 𝑦1‖ . . . ‖𝑦𝑛

It then defines

𝑧 = 𝑦 ⊕ 𝛼

Let 𝑗 be an arbitrary index in [𝑛]∖ℐ. 𝒮 samples random strings 𝑧𝑖
$← {0, 1}* of length

equal to the sum of the lengths of all the outputs of 𝐹 , for 𝑖 ∈ [𝑛] ∖ (ℐ ∪ {𝑗}). 𝒮 then

computes

𝑧𝑗 = 𝑧 ⊕
⨁︁

𝑖∈[𝑛]∖{𝑗}

𝑧𝑖

and constructs
−→𝑧 = (𝑧1, . . . , 𝑧𝑛)

𝒮 computes 𝜔𝑧
𝑖

$← Õpen(state𝑖, 𝑧𝑖) for each 𝑖 ∈ [𝑛] ∖ ℐ and constructs

−→
𝜔𝑧 = (𝜔𝑧

1, . . . , 𝜔
𝑧
𝑛)

Note that, at this point, 𝒮 has every value ever used in the protocol. For every

𝑖 ∈ [𝑛] ∖ ℐ and every 𝑗 ∈ ℐ, letting 𝑎 = min(𝑖, 𝑗) and 𝑏 = max(𝑖, 𝑗), 𝒮 sends

((−→𝜎 , 0) , (𝜔𝑧
𝑎, 𝑧𝑎, 𝜔

𝜋
𝑎 , 𝜋𝑎, 𝜔

𝑧
𝑏 , 𝑧𝑏, 𝜔

𝜋
𝑏 , 𝜋𝑏)) to 𝑃𝑗. Going forward, 𝒮 simulates invocations

of the trigger phases of the instances of the ideal functionality ℱSyX that the adversary

instructs corrupt parties to trigger as follows.

∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving another corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ, with a valid

witness 𝑤, 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗))

6 to parties 𝑃𝑖 and 𝑃𝑗.

6Technically, this would have to be reordered as before. We ignore this technicality for ease of
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∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving an honest party, say 𝑃𝑗 for 𝑗 ∈ [𝑛] ∖ ℐ, with a valid

witness 𝑤, 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗)) to 𝑃𝑖.

∙ Suppose the adversary instructs a corrupt party to trigger an instance of ℱSyX

with an invalid witness. 𝒮 simply sends no response.

∙ Suppose the an honest party, say 𝑃𝑖 for 𝑖 ∈ [𝑛]∖ℐ, triggers an instance of ℱSyX in-

volving a corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ. 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗))

to 𝑃𝑗.

Case B. The adversary did not instruct all corrupt parties to broadcast

all of their signatures. We first discuss how 𝒮 simulates certain invocations of

the trigger phases of the instances of the ideal functionality ℱSyX that the adversary

instructs the corrupt parties to trigger.

∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving another corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ, with a valid

witness. 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗)) to parties 𝑃𝑖 and 𝑃𝑗.

∙ Suppose the adversary instructs a corrupt party to trigger an instance of ℱSyX

with an invalid witness. 𝒮 simply sends no response.

Suppose the adversary does not instruct a corrupt party, say 𝑃𝑖 for some 𝑖 ∈ ℐ,

to trigger an instance of ℱSyX involving an honest party, say 𝑃𝑗 for some 𝑗 ∈ [𝑛] ∖ ℐ,

with a valid witness and the round counter exceeds 𝑛, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to

the trusted party computing ℱMPC with fairness, with (𝑥𝑗, 𝑓𝑗) replaced with abort for

some 𝑗 ∈ ℐ, receives ⊥ as the output of all parties, and aborts itself. Otherwise,

at the first instant the adversary instructs a corrupt party to trigger an instance of

ℱSyX involving an honest party with a valid witness 𝑤, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to the

trusted party computing ℱMPC with fairness. It receives the corrupt parties outputs,

namely, {𝑦𝑖}𝑖∈ℐ . 𝒮 chooses the outputs of the honest party completely at random,

presentation.
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that is, it samples random strings 𝑦𝑖
$← {0, 1}* of length equal to the length of the

𝑖th output of 𝐹 , for 𝑖 ∈ [𝑛] ∖ ℐ. 𝒮 then constructs

𝑦 = 𝑦1‖ . . . ‖𝑦𝑛

It then defines

𝑧 = 𝑦 ⊕ 𝛼

Let 𝑗 be an arbitrary index in [𝑛]∖ℐ. 𝒮 samples random strings 𝑧𝑖
$← {0, 1}* of length

equal to the sum of the lengths of all the outputs of 𝐹 , for 𝑖 ∈ [𝑛] ∖ (ℐ ∪ {𝑗}). 𝒮 then

computes

𝑧𝑗 = 𝑧 ⊕
⨁︁

𝑖∈[𝑛]∖{𝑗}

𝑧𝑖

and constructs
−→𝑧 = (𝑧1, . . . , 𝑧𝑛)

𝒮 computes 𝜔𝑧
𝑖

$← Õpen(state𝑖, 𝑧𝑖) for each 𝑖 ∈ [𝑛] ∖ ℐ and constructs

−→
𝜔𝑧 = (𝜔𝑧

1, . . . , 𝜔
𝑧
𝑛)

Note that, at this point, 𝒮 has every value ever used in the protocol. 𝒮 sends the

tuple of values (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗)) to 𝑃𝑖. Going forward, 𝒮 simulates

invocations of the trigger phases of the instances of the ideal functionality ℱSyX that

involve corrupt parties as follows.

∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving another corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ, with a valid

witness 𝑤, 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗)) to parties 𝑃𝑖 and 𝑃𝑗.

∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving an honest party, say 𝑃𝑗 for 𝑗 ∈ [𝑛] ∖ ℐ, with a valid

witness 𝑤, 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗)) to 𝑃𝑖.

∙ Suppose the adversary instructs a corrupt party to trigger an instance of ℱSyX
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with an invalid witness. 𝒮 simply sends no response.

∙ Suppose the an honest party, say 𝑃𝑖 for 𝑖 ∈ [𝑛]∖ℐ, triggers an instance of ℱSyX in-

volving a corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ. 𝒮 sends (𝑤, (𝜔𝑧
𝑖 , 𝑧𝑖, 𝜔

𝜋
𝑖 , 𝜋𝑖, 𝜔

𝑧
𝑗 , 𝑧𝑗, 𝜔

𝜋
𝑗 , 𝜋𝑗))

to 𝑃𝑗.

Finally, 𝒮 outputs whatever 𝒜 outputs. It is easy to see that the view of 𝒜

is indistinguishable in the execution of the protocol ΠFMPC and the simulation with

𝒮, if
(︁
Com,Open, ̃︂Com, Õpen

)︁
is an honest-binding commitment scheme and 𝒱 is a

signature scheme. We therefore conclude that the protocol ΠFMPC securely computes

ℱMPC with fairness in the (ℱbc,ℱMPC,ℱSyX)-hybrid model, as required.

Remark. In the proof of Lemma 30, we ignore some annoying technicalities. For

instance, the adversary may cause the honest parties to abort, will be unable to obtain

its output but still pointlessly interact with some of the ideal functionalities. In the

proof, however, the simulator would have aborted. We note that these details are not

particularly enlightening and are of no consequence. One can deal with these sorts

of attacks by asking the simulator to wait in these scenarios until the adversary says

that it is done and then finally abort if it has to. Thus, we assume, for the purpose

of the proof, that if the adversary forces the honest parties to abort in a situation

where it will be unable to obtain its output, without loss of generality, it halts. Other

examples of such technicalities are when the adversary sends “unexpected” messages,

“incomplete” messages, etc. Note that such messages can be easily detected and

ignored, and do not affect the protocol in any way.

5.4.5 Getting to the ℱSyX-hybrid model

Combining Lemmas 1, 29, 16 and 30, we obtain the following theorem.

Theorem 16. Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then,

assuming the existence of one-way functions, there exists a protocol 𝜋 which se-

curely computes ℱMPC with fairness in the presence of 𝑡-threshold adversaries for

any 0 ≤ 𝑡 < 𝑛 in the (ℱOT,ℱSyX)-hybrid model.
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As discussed in Section 5.2, ℱ2PC, and hence ℱOT, can be realized in the ℱSyX-

hybrid model. We thus have the following theorem.

Theorem 17. Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then,

assuming the existence of one-way functions, there exists a protocol 𝜋 which se-

curely computes ℱMPC with fairness in the presence of 𝑡-threshold adversaries for

any 0 ≤ 𝑡 < 𝑛 in the ℱSyX-hybrid model.

It is important to note that via this transformation, we have not introduced a need

for the parties to have access to multiple instances of the ideal functionality ℱSyX as

opposed to one. This is because, in the protocol ΠFMPC, the ideal functionality ℱOT

will only be used to emulate the ideal functionality ℱMPC. During this stage, we do

not make any use of the ideal functionality ℱSyX. Once we are done with the signle

invocation of ℱMPC, we only invoke the ideal functionality ℱSyX. As a consequence,

parties can reuse the same instance of ℱSyX to first emulate ℱOT and then as a complete

ℱSyX functionality. We note that this however does increase the number of times the

functionality is invoked.
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5.5 Preprocessing ℱSyX

In this section, we will describe how a pair of parties can “preprocess” an instance of

the ideal functionality ℱSyX.We first describe what we mean by “preprocess”. What

we would like to enable is the following. We already know that the ideal functionality

ℱSyX allows the pair of parties to perform fair two-party computations. We would like

to set up the ℱSyX functionality such that after a single invocation of the load phase,

the two parties can perform an arbitrary (apriori unknown) polynomial number of

fair two-party computations. Furthermore, if the parties are honest, they would not

need to invoke the ideal functionality, that is, the “preprocessing” of the functional-

ity is optimistic. Combining this with the protocol for fair multiparty computation

in the ℱSyX-hybrid model from Section 5.4, we are able to show how an arbitrary

set of 𝑛 parties in the point-to-point model that have pairwise access to the ideal

functionality ℱSyX that has been preprocessed, can perform an arbitrary (apriori un-

known) polynomial number of fair multiparty computations. To begin with, we will

assume that the 𝑛-parties are in the point-to-point model and develop a protocol in the

(ℱbc,ℱMPC,ℱSyX)-hybrid model. We first provide some intuition for our construction.

5.5.1 Intuition

We first start with the 3-party case as a warm-up. Let 𝑃1, 𝑃2, and 𝑃3 be the three

parties, subsets (or all) of which would like to perform an unbounded (apriori un-

known polynomial) number of secure function evaluations. For 𝑖, 𝑗 ∈ {1, 2, 3} with

𝑖 < 𝑗, we have that parties 𝑃𝑖 and 𝑃𝑗 have access to the ideal functionality ℱSyX.

In particular, let ℱ 𝑖,𝑗
SyX represent the instantiation of the ℱSyX functionality used by

parties 𝑃𝑖, 𝑃𝑗. We wish to perform fair secure function evaluation of some 3-input

3-output functionality 𝐹 .

Reduction to single output functionalities. Let (𝑦1, 𝑦2, 𝑦3)
$← 𝐹 (𝑥1, 𝑥2, 𝑥3) be

the output of a function evaluation7. We define a new four input single output
7This discussion can be trivially extended to function evaluations with two inputs as opposed to

three.

167



functionality 𝐹 ′ such that

𝐹 ′(𝑥1, 𝑥2, 𝑥3, 𝑧) = 𝐹 1(𝑥1, 𝑥2, 𝑥3)‖𝐹 2(𝑥1, 𝑥2, 𝑥3)‖𝐹 3(𝑥1, 𝑥2, 𝑥3)⊕ 𝑧 = 𝑦1‖𝑦2‖𝑦3 ⊕ 𝑧

where 𝑧 = 𝑧1‖𝑧2‖𝑧3 and |𝑦𝑖| = |𝑧𝑖| for all 𝑖 ∈ [3]. The idea is that the party 𝑃𝑖 will

obtain 𝑧′ = 𝐹 ′(𝑥1, 𝑥2, 𝑥3, 𝑧) and 𝑧𝑖. Viewing 𝑧′ = 𝑧′1‖𝑧′2‖𝑧′3 where |𝑧′𝑖| = |𝑧𝑖|8 for all

𝑖 ∈ [3], party 𝑃𝑖 reconstructs its output as

𝑦𝑖 = 𝑧𝑖 ⊕ 𝑧′𝑖

Now, we may assume that the input of party 𝑃𝑖 is (𝑥𝑖, 𝑧𝑖) (or we can generate random

𝑧𝑖s as part of the computation) which determines 𝑧. It thus suffices to consider fair

secure function evaluation of single output functionalities.

Reduction to fair reconstruction. We will use ideas similar to [73, 98] where

instead of focusing on fair secure evaluation of an arbitrary function, we only focus

on fair reconstruction of an additive secret sharing scheme. The main idea is to

let the parties run a secure computation protocol that computes the output of the

secure function evaluation on the parties’ inputs, and then additively secret shares the

output. Given this step, fair secure computation then reduces to fair reconstruction

of the underlying additive secret sharing scheme.

Instance and party independence. Looking ahead, as in Section 5.4, we will use

the instances of the ideal functionality ℱSyX to perform fair reconstruction. In order to

be able to preprocess the instances of the functionality for arbitrary reconstructions,

what is being reconstructed must be independent of the secure function evaluation

and, in particular, the inputs of the parties. Furthermore, it must also be independent

of the specific parties that are performing the reconstruction. However, until now, we

have been assuming that the output of the secure function evaluation on the parties’

inputs is what is being reconstructed, which does not satisfy our requirements and
8We may assume without loss of generality that the lengths of the outputs of each party are

known beforehand.
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hence would not allow preprocessing. In order to fix this, we assume that the output of

the secure function evaluation on the parties’ inputs is encrypted under a key and that

key is what will be reconstructed fairly. Note that the key can be chosen independent

of the secure function evaluation and the parties’ inputs. We would also like it to

be the case that even after reconstructing once, our preprocessing is valid. This

would require that the preprocessing allows for the generation and fair reconstruction

of multiple independent (to a computational adversary) keys, one for each secure

function evaluation. Thus, what is actually done during the preprocessing phase is

the following. Each pair of parties 𝑃𝑖 and 𝑃𝑗 then initializes ℱ 𝑖,𝑗
SyX. The function 𝑓1

samples two random values 𝑣𝑖,𝑗, 𝑣𝑗,𝑖
$← {0, 1}𝜆 and computes the output of 𝑓1 as

𝑉𝑖,𝑗 = 𝑉𝑗,𝑖 = 𝑣𝑖,𝑗 ⊕ 𝑣𝑗,𝑖

along with commitments to these values to ensure that only these values are used by

parties in protocols. This completes the description of 𝑓1.

The underlying additive secret sharing scheme. For the instance of secure

function evaluation with identifier id, we sample a unique key, 𝐾id, to encrypt the

output 𝑦id of the secure function evaluation. Let Enc denote the encryption algorithm

of an encryption scheme. The parties would receive ctid = Enc(𝑦id;𝐾id) and then

fairly reconstruct 𝐾id. We use an independent additive secret sharing of the key 𝐾id

for each party. Let the shares be 𝑘id,𝑖,𝑗 for 𝑖, 𝑗 ∈ [3]. That is, it holds that

𝐾id =
⨁︁
𝑗∈[3]

𝑘id,𝑖,𝑗

for each 𝑖 ∈ [3]. We would like party 𝑃𝑖 to reconstruct 𝐾id by obtaining all shares

𝑘id,𝑖,𝑗 for each 𝑗 ∈ [3]. Initially, each party 𝑃𝑖 is given 𝑘id,𝑖,𝑖. Therefore, each party

𝑃𝑖 only needs to obtain 𝑘id,𝑖,𝑗 and 𝑘id,𝑖,𝑗′ for 𝑗, 𝑗′ ̸= 𝑖. Looking ahead, we would use

the instances of the ideal functionality ℱSyX to allow parties to fairly learn all their

shares of 𝐾id. However, since we are preprocessing the instances, the information

needed to compute these shares must be independent of the instance of secure function
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evaluation. The value that the instance ℱ 𝑖,𝑗
SyX would release fairly to parties 𝑃𝑖 and 𝑃𝑗

is 𝑉𝑖,𝑗. Thus, party 𝑃𝑖 additionally receives

ctid,𝑖,𝑗 = Enc(𝑘id,𝑖,𝑗;ℎid,𝑖,𝑗)

where

ℎid,𝑖,𝑗 = 𝐻(𝑉𝑖,𝑗‖id)

where 𝐻 is a hash function (random oracle). The intuition is that the instances of

the ideal functionality ℱSyX to allow parties to fairly learn the 𝑉𝑖,𝑗s, and hence the

ℎid,𝑖,𝑗s and finally 𝑘id,𝑖,𝑗s, thus fairly reconstructing 𝐾id. It is important to note that

using 𝑉𝑖,𝑗s that are independent of the instance of secure function evaluation, we

can fairly reconstruct, using per-instance (computationally independent) hash values

ℎid,𝑖,𝑗 generated using 𝑉𝑖,𝑗s, per-instance (independent) encryption keys 𝐾id.

An attempt at fair reconstruction via ℱSyX. We assume that the secure function

evaluation with identifier id provides the encryption ctid of the output 𝑦id of the secure

function evaluation. Additionally, party 𝑃𝑖 receives ctid,𝑖,𝑗 for each 𝑗 ∈ [𝑛] and 𝑘id,𝑖,𝑖.

From our earlier discussion, the instances of the ideal functionality ℱSyX allow parties

to fairly learn the 𝑉𝑖,𝑗s. In order to allow reuse of the preprocessing, however, the

instances of the ideal functionality ℱSyX must only allow parties to fairly learn the

ℎid,𝑖,𝑗s. As a first attempt to ensure this, we require the secure function evaluation to

also give party 𝑃𝑖 a signature 𝜎𝑖 on id. That is, 𝑃𝑖 receives

(︁
ctid, {ctid,𝑖,𝑗}𝑗∈[3] , 𝑘id,𝑖,𝑖, 𝜎𝑖

)︁
We will have the parties fairly learn the ℎid,𝑖,𝑗s using the instances of the ideal func-

tionality ℱSyX. We achieve this by setting the predicate 𝜑𝑘(𝑤) (for 𝑘 ∈ {𝑖, 𝑗}) to

output 1 if and only if 𝑤 consists of both signatures (𝜎𝑖, 𝜎𝑗). That is, each instance

ℱ 𝑖,𝑗
SyX will accept the trigger 𝑤𝑖,𝑗 = (id, 𝜎𝑖, 𝜎𝑗). We define 𝑓2 to simply output ℎid,𝑖,𝑗 to

both parties if 𝜑𝑘(𝑤) = 1. Parties learn signatures of other parties by broadcasting
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their signatures and waiting for other parties to do so. If party 𝑃𝑖 receives signatures

from every other party, it can trigger every instance of the ideal functionality ℱSyX it

is involved in, thus learning ℎid,𝑖,𝑗 for each 𝑗 ∈ [3] and finally learning 𝐾id. Malicious

parties may however not broadcast their signatures. Concretely, we have the following

attack: Suppose 𝑃1 is honest while 𝑃2 and 𝑃3 are corrupt. 𝑃2 and 𝑃3 already know

𝜎2 and 𝜎3 and only need 𝜎1 to learn the output. 𝑃1 broadcasts 𝜎1 while 𝑃2 and 𝑃3

do not broadcast 𝜎2 and 𝜎3. Finally, 𝑃2 triggers the ideal functionality ℱ1,2
SyX using

(𝜎1, 𝜎2) and learns the output. 𝑃1, on the other hand, only learns 𝜎2 and hence does

not learn the output.

Fair reconstruction via ℱSyX. We fix the protocol sketch described above using a

technique we developed for termination of the protocol described in Section 5.4. The

protocol for reconstruction proceeds in 𝑇 = 𝑛 rounds. In order to trigger an instance

of ℱSyX in some round 𝜏 ∈ [𝑇 ], you must provide a proof that other instances of ℱSyX

involving at least 𝜏 different parties have been triggered. Consider the first round 𝜏 in

which 𝑃𝑖 is an honest party and ℱ 𝑖,𝑗
SyX is triggered for some 𝑗. If 𝜏 = 1, then the single

invocation already gives a proof that channels involving two parties, namely, 𝑖, 𝑗, have

been triggered. Otherwise, by assumption, proofs of invocations of instances of ℱSyX

involving 𝜏 different parties were needed to trigger ℱ 𝑖,𝑗
SyX. But 𝑃𝑖 is not one of these

parties as 𝜏 is the first round in which ℱ 𝑖,𝑗
SyX was triggered for any 𝑗. Consequently,

𝑃𝑖, on this invocation, obtains a proof that instances of ℱSyX involving at least 𝜏 + 1

parties have been triggered, and can thus trigger all channels in round 𝜏 + 1. The

only gap in the argument is the case 𝜏 = 𝑇 . One can trivially see that since ℱ 𝑖,𝑗
SyX has

not been triggered for any 𝑗, it is impossible to obtain a proof that instances of ℱSyX

involving at least 𝑇 different parties have been triggered.

Optimistic preprocessing. In the case where parties are honest, we can simply

have the secure function evaluation provide the output instead of parties having to

trigger their instances of the ideal functionality ℱSyX. We are guaranteed, by virtue

of the fair reconstruction techniques dicussed thus far, that in the case where parties
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behave adversarially, the honest parties do have a way to obtain the output of the

computation. In this way, in the optimistic setting, parties never have to trigger the

instances of the ideal functionality ℱSyX. Combined with the fact that the actual

preprocessing phase is extremely simple, we see that this paradigm makes fair secure

function evaluation just as efficient as secure function evaluation with abort in the

optimisitic case.

Simulation. We look ahead for the issues that come up while trying to prove secu-

rity, that is, during the simulation. The simulator will release to the adversary, the

encryption of the output and encryptions of the adversary’s shares of the key used

to encrypt the output. Since the simulator does not know the output apriori, and

does not know whether the adversary is going to abort the computation, in which

case, no one knows the output, it has to produce encryptions that it can later equiv-

ocate. In this context, we use, not a regular encryption scheme, but non-interactive

non-committing encryption commitments. In this case, the simulator can produce

encryptions to garbage but can later decrypt them to be valid shares of the key and

the actual output. The rest of the computations can be trivially simulated. The

only other detail to be looked into is that of the clock. We need to determine if the

adversary has decided to abort the computation, that is, if the adversary is going to

receive the output of the computation of not. This is done by noticing if and when

the adversary decides to trigger the instances of ℱSyX that involve honest parties. We

know that if the adversary ever triggers an instance of ℱSyX involving an honest party,

then all parties will be in a position to receive the output. Thus, the simulator can

simply run the adversary to determine whether it has decided to enable parties to

obtain the output, in which the simulator would ask the trusted party to continue,

or not, in which case the simulator would ask the trusted party to abort.

5.5.2 Protocol

We now present the protocol for preprocessing fair secure computation in the (ℱMPC,ℱSyX)-

hybrid model.
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STAGE I: PREPROCESSING

Preliminaries. 𝑃𝑎 and 𝑃𝑏 are two parties for 𝑎, 𝑏 ∈ [𝑁 ] with 𝑎 < 𝑏, where 𝑁 is

some universal upper bound on the number of parties; ℱ𝑎,𝑏
SyX represents the instanti-

ation of the ℱSyX functionality used by parties 𝑃𝑎, 𝑃𝑏 with time out round numbers

INPUT_TIMEOUT = ∞ and TRIGGER_TIMEOUT = ∞; (Com,Open) is a commit-

ment scheme; 𝐻 : {0, 1}* → {0, 1}𝐿(𝜆)9 is a random oracle; 𝑟 denotes the current

round number.

Protocol. The protocol ΠPreprocess proceeds as follows:

∙ Define the following functions.

– Let 𝑓𝑎,𝑏
1 be the function that takes no input, samples two strings 𝑣𝑎,𝑏, 𝑣𝑏,𝑎

$←

{0, 1}𝜆 and computes and stores

𝑉𝑎,𝑏 = 𝑉𝑏,𝑎 = 𝑣𝑎,𝑏 ⊕ 𝑣𝑏,𝑎

It also computes

(𝑐𝑣𝑎,𝑏, 𝜔
𝑣
𝑎,𝑏)

$← Com(𝑣𝑎,𝑏)

and

(𝑐𝑣𝑏,𝑎, 𝜔
𝑣
𝑏,𝑎)

$← Com(𝑣𝑏,𝑎)

Finally, it outputs (𝑣𝑎,𝑏, 𝑐
𝑣
𝑎,𝑏, 𝜔

𝑣
𝑎,𝑏, 𝑐

𝑣
𝑏,𝑎) to party 𝑃𝑎 and (𝑣𝑏,𝑎, 𝑐

𝑣
𝑎,𝑏, 𝑐

𝑣
𝑏,𝑎, 𝜔

𝑣
𝑏,𝑎)

to party 𝑃𝑏.

– Let 𝜑𝑎,𝑏
1 be the function that takes as input a witness 𝑤 and parses

𝑤 =
(︁
id, 𝑡,
−→
𝑐𝜋 ,
−→
𝜔𝜋,−→𝜋 ,

−→
ind
)︁

It checks that:
9The following type-check must and can be performed: 𝐿(𝜆) is the length of the key that will

be used to encrypt shares of a key that will be used to encrypt the output of the secure function
evaluations to be performed in the future.
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* id ∈ {0, 1}𝜆

* 𝑡 is a valid round number and 𝑡 < 𝑟

*
⃒⃒⃒−→
ind
⃒⃒⃒
=
⃒⃒⃒−→
𝜔𝜋
⃒⃒⃒
= |−→𝜋 | = 𝑟 − 𝑡

*
−→
ind consists of distinct indices in

[︁
|−→𝑐𝜋 |
]︁
.

* Open
(︁
𝑐𝜋ind𝑗 , 𝜔

𝜋
𝑗 , 𝜋𝑗

)︁
= 1 for every 𝑗 ∈ [𝑟 − 𝑡].

If all of these checks pass, then 𝜑𝑎,𝑏
1 outputs 1 and otherwise it outputs 0.

– Let 𝜑𝑎,𝑏
2 be identical to 𝜑𝑎,𝑏

1 .

– Let 𝑓𝑎,𝑏
2 be the function that takes as input 𝑤 where 𝑤 is as above, and

outputs

ℎid,𝑎,𝑏 = ℎid,𝑏,𝑎 = 𝐻
(︁
𝑉𝑎,𝑏‖id‖𝑡‖

−→
𝑐𝜋
)︁

∙ Parties 𝑃𝑎, 𝑃𝑏 run the load phase of ℱ𝑎,𝑏
SyX, providing the same input (⊥, 𝑓),

where

𝑓 =
(︁
𝑓𝑎,𝑏
1 , 𝑓𝑎,𝑏

2 , 𝜑𝑎,𝑏
1 , 𝜑𝑎,𝑏

2

)︁
If parties 𝑃𝑎 and 𝑃𝑏 receive their outputs 𝑣𝑎,𝑏 and 𝑣𝑏,𝑎 respectively, we say that

their preprocessing phase has been successfully completed.

STAGE II: FAIR SECURE FUNCTION EVALUATION

Preliminaries. 𝑆 ⊆ [𝑁 ], where 𝑛 is some universal upper bound on the number of

parties, and |𝑆| = 𝑛; 𝐹 is the 𝑛-input 𝑛-output functionality to be computed; 𝑥𝑖 is the

input of party 𝑃𝑖 for 𝑖 ∈ 𝑆; ℱ𝑎,𝑏
SyX represents the instantiation of the ℱSyX functionality

used by parties 𝑃𝑎, 𝑃𝑏 with time out round numbers INPUT_TIMEOUT = ∞ and

TRIGGER_TIMEOUT =∞ for 𝑎 < 𝑏, where 𝑎, 𝑏 ∈ 𝑆; (Com,Open) is an commitment

scheme; (Gen,Enc,Dec) is non-interactive non-committing encryption scheme; 𝐻 :

{0, 1}* → {0, 1}𝐿(𝜆)10 is a random oracle; 𝑟 denotes the current round number.

10The following type-check must and can be performed: 𝐿(𝜆) is the length of the randomness
needed to generate a key long enough to encrypt shares of a key long enough to encrypt the output
of the secure function evaluations to be performed in the future.
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Protocol. The protocol ΠFMPC-preprocess proceeds as follows:

∙ Party 𝑃𝑖 for every 𝑖 ∈ 𝑆 ensures that its preprocessing phases with every other

party 𝑃𝑗 for 𝑗 ∈ 𝑆 ∖ {𝑖} have been successfully completed. If not, party 𝑃𝑖

aborts. Otherwise, it has obtained values
{︀
𝑣𝑖,𝑗, 𝑐

𝑣,𝑖
𝑖,𝑗 , 𝜔

𝑣,𝑖
𝑖,𝑗 , 𝑐

𝑣,𝑖
𝑗,𝑖

}︀
𝑗∈𝑆∖{𝑖} as outputs

from its preprocessing phases with every other party.

∙ Define 𝐹 ′ to the be the following 𝑛-input 𝑛-output functionality: On input
−→
𝑋 = (𝑋1, . . . , 𝑋𝑛):

– Parse

𝑋𝑖 =
(︁
𝑥𝑖, 𝑡𝑖,

{︀
𝑣𝑖,𝑗, 𝑐

𝑣,𝑖
𝑖,𝑗 , 𝜔

𝑣,𝑖
𝑖,𝑗 , 𝑐

𝑣,𝑖
𝑗,𝑖

}︀
𝑗∈𝑆∖{𝑖}

)︁
– Check that 𝑡 = 𝑡𝑖 = 𝑡𝑗 for all 𝑖, 𝑗 ∈ 𝑆. If not, abort.

– Check that 𝑐𝑣,𝑖𝑖,𝑗 = 𝑐𝑣,𝑗𝑖,𝑗 and that Open(𝑐𝑣,𝑖𝑖,𝑗 , 𝜔
𝑣,𝑖
𝑖,𝑗 , 𝑣𝑖,𝑗) = 1 for all 𝑖, 𝑗 ∈ 𝑆 with

𝑖 ̸= 𝑗. If not, abort.

– Sample a random identifier id ∈ {0, 1}𝜆 for this instance of fair secure

function evaluation.

– Let (𝑦1, . . . , 𝑦𝑛) = 𝐹 (𝑥1, . . . , 𝑥𝑛) and let

𝑦 = 𝑦1‖ . . . ‖𝑦𝑛

Sample random strings 𝛼𝑖
$← {0, 1}* such that |𝛼𝑖| = |𝑦𝑖| for each 𝑖 ∈ [𝑛].

Let

𝛼 = 𝛼1‖ . . . ‖𝛼𝑛

Let 𝑧 = 𝑦 ⊕ 𝛼.

– Sample a random encryption key-pair (pk, sk) by invoking Gen(1𝜆). Com-

pute an encryption of the output

ct = Enc(𝑧; pk)
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– Sample 𝑛 random additive 𝑛-out-of-𝑛 secret sharings {𝑘1,𝑗}𝑗∈𝑆, . . . , {𝑘𝑛,𝑗}𝑗∈𝑆
of sk such that

sk =
⨁︁
𝑗∈[𝑛]

𝑘𝑖,𝑗

for every 𝑖 ∈ 𝑆.

– Sample random proof values 𝜋1, . . . , 𝜋𝑛
$← {0, 1}𝜆. Compute commitments

along with their openings (𝑐𝜋𝑖 , 𝜔
𝜋
𝑖 )

$← Com(𝜋𝑖) to each of the proof values

𝜋𝑖 for each 𝑖 ∈ [𝑛]. Let
−→
𝑐𝜋 = (𝑐𝜋1 , . . . , 𝑐

𝜋
𝑛)

– Compute

ℎ𝑖,𝑗 = ℎ𝑗,𝑖 = 𝐻
(︁
𝑉𝑖,𝑗‖id‖𝑡‖

−→
𝑐𝜋
)︁

where

𝑉𝑖,𝑗 = 𝑉𝑗,𝑖 = 𝑣𝑖,𝑗 ⊕ 𝑣𝑗,𝑖

for every 𝑖, 𝑗 ∈ [𝑛] with 𝑖 ̸= 𝑗.

– Sample encryption key-pairs (pk𝑖,𝑗, sk𝑖,𝑗) by invoking Gen(1𝜆;ℎ𝑖,𝑗) for every

𝑖, 𝑗 ∈ [𝑛] with 𝑖 ̸= 𝑗. Compute

ct𝑖,𝑗 = Enc(𝑘𝑖,𝑗; pk𝑖,𝑗)

for every 𝑖, 𝑗 ∈ [𝑛] with 𝑖 ̸= 𝑗.

– In the first stage of output delivery11, party 𝑃𝑖 receives output

(︀
𝛼𝑖, id, 𝑡, ct, {ct𝑖,𝑗}𝑗∈𝑆∖{𝑖}, 𝑘𝑖,𝑖, 𝜔𝜋

𝑖 , 𝜋𝑖

)︀
11While this would require setting up additional notation, for ease of presentation, we suppress

formally defining security of multi-stage primitives. In our case, the functionality 𝐹 ′ is a two-stage
functionality. While defining security with abort for F’, which is all we will need for this work, we
consider security with abort for each stage. That is, the adversary obtains its output for the first
stage and then decides whether the honest parties may receive their output for the first stage. If
not, neither the adversary nor the honest parties obtain their output for the second stage. If yes,
the honest parties receive their output for the first stage and the adversary receives its output for
the second stage, following which it decides if the honest parties may receive their output for the
second stage.
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for each 𝑖 ∈ 𝑆.

– In the second stage of output delivery, party 𝑃𝑖 receives output
−→
𝑐𝜋 for each

𝑖 ∈ 𝑆.

– Finally party 𝑃𝑖 receives the output 𝑧 for each 𝑖 ∈ 𝑆.

∙ For each 𝑖 ∈ 𝑆, party 𝑃𝑖 estimates the round number 𝑡𝑖 when the secure function

evaluation of 𝐹 ′ using the ideal functionality ℱMPC will be complete. It then

constructs

𝑋𝑖 =
(︁
𝑥𝑖, 𝑡𝑖,

{︀
𝑣𝑖,𝑗, 𝑐

𝑣,𝑖
𝑖,𝑗 , 𝜔

𝑣,𝑖
𝑖,𝑗 , 𝑐

𝑣,𝑖
𝑗,𝑖

}︀
𝑗∈𝑆∖{𝑖}

)︁
∙ The parties invoke the ideal functionality ℱMPC with inputs {(𝑋𝑖, 𝐹

′)}𝑖∈𝑆. If

the ideal functionality returns ⊥ after the first stage to party 𝑃𝑖, then 𝑃𝑖 aborts

for any 𝑖 ∈ [𝑛]12. Otherwise, party 𝑃𝑖 receives output

(︀
𝛼𝑖, id, 𝑡, ct, {ct𝑖,𝑗}𝑗∈𝑆∖{𝑖}, 𝑘𝑖,𝑖, 𝜔𝜋

𝑖 , 𝜋𝑖

)︀
for each 𝑖 ∈ 𝑆. If the ideal functionality returns 𝑧 after the third stage, in round

𝑡, to party 𝑃𝑖 for any 𝑖 ∈ 𝑆, then 𝑃𝑖 parses 𝑧 as 𝑧1‖ . . . ‖𝑧𝑛 where |𝑧𝑗| = |𝑦𝑗| for

all 𝑗 ∈ [𝑛] and computes 𝑦𝑖 = 𝑧ind𝑖⊕𝛼𝑖 to obtain the output of the computation,

where ind𝑖 is the index of 𝑖 in 𝑆. If the ideal functionality returned ⊥ after the

third stage but did not return ⊥ after the second stage to party 𝑃𝑖, then party

𝑃𝑖 also receives
−→
𝑐𝜋 by round 𝑡. Then, in round 𝑟 = 𝑡+ 1, 𝑃𝑖 uses the witness

𝑤 =
(︁
id, 𝑡,
−→
𝑐𝜋 , 𝜔𝜋

𝑖 , 𝜋𝑖, 𝑖
)︁

12In the ℱOT-hybrid model, let 𝜋𝐹 ′ denote the protocol for the functionality 𝐹 ′ defined in Lemma
16. The parties execute 𝜋𝐹 ′ . If the execution of 𝜋𝐹 ′ aborts, we are assuming that all (honest) parties
are aware of the round when the execution of 𝜋𝐹 ′ aborts, that is, when the adversary has decided
to abort the execution of 𝜋𝐹 ′ . Since we are working in the ℱMPC-hybrid model, we know that in
the ideal model, this is the case when the honest parties receive ⊥ as their output. If we assume
that in the case when the the adversary decides to let the honest parties obtain their outputs, no
honest party ever receives ⊥, this could be used to identify the scenario when the adversary has
decided to abort the execution of 𝜋𝐹 ′ . Thus, we could, in principle, replace this instruction with:
If party 𝑃𝑖 receives ⊥ as its output, it aborts. Furthermore, since we are considering the case of
unanimous abort, if the adversary has decided to abort the execution of 𝜋𝐹 ′ , all honest parties abort
the protocol.
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to invoke the trigger phase of each instance of ℱSyX it is involved in. Once all

such instances of ℱSyX involving party 𝑃𝑖 have been triggered, 𝑃𝑖 obtains ℎid,𝑖,𝑗

for every 𝑗 ∈ 𝑆 ∖ {𝑖}. Using these values, it computes encryption key-pairs

(pk𝑖,𝑗, sk𝑖,𝑗) by invoking Gen(1𝜆;ℎid,𝑖,𝑗) for every 𝑗 ∈ 𝑆 ∖ {𝑖}. Then, it computes

k𝑖,𝑗 = Dec(ct𝑖,𝑗; sk𝑖,𝑗)

for every 𝑗 ∈ 𝑆 ∖ {𝑖}. Then, it computes

sk =
⨁︁
𝑗∈𝑆

𝑘𝑖,𝑗

and

𝑧 = Dec(ct; sk)

Finally, 𝑃𝑖 parses 𝑧 as 𝑧1‖ . . . ‖𝑧𝑛 where |𝑧𝑗| = |𝑦𝑗| for all 𝑗 ∈ [𝑛] and computes

the value 𝑦𝑖 = 𝑧ind𝑖 ⊕ 𝛼𝑖 to obtain its output, where ind𝑖 is the index of 𝑖 in 𝑆.

Otherwise, if the ideal functionality returned ⊥ after both the second and third

stages, the protocol proceeds as follows.

∙ If 𝑟 > 𝑡+ 𝑛, abort. Otherwise, wait until 𝑟 > 𝑡. While 𝑡+ 1 ≤ 𝑟 ≤ 𝑡+ 𝑛,

– If party 𝑃𝑎 for 𝑎 ∈ 𝑆 has not received the output of the computation and

an instance of ℱSyX involving party 𝑃𝑎 is first triggered in round 𝑡 + 1 ≤

𝑟 ≤ 𝑡+ 𝑛− 1 using a “good” witness, it triggers each instance of ℱSyX that

it is involved in during round 𝑟 + 1 using the output out it receives from

the instance of ℱSyX as follows:

* If

out1 =
(︁
id, 𝑡,
−→
𝑐𝜋 ,
−→
𝜔𝜋,−→𝜋 ,

−→
ind
)︁

it prepares the witness

𝑤 =
(︁
id, 𝑡,
−→
𝑐𝜋 ,
−→
𝜔𝜋 ′,−→𝜋 ′,

−→
ind′
)︁
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where

· |−→𝜋 ′| = 𝑟 + 1, −→𝜋 ′|[𝑟] =
−→𝜋 |[𝑟], 𝜋′

𝑟+1 = 𝜋𝑎

·
⃒⃒⃒−→
𝜔𝜋 ′
⃒⃒⃒
= 𝑟 + 1,

−→
𝜔𝜋 ′
⃒⃒⃒
[𝑟]

=
−→
𝜔𝜋
⃒⃒⃒
[𝑟]

, 𝜔𝜋
𝑟+1

′ = 𝜔𝜋
𝑎

·
⃒⃒⃒−→
ind′
⃒⃒⃒
= 𝑟 + 1,

−→
ind′
⃒⃒⃒
[𝑟]

=
−→
ind
⃒⃒⃒
[𝑟]

, ind′𝑟+1 = 𝑎

Once all instances of ℱSyX involving party 𝑃𝑎 have been triggered, 𝑃𝑎 ob-

tains ℎid,𝑎,𝑏 for every 𝑏 ∈ 𝑆 ∖ {𝑎}. Using these values, it computes encryp-

tion key-pairs (pk𝑎,𝑏, sk𝑎,𝑏) by invoking Gen(1𝜆;ℎid,𝑎,𝑏) for every 𝑏 ∈ 𝑆 ∖{𝑎}.

Then, it computes

k𝑎,𝑏 = Dec(ct𝑎,𝑏; sk𝑎,𝑏)

for every 𝑏 ∈ 𝑆 ∖ {𝑎}. Then, it computes

sk =
⨁︁
𝑏∈𝑆

𝑘𝑎,𝑏

and

𝑧 = Dec(ct; sk)

Finally, 𝑃𝑎 parses 𝑧 as 𝑧1‖ . . . ‖𝑧𝑛 where |𝑧𝑗| = |𝑦𝑗| for all 𝑗 ∈ [𝑛] and

computes the value 𝑦𝑎 = 𝑧ind𝑎 ⊕ 𝛼𝑎 to obtain its output, where ind𝑎 is the

index of 𝑎 in 𝑆.

5.5.3 Correctness

We sketch the proof of correctness of the above protocol. The correctness of the

computation of the functionality 𝐹 ′ follows by definition from the correctness of the

ideal functionality ℱMPC. Furthermore, we have that at the end of the invocation of

the ideal functionality ℱMPC, either all honest parties unanimously abort or all honest

parties unanimously continue. Thus, assuming that ℱMPC did not abort, and that all

honest parties continue, every party receives the output of the first stage of 𝐹 ′. If

the honest parties also receive the output of the third stage of 𝐹 ′, there is nothing

to prove and correctness is obvious. This is the optimistic setting. We now consider
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the case that all honest parties obtained the output of the first and second stages of

𝐹 ′ but not the third stage of 𝐹 ′. Note that a valid witness to trigger an instance of

ℱSyX in round 𝑡+ 1 ≤ 𝑟 ≤ 𝑡+ 𝑛 consists of, apart from id and 𝑡, a set of proof values

and openings
(︁−→
𝜔𝜋,−→𝜋

)︁
of size 𝑟 − 𝑡. By valid, we mean that the values of

(︁
id, 𝑡,
−→
𝑐𝜋
)︁

are the ones picked during the execution of 𝐹 ′. Triggering the instances of ℱSyX with

other values will produce some output but will not be useful because the values ℎ𝑖,𝑗

are computed by hashing 𝑉𝑖,𝑗 along with
(︁
id, 𝑡,
−→
𝑐𝜋
)︁
. Also note that if and only if a

party does manage to have all the instances of ℱSyX that it is involved in triggered

with valid witnesses during the course of the protocol, it is able to reconstruct its

output correctly. If the honest party 𝑃𝑖 obtained the output of the second stage of

𝐹 ′, then 𝑃𝑖 is able to prepare the valid witness 𝑤 =
(︁
id, 𝑡,
−→
𝑐𝜋 , 𝜔𝜋

𝑖 , 𝜋𝑖, 𝑖
)︁

and trigger

all instances of ℱSyX that it is involved in in round 𝑟 = 𝑡 + 1, and is thus able to

reconstruct its output correctly. Suppose the honest parties receive the output of

the first stage but not the second or third stages of 𝐹 ′. It is now possible that the

adversary has received its output corresponding to the first and second stages of 𝐹 ′.

At this point, if the adversary wishes to learn the output, it must do so by obtaining

𝑘𝑖,𝑗s for 𝑖 ∈ ℐ and 𝑗 ∈ 𝑆 ∖ ℐ. For this, it must be the case that for some corrupt

party 𝑃𝑖 with 𝑖 ∈ ℐ, all instances of ℱSyX involving 𝑃𝑖 and an honest party must

be triggered, either by the honest parties or by 𝑃𝑖. Since none of the honest parties

possess valid witnesses to trigger an instance of ℱSyX (as they do not have
−→
𝑐𝜋 ), the

corrupt party must be the first to trigger. 𝑃𝑖 would only have at most |ℐ| openings

to commitments in
−→
𝑐𝜋 and thus, if the adversary learns the output, it must be the

case that 𝑃𝑖 triggers an instance of ℱSyX with an honest party 𝑃𝑗 for some 𝑗 ∈ 𝑆 ∖ ℐ

in round 𝑟 ≤ 𝑡+ |ℐ| ≤ 𝑡+ 𝑛− 1. At this point, 𝑃𝑗 learns
−→
𝑐𝜋 and a set of openings to

commitments in
−→
𝑐𝜋 corresponding to some set of 𝑟−𝑡 indices

−→
ind in 𝑆∖{𝑗}. Combining

this information with id, 𝑡 and the opening
(︀
𝜔𝜋
𝑗 , 𝜋𝑗

)︀
received from the output of the

first stage of 𝐹 ′, 𝑃𝑗 is able to prepare a valid witness to trigger all instances of ℱSyX

that it is involved in in round 𝑟+1 ≤ 𝑡+𝑛 and is thus able to reconstruct its output

correctly. Finally, consider any honest party 𝑃𝑗 for 𝑗 ∈ 𝑆 ∖ ℐ. If no instance of ℱSyX

involving 𝑃𝑗 is triggered in a round 𝑟 ≤ 𝑡+𝑛− 1, then for all 𝑖 ̸= 𝑗, party 𝑃𝑖 does not
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learn ℎ𝑖,𝑗 and hence, does not learn 𝑘𝑖,𝑗. Without 𝑘𝑖,𝑗, 𝑃𝑖 does not learn sk and hence

does not learn its output. In particular, this means that the adversary does not learn

its output. Thus, if the adversary learns its output, that for all honest parties 𝑃𝑗 for

𝑗 ∈ 𝑆 ∖ ℐ, some instance of ℱSyX involving 𝑃𝑗 is triggered in a round 𝑟 ≤ 𝑡 + 𝑛 − 1

which in turns means that 𝑃𝑗 learns its output as well. This completes the proof of

correctness.

5.5.4 Security

We now prove the following lemma.

Lemma 31. If (Com,Open) is a commitment scheme, (Gen,Enc,Dec) is a non-

interactive non-committing encryption scheme and 𝐻 a random oracle, then the

protocols ΠPreprocess,ΠFMPC-preprocess securely preprocess for and compute an arbitrary

(polynomial) number of instances of ℱMPC with fairness in the (ℱMPC,ℱSyX)-hybrid

model.

Proof. Let 𝒜 be an adversary attacking the execution of the protocols described in

Section 5.5.2 in the (ℱbc,ℱMPC,ℱSyX)-hybrid model. We construct an ideal-model

adversary 𝒮 in the ideal model of type fair. Let ℐ be the set of corrupted parties. If

ℐ is empty, then there is nothing to simulate. 𝒮 begins by simulating the first stage,

namely, preprocessing.

STAGE I: PREPROCESSING

𝒮 has to simulate the invocations of the load phases of the instances of the ideal

functionality ℱSyX that involve corrupt parties. Here, 𝒮 behaves as the ideal func-

tionality ℱSyX. Recall that the type of ℱSyX is g.d.. For any 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏

and 𝑎 ∈ ℐ and 𝑏 ∈ [𝑛] ∖ ℐ, if 𝒜 instructs 𝑃𝑎 to invoke the load phase of ℱ𝑎,𝑏
SyX with no

input, 𝒮 executes 𝑓𝑎,𝑏
1 as defined in ΠPreprocess. 𝒮 picks two strings 𝑣𝑎,𝑏, 𝑣𝑏,𝑎

$← {0, 1}𝜆

and computes and stores

𝑉𝑎,𝑏 = 𝑉𝑏,𝑎 = 𝑣𝑎,𝑏 ⊕ 𝑣𝑏,𝑎
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It also computes

(𝑐𝑣𝑎,𝑏, 𝜔
𝑣
𝑎,𝑏)

$← Com(𝑣𝑎,𝑏)

and

(𝑐𝑣𝑏,𝑎, 𝜔
𝑣
𝑏,𝑎)

$← Com(𝑣𝑏,𝑎)

Finally, it forwards (𝑣𝑎,𝑏, 𝑐
𝑣
𝑎,𝑏, 𝜔

𝑣
𝑎,𝑏, 𝑐

𝑣
𝑏,𝑎) to the adversary. 𝒮 behaves symmetrically if

for any 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏 and 𝑏 ∈ ℐ and 𝑎 ∈ [𝑛] ∖ ℐ, if 𝒜 instructs 𝑃𝑏 to invoke

the load phase of ℱ𝑎,𝑏
SyX. The final case to consider is if for any 𝑎, 𝑏 ∈ [𝑛] with 𝑎 < 𝑏

and 𝑎, 𝑏 ∈ ℐ, if 𝒜 instructs 𝑃𝑎, 𝑃𝑏 to invoke the load phase of ℱ𝑎,𝑏
SyX with no input,

𝒮 executes 𝑓𝑎,𝑏
1 as defined in ΠPreprocess. 𝒮 picks two strings 𝑣𝑎,𝑏, 𝑣𝑏,𝑎

$← {0, 1}𝜆 and

computes and stores

𝑉𝑎,𝑏 = 𝑉𝑏,𝑎 = 𝑣𝑎,𝑏 ⊕ 𝑣𝑏,𝑎

It also computes

(𝑐𝑣𝑎,𝑏, 𝜔
𝑣
𝑎,𝑏)

$← Com(𝑣𝑎,𝑏)

and

(𝑐𝑣𝑏,𝑎, 𝜔
𝑣
𝑏,𝑎)

$← Com(𝑣𝑏,𝑎)

Finally, it forwards 𝑣𝑎,𝑏, 𝑣𝑏,𝑎, 𝑐𝑣𝑎,𝑏, 𝜔𝑣
𝑎,𝑏, 𝑐

𝑣
𝑏,𝑎, 𝜔

𝑣
𝑏,𝑎 to the adversary. If in any of the invoca-

tions, the adversary instructs a corrupt party to invoke the load phase of an instance

of ℱSyX incorrectly, 𝒮 simply aborts simulating the load phase of this particular in-

stance of ℱSyX. At the end of this phase, let PreprocessSuccess denote the set of all

{𝑎, 𝑏} with 𝑎 < 𝑏 such that 𝑃𝑎 and 𝑃𝑏 successfully invoked the load phase of ℱ𝑎,𝑏
SyX.

STAGE II: FAIR SECURE FUNCTION EVALUATION

Let 𝐹 be the 𝑛-input 𝑛-output functionality to be computed. Let 𝑆 be the set

of 𝑛 parties that are participating in this instance of fair secure function evaluation.

If 𝑆 ∩ ℐ = 𝜑, then there is nothing to simulate. 𝒮 then checks that for every 𝑎, 𝑏 ∈ 𝑆

with 𝑎 < 𝑏 and either 𝑎 ∈ [𝑁 ]∖ℐ or 𝑏 ∈ [𝑁 ]∖ℐ, {𝑎, 𝑏} ∈ PreprocessSuccess. If not, then

𝒮 aborts this instance of fair secure function evaluation as the honest parties would
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have done so in the real execution as well. 𝒮 then begins by simulating the first step of

the protocol, namely, the invocation of the ideal functionality ℱMPC. Here, 𝒮 behaves

as the ideal functionality ℱMPC. Recall that the type of ℱMPC is abort. 𝒮 obtains the

inputs {(𝑋𝑖, 𝑓𝑖)}𝑖∈ℐ of the corrupted parties from 𝒜. If (𝑋𝑖, 𝑓𝑖) = abort for any 𝑖 ∈ ℐ,

𝒮 forwards {(𝑋𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted party computing ℱMPC with fairness, receives

⊥ as the output of all parties, which it forwards 𝒜. Suppose (𝑋𝑖, 𝑓𝑖) ̸= abort for all

𝑖 ∈ ℐ. If there exists a 𝑗 ∈ ℐ such that 𝑓𝑗 ̸= 𝐹 ′ as defined in protocol ΠFMPC-preprocess,

𝒮 forwards {(𝑋𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted party computing ℱMPC with fairness, which

aborts, and then aborts this instance of fair secure function evaluation. If there exists

a 𝑗 ∈ ℐ such that (𝑋𝑗, 𝑓𝑗) is not of the specified format, 𝒮 replaces (𝑋𝑗, 𝑓𝑗) with a

default value. Going forward, we assume that for all 𝑖 ∈ ℐ, (𝑋𝑖, 𝑓𝑖) is well-formed,

that is,

𝑋𝑖 =
(︁
𝑥𝑖, 𝑡𝑖,

{︀
𝑣*𝑖,𝑗, 𝑐

*,𝑣,𝑖
𝑖,𝑗 , 𝜔*,𝑣,𝑖

𝑖,𝑗 , 𝑐*,𝑣,𝑖𝑗,𝑖

}︀
𝑗∈𝑆∖{𝑖}

)︁
𝑋𝑖 =

(︀
𝑥𝑖, 𝑡𝑖, {𝑣*𝑖,𝑗}𝑗∈𝑆∖{𝑖}

)︀
and that 𝑓𝑖 = 𝐹 ′ as defined in ΠFMPC-preprocess. Note that 𝑣*𝑖,𝑗 may not equal 𝑣𝑖,𝑗 as

picked by 𝒮 in the simulation of the preprocessing stage, 𝑐*,𝑣,𝑖𝑖,𝑗 may not equal 𝑐𝑣,𝑖𝑖,𝑗 , and

so on.

𝒮 now needs to simulate the outputs received by the corrupted parties from the

ideal functionality ℱMPC. 𝒮 estimates the round number 𝑡 when the secure function

evaluation of 𝐹 ′ using the ideal functionality ℱMPC will be complete. It checks that

𝑡 = 𝑡𝑖 for all 𝑖 ∈ ℐ and aborts this instance of fair secure function evaluation otherwise.

It then checks that 𝑐*,𝑣,𝑖𝑖,𝑗 = 𝑐𝑣,𝑖𝑖,𝑗 , 𝑐
*,𝑣,𝑖
𝑗,𝑖 = 𝑐𝑣,𝑖𝑗,𝑖 and that Open

(︀
𝑐𝑣,𝑖𝑖,𝑗 , 𝜔

*,𝑣,𝑖
𝑖,𝑗 , 𝑣*𝑖,𝑗

)︀
= 1 for all

𝑖 ∈ ℐ and 𝑗 ∈ 𝑆 ∖{𝑖}. If not, it aborts this instance of fair secure function evaluation.

Note that if these checks pass, we also have that 𝑣*𝑖,𝑗 = 𝑣𝑖,𝑗 and 𝜔*,𝑣,𝑖
𝑖,𝑗 = 𝜔𝑣,𝑖

𝑖,𝑗 for all

𝑖 ∈ ℐ and 𝑗 ∈ 𝑆 ∖ {𝑖}. It then samples a random identifier id ∈ {0, 1}𝜆 for this

instance of secure function evaluation. For each 𝑖 ∈ 𝑆, 𝒮 samples a random string

𝛼𝑖
$← {0, 1}* of length equal to the length of the 𝑖th output of 𝐹 . Let

𝛼 = 𝛼1‖ . . . ‖𝛼𝑛
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𝒮 samples a random encryption key-pair (pk, sk) by invoking Gen(1𝜆) and a ciphertext

ct representing the encryption of the output 𝑧 under a secret key sk. Note that 𝑧 is

not known to 𝒮 at this point. However, since (Gen,Enc,Dec) is a non-committing

encryption scheme, 𝒮 can sample ct and later equivocate it. For each 𝑖 ∈ ℐ, 𝒮

samples random additive 𝑛-out-of-𝑛 secret sharings 𝑘𝑖,1, . . . , 𝑘𝑖,𝑛 of sk such that

sk =
⨁︁
𝑗∈[𝑛]

𝑘𝑖,𝑗

𝒮 samples random proof values 𝜋1, . . . , 𝜋𝑛
$← {0, 1}𝜆 and compute commitments along

with their openings (𝑐𝜋𝑖 , 𝜔
𝜋
𝑖 )

$← Com(𝜋𝑖) to each of the proof values 𝜋𝑖. Let

−→
𝑐𝜋 = (𝑐𝜋1 , . . . , 𝑐

𝜋
𝑛)

and
−→
𝜔𝜋 = (𝜔𝜋

1 , . . . , 𝜔
𝜋
𝑛)

and
−→𝜋 = (𝜋1, . . . , 𝜋𝑛)

𝒮 then computes

ℎ𝑖,𝑗 = ℎ𝑗,𝑖 = 𝐻
(︁
𝑉𝑖,𝑗‖id‖𝑡‖

−→
𝑐𝜋
)︁

where

𝑉𝑖,𝑗 = 𝑉𝑗,𝑖 = 𝑣𝑖,𝑗 ⊕ 𝑣𝑗,𝑖

for every 𝑖 ∈ ℐ and 𝑗 ∈ 𝑆 with 𝑖 ̸= 𝑗. 𝒮 then samples encryption key-pairs (pk𝑖,𝑗, sk𝑖,𝑗)

by invoking Gen(1𝜆;ℎ𝑖,𝑗) for every 𝑖 ∈ ℐ and 𝑗 ∈ 𝑆 with 𝑖 ̸= 𝑗, and computes

ct𝑖,𝑗 = Enc(𝑘𝑖,𝑗; pk𝑖,𝑗)

for every 𝑖 ∈ ℐ and 𝑗 ∈ 𝑆 with 𝑖 ̸= 𝑗. Thus, the simulator constructs the first stage

output (︀
𝛼𝑖, id, 𝑡, ct, {ct𝑖,𝑗}𝑗∈𝑆∖{𝑖}, 𝑘𝑖,𝑖, 𝜔𝜋

𝑖 , 𝜋𝑖

)︀
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for each 𝑖 ∈ ℐ and forwards it to 𝒜. If 𝒜 then sends abort, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to

the trusted party computing ℱMPC with fairness, with (𝑥𝑗, 𝑓𝑗) replaced with abort for

some 𝑗 ∈ ℐ, receives ⊥ as the output of all parties, which it forwards 𝒜. Otherwise,

𝒜 responds with continue. 𝒮 then forwards
−→
𝑐𝜋 to 𝒜.

Case A. The adversary lets the honest parties obtain the output of the

second stage of 𝐹 ′. In this case, 𝒜 has responded with continue after receiving
−→
𝑐𝜋 .

At this point, all parties are going to obtain their outputs. 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ
to the trusted party computing ℱMPC with fairness. It receives the corrupt parties

outputs, namely, {𝑦𝑖}𝑖∈ℐ . 𝒮 chooses the outputs of the honest party completely at

random, that is, it samples random strings 𝑦𝑖
$← {0, 1}* of length equal to the length

of the 𝑖th output of 𝐹 , for 𝑖 ∈ [𝑛] ∖ ℐ. 𝒮 then constructs

𝑦 = 𝑦1‖ . . . ‖𝑦𝑛

It then defines

𝑧 = 𝑦 ⊕ 𝛼

𝒮 now ensures that Dec(ct; sk) = 𝑧. 𝒮 then sends the outputs of the corrupt parties,

namely, {𝑦𝑖}𝑖∈ℐ , to 𝒜. At this point, 𝒮 has completed simulating the invocation of the

ideal functionality ℱMPC. If𝒜 responds with continue, then 𝒮 simply terminates. Oth-

erwise, in round 𝑟 = 𝑡+ 1, it simulates the honest parties triggering all the instances

of ℱSyX they are involved in with the corrupt parties and hence for every 𝑖 ∈ ℐ and

𝑗 ∈ 𝑆 ∖ ℐ, 𝒮 sends 𝑃𝑖 (the adversary 𝒜) the set of values
(︁(︁

id, 𝑡,
−→
𝑐𝜋 , 𝜔𝜋

𝑗 , 𝜋𝑗, 𝑗
)︁
, ℎ𝑖,𝑗

)︁
.

Case B. The adversary does not let the honest parties obtain the output of

the second stage of 𝐹 ′. In this case, 𝒜 has responded with abort after receiving
−→
𝑐𝜋 . At this point, 𝒮 has completed simulating the invocation of the ideal functionality

ℱMPC. We first discuss how 𝒮 simulates certain invocations of the trigger phases of

the instances of the ideal functionality ℱSyX that the adversary instructs the corrupt

parties to trigger.
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∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving another corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ, with a valid

witness. 𝒮 sends (𝑤, ℎ𝑖,𝑗) to parties 𝑃𝑖 and 𝑃𝑗.

∙ Suppose the adversary instructs a corrupt party to trigger an instance of ℱSyX

with an invalid witness. 𝒮 simply sends no response.

Suppose the adversary does not instruct a corrupt party, say 𝑃𝑖 for some 𝑖 ∈ ℐ,

to trigger an instance of ℱSyX involving an honest party, say 𝑃𝑗 for some 𝑗 ∈ 𝑆 ∖ ℐ,

with a valid witness and the round counter exceeds 𝑡 + 𝑛, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ
to the trusted party computing ℱMPC with fairness, with (𝑥𝑗, 𝑓𝑗) replaced with abort

for some 𝑗 ∈ ℐ, receives ⊥ as the output of all parties, and aborts itself. Otherwise,

at the first instant 𝑟 ≤ 𝑡 + 𝑛 − 1 that the adversary instructs a corrupt party 𝑃𝑖

for 𝑖 ∈ ℐ to trigger an instance of ℱSyX involving an honest party 𝑃𝑗 for 𝑗 ∈ 𝑆 ∖ ℐ

with a valid witness 𝑤 =
(︁
id, 𝑡,
−→
𝑐𝜋 ,
−→
𝜔𝜋,−→𝜋 ,

−→
ind
)︁
, 𝒮 forwards {(𝑥𝑖, 𝑓𝑖)}𝑖∈ℐ to the trusted

party computing ℱMPC with fairness. It receives the corrupt parties outputs, namely,

{𝑦𝑖}𝑖∈ℐ . 𝒮 chooses the outputs of the honest party completely at random, that is, it

samples random strings 𝑦𝑖
$← {0, 1}* of length equal to the length of the 𝑖th output

of 𝐹 , for 𝑖 ∈ [𝑛] ∖ ℐ. 𝒮 then constructs

𝑦 = 𝑦1‖ . . . ‖𝑦𝑛

It then defines

𝑧 = 𝑦 ⊕ 𝛼

𝒮 now ensures that Dec(ct; sk) = 𝑧. 𝒮 then sends (𝑤, ℎ𝑖,𝑗) to 𝑃𝑖. In round 𝑟 + 1,

it simulates the 𝑃𝑗 triggering all the instances of ℱSyX they are involved in with the

corrupt parties and hence for every 𝑖 ∈ ℐ, 𝒮 sends 𝑃𝑖 the set of values

(︁(︁
id, 𝑡,
−→
𝑐𝜋 ,
−→
𝜔𝜋 ′,−→𝜋 ′,

−→
ind′
)︁
, ℎ𝑖,𝑗

)︁
where
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∙ |−→𝜋 ′| = 𝑟 + 1, −→𝜋 ′|[𝑟] =
−→𝜋 |[𝑟], 𝜋′

𝑟+1 = 𝜋𝑗

∙
⃒⃒⃒−→
𝜔𝜋 ′
⃒⃒⃒
= 𝑟 + 1,

−→
𝜔𝜋 ′
⃒⃒⃒
[𝑟]

=
−→
𝜔𝜋
⃒⃒⃒
[𝑟]

, 𝜔𝜋
𝑟+1

′ = 𝜔𝜋
𝑗

∙
⃒⃒⃒−→
ind′
⃒⃒⃒
= 𝑟 + 1,

−→
ind′
⃒⃒⃒
[𝑟]

=
−→
ind
⃒⃒⃒
[𝑟]

, ind′𝑟+1 = 𝑗

Finally, for every 𝑘 ∈ 𝑆 ∖ℐ such that 𝑃𝑘 did not have an instance of ℱSyX involving

itself and some corrupt party triggered in round 𝑟, 𝒮 simulates 𝑃𝑘 triggering all

instances of ℱSyX involving 𝑃𝑘 and every corrupt party in round 𝑟 + 2. Note that by

the existence of 𝑗, 𝑘, |ℐ| ≤ 𝑛 − 2 and hence 𝑟 ≤ 𝑡 + 𝑛 − 2, or, 𝑟 + 2 ≤ 𝑡 + 𝑛. To

simulate the triggers, 𝒮 sends along the appropriate valid witnesses and ℎ𝑖,𝑘s. Note

that this is possible to do as by this point, 𝒮 has all the values it will ever need in

the simulation. Going forward, 𝒮 simulates invocations of the trigger phases of the

instances of the ideal functionality ℱSyX that the adversary instructs corrupt parties

to trigger as follows.

∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving another corrupt party, say 𝑃𝑗 for 𝑗 ∈ ℐ, with a valid

witness 𝑤, 𝒮 sends (𝑤, ℎ𝑖,𝑗) to parties 𝑃𝑖 and 𝑃𝑗.

∙ Suppose the adversary instructs a corrupt party, say 𝑃𝑖 for 𝑖 ∈ ℐ, to trigger an

instance of ℱSyX involving an honest party, say 𝑃𝑗 for 𝑗 ∈ 𝑆 ∖ ℐ, with a valid

witness 𝑤, 𝒮 sends (𝑤, ℎ𝑖,𝑗) to 𝑃𝑖.

∙ Suppose the adversary instructs a corrupt party to trigger an instance of ℱSyX

with an invalid witness. 𝒮 simply sends no response.

Finally, 𝒮 outputs whatever 𝒜 outputs. It is easy to see that the view of 𝒜 is

indistinguishable in the execution of the protocols ΠPreprocess,ΠFMPC-preprocess and the

simulation with 𝒮, if (Com,Open) is a commitment scheme(Gen,Enc,Dec) is a non-

interactive non-committing encryption scheme and 𝐻 a random oracle. We there-

fore conclude that the protocols ΠPreprocess,ΠFMPC-preprocess securely preprocess for and

compute an arbitrary (polynomial) number of instances of ℱMPC with fairness in the

(ℱMPC,ℱSyX)-hybrid model, as required.
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Remark. In the proof of Lemma 30, we ignore some annoying technicalities. For

instance, the adversary may cause the honest parties to abort, will be unable to obtain

its output but still pointlessly interact with some of the ideal functionalities. In the

proof, however, the simulator would have aborted. We note that these details are not

particularly enlightening and are of no consequence. One can deal with these sorts

of attacks by asking the simulator to wait in these scenarios until the adversary says

that it is done and then finally abort if it has to. Thus, we assume, for the purpose

of the proof, that if the adversary forces the honest parties to abort in a situation

where it will be unable to obtain its output, without loss of generality, it halts. Other

examples of such technicalities are when the adversary sends “unexpected” messages,

“incomplete” messages, etc. Note that such messages can be easily detected and

ignored, and do not affect the protocol in any way.

5.5.5 Getting to the ℱSyX-hybrid model

Combining Lemmas 1, 16 and 31, we obtain the following theorem.

Theorem 18. Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then, as-

suming the existence of one-way permutations, there exists a protocol 𝜋 in the pro-

grammable random oracle model which securely preprocesses for and computes an

arbitrary (polynomial) number of instances of ℱMPC with fairness in the presence of

𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛 in the (ℱOT,ℱSyX)-hybrid model.

As discussed in Section 5.2, ℱ2PC, and hence ℱOT, can be realized in the ℱSyX-

hybrid model. We thus have the following theorem.

Theorem 19. Consider 𝑛 parties 𝑃1, . . . , 𝑃𝑛 in the point-to-point model. Then, as-

suming the existence of one-way permutations, there exists a protocol 𝜋 in the pro-

grammable random oracle model which securely preprocesses for and computes an

arbitrary (polynomial) number of instances of ℱMPC with fairness in the presence of

𝑡-threshold adversaries for any 0 ≤ 𝑡 < 𝑛 in the ℱSyX-hybrid model.

188



Chapter 6

Conclusions and further work

In this work, we make significant progress towards the goal of identifying optimal in-

frastructures for secure multiparty computation. In the information-theoretic setting,

we improve upon the state-of-the-art networks and protocols for almost-everywhere

reliable message transmission, both in achieving logarithmic degree networks and

protocols over them that are polylogarithmic in work complexity (an exponential

improvement over all current works). Our results, however, do not completely char-

acterize sparse networks in which communication would be possible. In particular, it

is unclear whether constant degree networks with efficient protocols are achievable.

In light of [122], we know that constant degree networks with exponential work pro-

tocols are achievable. Thus, characterizing communication networks precisely might

pose the difficulty of potentially overcoming complexity-theoretic challenge in some

way. In fact, one might also expect results similar to the case of oblivious transfer

infrastructures as described ahead.

We completely characterize infrastructures for oblivious transfer. The only ques-

tions left open here are connected with testability, that is, given a network of OT

channels and a pair of parties, can we test whether there exists an OT protocol with

one of the parties as the sender and the other as the receiver. The characterization

of infrastructures is by a property of graphs, testing for which is known to be coNP-

complete. While this does not impede the correctness of our protocols, our protocols

are inefficient (exponential time) in general, while they are efficient precisely when
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testing the graph property is efficient. It is unclear whether this is inherent, that is,

is it possible to have efficient protocols even when determining whether they succeed

may be inefficient. In other words, is it the case that protocols over an oblivious

transfer infrastructure can be used to test whether they succeed. This would be a

very interesting follow-up question as either answer seems surprising.

Finally, we make the first steps toward identifying infrastructures for fair secure

computation. We introduce a new 2-party primitive, synchronizable fair exchange,

that suffices for fair secure multiparty computation, and which can also be prepro-

cessed for arbitrary and arbitrarily many instances of fair secure computation. Truly,

synchronizable exchange is to fair secure computation what oblivious transfer is to

(unfair) secure computation. This paves the way for a lot of great research. For

instance, what are the truly minimal infrastructures for this primitive? How do we

realize this primitive? We have parts of the answers to both these questions in follow-

up works that are in preparation.

In conclusion, the results presented in this work say a lot about building powerful

and efficient infrastructures for multiparty computation. We recall the desiderata of

an infrastructure that we laid out in Chapter 1.

∙ Reusability/Amortization. Setting up an infrastructure component could be

expensive, but using it and maintaining it should be inexpensive relative to

setting up a new component. We achieve this property by preprocessing each

of the components of our infrastructure.

∙ Transferability/Routing. It should be possible to combine different components

of the infrastructure to deliver benefits to the end users. This property was

at the heart of design process, all along. For each of the building block cryp-

tographic primitives, we start with a network where a subset of all possible

pairs of parties share the primitive. Through our protocols, we enable several

other pairs of parties to also “realize” the same primitive by invoking the exist-

ing instances of the primitive among other parties and some fairly inexpensive

operations.

190



∙ Robustness/Fault-tolerance. Failure or unavailability of some components of the

infrastructure should not nullify the usefulness of the infrastructure. As shown

in each chapter, our infrastructures are resilient to adversary classes belonging

to various corruption models.

The works in this thesis have certainly laid the foundations for building powerful

and efficient infrastructures for multiparty computation. It is our strong belief that

pushing this research forward is a way towards having large-scale practical multiparty

computation truly see the light of day.
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