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Abstract

In this thesis, we explore questions in algorithms and inference on distributed data.
On the algorithmic side, we give a computationally efficient algorithm that allows

parties to execute distributed computations in the presence of adversarial noise. This work
falls into the framework of interactive coding, which is an extension of error correcting
codes to interactive settings commonly found in theoretical computer science.

On the inference side, we model social and biological processes and how they generate
data, and analyze the computational limits of inference on the resulting data. Our first
result regards the reconstruction of pedigrees, or family histories, from genetic data. We
are given strings of genetic data for many individuals, and want to reconstruct how they
are related. We show how to do this when we assume that both inheritance and mating are
governed by some simple stochastic processes. This builds on previous work that posed
the problem without a “random mating” assumption.

Our second inference result concerns the problem of corruption detection on networks.
In this problem, we have parties situated on a network that report on the identity of their
neighbors - “truthful” or “corrupt.” The goal is to understand which network structures
are amenable to finding the true identities of the nodes. We study the problem of finding
a single truthful node, give an efficient algorithm for finding such a node, and prove that
optimally placing corrupt agents in the network is computationally hard.

For the final result in this thesis, we present a model of opinion polarization. We show
that in our model, natural advertising campaigns, with the sole goal of selling a product
or idea, provably lead to the polarization of opinions on various topics. We characterize
optimal strategies for advertisers in a simple setting, and show that executing an optimal
strategy requires solving an NP-hard inference problem in the worst case.

Thesis Supervisor: Elchanan Mossel
Title: Professor of Mathematics
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Chapter 1

Introduction

In this thesis, we study questions in algorithms and inference that arise when data is

distributed among many individuals. These types of questions have been widely studied

in areas such as distributed algorithms and statistical inference. In distributed algorithms,

researchers are interested in what computations can be done by the parties that have this

distributed data. In statistics, researchers are interested in what a central party can learn

when it sees data that comes from some generating process. We study both these types of

questions in this thesis, focusing on what can be done by agents whose computations are

limited to run in polynomial time, whether this be the parties in the setting of distributed

algorithms, or the central party in the setting of inference.

1.1 Background and Outline of Thesis

On the algorithmic side, we analyze the ability of parties on a network to simulate a

distributed computation in the presence of adversarial noise. Specifically, we suppose that

multiple parties are situated on a network of communication links, and want to carry out

some distributed, synchronous, protocol, where the protocol dictates to each party which

symbols (if any) to send to their neighbors in each round. The protcocol can be interactive,

meaning that the symbol sent by a party in a certain round may depend on which symbols

19



it has received previously. The parties’ goal is to compute some function of all of their

input data, without having to communicate the (potentially very long) inputs themselves.

The parties are hindered by an adversary that is permitted to insert and delete messages

that are sent on any communication link throughout the protocol, with a restriction on

the fraction of commmunication that can be inserted or deleted. Nevertheless, the parties

want to carry out their protocol correctly, using the least amount redundancy possible to

correct their errors.

The question we have described is known as the multiparty interactive coding problem

with adversarial noise. To appreciate the motivation for our work, we briefly recap some

of the relevant history of this problem. Interactive coding emerged from a rich study of

how to protect transmissions from noise. The study of protecting one-way transmissions

across a noisy channel was started by classical works of Shannon [148] and Hamming [73],

and has been an extremely active field since (see [155] and [167] for two surveys within

theoretical computer science). In the early 1990’s, Schulman [144, 145] introduced and

studied the problem of performing an interactive two-party computation over a noisy

communication channel, where each party has private input data, and the errors on the

channel can be adversarial or stochastic. As interactive proofs and computations are a

core aspect of theoretical computer science (e.g. see Goldwasser, Micali, and Rackoff [65]),

interactive coding extended the study of correcting errors in transmissions to settings that

were increasingly interesting to computer scientists.

Subsequent work has greatly increased the scope of interactive coding to further

settings that are interesting to computer scientists. Rajagopalan and Schulman extended

this question to the multiparty setting, where 𝑛 parties are situated with a network of

communication links between them [139], and they addressed the case of stochastic

noise. They considered protocols where every party sends messages on all its outgoing

links in each round, and gave schemes for correcting errors for these protocols that did

not significantly increase the round complexity of the underlying protocol. Multiparty

interactive coding has received considerable attention recently [4, 57, 29, 79, 85, 2, 31].
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The case of adversarial noise in the multiparty setting was left untouched for two decades,

until the works of Jain, Kalai, and Lewko [85], and Hoza and Schulman [79]. Hoza and

Schulman addressed the same protocols as [139], where every link carries a message in

each round, and showed that these protocols can also be made resilient to a small fraction

of adversarial noise.

In an attempt to broaden the scope of interactive coding, Jain, Kalai, and Lewko

described a coding scheme for arbitrary protocols, where links in the protocol are permitted

to carry no message. Their motivation was to make a coding scheme that applies to the

types of computations that are often used in theoretical computer science. However, a

drawback was that their scheme only applied to star graphs, and that it only tolerated

adversarial corruptions, rather than insertions and deletions. Additionally, both [85]

and [79] are currently computationally inefficient: they rely on the construction of a

combinatorial object called a tree code, first defined by Schulman [144, 145] in the works

that started the area of interactive coding. While the existence of sufficiently good tree

codes dates back to Schulman’s original work, there is currently no polynomial time

algorithm for constructing asymptotically good tree codes, which these constructions rely

on1. This brings us to the first question we address in this thesis:

Question 1. Is it possible to have multiparty interactive coding against adversarial insertions

and deletions, where the parties are computationally efficient - i.e. run in polynomial time in

the size of the underlying graph and protocol?

We answer this question in the affirmative, giving polynomial time algorithms for this

setting. Our results work for arbitrary graphs, in the more general communication model

of [85], where parties can opt to be silent in certain rounds.

There are other aspects of our result we find appealing. The model of communication

in [85] was drawn from distributed algorithms and cryptography, where parties are

permitted to be silent in the midst of a computation. However, the restriction of the

1An exciting line of recent work constructs tree codes over larger (polylogarithmic) alphabet size. See [34]
for the construction of these new tree codes, and [123] for progress on decoding them.
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protocol to a star graph is a major drawback in this sense; in both distributed computing

and privacy, it is undesirable to have a single node (the center of the star) privy to all

the communication in the network. So we see our extension of this model to all graphs

as a significant bonus, as it enables interactive coding in this model for networks that

do not have a central party. However, we lose slightly in parameters compared to [85]

and [79]. We refer the reader to Chapter 2 for further details regarding our protocol and

comparisons with previous work.

We note that the model of distributed algorithms we have described bears similarity to

the rich area of consensus algorithms, in which a group of parties seek to agree on a certain

value for the purposes of a computation. However, the noise model we consider is different.

Algorithm designers for consensus often wish to make their algorithms tolerant to faulty

nodes. By contrast, in multiparty interactive coding we look at the weaker noise model

where the errors are only in transmissions: we assume that every node continues to operate

correctly throughout the protocol, but that the adversary can tamper with some of the

messages they send. This weaker noise model is necessary, as the types of protocols we are

trying to protect are very brittle. Specifically, these protocols depend on the input of each

and every party. If the adversary can simulate even one party, they can make the entire

network believe that this party has a different input, thus changing the outcome of the

protocol. We refer the reader to [102, 103, 131] for some well-known consensus algorithms

in the setting of faulty nodes, to [124] for a survey of the applications of consensus to

blockchain, and to [109] for distributed algorithms more broadly.

The rest of this thesis discusses centralized inference on data coming from multiple

individuals. Recall that in distributed computation, we want the parties to solve computa-

tional problems without relying on a central party. However, in the setting of inference,

we ask what a central observer can learn from seeing data generated by the different

parties in the network. For example, social scientists may want to learn about human

interaction by looking at data from social media, or a biologist may want to understand

evolutionary history by observing present-day genetic data. In both of these situations,
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the relevant data is distributed among individuals, and is generated according to some

process; a process governing social interactions in the former case, and a process of genetic

mutations in the latter. The rest of this thesis focuses on these types of inference questions.

Specifically, we study models of social and biological processes, and the information that a

computationally bounded observer can glean from them.

In Chapter 3, we give an example from biology that falls into a classical paradigm

of statistical learning theory, where we are interested in learning the latent parameters

of some stochastic process. In this problem, individual genetic data is generated by a

process of genetic inheritance from previous generations. Given data from individuals

in the present day, we ask whether an observer can learn the familial relations that gave

rise to this set of individuals. The process of genetic inheritance is assumed to follow a

certain stochastic process, which is known to the observer. In particular, we want the

observer to be able to compute the familial relations in polynomial time, while requiring

as little data from each individual as possible. This is known as the pedigree reconstruction

problem [159].

This problem has been widely considered in practice, with genetic testing services

such as 23AndMe and Ancestry.com gaining significant traction as the cost of genetic

sequencing has plummeted in recent years. However, most algorithms in the biology

community tend to lack theoretical guarantees for the reconstruction (see Chapter 3 for

discussion). Hence, researchers in mathematical biology initiated the mathematical study

of pedigrees, and asked when pedigrees can be provably reconstructed [154, 159]. We

build on this line of work in this thesis. The following question, asked by Steel and Hein

in [154], forms the foundation of this line of questioning.

Question 2. When can a pedigree be reconstructed exclusively from genetic data? In particular,

what length of genetic sequences is necessary for the inference, and for how many generations in

the past can relations be correctly constructed, as a function of the number of individuals?

Steel and Hein [154] gave lower bounds on the amount of data required for pedigree

reconstruction based on enumerating the number of pedigrees of a certain depth - for
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this result, they do not assume anything about the genetic inheritance process. They

additionally proved that pedigrees can be reconstructed given pairwise ancestries of all

the nodes. Follow-up work by Thatte and Steel [159] modeled the inheritance of symbols

with various stochastic processes, and analyzed whether reconstruction was possible in

these different settings.

In order to give an efficient algorithm for the central observer with as little data required

as possible, we impose an additional modeling assumption on the problem. Namely, rather

than simply modeling the way genetic sequences are inherited by an individual, we also

model the mating habits of the underlying population with a stochastic process. Namely,

we assume that the population is split into generations, that mating within each generation

is monogamous and random, and that the number of children per couple is randomly

sampled from a distribution with a fixed mean 𝛼.

These extra modeling assumptions make the task for the central observer tractable.

Indeed, under these assumptions, we give a polynomial time algorithm for the observer to

approximately reconstruct pedigrees far back into the past, with relatively few samples

per individual. Our modeling assumptions and analysis bear similarity to tools used in

other areas of mathematical biology, including population reconstruction [91, 92, 22],

where the goal is to reconstruct human population migration and interbreeding, as well as

phylogenetic reconstruction, where the goal is to reconstruct an evolutionary tree given

gene samples [44, 114, 115, 116, 39]. We detail our reconstruction guarantees and these

similarities in further detail in Chapter 3.

The remaining inference problems discussed in this thesis draw from the social sciences.

In the pedigrees question, we concerned ourselves with the ability of a central observer to

infer familial relations from genetic data. However, our observer was passive; she only

wished to learn the true familial relations, but did not try to change the data in any way.

However, questions stemming from social science often feature a central party wanting

to make some sort of intervention on the data it sees. This phenomenon can be seen in

previous computer science literature that has modeled the social sciences. In the viral
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marketing problem, also known as influence maximization [88], an advertiser wishes

to target the most influential 𝑘 nodes of some network, in order to optimally create a

“word-of-mouth” campaign for their product. While the observer only needs to solve a

static inference problem, they do this with the intent of influencing the network to buy

their product. This suggests that we should consider two types of observers, with different

motivations. The first one is passive, and wants to learn about the true state of the parties.

The second one is active, and wants to change the data in some way to suit its own agenda.

In the pedigrees problem, we were interested in the number of symbols from each

individual required for the observer to be able to infer the underlying state, and each

symbol gave an independent signal of the underlying familial relations. In the following

problems, we do not make any distributional assumption on the samples the observer sees.

Each person provides their own opinion on some issues, and we do not consider it to be a

“sample” from some larger distribution. Given this data, we want to know whether or not

each observer can learn what they want to learn in polynomial time.

Following this general line of inquiry, we propose two models for processes inspired

by social science. For the first model, we provide an efficient algorithm for inferring

underlying states of these processes. For both processes, we classify the ability of compu-

tationally bounded agents to influence them.

In Chapter 4, we look at the problem of corruption detection, in which a central agency

is trying to find a truthful party among a set of (possibly corrupt) parties. Truthful parties

report the true affiliation of their neighbors (i.e. truthful or corrupt), while corrupt parties

report arbitrarily. We classify the power of an adversary that wants to foil the central

agency while corrupting the smallest number of parties.

This model dates back to the work of Preparata, Metze, and Chien [135], who studied it

in the context of digital systems. They wanted to know which types of network structures

enable the central agency to detect all the “corrupt nodes,” which to them were faulty

components of a digital system. Their work spawned many other works over the years

(e.g. [87, 99, 166, 156, 37, 111, 72]). Alon, Mossel, and Pemantle [6] suggested using this
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model for corruption detection. They wanted to understand the ability of the central

agency to find the identities of most nodes in the presence of bounded numbers of corrup-

tions, and, in contrast with [135], they showed that bounded degree graphs can suffice for

this. They did not assume anything about the corruptions other than a bound on the total

number.

Our starting point is the work of [6]. Just like them, we are interested in the ability

of the central agency to achieve its goal (which for us, is finding a single truthful node)

in polynomial time. However, we make an additional modeling assumption that gives

the question a new twist. Specifically, we assume that the corruptions are placed by a

computationally bounded adversary. This gives us a two player setup: on one hand, the

(passive) central agency, which wants to find a genuinely truthful party, and the active

adversary, that wants to foil the central agency. This leads us to the following question.

Question 3. Is a computationally bounded adversary as effective at foiling the central agency

as an unbounded adversary? Namely, is there an efficient algorithm for the adversary to find

the smallest set of nodes that prevents the central agency from finding a truthful node, on any

graph?

We find that, assuming a certain conjecture from hardness of approximation, the

answer is no, in a very strong sense: the adversary can even be given a budget to corrupt

hundreds of times more nodes than he needs, and still he cannot find a good set of nodes

to corrupt within this budget. However, the central agency’s task of finding a truthful node

given reports turns out to be much easier. We formalize this observation in Chapter 4.

Finally, in Chapter 5, we propose a new mathematical problem aimed at modeling

opinion polarization in society. In this model, an advertiser views the opinions of each

member of the population, represented as high dimensional vectors, and chooses a cam-

paign strategy by which to sell a product or idea. Once they have chosen a strategy, they

broadcast their advertisements to the entire population. Their goal is to make the largest

number of opinion vectors in the population align with its target opinion after some

prescribed amount of time. For example, if the advertiser is selling detergent, their goal
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would be to make as many people have very positive opinions of their detergent brand as

possible.

We study various strategies that the advertiser can take, and the effect that these

strategies have on the opinion structure of society. The gist of the results is that, in our

model for opinion updates, these strategies further polarize opinions.

From a theoretical computer science perspective, perhaps our most interesting result

is in the case where one advertiser is trying to gain support in the long term; namely,

their objective is to maximize their support asymptotically. We provide a simple, provably

optimal strategy for the advertiser, and observe that this strategy clusters opinions in

society around two clusters; one which loves the advertiser’s product and one which hates

it. Furthermore, we show that to achieve any optimal strategy, the advertiser must be

able to learn halfspaces with noise, which is known to be NP-hard to approximate in high

dimensions in the worst case [18, 68].

1.1.1 Organization of Thesis

The results in Chapter 2 are based on two papers that have been modified and rearranged

to fit more naturally in one chapter. Section 2.2 and Section 2.4 are based on “Efficient

Multiparty Interactive Coding, Part I: Oblivious Insertions, Deletions and Substitutions”

[58], which was submitted to IEEE Transactions on Information Theory: Special Issue In

Memory of Vladimir I. Levenshtein. Section 2.3 and Section 2.5 are based on “Efficient

Multiparty Interactive Coding, Part II: Non-Oblivious Noise” [59], and was submitted to

IEEE Transactions on Information Theory. Both papers were coauthored with Ran Gelles

and Yael Kalai. A preliminary version of these two papers was submitted as a single paper

to PODC 2019, titled “Efficient Multiparty Interactive Coding for Insertions, Deletions,

and Substitutions” [60].

Chapter 3 is based on the paper “Efficient Reconstruction of Stochastic Pedigrees,”

which is joint work with Younhun Kim, Paxton Turner, and Elchanan Mossel. The preprint

can be found on arXiv [93].
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Chapter 4 is based on the paper “Being Corrupt Requires Being Clever, But Detecting

Corruption Doesn’t”, which is joint work with Yan Jin and Elchanan Mossel. This appeared

in ITCS 2019 [86].

Chapter 5 is based on the paper “A Geometric Model of Opinion Polarization”, which

is joint work with Jan Hązła, Yan Jin, and Elchanan Mossel. The preprint can be found on

arXiv [74].

1.2 Common Preliminaries

We give some preliminaries that are common to the chapters in this thesis. Note that each

chapter also has its own preliminaries, with notations and definitions that are specific to

the work in that chapter.

For 𝑛 ∈N we denote by [𝑛] the set {1,2, . . . ,𝑛}. The log(·) function is taken to base 2,

while ln(·) is base 𝑒.

For a distribution 𝒟 we use 𝑥 ∼ 𝒟 to denote that 𝑥 is sampled according to the distribu-

tion 𝒟.

𝐺 = (𝑉 ,𝐸) denotes an undirected graph, where 𝑛 := |𝑉 | denotes the number of vertices

and 𝑚 := |𝐸| denotes the number of edges. For 𝑣 ∈ 𝑉 , let𝒩 (𝑣) denote the neighborhood of

𝑣 in 𝐺, i.e. 𝒩 (𝑣) = {𝑢 : (𝑢,𝑣) ∈ 𝐸}.

A major tool we will use in multiple chapters is the famous Chernoff-Hoeffding bound.

Theorem 1.2.1. Fix 𝑝 > 0 and 𝛿 > 0. Let 𝑋 =
∑︀𝑁
𝑖=1𝑋𝑖 be a sum of independently identically

distributed Bernoulli(𝑝) random variables. Then

P[𝑋 ≥ (𝑝+ 𝛿)𝑁 ] ≤ 𝑒−𝐷(𝑝+𝛿||𝑝)𝑁

P[𝑋 ≥ (𝑝 − 𝛿)𝑁 ] ≤ 𝑒−𝐷(𝑝−𝛿||𝑝)𝑁

where𝐷(𝑥||𝑦) = 𝑥 ln
(︁
𝑥
𝑦

)︁
+(1−𝑥) ln

(︁
1−𝑥
1−𝑦

)︁
is the Kullback-Leibler divergence between two Bernoulli

random variables with parameters 𝑥 and 𝑦.
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We will also use the following simpler forms of it:

P(𝑋 > (1 + 𝛿)𝑝𝑁 ) ≤ exp
(︃
−𝛿

2

3
𝑝𝑁

)︃
P(𝑋 < (1− 𝛿)𝑝𝑁 ) ≤ exp

(︃
−𝛿

2

2
𝑝𝑁

)︃
Another fact we will use in the context of bounding probabilities is the following bound

on binomial coefficients. (︂𝑛
𝑘

)︂𝑘
≤

(︃
𝑛
𝑘

)︃
≤

(︂𝑛𝑒
𝑘

)︂𝑘
(1.1)
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Chapter 2

Efficient Multiparty Interactive Coding:

Insertions, Deletions, and Substitutions

2.1 Introduction and Background

As mentioned in Chapter 1, we describe how to carry out distributed, interactive computa-

tions with noise. This work continues in a long line of works addressing communication

on noisy channels. Communication channels may introduce noise of different types, for ex-

ample, flipping transmitted bits. One notorious type of noise is insertion and deletion noise,

that may add or remove bits from the transmissions due to synchronization mismatch [146].

The seminal work of Levenshtein [106] was the first to consider codes that correct inserti-

ons and deletions leading to a long line of research on correcting such errors, and bounding

the capabilities of codes correcting such errors, e.g., [162, 157, 158, 107, 143, 40, 67, 142].

These codes apply to sending a transmission over a uni-directional channel.

In the early 90’s, Schulman [144, 145] introduced and studied the problem of perfor-

ming an interactive two-party computation over a noisy communication channel, rather

than communicating in a uni-directional manner. Plenty of follow-up work appeared

in the recent couple of decades extending Schulman’s work in the two-party setting to a

variety of noise and communication models (see [56] for a survey of these results). In [139],
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Rajagopalan and Schulman extended the two-party case and considered a network of 𝑛

parties that wish to compute some function of their private inputs by communicating over

an arbitrary1 noisy network. The work of [139] shows that if each channel is the binary

symmetric channel2 (BSC𝜀), then one can obtain a coding scheme that takes any protocol

Π that assumes noiseless communication, and converts it into a resilient protocol that

computes the same task over the noisy network.

The coding scheme in [139] defies noise by adding redundancy. The amount of added

redundancy is usually measured with respect to the noiseless setting—the rate of the

coding is the communication of the noiseless protocol divided by the communication of

the noise-resilient one. The rate assumes values between zero and one, and ideally is

bounded away from zero, commonly known as constant or positive rate. The rate may

vary according to the network in consideration, for instance, the rate in [139] behaves

as 1/𝑂(log(𝑑 + 1)) where 𝑑 is the maximal degree in the network. Hence, for networks

where the maximal degree is non-constant, the rate approaches zero as the network size

increases.

The next major step for multiparty coding schemes was provided by Jain et al. [85]

and by Hoza and Schulman [79]. In these works the noise is no longer assumed to be

stochastic but instead is adversarial. That is, they consider worst-case noise where the

only limit is the number of bits flipped by the adversary. They showed that as long as the

adversary flips at most 𝜀/𝑚-fraction of the total communication, a coding scheme with

a constant rate can be achieved, where 𝜀 is some small constant, and 𝑚 is the number of

communication links in the network.3

While both these works consider adversarial errors, they consider different commu-

nication models. [79] assumes that every party sends a single bit to all its neighbors in

each round; this model is sometimes called fully utilized, and is commonly considered in

1By “arbitrary” we mean that the topology of the network can be an arbitrary graph 𝐺 = (𝑉 ,𝐸) where
each node is a party and each edge is a communication channel connecting the parties associated with these
nodes.

2That is, a channel that flips every bit with some constant probability 𝜀 ∈ (0,1/2).
3[85] obtained this result for the specific star network, whereas [79] generalized this result to a network

with arbitrary topology.
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multiparty interactive coding [139, 79, 4, 29]. On the other hand, [85] uses a relaxed com-

munication setting, in which parties may or may not speak in a given round; this setting is

very common for distributed computations, and is relatively less studied in previous work

on interactive coding. Furthermore, they do not assume that the underlying protocol is

fully utilized, and simply use the (weaker) assumption that the order of speaking in the

underlying protocol is known, and is independent of the parties’ inputs. Naturally, one

can convert any protocol in the non-fully-utilized model to a fully-utilized protocol by

forcing all parties to speak at every round, and then apply an interactive coding scheme to

the fully-utilized protocol. However, the conversion to a fully-utilized protocol may cause

the communication complexity to increase by a factor of up to 𝑚, greatly harming the rate

of the coding scheme.

2.1.1 Our Contributions

We design coding schemes for adversarial errors in the same communication model as [85];

namely, where parties may or not speak in a given round, and the underlying protocol is

only assumed to have a fixed speaking order. One of the most interesting aspects of our

work is that our coding schemes are computationally efficient, unlike either [85] or [79]4.

Also, we consider the stronger type of noise of insertions and deletions (albeit in the

synchronous setting), where the noise may completely remove a transmission (so that the

receiver is not aware that a bit was sent to him), or inject new transmissions (so that the

receiver receives a bit while the sender didn’t send anything). Insertion and deletion noise

is more general, and is considered to be more difficult, than bit-flips. Indeed, a bit flip

(a substitution noise) can be simulated by a deletion followed by an insertion. We note

that insertions and deletions are trivially correctable in the fully utilized communication

model; indeed, each party expects to hear a message from each of its neighbors in each

round, so a deletion reduces to an erasure. By contrast, in the non-fully-utilized setting,

insertions and deletions seem non-trivial to correct. Indeed, as first noted by Hoza [78],

4These coding schemes utilized a combinatorial object known a tree code, for which no efficient con-
struction is known.
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it seems crucial to allow insertion and deletion errors to make the problem non-trivial.

To see this, consider a party that speaks once every two rounds—on an even round to

communicate the bit ‘0’ and on odd round to denote ‘1’. In fact, this communication is

completely resilient to noise that only flips bits since only the timing of the transmission

matters.

Finally, our coding schemes work on arbitrary topologies, in contrast to [85], which

only applies to the star graphs. As mentioned above, [79] also handles arbitrary graphs,

albeit in the fully utilized model.

In Section 2.2, we give an efficient interactive coding scheme with constant rate for

arbitrary synchronous networks (not necessarily fully-utilized) that suffer from a certain

fraction of insertion, deletion and substitution noise. In this part we assume that the parties

pre-share a common random string (CRS), and assume the adversary is oblivious (i.e. their

corruptions are fixed in advance, independent of the CRS, inputs, and communication).

We remark that, with 1/𝑚 noise rate, the adversary can completely corrupt a single

link. Therefore, it is natural to allow the adversary to alter at most 𝜀/𝑚 communication, as

we do above.

In Section 2.3, we build on our result from Section 2.2. In our first coding scheme of

Section 2.3 (Algorithm A), we show how to remove the shared randomness assumption.

This scheme still assumes an oblivious adversary, whose corruptions are predetermi-

ned and are independent of the parties’ randomness. In our second coding scheme of

Section 2.3 (Algorithm B), we obtain a scheme that works even when the adversarial noise

is non-oblivious, albeit, with slightly smaller noise resilience of 𝜀/𝑚 log𝑚. Finally, if we

remove only the assumption that the adversary is oblivious, but retain the assumption

that the parties pre-share a long random string, then we obtain a scheme that is resilient

to a higher level of noise, namely, to 𝜀/𝑚 loglog𝑚-fraction of insertion and deletion errors

(Algorithm C). We give details on this in Section 2.5. See Table 2.1 for a comparison of our

new results (Algorithms A, B, and C) with the state of the art.
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Related work As mentioned above, interactive coding was initiated by Schulman [144,

145]. Over the last several years there has been tremendous amount of work on interactive

coding schemes in the two-party setting (e.g., [62, 27, 28, 24, 64, 55]), and in the multi-

party setting (detailed below). We refer the reader to [56] for a survey on the field (and to

references therein).

In what follows we only mention the schemes that are closely related to our setting,

namely, ones that are either in the multiparty setting, or ones that are in the two-party

setting but are resilient to insertions and deletions.

Coding schemes for insertions and deletions in the two-party setting were first con-

structed by Braverman, Gelles, Mao, and Ostrovsky [26]. As was noted above, in the

model where in each round each party sends a single bit (which is the model used by

most previous works, including [26]), insertions and deletions are only meaningful in the

asynchronous model, as otherwise, such an error model is equivalent to the erasure model.

Indeed, [26] considered the asynchronous model. We note that in the asynchronous model,

a single deletion can cause a “deadlock”, where both parties wait for the next incoming

message. Therefore, Braverman et al. considered a model where any deletion is followed

by an insertion, thus the protocol never “halts” due to noise. They note that the noise may

delete a certain message and then inject a spoofed “reply” to the original sender. In this

case, one party believes that the protocol has progressed by one step, while the other party

is completely oblivious to this. This type of noise was called a synchronization attack as it

brings the parties out of synch.

Braverman et al. [26] constructed a coding scheme for insertions and deletions in this

model with constant communication rate, and resilience to constant fraction of noise. Later,

Sherstov and Wu [150] showed that a very similar scheme can actually resist an optimal

noise level. Both these schemes are computationally inefficient. Haeupler, Shahrasbi,

and Vitercik [71] constructed an efficient scheme that is resilient to (a small) constant

fraction of insertions and deletions. Furthermore, they constructed a scheme where the

communication rate approaches 1 as the noise level approaches 0. Efremenko, Haramaty,
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and Kalai [43] considered the synchronous setting, where parties can send messages of

arbitrary length in each round, and the adversary may insert and delete bits in the content

of each message. They construct an efficient coding scheme with constant communication

rate, and constant blowup in the round complexity, that is resilient to a small constant

fraction of noise. All these works ([26, 150, 71, 43]) were in the two-party setting.

In the multiparty setting, Rajagopalan and Schulman [139] constructed a coding

scheme for stochastic noise with rate 1/𝑂(log(𝑑 + 1)) for networks with maximal degree 𝑑.

This implies a constant rate coding scheme for graphs with constant degree. Alon et al. [4]

showed that if the topology is a clique, or a dense 𝑑-regular graph, then constant rate

coding is also possible. Yet, Braverman, Efremenko, Gelles, and Haeupler [29] proved

that a constant rate is impossible if the topology is a star. All the above works assume a

synchronous fully-utilized network. Gelles and Kalai [57] showed that constant rate coding

schemes are impossible also on graphs with constant degree, such as a cycle, assuming a

synchronous, yet not fully-utilized model.

The case of adversarial noise in the multiparty setting was first considered by Jain,

Kalai, and Lewko [85], who constructed a constant-rate coding scheme over a synchronous

star network that is resilient to 𝑂(1/𝑛) fraction of noise. They did not assume that the

network is fully utilized, and only assumed that the underlying noiseless protocol has

a fixed speaking order. Hoza and Schulman [79] considered the fully utilized model

with arbitrary topology and constructed a constant rate coding scheme that is resilient to

𝑂(1/𝑚) noise. Via routing and scheduling techniques, they show how to resist a fraction of

𝑂(1/𝑛)-noise, while reducing the rate to 𝑂(𝑛/𝑚 log(𝑛)). Both these schemes use tree-codes,

and therefore are computationally inefficient.

Aggarwal, Dani, Hayes, and Saia [2] constructed an efficient synchronous coding

scheme, assuming the parties use private point-to-point channels (i.e., with an oblivious

adversary). They consider a variant of the fully-utilized model, where parties are allowed

to remain silent, but the receiver will hear a constant bit set by the adversary for free

(or further corrupted by the adversary as any other transmission). In their model the
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length of the protocol is not predetermined and may vary with the noise (similar to the

two-party adaptive notion of [3]). Their coding scheme is resilient to an arbitrary (and a

priori unknown) amount of bit-flips (as long as the noise-pattern is predetermined and

independent of parties shared randomness), and has a rate of 𝑂(1/ log(𝑛CC(Π))).

Censor-Hillel, Gelles, and Haeupler [31] constructed asynchronous coding schemes,

where the parties do not know the topology of the network (an assumption that is very

common in the distributed computation community). Their scheme is resilient to 𝑂(1/𝑛)

noise and has a rate of 𝑂(1/𝑛 log2𝑛), over an arbitrary topology.

Finally, we briefly mention some recent progress on constructing tree codes in po-

lynomial time, as the explicit construction of efficient (that is, constant distance and

constant rate) tree codes would make the conclusions of Jain, Kalai, and Lewko [85], as

well as those of Hoza and Schulman [79], computationally efficient. Cohen, Haeupler, and

Schulman [34] recently constructed tree codes with constant rate and distance over an

alphabet of polylogarithmic size. They also note that this yields binary tree codes with

rate 1/ loglog(𝑛) (where 𝑛 is the blocklength of the treecode), simply by translating the

polylogarithmic alphabet into a binary string - this could be plugged into [85] and [79]

with some loss in parameters if it could be decoded well. Narayanan and Weidner [123]

give an exciting randomized polynomial time algorithm for decoding these codes based on

the polynomial method, but this falls short of correcting up to constant distance. It would

be interesting if these works can be pushed to get to the constant distance and constant

rate tree codes that would make [85] and [79] computationally efficient.

2.1.2 Preliminaries

Notations and basic properties For a finite set Ω we let 𝒰Ω be the uniform distribution

over Ω; we commonly omit Ω and write 𝑥 ∼ 𝒰 when the domain is clear from context.

We note that our protocols in this chapter proceed in iterations, where in each iteration,

a certain sequence of steps are repeated by each party. For any variable 𝑣𝑎𝑟 that represents

the state of some party in one of our algorithms (Algorithm 1, Algorithm A, Algorithm B,
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and Algorithm C), we let 𝑣𝑎𝑟(𝑖) denote the value of the variable 𝑣𝑎𝑟 at the beginning of

iteration 𝑖.

Multiparty interactive communication model We assume an undirected network 𝐺 =

(𝑉 ,𝐸) of 𝑛 = |𝑉 | parties, 𝑝1, . . . ,𝑝𝑛, and 𝑚 = |𝐸| edges, where 𝑝𝑖 is connected to 𝑝𝑗 if and only

if (𝑝𝑖 ,𝑝𝑗) ∈ 𝐸. We identify parties with nodes, and treat 𝑝𝑖 and node 𝑖 as one. The network

𝐺 is assumed to be a connected simple graph (i.e., without self-loops or multi-edges).

The communication model works in synchronous rounds as follows. At each round,

any subset of parties may decide to speak. Each link is allowed to transmit at most one

symbol per round in each direction from a constant-sized alphabet Σ. We will assume

throughout this paper that Σ = {0,1} (both in the noiseless and noisy settings), however,

our results extend to a larger alphabet as well. At each round, a party is allowed to send

multiple (possibly different) symbols over multiple links. A transmission over a certain

link at a certain round is the event of a party sending a message on this link at that round

(if both parties send messages these are two separate transmissions).

We emphasize that, contrary to most previous work, our communication model is not

fully-utilized and does not demand all parties to speak at each round on every communi-

cation channel connected to them; in fact we don’t demand a certain party to speak at all

at any given round.

Multiparty protocol Each party is given an input 𝑥𝑖 , and its desire is to output 𝑓𝑖(𝑥1, . . . ,𝑥𝑛)

for some predefined function 𝑓𝑖 at the end of the process. A protocol 𝜋 dictates to each

party what is the next symbol to send over which channel (if any), as a function of the

party’s input, the round number, and all the communication that the party has observed so

far. After a fixed and predetermined number of rounds, the protocol terminates and each

party outputs a value as a function of its input and observed transcript. The length of the

protocol, also called its round complexity RC(𝜋) is the maximal number of rounds 𝜋 takes to

complete on any possible input. The communication complexity of the protocol (in bits),

denoted by CC(𝜋), is the total number of transmissions in the protocol times log |Σ|. Since

38



we assume Σ = {0,1}, the communication complexity equals the number of transmissions.

Throughout this chapter we denote the underlying (i.e., noiseless) interactive protocol

that the parties are trying to compute by Π. We will usually use the notation |Π| to denote

the length of the (noiseless) protocol in chunks rather than in rounds; see Section 2.2.3 for

details on partitioning protocols into chunks. We assume that the noiseless protocol has

the property that the speaking order is independent of the inputs that the parties receive,

and may depend only on the messages the party received.5

Noise model We concern ourselves with simulating multiparty interactive protocols Π

among 𝑛 parties over a noisy network. A single transmission over a noisy channel with

alphabet Σ is defined as the function

Ch : Σ∪ {*} → Σ∪ {*},

where * is a special symbol * < Σ that means “no message”. Given a single utilization of the

channel, we say the transmission is corrupt (or noisy) if 𝑦 = Ch(𝑥) and 𝑦 , 𝑥. Specifically,

if 𝑥,𝑦 ∈ Σ, this event is called a substitution noise, if 𝑥 = * and 𝑦 ∈ Σ the event is called an

insertion, and if 𝑥 ∈ Σ and 𝑦 = * the event is called a deletion.

We stress that the noise may have a crucial effect on the protocol executed by the

parties. Not only its correctness may be harmed, but also its length and communication

may vary. Hence, in the noisy setting we redefine RC(Π) and CC(Π) to be the length

and communication complexity, respectively, of a given instance of the protocol (which

is determined by the inputs, the randomness, and the noise pattern). Moreover, we

emphasize that, opposed to the fully utilized model where the number of rounds fixes the

communication complexity, in our model these two are only related by the trivial bound

CC(Π) ≤ 2|𝐸| log |Σ| ·RC(Π). We note that the gap between these two may be substantial.

The fraction of noise observed in a given instance, is the fraction of corrupt transmissions

out of all the transmissions in that instance. For the binary case the noise fraction can be

5While we assume a fixed order of speaking for the noiseless protocol Π, we emphasize that this
requirement will not apply on the coding scheme that simulates Π over the noisy network (similarly to [85]).
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written as,

𝜇 =
#(noisy transmissions)

CC(Π)
.

This is also known as relative noise.

An oblivious adversary is an adversary that pre-determines its noise attack, indepen-

dently of the inputs and randomness of the parties. Our results in this work (the first part)

apply to any oblivious adversary with a sufficiently limited number of errors. For con-

creteness, we consider two types of oblivious adversaries: fixing adversaries and additive

adversaries.

Assuming a binary alphabet, an oblivious fixing adversary fixes a noise pattern 𝑒 =

{0,1,2,⊥}2|𝐸|·RC(Π). In particular, the entry 𝑒𝑖,(𝑢,𝑣) ∈ {0,1,2,⊥} determines whether noise

occurs on the link 𝑢→ 𝑣 in round 𝑖 and, if so, the new message on the link 𝑢→ 𝑣 in round

𝑖. Specifically, we interpret ⊥ as leaving the communication as-is, 2 as fixing no message,

and 0 and 1 as fixing 0 and 1 on the link respectively. The number of errors is the number

of non-⊥ entries of 𝑒6.

We also consider additive adversaries [21] (see, e.g., [36, 69, 63] for applications).

An oblivious additive adversary fixes a noise pattern 𝑒 = {0,1,2}2|𝐸|·RC(Π) that defines the

noise per each link in each round of the protocol. In particular, the entry 𝑒𝑖,(𝑢,𝑣) ∈ {0,1,2}

determines the noise added to the link 𝑢→ 𝑣 in round 𝑖. Assuming 𝑢 transmits to 𝑣 in

iteration 𝑖 the message 𝑡 ∈ {0,1,2} (where 2 denotes the case of no message, i.e., *), then 𝑣

receives the transmission 𝑡+𝑒𝑖,(𝑢,𝑣) mod 3. The number of errors is the number of non-zero

entries in 𝑒.

For both adversaries, the noise fraction is the number of errors divided by the actual

communication given that error pattern (and specific inputs and randomness).

Remark 2.1.1. We prove our results for both oblivious fixing and additive adversaries. As far

as oblivious adversaries go, the fixing adversary seems more natural to us, and so for Section 2.2,

we find the result most interesting with the fixing adversary. However, our end goal is to get

6We note that this adversary is charged for an error whenever it tries to fix a link, even if the message
sent on this link happens to be the message the adversary wanted to send.
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a result for non-oblivious adversaries, which we do in Section 2.3. To make our extension to

non-oblivious adversaries in Section 2.3 simpler, we need to prove resilience against the oblivious

additive adversary in this paper. We think the oblivious additive adversary is additionally

interesting in its own right.

Coding scheme—a noise-resilient protocol A coding scheme is a scheme that converts

any protocol Π into a noise-resilient protocol Π̃ that simulates Π correctly with high

probability on any given input. We say that a protocol Π̃ simulates Π correctly on a

given input if each party can obtain its output corresponding to Π from the transcript it

sees when executing Π̃. The protocol Π̃ is said to be resilient to 𝜇-fraction of noise (with

probability 𝑝), if it simulates Π correctly (with probability at least 𝑝) when executed over a

noisy network with adversarial noise that corrupts at most 𝜇-fraction of the transmissions

in any instance of the protocol.

Our coding schemes will proceed in iterations. In each iteration, each party will perform

a sequence of actions. Given an iteration 𝑖 and an edge (𝑢,𝑣) ∈ 𝐸, we will denote the tuple

(𝑖,𝑢,𝑣) as a triple in this chapter. This is convenient notation in this chapter, and this

meaning does not carry over to any other chapter (in particular we use the notation of

“triples” to mean tuples of length 3 in Chapter 3).)

Hash functions We use an inner-product based hash function. The hash function is

seeded with a random string 𝑠 such that each bit of the output is an inner product between

the input 𝑥 and a certain part of 𝑠 (using independent parts of 𝑠 for different output bits).

Formally,

Definition 2.1.2 (Inner Product Hash Function). The inner product hash function ℎ : {0,1}*×

{0,1}* → {0,1}𝜏 is defined for any input 𝑥 of length |𝑥| = 𝐿 and seed 𝑠 of length |𝑠| = 𝜏𝐿 (for

𝜏 ∈N), as the concatenation of 𝜏 inner products between 𝑥 and disjoint parts of 𝑠, namely,

ℎ(𝑥,𝑠) = ⟨𝑥,𝑠[1,𝐿]⟩ ∘ · · · ∘ ⟨𝑥,𝑠[(𝜏 − 1)𝐿+ 1, 𝜏𝐿]⟩.
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We use the shorthand ℎ𝑠(𝑥) def= ℎ(𝑥,𝑠).

We sometimes abuse notation and hash a ternary-string 𝑥 (or a string over a larger

alphabet). In this case, assume we first convert 𝑥 into a binary string in the natural manner

(each symbol separately, using ⌈log2 3⌉ = 2 bits) and then hash the binary string. The seed

length should increase appropriately (by at most a constant).

The following is a trivial property of this hash function, stating that, given a uniform

seed, the output is also uniformly distributed.

Lemma 2.1.3. For any 𝜏,𝐿 ∈N, 𝑥 ∈ {0,1}𝐿 ∖ {0}, and any 𝑟 ∈ {0,1}𝜏

P𝑠∼𝒰 [ℎ𝑠(𝑥) = 𝑟] = 2−𝜏 .

where 𝒰 is the uniform distribution over {0,1}𝜏 ·𝐿.

It is easy to see Lemma 2.1.3 also implies that the collision probability of the inner

product hash function with output length 𝜏 is exactly 2−𝜏 , since given two strings 𝑥 and 𝑦

such that 𝑥 , 𝑦, the Lemma implies that the probability that P𝑠∼𝒰 [ℎ𝑠(𝑥 − 𝑦) = 0] = 2−𝜏 .
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2.2 Part I: Oblivious Noise

2.2.1 Introduction

In this first part of our chapter on interactive coding, we prove the following theorem. We

recall that oblivious noise is predetermined, and in particular independent of the parties’

randomness.

Theorem 2.2.1 (Coding for oblivious noise assuming shared randomness, informal). Let

𝐺 = (𝑉 ,𝐸) be an arbitrary synchronous network with 𝑛 = |𝑉 | nodes and 𝑚 = |𝐸| links, and

assume any two neighbours share a random string. For any noiseless protocol Π over 𝐺 with

a predetermined order of speaking, and for any sufficiently small constant 𝜀, there exists an

efficient coding scheme that simulates Π over a noisy network 𝐺. The simulated protocol is

robust to adversarial insertion, deletion, and substitution noise, assuming at most 𝜀/𝑚-fraction

of the communication is corrupted. The simulated protocol communicates 𝑂(CC(Π)) bits, and

succeeds with probability at least 1− exp(−CC(Π)/𝑚), assuming the noise is oblivious.

In the next subsections we overview the key ideas required for performing interactive

coding in the multiparty setting with constant overhead, and discuss related work. Our

efficient coding scheme against an oblivious adversary assuming shared randomness is

formally described in Section 2.2.3 and analyzed in Sections 2.2.4 - 2.2.6. The main sketch

of the proof and the main technical contribution of this paper is contained in Section 2.2.4.

Some parts of the coding scheme are based on the meeting point mechanism of [70] and

are given in Section 2.4 for completeness.

2.2.2 Coding Scheme: Key Ideas

In this section we motivate the elements of our coding scheme at a high level. The basic

idea towards constructing a multiparty coding scheme is to have each pair of parties

perform a two-party coding scheme [139, 85, 79]. However, merely correcting errors in

a pairwise manner is insufficient, since if a pair of parties found an inconsistency and
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backtracked, this may cause new inconsistencies (in particular, between these parties and

their other neighbors). In [85], this problem was solved by assuming there is one party

who is connected to all parties (i.e., the star topology). This party has a global view on the

progress of the simulation in the entire network, and hence can function as the “conductor

of the orchestra.”

In our setting, no such central party exists and consequently no party knows the state of

the simulation in the entire network. Instead, each party only sees its local neighborhood,

and needs to propagate its “status” to the entire network in a completely decentralized

manner.

We mention that Hoza and Schulman [79] also considered an arbitrary topology, but

they consider the fully-utilized model. Correcting errors efficiently in the non-fully-

utilized model seems to be trickier; we elaborate on this towards the end of this section.

In order to keep our simulation efficient, as opposed to previous works in the multi-

party setting which used the (inefficient) tree-code approach, we use the rewind-if-error

approach [144, 25, 96, 70, 55] (see also [56]). Namely, each two neighboring parties send a

hash of their simulated pairwise transcripts, and if the hashes do not match, then an error

is detected, and the two parties initiate a “meeting-points” mechanism [144, 70] in order

to find a previous point where their transcripts agree.

Since we want a constant-rate coding scheme with error rate up to Ω(1/𝑚), our goal

is to ensure that any corruption only causes the network to waste 𝑂(𝑚) communication.

Indeed, if the parties need 𝐾 communication to correct a single error, then constant-

rate coding implies a maximal noise level of 𝑂(1/𝐾). If the noise level is higher, the

communication required to correct the errors is already too high to preserve a constant-

rate coding. As a consequence of the above, in our coding schemes the parties will have

to detect errors by communicating 𝑂(1) bits per check, so that the consistency-checking

costs 𝑂(𝑚) communication overall. In hindsight, this will restrict the parties to use hash

functions with constant-sized outputs.

Let us now describe a preliminary attempt at a coding scheme. The coding scheme will
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have many iterations, where each iteration will consist of the following. First, every pair of

parties will send each other hashes of their simulated pairwise transcripts. If these match,

they continue simulating with each other for a small number of rounds; else, they use the

meeting points mechanism to find a common “meeting” point where both their partial

transcripts agree and rewind their partial transcript back to that point. Until they have

done so, they refuse to simulate with any other party. The parties continue repeating these

two steps (1. Send Hashes / Do Meeting Points and 2. Simulate / Stay Silent) until they

finish simulating the underlying protocol. Each step will take a fixed number of rounds,

so, since we are in the synchronous model, the parties will always be able to tell which

step currently is being carried out.

This naive coding scheme has a clear but important flaw. Once a party 𝑢 decides to

rewind due to an error on the link (𝑢,𝑣), this has an effect on the simulation of 𝑢 with

its other neighbors. In order to ensure correctness of the overall simulation, 𝑢 must

rewind the simulation with each and every one of its neighbors that may be affected. It

is tempting to rewind 𝑢’s neighborhood by having 𝑢 immediately truncate its simulated

transcript for each adjacent link (𝑢,𝑤), to the same place it rewound the link (𝑢,𝑣). After

such a truncation, a discrepancy would appear on the link (𝑢,𝑤) since 𝑤 did not change

its simulated transaction, and the meeting points mechanism would resolve any such

resulting discrepancy in the next iteration. In particular, an error on the link (𝑢,𝑣) would

cause 𝑢 and 𝑣 to perform meeting points and rewind their transcript to a consistent point.

Then, in the next iteration, 𝑢 will be inconsistent with its other neighbors and will initiate

meeting points with all its other neighbors, resulting in them rewinding their transcripts

accordingly. In the following iteration, any neighbor 𝑤 of 𝑢 would find an inconsistency

with any other party in its own neighborhood, initiate meeting points with them, and so

on until the entire network has rewound.

While the entire network eventually rewinds in this scheme, the number of iterations

this takes is proportional to the diameter of the network. Recall that to ensure constant rate,

we need to correct any error with at most 𝑂(𝑚) communication (with high probability),
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which in our case means just 𝑂(1) iterations. So this naive approach could not achieve

constant rate. Even worse, if magically we could augment the consistency check step so

that news propagates through the entire network in just a single iteration, this approach

would still fail with high probability. The consistency checking involves exchanging hashes

of transcripts and verifying whether they match. Hash collisions are a major problem here;

a hash collision will cause parties 𝑢 and 𝑣 to believe that their transcripts are consistent,

when really they are not. Since we are restricted to use constant-sized hashes to keep the

rate constant, hash collisions occur with constant probability in each exchange. Hence, in

the course of the (at least) 𝑛− 1 hash exchanges required to inform all 𝑛 parties about the

error, hash collisions occur with overwhelming probability. If so, with high probability

many parties will not be informed of the error and will not rewind their transcript.

What saves us here is that 𝑢 does not need to initiate a meeting points protocol to tell 𝑤

to rewind—𝑢 can tell 𝑤 to rewind directly. The meeting points protocol is designed to find

a point where the transcripts of 𝑢 and 𝑤 are consistent, when neither 𝑢 nor 𝑤 has any idea

where that point may be. But in the above case, 𝑢 is confident that 𝑤 should rewind, and

should simply inform 𝑤 it should rewind. To summarize the above ideas, an iteration of

our coding scheme now consists of the following steps: 1. Consistency Check, 2. Simulate

/ Stay Silent, and 3. Rewind request (if necessary). As before, each of these phases takes a

fixed number of rounds, so the parties are always in sync.

Some care needs to be taken with the Rewind phase. Specifically, 𝑢 may not be able

to instantly communicate to its neighbor 𝑤 how far it wants 𝑤 to rewind. For instance,

𝑢 may have rewound a very large number of rounds, and even telling its neighbor how

many rounds to rewind would require a large amount of communication; this cannot be

communicated in the fixed number of rounds that the rewind phase contains. Instead, 𝑢

should simply tell 𝑤 to rewind a small amount at a time, spanning the rewind process

over several consecutive iterations if needed. To summarize, the rewind phase allows

the parties to gradually synchronize with each other without the use of unreliable hash

functions, allowing the parties to return to simulation while circumventing the issues that
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hash collisions bring. This is one of the key conceptual observations behind our work.

There is one final issue that is specific to the non-fully-utilized model. Recall that in the

non-fully-utilized model, communication may be sparse. For concreteness, consider the

line network (i.e., a path graph, where party 𝑖 ∈ {1,2, . . . ,𝑛− 1} is connected to party 𝑖 + 1).

Consider the example protocol, where party 1 communicates back-and-forth with party 2

for 𝑛 rounds while other parties remain silent, then party 2 communicates with party 3 for

𝑛 rounds while other parties remain silent, and so on, until the communication reaches

parties 𝑛− 1 and 𝑛, and bounces back towards party 1. The communication that occurs in

any set of 𝑛 rounds of this underlying protocol is 𝑛, since only a single party is speaking at

any given round. An iteration of our coding scheme would give the parties 𝑛 rounds to

simulate, after which they perform a single consistency check.

However, when simulating the underlying protocol in our coding scheme, the parties

may not all be in agreement about which round they are simulating. For example, parties

1, 2, and 3 could think they are simulating round 1 (where parties 1 and 2 talk a lot), while

party 4, 5, and 6 think they are simulating round 3𝑛+ 1 (where parties 4 and 5 talk a lot),

and generally parties 3𝑖+1,3𝑖+2, and 3𝑖+3 think they are simulating round 𝑖 ·𝑛+1. In this

case, there will be Ω(𝑛2) communication in just one iteration of our coding scheme (in𝑂(𝑛)

rounds). This is potentially disastrous. Not only might this lead to the communication

blowup of the coding scheme being super-constant, but also the adversary would have the

budget to place Ω(𝜀𝑛) additional errors, and may be able to use these errors to derail any

attempts of getting the simulation back on track.

To avoid this issue altogether, we introduce a “flag-passing” phase in which each party

informs the entire network whether all seems correct and the simulation should continue,

or if it sees an inconsistency and the network should idle while this is fixed. This fixes the

issue above, since party 3 will realize that there is an inconsistency between its transcripts

with parties 2 and 4, and will notify the network to avoid simulation.

Putting it all together, our resilient protocol consists of repeatedly executing the

following four steps in order: (i) consistency check, (ii) flag passing, (iii) simulation, and
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(iv) rewind. The coding scheme cycles through these four phases in a fixed manner, where

each step takes a fixed amount of rounds to avoid ambiguity.

The formal specification of each phase, along with the formal coding scheme assuming

oblivious noise and a common shared randomness is depicted as Algorithms 1–3 below

(see Section 2.2.3 for full details and notations). The meeting points procedure is given in

Algorithm 11, in Section 2.4.

2.2.3 Coding scheme for oblivious adversarial channels

Overview

The high-level description of the simulation is as follows. The basic mechanism is the

rewind-if-error approach from previous works [144, 25, 70] (see also [56]). In particular,

the parties execute the noiseless protocol Π for some rounds and then exchange some

information to verify if there were any errors. If everything seems consistent, the simu-

lation proceeds to the next part; otherwise, the parties rewind to a previous (hopefully

consistent) point in Π and proceed from there.

Note that since multiple parties are involved, it may be that some parties believe the

simulation so far is correct while others believe it is not. Yet, even if one party notices an

inconsistency, the entire network may need to rewind. Hence, we need a mechanism that

allows propagating the local view of each party to the entire network.

Our simulation algorithm consists of repeatedly executing the following four phases:

(i) consistency check, (ii) flag passing, (iii) simulation, and (iv) rewind. The simulation

protocol cycles through these four phases in a fixed manner, and each such cycle is referred

to as an iteration. Each phase consists of a fixed number of rounds (independent of the

parties’ inputs and the content of the messages exchanged). Therefore, there is never an

ambiguity as to which phase (and which iteration) is being executed. We next describe

each phase (not in the order they are preformed in the protocol).

(i) Simulation: In this phase the parties simulate a single chunk of the protocol Π.

Specifically, we split Π into chunks—consecutive sets of rounds—where at each
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chunk 5𝐾 bits are being communicated, for some 𝐾 ≥ 𝑚 that is fixed throughout

the simulation and such that 𝐾 is divisible by 𝑚. Jumping ahead, we note that 𝐾

is set to be 𝑚 in the protocol we construct in this section, which only considers

to oblivious adversaries, and is set to 𝑚 log𝑚 in Algorithm B in Section 2.3 which

considers arbitrary (non-oblivious) adversaries. Note that since the speaking order

in Π is fixed and predetermined, the partition into chunks is independent of the

inputs and can be done in advance. We assume without loss of generality that each

party speaks at least once in each chunk (this is without loss of generality since

one can preprocess Π to achieve this property while increasing the communication

complexity by only a constant factor).

In this phase, the parties “execute” the next chunk of Π, sending and receiving

messages as dictated by the protocol Π.

This phase always takes 5𝐾 rounds, which is the maximal number of rounds required

to simulate 5𝐾 transmissions of Π. It may be that the simulation of a specific chunk

takes fewer rounds; in this case, the phase still takes 5𝐾 rounds where all the parties

remain silent after the chunk’s simulation has completed until 5𝐾 rounds have

passed.

We note that some parties may be aware that the simulation so far contains errors

that were not corrected yet (jumping ahead, this information can be obtained via

local consistency checks that failed or via the global flag-passing phase, described

below). When we reach the simulation phase, these parties will send a dummy

message ⊥ to their neighbors and remain silent for 5𝐾 rounds until the simulation

phase completes.

(ii) Consistency check: The main purpose of this phase is to check whether each two

neighboring parties 𝑢,𝑣 ∈ 𝑉 have consistent transcripts and can continue to simulate,

or whether instead they need to correct prior errors. This phase is based on the

meeting points mechanism [144, 70], which allows the parties to efficiently find the

highest chunk number up to which they both agree.
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Roughly speaking, every time the parties enter this phase, they exchange a hash of

their current transcripts with each other. If the hashes agree, the parties believe that

everything is consistent and effectively continue with simulating Π. If the hashes do

not agree, the parties try to figure out the longest point in their transcript where they

do agree. To this end, they send hashes of prefixes of their transcript until the hashes

agree. In our setting, each time the parties enter the “consistency check” phase

they perform a single iteration of the meeting-points mechanism [70], which consists

of sending two hash values. If the hashes mismatch, they will send the next two

hash values (of some prefixes of the transcript, as instructed by the meeting-points

mechanism) next time they enter the consistency check phase.7

Note that the above is performed between each pair of adjacent parties, in parallel

over the entire network.

(iii) Flag passing: In the flag passing phase, the parties attempt to synchronize whether

or not they should continue the simulation of Π in the next simulation phase. As

mentioned, it may be that some parties believe that the simulation so far is flawless

while others may notice that there are some inconsistencies. In this phase the

information about (2-party) inconsistencies is propagated to all the parties.

Roughly, if any party believes it shouldn’t continue with the simulation, it notifies

all its neighbors, which propagate the message to the rest of the network, and no

party will simulate in the upcoming simulation phase. However, if all parties believe

everything is consistent then no such message will be sent, and all the parties will

continue simulating the next chunk of Π.

Technically speaking, the parties accomplish this synchronization step by passing

a “flag” (i.e., a stop/continue bit) along a spanning tree 𝒯 of 𝐺. Namely, each party

receives flags from each of its children in 𝒯 . If one of the flags is stop, or if the party

7In addition to exchanging two hash values corresponding to prefixes of the transcript, the parties also
exchange a hash indicating how long they have been running the meeting-points mechanism; see Section 2.4
for a full description.
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sees inconsistency with one of its neighbors, it sends a stop flag to its parent in the

tree. Otherwise, it sends its parent the continue flag. After the root of 𝒯 receives

all the flags, the root propagates the computed flag in the opposite direction back

to the leafs. If there is no channel noise in this phase, it is clear that all parties are

synchronized regarding whether the simulation should continue or not (recall that a

party sends a dummy message during the simulation phase if its flag is set to stop).

(iv) Rewind: In the rewind phase, each party tries to correct any obvious (i.e., length-

wise) inconsistencies with their neighbors. Recall that the meeting-points mechanism

allows two neighboring parties to truncate their mis-matching transcripts to a prefix

on which both parties agree. However, this may cause inconsistencies with all their

other neighbors. Indeed, if 𝑢 and 𝑣 rewind several chunks off their transcript with

each-other, then 𝑢 must inform any other party 𝑧 ∈ 𝒩 (𝑢) to rewind the same amount

of chunks. This rewinding happens even if the transcripts on the link (𝑢,𝑧) are consistent

at both ends.

Technically, if the transcript of 𝑢 and 𝑣 consists of 𝑘 chunks, then 𝑢 will send a

“rewind” message to any neighbor 𝑧 for which the transcript of 𝑢 and 𝑧 contains more

than 𝑘 chunks. However, there are a few caveats. First, any party 𝑧 that is currently

trying to find agreement with 𝑢 via the meeting-points mechanism should not rewind

the transcript with 𝑢. Intuitively, we can see that any such rewind seems unnecessary,

since 𝑧 is already going to truncate its transcript when it eventually finds agreement

with 𝑢 in the meeting-points subroutine. Furthermore, an underlying assumption

of the meeting-points protocol is that, until the parties decide to truncate their

transcripts in the protocol, their transcripts do not change. This is crucial since the

MP mechanism may span over many rounds, and any abort (caused by a rewind)

may make all this progress void.

Additionally, we restrict each party to rewinding at most one chunk in each of its

pairwise transcripts. This is primarily for ease of analysis: it means that no matter

what kind of errors the adversary induces, there is only so much harm that can be
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done during the rewind phase. The upshot of this is that it is not necessarily true

that after the rewind phase, 𝑢 sees exactly the same amount of simulated chunks

with all 𝑧 ∈ 𝒩 (𝑢).

Once a party 𝑢 sends a rewind message to a neighbor 𝑧, party 𝑧 will truncate one

chunk of the transcript that corresponds to the link (𝑢,𝑧), and might then want

to send rewind messages to its own neighbors. These rewinds could trigger more

rewinds, leading to a wave of rewinds going through the network. By providing

𝑛 rounds in the rewind phase, we make sure that this wave has enough time to

go through the entire network.8 This is critical to guaranteeing that we fix errors

quickly enough to simulate Π with constant overhead.

The coding scheme

We now formally describe the coding scheme assuming a common random string (CRS)

and oblivious noise (Algorithm 1). Let Π be a noiseless protocol over 𝐺 = (𝑉 ,𝐸), with

𝑅 rounds and 𝐶 transmissions throughout. Assume that the communication pattern

and amount is predetermined, and independent of the parties’ inputs and the transcript.

Namely, let 𝑇Π = (𝑚1𝑚2 · · ·𝑚𝐶) be the noiseless transcript of Π; the content of the messages

𝑚𝑖 depend on the specific inputs, however their order, source and destination are fixed

for Π.

We partition 𝑇Π into rounds according to Π, and group the rounds into chunks, where

each chunk is a set of contiguous rounds with total communication complexity exactly

5𝐾 . Specifically, we keep adding rounds to a chunk until adding a round would cause

the communication to exceed 5𝐾 . Note that without the last round, the communication

in the chunk is at least 5𝐾 − 2𝑚+ 1 bits. We can then add a virtual round that makes the

communication in the chunk be exactly 5𝐾 bits. This addition affects the communication

complexity by a constant factor. From this point on, we assume that Π adheres to our

8Alternatively, we could have fixed the rewind phase to consist of 𝐷 rounds (rather than 𝑛 rounds), where
𝐷 is the the diameter of the graph 𝐺.
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Algorithm 1 A noise-resilient simulation of Π (for party 𝑢)

Let 𝑇𝑢,𝑣 denote the partial, pairwise transcript between 𝑢 and 𝑣 according to 𝑢, and let |𝑇𝑢,𝑣 |
denote the number of chunks simulated so far in 𝑇𝑢,𝑣 .

1: InitializeState( )

2: for 𝑖 = 1 to 100|Π| do
3: for all 𝑣 ∈ 𝒩 (𝑢) in parallel do ◁ meeting points
4: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 ←MeetingPoints(𝑢,𝑣,𝑆𝑖,𝑢,𝑣)

5: 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘←min𝑣∈𝒩 (𝑢) |𝑇𝑢,𝑣 |
6: if exists 𝑣 such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points” then
7: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 0
8: else if exists 𝑣 such that |𝑇𝑢,𝑣 | > 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 then
9: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 0

10: else
11: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 1

12: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 ← FlagPassing(𝑢,𝑠𝑡𝑎𝑡𝑢𝑠𝑢) ◁ flag passing

13: if 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 then ◁ simulation
14: Listen for one round.
15: Simulate chunk |𝑇𝑢,𝑣 |+ 1 with each party 𝑣 ∈ 𝒩 (𝑢) from whom we

have not received ⊥ in line 14. The simulation is based on the partial
transcript 𝑇𝑢,𝑤 for each 𝑤 ∈ 𝒩 (𝑢), as well as the input to 𝑢.

16: If the above step took less than 5𝐾 rounds, wait until 5𝐾 rounds have passed
17: if received no ⊥’s in Line 14 in this iteration then
18: 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘←𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 + 1
19: else
20: Send a single ⊥ to each neighbor, and wait 5𝐾 rounds.

21: for round 𝑟 = 1 to 𝑛 do ◁ rewind
22: for all 𝑣 ∈ 𝒩 (𝑢) in parallel do
23: if 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 , “meeting points” AND 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 0 then
24: if |𝑇𝑢,𝑣 | > 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 then
25: Send a rewind message to 𝑣 and truncate 𝑇𝑢,𝑣 by one chunk
26: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 ← 1

27: if a rewind message is received from 𝑣 then
28: if 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 , “meeting points” AND 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 0 then
29: Truncate 𝑇𝑢,𝑣 by one chunk
30: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 ← 1
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Algorithm 2 InitializeState()
1: 𝐾 ←𝑚
2: for all neighbors 𝑣 ∈ 𝒩 (𝑢) do
3: Initialize 𝑇𝑢,𝑣 = ∅

4: Initialize 𝑘𝑢,𝑣 ,𝐸𝑢,𝑣 ,𝑚𝑝𝑐1𝑢,𝑣 ,𝑚𝑝𝑐2𝑢,𝑣 ← 0
5: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 ← “simulate”
6: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 ← 0

7: 𝑆𝑢,𝑣 := (𝑆𝑖,𝑢,𝑣)𝑖∈[100|Π|]
unif←

(︁
{0,1}Θ(|Π|𝐾)

)︁100|Π|
uniform bits of randomness.

8: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 1.
9: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 ← 1

Algorithm 3 FlagPassing(𝑢, 𝑠𝑡𝑎𝑡𝑢𝑠)

Let 𝜌 ∈ 𝑉 be a specific node known by all the parties. Let 𝒯 be a spanning tree generated by
a breadth-first-search starting from 𝜌. Denote the depth of 𝒯 as 𝑑(𝒯 ), where the depth of a
single vertex is 1. Finally, let the level of a vertex be defined as ℓ(𝑣) := ℓ(𝑢) + 1, where 𝑢 is the
parent of 𝑣 in 𝒯 , and ℓ(𝜌) = 1.

1: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡← 𝑠𝑡𝑎𝑡𝑢𝑠
2: if 𝑢 is a leaf in 𝒯 then
3: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to parent vertex in 𝒯 .
4: Sleep for ℓ(𝑢)− 1 rounds.
5: else
6: Sleep for 𝑑(𝒯 )− ℓ(𝑢) rounds. Ignore any messages received in these rounds.
7: Receive 𝑏1, . . . , 𝑏𝑘 , one symbol from each child in 𝒯 .

8: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡←
𝑘⋀︀
𝑖=1
𝑏𝑖 ∧ 𝑠𝑡𝑎𝑡𝑢𝑠

9: if 𝑢 , 𝜌 then
10: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to parent.
11: Sleep for ℓ(𝑢)− 1 rounds. Ignore any messages received in these rounds.

12: if 𝑢 = 𝜌 then
13: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to children.
14: else
15: Sleep for ℓ(𝑢)− 1 rounds. Ignore any messages received in these rounds.
16: Receive 𝑏 from parent.
17: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡← 𝑏∧ 𝑠𝑡𝑎𝑡𝑢𝑠
18: if 𝑢 is not a leaf in 𝒯 then
19: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to children.
20: Sleep for 𝑑(𝒯 )− ℓ(𝑢) rounds. Ignore any messages received in these rounds.

21: return 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡
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required structure.

We number the chunks in order, starting from 1. For any (possibly partial) transcript

𝑇 , we let |𝑇 | denote the number of chunks contained in the transcript 𝑇 . In particular,

|Π| is the maximal number of chunks in Π. We assume without loss of generality that

in each chunk, each party sends at least one bit to each of its neighbors (again, this can

easily be achieved by pre-processing Π while increasing its communication by a constant

factor). In addition, we assume that the protocol Π is padded with enough dummy chunks

where parties simply send zeros. Concretely, we assume the number of chunks is 100|Π|,

where the last 99|Π| chunks are all padding. This padding is standard in the literature on

interactive coding, and is added to deal with the case that the adversary behaves honestly

in all the rounds until the last few rounds, and fully corrupts the last few rounds.

The parties simulate Π one chunk at a time, by cycling through the following phases in

the following order: consistency check, flag passing, simulation, and rewind. Each phase

takes a number of rounds that is a priori fixed, and since our model is synchronous, the

parties are always in agreement regarding which phase is being executed.

Let 𝑇𝑢,𝑣 denote the pairwise transcript of the link (𝑢,𝑣) as seen by 𝑢, where 𝑣 ∈ 𝒩 (𝑢);

similarly, 𝑇𝑣,𝑢 is the transcript of the same link as seen by 𝑣 (which may differ from

𝑇𝑢,𝑣 due to channel noise). In more detail, 𝑇𝑢,𝑣 is the concatenation of the transcripts

generated at each chunk, where the transcript of chunk 𝑖 consists of two parts: (1) the

simulated communication of chunk 𝑖, and (2) the chunk number 𝑖.9 The structure of part

(1) is as follows. Assume that in the 𝑖-th chunk in Π, 𝑗 bits are exchanged over the (𝑢,𝑣)

link in rounds 𝑡1, . . . , 𝑡𝑗 . Then 𝑇𝑢,𝑣 holds a string of length 𝑗 over {0,1,*} describing the

communication at times 𝑡1, . . . , 𝑡𝑗 , as observed by 𝑢. The symbol * denotes the event of not

receiving a bit at the specific round (i.e., due to a deletion). The transcript 𝑇𝑣,𝑢 is defined

analogously from 𝑣’s point of view. Note that restricted to the substrings that belongs to

chunk 𝑖, 𝑇𝑢,𝑣 = 𝑇𝑣,𝑢 if and only if there where no errors at rounds 𝑡1, . . . , 𝑡𝑗 in the simulation

phase; insertions and deletions at other rounds are ignored. We abuse notation and define

9It is important to add the chunk number since the inner-product hash function we use (Definition 2.1.2)
has the property that for any string 𝑥, ℎ(𝑥) = ℎ(𝑥 ∘ 0).
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|𝑇𝑢,𝑣 | to be the number of chunks that appear in 𝑇𝑢,𝑣 .

In Algorithm 1 we describe the noise-resilient protocol for a fixed party 𝑢. The parties

start by initializing their state with a call to InitializeState() (Algorithm 2). The variables in

line 4 of InitializeState() are used for keeping state across iterations of the meeting-points

mechanism, described in Algorithm 11 (in Section 2.4).

Next, the parties perform a single iteration of the meeting-points mechanism (Algo-

rithm 11). Given a pair of adjacent parties 𝑢 and 𝑣, the meeting-points mechanism outputs

a variable 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 , which indicates whether the parties want to simulate (in which case

𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “simulate”) or continue with the meeting-points mechanism (in which case

𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points”).

Then, according to the output of the meeting-point mechanism and according to any

apparent inconsistencies in the simulated transcripts with its neighbors, each party sets its

“flag” 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 to denote whether it should continue with the simulation or not. This status

is used as an input to the flag-passing phase, described in Algorithm 3, where 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 = 0

denotes that a “stop” flag should be propagated.

Each party ends the flag-passing phase with a flag denoted 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 that is set to 1

if the network as a whole seems to be correct. Then, the parties perform a simulation

phase. If the 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 flag is set to 1, they execute Π for one additional chunk, according

to the place they believe they are at. Otherwise, they send a special symbol ⊥ to indicate

they are not participating in the current simulation phase.

Finally, the rewind phase begins, where any party 𝑢 that sees an obvious discrepancy

in the lengths of the transcripts in its neighborhood, sends a single rewind request to any

neighbor 𝑣 which is ahead of the rest, conditioned that 𝑢 and 𝑣 are not currently in the

middle of a meeting-points process.

2.2.4 Analysis via a Potential Function

In this section we analyze the coding scheme presented in Section 2.2.3 and lay the

groundwork for proving the following theorem.
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Theorem 2.2.2. Let 𝐺 = (𝑉 ,𝐸) be a network with 𝑛 = |𝑉 | parties and 𝑚 = |𝐸| links, and let

Π be a multiparty protocol on the network 𝐺 with communication complexity CC(Π), binary

alphabet and fixed order of speaking. Let |Π| := CC(Π)
5𝑚 and let 𝜀 > 0 be a sufficiently small

constant. Then, with probability at least 1− exp(−Ω(|Π|)), Algorithm 1 simulates Π correctly

with communication complexity Θ(CC(Π)), assuming an oblivious adversary (fixing or additive)

with error rate 𝜀/𝑚.

We emphasize that Theorem 2.2.2 applies to both fixing and additive oblivious advers-

aries (see Section 2.1.2 for definitions). In fact, all we need here is for the transcripts to be

independent of the seeds used to hash them; see Section 2.2.5 for an expanded discussion.

In order to prove the above theorem we define a potential function that measures the

progress of the simulation at every iteration. Below, we define the potential function

and intuitively explain most of its terms. Then, we prove that in every iteration10 the

potential increases by at least 𝐾 , while the communication increases by at most 𝐾 × ℓ,

where ℓ measures the number of channel noise and hash collisions that occurred in that

specific iteration.

We split the analysis of the potential into two parts: the meeting points mechanism and

the rest of the coding scheme. The first part, regarding the meeting points mechanism, re-

iterates the analysis of [70] with minor adaptations. We defer the full proofs to Section 2.4.

The rest of the potential analysis is novel. First, we focus on the iterations with no

errors/hash-collisions, and show that the potential rises in this special case. Then, we

focus on iterations that suffer from errors/hash-collisions. Then, in Section 2.2.5, we

bound (with high probability) the number of hash-collisions that may happen throughout

the entire execution of the coding scheme. Finally, in Section 2.2.6 we complete the proof

of Theorem 2.2.2, using the fact that the potential at the end of the coding scheme must be

high enough to imply a correct simulation of Π, given the bounded amount of errors and

hash-collisions.

In the following, all our quantities measure progress in chunks, where each chunk

10Recall that a single iteration of Algorithm 1 consists of a consistency phase, flag-passing phase, simula-
tion phase and a rewind phase.
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contains exactly 5𝐾 = 5𝑚 bits. Recall that we denote by |Π| the number of chunks in

the noiseless protocol Π, and we denote by |𝑇𝑢,𝑣 | the number of chunks in the simulated

(partial) transcript 𝑇𝑢,𝑣 .

The potential function

Our potential function 𝜑 will measure the progress of the network towards simulating

the underlying interactive protocol Π correctly. Naturally, 𝜑 changes as the simulation of

Algorithm 1 progresses, and so depends on the round number. In what follows, for ease of

notation, we omit the current round number in all the terms used to define 𝜑.

For each adjacent pair of parties 𝑢 and 𝑣, define

𝐺𝑢,𝑣 (2.1)

to be the size (in chunks) of the longest common prefix of 𝑇𝑢,𝑣 and 𝑇𝑣,𝑢. Namely, 𝐺𝑢,𝑣 is

the length of the largest prefix of communication between parties 𝑢 and 𝑣 in Π, that these

parties agree on. Define 𝐵𝑢,𝑣 to be

𝐵𝑢,𝑣
def= max(|𝑇𝑢,𝑣 |, |𝑇𝑣,𝑢 |)−𝐺𝑢,𝑣 . (2.2)

Namely, 𝐵𝑢,𝑣 is the gap between how far one of the parties thinks they have simulated

and how far they have simulated correctly.11 Note that 𝐵𝑢,𝑣 is always nonnegative by

design. Furthermore, 𝐵𝑢,𝑣 = 0 if and only if the parties have no differences in their pairwise

transcripts with each other.

Define

𝐺*
def= min

(𝑢,𝑣)∈𝐸
𝐺𝑢,𝑣 (2.3)

to be the largest chunk number through which the network as a whole has correctly

11Note that we can have 𝐵𝑢,𝑣 = 0 even when there have been errors in the network, as long as those errors
were corrected.
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simulated. Let

𝐻 *
def= max

𝑢
max
𝑣∈𝒩 (𝑢)

|𝑇𝑢,𝑣 | (2.4)

denote the largest chunk number which any party in the network thinks it has simulated;

note that, by definition, 𝐻 * ≥ 𝐺*. Finally, we define

𝐵*
def= 𝐻 * −𝐺*. (2.5)

In addition, our potential function also quantifies the progress of the meeting-points

mechanism between any two adjacent parties in the network (which we elaborate on below,

and in Section 2.4). This is done via the term 𝜙𝑢,𝑣 defined in Eq. (2.42) in Section 2.4.3,

which is closely inspired by the potential function stated in [70]. Intuitively, 𝜙𝑢,𝑣 is the

number of iterations of the meeting-points mechanism that parties 𝑢 and 𝑣 need to do to

make 𝐵𝑢,𝑣 = 0; indeed, for all pairs (𝑢,𝑣) ∈ 𝐸 it holds that (Proposition 2.4.2)

0 ≤ 𝐵𝑢,𝑣 ≤ 𝜙𝑢,𝑣 ,

and in particular, 𝜙𝑢,𝑣 = 0 implies that 𝐵𝑢,𝑣 = 0 .

Finally, let EHC denote the number of errors and hash collisions that have occurred in

the protocol until the current round of Algorithm 1. Similarly to all the other terms in the

potential, we drop the dependence on the round 𝑟.

Our potential function is defined to be:

𝜑
def=

∑︁
(𝑢,𝑣)∈𝐸

(︂𝐾
𝑚
𝐺𝑢,𝑣 −𝐾 ·𝜙𝑢,𝑣

)︂
−𝐶1𝐾𝐵

* +𝐶7𝐾 · EHC (2.6)

where 𝐶1 and 𝐶7 are constants such that 𝐶1 is sufficiently larger than 2, but smaller than

all the constants 𝐶2, . . . ,𝐶6 defined in Eq. (2.42), and 𝐶7 is a constant sufficiently larger

than 𝐶2, . . . ,𝐶6. We refer the reader to Figure 2-1 for a summary of the definitions of all

variables defined in this section.
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Parameter Definition
𝑇𝑢,𝑣 Transcript of communication between 𝑢 and 𝑣 according to 𝑢
𝐺𝑢,𝑣 Size of longest common prefix of 𝑇𝑢,𝑣 and 𝑇𝑣,𝑢 (in chunks)
𝐵𝑢,𝑣 max(|𝑇𝑢,𝑣 |, |𝑇𝑣,𝑢 |)−𝐺𝑢,𝑣
𝐺* min(𝑢,𝑣)∈𝐸𝐺𝑢,𝑣
𝐻 * max𝑢max𝑣∈𝒩 (𝑢) |𝑇𝑢,𝑣 |
𝐵* 𝐻 * −𝐺*
𝜙𝑢,𝑣 Meeting points potential between 𝑢 and 𝑣
EHC Number of errors and hash collisions that have occurred overall
𝜑 Overall potential in network

Figure 2-1: Definition of terms related to the potential function 𝜑.

The meeting-points mechanism and potential 𝜙𝑢,𝑣

In what follows, we briefly recall the meeting-points mechanism and why we use it. We

defer the formal definition of 𝜙𝑢,𝑣 and all the proofs regarding it to Section 2.4.

If two adjacent parties 𝑢 and 𝑣 have 𝑇𝑢,𝑣 , 𝑇𝑣,𝑢 (or equivalently, 𝐵𝑢,𝑣 > 0), then

they should not simulate further with each other without fixing the differences in their

transcripts. If 𝑢 and 𝑣 knew which of them needs to roll back and by how much, they could

simply roll back the simulated chunks until 𝑇𝑢,𝑣 = 𝑇𝑣,𝑢 , at which point they can continue

the simulation. However, they do not know this information. Furthermore, they cannot

afford to communicate |𝑇𝑢,𝑣 | or |𝑇𝑣,𝑢 |, since these numbers potentially require log |Π| bits

to communicate.

This problem is solved via the “meeting-points” mechanism [70] which is designed to

roll back 𝑇𝑢,𝑣 and 𝑇𝑣,𝑢 to a point where 𝑇𝑢,𝑣 = 𝑇𝑣,𝑢 , while only requiring 𝑂(𝐵𝑢,𝑣) exchanges

of hashes between parties 𝑢 and 𝑣, and guaranteeing that (in the absence of error) neither

𝑢 nor 𝑣 truncate their transcript too much. That is, 𝑢 (resp. 𝑣) truncates 𝑇𝑢,𝑣 (resp. 𝑇𝑣,𝑢) by

at most 2𝐵𝑢,𝑣 chunks. While errors and hash collisions can mess up this guarantee, each

error or hash collision causes only a bounded amount of damage. Since the adversary’s

allowed error rate is sufficiently small, the simulation overcomes this damage with high

probability.

As mentioned above, our analysis of the meeting-points mechanism essentially follows
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that of Haeupler [70] after adopting it to our construction, where the meeting-points

mechanism is interleaved over several iterations, rather than performed all at once. Spe-

cifically, for each link (𝑢,𝑣) ∈ 𝐸 we define a “meeting-points potential” term 𝜙𝑢,𝑣 that

approximately measures the number of hash exchanges it will require for 𝑢 and 𝑣 to roll

back 𝑇𝑢,𝑣 and 𝑇𝑣,𝑢 to a common point. While our analysis of how 𝜙𝑢,𝑣 changes in the

meeting-points phase naturally repeats the analysis of [70], 𝜙𝑢,𝑣 can also change during

the other phases of the protocol, especially when noise is present. Our analysis bounds

the change in 𝜙𝑢,𝑣 in all the phases as a function of the errors and hash collisions that

occur throughout the iteration. This allows us to bound the change in the overall po-

tential 𝜑. We bound the changes in 𝜙𝑢,𝑣 in the Flag Passing, Rewind, and Simulation

phases in Claim 2.4.1. The changes in 𝜙𝑢,𝑣 in the Meeting Points phase are addressed in

Lemma 2.4.6 (analogous to Lemma 7.4 in [70]) and Proposition 2.4.4, and are combined to

establish how the potential 𝜑 changes in the Meeting Points phase (Lemma 2.4.11).

We defer the formal definition of the meeting-points mechanism and the proofs of the

relevant properties to Section 2.4.

Bounding the potential increase and communication per iteration

In this section we prove the following technical lemma that says that the potential 𝜑

(Eq. (2.6)) increases in each iteration by at least 𝐾 . Furthermore, the amount of communi-

cation performed during a single iteration can be bounded by roughly 𝐾 times the amount

of links (i.e., pairs of parties) that suffer from channel-noise during this iteration, or links

that experienced an event of hash-collision during this iteration.

Lemma 2.2.3. Fix any iteration of Algorithm 1 and let ℓ be the number of links with errors or

hash collisions on them during this iteration. Then,

1. The potential 𝜑 increases by at least 𝐾 in this iteration.

2. The amount of communication in the entire network during this iteration (CC) satisfies

CC ≤ 𝛼(1 + ℓ)𝐾,

61



where 𝛼 is a sufficiently large constant.

We turn to proving the above lemma. Let us begin by giving a high-level overview.

Proof Overview We proceed to prove the lemma in two conceptual steps.

1. First, we consider iterations that have no errors or hash collisions.

We first establish that the communication in this case is at most𝑂(𝐾). To this end, we

first argue that the communication in the meeting-points, flag-passing, and rewind

phases is always bounded by𝑂(𝐾) (Proposition 2.2.4), regardless of errors committed

by the adversary. Therefore, it suffices to bound the communication in the simulation

phase. If every party is simulating the same chunk, then the communication is easily

bounded by 𝑂(𝐾). However, if the parties are simulating many different chunks,

then the communication could be much larger. This is where the flag-passing phase

is useful: if there are no errors, then the flags will prevent all parties from simulating

when two parties are at different chunks.

We next establish that the potential increases by at least 𝐾 , as follows. If the parties

simulate, then since there are no errors or hash collisions,
∑︀
𝐺𝑢,𝑣 increase by 𝐾 , and

none of the other terms change. If the parties do not simulate, then either some

adjacent parties did not pass their consistency check, in which case 𝜙𝑢,𝑣 increases by

Ω(1) (Lemma 2.4.6) and none of the other terms change, or some parties rewind, in

which case 𝐵* decreases and none of the other terms change.

2. Next,we consider iterations that have errors or hash collisions.

We first argue that errors and hash collisions increase 𝜑 by at least 𝐾 . To this end,

note that errors may cause some terms of 𝜑 to decrease, but this is compensated for

by the accompanying increase in EHC, and since 𝐶7 is set to be large enough, even

though some of the terms decrease, overall the potential increases by at least 𝐾 .

We would then like to argue that the communication increases by at most 𝑂(𝐾),

though unfortunately, this claim is false. The communication in an iteration can
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actually greatly exceed 𝑂(𝐾), though we show that in these cases, there were many

errors or hash collisions in the iteration. Specifically, we argue that each error or

hash collision individually does not cause too much extra communication. This is

formalized in Lemma 2.2.9.

Iterations with no errors or hash collisions First, we prove a simple proposition, which

says that the communication in the meeting-points, flag-passing, and rewind phases is

bounded. This reduces bounding the overall communication in an iteration to bounding

the communication in the corresponding simulation phase.

Proposition 2.2.4. The communication during the flag-passing and rewind phases is 𝑂(𝑚) in

total, and the communication in the meeting-points phase is 𝑂(𝐾), regardless of errors or hash

collisions in the iteration.

Proof. In the meeting-points phase, each adjacent pair of parties exchange hashes of their

transcripts (see Algorithm 11), where the output length of the hash functions is Θ(𝐾/𝑚).

Hence, there is 𝑂(𝐾) communication in the meeting-points phase.

The communication pattern in the flag-passing phase is deterministic and consists of two

messages per link of a the spanning tree 𝒯 , hence it is upper bounded by 𝑂(𝑛) = 𝑂(𝑚).

Finally, each link can have at most one valid “rewind” message in the rewind phase (note

that messages that are inserted do not count towards our communication bound).

Lemma 2.2.5. Suppose that there are no errors or hash collisions in a single iteration of

Algorithm 1. Then the overall communication in the network is 𝑂(𝐾).

Proof. By Proposition 2.2.4, the communication in all the phases except of the simulation

phase are bounded by𝑂(𝐾), and we are left to bound the communication in the simulation

phases

In the simulation phase, each party either sends ⊥ or simulates a specific chunk. Say

that 𝑣 simulates chunk number 𝑛𝑣 with all its neighbors if it didn’t send ⊥ (however,

its neighbors may simulate a different chunk). Each chunk contains at most 5𝐾 bits of
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communication, hence, the total amount of communication in the simulation phase is

bounded by 5𝐾 times the number of distinct chunk numbers being simulated in the

network. In other words, it is bounded by 5𝐾 · |{𝑛𝑣 | 𝑣 ∈ 𝑉 }|, up to additional 2𝑚 ⊥

“messages” (which in our case are merely 2𝑚 bits).

Therefore, to finish the proof it remains to argue that if there are no errors or hash

collisions then |{𝑛𝑣 | 𝑣 ∈ 𝑉 }| = 1 and the potential function increases by at least 𝐾 in the

iteration. We consider several different cases according to the state of the network at the

beginning of the iteration, specifically, whether the parties have set 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = 1 or not.

Case 1: At the end of the flag-passing phase, 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 for every party 𝑢. Since

there were no errors or hash collisions, the fact that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 means that each

party 𝑢 had 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 = 1 before the flag-passing phase. This follows since by the definition

of the flag-passing phase, for every party 𝑣 ∈ 𝑉 , 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 =
⋀︀
𝑢∈𝑉 𝑠𝑡𝑎𝑡𝑢𝑠𝑢. Note that,

since we assume that none of the parties have 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0, and we assume no errors,

the are no ⊥ symbols sent in the simulation phase.

The fact that each party 𝑢 has 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 = 1 implies that for all 𝑣,𝑤 ∈ 𝒩 (𝑢), it holds that

|𝑇𝑢,𝑣 | = |𝑇𝑢,𝑤|. Further, for any 𝑣 ∈ 𝒩 (𝑢), 𝑇𝑢,𝑣 = 𝑇𝑣,𝑢 , or otherwise the hashes would indicate

a mismatch and the parties would have set 𝑠𝑡𝑎𝑡𝑢𝑠 = 0. Putting these two facts together, we

get that 𝐺* =𝐻 * and hence 𝐵* = 0, which implies that indeed |{𝑛𝑣 | 𝑣 ∈ 𝑉 }| = 1, as desired.

Case 2: At the end of the flag-passing phase, some party 𝑢 has 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0. Since

𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 for some party 𝑢, there must be some party 𝑣 such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑣 = 0, and

hence we have that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 for all 𝑢 ∈ 𝑉 . Since 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 for all parties 𝑢,

we know that none of the parties will simulate (they will only send ⊥s) and hence the

overall communication in the iteration will be 2𝑚 =𝑂(𝐾).

We next show that the potential increases by at least 𝐾 in any such iteration.
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Lemma 2.2.6. Suppose that there are no errors or hash collisions in a single iteration of

Algorithm 1. Then the potential 𝜑 increases by at least 𝐾 during this iteration.

Proof. We consider the status of the network at the iteration according to the next three

cases.

Case 1: At the end of the flag-passing phase, 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 for every party 𝑢. Recall

that since there were no errors or hash collisions, the fact that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 means

that each party 𝑢 had 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 = 1 before the flag-passing phase. This in turn implies that

for all 𝑣,𝑤 ∈ 𝒩 (𝑢), it holds that |𝑇𝑢,𝑣 | = |𝑇𝑢,𝑤|. Further, for any 𝑣 ∈ 𝒩 (𝑢), 𝑇𝑢,𝑣 = 𝑇𝑣,𝑢, or

otherwise the hashes would indicate a mismatch and the parties would have set 𝑠𝑡𝑎𝑡𝑢𝑠 = 0.

Consequently, we have 𝐺* =𝐻 * and 𝐵* = 0. The fact that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 for every party 𝑢,

together with the fact that 𝐵* = 0, implies that all parties simulate the same chunk, and

the absence of errors in the communication implies that this simulation is done correctly.

Hence, each 𝑇𝑢,𝑣 is extended correctly according to Π. This in turn implies that 𝐺𝑢,𝑣

increases for each (𝑢,𝑣) ∈ 𝐸, which causes 𝜑 to increase by 𝐾 .

Next, we argue that none of the other terms of 𝜑 decrease. We first argue that 𝐵*

remains zero at the end of the iteration. To this end, note that since all parties simulate one

chunk in each of their pairwise transcripts, we still have the property that |𝑇𝑢1,𝑣1
| = |𝑇𝑢2,𝑣2

|

for all (𝑢1,𝑣1) ∈ 𝐸 and (𝑢2,𝑣2) ∈ 𝐸 after the simulation phase. Since there were no errors,

we also have that 𝑇𝑢,𝑣 = 𝑇𝑣,𝑢 for all (𝑢,𝑣) ∈ 𝐸. As noted before, this gives us that 𝐵* = 0 after

the simulation phase, and since there are no errors it remains zero after the rewind phase

as well.

It remains to argue that 𝜙𝑢,𝑣 does not increase for any (𝑢,𝑣) ∈ 𝐸. By Proposition 2.4.4

we know that 𝜙𝑢,𝑣 does not increase in the meeting-points phase. Furthermore, it does not

increase in the flag-passing, simulation or rewind phases either, by Claim 2.4.1.

Putting this all together, we have that each 𝐺𝑢,𝑣 increases by one, 𝐵* does not change

and 𝜙𝑢,𝑣 does not increase, which implies that the potential 𝜑 increases by at least 𝐾

overall, as desired.
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Case 2: Some party 𝑢 has a neighbor 𝑣 ∈ 𝒩 (𝑢) s.t. 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points” after

the meeting-points phase. Since 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points”, 𝑢 has 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 = 0 after

the meeting-points phase, and therefore, given the lack of errors, each party 𝑥 ∈ 𝑉 , will

set 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑥 = 0 after the flag-passing phase. Note that since none of the parties are

simulating the next chunk during the simulation phase, it follows that 𝜑 does not change

in the simulation phase. Next note that the potential increases by at least 5𝐾 during the

meeting-points phase (Lemma 2.4.11). Since the potential does not change during the

flag-passing phase, it remains to argue that the potential function does not decrease by

much during the rewind phase.

In the rewind phase, we may have parties that send rewinds. Even though these

rewinds seem to take us in the right direction, they may cause a small decrease in some

terms of the potential. However, we argue that in the rewind phase the potential decreases

by at most 𝐾 , and thus in total, 𝜑 increases by at least 5𝐾 −𝐾 = 4𝐾 , as desired.

To this end, first note that since we limit the number of truncations per link to at most

one, it follows that (𝐾/𝑚)
∑︀

(𝑥,𝑦)∈𝐸𝐺𝑥,𝑦 can decrease by at most 𝐾 . It remains to argue that

𝐵* and {𝜙𝑥,𝑦}(𝑥,𝑦)∈𝐸 do not increase in the rewind phase.

The fact that 𝜙𝑥,𝑦 does not increase follows from Claim 2.4.1. To argue that 𝐵* does

not increase, note that since no party simulates in this iteration, 𝐻 * does not increase. We

claim a party 𝑥 will never truncate a transcript 𝑇𝑥,𝑦 such that |𝑇𝑥,𝑦 | = 𝐺*. Clearly 𝑥 will not

send a rewind message to 𝑦, since there is no 𝑦* such that |𝑇𝑥,𝑦* | < |𝑇𝑥,𝑦 | by the definition

of 𝐺*. We also claim that 𝑦 will not send a rewind message to 𝑥. If |𝑇𝑦,𝑥| = |𝑇𝑥,𝑦 | = 𝐺*, then

this follows because there is no 𝑥* such that |𝑇𝑦,𝑥* | < |𝑇𝑦,𝑥|. Otherwise if |𝑇𝑦,𝑥| , |𝑇𝑥,𝑦 |, then

since there were no hash collisions or errors in the meeting-points phase we conclude that

𝑠𝑡𝑎𝑡𝑢𝑠𝑦,𝑥 = “meeting points”. Therefore 𝑦 will not send a rewind message to 𝑥.

Case 3: At end of the meeting-points phase, 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “simulate” for all (𝑢,𝑣) ∈ 𝐸, yet

at the end of the flag-passing phase, some party 𝑢 has 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0. Again, since

𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 for some party 𝑢, there must be some party 𝑣 such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑣 = 0,

and hence we have that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 for all 𝑢 ∈ 𝑉 . No party simulates on the next
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simulation phase (they will only send ⊥s), hence, the potential does not change during the

simulation phase. In addition, the potential does not decrease in the meeting-points phase

(Lemma 2.4.11). Furthermore, the potential remains unchanged during the flag-passing

phase. Therefore, all that remains to show is that 𝜑 increases in the rewind phase by at

least 𝐾 .

Recall that by Claim 2.4.1, 𝜙𝑢,𝑣 will not increase during the rewind phase for any

(𝑢,𝑣). Furthermore,
∑︀
𝐺𝑢,𝑣 can decrease by at most 𝑚 in the rewind phase, which means

(𝐾/𝑚)
∑︀
𝐺𝑢,𝑣 decreases by at most 𝐾 . Therefore, it suffices to show that 𝐵* decreases by 1,

and therefore that 𝜑 increases by 𝐶1𝐾 −𝐾 ≥ 𝐾 , since 𝐶1 ≥ 2.

To this end, we first show that 𝐺* does not decrease, and then show that 𝐻 * decreases

by 1. For the former, note that a party 𝑢 will never issue a rewind to a party 𝑣 for which

|𝑇𝑢,𝑣 | = 𝐺*, since this would mean that there is some party 𝑤 ∈ 𝒩 (𝑢) such that |𝑇𝑢,𝑤| < 𝐺*,

which contradicts the definition of 𝐺*. Therefore, 𝐺* does not decrease.

To argue that 𝐻 * decreases by 1, fix a party 𝑢 and a neighbor 𝑣 such that |𝑇𝑢,𝑣 | =𝐻 *. We

argue that during the rewind phase party 𝑢 will rewind this transcript by one chunk. The

proof goes by induction on the distance between 𝑢 and a party whose 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 ,𝐻 *. To

this end, let 𝑆* = {𝑣 : ∃𝑤 ∈ 𝒩 (𝑣) : |𝑇𝑣,𝑤| < 𝐻 *} be the set of parties that have some transcript

below chunk 𝐻 *.

Claim 2.2.7. 𝑆* is non-empty.

Proof. Indeed, given that all parties have 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 0 after the flag-passing phase,

despite all pairs having 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “simulate”, it must hold that some party sees an

inconsistency in the lengths of the simulated transcript with two of its neighbors (Line 8).

Namely, for some party 𝑝, there are neighbours 𝑤,𝑤′ such that |𝑇𝑝,𝑤| , |𝑇𝑝,𝑤′ |. It follows

that |𝑇𝑣,𝑤| =𝐻 * cannot hold for all (𝑣,𝑤) ∈ 𝐸.

Let 𝑑(𝑢,𝑆*) denote the shortest distance in the graph 𝐺 between a party 𝑢 and some

party in 𝑆*, where 𝑑(𝑢,𝑆*) = 0 if and only if 𝑢 ∈ 𝑆*.

Claim 2.2.8. Party 𝑢 truncates 𝑇𝑢,𝑣 after at most 𝑑(𝑢,𝑆*) + 1 rounds of the rewind phase.
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Proof. Note that if 𝑑(𝑢,𝑆*) = 0, i.e., 𝑢 ∈ 𝑆*, then in the next round of the rewind phase for

every neighbor 𝑤 ∈ 𝒩 (𝑢) we have |𝑇𝑢,𝑤| < 𝐻 *. This is the case since 𝑢 has 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘𝑢 < 𝐻 *

by the definition of 𝑆*. Then, 𝑢 sends a rewind message to any 𝑤 with |𝑇𝑢,𝑤| = 𝐻 *, and

truncates that transcript (Line 24).

Next we claim that if 𝑑(𝑢,𝑆*) = 𝑗 for some 𝑗 > 0 at the beginning of some round 𝑟 in

the rewind phase, then in the beginning of round 𝑟 + 1 it holds that 𝑑(𝑢,𝑆*) = 𝑗 − 1. Let

𝑢,𝑎1, 𝑎2, . . . , 𝑎𝑗 ∈ 𝑆* be the vertices in a shortest path from 𝑢 to 𝑆*. Note that for any two

consecutive parties along this path, |𝑇𝑎𝑖 ,𝑎𝑖−1
| = |𝑇𝑎𝑖−1,𝑎𝑖 | =𝐻

*, and the same holds for 𝑢 and 𝑎1.

This is true since 𝑢,𝑎1, . . . , 𝑎𝑗−1 < 𝑆*, and since and 𝑠𝑡𝑎𝑡𝑢𝑠𝑎𝑗 ,𝑎𝑗−1
= 𝑠𝑡𝑎𝑡𝑢𝑠𝑎𝑗−1,𝑎𝑗 = “simulate”,

which means any two parties are consistent with their transcripts.

Since 𝑎𝑗 ∈ 𝑆* we have that 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘𝑎𝑗 < 𝐻
* and it follows that in round 𝑟, party 𝑎𝑗

sends a rewind message to 𝑎𝑗−1 (Line 24). We stress that no rewind message has yet been

sent on the link (𝑎𝑗 , 𝑎𝑗−1). Indeed, if this were not the case, then we would have gotten

|𝑇𝑎𝑗 ,𝑎𝑗−1
| < 𝐻 * already in a prior round where the rewind message took place. But this

contradicts 𝑎𝑗−1 < 𝑆
* in the beginning of round 𝑟. Hence, by the end of round 𝑟 we have

that |𝑇𝑎𝑗 ,𝑎𝑗−1
| = |𝑇𝑎𝑗−1,𝑎𝑗 | = 𝐻 * − 1 and thus 𝑎𝑗−1 ∈ 𝑆*. This means that 𝑑(𝑢,𝑆*) = 𝑗 − 1 at the

beginning of round 𝑟 + 1.

By employing the same argument inductively we get that, if at the beginning of the

rewind phase 𝑑(𝑢,𝑆*) = 𝑗, then after 𝑗 rounds we have that 𝑢 ∈ 𝑆*, and after the (𝑗 + 1)− 𝑡ℎ

round, party 𝑢 has truncated 𝑇𝑢,𝑣 by at least one chunk, as needed.

Showing that 𝐻 * has decreased by 1 is now straightforward. For any party 𝑢 we note

that 𝑑(𝑢,𝑆*) can never exceed 𝑛− 1, which is an upper bound of the diameter of 𝐺. Since

the rewind phase consists of 𝑛 rounds, after its (𝑛− 1)-th round, all parties are in 𝑆*, and

by the end of the 𝑛-round of the rewind phase, all pairwise transcripts are of length at

most 𝐻 * − 1. This completes the proof.

Iterations with errors and hash collisions

Lemma 2.2.9. Let ℓ be the number of links that experienced either errors or hash collisions
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during a given iteration, and assume ℓ ≥ 1. Then the increase in the potential 𝜑 in this iteration

is at least Ω(𝐶7ℓ𝐾), and the amount of communication in this iteration is at most 𝑂(ℓ𝐾).

Proof. Let ℓ1 denote the number of links with errors and hash collisions in the meeting-

points phase, let ℓ2 denote the number of links with errors in the flag-passing phase, let

ℓ3 denote the number of links with errors in the simulation phase, and let ℓ4 denote the

number of links with errors in the rewind phase. Then ℓ ≤ ℓ1 + ℓ2 + ℓ3 + ℓ4.

Let us begin with bounding the communication in this iteration. By Proposition 2.2.4,

the communication in all the phases except for the simulation phase are bounded by 𝑂(𝐾),

and we are left to bound the communication in the simulation phase. As explained in the

proof of Lemma 2.2.5, the amount of communication in the simulation phase is bounded

by 5𝐾 times the number of distinct chunk numbers being simulated in the network (plus

2𝑚 for⊥s). We show that this number is proportional to the number links that experienced

errors or hash collisions during that same iteration.

Let 𝒯 be the spanning tree used for the flag passing in Algorithm 3. Consider the

subgraphℋ of 𝒯 induced by only keeping an edge (𝑢,𝑣) ∈ 𝒯 if 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 =

1 and |𝑇𝑢,𝑣 | = |𝑇𝑣,𝑢 |. Recall that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 implies that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 = 1, and thus for any 𝑢

with 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 we know that |𝑇𝑢,𝑣 | = |𝑇𝑢,𝑤| for all 𝑤 ∈ 𝒩 (𝑢) and in particular for all

𝑤 such that (𝑢,𝑤) ∈ ℋ. By a straightforward induction, one can argue that for any pair of

parties 𝑢 and 𝑥 that are in the same connected component of ℋ, it holds that |𝑇𝑢,𝑣 | = |𝑇𝑥,𝑦 |

for any 𝑣,𝑦 s.t. (𝑢,𝑣) ∈ ℋ and (𝑥,𝑦) ∈ ℋ. Hence, in any single connected component ofℋ,

at most one chunk of Π is being simulated. Note that there are components in ℋ with

no chunk being simulated. Each such connected component consists of a single isolated

variable 𝑢 such that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0.

Claim 2.2.10. Let 𝑆 denote the set of connected components in ℋ such that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1,

and let 𝑠 = |𝑆 | be the number of components in 𝑆. Then,

𝑠 − 1 ≤ ℓ1 + ℓ2.
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Proof. We claim that there are at least 𝑠−1 edges (𝑢,𝑣) in 𝒯 ∖ℋ such that 𝑣 is in a component

in 𝑆 and ℓ(𝑢) < ℓ(𝑣), where recall that ℓ(𝑢) is defined to be the distance of 𝑢 from 𝜌, which

is the root of 𝒯 , plus 1. Towards seeing this, note that each connected component in 𝑆 is a

subtree of 𝒯 , and since they are disjoint, at least 𝑠 − 1 many of them do not have 𝜌 as the

root of the subtree. Let 𝑣 be such a root, and let 𝑢 be its parent in 𝒯 . This satisfies the

desired conditions.

Fix such an edge (𝑢,𝑣). We argue that there was an error on the link (𝑢,𝑣) in either the

meeting-points or flag-passing phases, establishing the claim. Since (𝑢,𝑣) is an edge in

𝒯 ∖ℋ, we know that either 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0, 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 0, or |𝑇𝑢,𝑣 | , |𝑇𝑣,𝑢 |; otherwise,

(𝑢,𝑣) would have been in ℋ. However, we know that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 1, since 𝑣 is in

a connected component in 𝑆 and by the definition of 𝑆. Hence, it can either be that

𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 or that |𝑇𝑢,𝑣 | , |𝑇𝑣,𝑢 |.

If |𝑇𝑢,𝑣 | , |𝑇𝑣,𝑢 |, then there must have been an error or hash collision in the meeting-

points phase, otherwise we would have 𝑠𝑡𝑎𝑡𝑢𝑠𝑣 = 0 implying 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 0, which is a

contradiction. If, on the other hand, 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0 holds, then there must have been an

error in the downward part of the flag-passing phase, since 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 1, so clearly 𝑣

did not correctly receive the flag that 𝑢 sent.

As argued above, the communication during the simulation phase is bounded by 𝑠 ·5𝐾+

2𝑚: each connected component in 𝑆 jointly simulates a single chunk, and components

outside of 𝑆 (which consists of a single party 𝑢 such that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0) do not simulate;

the 2𝑚 term comes from potential ⊥messages. The above claim implies that 𝑠 ≤ ℓ1 + ℓ2 =

𝑂(ℓ), leading to communication of𝑂(ℓ𝐾) in the simulation phase. Since all the other phases

have communication 𝑂(𝐾), the communication in the entire iteration is a as claimed.

To finish the proof of the Lemma it remains to bound the increase in the potential 𝜑.

Consider the various phases in the iteration, and the terms of 𝜑 given by Eq. (2.6).

• Meeting Points: Lemma 2.4.11 guarantees that the potential 𝜑 goes up by at least

5𝑐𝐾 + 0.4𝐶7ℓ1𝐾 , where 𝑐 is the number of pairs of parties (𝑢,𝑣) such that (𝑢,𝑣) ∈ 𝐸

and 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 or 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 is “meeting points” at the end of the Meeting Points phase.
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• Flag Passing: No direct potential change happens in this phase, other than any

increase in potential caused by an error induced by the adversary. So the potential in

this phase increases by at least 𝐶7ℓ2𝐾 .

• Simulation: The term
∑︀
𝐺𝑢,𝑣 cannot decrease in the simulation phase, since no

transcript is being truncated in this phase. Claim 2.4.1 establishes that 𝜙𝑢,𝑣 increases

by 𝐶3 in the simulation phase only if there was an error on the link (𝑢,𝑣) somewhere

in this iteration. Otherwise, it does not increase. Hence, the term −
∑︀
𝐾 · 𝜙𝑢,𝑣

decreases by at most 𝐾𝐶3ℓ. The third term,−𝐶1𝐾𝐵
*, decreases by at most 𝐾𝐶1.

Indeed, 𝐵* = 𝐻 * −𝐺* increases by at most 1 in the simulation phase, since 𝐻 * can

increase by 1 but 𝐺* cannot decrease, since no party truncates in this phase. The

fourth term, 𝐶7𝐾 · EHC, increases by at least 𝐶7ℓ3𝐾 . Thus in total, the potential

function increases during the simulation phase by at least −𝐶3ℓ𝐾 −𝐶1𝐾 +𝐶7ℓ3𝐾 .

• Rewind: The term (𝐾/𝑚)
∑︀
𝐺𝑢,𝑣 can decrease in the rewind phase by at most 𝐾 , since

each party rewinds a transcript at most one chunk. The second term −
∑︀
𝐾 ·𝜙𝑢,𝑣

decreases by at most 𝐾𝐶3ℓ, again, by Claim 2.4.1. The third term −𝐶1𝐾𝐵
* decreases

by at most 𝐶1𝐾 since 𝐵* increases by at most 1 in the rewind phase: 𝐺* can decrease

by at most one (since no party rewinds more than one chunk) and 𝐻 * cannot increase.

The fourth term 𝐶7𝐾EHC increases by 𝐶7ℓ4𝐾 .

Putting it all together, we get that in the entire iteration 𝜑 increases by at least

5𝑐𝐾 + 0.4𝐶7ℓ1𝐾 +𝐶7ℓ2𝐾 −𝐶3ℓ𝐾 −𝐶1𝐾 +𝐶7ℓ3𝐾 −𝐾 −𝐶3ℓ𝐾 −𝐶1𝐾 +𝐶7ℓ4𝐾

≥ 5𝑐𝐾 + 0.4𝐶7(ℓ1 + ℓ2 + ℓ3 + ℓ4)𝐾 − 2𝐶3ℓ𝐾 − 2𝐶1𝐾 −𝐾

≥ 5𝑐𝐾 + (0.4𝐶7 − 2𝐶3)ℓ𝐾 − (2𝐶1 + 1)𝐾

where the final inequality follows from the fact that ℓ1 + ℓ2 + ℓ3 + ℓ4 ≥ ℓ. Since ℓ ≥ 1 (by our

assumption), we can take 𝐶7 to be sufficiently large compared to 𝐶3 and 𝐶1, and get that

the change in 𝜑 is Ω(𝐶7ℓ𝐾), as desired.
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We can finally complete the proof of Lemma 2.2.3.

Proof of Lemma 2.2.3. We first recall that Lemma 2.2.6 establishes that, in the absence of

errors and hash collisions, the potential increases by 𝐾 and Lemma 2.2.5 bounds the total

communication by𝑂(𝐾). Now assume that there is at least one error or hash collision in the

iteration, so ℓ ≥ 1. Then Lemma 2.2.9 shows that the potential increases by Ω(𝐶7ℓ𝐾), and

that the communication in the iteration is at most 𝑂(ℓ𝐾). By taking 𝐶7 to be sufficiently

large, we can see that 𝜑 increases by at least 𝐾 while the communication is bounded by

𝑂((ℓ + 1)𝐾), as required.

2.2.5 Bounding hash collisions and communication

In this section we prove that the number of hash collisions throughout the entire simulation

is bounded by 𝑂(𝜀|Π|) with high probability, where |Π| is the number of chunks in the

original, noiseless protocol.

The main lemma we prove in this part of the chapter is the following.

Lemma 2.2.11. Let 𝜀 > 0 be a sufficiently small constant. Suppose a hash function ℎ in

Algorithm 1 with hash collision 𝑝 where 𝑝 < 1
10𝐶6

= 2−Θ(𝐾/𝑚). Suppose there is an oblivious

adversary, and let Err denote the number of channel errors the adversary makes. Let CC denote

the total communication in the entire execution of Algorithm 1), and EHC denote the joint

number of errors and hash collisions during that execution. Let 𝑘 be a real number such that

1/𝜀2 ≥ 𝑘 ≥ 10𝐶6. Then, with probability 1− 𝑝Ω(𝑘𝜀|Π|), we have that

CC ≤ 200𝛼|Π|𝐾 and EHC ≤ (𝑘 + 1) · (200𝛼𝜀)|Π|,

or otherwise Err > 𝜀
𝐾CC, where 𝛼 is the constant multiplying the communication complexity of

an iteration in Lemma 2.2.3.

Overview and A Note on Oblivious Adversaries We will use hash functions with con-

stant collision probability 𝑝 = 2−Θ(𝐾/𝑚), which is far higher than the adversarial error rate
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of 𝜀/𝐾 when 𝐾 = 𝑚. Despite this, we can still bound the number of hash collisions that

occur in the protocol overall by 𝑂(𝜀|Π|). This will follow from the observation that hash

collisions are one-sided—they can only happen when the transcripts being hashed are

different. Since the meeting points protocol lets the parties correct their errors in relatively

few steps, there will be few opportunities for hash collisions. A similar approach is taken

in [70] in the two-party setting.

Now we give more details. Fix two parties 𝑢 and 𝑣. Note that 𝜙𝑢,𝑣 roughly measures

how many hashes must be passed between the two parties to get back to a consistent

transcript, with the property that 𝑢 and 𝑣 have a consistent transcript when 𝜙𝑢,𝑣 = 0

(Proposition 2.4.2). The main idea is that the potential function 𝜙𝑢,𝑣 can only increase by

at most a constant during any single exchange of meeting points, even in the presence

of errors or hash collisions. Furthermore, in the absence of errors or hash collisions, it

decreases by some constant. Finally, if 𝜙𝑢,𝑣 = 0, then it can only increase above 0 if an error

is introduced between 𝑢 and 𝑣, because hash collisions do not occur when the transcripts

match.

The main approach of this section is to argue that 𝜙𝑢,𝑣 should not be nonzero too

often. For intuition, suppose the adversary starts by making some small number of errors,

which makes 𝜙𝑢,𝑣 equal to some number 𝑁 . Then the number of iterations in which 𝜙𝑢,𝑣

is nonzero will be small as long as hash collisions happen infrequently enough that the

resulting increase in 𝜙𝑢,𝑣 does not outweigh the decrease of 𝜙𝑢,𝑣 in a typical iteration,

where a hash collision does not happen. This will follow from the independence of hash

collisions across iterations and links of the network.

The hash collisions are independent because the adversary is oblivious: they place

their errors before seeing the execution of the protocol. What will specifically be useful

to us is that they place their errors without knowing the randomness 𝑆 used to seed the

hash function. Since the random seed for the hash ℎ is independently generated for each

pair of parties (𝑢,𝑣) ∈ 𝐸 and each iteration 𝑖 ∈ [100|Π|], the events of hash collisions are

independent. This lets us bound the number of hash collision with high probability by
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using a Chernoff bound.

The only property of an oblivious adversary we require here is that the error pattern is

independent of the seeds used throughout the protocol. Hence, the results in this section

hold for any oblivious adversary, regardless of whether the adversary is additive or fixing

(see Section 2.1.2 for the definitions of these adversaries). This is because, at the beginning

of any iteration 𝑖, every partial transcript 𝑇𝑢,𝑣(𝑖) is a deterministic function of the inputs

to the protocol, the errors that the adversary committed obliviously, and the hash seeds

for all links (𝑢,𝑣) and iterations 𝑗 = 1, . . . , 𝑖 −1. Additionally, in Algorithm 1, the seeds used

in iteration 𝑖 are sampled independently of all of the above.

Proof of Lemma 2.2.11 In analogy with the terminology of dangerous rounds from [70],

we define the notion of dangerous triples as follows.

Definition 2.2.12 (Dangerous Triples). Let 𝑖 be an iteration of Algorithm 1, and let 𝑢 and 𝑣

be parties such that (𝑢,𝑣) ∈ 𝐸. Call the triple (𝑖,𝑢,𝑣) dangerous if 𝐵𝑢,𝑣 > 0 at the beginning of

iteration 𝑖.

Now we state the lemma that we will prove in this section, which will be the main

workhorse in proving Lemma 2.2.11.

Lemma 2.2.13. Let 𝜀 > 0 be a sufficiently small constant. Suppose an oblivious adversary,

and suppose the hash collision probability of ℎ is 𝑝 such that 𝑝 < 1
10𝐶6

in Algorithm 11. Let

Err denote the number of errors the adversary makes, CC denote the total communication in

Algorithm 1, and let 𝐷 denote the number of dangerous triples (𝑖,𝑢,𝑣). Let 𝑘 be a real number

such that 1/𝜀2 ≥ 𝑘 ≥ 10𝐶6. Then with probability 1− 𝑝Ω(𝑘𝜀|Π|), we have that

CC ≤ 200𝛼|Π|𝐾 and 𝐷 ≤ 𝑘 · (200𝛼𝜀)|Π|,

or otherwise, Err > 𝜀
𝐾CC, where 𝛼 is the constant multiplying the communication complexity of

an iteration in Lemma 2.2.3.
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Note that a hash collision can only occur between 𝑢 and 𝑣 in an iteration 𝑖 ∈ [100|Π|]

when (𝑖,𝑢,𝑣) is a dangerous triple, by definition. Hence, the proof of Lemma 2.2.11 from

Lemma 2.2.13 follows easily:

Proof of Lemma 2.2.11. Suppose Err ≤ 𝜀
𝐾CC, and recall that log(1/𝑝) = Θ(𝐾/𝑚). By Lemma 2.2.13,

the communication of Algorithm 1 is upper bounded by 200𝛼|Π|𝐾 with probability

1− 𝑝Ω(𝑘𝜀|Π|). When this occurs and also Err ≤ 𝜀
𝐾CC, this implies that the number of errors

is at most 200𝛼𝜀|Π|. Furthermore, the number of hash collisions is at most the number of

dangerous triples, which is at most 𝑘 · (200𝛼𝜀)|Π|, again by Lemma 2.2.13. This concludes

the proof that EHC is bounded by (𝑘 + 1)(200𝛼𝜀)|Π|.

The first part of Lemma 2.2.13 argues that the communication complexity CC is boun-

ded with high probability. First we will argue that if the communication complexity is too

large, then the number of dangerous triples must be very large with respect to the number

of errors the adversary can introduce. Then, we establish that the number of dangerous

triples can only be so large if the fraction of hash collisions in these triples is too large,

which happens with low probability.

Lemma 2.2.14. Consider a run of Algorithm 1. Denote the number of dangerous triples in this

run by 𝐷, and the number of errors by Err. Suppose that the communication complexity in

this run satisfies CC > 200𝛼|Π|𝐾 , where 𝛼 is the constant multiplying the communication in

Lemma 2.2.3, and suppose that Err ≤ 𝜀
𝐾CC.

If Err > 0, then 𝐷 ≥ 𝛽 · Err, where 𝛽 def= CC
3𝛼𝐾Err ≥

1
3𝛼𝜀 . If Err = 0, then 𝐷 = 0 trivially.

Proof. The final statement follows easily - if there is never any error in the protocol, then

there will never be a point at which any pair of transcripts are mismatched.

Now we prove the statement when Err > 0. We start by summing Lemma 2.2.3 over all

the 100|Π| iterations 𝑖 of Algorithm 1 in order to bound the communication complexity

of the entire protocol. Note that
∑︀
𝑖∈[100|Π|] ℓ ≤ EHC; recall that EHC is the total number of
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errors and hash collisions experienced throughout the entire protocol.

CC ≤
∑︁
𝑖

𝛼(1 + ℓ)𝐾

≤ 𝛼𝐾(100|Π|+ EHC)

≤ 𝛼𝐾
(︂
100|Π|+ CC · 𝜀

𝐾
+𝐷

)︂
where the first inequality is Lemma 2.2.3, and in the last inequality we use the fact that

EHC ≤ 𝜀
𝐾
CC+𝐷

since 𝐷 upper bounds the number of hash collisions, and that the error rate is bounded

by 𝜀/𝐾 . Rearranging, we get that

𝐷 ≥ (1−𝛼𝜀)CC− 100𝛼|Π|𝐾
𝛼𝐾

≥ CC
3𝛼𝐾

= 𝛽Err

where the second inequality follows from the fact that CC > 200𝛼|Π|𝐾 and we take 𝜀

sufficiently small so that 𝛼𝜀 < 1/3 , and the final equality comes from the definition of

𝛽.

Now we proceed with establishing that the probability that 𝐷 is so large with respect

to Err is relatively small. Let 𝜙𝑢,𝑣(𝑖) denote the value of 𝜙𝑢,𝑣 at the beginning of iteration 𝑖.

Towards proving Lemma 2.2.13, define the random variable 𝑋𝑖,𝑢,𝑣 for all (𝑖,𝑢,𝑣) such that

𝜙𝑢,𝑣(𝑖) > 0 as follows:

𝑋𝑖,𝑢,𝑣 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if hash collision occurs between 𝑢 and 𝑣 in iteration 𝑖

0 otherwise
.
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Define the process 𝜓𝑢,𝑣 as follows.

Algorithm 4 The process 𝜓𝑢,𝑣
𝑖← 1,𝜓𝑢,𝑣(1)← 0

for all iterations 𝑖 from 1 to 100|Π| do

if error occurs between 𝑢 and 𝑣 during iteration 𝑖, during any phase then

𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖) + 6𝐶6

else if 𝜙𝑢,𝑣(𝑖) > 0 then

𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖) + 5𝐶6𝑋𝑖,𝑢,𝑣 − 5(1−𝑋𝑖,𝑢,𝑣)

else

𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖)

We remark that 𝜓𝑢,𝑣 updates in such a way that it is always a upper bound on 𝜙𝑢,𝑣 . We

formalize this below.

Lemma 2.2.15. For all iterations 𝑖 in Algorithm 1 and all (𝑢,𝑣) ∈ 𝐸, we have that 𝜓𝑢,𝑣(𝑖) ≥

𝜙𝑢,𝑣(𝑖), where 𝜙𝑢,𝑣(𝑖) denotes the value of the potential 𝜙𝑢,𝑣 at the beginning of iteration 𝑖.

Proof. We prove the claim by induction. Clearly it is true for iteration 𝑖 = 1. Assume now

that it is true for a certain 𝑖. We will show that it is also true for iteration 𝑖 + 1.

If 𝜙𝑢,𝑣(𝑖 + 1) = 0, then the claim follows since in this case 𝜓𝑢,𝑣(𝑖 + 1) ≥ 𝜓𝑢,𝑣(𝑖), and

𝜓𝑢,𝑣(𝑖) ≥ 𝜙(𝑖)𝑢,𝑣 ≥ 0 by induction and since 𝜙𝑢,𝑣(𝑖) is non-negative (Proposition 2.4.2).

Suppose there is an error between 𝑢 and 𝑣 in iteration 𝑖. We know that 𝜙𝑢,𝑣 increases

by at most 6𝐶6 regardless of the number of errors or hash collisions in the entire iteration.

This follows from Lemma 2.4.6 and Claim 2.4.1: Lemma 2.4.6 shows that 𝜙𝑢,𝑣 can increase

by at most 5𝐶6 in the Meeting Points phase, and Claim 2.4.1 shows that 𝜙𝑢,𝑣 can increase

by at most 2𝐶3 in all the other phases combined, so 𝐶6 ≥ 2𝐶3 yields the desired result. So

we conclude that 𝜓𝑢,𝑣(𝑖 + 1) ≥ 𝜙𝑢,𝑣(𝑖 + 1).

Now suppose that 𝜙𝑢,𝑣(𝑖 + 1) > 0 and there is no error between 𝑢 and 𝑣 in iteration

𝑖. Then we must have that 𝜙𝑢,𝑣(𝑖) > 0, since if 𝜙𝑢,𝑣(𝑖) = 0, we would have 𝐵𝑢,𝑣(𝑖) = 0 and,

therefore there is no error or hash collision in iteration 𝑖 between 𝑢 and 𝑣 and hence the
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𝜙𝑢,𝑣 cannot increase (Proposition 2.4.4, Lemma 2.4.6 for the Meeting Points phase, and

Claim 2.4.1 for Flag Passing, Simulation, and Rewind phases). Furthermore, there can

only be a hash collision at iteration 𝑖 between 𝑢 and 𝑣 if 𝜙𝑢,𝑣(𝑖) > 0, which follows from

Proposition 2.4.2 and the observation that hash collisions can only happen if 𝐵𝑢,𝑣(𝑖) > 0

after iteration 𝑖. Hence, 𝜓𝑢,𝑣(𝑖+1) = 𝜓𝑢,𝑣(𝑖)+5𝐶6 whenever there is a hash collision between

𝑢 and 𝑣, and 𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖)− 5 whenever there is no hash collision between 𝑢 and 𝑣.

Since 𝜙𝑢,𝑣 increases by at most 5𝐶6 in the presence of a hash collision and decreases by at

least 5 in the absence of one (Lemma 2.4.6), we conclude the proof.

Let D* denote the set of triples (𝑖,𝑢,𝑣) such that 𝜓𝑢,𝑣(𝑖) > 0. Then we claim that

𝐷 ≤ |D*|. This follows from the fact that 𝜓𝑢,𝑣(𝑖) ≥ 𝐵𝑢,𝑣(𝑖) for all 𝑖 (Lemma 2.2.15 and

Proposition 2.4.2). Our goal will be to prove that |D*| is not much larger than Err, with high

probability. Our strategy will be to use the fact that 𝜓𝑢,𝑣(𝑖) is always nonnegative (again,

an application of Lemma 2.2.15 and Proposition 2.4.2) and that the adversary cannot

make too many errors, to argue that
∑︀

(𝑖,𝑢,𝑣)∈D*𝑋𝑖,𝑢,𝑣 must be bounded below by something

relatively large. If there are many random variables 𝑋𝑖,𝑢,𝑣 , then a Chernoff bound will let

us argue that
∑︀

(𝑖,𝑢,𝑣)∈D*𝑋𝑖,𝑢,𝑣 should not be this large with high probability. However, the

communication in the protocol is not a priori bounded12: if there are many hash collisions

or errors, then the parties might communicate more, which creates more budget for errors.

So our first step is to bound the number of errors that the adversary can commit.

Lemma 2.2.16. Suppose that the adversary is oblivious, and commits Err errors. Denote the

hash collision probability in Algorithm 1 as 𝑝, and suppose that 𝑝 < 1/30𝐶6. Then,

P

[︂
Err ≤ 200𝛼𝜀|Π|

⋁︁
Err >

𝜀
𝐾
CC

]︂
≥ 1− 𝑝Ω(|Π|/𝜀)),

where the probability above is over the random seeds used for hashing throughout the protocol.

Note that while the number of errors that an oblivious, additive adversary commits

is fixed ahead of time, the communication in Algorithm 1 (denoted CC) is dependent on
12Except trivially, by the number of rounds of Algorithm 1 times 𝑚, but this can be a factor 𝑚 more than

𝐶𝐶(Π).
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the seeds, which is why the event in Lemma 2.2.16 is not deterministic. Note that for an

oblivious fixing adversary, the number of errors they commit is also a random variable,

as it depends on the communication pattern of the protocol, since e.g. fixing a link to

communicate a 1 in a certain round does not constitute an error if indeed there is a 1 sent

in that round. In both cases, the probability is over the seeds sampled for the hashes.

Proof of Lemma 2.2.16. Suppose Err > 200𝛼𝜀|Π| and Err ≤ 𝜀
𝐾CC. This implies that CC >

200𝛼|Π|𝐾 , and so applying Lemma 2.2.14 we see that 𝐷 > 1/(3𝛼𝜀)Err. As we noted

previously, |D*| ≥𝐷 (consequence of Lemma 2.2.15 and argument above), and so it suffices

to bound the probability that |D*| exceeds 1/(3𝛼𝜀)Err. By taking 𝜀 small enough with

respect to 𝛼 and 𝐶6, we can safely assume that 3𝛼𝜀 < 1/(10𝐶6), and therefore we can apply

Lemma 2.2.17, which tells us that the probability of this is at most exp(−Ω(Err log(1/𝑝)/𝜀)).

Lemma 2.2.17. Suppose the adversary is oblivious, and let Err be the number of errors com-

mitted during a given instance of the protocol. Let 𝑝 be the hash collision probability of ℎ, and

assume that 𝑝 < 1/30𝐶6. Let 𝑘 be some real number such that 𝑘 ≥ 10𝐶6. Let D* denote the set of

triples (𝑖,𝑢,𝑣) such that 𝜓𝑢,𝑣(𝑖) > 0. Then,

P[|D*| > 𝑘Err] < 𝑝Ω(𝑘Err),

where the Ω hides constants on the order of 1/𝐶6.

Proof. Consider running the protocol after fixing the adversary’s errors with uniformly

random seeds for the hashes. Assume that |D*| > 𝑘Err, and let ̃︀D* ⊆ D* be the subset of

triples where no error occurs. Since the number of errors is Err, we get that |̃︀D*| ≥ (𝑘 −1)Err.

Define

𝜓
def=

∑︁
(𝑢,𝑣)∈𝐸

𝜓𝑢,𝑣 .

We will argue that the fraction of hash collisions required to be in the |̃︀D*| (possibly)

dangerous triples is far too large.
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We know that 𝜓 is always nonnegative by design, since each of the 𝜓𝑢,𝑣’s are nonnega-

tive. Consider 𝜓(100|Π|+ 1), that is, the value of 𝜓 immediately after the final 100|Π|-th

iteration of Algorithm 1. Then, recalling the definition of 𝜓𝑢,𝑣, we can upper bound

𝜓(100|Π|+ 1) as follows.

0 ≤ 𝜓(100|Π|+ 1) ≤ 6𝐶6 · Err+
∑︁

(𝑖,𝑢,𝑣)∈̃︀D*(5𝐶6𝑋𝑖,𝑢,𝑣 − 5(1−𝑋𝑖,𝑢,𝑣)). (2.7)

Hence, we can conclude that

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*5𝐶6𝑋𝑖,𝑢,𝑣 − 5(1−𝑋𝑖,𝑢,𝑣) ≥ −6𝐶6 · Err. (2.8)

Now we claim that
∑︀
𝑋𝑖,𝑢,𝑣 ≥ 4

5𝐶6+5 |̃︀D*|.∑︁
(𝑖,𝑢,𝑣)∈̃︀D*

(︀
5𝐶6𝑋𝑖,𝑢,𝑣 − 5(1−𝑋𝑖,𝑢,𝑣)

)︀
≥ −6𝐶6 · Err

(5𝐶6 + 5)

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣

⎞⎟⎟⎟⎟⎟⎟⎟⎠− 5|̃︀D*| ≥ −6𝐶6 · Err

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥

4
5𝐶6 + 5

|̃︀D*|,
where in the last line we use the fact that |̃︀D*| ≥ (𝑘 − 1) · Err ≥ 6𝐶6 · Err.

Technically, some of the 𝑋𝑖,𝑢,𝑣 are deterministically 0, which occurs when 𝜙𝑢,𝑣(𝑖) > 0

but 𝐵𝑢,𝑣 = 0. The event of 𝑋𝑖,𝑢,𝑣 being deterministically 0 is also influenced by previous

hash collisions in the network, as these play a role in making the transcripts differ. We

will ignore this fact wlog, since making all of the |𝑆 ′ | triples have some probability of have

collision (rather than just some of them) can only increase
∑︀
𝑋𝑖,𝑢,𝑣, and we will still be

able to show that
∑︀
𝑋𝑖,𝑢,𝑣 is small. So we will assume that all the random variables 𝑋𝑖,𝑢,𝑣

are i.i.d Ber(𝑝).
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Now we apply a Chernoff bound. By taking 𝑝 < 1/(10𝐶6), we note that

P

⎡⎢⎢⎢⎢⎢⎢⎣∑︁̃︀D* 𝑋𝑖,𝑢,𝑣 ≥
4

5𝐶6 + 5
|̃︀D*|⎤⎥⎥⎥⎥⎥⎥⎦ ≤ P

[︃
1

|̃︀D*|∑︁𝑋𝑖,𝑢,𝑣 ≥ 𝑝+
3

5𝐶6 + 5

]︃
.

We bound this probability by 𝑝Ω(|̃︀D*|) in Claim 2.2.18, where the Ω hides terms on the order

of 1/𝐶6. We finish the proof by recalling that |̃︀D*| ≥ (𝑘 − 1) · Err.

Claim 2.2.18. Fix a constant 𝛾 > 0. Suppose that {𝑋𝑖,𝑢,𝑣}(𝑖,𝑢,𝑣)∈̃︀D* are i.i.d Ber(𝑝) random

variables such that 𝑝 is sufficiently smaller than 𝛾 . Then

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1

|̃︀D*| ∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥ 𝑝+𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≤ 𝑝Ω(|̃︀D*|)

where the Ω hides constants on the order of 𝛾 .

Proof of Claim. Recall from Theorem 1.2.1 that

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1

|̃︀D*| ∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥ 𝑝+𝛾

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≤ exp
(︁
−𝐷 (𝑝+𝛾

⃒⃒⃒⃒⃒⃒
𝑝) · |̃︀D*|)︁

We claim that 𝐷(𝑝+𝛾 ||𝑝) ≥Ω(log(1/𝑝)).

𝐷(𝑝+𝛾 ||𝑝) = (𝑝+𝛾) ln
(︃
𝛾

𝑝

)︃
+ (1− 𝑝 −𝛾) ln

(︃
1− 𝑝 −𝛾

1− 𝑝

)︃
≥ 𝛾 ln

(︃
𝛾

𝑝

)︃
+ (1− 𝑝 −𝛾)

(︃
−2𝛾
1− 𝑝

)︃
≥ 𝛾 ln

(︃
𝛾

𝑝

)︃
− 2𝛾

≥ 𝛾
(︃
ln

(︃
𝛾

𝑝

)︃
− 2

)︃
where in the second line we use the inequality that −𝑥 ≤ ln(1− 𝑥/2) for 𝑥 ∈ (0,1).

From the above lemmas, the proof of Lemma 2.2.13 follows easily.
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Proof of Lemma 2.2.13. By Lemma 2.2.16, the probability of having more than 200𝛼𝜀|Π|

errors in the protocol while also having Err ≤ 𝜀
𝐾CC is at most 𝑝Ω(|Π|/𝜀). The probability

that the number of errors is smaller than 200𝛼𝜀|Π| and simultaneously the number of

dangerous triples exceeds 𝑘 · (200𝛼𝜀)|Π| is at most 𝑝Ω(𝑘𝜀|Π|) , by Lemma 2.2.1713. Hence,

the union of these two events has probability at most

𝑝Ω(𝑘𝜀|Π|),

which is the only place where we use that 𝑘 ≤ 1/𝜀2.

Now that we have bounded the communication and number of hash collisions, we are

ready to prove Theorem 2.2.2.

2.2.6 Completing the proof of Theorem 2.2.2

Recall that we set 𝐾 := 𝑚 in InitializeState (Algorithm 2). Throughout this analysis, we

assume that the number of errors that the adversary commits is Err such that Err ≤ (𝜀/𝑚)CC,

as this is what is implied by the adversary having rate 𝜀/𝑚.

Lemma 2.2.3 shows that in every iteration of Algorithm 1, 𝜑 increases by at least

𝐾 = 𝑚. Hence, after at the end of the simulation after 100|Π| iterations, we know that

𝜑 ≥ 100|Π|𝑚.

Lemma 2.2.11 shows that the total communication during the protocol is bounded by

CC ≤ 200𝛼|Π|𝑚 with probability at least 1−𝑝Ω(|Π|/𝜀), by invoking it with 𝑘 = 1/𝜀2. Since we

take 𝑝 and 𝛼 to be constants, this just says that CC =𝑂(|Π|𝐾) =𝑂(CC(Π)) with probability

1− exp(−Ω(|Π|/𝜀)). Hence, we will assume that the CC =𝑂(|Π|𝐾) for the remainder of the

proof.

We conclude the argument by establishing that, when the protocol ends and 𝜑 ≥

100|Π|𝑚, the parties are done simulating the initial protocol correctly with high probability.

13Note that the 𝑘 in the statement of Lemma 2.2.13 and the 𝑘 with which we invoke Lemma 2.2.17 here
are different - technically, we invoke Lemma 2.2.17 with its 𝑘 set to 𝑘(200𝛼𝜀|Π|)/Err. We settle for this abuse
of notation because 𝑘 plays the same role conceptually in Lemma 2.2.13 and Lemma 2.2.17.
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We do this by appealing to the following claim, written for general 𝐾 , and apply it with

𝐾 =𝑚 to finish the proof.

Claim 2.2.19. Suppose that 𝜑 ≥ 100|Π|𝐾 . Then with probability 1− exp(−Ω(|Π|)), the parties

are done simulating the underlying protocol Π correctly.

Proof. Recall our definition of the potential 𝜑:

𝜑 =
∑︁

(𝑢,𝑣)∈𝐸

(︀
(𝐾/𝑚)𝐺𝑢,𝑣 −𝐾 ·𝜙𝑢,𝑣

)︀
−𝐶1𝐾𝐵

* +𝐶7𝐾 · EHC.

Fix 𝜀* to be a constant such that 𝜀* ≤ 1/(4200𝐶6𝐶7𝛼), and take 𝜀 to be sufficiently

smaller than 𝜀*. Since 𝜀* ≥ 𝜀, know that EHC ≤ 4200𝐶6𝛼𝜀
*|Π| with probability at most 1−

exp(−Ω(𝜀*|Π|)). This follows from Lemma 2.2.11, taking 𝑘+1 := (4200𝐶6𝛼𝜀
*/𝜀) · (|Π|𝑚/CC),

and noting that |Π|𝑚/CC is a constant, so taking 𝜀 sufficiently small makes 𝑘 be large

enough for the lemma to apply.

Since 𝜀* is sufficiently small, we get that

𝐶7𝐾 · EHC ≤ 𝐶7𝐾 · 4200𝐶6𝛼𝜀
*|Π| ≤ |Π|𝐾.

Furthermore, the term
∑︀
−𝐾 ·𝜙𝑢,𝑣 is nonpositive, due to the fact that𝜙𝑢,𝑣 is non-negative

(Proposition 2.4.2). Therefore, we get that

∑︁
(𝑢,𝑣)∈𝐸

𝐾
𝑚
𝐺𝑢,𝑣 −𝐶1𝐾𝐵

* ≥ 99|Π|𝐾. (2.9)

Recall that 𝐵* = 𝐻 * − 𝐺* ≥ max(𝑢,𝑣)∈𝐸(𝐺𝑢,𝑣) −min(𝑢,𝑣)∈𝐸(𝐺𝑢,𝑣). By plugging this into
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Eq. (2.9), and recalling that 𝐶1 ≥ 2, we get

99|Π|𝐾 ≤
∑︁

(𝑢,𝑣)∈𝐸

𝐾
𝑚
𝐺𝑢,𝑣 −𝐶1𝐾𝐵

*

≤ 𝐾 max
(𝑢,𝑣)∈𝐸

(𝐺𝑢,𝑣)−𝐶1𝐾

(︃
max

(𝑢,𝑣)∈𝐸
(𝐺𝑢,𝑣)− min

(𝑢,𝑣)∈𝐸
(𝐺𝑢,𝑣)

)︃
≤ 𝐾 max

(𝑢,𝑣)∈𝐸
(𝐺𝑢,𝑣)−𝐾

(︃
max

(𝑢,𝑣)∈𝐸
(𝐺𝑢,𝑣)− min

(𝑢,𝑣)∈𝐸
(𝐺𝑢,𝑣)

)︃
= 𝐾 min

(𝑢,𝑣)∈𝐸
(𝐺𝑢,𝑣)

Hence, we conclude that min(𝑢,𝑣)∈𝐸(𝐺𝑢,𝑣) ≥ 99|Π|. Therefore, each pair of parties have

simulated Π correctly for at least |Π| chunks, which suffices to compute Π correctly.

Finally, we recall that this all happens with probability 1− exp(−Ω(𝜀*|Π|)). Since 𝜀* is a

fixed constant in terms of 𝛼,𝐶6, and 𝐶7, we can absorb it into the Ω, and conclude that the

above happens with probability 1− exp(−Ω(|Π|)).
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2.3 Part II: Non-Oblivious Noise

2.3.1 Introduction

Our Contributions and Comparison to Previous Work

We design coding schemes for adversarial errors in the same communication model as [85]

and Section 2.2; namely, where parties may or may not speak in a given round, and the

underlying protocol is only assumed to have a fixed speaking order, which is assumed by

all known schemes in the non-fully-utilized setting. As in Section 2.2, our coding schemes

are for networks with an arbitrary topology, are computationally efficient, and feature

a constant rate (i.e., a constant multiplicative blowup in communication). Our schemes

are randomized, however they do not assume the parties pre-share any randomness. The

schemes succeed with high probability assuming an all-powerful adversary that may

insert, delete, and substitute bits up to a restricted fraction of the communication.

Our first coding scheme (Algorithm A) achieves a constant rate, and is resilient to 𝜀/𝑚-

fraction of adversarial insertion, deletion, and substitution noise. This scheme assumes a

limited type of noise, i.e., an oblivious adversary whose corruptions are predetermined and

are independent of the parties’ randomness. In our second coding scheme (Algorithm B),

we remove the restriction of the obliviousness of the adversary, at the price of being

resilient to 𝜀/(𝑚 log𝑚)-fraction of errors.

Finally, if we remove only the assumption that the adversary is oblivious, but retain

the assumption that the parties pre-share a long random string, then we obtain a scheme

that is resilient to a higher level of noise, namely, to 𝜀/𝑚 loglog𝑚-fraction of insertion

and deletion errors (Algorithm C). See Table 2.1 for a comparison of our new results

(Algorithms A, B, and C) with the state of the art. See Section 2.2 for further discussion on

related work.

More formally, our result in this section is two-fold. First, we assume that the adversary

is oblivious, i.e., the noise is predetermined and is independent of the randomness used

by the parties.
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scheme topology noise level noise type rate efficient

RS94 arbitrary BSC𝜀 1/𝑂(log(𝑑 + 1))
ABGEH16 clique BSC𝜀 Θ(1) Yes

HS16 arbitrary 𝑂(1/𝑚) substitution Θ(1)
HS16 arbitrary 𝑂(1/𝑛) substitution 1/𝑂(𝑚 log(𝑛)/𝑛)
JKL15 star 𝑂(1/𝑚) substitution Θ(1)

Algorithm A arbitrary 𝑂(1/𝑚)
oblivious

insertions
and deletions

Θ(1) Yes

Algorithm B arbitrary 𝑂(1/𝑚 log𝑚) insertions and
deletions Θ(1) Yes

pre-shared
randomness:

Algorithm C arbitrary 𝑂(1/𝑚 loglog𝑚) insertions and
deletions Θ(1) Yes

Table 2.1: Interactive coding schemes in the multiparty setting. The first four are in the fully-utilized
model (each channel must be utilized in every round), while [85] and all algorithms in this paper are in
the non-fully-utilized model. Recall that 𝑛 is the number of parties, and𝑚 is the number of (bi-directional)
communication links in the network.

Theorem 2.3.1 (Oblivious noise, informal). Let 𝐺 = (𝑉 ,𝐸) be an arbitrary synchronous

network with 𝑛 = |𝑉 | nodes and 𝑚 = |𝐸| links. For any noiseless protocol Π over 𝐺 with a prede-

termined order of speaking, and for a sufficiently small constant 𝜀, there exists a computationally

efficient coding scheme that simulates Π over a noisy network 𝐺. The simulated protocol is

robust to adversarial insertion, deletion, and substitution noise, assuming at most 𝜀/𝑚-fraction

of the communication is corrupted. The simulated protocol communicates 𝑂(CC(Π)) bits, and

succeeds with probability at least 1− exp(−CC(Π)/𝑚), assuming the noise is oblivious.

Next, we remove the restriction to oblivious noise. Namely, we consider adversaries

that may adaptively decide which transmissions to corrupt according to the observed

transcript, as well as the parties inputs (however, the noise is unaware of any private

coin-tossing a party may perform later in the protocol). In this case we still obtain an

efficient coding scheme with a constant rate, albeit, with slightly smaller noise resilience.

Theorem 2.3.2 (Non-oblivious noise, informal). Let 𝐺 = (𝑉 ,𝐸) be an arbitrary synchronous

network with 𝑛 = |𝑉 | nodes and 𝑚 = |𝐸| links. For any noiseless protocol Π over 𝐺 with a

predetermined order of speaking, and for a sufficiently small constant 𝜀, there exists a com-
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putationally efficient coding scheme that simulates Π over a noisy network 𝐺. The simulated

protocol is robust to adversarial insertion, deletion, and substituition noise, assuming at most

(𝜀/𝑚 log𝑚)-fraction of the communication is corrupted. The simulated protocol communicates

𝑂(CC(Π)) bits, and succeeds with probability at least 1− exp(−CC(Π)/𝑚).

In Section 2.5 we consider the case where the adversarial channel is non-oblivious,

however, the parties pre-share a long random string. In this case we show a coding scheme

(Algorithm C) that is resilient to a somewhat higher noise level of 𝜀/𝑚 loglog𝑚-fraction of

insertion and deletion noise, while still incurring a constant blowup in the communication.

See Section 2.5 for the complete details.

We now describe how we modify Algorithm 1 from Section 2.2.

Removing the Common Random String assumption. Recall that the parties generate

hashes of their partial simulated transcripts in the beginning of any iteration, in the

consistency check phase. The hash function is chosen at random by sampling a (uniformly)

random seed. These seeds together constitute the CRS.

A basic idea for removing the CRS is to simply have each pair of parties sample this

seed and send it across their shared link. However, the length of the seed is similar to

the length of the information we wish to hash (see Section 2.3.2 for further details on the

hash function we use). Hence, sending it will increase the communication complexity

by a quadratic factor. Instead, we use an idea from previous work [61, 25, 70, 62]: the

parties communicate a short random string 𝑆 which serves as a seed that generates a longer

𝛿-biased string. This is done via a well-known technique by Naor and Naor [122], or Alon

et al. [5]. This 𝛿-biased randomness is used instead of the shared randomness above.

Intuitively, 𝛿-biased randomness suffices, since the hash function is linear, and thus

hashing with a 𝛿-biased seed behaves “close” to hashing with a truly uniform seed. Howe-

ver, this holds only when the input to the hash function is independent of the 𝛿-biased seed.

Unfortunately, in our setting, the input to the hash function may depend on the 𝛿-biased

seed. Clearly, if the adversary is non-oblivious, they can look at the the 𝛿-biased seed and

choose their errors as a function of it, so the partial transcripts may be correlated with
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the seeds used to hash them. More problematic is that even if the adversary is oblivious,

the partial transcripts may depend on the seeds being used to hash them. Indeed, this

is because the seeds are taken from a long 𝛿-biased seed, and so seeds being used in the

current round are correlated with previously-used seeds. Specifically, the previous seeds

determined whether there were hash collisions or not, which determines the state of the

current partial transcript.

We circumvent this issue in a way similar to [70, 24], by showing that a given pattern

of hash collisions determines the (partial) transcripts throughout the protocol. Once the

transcripts are fixed, the hashes output behave similarly to the case of uniform randomness,

up to a statistical difference of at most 𝛿. Therefore, if 𝛿 is small enough, we can prove

robustness for all possible fixed patterns of hash collisions. Then, we can union bound

over all the possible patterns of hash collisions, which bounds the failure probability for

the 𝛿-biased case by the failure of the uniform case plus an error term that depends on 𝛿

and the cardinality of the different hash patterns. One cannot take 𝛿 to be too small, since

generating the 𝛿-biased string requires communicating ≈ 𝑂(𝑚 log(1/𝛿)) bits, hence the

smaller 𝛿 gets, the more communication we need. Luckily, we can set 𝛿 to be a sufficiently

small constant so that the probability of failure is still exponentially small even after the

union bound, while keeping a constant rate in the communication.

Dealing with a non-oblivious adversary. Next, we consider the case where the advers-

ary is non-oblivious. In particular, we assume that the adversary knows all the randomness

of the parties. However, the adversary is still oblivious to any private randomness that a

party may have.

Haeupler [70] dealt with this same issue in the two-party setting by simply applying

a union bound over all the possible oblivious attacks. Unfortunately, as opposed to the

two-party case of [70], knowledge of the hash seeds in the multi-party setting gives the

adversary too many options for attacks, and the proof fails spectacularly.

To see why this is, fix an edge (𝑢,𝑣) in the network, and suppose for simplicity that we
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use truly random functions for our hashes. Since we use constant-length hash outputs14

and the adversary knows the random seeds ahead of time, with constant probability over

the random seed, the adversary can corrupt the simulation on the link (𝑢,𝑣) such that a

hash-collision is guaranteed in the following consistency-check phase. In this case, the

parties will continue to simulate (incorrectly) since they are not aware of the mismatch in

their partial transcripts. However, note that with some constant probability, this mismatch

will not be caught in the next consistency-check as well! Generalizing the above reasoning,

with probability 1/𝑚, the adversary is able to force hash-collisions on the link (𝑢,𝑣) for

Θ(log𝑚) consecutive phases, leading to Θ(𝑚 log𝑚) wasted communication. Since there

are 𝑚 links for the adversary to choose from when making an error, with high probability

there exists a link on which such an attack is possible, and the adversary who knows

the random seeds, the inputs, and the protocol will be able to conduct this attack on it.

Therefore, the non-oblivious adversary can create Θ(𝑚 log𝑚) wasted communication with

just a single error.

To overcome this issue, we increase the length of the hash output, so it is no longer

constant but rather Θ(log𝑚). Then the hash collision probability drops to 1/poly(𝑚), and

the union bound yields the desired outcome. However, the length of each hash increased

from a constant to Θ(log𝑚), and the rate of the coding scheme is no longer constant (recall

that each iteration in Algorithm 1 from Section 2.2 takes Θ(𝑚) communication). In order

to retain a constant rate, we simulate the protocol in larger chunks. Namely, each phase

(i)-(iv) now consists of Θ(𝑚 log𝑚) bits. In particular, instead of sending a hash every Θ(𝑚)

bits of communication of Π, parties exchange hashes of length Θ(log𝑚) every Θ(𝑚 log𝑚)

bits of simulation, thus increasing the overall communication by just a constant factor.

However, as a result, we are resilient to at most 𝜀/(𝑚 log𝑚) fraction of adversarial error.

14In order to obtain a constant rate, the length of the hash output must be constant, see Section 2.2.
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2.3.2 Preliminaries

In this section we set some notations and provide lemmas that we will use in the rest of

this section.

Codes

We use a standard binary error-correction code with constant rate and constant distance,

which has efficient encoding and decoding procedures. Such codes can be constructed by

concatenating Reed-Solomon codes with binary linear random codes, or by employing the

near-linear codes by Guruswami and Indyk [66].

Theorem 2.3.3. For every 0 < 𝜌 < 1 there exists 𝛿 > 0 s.t. the following holds for all sufficiently

large 𝑛. There exists a binary linear code 𝐶 : {0,1}𝑘 → {0,1}𝑛 with rate 𝑘/𝑛 ≥ 𝜌 and relative

distance at least 𝛿. Furthermore, 𝐶 can be encoded and decoded from up to 𝛿/2 fraction of

bit-flips in polynomial time in 𝑛.

Hash functions, 𝛿-biased strings

Usually, the hash function from Definition 2.1.2 is seeded with a uniform string. In order

to reduce the amount of randomness needed, we use 𝛿-biased random strings, which

are close enough to uniform (for our needs), yet can be constructed from much shorter

(uniform) seeds, via a result by Naor and Naor [122].

Definition 2.3.4 (𝛿-bias). Fix 𝛿 > 0. A distribution𝒟 over F 𝑛
2 is 𝛿-biased if for any 𝑣 ∈ F 𝑛

2 ∖{0𝑛},

we have that ⃒⃒⃒⃒⃒
⃒⃒P𝑥∼𝒟

⎡⎢⎢⎢⎢⎢⎣ 𝑛∑︁
𝑖=1

𝑣𝑖𝑥𝑖 = 0

⎤⎥⎥⎥⎥⎥⎦− 1/2

⃒⃒⃒⃒⃒
⃒⃒ ≤ 𝛿.

Lemma 2.3.5 ([122, 5]). There is a constant 𝑐 ∈ N and an efficiently computable function

𝐺 : {0,1}* → {0,1}* such that the following holds. Fix 𝜀 > 0. For any size 𝑘 and a uniformly

random string 𝑆 ∈ {0,1}𝑐·(𝑘+log(1/𝜀)), we have that 𝐺(𝑆) ∈ {0,1}2𝑘 is a 2𝜀-biased distribution over

bit strings of length of 2𝑘.
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Finally, we appeal to the following Lemma from [70] (which is in turn based on [122])

that connects the behaviour of hash function seeded with 𝛿-biased string to hashes seeded

with uniformly random string as long as their input is fixed and independent of the seed.

Lemma 2.3.6 (Lemma 6.3 from [70]). Fix positive integers 𝑘,𝜏 , and 𝐿. Consider 𝑘 pairs of

binary strings (𝑥1, 𝑦1), . . . (𝑥𝑘 , 𝑦𝑘) where each string has length at most 𝐿. Let {ℎ𝑄}𝑄∈{0,1}2𝜏𝐿 be an

inner product hash family with input length ≤ 𝐿, output length 𝜏 , and seed length 2𝜏𝐿. Let

𝑆 = (𝑠(1), . . . , 𝑠(𝑘)) be a random seed of length 𝑘 · 2𝜏𝐿.

1. If 𝑆 is drawn from a uniform distribution over {0,1}2𝜏𝐿·𝑘, then for each 𝑖 ∈ [𝑘],

P𝑠(𝑖)[ℎ𝑠(𝑖)(𝑥𝑖) = ℎ𝑠(𝑖)(𝑦𝑖)] = 2−𝜏

if 𝑥𝑖 , 𝑦𝑖 . Note that, trivially, P𝑠(𝑖)[ℎ𝑠(𝑖)(𝑥𝑖) = ℎ𝑠(𝑖)(𝑦𝑖)] = 1 when 𝑥𝑖 = 𝑦𝑖 . Furthermore, for

each 𝑖 ∈ [𝑘] the events of hash collisions are independent.

2. If 𝑆 is drawn from a 𝛿-biased distribution over {0,1}2𝜏𝐿·𝑘, then it holds that the distribution

(︁
1ℎ

𝑠(1) (𝑥1)=ℎ
𝑠(1) (𝑦1), . . . ,1ℎ

𝑠(𝑘) (𝑥𝑘)=ℎ
𝑠(𝑘) (𝑦𝑘)

)︁
is 𝛿-close to the case where 𝑆 is uniformly random.

Recall that 𝛿-closeness means that the statistical difference between two distributions

is bounded by 𝛿.

Definition 2.3.7 (𝛿-closeness). We say that distributions 𝑃 ,𝑄 over the probability space Ω are

𝛿-close if

sup
𝐴⊆Ω
|𝑃 (𝐴)−𝑄(𝐴)| ≤ 𝛿.

The above is equivalent to having 1
2
∑︀
𝜔∈Ω |𝑃 (𝜔)−𝑄(𝜔)| ≤ 𝛿.

Note that as a corollary of Lemma 2.3.6, by setting 𝑘 to 1, 𝜏 to a constant, and using

𝛿-biased randomness with 𝛿 = 2−𝜏 , we can get the hash functions with seed length that
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is logarithmic in the size of their input, by seeding the inner product hash function with

𝛿-biased seeds. This corollary was noted in previous work, e.g. in Naor and Naor [122].

Corollary 2.3.8. There is a hash function family {ℎ𝑄}𝑄∈{0,1}𝑠 with input length ≤ 𝐿, output

length 𝜏 , and seed length 𝑠 = Θ(log𝐿+ 𝜏) such that, given any pair of inputs 𝑥 and 𝑦 such 𝑥 , 𝑦,

we have that

P𝑄[ℎ𝑄(𝑥) = ℎ𝑄(𝑦)] ≤ 2 · 2−𝜏

2.3.3 Coding Scheme for Oblivious Noise without Pre-shared Random-

ness

In this section we modify our protocol from Section 2.2 to not require a (preshared)

common random string (CRS) between the parties. This will involve the parties generating

randomness privately and sharing this randomness with their neighbors. In this section

we will still assume that the adversary is oblivious, which in particular means that the

adversary cannot plan his errors after seeing the random strings communicated in the

network.

Let us recall the scheme of Section 2.2. Recall that this protocol works in iterations,

where each iteration consists of 4 phases: (i) consistency check, (ii) flag passing, (iii)

simulation, and (iv) rewind. In each consistency check, every two neighboring parties 𝑢

and 𝑣 exchange hashes of 𝑇𝑢,𝑣 (and 𝑇𝑣,𝑢) to verify that their transcripts so far are consistent.

If their hashes are inconsistent, they initiate a meeting points mechanism to find the last

point they were in agreement. In addition, in phase (ii), they send a flag to all the parties

in the network indicating that the simulation should be temporarily stopped. If their

hashes are consistent and they do not receive a flag from other parties, then they simulate

in phase (iii).

Note that the pairwise transcripts 𝑇𝑢,𝑣 are extremely long, potentially 𝑂(|Π|𝐾) bits,

where |Π| denotes the number of chunks in the underlying protocol and 𝐾 is such that the

amount of communication in any single chunk is 𝑂(𝐾). In particular, in our first protocol

against oblivious adversaries (Algorithm A) we set 𝐾 =𝑚, in our second protocol against
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any (adaptive) adversary we set 𝐾 = 𝑚 log𝑚 (Algorithm B), and in our third protocol

(Algorithm C, in Appendix 2.5), we set 𝐾 = 𝑚 loglog𝑚. This means that if we use the

inner product hash function of Definition 2.1.2 and assume a uniformly random seed, the

seed’s length will be 𝑂(|Π|𝐾) bits. Since the parties do not pre-share randomness, they

must communicate these seeds in order to agree on the seeds to be used. However, if they

all send each other |Π| uniformly random seeds each of length Ω(|Π|𝐾), this would cost

Ω(|Π| ·𝑚 ·CC(Π)) in communication throughout the protocol, and the rate of the coding

scheme would approach zero.

Our way around this, much like the solution employed by previous work [61, 25, 70],

is to use 𝛿-biased seeds for the inner product hash function. Specifically, recall that the

lemma of Naor and Naor [122] (Lemma 2.3.5) states that we can efficiently generate 𝛿-

biased distributions over strings of length ℓ using just Θ(log(1/𝛿) + log(ℓ)) bits of uniform

randomness. Hence, the parties can share small amounts of uniform randomness that

they will expand to a common 𝛿-biased random seed, which they can then use for the

consistency checks.

The coding scheme construction

We now define our first interactive coding scheme, which does not assume a CRS, but

does assume that the adversary is oblivious, which we call Algorithm A. It is resilient to a

fraction 𝜀/𝑚 of adversarial error. In Algorithm 1 we recall the blueprint of the scheme from

Section 2.2. The blueprint of Algorithm A is identical to Algorithm 1 from Section 2.2,

the only difference being the implementation of the subroutine InitializeState(), which is

replaced with Algorithm 6. This new subroutine initiates a randomness exchange routine

(Algorithm 7), where the parties exchange a small amount of uniform randomness in

order to generate a larger (shared) 𝛿-biased seed, which replaces the pre-shared uniform

random string assumed in Algorithm 1. The other subroutines in Algorithm A, namely, the

flag-passing mechanism (Algorithm 3) and the meeting-points mechanism (Algorithm 11),

remain as defined for Algorithm 1 in Section 2.2. We now give the blueprint of Section 2.2
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(Algorithm 1) and the subroutines for Algorithm A. We repeat the flag passing algorithm

for ease of reading, even though it is identical to what is presented in Section 2.2.

The randomness exchange procedure is depicted in Algorithm 7. On every link (𝑢,𝑣),

one of the parties 𝑢 (chosen according to some global total ordering of the parties) uni-

formly samples a seed 𝐿, encodes it against errors, and sends it to 𝑣. Then, both parties

expand 𝑅 to a larger 𝛿-biased string 𝑆𝑢,𝑣. Note that 𝑣 decodes the communication from

𝑢 and gets a seed 𝐿′ which may differ from 𝐿 due to noise. In this case the string 𝑆𝑢,𝑣

generated by 𝑢 will differ from 𝑆𝑣,𝑢 generated by 𝑣. However, we will argue that, with high

probability, the adversary will not have enough noise budget to corrupt any 𝑆𝑣,𝑢 .

We note that the randomness exchange uses a standard error correcting code in order

to protect the seeds from being shared incorrectly unless the adversary commits a large

number of errors. We do not need an ins/del code because that the rounds where the seeds

are shared are fully utilized, and so deletions are equivalent to erasures.

We now give the FlagPassing procedure (Algorithm 3), which is identical to the one

in Section 2.2. This part assumes that all the parties share a spanning tree of the network

graph, rooted at some node 𝜌. If we don’t assume that all the parties know the topology of

the network, then such a tree can be constructed in a resilient manner using the techniques

in [32].
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Algorithm 5 (Algorithm 1 from Section 2.2) A noise-resilient simulation of Π (for party 𝑢)

Let 𝑇𝑢,𝑣 denote the partial, pairwise transcript between 𝑢 and 𝑣 according to 𝑢, and let |𝑇𝑢,𝑣 |
denote the number of chunks simulated so far in 𝑇𝑢,𝑣 .

1: InitializeState( )

2: for 𝑖 = 1 to 100|Π| do
3: for all 𝑣 ∈ 𝒩 (𝑢) in parallel do ◁ meeting points
4: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 ←MeetingPoints(𝑢,𝑣,𝑆𝑖,𝑢,𝑣)

5: 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘←min𝑣∈𝒩 (𝑢) |𝑇𝑢,𝑣 |
6: if exists 𝑣 such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points” then
7: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 0
8: else if exists 𝑣 such that |𝑇𝑢,𝑣 | > 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 then
9: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 0

10: else
11: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢 ← 1

12: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 ← FlagPassing(𝑢,𝑠𝑡𝑎𝑡𝑢𝑠𝑢) ◁ flag passing

13: if 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1 then ◁ simulation
14: Listen for one round.
15: Simulate chunk |𝑇𝑢,𝑣 |+ 1 with each party 𝑣 ∈ 𝒩 (𝑢) from whom we

have not received ⊥ at the first round. The simulation is based on the
partial transcript 𝑇𝑢,𝑤 for each 𝑤 ∈ 𝒩 (𝑢), as well as the input to 𝑢.

16: If the above step took less than 5𝐾 rounds, wait until 5𝐾 rounds have passed
17: if received no ⊥’s in Line 14 in this iteration then
18: 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘←𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 + 1
19: else
20: Send a single ⊥ to each neighbor, and wait 5𝐾 rounds.

21: for round 𝑟 = 1 to 𝑛 do ◁ rewind
22: for all 𝑣 ∈ 𝒩 (𝑢) in parallel do
23: if 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 , “meeting points” AND 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 0 then
24: if |𝑇𝑢,𝑣 | > 𝑚𝑖𝑛𝐶ℎ𝑢𝑛𝑘 then
25: Send a rewind message to 𝑣 and truncate 𝑇𝑢,𝑣 by one chunk
26: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 ← 1

27: if a rewind message is received from 𝑣 then
28: if 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 , “meeting points” AND 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 0 then
29: Truncate 𝑇𝑢,𝑣 by one chunk
30: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 ← 1
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Algorithm 6 InitializeState() (for party 𝑢, simulation against oblivious noise without a
CRS)

1: 𝐾 ←𝑚
2: for all neighbors 𝑣 ∈ 𝒩 (𝑢) in parallel do
3: Initialize 𝑇𝑢,𝑣 = ∅

4: Initialize 𝑘𝑢,𝑣 ,𝐸𝑢,𝑣 ,𝑚𝑝𝑐1𝑢,𝑣 ,𝑚𝑝𝑐2𝑢,𝑣← 0
5: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣← “simulate”
6: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣← 0
7: 𝛿 := 2−Θ(|Π|𝐾/𝑚)

8: 𝑆 := (𝑆𝑖,𝑢,𝑣)𝑖∈[100|Π|]← RandomnessExchange(𝑢, 𝑣, 𝛿, 𝐾)

9: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢← 1.
10: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢← 1

Algorithm 7 RandomnessExchange(𝑢, 𝑣, 𝛿, 𝐾)

input: 𝑢 calling party, 𝑣 ∈ 𝒩 (𝑢). 𝛿 > 0 is a parameter that specifies the bias we desire
from our random string.

1: Fix an arbitrary total order on the vertices in 𝑉 (common for all instantiations of this
procedure).

2: ℓ←Θ(|Π|𝐾) · 100|Π|,
3: 𝑟←Θ(log(1/𝛿) + log(ℓ)), large enough to generate a string of length at least ℓ and bias

at most 𝛿 via Lemma 2.3.5.
4: 𝐶← error correcting code with block length Θ(𝑟), constant rate and constant distance

(e.g., the code from Theorem 2.3.3)
5: if 𝑢 < 𝑣 in the ordering of 𝑉 then
6: Sample a uniformly random string 𝐿 ∈ {0,1}𝑟
7: Send 𝐶(𝐿) to 𝑣
8: else
9: Receive 𝑊 from 𝑣

10: 𝐿← 𝐶−1(𝑊 ), the decoding of 𝑊 with respect to the code 𝐶.

11: 𝑆𝑢,𝑣 ←
(︁
{0,1}Θ(|Π|𝐾)

)︁100|Π|
gets the 𝛿-biased string of length ℓ generated from 𝐿 by

Lemma 2.3.5.
12: Output 𝑆𝑢,𝑣 .
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Algorithm 8 FlagPassing(𝑢, 𝑠𝑡𝑎𝑡𝑢𝑠) (from Section 2.2)

Let 𝜌 ∈ 𝑉 be a specific node known by all the parties. Let 𝒯 be a spanning tree generated by
a breadth-first-search starting from 𝜌. Denote the depth of 𝒯 as 𝑑(𝒯 ), where the depth of a
single vertex is 1. Finally, let the level of a vertex be defined as ℓ(𝑣) := ℓ(𝑢) + 1, where 𝑢 is the
parent of 𝑣 in 𝒯 , and ℓ(𝜌) = 1.

1: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡← 𝑠𝑡𝑎𝑡𝑢𝑠
2: if 𝑢 is a leaf in 𝒯 then
3: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to parent vertex in 𝒯 .
4: Sleep for ℓ(𝑢)− 1 rounds.
5: else
6: Sleep for 𝑑(𝒯 )− ℓ(𝑢) rounds. Ignore any messages received in these rounds.
7: Receive 𝑏1, . . . , 𝑏𝑘 , one symbol from each child in 𝒯 .

8: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡←
𝑘⋀︀
𝑖=1
𝑏𝑖 ∧ 𝑠𝑡𝑎𝑡𝑢𝑠

9: if 𝑢 , 𝜌 then
10: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to parent.
11: Sleep for ℓ(𝑢)− 1 rounds. Ignore any messages received in these rounds.

12: if 𝑢 = 𝜌 then
13: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to children.
14: else
15: Sleep for ℓ(𝑢)− 1 rounds. Ignore any messages received in these rounds.
16: Receive 𝑏 from parent.
17: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡← 𝑏∧ 𝑠𝑡𝑎𝑡𝑢𝑠
18: if 𝑢 is not a leaf in 𝒯 then
19: Send 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 to children.
20: Sleep for 𝑑(𝒯 )− ℓ(𝑢) rounds. Ignore any messages received in these rounds.

21: return 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡
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Algorithm A: Analysis

We now analyze Algorithm A and show that for any oblivious adversary that corrupts at

most 𝑂(𝜀/𝑚) fraction of the communication, the parties correctly simulate Π with high

probability.

The main theorem of this section is as follows. Its proof will also be useful in

Section 2.3.4.

Theorem 2.3.9. Assume a network 𝐺 = (𝑉 ,𝐸) with 𝑛 = |𝑉 | parties and 𝑚 = |𝐸| links. Suppose

Π is a multiparty protocol over the network 𝐺 with communication complexity CC(Π), binary

alphabet and fixed order of speaking. Let |Π| = CC(Π)
5𝑚 and let 𝜀 > 0 be a sufficiently small

constant. Consider an instance of Algorithm A with an oblivious adversary and let CC denote

the communication complexity of the instance. Then, the probability that the total number

of errors satisfies Err ≤ 𝜀
𝑚 · CC and yet Algorithm A either simulates Π incorrectly or has

CC =𝜔(CC(Π)), is at most exp(−Ω(|Π|)).

Overview The analysis we perform resembles the one of Algorithm 1, that we ana-

lyze in Section 2.2. We start by providing an overview of the parts of our analysis

from Section 2.2 that remain exactly the same; for full details, see Section 2.2.4.

We recall Eq. (2.6), which states the potential function used to track the progress of the

parties in Section 2.2:

𝜑
def=

∑︁
(𝑢,𝑣)∈𝐸

(︂𝐾
𝑚
𝐺𝑢,𝑣 −𝐾 ·𝜙𝑢,𝑣

)︂
−𝐶1𝐾𝐵

* +𝐶7𝐾 · EHC, (2.10)

where we refer the reader to Fig. 2-1 for details on the meaning of the terms. Further, we

note that we set 𝐾 =𝑚 log(𝑚) in this section, as opposed to 𝐾 =𝑚 in Section 2.2.

Analogous to Section 2.2, Theorem 2.3.9 effectively follows from two lemmas about the

potential function 𝜑. The first lemma says that the value of 𝜑 increases by at least Ω(𝐾) in

every iteration. This lemma was written for Algorithm 1 in Section 2.2, but does not rely

on the implementation of InitializeState(), so it applies to Algorithm A with an identical
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proof.

Lemma 2.3.10 (Lemma 2.2.3 for Algorithm A). Fix any iteration of Algorithm A and let 𝑏 be

the number of links with errors or hash collisions in this iteration. Then the following holds.

1. The potential 𝜑 increases by at least 𝐾 in this iteration.

2. The amount of communication in the entire network during this iteration (CC) satisfies

CC ≤ 𝛼(1 + 𝑏)𝐾

where 𝛼 is a sufficiently large constant.

The second lemma we need bounds the parameter EHC, that is, bounds the total

amount of errors and hash collisions, assuming that the adversary follows its budget.

This lemma is required in order to show that when the potential function is sufficiently

large, the protocol has been simulated correctly (i.e., the high potential doesn’t stem from

high EHC). Unfortunately, we cannot bound the number of hash collisions the same way

we did in Section 2.2. The reason is that we used uniformly random seeds in Algorithm 1

from Section 2.2, whereas in Algorithm A they come from a 𝛿-biased distribution.

We develop a new bound on the hash collisions in this setting by relating the number

of hash collisions that occur when the parties share 𝛿-biased seeds to the case where the

parties share uniformly random seeds. More specifically, we consider an arbitrary fixed

pattern of hash agreements and misses throughout the entire protocol (and throughout

the entire network). Fixing the pattern of hash agreements and misses additionally fixes

the transcripts throughout the entire protocol, as this is the only randomness in the

protocol. This allows us to apply Lemma 2.3.6 to relate the probability of this pattern

of hash agreements and misses when the parties share uniformly random seeds to the

corresponding probability of the same pattern with 𝛿-biased seeds.

Finally, we will need to establish that the adversary cannot meaningfully corrupt

the randomness exchange protocol. That is, the adversary cannot make parties use mis-
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matching 𝛿-biased strings. Since the adversary has a limited budget of corrupting 𝜀/𝑚-

fraction of the communication, the randomness exchange succeeds if the budget does not

suffice to corrupt a single coded message (Line 4 in Algorithm 7).

To this end we need to bound the communication of Algorithm A, and thus, the budget

of the adversary. Note that the communication depends on the randomness exchange, that

is, it is possible that corrupting this part and making parties use mis-matching 𝛿-biased

strings will lead to a large amount of communication, which will allow this corruption.

Hence, we need to bound the communication of Algorithm A assuming that some of the

𝛿-biased strings are adversarially chosen.

We show that despite the fact that the adversary controls some of these seeds, the

communication does not increase too much, and the increase is proportional to the number

of seeds controlled by the adversary. This bound on the communication effectively bounds

the budget of the adversary. By choosing the right parameters, we establish that a noise

level of 𝜀/𝑚-fraction of the communication is insufficient to corrupt the 𝛿-biased string of

even a single link.

We put the results above together to prove the desired bound on the number of hash

collisions in Corollary 2.3.31. We use this to prove Theorem 2.3.9 at the end of this section,

which follows with a proof identical to that of Theorem 2.2.2 in Section 2.2.6.

Bounding hash collisions: Goal and Relevant Notations As mentioned in the overview,

the adversary has two types of errors it can place: it can use errors to tamper with the

randomness exchange phase (and make two adjacent parties fail to share a random seed,

by making so many errors that the seed is incorrectly decoded), and it can use errors to

corrupt the “main” part of Algorithm A (i.e. after InitializeState() is completed). Let 𝐸′

be the set of edges on which the parties successfully share 𝛿-biased randomness after

InitializeState() is completed; intuitively, only edges in 𝐸′ can simulate correctly, since

edges in 𝐸 ∖ 𝐸′ will be comparing hashes computed with different seeds, and will get

nonsensical results. We let CC and Err denote the total amount of communication and

number of errors respectively in the entire protocol, and we define CC′ and Err′ be the
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amount of communication and number of errors during the main part of Algorithm A.

Our main goal in this section is to bound the number of hash collisions that occur

even when the parties use 𝛿-biased randomness. Towards this end, we recall the following

proposition about 𝜙𝑢,𝑣 from Section 2.4, slightly rephrased.

Proposition 2.3.11 (Proposition 2.4.2). 𝜙𝑢,𝑣(𝑖) is nonnegative, and equals 0 only if 𝑇𝑢,𝑣(𝑖) =

𝑇𝑣,𝑢(𝑖).

In other words, if 𝑢 and 𝑣 are consistent at the beginning of iteration 𝑖, then 𝜙𝑢,𝑣 = 0.

We also re-define a dangerous triple (recall Definition 2.2.12) in a natural way, only

considering the edges 𝐸′ on which the parties have shared the random seed correctly.

Definition 2.3.12 (Dangerous Triple). Given an iteration 𝑖 ∈ [100|Π|] and an edge (𝑢,𝑣) ∈ 𝐸,

we say that the triple (𝑖,𝑢,𝑣) is dangerous if 𝐵𝑢,𝑣(𝑖) > 0 and (𝑢,𝑣) ∈ 𝐸′.

A dangerous triple denotes an iteration 𝑖 and edge (𝑢,𝑣) ∈ 𝐸′ in which the transcripts

of 𝑢 and 𝑣 differ. This is natural, as edges in 𝐸 ∖𝐸′ are ones in which the parties did not

correctly share a seed for hashing, and so we have no control over what happens on these

links. Our goal is to bound the number of dangerous triples, as this bounds the number

of possible hash-collisions (recall, that a hash collision can happen only when the partial

transcripts 𝑇𝑢,𝑣 and 𝑇𝑣,𝑢 differ).

Note that, due to Proposition 2.4.2, we have that the number of dangerous triples is

upper bounded by the number of triples (𝑖,𝑢,𝑣) in which 𝜙𝑢,𝑣(𝑖) is positive for some link

(𝑢,𝑣) ∈ 𝐸′. We will let𝐷 denote the total number of triples for which 𝜙𝑢,𝑣(𝑖) > 0 throughout

the entire execution of Algorithm A. It suffices to upper bound 𝐷.

In Section 2.2, we proved that if the parties share a (long) uniform random string, then

the probability that 𝐷 is much larger than Err′ is extremely small. However, in this part of

the work, the parties instead share a (short) 𝛿-biased random string. We need to show that

this has no effect on the correctness of the coding scheme.

Below, we state our main lemma of this section, which proves exactly the above. Namely,

we consider the (bad) event that 𝐷 is much larger than Err′, and bound its probability in

the 𝛿-biased setting via its probability the uniform randomness setting.
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Lemma 2.3.13. Consider an instance of Algorithm A with |Π|𝐾 ≥𝑚 log(𝑚), and let 𝑝 denote

the collision probability of the inner product hash function used by the protocol under uniformly

random seeds. Suppose the adversary is oblivious, and let 𝑘 be a real number. Then

P𝑆[𝐷 > 𝑘Err′] ≤ 𝑒 · 𝑝−2Err ·P𝑅[𝐷 > 𝑘Err′]

where 𝑆 = (𝑆𝑖,𝑢,𝑣 ,𝑆𝑖,𝑣,𝑢)𝑖∈[100|Π|],(𝑢,𝑣)∈𝐸 is the strings shared by each party after Algorithm 7,

and where 𝑅 = (𝑅𝑖,𝑢,𝑣 ,𝑅𝑖,𝑣,𝑢)𝑖∈[100|Π|],(𝑢,𝑣)∈𝐸 is sampled from a distribution such that for every

(𝑢,𝑣) ∈ 𝐸′ the parties share a uniform string, and for any (𝑢,𝑣) < 𝐸′ the seeds are sampled

identically to the distribution of 𝑆 on the corresponding links.

In order to use the lemma above in a meaningful way, we need to limit the number of

errors Err′ that the adversary can commit in the main part of the protocol. We show below

that the ratio of errors to communication within the main part of the protocol is always

within a constant factor of the ratio of errors to communication in the protocol overall.

In order to do this, we use Claim 2.3.27 to bound the communication in the randomness

exchange phase; the formal statement of this claim and its simple proof can be found later

in this subsection.

Claim 2.3.14. Let CC be the communication complexity of an execution of Algorithm A and

let 𝜀 > 0 be a sufficiently small constant. Assume that |Π|𝐾 ≥ 𝑚 log(𝑚). If Err ≤ 𝜀
𝐾 ·CC, then

Err ≤ 𝜀′
𝐾 ·CC

′, where 𝜀′ = Θ(𝜀).

Proof. Claim 2.3.27 shows that the communication in the randomness exchange is Θ(|Π|𝐾)

as long as |Π|𝐾 ≥ 𝑚 log(𝑚). Furthermore, the communication in the main part of the

protocol is always at least Ω(|Π|𝐾): there are 100|Π| iterations, and the communication in

each meeting-points phase is at least Θ(𝐾), since the parties pass hashes of size Θ(𝐾/𝑚) to

each other and there are 𝑚 links.

Due to Claim 2.3.14, we can consider the main part of the protocol in isolation when

bounding the number of dangerous triples, despite the fact that there is extra communica-

tion in the randomness exchange phase.
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We now make a definition that is critical to our proof of Lemma 2.3.13.

Definition 2.3.15 (Agreement patterns). An agreement pattern 𝑎 ∈ {0,1}100|Π|·(2|𝐸|) consists

of a pair of elements (𝑎𝑖,𝑢,𝑣 , 𝑎𝑖,𝑣,𝑢) for each iteration 𝑖 ∈ [100|Π|] and each edge (𝑢,𝑣) ∈ 𝐸, where

𝑎𝑖,𝑢,𝑣 = 1 if and only if party 𝑢 believes that 𝑢 and 𝑣 have matching hashes in iteration 𝑖. The

term 𝑎𝑖,𝑣,𝑢 is defined analogously.

Note that 𝑎𝑖,𝑢,𝑣 = 1 does not imply that the hashes actually match. Indeed, in the

presence of channel noise the parties may believe that their hashes match (or mismatch)

while the real hashes do not.

To be precise, multiple hashes are passed by 𝑢 and 𝑣 in iteration 𝑖, and an agreement

pattern should account for misses/matches in all of them. To ease the readability of the

analysis, we will assume that the parties exchange only a single hash, and that they make all

their decisions according to whether this hash missed or matched. This will not affect the

validity of the analysis, yet it will somewhat simplify it. We elaborate on this simplifying

assumption in Remark 2.3.18 in the proof of Lemma 2.3.13.

Given an agreement pattern 𝑎, let 𝑎𝑢,𝑣 ∈ {0,1}200|Π| denote the vector

𝑎𝑢,𝑣
def= ((𝑎1,𝑢,𝑣 , 𝑎1,𝑣,𝑢), . . . , (𝑎100|Π|,𝑢,𝑣 , 𝑎100|Π|,𝑣,𝑢)),

which is the pattern of hash misses and matches that both 𝑢 and 𝑣 see along a single link

(𝑢,𝑣) throughout the protocol. Similarly, let

𝑎𝑖
def= (𝑎𝑖,𝑢,𝑣 , 𝑎𝑖,𝑣,𝑢)(𝑢,𝑣)∈𝐸 ∈ {0,1}2|𝐸|

denote the vector of hash misses and matches for every party and every link in an iteration

𝑖, and let 𝑎≤𝑖
def= (𝑎1, . . . , 𝑎𝑖). Call 𝑎𝑖 , 𝑎𝑢,𝑣 , and 𝑎≤𝑖 sub-patterns of 𝑎.

Note that, since we fix the oblivious adversary’s errors ahead of time, the agreement

pattern 𝑎 observed in a given instance of Algorithm A is a function of the random seed 𝑆

that the algorithm samples. Let 𝐴 denote the random variable over agreement patterns

𝑎, where P𝑆[𝐴 = 𝑎] is the probability, over the random string 𝑆, that the protocol gets
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agreement pattern 𝑎, where 𝑆 is the concatenation of the randomness used by each party

for each link. Similar to previous notation, let 𝐴𝑖 denote the random variable 𝐴 restricted

to sub-patterns 𝑎𝑖 , and 𝐴≤𝑖 denote the restriction to sub-patterns 𝑎≤𝑖 .

Bounding hash collisions: Detailed proof In this section, we prove Lemma 2.3.13. First,

we state a simple but vital claim regarding agreement (sub-)patterns.

Claim 2.3.16. Fix the inputs to the protocol and an oblivious adversary, let 𝑖 be an iteration of

Algorithm A, and fix an agreement sub-pattern 𝑎≤𝑖 for the protocol. Then for all (𝑢,𝑣) ∈ 𝐸 and

all 𝑗 = 1, . . . , 𝑖 + 1, the partial transcripts 𝑇𝑢,𝑣(𝑗) and 𝑇𝑣,𝑢(𝑗) are fixed.

Proof. We will prove this by induction on 𝑗. In fact, we prove something stronger - for

every party 𝑢 and every variable 𝑣𝑎𝑟 that 𝑢 keeps in its state, 𝑣𝑎𝑟(𝑗) is fixed.

For 𝑗 = 1, it is clear the statement holds, as no communication has happened yet.

Now assume that the claim holds for 𝑗 < 𝑖+1. In iteration 𝑗, the parties exchange hashes

of the partial transcripts 𝑇𝑢,𝑣(𝑗) and 𝑇𝑣,𝑢(𝑗). Since 𝑗 ≤ 𝑖, we have fixed 𝑎𝑗 , which means

we have already fixed whether or not 𝑢 and/or 𝑣 observe hash collisions for every pair

of adjacent parties (𝑢,𝑣) ∈ 𝐸. Noting that the only randomness in Algorithm A comes from

hashing, we can conclude that this fixes every action of each party in iteration 𝑗.

Therefore, the values of every state variable (including the partial transcripts 𝑇𝑢,𝑣 and

𝑇𝑣,𝑢) at the beginning of iteration 𝑗 + 1 are fixed.

The following corollary follows by taking 𝑖 = 100|Π|.

Corollary 2.3.17. Fix the inputs to the protocol and an oblivious adversary, and fix an

agreement pattern 𝑎. For all (𝑢,𝑣) ∈ 𝐸 and all iterations 𝑖, 𝑇𝑢,𝑣(𝑖) and 𝑇𝑣,𝑢(𝑖) are fixed.

Remark 2.3.18 (Remark on Hash Agreements). The situation is actually somewhat more

complex than just whether or not the hashes of the transcript 𝑇𝑢,𝑣(𝑖) matches the (possibly

corrupted) hash of 𝑇𝑣,𝑢(𝑖) in iteration 𝑖. In the meeting-points protocol, the parties send each

other two hashes of transcripts, one for each of their current “meeting points.” Party 𝑢 compares

these two received hashes to her own two hashes, and takes different outcomes depending on
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how these received hashes match with her hashes. The parties also send each other hashes of

their meeting-point iteration 𝑘, and compare these. Hence, the actions of party 𝑢 are actually a

function of these 5 hash comparisons, and the agreement pattern should be defined over 25-ary

symbols rather than bits. For simplicity, we pretend as if the action is a function of just one hash

comparison for this proof. This only affects the constant in the exponent of 𝑝 in Lemma 2.3.13.

Now we can prove Lemma 2.3.13.

Proof of Lemma 2.3.13. Fix the inputs to the parties and the adversary’s errors. By Corol-

lary 2.3.17, fixing the agreement pattern throughout the entire protocol fixes all the

partial transcripts 𝑇𝑢,𝑣(𝑖),𝑇𝑣,𝑢(𝑖) for each link (𝑢,𝑣) ∈ 𝐸 and iteration 𝑖. In other words,

as long as the agreement pattern for two runs of the Algorithm A are the same, the acti-

ons of the parties in each phase of the two instances are identical as well, even if the

random seeds sampled in the two runs are different. In other words, every random seed

that leads to agreement pattern 𝑎 also leads to the exact same set of pairs of transcripts

{(𝑇𝑢,𝑣(𝑖),𝑇𝑣,𝑢(𝑖))}𝑖,𝑢,𝑣 for every iteration 𝑖 and edge (𝑢,𝑣) ∈ 𝐸.

We briefly note that it is possible that an agreement pattern 𝑎 never occurs in Algo-

rithm A (i.e., P[𝐴 = 𝑎] = 0 for any distribution of randomness). As a simple example,

consider the cases where no noise occurs at all, and yet 𝑎𝑖,𝑢,𝑣 = 0 for some 𝑖 and (𝑢,𝑣) ∈ 𝐸.

This is obviously impossible since the absence of noise implies that the transcripts at both

sides are the same, and hence their hashes must be the same. Since no noise is present,

both parties receive the correct hash values and the agreement must be 𝑎𝑖,𝑢,𝑣 = 1 in all

iterations.

We call an agreement pattern 𝑎 consistent with respect to a distribution 𝒟 if there is

some random seed 𝑆 ∈ supp(𝒟) that leads to the agreement pattern 𝑎. If 𝑎 is consistent

with the uniform distribution, then we simply say 𝑎 is consistent. Given a consistent

agreement pattern 𝑎, denote the unique set of pairs of transcripts that can coexist with it

in the protocol as {(𝑇 (𝑎)
𝑢,𝑣(𝑖),𝑇 (𝑎)

𝑣,𝑢(𝑖))}𝑖,𝑢,𝑣 . We have already argued that 𝑎 can coexist with at

most one set of pairs of transcripts, since fixing 𝑎 fixes the behavior of all the parties in the

protocol.
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Now we prove the key proposition for this proof, which roughly says that the probability

that we see a consistent agreement pattern 𝑎 in Algorithm A is equal to the probability of

the following event:

ℎ𝑢(𝑇 (𝑎)
𝑢,𝑣) = ℎ𝑣(𝑇 (𝑎)

𝑣,𝑢) if and only if 𝑎𝑖,𝑢,𝑣 = 1 for all (𝑖,𝑢,𝑣),

where ℎ𝑢 denotes the hash function that 𝑢 uses during 𝑖 with seed 𝑆𝑖,𝑢,𝑣, ℎ𝑣 denotes the

hash function that 𝑣 uses with seed 𝑆𝑖,𝑣,𝑢, and {(𝑇 (𝑎)
𝑢,𝑣(𝑖),𝑇 (𝑎)

𝑣,𝑢(𝑖)} denotes the unique set of

pairs of transcripts that is consistent with 𝑎 given the specific oblivious noise.

This alone is not quite accurate, since 𝑢’s actions are not determined by whether the

hashes of 𝑇 (𝑎)
𝑢,𝑣 and 𝑇 (𝑎)

𝑣,𝑢 actually match, but rather by whether 𝑢 thinks they matched. These

two events can be different when the adversary corrupts the hash that 𝑣 sends to 𝑢, which

is why we defined 𝑎𝑖,𝑢,𝑣 and 𝑎𝑖,𝑣,𝑢 separately. Hence, instead of comparing 𝑎𝑖,𝑢,𝑣 to the event

that ℎ(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ℎ(𝑇 (𝑎)

𝑣,𝑢(𝑖)), we actually compare 𝑎𝑖,𝑢,𝑣 to the event that ℎ(𝑇 (𝑎)
𝑢,𝑣(𝑖)) =̃︀ℎ(𝑇 (𝑎)

𝑣,𝑢(𝑖)),

wherẽ︀ℎ(·) is the function that first applies the hash ℎ to the input and then induces errors

from the adversary.

For notational convenience, let 𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎) denote the event that the hash agreement

between 𝑢 and 𝑣 in iteration 𝑖 is consistent with 𝑎, when seeded by 𝑆. Namely, 𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

is the following event

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎) def={︃(︂
1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=̃︀ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣
)︂⋀︁(︂

1̃︀ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑖))
= 𝑎𝑖,𝑣,𝑢

)︂}︃
(2.11)

where ℎ𝑆,𝑖,𝑢,𝑣 denotes the hash function ℎ used in Algorithm A when given the seed 𝑆𝑖,𝑢,𝑣 ,

and ̃︀ℎ𝑆,𝑖,𝑢,𝑣(·) is defined by applying ℎ𝑆,𝑖,𝑢,𝑣 to its input, then modifying the output with

the errors that the adversary commits on the transmission from 𝑢 to 𝑣 in iteration 𝑖.

Proposition 2.3.19. Fix a distribution 𝒟 and a consistent agreement pattern 𝑎 (with respect

to the uniform distribution). Fix {(𝑇 (𝑎)
𝑢,𝑣(𝑖),𝑇 (𝑎)

𝑣,𝑢(𝑖))}𝑖,𝑢,𝑣 to the unique transcripts forced in the

protocol by fixing 𝑎. Let 𝑆 = (𝑆𝑖,𝑢,𝑣 ,𝑆𝑖,𝑣,𝑢)𝑖∈[100|Π|,(𝑢,𝑣)∈𝐸] denote the tuple of random strings used

by the main part of the protocol.
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Then,

P𝑆∼𝒟[𝐴 = 𝑎] = P𝑆∼𝒟

⎡⎢⎢⎢⎢⎢⎣⋀︁
𝑖,𝑢,𝑣

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎦ , (2.12)

Furthermore, if 𝑎 is not consistent with 𝒟, then Eq. (2.12) is equal to 0.

Proof. We show that the set of randomly sampled strings 𝑆 that gives rise to the agreement

pattern 𝑎 in the protocol is the same set of strings that gives rise to 1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=̃︀ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(𝑖))

=

𝑎𝑖,𝑢,𝑣 and 1̃︀ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑖))
= 𝑎𝑖,𝑣,𝑢 for all (𝑖,𝑢,𝑣). Therefore, the probability on both

sides of Equation 2.12 is simply the measure of 𝑆 under the distribution 𝒟, and the result

follows as a corollary.

We proceed by induction on 𝑖, the iteration of the protocol. For 𝑖 = 1, note that all the

pairs transcripts match at the beginning of the iteration, as no communication has occurred

yet. Hence, the transcripts at the beginning of the protocol between 𝑢 and 𝑣 are trivially

exactly 𝑇 (𝑎)
𝑢,𝑣(1) and 𝑇 (𝑎)

𝑣,𝑢(1). Hence, 𝐴≤1 = 𝑎≤1 if and only if the strings 𝑆1,𝑢,𝑣 ,𝑆1,𝑣,𝑢 used to

hash the transcripts in the first iteration satisfy that 1
ℎ𝑆,1,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(1))=̃︀ℎ𝑆,1,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(1))

= 𝑎1,𝑢,𝑣 and

1̃︀ℎ𝑆,1,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(1))=ℎ𝑆,1,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(1))
= 𝑎1,𝑣,𝑢 for all (𝑢,𝑣) ∈ 𝐸. I.e.,

P𝑆∼𝒟[𝐴≤1 = 𝑎≤1] = P𝑆∼𝒟

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
(𝑢,𝑣)∈𝐸

𝑍(𝑆,1,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦ .
Now suppose inductively that the set of random strings 𝒮𝑖−1 that lead to 𝐴≤𝑖−1 = 𝑎≤𝑖−1

is the same as the set of strings that lead to

1
ℎ𝑆,𝑗,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑗))=̃︀ℎ𝑆,𝑗,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(𝑗))

= 𝑎𝑗,𝑢,𝑣

and

1̃︀ℎ𝑆,𝑗,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑗))=ℎ𝑆,𝑗,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑗))
= 𝑎𝑗,𝑣,𝑢

for all (𝑗,𝑢,𝑣) s.t. 𝑗 ≤ 𝑖 − 1. Note that, since all 𝑆 ∈ 𝒮𝑖−1 lead to the same agreement

sub-pattern 𝑎≤𝑖−1, they also all lead the protocol to the pairs of transcripts (𝑇 (𝑎)
𝑢,𝑣(𝑖),𝑇 (𝑎)

𝑣,𝑢(𝑖))

at iteration 𝑖, since fixing the 𝑎≤𝑖−1 fixes the behavior of all the parties up until the
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𝑖th iteration of the protocol. Hence, the random strings that lead to 𝐴≤𝑖 = 𝑎≤𝑖 are pre-

cisely the strings in 𝒮𝑖−1 that additionally lead to 1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=̃︀ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣 and

1̃︀ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑖))
= 𝑎𝑖,𝑣,𝑢 for all (𝑢,𝑣).

Applying the inductive hypothesis, 𝒮𝑖−1 is exactly the set of strings that lead to

1
ℎ𝑆,𝑗,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑗))=̃︀ℎ𝑆,𝑗,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(𝑗))

= 𝑎𝑗,𝑢,𝑣 and 1̃︀ℎ𝑆,𝑗,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑗))=ℎ𝑆,𝑗,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑗))
= 𝑎𝑗,𝑣,𝑢 for all (𝑢,𝑣) ∈ 𝐸

and all 𝑗 ≤ 𝑖 − 1. Hence we conclude that the the set of strings that lead to 𝐴≤𝑖 =

𝑎≤𝑖 is the same as the set of strings that lead to 1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=̃︀ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣 and

1̃︀ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑖))
= 𝑎𝑖,𝑣,𝑢 for all (𝑢,𝑣) and 𝑗 ≤ 𝑖.

Finally, the last claim of the Proposition follows trivially, since if 𝑎 is not consistent

with 𝒟, then no 𝑆 ∈ supp(𝒟) leads to 𝑎, and we have P𝑆∼𝒟[𝐴 = 𝑎] = 0 by definition.

Now we can bound the probability of getting too many dangerous triples with 𝛿-biased

randomness from the randomness exchange (Algorithm 7) in terms of the probability of

getting too many dangerous triples with uniform randomness. Recall that, after fixing

a consistent agreement pattern 𝑎, there is exactly one possible setting to all pairs of

transcripts (𝑇𝑢,𝑣(𝑖),𝑇𝑣,𝑢(𝑖)) for each link and iteration that complies with this agreement

pattern. Given such a setting of pairs of transcripts, it is easy to read off an upper bound

on the number of dangerous triples, since in every dangerous triple (𝑖,𝑢,𝑣), we have that

𝑇𝑢,𝑣(𝑖) , 𝑇𝑣,𝑢(𝑖) and (𝑢,𝑣) ∈ 𝐸′. Recall that we are interested in the probability there where

more than 𝑘Err dangerous triples, where 𝑘 is a real number given by the lemma’s statement.

Definition 2.3.20. A consistent agreement pattern 𝑎 is called bad if it leads to having more

than 𝑘Err dangerous triples in the considered instance.

We let Bad = {𝑎 is bad and consistent} be the set of all bad consistent agreement pat-

terns (given the fixed inputs and fixed error pattern). The, for any distribution 𝐷 we can

write

P𝑆∼𝒟[𝐷 > 𝑘Err] =
∑︁
𝑎∈Bad

P𝑆∼𝒟[𝐴 = 𝑎]. (2.13)
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Hence, to prove Lemma 2.3.13, it suffices to show that

∑︁
𝑎∈Bad

P𝑆∼𝒟𝑆 [𝐴 = 𝑎] ≤ 𝑒 · 𝑝−2Err ·
∑︁
𝑎∈Bad

P𝑅∼𝒟𝑅[𝐴 = 𝑎] (2.14)

where we recall that 𝒟𝑆 is the distribution where the {𝑆𝑢,𝑣} are drawn i.i.d from a 𝛿-biased

distribution for (𝑢,𝑣) ∈ 𝐸′ while for (𝑢,𝑣) ∈ 𝐸 ∖ 𝐸′ the string {𝑆𝑢,𝑣 ,𝑆𝑣,𝑢} are adversarially

chosen by the fixed noise. The distribution 𝒟𝑅 is the same for (𝑢,𝑣) ∈ 𝐸 ∖𝐸′ and uniform

for (𝑢,𝑣) ∈ 𝐸′, as described in the statement of the lemma.

Since P𝑅∼𝒟𝑅[𝐴 = 𝑎] = 0 for any agreement pattern 𝑎 that is not consistent w.r.t 𝒟𝑅, we

can sum the right-hand side Eq. (2.14) only over 𝑎’s that are bad and consistent w.r.t 𝒟𝑅.

Denote these by the set

Bad𝒟𝑅 = {𝑎 | 𝑎 ∈ Bad and is consistent with respect to 𝒟𝑅}.

Noting that the uniform distribution trivially contains the support of 𝒟𝑅, which itself

contains the support of 𝒟𝑆 , we get from Eq. (2.14) that

∑︁
𝑎∈Bad𝒟𝑅

P𝑆∼𝒟𝑆 [𝐴 = 𝑎] ≤ 𝑒 · 𝑝−2Err ·
∑︁

𝑎∈Bad𝒟𝑅

P𝑅∼𝒟𝑅[𝐴 = 𝑎] (2.15)

For ease of notation in the proof below, let 𝑄(𝑎) denote the probability of seeing the

agreement sub-pattern 𝑎𝑢,𝑣 for all (𝑢,𝑣) ∈ 𝐸 ∖𝐸′. Formally:

𝑄(𝑎) def= P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖,(𝑢,𝑣)∈𝐸∖𝐸′

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦ (2.16)

where the events 𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎) are as defined in Eq. (2.11).

Now we proceed to use Proposition 2.3.19 to relate the probability of seeing a bad,

consistent agreement pattern 𝑎 to the probability of seeing the same agreement pattern

when hashing a fixed input, which will let us apply Lemma 2.3.6. We upper bound the
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left-hand side of Eq. (2.15) as follows:

∑︁
𝑎∈Bad𝒟𝑅

P𝑆∼𝒟𝑆 [𝐴 = 𝑎]

=
∑︁

𝑎∈Bad𝒟𝑅

P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖,(𝑢,𝑣)∈𝐸

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
=

∑︁
𝑎∈Bad𝒟𝑅

⎛⎜⎜⎜⎜⎜⎜⎝ ∏︁
(𝑢,𝑣)∈𝐸′

P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎣⋀︁
𝑖

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

≤
∑︁

𝑎∈Bad𝒟𝑅

⎛⎜⎜⎜⎜⎜⎜⎝ ∏︁
(𝑢,𝑣)∈𝐸′

P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

=
∑︁

𝑎∈Bad𝒟𝑅

⎛⎜⎜⎜⎜⎜⎜⎝ ∏︁
(𝑢,𝑣)∈𝐸′

P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎) (2.17)

The first equality is Proposition 2.3.19. The second equality is due to the fact that,

given a specific 𝑎 and fixing the adversary’s errors, the event
⋀︀
𝑖 𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎) for (𝑢,𝑣) ∈ 𝐸′

is independent from
⋀︀
𝑖 𝑍(𝑆, 𝑖,𝑢′,𝑣′, 𝑎) for all (𝑢′,𝑣′) ∈ 𝐸 such that (𝑢′,𝑣′) , (𝑢,𝑣), since 𝑆𝑢,𝑣

is sampled independently from 𝑆𝑢′ ,𝑣′ . To elaborate, once 𝑎 is fixed, all the transcripts

{𝑇 (𝑎)
𝑢,𝑣(𝑖)} are fixed as well (Claim 2.3.16), and since the channel’s noise is fixed we get that,

for any (𝑖′,𝑢′,𝑣′), the event 𝑍(𝑆, 𝑖′,𝑢′,𝑣′, 𝑎) depends only on the seed 𝑆𝑢′ ,𝑣′ .

The inequality in the third line follows from the fact that the event
⋀︀
𝑖:no err on (𝑖,𝑢,𝑣)𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

contains the event
⋀︀
𝑖 𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎), since we perform AND over fewer random variables.

Note that, by 𝑖 : no err on (𝑖,𝑢,𝑣), we mean that there is no adversarial error between 𝑢

and 𝑣 in the entire iteration 𝑖.

The last equality follows from the following facts: (1) the parties successfully share a

seed on the edges in 𝐸′, so 𝑆𝑖,𝑢,𝑣 = 𝑆𝑖,𝑣,𝑢 for all (𝑢,𝑣) ∈ 𝐸′, (2) ℎ𝑆,𝑖,𝑢,𝑣 =̃︀ℎ𝑆,𝑖,𝑢,𝑣 and there is no

adversarial error between 𝑢 and 𝑣 in iteration 𝑖, and (3) 𝑎𝑖,𝑢,𝑣 = 𝑎𝑖,𝑣,𝑢 when 𝑎 is consistent

and there is no error on (𝑖,𝑢,𝑣), because the hashes are transmitted properly, and so either

𝑢 and 𝑣 will both have a hash match or both have a hash miss, and so if 𝑎𝑖,𝑢,𝑣 , 𝑎𝑖,𝑣,𝑢 then 𝑎

would not be consistent.
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Now we can apply Lemma 2.3.6 to the right-hand side of Eq. (2.17). Note that

⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣 (2.18)

is an event about a sequence of hash misses and matches on a fixed input when using a seed

that is chopped up from a string 𝑆𝑢,𝑣 sampled from a 𝛿-biased source. By Lemma 2.3.6,

the probability of this event cannot differ by much from the same event given the seed is

uniform,

⃒⃒⃒⃒⃒
⃒⃒⃒P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

1
ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=ℎ𝑆,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣

⎤⎥⎥⎥⎥⎥⎥⎦
−P𝑅∼𝒟𝑅

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

1
ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣

⎤⎥⎥⎥⎥⎥⎥⎦
⃒⃒⃒⃒⃒
⃒⃒⃒ ≤ 𝛿 (2.19)

Therefore, we bound the right-hand side of Eq. (2.17) by

≤
∑︁

𝑎∈Bad𝒟𝑅

⎛⎜⎜⎜⎜⎜⎜⎝ ∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝P𝑅∼𝒟𝑅
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

1
ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝛿

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

=
∑︁

𝑎∈Bad𝒟𝑅

⎛⎜⎜⎜⎜⎜⎜⎝ ∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝P𝑅∼𝒰
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦+ 𝛿

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎) (2.20)

where we use the definition of 𝑍(𝑅,𝑖,𝑢,𝑣,𝑎) to avoid cumbersome notation. Note that in

the last transition we replaced the distribution 𝒟𝑅 with a uniform distribution 𝒰 . This

follows since, by the definition of 𝒟𝑅, each of the seeds 𝑅𝑖,𝑢,𝑣 with (𝑢,𝑣) ∈ 𝐸′ is uniform

and independent.

We now wish to bound 𝛿 as a fraction of the probability of the event (Eq. (2.18)).

Claim 2.3.21.

𝛿 ≤ 2−|Π|𝐾/𝑚 min
𝑎𝑢,𝑣 :(𝑢,𝑣)∈𝐸′

P𝑅𝑢,𝑣∼𝒰

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.21)
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Proof. Recall that, given a uniform seed, the hash collision probability is exactly 𝑝 =

2−Θ(𝐾/𝑚) (Lemma 2.1.3). Note that in the event of Eq. (2.18) we are AND-ing over at most

Θ(|Π|) iterations 𝑖. Then we can write,

min
𝑎,(𝑢,𝑣)∈𝐸′

P𝑅𝑢,𝑣∼𝒰

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ min
𝑎,(𝑢,𝑣)∈𝐸′

∏︁
𝑖:no err on (𝑖,𝑢,𝑣)

P𝑅𝑢,𝑣∼𝒰 [𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)]

≥ 𝑝|Π|

= 2−Θ(|Π|·𝐾/𝑚).

Eq. (2.21) holds by recalling that 𝛿 = 2−Θ(|Π|·𝐾/𝑚) and taking the constant in the exponent

of 𝛿 to be sufficiently large.

Plugging Eq. (2.21) into Eq. (2.20), the latter can be bounded by

≤
∑︁

𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝(︁1 + 2−|Π|𝐾/𝑚
)︁
·P𝑅𝑢,𝑣∼𝒰

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err in (𝑢,𝑣))

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

≤
(︁
1 + 2−|Π|𝐾/𝑚

)︁𝑚 ∑︁
𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖: no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

≤ 𝑒 ·
∑︁

𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖: no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎) (2.22)

where in the last transition, we use the fact that |Π|𝐾 ≥ 𝑚 log𝑚 to conclude that (1 +

2−|Π|𝐾/𝑚)𝑚 ≤ (1 + 1
𝑚 )𝑚 ≈ 𝑒.

We are almost done: if Eq. (2.22) had an AND over all iterations 𝑖 instead of just the

iterations with no error, we would be able to apply Proposition 2.3.19 on this term and

bound it via which fits the right-hand side of the claim we are proving (Eq. (2.17)). Note
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that

∑︁
𝑎∈Bad𝒟𝑅

P𝑅[𝐴 = 𝑎]

=
∑︁

𝑎∈Bad𝒟𝑅

P𝑅

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖,(𝑢,𝑣)∈𝐸

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
=

∑︁
𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

P𝑅𝑢,𝑣∼𝒰

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦×P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦ ·𝑄(𝑎)

where we use Proposition 2.3.19 in the first transition and the fact that the 𝑅𝑖,𝑢,𝑣 are

independently sampled uniform strings when (𝑢,𝑣) ∈ 𝐸′ in the second.

The extra term can be lower bounded as follows.

Claim 2.3.22. For any 𝑎 ∈ Bad𝒟𝑅 ,

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ≥ 𝑝2Err. (2.23)

Proof. First, we recall that edges in 𝐸′ have the property that the parties share their random

string correctly - hence, we have 𝑅𝑖,𝑢,𝑣 = 𝑅𝑖,𝑣,𝑢 for all (𝑢,𝑣) ∈ 𝐸′ and iterations 𝑖.

We split 𝑍 into two subevents 𝑍1 and 𝑍2 in the natural way, such that 𝑍 = 𝑍1 ∧ 𝑍2.

Formally:

𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎) def=
{︁
1
ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=̃︀ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑢,𝑣
}︁

and (2.24)

𝑍2(𝑅,𝑖,𝑢,𝑣,𝑎) def=
{︁
1̃︀ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑢,𝑣(𝑖))=ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖))

= 𝑎𝑖,𝑣,𝑢
}︁

(2.25)

where we also used the fact that 𝑅𝑖,𝑢,𝑣 = 𝑅𝑖,𝑣,𝑢 in the above definitions.

Since 𝑎 is consistent with respect to 𝒟𝑅, i.e., P[𝐴 = 𝑎] > 0, then by Proposition 2.3.19

there must exist 𝑅* such that
⋀︀
𝑖,𝑢,𝑣𝑍(𝑅*, 𝑖,𝑢,𝑣,𝑎) holds. In other words, for this specific 𝑅*,

we have that for all (𝑖,𝑢,𝑣) such that (𝑢,𝑣) ∈ 𝐸′ and iteration 𝑖, we have that 𝑍1(𝑅*, 𝑖,𝑢,𝑣,𝑎) =

𝑍2(𝑅*, 𝑖,𝑢,𝑣,𝑎) = 1. If 𝑜1 and 𝑜2 are the hash outputs on the link (𝑢,𝑣) in iteration 𝑖 with
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randomness 𝑅* (i.e. 𝑜1 = ℎ𝑅*,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣) and 𝑜2 = ℎ𝑅*,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢)), then if 𝑎𝑖,𝑢,𝑣 = 1, the noise

exactly makes ̃︀ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖)) = 𝑜1, and otherwise it does not. Similarly, if 𝑎𝑖,𝑣,𝑢 = 1 then

the noise makes ̃︀ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = 𝑜2, and otherwise it does not. We will say that 𝑜1 and

𝑜2 make the event 𝑍 (resp. 𝑍1,𝑍2) occur, when the iteration 𝑖, link (𝑢,𝑣), and agreement

pattern 𝑎 are understood from context.

Fix an iteration 𝑖, link (𝑢,𝑣), and agreement pattern 𝑎. Assume 𝑇 (𝑎)
𝑢,𝑣 = 𝑇 (𝑎)

𝑣,𝑢 . Then, if there

is no noise in the message ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖)) it must be that 𝑎𝑖,𝑢,𝑣 = 1, since we know that the

hashes will match even if the random string used were 𝑅𝑖,𝑢,𝑣 = 𝑅*𝑖,𝑢,𝑣 . In fact, any seed 𝑅𝑖,𝑢,𝑣

makes the hashes match, and so since 𝑎𝑖,𝑢,𝑣 = 1, we conclude that P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] = 1.

If there is noise in that message, then it must be that 𝑎𝑖,𝑢,𝑣 = 0 since for any seed 𝑅𝑖,𝑢,𝑣

(including 𝑅*𝑖,𝑢,𝑣), the hashes will not match, since they matched before the noise and the

noise makes one of the messages different. Once again, since this holds for all possible

random strings 𝑅𝑖,𝑢,𝑣 , we have that P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] = 1 holds for this case as well.

Now assume that 𝑇 (𝑎)
𝑢,𝑣 , 𝑇

(𝑎)
𝑣,𝑢. Furthermore, assume there is no noise in the mes-

sage ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑣,𝑢(𝑖)). If 𝑎𝑖,𝑢,𝑣 = 1, then, any seed 𝑅 that causes a collision will make

𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎) = 1. I.e.,

P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] = P𝑅[ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ℎ𝑅,𝑖,𝑣,𝑢(𝑇 (𝑎)

𝑣,𝑢(𝑖))] = 𝑝,

where the last inequality uses the fact that 𝑝 is exactly the collision probability of the inner

product hash function we use (Lemma 2.1.3). If, on the other hand, 𝑎𝑖,𝑢,𝑣 = 0, then by a

similar argument,

P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] = P𝑅[ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) , ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖))]

= 1−P𝑅[ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖))]

≥ 1− 𝑝.

Next let us assume that there was noise in the message ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)). To be concrete,

we will denote the additive noise by 𝑥.
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If 𝑎𝑖,𝑢,𝑣 = 1, then, since 𝑍1(𝑅*, 𝑖,𝑢,𝑣,𝑎) = 1, we know that 𝑜1 = ̃︀𝑜2 = 𝑜2+𝑥, where we recall

that 𝑜1 and 𝑜2 are defined to be ℎ𝑅*,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) and ℎ𝑅*,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖)) respectively. In fact, we

can conclude that for any random string 𝑅𝑖,𝑢,𝑣 such that ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖))−𝑥,

will make 𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎) = 1.

Since the hash-function ℎ is based on inner-product (Definiton 2.1.2), its output is

uniform when the seed is uniformly distributed and the input is nonzero (Lemma 2.1.3),

and we get

P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] ≥ P𝑅[(ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖))− 𝑥]

= 𝑝.

If, on the other hand, 𝑎𝑖,𝑢,𝑣 = 0, then

P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] = P𝑅[ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) ,̃︀ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖))]

= 1−P𝑅[ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)

𝑣,𝑢(𝑖))− 𝑥]

≥ 1− 𝑝

where again this last transition follows due to the uniform output of the inner product

hash function (Lemma 2.1.3).

Hence, in all cases we have

P𝑅[𝑍1(𝑅,𝑖,𝑢,𝑣,𝑎)] ≥ 𝑝.

Similar arguments apply to 𝑍2(𝑅,𝑖,𝑢,𝑣,𝑎). Since both events are independent when the

transcripts are different (they use different seeds for the hashes, and the transcript is fixed

by 𝑎 and the noise pattern), we get that for any appropriate (𝑖,𝑣,𝑢),

P𝑅[𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)] ≥ 𝑝2.
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Recall that the seeds 𝑅𝑖,𝑢,𝑣 are independent and uniform when (𝑢,𝑣) ∈ 𝐸′. Since there

are Err triples (𝑖,𝑢,𝑣) such that an error occurs in (𝑖,𝑢,𝑣), we conclude that

∏︁
(𝑢,𝑣)∈𝐸′

P𝑅𝑢,𝑣∼𝒰

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 𝑝2Err.

Remark 2.3.23 (Remark on Fixing Adversaries). In Section 2.2, we proved that our scheme

is resilient to both additive adversaries and fixing adversaries. The latter type of adversary

commits errors where it fixes the communication sent on a link in a given round. In the proof

of Claim 2.3.22 we have assumed the adversary is additive; however, it can easily be verified

that the claim also holds for fixing adversaries. The main idea is that, for any symbol ̃︀𝑜2 that the

adversary puts on a link (which could also be silence), the probability that ℎ𝑅,𝑖,𝑢,𝑣(𝑇 (𝑎)
𝑢,𝑣(𝑖)) = ̃︀𝑜2

is exactly equal to 𝑝 due to the uniform output distribution of the hash. This is the only step of

the proof which differs for fixing and additive adversaries.

Claim 2.3.22 along with Eq. (2.17) lead to Eq. (2.15):

∑︁
𝑎∈Bad𝒟𝑅

P𝑆∼𝒟𝑆 [𝐴 = 𝑎]

≤ 𝑒 ·
∑︁

𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖:no err on (𝑖,𝑢,𝑣)

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

(1)
≤ 𝑒 · 𝑝−2Err ·

∑︁
𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎣⋀︁
𝑖

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ ·𝑄(𝑎)

(2)
≤ 𝑒 · 𝑝−2Err ·

∑︁
𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎣⋀︁
𝑖

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ ·P𝑆∼𝒟𝑆

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖,(𝑢,𝑣)∈𝐸∖𝐸′

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
(3)
≤ 𝑒 · 𝑝−2Err ·

∑︁
𝑎∈Bad𝒟𝑅

∏︁
(𝑢,𝑣)∈𝐸′

⎛⎜⎜⎜⎜⎜⎝P𝑅𝑢,𝑣∼𝒰
⎡⎢⎢⎢⎢⎢⎣⋀︁
𝑖

𝑍(𝑅,𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎠ ·P𝑆∼𝒟𝑅

⎡⎢⎢⎢⎢⎢⎢⎣ ⋀︁
𝑖,(𝑢,𝑣)∈𝐸∖𝐸′

𝑍(𝑆, 𝑖,𝑢,𝑣,𝑎)

⎤⎥⎥⎥⎥⎥⎥⎦
(4)
= 𝑒 · 𝑝−2Err ·

∑︁
𝑎∈Bad𝒟𝑅

P𝑅∼𝒟𝑅[𝐴 = 𝑎].
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Transition (1) is via Claim 2.3.22. (2) is by the definition of 𝑄 (Eq. (2.16)). (3) uses the fact

that 𝒟𝑅 and 𝒟𝑆 are identical for (𝑢,𝑣) ∈ 𝐸 ∖𝐸′. (4) follows from Proposition 2.3.19.

Hence, we have proved the desired relation between
∑︀
𝑎∈Bad𝒟𝑅

P𝑆∼𝒟𝑆 [𝐴 = 𝑎] and be-

tween
∑︀
𝑎∈Bad𝒟𝑅

P𝑅∼𝒟𝑅[𝐴 = 𝑎] as stated in Eq. (2.15). We recall that this implies that

P𝑆∼𝒟𝑆 [𝐷 > 𝑘 · Err] and P𝑅∼𝒟𝑅[𝐷 > 𝑘 · Err] have the same relation, which concludes the the

proof of Lemma 2.3.13.

We now show that even with arbitrary oblivious tampering of random strings on the

edges 𝐸 ∖𝐸′, the adversary cannot cause too many dangerous triples when the seeds 𝑅𝑢,𝑣

are uniform for (𝑢,𝑣) ∈ 𝐸′. Let 𝑋𝑖,𝑢,𝑣 be an indicator random variable for the event that

there is a hash collision between 𝑢 and 𝑣 in iteration 𝑖. Define 𝜓𝑢,𝑣 as follows.

Algorithm 9 The process 𝜓𝑢,𝑣
𝑖← 1,𝜓𝑢,𝑣(1)← 0

for all iterations 𝑖 from 1 to 100|Π| do

if error occurs between 𝑢 and 𝑣 during iteration 𝑖, during any phase then

𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖) + 6𝐶6

else if 𝜙𝑢,𝑣(𝑖) > 0 then

𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖) + 5𝐶6𝑋𝑖,𝑢,𝑣 − 5(1−𝑋𝑖,𝑢,𝑣)

else

𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖)

Let D* denote the set of triples (𝑖,𝑢,𝑣) where 𝜓𝑢,𝑣(𝑖) > 0 and (𝑢,𝑣) ∈ 𝐸′. We proved

in Section 2.2 that 𝜓𝑢,𝑣 ≥ 𝜙𝑢,𝑣 for all iterations, which we recall now.

Lemma 2.3.24 (Lemma 2.2.15 in Section 2.2). For all iterations 𝑖 ∈ [100|Π|] and all edges

(𝑢,𝑣) ∈ 𝐸′, we have that 𝜓𝑢,𝑣(𝑖) ≥ 𝜙𝑢,𝑣(𝑖), where 𝜙𝑢,𝑣(𝑖) denotes the value of the potential 𝜙𝑢,𝑣

at the beginning of iteration 𝑖.

It follows from Lemma 2.2.15 that |D*| ≥𝐷.

We now proceed to upper bound |D*| with high probability, just like in Section 2.2.
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Lemma 2.3.25. Suppose the adversary is oblivious, and let Err be the number of errors commit-

ted during this part. Let 𝑝 = 2−Θ(𝐾/𝑚) be the hash collision probability of ℎ, and assume that

𝑝 < 1
30𝐶6

. Let 𝑘 be some real number such that 𝑘 ≥ 10𝐶6. Let D* denote the set of triples (𝑖,𝑢,𝑣)

such that 𝜓𝑢,𝑣(𝑖) > 0 and (𝑢,𝑣) ∈ 𝐸′. Then

P𝑅[|D*| > 𝑘Err] < 𝑝Ω(𝑘·Err),

where 𝑅 is defined as in Lemma 2.3.13, and the Ω hides constants on the order of 1/𝐶6.

Proof. Consider an instance of the protocol after fixing the adversary’s errors, and assu-

ming uniformly random seeds for the hashes. Assume |D*| > 𝑘 · Err and let ̃︀D* ⊆ D* denote

the set of triples (𝑖,𝑢,𝑣) such that 𝜓𝑢,𝑣(𝑖) > 0 and (𝑢,𝑣) ∈ 𝐸′, and no error occurs between 𝑢

and 𝑣 in iteration 𝑖. Since the number of errors is Err, we get that |̃︀D*| ≥ (𝑘 − 1)Err. Define

𝜓
def=

∑︁
(𝑢,𝑣)∈𝐸′

𝜓𝑢,𝑣 .

We know that 𝜓 is always nonnegative by design, since each of the 𝜓𝑢,𝑣’s are nonnega-

tive. Consider 𝜓(100|Π|+ 1), that is, the value of 𝜓 immediately after the final 100|Π|-th

iteration of Algorithm A. Recall that 𝜓𝑢,𝑣 goes up by 6𝐶6 whenever there is an error

between 𝑢 and 𝑣, goes up by 5𝐶6 whenever there is a hash collision between 𝑢 and 𝑣, and

goes down by 5 whenever there is no hash collision between 𝑢 and 𝑣 and 𝜓𝑢,𝑣 was positive.

This yields

0 ≤ 𝜓(100|Π|+ 1) ≤ 6𝐶6 · Err+
∑︁

(𝑖,𝑢,𝑣)∈̃︀D*(5𝐶6𝑋𝑖,𝑢,𝑣 − 5(1−𝑋𝑖,𝑢,𝑣)), (2.26)
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Rearranging, we note that

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥

5|̃︀D*| − 6𝐶6 · Err
5𝐶6 + 5

≥ 4
5𝐶6 + 5

|̃︀D*|
where the last inequality follows from |̃︀D*| ≥ (𝑘 −1) ·Err ≥ 6𝐶6 ·Err. So we can upper bound

P𝑅[|D*| > 𝑘Err] by upper bounding the probability that
∑︀

(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥ 4
5𝐶6+5 |̃︀D*|. Note

that the events of hash collisions on the links 𝐸′ are independent, due to the fact that the

adversary fixes their errors before the seeds are sampled. Furthermore, they all happen

with at most probability 𝑝. So, by a Chernoff bound, we get that

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1

|̃︀D*| ∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥

4
5𝐶6 + 5

≥ 𝑝+
3

5𝐶6 + 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≤ 𝑝Ω(|̃︀D*|) ≤ 𝑝Ω(𝑘·Err) (2.27)

Corollary 2.3.26 (Corollary of Lemmas 2.3.25 and 2.3.13). Suppose |Π|𝐾 ≥𝑚 log(𝑚), and

the adversary is oblivious and makes Err errors. Let 𝑘 be a constant that is sufficiently larger

than 𝐶6 and the constant term in the exponent of 𝑝, i.e. log(1/𝑝)
𝐾/𝑚 . Suppose that we run an instance

of 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 𝐴 and denote the random string sampled by the protocol as 𝑆. Let 𝐸′ ⊆ 𝐸 and 𝐷

be as in Lemma 2.3.13. Then

P𝑆[𝐷 ≥ 𝑘 · Err] ≤ 𝑝Ω(𝑘Err) = exp(−Ω(𝑘Err · (𝐾/𝑚))

Proof. We apply Lemma 2.3.13 and use the fact that |Π|𝐾 ≥𝑚 log(𝑚), we have that

P𝑆[𝐷 ≥ 𝑘 · Err] ≤ 𝑒 · 𝑝−2Err ·P𝑅[𝐷 ≥ 𝑘 · Err]

where 𝑅 is uniform for seeds on the edges in 𝐸′. Recall that |̃︀D*| ≥ |D*|, and so applying
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Lemma 2.3.25 we get that

P𝑆[𝐷 ≥ 𝑘 · Err] ≤ 𝑒 · 𝑝−2Err · 𝑝Ω(𝑘Err) = 𝑝Ω(𝑘Err).

Bounding the communication We continue to bound the communication in Algorithm A.

We start with an easy claim bounding the communication that occurs during the random-

ness exchange.

Claim 2.3.27. Assume that |Π|𝐾 ≥ 𝑚 log(𝑚). Then the communication in the randomness

exchange (Algorithm 7) is Θ(𝐾 |Π|).

Proof. Since 𝛿 = 2−Θ(|Π|𝐾/𝑚) (Algorithm 6), every link needs to exchange during this part a

seed 𝐿 ∈ {0,1}𝑟 of length

𝑟 = Θ (log(1/𝛿) + log(ℓ))

= Θ(|Π|𝐾/𝑚)) +Θ(log(|Π|2𝐾))

= Θ

(︂
|Π|𝐾

𝑚

)︂
.

where in the last line we use the fact that log(𝐾) = Θ(log(𝑚)) for all settings of 𝐾 that we

use (either 𝑚 or 𝑚 log(𝑚)), and that |Π|𝐾/𝑚 ≥ log(𝑚).

Each such seed is encoded via an error correcting code with a constant rate, hence, each

such codeword takes Θ(|Π|𝐾/𝑚)) bits. Since there are 𝑚 links in the network, the claim

holds.

Next we prove that the communication cannot get too high without a large number

of errors. Note that some links have arbitrary, potentially disagreeing, random strings,

and hence the corresponding parties might have hash-collisions in all iterations. While

this can make the communication very large, our goal is to show that the communication

cannot become too large without having many dangerous triples (where again, dangerous
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triples only count on edges (𝑢,𝑣) ∈ 𝐸′). Once we establish this fact, we will bound the

probability of having a large amount of dangerous triples.

Towards this end, we first recall that Lemma 2.3.10 connects the number of errors and

hash collisions in a specific iteration to the potential increase and the communication that

these errors and collisions might result in the same iteration.

We now prove the connection between the large communication and large amount of

dangerous rounds (assuming the noise level is within the allowed threshold).

Lemma 2.3.28. Fix 𝛾 ≥ 2. Denote the number of errors in the “main” part of the pro-

tocol as Err, and the communication in this part as CC. Let 𝐷 and 𝐸′ be the same as in

Lemma 2.3.13. Then CC ≥ 100𝛾𝛼|Π|𝐾(1+ |𝐸 ∖𝐸′ |) and Err ≤ 𝜀CC
𝐾 only if Err > 0 and 𝐷 > 𝛽 ·Err,

where 𝛽 ≥max
(︁

1
3𝛼𝜀 ,

33𝛾 |Π|(1+|𝐸∖𝐸′ |)
Err

)︁
, and 𝛼 is the constant multiplying the communication in

Lemma 2.3.10.

Proof. By Lemma 2.3.10, we can bound

CC ≤ 𝛼𝐾(100|Π|+ EHC) (2.28)

A “hash collision” (the HC in EHC) occurs when two hashes that are passed on an edge

match, but the transcripts do not match. Note that on any edge (𝑢,𝑣) ∈ 𝐸 ∖𝐸′, the seeds

may not have even been shared correctly! We bound the number of “hash collisions” on

edges like this trivially, by 100|Π|. Note that if 𝑢 and 𝑣 have different seeds, their hash

outputs may disagree even when their transcripts are the same. While this is problematic

for simulating the protocol correctly, these sorts of “fake” hash misses do not increase

the communication, since this stops parties from talking rather than making them talk

too much (unlike hash collisions, which can make parties talk excessively, as seen in

Lemma 2.2.9.

By noting that Err ≤ 𝜀
𝐾 · CC and that the number of hash collisions on links in 𝐸′ is
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upper bounded by the number of dangerous triples 𝐷, we can rewrite Eq. (2.28) as

CC ≤ 𝛼𝐾
(︂
100|Π|+ CC · 𝜀

𝐾
+𝐷 +𝐻𝐶𝐸∖𝐸′

)︂
≤ 𝛼𝐾

(︂
100|Π|+ CC · 𝜀

𝐾
+𝐷 + 100|Π| · |𝐸 ∖𝐸′ |

)︂
Rearranging and using the assumption that CC ≥ 100𝛾𝛼|Π|𝐾(1 + |𝐸 ∖𝐸′ |) and 𝛾 ≥ 2, we get

that

𝐷 ≥ (1−𝛼𝜀)CC− 100|Π|𝛼𝐾(1 + |𝐸 ∖𝐸′ |)
𝛼𝐾

≥ CC
3𝛼𝐾

≥ 𝛽Err

Note that if Err = 0, then specifically there are no errors on the link in 𝐸′ in the main

part of the protocol. Since the parties agree on seeds in 𝐸′, this means there will be no

dangerous triples, and hence 𝐷 cannot be larger than CC
3𝛼𝐾 . The bounds on 𝛽 follow since

CC ≥ 𝐾
𝜀 Err and CC ≥ 100𝛾𝛼|Π|𝐾(1 + |𝐸 ∖𝐸′ |) respectively.

Now we can prove our main communication bound of the section.

Lemma 2.3.29. Assume that |Π|𝐾 ≥𝑚 log(𝑚). Denote the number of errors in the “main” part

of the protocol as Err, and denote the communication complexity in the main part as CC. Fix

𝜀 > 0. Let 𝐷 and 𝐸′ be the same as in Lemma 2.3.13. Suppose that the tuple of random strings 𝑆

used are as in the randomness exchange (Algorithm 7), and the adversary tampered with strings

on links 𝐸 ∖𝐸′. Fix 𝛾 ≥ 2. The probability that the communication complexity of Algorithm A is

CC ≥ 100𝛾𝛼|Π|𝐾(1 + |𝐸 ∖𝐸′ |) and Err ≤ 𝜀
𝐾 ·CC is at most

𝑝Ω(𝛾 |Π|·(1+|𝐸∖𝐸′ |))

where 𝛼 is the constant multiplying the communication in Lemma 2.3.10.

Proof. Suppose that CC ≥ 100𝛾𝛼|Π|𝐾(1 + |𝐸 ∖ 𝐸′ |) and Err ≤ 𝜀
𝐾 · CC. Then by applying
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Lemma 2.3.28, we have that 𝐷 ≥ 𝛽Err, where 𝛽 is as defined in Lemma 2.3.28. Since

𝛽 ≥ 1
3𝛼𝜀 > 20𝐶6 by taking 𝜀 sufficiently small, we apply Corollary 2.3.26 to get that the

probability of this is at most

𝑝Ω(𝛽Err)

Since 𝛽 ≥ 33𝛾 |Π|(1+|𝐸∖𝐸′ |)

Err

, we conclude that the probability of this event is at most

𝑝Ω(𝛾 |Π|·(1+|𝐸∖𝐸′ |))

Proof of Theorem 2.3.9 Recall that we have 𝐾 = 𝑚 in Algorithm A, and so we will set

𝐾 =𝑚 throughout this proof. We split the proof into three steps. First, we show that the

probability that |𝐸 ∖𝐸′ | ≥ 1 and Err ≤ 𝜀
𝑚CC is at most exp(−Ω(|Π|)). Then, we set 𝐸′ = 𝐸 and

show that the probability that Err ≤ 𝜀
𝑚CC and CC > Θ(|Π|𝑚) is also exponentially small.

Finally, we show that the probability that Err ≤ 𝜀
𝑚CC, CC ≤ Θ(|Π|𝑚), and 𝐷 ≥ 𝜔(𝜀|Π|) is

also exponentially small. This covers the space of bad events for our protocol; outside of

these events, it can be shown that the protocol is simulated correctly, by following the

proof of Theorem 2.2.2.

Denote the number of errors in the main part of the protocol as Err′, and the communi-

cation in the main part as CC′.

Claim 2.3.30.

P

[︂(︂
Err ≤ 𝜀

𝑚
CC

)︂
∧ (|𝐸 ∖𝐸′ | ≥ 1)

]︂
< exp(−Ω(|Π|)).

Proof. Note that if |𝐸 ∖ 𝐸′ | ≥ 1, then the adversary must have committed Ω(|𝐸 ∖ 𝐸′ | · |Π|)

errors in the randomness exchange phase. This holds since we encode each random strings

with an error-correcting code with length 𝑟 = Θ(|Π|) (Claim 2.3.27) and constant distance.

The code having constant distance means that in order to corrupt even a single codeword,

the adversary must make at least Θ(|Π|) errors. But since Err ≤ 𝜀
𝑚CC, such an attack is

within the adversary’s budget only if CC ≥ 𝑚
𝜀 |Π| · |𝐸 ∖𝐸

′ |.
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Note that the communication in the randomness exchange phase is at most Θ(|Π|𝑚),

since there are 𝑚 links and strings of length Θ(|Π|) are sent on each. Hence, the amount of

communication in the main part of the protocol must be at least

CC′ ≥Θ

(︂𝑚
𝜀
|Π| · |𝐸 ∖𝐸′ |

)︂
≥ 200𝛼|Π|𝑚(1 + |𝐸 ∖𝐸′ |),

where we use the assumption that |𝐸 ∖𝐸′ | ≥ 1.

By Claim 2.3.14, the error in the main part satisfies Err′ ≤ 𝜀′
𝑚CC

′ for 𝜀′ = Θ(𝜀). So we can

apply Lemma 2.3.29 with 𝛾 = 2 and allowed noise rate (for the main part) of 𝜀′/𝑚, and get

that the probability that CC′ ≥ 200𝛼|Π|𝑚(1 + |𝐸 ∖𝐸′ |) is at most exp(−Ω(|Π| · (1 + |𝐸 ∖𝐸′ |))) ≤

exp(−Ω(|Π|)), as stated.

Given the above claim, we know that the adversary cannot corrupt even a single seed

and keep its attack within the allowed budget. Hence, we can assume from this point on

that 𝐸′ = 𝐸, and that all the seeds are 𝛿-biased strings chosen by the parties. Under these

conditions, Lemma 2.3.29 gives us that

P

[︃
(CC′ ≥ 200𝛼|Π|𝑚)∧

(︃
Err′ ≤ 𝜀

′

𝑚
CC′

)︃]︃
< exp(−Ω(|Π|)).

Now further suppose that the communication in the main part satisfies CC′ ≤ 200𝛼|Π|𝑚

and that Err′ ≤ 𝜀′
𝑚CC

′. This implies that the number of errors the adversary commits is at

most 200𝛼𝜀′ |Π|. Combining this with Corollary 2.3.26, we see that the probability that the

adversary can cause the number of dangerous triples exceed 𝑘𝜀′ |Π| in this case is at most

exp(−Ω(𝑘𝜀′ |Π|)), even when the parties share 𝛿-biased randomness, where the 𝑘 ≥ 10𝐶6.

Hence,

Corollary 2.3.31. For a real number 𝑘 such that 𝑘 ≥ 10𝐶6, we have that

P[EHC > (𝑘 + 1)(200𝛼𝜀′)|Π|] < exp(−Ω(𝑘𝜀′ |Π|)).

To conclude, if we limit the adversary to corrupting at most Err ≤ 𝜀
𝑚CC transmissions,
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then the probability that the adversary is able to tamper with any of the of the randomness

exchanges, cause more than Θ(|Π|𝑚) communication throughout the protocol, or cause

the number of errors and hash collisions to exceed Θ(𝑘𝜀′ |Π|), is at most exp(−Ω(𝑘𝜀′ |Π|)),

where we have freedom to set 𝑘 to be as large as we would like.

Regardless of the seed being used, Lemma 2.3.10 shows that Algorithm A concludes

with 𝜑 ≥ 100|Π|𝑚. Then, as long as none of the above bad events happen, we can take 𝜀

(and therefore also 𝜀′) to be sufficiently small, which (by applying Corollary 2.3.31 with

appropriately selected 𝑘) makes EHC at most |Π|/𝐶7 with probability at least 1− exp(|Π|).

Finally, we appeal to Claim 2.3.32, a reformulation of Claim 2.2.19 from Section 2.2, to

conclude that Algorithm A correctly simulates Π.

Claim 2.3.32 (Reformulation of Claim 2.2.19). Suppose that 𝜑 is defined as in Equation 2.6,

that 𝜑 ≥ 100|Π|𝐾 , and that EHC ≤ 𝜀*|Π| for a sufficiently small constant 𝜀* > 0 that does not go

to 0 as 𝜀 goes to 0. Then the underlying protocol Π has been simulated correctly.

To conclude the proof, we note that EHC is bounded by 𝜀*|Π| with probability 1 −

exp(−Ω(|Π|)) for Algorithm A follows from Corollary 2.3.31 by taking 𝜀′ to be sufficiently

small with respect to 𝜀*, where the Ω hides a factor of the constant 𝜀* (but not 𝜀 or 𝜀′). For

more details, see the proof of Theorem 2.2.2; the proof follows identically in this case.

2.3.4 Coding Scheme for Non-Oblivious Noise

Overview

In this section, we generalize the result of the previous section to hold for nonoblivious

adversaries. Nonoblivious adversaries have a lot of power: specifically, they can look at

the random seeds that will be used in the rest of the protocol and choose their errors as a

function of these seeds. The upshot is that we can no longer guarantee that the event of a

hash collision is independent of previous hash collisions, or even close to independent.

We briefly recall (from the Introduction to Section 2.3.1) the issues that can occur with an

adversary that knows the random seeds used ahead of time, even when these seeds are
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initially sampled from a uniform distribution.

Suppose that the seeds to the hash functions are fixed, and that a randomly selected

error creates a hash collision in the next round with probability 𝑝. Then roughly a 𝑝

fraction of the possible errors would lead to a hash collision on this link in the next

Simulation phase, and hence be undiscovered. Among the errors that caused a collision,

roughly a 𝑝 fraction of them would lead to a hash collision in the proceeding link, and so

on. Hence, if the number of error patterns is sufficiently large, the adversary can select

a specific error pattern out of them that will not be detected within a large sequence of

iterations. In particular, since there are 𝐾 = poly(𝑚) bits communicated in a single chunk,

the adversary has a choice of poly(𝑚) errors in any simulation phase, so that there exists

an error that is undetectable for Θ(log(𝑚)) iterations with high probability.

To address this issue, we modify our hash function to have a collision probability

of 𝑝 = 1
𝑚Θ(1) , by increasing the output size of our hash to Θ(log(𝑚)) bits. This, however,

affects the rate of the coding scheme. In order to keep the rate constant, we set 𝐾 to be

𝑚 log(𝑚), i.e., the size of each chunk increases and we effectively send hashes (and other

meta-data) less frequently. We then appeal to the strategy of [70], and show that there

is no oblivious, additive adversary that sabotages the simulation with high probability. In

particular, for any given oblivious, additive adversary, there are exponentially few “bad”

randomness strings that do not guarantee a correct and constant rate simulation. Taking

a union bound over all possible oblivious, additive adversaries, we show that the union

of all the “bad” randomness strings is still exponentially small. This means that unless a

bad randomness is picked by the parties, no oblivious, additive adversary can invalidate

the simulation. But the actions of any non-oblivious adversary that makes Err errors can

always be modeled by some oblivious, additive adversary that makes Err errors - simply

take the oblivious adversary that miraculously manages to make the same corruptions.

Hence, no non-oblivious adversary can invalidate the simulation for the same randomness.

126



Noise-resilient simulation for non-oblivious adversarial noise

Define Algorithm B to be Algorithm 1 combined with the InitializeState() procedure

described in Algorithm 10 below.

Algorithm 10 InitializeState() for non-oblivious noise without a CRS

1: 𝐾 ←𝑚 log(𝑚)
2: for all neighbors 𝑣 ∈ 𝒩 (𝑢) in parallel do
3: Initialize 𝑇𝑢,𝑣 = ∅

4: Initialize 𝑘𝑢,𝑣 ,𝐸𝑢,𝑣 ,𝑚𝑝𝑐1𝑢,𝑣 ,𝑚𝑝𝑐2𝑢,𝑣← 0
5: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣← “simulate”
6: 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣← 0
7: 𝛿 := 2−Θ(|Π|𝐾/𝑚)

8: 𝑆 := (𝑆𝑖,𝑢,𝑣)𝑖∈[100|Π|]← RandomnessExchange(𝑢, 𝑣, 𝛿, 𝐾)

9: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢← 1.
10: 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢← 1

The only difference in InitializeState() from Section 2.3.3 is that 𝐾 is set to 𝑚 log(𝑚).

Algorithm B: Analysis

The main result of this section is the following theorem, arguing that Algorithm B is

resilient to non-oblivious adversary that corrupts up to a fraction 𝜀/𝑚 log𝑚 of the trans-

missions, with high probability.

Theorem 2.3.33. Assume a network 𝐺 = (𝑉 ,𝐸) with 𝑛 = |𝑉 | parties and 𝑚 = |𝐸| links. Suppose

Π is a multiparty protocol over the network 𝐺 with communication complexity CC(Π), binary

alphabet and fixed order of speaking. Let |Π| = CC(Π)
5𝑚 log(𝑚) and let 𝜀 > 0 be a sufficiently small

constant. Algorithm B correctly simulates Π with communication complexity 𝑂(CC(Π)) with

probability at least 1− exp(−Ω(|Π| log(𝑚))) over the randomness of the parties, in the presence

of a non-oblivious adversary limited to a noise fraction at most 𝜀/𝑚 log(𝑚).

Recall that in Algorithm B we set 𝐾 =𝑚 log(𝑚). We will use 𝐾 and 𝑚 log(𝑚) interchan-

gably throughout this section, often leaving expressions in terms of 𝐾 and plugging in

𝑚 log(𝑚) at the end.
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As mentioned in the overview in Section 2.3.4, our general strategy is to union bound

over all oblivious additive adversaries to show that the fraction of random strings that lead

to bad outcomes is small. We start by showing a simple but useful claim, which provides a

bound on the number of different oblivious, additive adversaries that can commit a fixed

number of errors.

Claim 2.3.34. Fix a nonnegative integer Err. Assuming a large enough 𝑚, the number of

different oblivious additive adversaries that commit exactly Err errors is at most(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃
· 2Err

for some constant 𝐶 > 0. Furthermore, if Err > 𝐶𝜀𝑚|Π|, then Err > 𝜀
𝑚 log(𝑚)CC, where 𝐶 is the

same constant and CC denotes the communication of the robust protocol.

Proof. In the randomness exchange part of the protocol, there are Θ(𝐾𝑚 |Π|) = Θ(log(𝑚)|Π|)

rounds, and in each of them there are at most 𝑚 links which the adversary can corrupt.

Therefore, there are Θ(𝑚 log(𝑚)|Π|) = 𝑂(𝑚2 log(𝑚)|Π|) places for the adversary to put

errors in the randomness exchange phase.

In the main part of the protocol, each iteration has at most 𝑂(𝑚 log(𝑚)) rounds, there

are 100|Π| iterations, and in each round, the adversary can choose which of 2𝑚 possible

(directed) links to put an error. Putting this together, we get that there are at most

𝑂(𝑚2 log(𝑚)|Π|) places for the adversary to put an error in the main part of the protocol.

The first part of the claim follows by just letting 𝐶 be the constant hidden in the big 𝑂.

We now justify why there are at most 𝑂(𝑚 log(𝑚)) rounds per iteration. Each meeting

points phase takes Θ(𝐾/𝑚) rounds in which 5 hash values, each of length Θ(𝐾/𝑚), are

being exchanged between each pair of parties (in parallel). Note that Θ(𝐾/𝑚) = Θ(log𝑚) =

𝑂(𝑚 log𝑚). The flag passing phase has 𝑂(𝑛) =𝑂(𝑚 log(𝑚)) rounds. The simulation phase

takes 5𝑚 log(𝑚) + 1 rounds (where one round is for the ⊥ symbols), and the rewind

phase takes 𝑛≪𝑚 log𝑚 rounds. Putting them all together the round number is at most

𝑂(𝑚 log𝑚).
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In each place where an oblivious adversary commits an error, it can choose one of two

possibilities (either bit flip or deletion when there is communication; or inserting a 0 or 1

when there is no honest transmission), which we formalized with an additive noise model.

This yields the 2Err term.

The final claim follows since there are only ≤ 𝐶𝑚2 log(𝑚)|Π| pairs of (round, directed

link) where there can possibly be communication during the protocol, and so we get a

trivial upper bound on the communication complexity as 𝐶𝑚2 log(𝑚)|Π|.

Next, we consider the communication complexity of Algorithm B. Recall that while

the round complexity is fixed, the communication complexity depends on the inputs,

noise, and randomness. We now show that the probability that the adversary can make

the communication of the robust protocol larger than 𝑂(𝐶𝐶(Π)), if bounded to its allowed

budget, is negligible.

Recall that Algorithm B has two parts: the randomness exchange part, which happens

in InitializeState(), and the “main” part, where the actual simulation occurs. Claim 2.3.27

bounds the communication in the randomness exchange by Θ(|Π|𝐾) = Θ(|Π|𝑚 log(𝑚)).

Therefore, we are only left to show that communication in the main part of Algorithm B is

bounded by Θ(|Π|𝐾).

Lemma 2.3.35. Let |Π| = CC(Π)
5𝑚 log(𝑚) and let 𝜀 > 0 be a sufficiently small constant. The “main”

part of Algorithm B has at most 400𝛼|Π|𝑚 log(𝑚) =𝑂(CC(Π)) communication with probability

at least 1− exp(−Ω(|Π| log(𝑚))) over the randomness of the parties, in the presence of a non-

oblivious adversary with noise fraction at most 𝜀/𝑚 log(𝑚), and where 𝛼 is the constant in

Lemma 2.3.10.

This lemma immediately leads to a bound on the communication of the entire protocol

as stated by the following corollary.

Corollary 2.3.36. Assume the setting of Theorem 2.3.33. Algorithm B has at most𝑂(|Π|𝑚 log(𝑚)) =

𝑂(CC(Π)) communication with probability at least 1− exp(−Ω(|Π| log(𝑚))) over the random-

ness of the parties, in the presence of a non-oblivious adversary with noise fraction at most

𝜀/𝑚 log(𝑚).
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Proof. By Claim 2.3.27, the communication in the randomness exchange phase is𝑂(|Π|𝐾) =

𝑂(|Π|𝑚 log(𝑚)), regardless of the randomness of the parties. Lemma 2.3.35 additionally

bounds the communication in the main part of the protocol by 𝑂(|Π|𝑚 log(𝑚)) with proba-

bility 1− exp(−Ω(|Π| log(𝑚))) over the randomness of the parties.

Finally, we upper bound the probability that the communication is too large for any

oblivious adversary, with a bound that will be sufficient strong to union bound over all

oblivious adversaries and prove Lemma 2.3.35.

Proposition 2.3.37. Fix an oblivious adversary, and denote the number of errors it commits

as Err. Let CC denote the communication complexity of the entire protocol, and CC′ denote the

communication complexity in the main part. Then

P

[︁
(CC′ > 400𝛼|Π|𝐾)∧ (Err ≤ 𝜀

𝐾CC)
]︁
≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(−Ω(|Π| log(𝑚))) if Err ≤ 400𝛼𝜀′ |Π|

exp(−Ω(log(𝑚)Err/𝜀)) otherwise
, (2.29)

Proof. Recall from Section 2.3.3 that the adversary can tamper with the randomness

exchanges on some links. In line with the notation in Section 2.3.3, denote the set of edges

that share randomness successfully as 𝐸′ ⊆ 𝐸, and additionally define 𝐽 def= |𝐸 ∖𝐸′ | to be the

number of tampered edges, for notational convenience. Note that, since the randomness in

the randomness exchange phase is encoded with a code with constant distance, and since

log(1/𝛿) = Θ(𝐾/𝑚|Π|), we have that

𝐽 ≤Θ

(︂Err ·𝑚
𝐾 |Π|

)︂
(2.30)

This is because it takes Θ(𝐾𝑚 |Π|) errors to corrupt the randomness exchange on any single

edge.

Furthermore, recall from Claim 2.3.14 that Err ≤ 𝜀′
𝐾CC

′ for 𝜀′ = Θ(𝜀), and this implies

that the effective noise rate on the main part of the protocol is at most 𝜀′/𝐾 . Hence, we
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write

P

[︂
(CC′ > 400𝛼|Π|𝐾)∧

(︂
Err ≤ 𝜀

𝐾
CC

)︂]︂
≤ P

[︃
(CC′ > 400𝛼|Π|𝐾)∧ (Err ≤ 𝜀

′

𝐾
CC′)

]︃
≤ P

[︂
(CC′ > 400𝛼|Π|𝐾)∧ (CC′ ≥ 𝐾

𝜀′
Err)

]︂
(2.31)

where in the second line we just rearranged the condition that Err ≤ 𝜀′
𝐾CC

′.

The fact that the effective noise rate is 𝜀′ = Θ(𝜀) on the main part also lets us invoke

Lemma 2.3.29, which we now recall. This will be our main tool here.

P

[︁
(CC′ > 100𝛾𝛼|Π|𝐾(1 + 𝐽))∧ (CC′ ≥ 𝐾

𝜀′ Err)
]︁
≤ exp(−Ω(𝛾 |Π| · (1 + 𝐽)𝐾𝑚 )) (2.32)

where 𝛾 ≥ 2 is a parameter we can set at our convenience.

We recall upper bound for 𝐽 in terms of the number of errors, namely that 𝐽 ≤Θ(Err·𝑚𝐾 |Π| ).

We can “plug in” this upper bound into Eq. (2.32) by absorbing a factor of 1+𝐽
1+Θ(Err·𝑚/(𝐾 |Π|))

into 𝛾 , and get that

P

[︂(︂
CC′ > 100𝛾𝛼|Π|𝐾

(︂
1 +Θ

(︂Err ·𝑚
𝐾 |Π|

)︂)︂)︂⋀︁(︂
CC′ ≥ 𝐾

𝜀′
Err

)︂]︂
= P

[︂
(CC′ > 𝛾(100𝛼|Π|𝐾 +Θ(Err ·𝑚)))

⋀︁(︂
CC′ ≥ 𝐾

𝜀′
Err

)︂]︂
≤ exp

(︃
−Ω

(︃
𝛾 |Π|𝐾 + Err ·𝛾 ·𝑚

𝑚

)︃)︃
(2.33)

where the above formula still holds for 𝛾 ≥ 2, since we just made 𝛾 smaller by absorbing a

factor less than 1.

We will apply Eq. (2.33) to bound the probability on the left-hand side of Eq. (2.29) for

the two cases of the statement.

Case 1: Err ≤ 400𝛼𝜀′ |Π|.

In this case, we note that Θ(Err ·𝑚) ≤ 100𝛼|Π|𝐾 due to the fact that 𝜀′ can be taken to

be much smaller than the constant hidden by the Θ. Hence, we can select 𝛾 ≥ 2 such that
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400𝛼|Π|𝐾 ≥ 𝛾(100𝛼|Π|𝐾 +Θ(Err ·𝑚)). Therefore, Eq. (2.29) becomes as follows:

P

[︁
(CC′ > 400𝛼|Π|𝐾)∧ (CC′ ≥ 𝐾

𝜀′ Err)
]︁

≤ P

[︁
(CC′ > 𝛾(100𝛼|Π|𝐾 +Θ(Err ·𝑚)))∧ (CC′ ≥ 𝐾

𝜀′ Err)
]︁

≤ exp(−Ω(|Π|𝐾𝑚 ))

≤ exp(−Ω(|Π| log(𝑚))) (2.34)

where 𝛾 ≥ 2 is selected appropriately. The second line follows from Eq. (2.33) with the

appropriately selected 𝛾 .

Case 2: Err > 400𝛼𝜀′ |Π|.

In this case, we claim that CC′ ≥ 𝐾
𝜀′ Err already implies that CC′ is large enough to apply

Eq. (2.33) to bound P[CC′ ≥ 𝐾
𝜀′ Err]. To see this, note that CC′

2 ≥
𝐾

2𝜀′ Err≫Θ(Err ·𝑚) and that
CC′
2 ≥

𝐾
2𝜀′ Err ≥ 200𝛼|Π|𝐾 , which implies that CC′ = 𝛾(100𝛼|Π|𝐾 +Θ(Err ·𝑚)) for some 𝛾 ≥ 2.

Hence, we can apply Eq. (2.33) with appropriately selected 𝛾 ≥ 2 to get that

P[CC′ ≥ 𝐾
𝜀′ Err] ≤ exp(−Ω( 𝐾

𝑚𝜀′ Err))

≤ exp(−Ω(log(𝑚)Err/𝜀)) (2.35)

Equipped with Proposition 2.3.37, we proceed to prove Lemma 2.3.35.

Proof of Lemma 2.3.35. For this proof, let CC′ denote the communication complexity in

the main part of Algorithm B.

We will union bound over all possible oblivious additive adversaries to show that none

of them can make much communication. Recall from Claim 2.3.34 that the number of

adversaries that commit exactly Err errors is at most(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃
· 2Err (2.36)
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and that we can take Err ≤𝑂(𝜀𝑚|Π|) without loss of generality when considering adversa-

ries that do not exceed their error budget.

Now suppose that Err ≤ 400𝛼𝜀′ |Π|. Since 𝜀′ is sufficiently small, Err is much smaller

than 𝐶𝑚2 log(𝑚)|Π|, so we can apply the monotonicity of small binomial coefficients in

their bottom argument to upper bound Eq. (2.36) by

≤
(︃
𝐶𝑚2 log(𝑚)|Π|

400𝛼𝜀′ |Π|

)︃
· 2400𝛼𝜀′ |Π|.

≤
(︃
𝐶𝑒𝑚2 log(𝑚)|Π|

400𝛼𝜀′ |Π|

)︃400𝛼𝜀′ |Π|
· 2400𝛼𝜀′ |Π|

≤ exp(𝑂(𝜀|Π| log(𝑚))) (2.37)

where the second transition is applying Eq. (1.1), which we recall says that
(︀𝑛
𝑘

)︀
≤ (𝑛𝑒/𝑘)𝑘.

Now we can use Proposition 2.3.37 to show that the total fraction of random strings that

can allow any oblivious adversary that makes at most 400𝛼𝜀′ |Π| errors to guarantee that

Err ≤ 𝜀
𝐾CC and that CC > 400𝛼|Π|𝑚 log(𝑚) is at most:

400𝛼𝜀′ |Π|∑︁
Err=0

(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃
· 2Err · exp(−Ω(|Π| log(𝑚)))

≤
400𝛼𝜀′ |Π|∑︁
Err=0

exp(𝑂(𝜀|Π| log(𝑚))) · exp(−Ω(|Π| log(𝑚)))

≤ exp(−Ω(|Π| log(𝑚))), (2.38)

where we substitute Eq. (2.37) for the first transition.

Finally, we suppose that Err > 400𝛼𝜀′ |Π|. Then we again use Eq. (1.1) and Claim 2.3.34
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to upper bound the number of oblivious adversaries that make exactly Err errors by

(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃
· 2Err ≤

(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃Err
· 2Err

≤
(︃
𝐶𝑚2 log(𝑚)|Π|

400𝛼𝜀′ |Π|

)︃Err
· 2Err

≤ exp(Θ(log(𝑚)Err)). (2.39)

Again, we use Proposition 2.3.37 to show that the total fraction of random strings that can

allow any oblivious adversary that makes more than 400𝛼𝜀′ |Π| errors to guarantee that

Err ≤ 𝜀
𝐾CC and that CC > 400𝛼|Π|𝑚 log(𝑚) is at most:

𝐶𝜀𝑚|Π|∑︁
Err=400𝛼𝜀′ |Π|

(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃
· 2Err · exp(−Ω(log(𝑚)Err/𝜀))

≤
𝐶𝜀𝑚|Π|∑︁

Err=400𝛼𝜀′ |Π|
exp(𝑂(log(𝑚)Err)) · exp(−Ω(log(𝑚)Err/𝜀))

≤ exp(−Ω(log(𝑚)Err/𝜀)) (2.40)

Finally, putting together Eqs. (2.38) and (2.40) yields the desired result: the fraction of

random strings that lead any additive oblivious adversary to have too much communica-

tion, is low. We conclude that this upper bounds the probability over the randomness of

the parties that any non-oblivious party can make the communication too large.

Now we are ready to finish the proof of Theorem 2.3.33.

Proof of Theorem 2.3.33. We have already showed that with high probability over the

randomness of the parties, the communication will be only a constant blowup over CC(Π).

Specifically, Corollary 2.3.36 tells us that the communication CC is 𝑂(|Π|𝑚 log(𝑚)) with

probability at least 1−exp(−Ω(|Π| log(𝑚))). For the remainder of this proof, we work under

the assumption that CC is bounded by this quantity CC𝑚𝑎𝑥 =𝑂(|Π|𝑚 log(𝑚)).

First, note that this means that the adversary cannot corrupt any randomness exchange
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while having error rate 𝜀
𝑚 log(𝑚) . Indeed, this is because corrupting even a single randomness

exchange costs Θ(log(𝑚)|Π|) errors, and the maximum number of errors that the adversary

can commit while staying under the error rate is 𝑂(𝜀|Π|). Hence, we can work under the

assumption that all the parties exchange randomness successfully, and hence 𝐽 = |𝐸∖𝐸′ | = 0.

Now, suppose that the communication complexity is CC = 𝑂(|Π|𝐾) and Err ≤ 𝜀
𝐾CC ≤

𝑂(𝜀|Π|). We show that the probability of the number of errors being this small yet the

number of dangerous rounds 𝐷 being too large, is exponentially small. Specifically, let 𝑘

be a sufficiently large constant with respect to 𝐶6 and to the constant factors in the hash

collision probability 𝑝 = 𝑂(1/poly(𝑚)). Then for any oblivious adversary that makes at

most Err errors, we have that

P [(𝐷 > 𝑘 · Err)∧ (Err ≤ (𝜀/𝐾)CC)] ≤ exp(−Ω(𝑘 · Err · log(𝑚)))

by Corollary 2.3.26. Specifically, if we let Err𝑚𝑎𝑥 = 𝜀
𝐾CC𝑚𝑎𝑥, then this gives us that the

probability that, if the adversary commits Err errors,

P [(𝐷 > 𝑘 · Err𝑚𝑎𝑥)∧ (Err ≤ Err𝑚𝑎𝑥)] ≤ P [(𝐷 > 𝑘′ · Err)∧ (Err ≤ Err𝑚𝑎𝑥)]

≤ exp(−Ω(𝑘 · Err𝑚𝑎𝑥 · log(𝑚))), (2.41)

by applying Corollary 2.3.26 with Err and 𝑘′ such that 𝑘′ · Err = 𝑘 · Err𝑚𝑎𝑥 (and hence 𝑘′ ≥ 𝑘

is sufficiently large to apply the corollary).

Finally, we union bound Eq. (2.41) over all non-oblivious adversaries that make at most

𝑂(𝜀|Π|) errors to show that, with high probability, no non-oblivious adversary can make 𝐷
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larger than 𝑘 · Err𝑚𝑎𝑥, with high probability. This probability is at most

Err𝑚𝑎𝑥∑︁
Err=0

(︃
𝐶𝑚2 log(𝑚)|Π|

Err

)︃
· 2Err ·P [(𝐷 > 𝑘 · Err𝑚𝑎𝑥)∧ Err ≤ Err𝑚𝑎𝑥]

≤
Err𝑚𝑎𝑥∑︁
Err=0

(︃
𝐶𝑚2 log(𝑚)|Π|

Err𝑚𝑎𝑥

)︃
· 2Err𝑚𝑎𝑥 ·P [(𝐷 > 𝑘 · Err𝑚𝑎𝑥)∧ Err ≤ Err𝑚𝑎𝑥]

≤
Err𝑚𝑎𝑥∑︁
Err=0

exp(Θ(𝜀|Π| log(𝑚))) · exp(−Ω(𝑘 · 𝜀|Π| · log(𝑚)))

≤ exp(−Ω(𝑘𝜀|Π| · log(𝑚))).

The second line follows from the monotonicity of binomial coefficients with the bottom

part much smaller than the top. The third line follows from applying Eq. (1.1) and bringing

factors of 𝑚 and 𝜀 into the exponent, and by Eq. (2.41) and plugging in Err𝑚𝑎𝑥 = 𝜀
𝐾CC𝑚𝑎𝑥 =

𝑂(𝜀|Π|). The final line follows from taking the hash sizes (which affect the constants in

Eq. (2.41)) and 𝑘 to be large enough.

We conclude that no non-oblivious adversary can make 𝐷 = 𝑂(𝜀*|Π|) while having

Err ≤𝑂(𝜀|Π|) with probability at least 1−exp(−Ω(𝜀*|Π|·log(𝑚))) over the randomness of the

parties, where 𝜀* is a fixed constant that is sufficiently larger than 10𝐶6𝜀 and sufficiently

smaller than 1/(4200𝐶7𝐶6𝛼). Combining this with Corollary 2.3.36 and using the fact

that 𝐷 upper bounds the number of hash collisions, we conclude that the non-oblivious

adversary cannot make EHC bigger than𝑂(𝜀*|Π|) with probability at least 1−exp(−Ω(𝜀*|Π|·

log(𝑚))). Since 𝜀* is a constant that does not go to 0 with 𝜀, we can absorb it into the Ω.

Hence, we get that the non-oblivious adversary cannot make EHC bigger than 𝑂(𝜀*|Π|)

with probability at least 1− exp(−Ω(|Π| · log(𝑚))).

Finally, recall that Lemma 2.3.10 shows that the potential 𝜑 rises by at least 𝐾 in

every iteration. This means that after 100|Π| iterations, the potential is at least 100|Π|𝐾 .

Combining this with the fact that EHC ≤𝑂(𝜀*|Π|), Claim 2.3.32 gives us the desired result.

For a fuller treatment of this part of the proof, see the proof of Theorem 2.2.2.
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2.3.5 Conclusion and Future Directions

In this work we considered coding schemes in the multiparty setting that are resilient

to insertions, deletions, and substitution noise. These schemes are the first multi-party

coding scheme that are computationally efficient despite the presence of adversarial noise.

The communication blowup incurred by the coding is only a constant, and the resilience

we obtain is 𝑂(1/𝑚) assuming oblivious adversary or 𝑂(1/𝑚 log𝑚) assuming a general

adversary.

While we consider error rates of at most 𝑂(1/𝑚) in this paper, this is not the optimal

noise rate for multiparty interactive coding in general. Indeed, Hoza and Schulman [79]

further improve their noise resilience to Ω(1/𝑛), where 𝑛 is the number of parties, at

the expense of reducing the rate to 1/𝑂(𝑚 log(𝑛)/𝑛), which is no longer constant. It is

an interesting open question whether there exists a constant-rate coding scheme with

noise resilience Ω(1/𝑛), in any communication model. We note that our resilience level

to non-oblivious adversaries stands at 𝑂(1/𝑚 log(𝑚)); this seems to be inherent to our

approach, designed to yield computational efficiency. New ideas might be required in

order to improve this resilience.

Even though our noise-resilient protocol increases the communication complexity

by only a constant factor, it may blow up the number of communication rounds by more

than a constant factor. In our model, unlike the fully utilized model, the communication

complexity does not determine the round complexity. Specifically, in our model an

interactive protocol with communication complexity CC may consist of CC/𝑚 rounds (in

the case that the network if fully utilized) or may consist of CC rounds (in the case where

the communication is very sparse). Simulating either one of these interactive protocols

with the algorithms in this paper will take Θ(CC) rounds. It is an interesting question as to

whether one can extend our results to simultaneously achieve constant blowup in rounds.
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2.4 The Meeting Points Mechanism

In this section we define and analyze the meeting points mechanism [70] and its respective

potential 𝜙𝑢,𝑣 . Certain parts of the analysis mostly repeat [70] and are included here for

completeness. The main difference from [70] is that the meeting points mechanism is

interleaved over several iteration of the simulation protocol. This brings two potential

difficulties. First, 𝜙𝑢,𝑣 may change outside the meeting-point phase. Second, the transcript

may change while the meeting-points mechanism is still in progress. We eliminate the later

by fixing a party’s transcript until the meeting points mechanism reports the transcripts

of both parties are consistent. The former requires a more careful analysis of 𝜙𝑢,𝑣 , and is

handled in Claim 2.4.1.

2.4.1 Meeting Points Protocol Between Two Parties

Below we describe the meeting points protocol that parties do pairwise. We write the

algorithm as it is performed by some party 𝑢 with one of its neighbors 𝑣. In all variables

below, we will drop the subscript of (𝑢,𝑣) but it is implied. Specifically, 𝑘 below denotes

𝑘𝑢,𝑣 , and the same is true for 𝐸, 𝑇 , 𝑚𝑝𝑐1, 𝑚𝑝𝑐2, and 𝑠𝑡𝑎𝑡𝑢𝑠.

Roughly speaking, there are up to two types of actions performed in each round

of meeting points. The pair of parties first send each other hashes of their truncated

transcripts, and increment their respective 𝐸, 𝑇1, or 𝑇2 counters if applicable. In keeping

with Haeupler’s paper we will call this the verification phase of meeting points. Note that

the verification phase always occurs during a round of meeting point exchange.

After exchanging hashes, the parties judge whether or not to take further action

based on the values of 𝐸, 𝑇1, and 𝑇2. We will call this the transition phase of meeting

points. For example, if 2𝐸𝑢,𝑣 > 𝑘𝑢,𝑣, then party 𝑢 will set all its variables in the meeting

points computation to 0. We will call these transitions reset transitions16. Otherwise, if

𝑚𝑝𝑐1𝑢,𝑣 > 0.4𝑘𝑢,𝑣, party 𝑢 will transition to meeting point 1, and similarly for meeting

point 2. These will be called meeting point transitions.

16This is called an error transition in [70].
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Algorithm 11 MeetingPoints(𝑢,𝑣, 𝑆𝑖,𝑢,𝑣)

1: Method called by 𝑢, with 𝑣 ∈𝑁 (𝑢). 𝑆𝑖,𝑢,𝑣 ∈ {0,1}Θ(|Π|𝑚 log(𝑚)) is a large random seed to
be split up and used for hashing. Π← protocol to be simulated.

2: ℎ← inner product hash family (Definition 2.1.2) w/ input length15 Θ(|Π|𝑚 log(𝑚)),
𝑝 = 2−Θ(log(𝑚)) sufficiently small, 𝑜 = Θ(log(𝑚)), 𝑠 = |𝑆𝑖,𝑢,𝑣 |/10.

3: (𝑆1,𝑆2, . . . ,𝑆10)← 𝑆𝑖,𝑢,𝑣 . 𝑆𝑖,𝑢,𝑣 is split into ten seeds. Wlog we assume that 𝑆1, . . . ,𝑆5 are
for the hashes it sends, and 𝑆6, . . . ,𝑆10 are for the hashes it uses for comparisons (so 𝑣
is using 𝑆6, . . .𝑆10 for the hashes it sends, and 𝑆1, . . . ,𝑆5 for comparisons, respectively).

4: 𝑘← 𝑘 + 1
5: ̃︀𝑘← 2⌊log𝑘⌋. Let 𝑐 be the largest integer such that 𝑐̃︀𝑘 ≤ |𝑇𝑢,𝑣 |.
6: 𝑇1← 𝑇𝑢,𝑣[1 : 𝑐̃︀𝑘],𝑇2← 𝑇𝑢,𝑣[1 : (𝑐 − 1)̃︀𝑘]
7: Send (ℎ𝑆1

(𝑘),ℎ𝑆2
(𝑇1),ℎ𝑆3

(𝑇1),ℎ𝑆4
(𝑇2),ℎ𝑆5

(𝑇2)) to neighbor 𝑣.

8: (𝐻𝑘 ,𝐻
(1)
𝑇1
,𝐻

(1)
𝑇2
,𝐻

(2)
𝑇1
,𝐻

(2)
𝑇2

)← (ℎ𝑆6
(𝑘),ℎ𝑆7

(𝑇1),ℎ𝑆8
(𝑇2),ℎ𝑆9

(𝑇1),ℎ𝑆10
(𝑇2))

9: Receive (𝐻 ′𝑘 ,𝐻
(1)′

𝑇1
,𝐻

(2)′

𝑇1
,𝐻

(1)′

𝑇2
,𝐻

(2)′

𝑇2
) from our neighbor 𝑣.

10: if 𝐻𝑘 ,𝐻 ′𝑘 then
11: 𝐸← 𝐸 + 1
12: else if 𝐻 (1)

𝑇1
=𝐻 (1)′

𝑇1
or 𝐻 (2)

𝑇1
=𝐻 (1)′

𝑇2
then

13: 𝑚𝑝𝑐1←𝑚𝑝𝑐1 + 1

14: else if 𝐻 (1)
𝑇2

=𝐻 (2)′

𝑇1
or 𝐻 (2)

𝑇2
=𝐻 (2)′

𝑇2
then

15: 𝑚𝑝𝑐2←𝑚𝑝𝑐2 + 1
16: if 𝑘 = 1,𝐸 = 0, and 𝐻 (1)

𝑇1
=𝐻 (1)′

𝑇1
then

17: 𝑘,𝑚𝑝𝑐1,𝑚𝑝𝑐2← 0
18: 𝑠𝑡𝑎𝑡𝑢𝑠← “simulate” return 𝑠𝑡𝑎𝑡𝑢𝑠
19: if 2𝐸 ≥ 𝑘 then
20: 𝑘← 0,𝐸← 0,𝑚𝑝𝑐1← 0,𝑚𝑝𝑐2← 0
21: 𝑠𝑡𝑎𝑡𝑢𝑠← “meeting points”
22: else if 𝑘 =̃︀𝑘 then
23: if 𝑚𝑝𝑐1 > 0.4𝑘 then
24: 𝑇𝑢,𝑣← 𝑇1
25: 𝑘← 0,𝐸← 0
26: else if 𝑚𝑝𝑐2 > 0.4𝑘 then
27: 𝑇𝑢,𝑣← 𝑇2
28: 𝑘← 0,𝐸← 0
29: 𝑚𝑝𝑐1← 0,𝑚𝑝𝑐2← 0
30: 𝑠𝑡𝑎𝑡𝑢𝑠← “meeting points”
31: else
32: 𝑠𝑡𝑎𝑡𝑢𝑠← “meeting points”
33: return 𝑠𝑡𝑎𝑡𝑢𝑠
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We have the parties use separate seeds for each hash comparison, and so they take the

large shared seed between them and split it into many smaller seeds. The reason for this is

somewhat technical; it makes the events of hash collisions for the different comparisons

independent (when the seeds themselves are independent), which will be useful in our

analysis of removing the common random string in the second part of this work [59]17. It

suffices to use a single seed in Meeting Points when the parties share a common random

string).

2.4.2 Notation

We establish some notation that will be used in this section.

• 𝐸𝑢,𝑣 corresponds to the value of 𝐸 that party 𝑢 has for the communication link with

party 𝑣. 𝐸𝑢,𝑣 is defined similarly.

• 𝐸𝑢,𝑣 , 𝑘𝑢,𝑣, 𝑚𝑝𝑐1𝑢,𝑣, and 𝑚𝑝𝑐2𝑢,𝑣 are all defined as the value of the corresponding

variable that party 𝑢 has for the communication link (𝑢,𝑣). We can also define these

with 𝑣 coming first in the subscript (e.g. 𝐸𝑣,𝑢); these will correspond to the value that

party 𝑣 has for the link (𝑢,𝑣).

• 𝑊𝑀𝑢,𝑣 corresponds to the number of wrong matches or mismatches that contribute

to the current values of 𝑚𝑝𝑐1𝑢,𝑣 and 𝑚𝑝𝑐2𝑢,𝑣 (the counters for party 𝑢) on link (𝑢,𝑣).

That is, if (𝑇1)𝑢,𝑣 ∈ {(𝑇1)𝑣,𝑢 , (𝑇2)𝑣,𝑢} but party 𝑢 does not increment 𝑚𝑝𝑐1 due to an

error, then we increment 𝑊𝑀𝑢,𝑣 by 1. Similarly, if (𝑇1)𝑢,𝑣 < {(𝑇1)𝑣,𝑢 , (𝑇2)𝑣,𝑢} but party

𝑢 increments 𝑚𝑝𝑐1 due to an error or hash collision, we increment 𝑊𝑀𝑢,𝑣 by 1.

Define 𝑊𝑀𝑣,𝑢 similarly, but for the increments and non-increments of party 𝑣.

• Let 𝑘{𝑢,𝑣} = 𝑘𝑢,𝑣 + 𝑘𝑣,𝑢 . Define 𝐸{𝑢,𝑣},𝑚𝑝𝑐1{𝑢,𝑣},𝑚𝑝𝑐2{𝑢,𝑣}, and 𝑊𝑀{𝑢,𝑣} similarly.

• Given some number 𝑉 that depends on the transcript 𝑇 , define ∆(𝑉 ) to be the change

17While it helps with our analysis, is not clear that using separate seeds is necessary to remove the common
random string.
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in 𝑉 that results after one invocation to Meeting Points (Algorithm 11) for all pairs

of adjacent parties (i.e. in the Meeting Points phase of Algorithm 1).

• Similarly, given a number 𝑉 that depends on the transcript 𝑇 , define ∆𝑢,𝑣(𝑉 ) to be

the change in 𝑉 that results in parties 𝑢 and 𝑣 running Meeting Points (Algorithm

11) with each other, and no other pair of parties making changes.

• When it is understood that we are only talking about the interaction between a pair

of parties 𝑢 and 𝑣, we will drop the superscript {𝑢,𝑣} off terms such as 𝑘{𝑢,𝑣},𝐸{𝑢,𝑣},

𝑊𝑀{𝑢,𝑣}, etc. with the understanding that we are only talking about this pairwise

interaction.

2.4.3 Potential Analysis

Following the paper of Haeupler [70], we define 𝜙𝑢,𝑣 as follows. Let 1 < 𝐶1 < 𝐶2 < 𝐶3 <

𝐶4 < 𝐶5 < 𝐶6 < 𝐶7, where each 𝐶𝑖 is selected to be sufficiently larger than 𝐶𝑖−1 (or 1 if

𝑖 = 1).

𝜙𝑢,𝑣 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐶3 ·𝐵𝑢,𝑣 −𝐶2 · 𝑘{𝑢,𝑣} +𝐶5 ·𝐸{𝑢,𝑣} + 2𝐶6 ·𝑊𝑀{𝑢,𝑣} if 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢

𝐶3 ·𝐵𝑢,𝑣 + 0.9𝐶4 · 𝑘{𝑢,𝑣} −𝐶4 ·𝐸{𝑢,𝑣} +𝐶6 ·𝑊𝑀{𝑢,𝑣} if 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢

(2.42)

Recall that we define our final potential function as follows:

𝜑 =
∑︁

(𝑢,𝑣)∈𝐸
(𝐾/𝑚)𝐺𝑢,𝑣 −𝐾 ·𝜙𝑢,𝑣 −𝐶1𝐾𝐵

* +𝐶7𝐾 ·𝐸𝐻𝐶.

We start with some simple claims about 𝜙𝑢,𝑣 that we use directly in the main proof.

The proof of following claim (Claim 2.4.1), unlike the other claims in this section, requires

knowledge of the robust protocol (Algorithm 1) beyond the definition of 𝜙𝑢,𝑣 and the

Meeting Points protocol (Algorithm 11).

Claim 2.4.1. The potential 𝜙𝑢,𝑣 does not change in the Flag Passing phase. In each of the

Rewind and Simulation phases, it changes by at most 𝐶3. In the absence of errors or hash
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collisions between 𝑢 and 𝑣 in the iteration as a whole, 𝜙𝑢,𝑣 does not increase in the rewind or

simulation phases.

Proof. The only term in 𝜙𝑢,𝑣 that changes in these phases is 𝐵𝑢,𝑣 . 𝐵𝑢,𝑣 does not change in

the Flag Passing phase, can change by at most 1 in the Simulation phase, and can change

by at most 1 in the Rewind phase. This establishes the first part of the claim.

Now we establish the second part of the claim. First we consider the Simulation phase.

At a high level, 𝐵𝑢,𝑣 can increase in the Simulation phase if one of the following is true: 1)

𝑢 and 𝑣 are in disagreement, but both decide to simulate anyway, 2) The adversary puts an

error between 𝑢 and 𝑣 in the Simulation phase, or 3) 𝑢 decides not to simulate Π𝑢,𝑣, but

𝑣 decides to simulate Π𝑣,𝑢. We now formalize the three cases and prove that all of them

require an error or hash collision between 𝑢 and 𝑣 somewhere in the iteration.

In the first case, Π𝑢,𝑣 ,Π𝑣,𝑢 but 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 1. Note that this implies

that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “simulate”, since otherwise one of the parties would have

𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡 = 0. This means there was an error or hash collision between 𝑢 and 𝑣 in the

Meeting Points phase to make them think that their transcripts matched. In the second

case, there was an error between 𝑢 and 𝑣 in the Simulation phase. In the third case, note

that 𝑣 simulates in Π𝑣,𝑢 , so we know that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 1 and 𝑣 never received ⊥ from 𝑢

in the Simulation phase. Furthermore, 𝑢 does not simulate. This can happen due to one

of two reasons. The first case is that 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 0, and so 𝑢 did not want to simulate

after the Flag Passing phase. In this case, 𝑢 would have sent ⊥ to 𝑣. Since 𝑣 did not receive

it, the adversary must have deleted it. The second case is that 𝑢 had 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑢 = 1, but

received a ⊥ on the link (𝑢,𝑣). However, 𝑛𝑒𝑡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑣 = 1, so 𝑣 would not have sent this

⊥. Hence, it was inserted by the adversary. Either way, there is an error on the link (𝑢,𝑣)

during the Simulation phase.

Now we consider the Rewind phase. If neither 𝑢 nor 𝑣 send or receive a rewind message

on (𝑢,𝑣), then it is clear that 𝐵𝑢,𝑣 is unchanged. We assume that any rewind sent on the

link (𝑢,𝑣) reaches the recipient. If this is not the case, then there was a deletion on the link

(𝑢,𝑣) and we are done. Similarly, we assume that any rewind received on the link (𝑢,𝑣)
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was sent by the other party (otherwise it was an insertion). We break the remainder of the

proof into cases depending on which parties want to send rewinds on the link (𝑢,𝑣).

Suppose that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “simulate”, 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑣,𝑢 =

0. Then the following actions all happen together in the same round or not at all: 𝑢 (resp. 𝑣)

sends “rewind” to 𝑣 (resp. 𝑢), 𝑢 truncates Π𝑢,𝑣 , 𝑣 truncates Π𝑣,𝑢 , and 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣

and 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑣,𝑢 are set to 1. If all these actions happen, then 𝐵𝑢,𝑣 does not increase.

This is because max{|Π𝑢,𝑣 |, |Π𝑣,𝑢 |} falls by one, and 𝐺𝑢,𝑣 falls by at most 1. Furthermore,

after these actions happen, 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑣,𝑢 = 0, so 𝑢 and 𝑣 will

not rewind on (𝑢,𝑣) anymore.

If 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points” or 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 1, then 𝑢 will not send a re-

wind message to 𝑣 nor take any action if it receives a rewind from 𝑣. Therefore, if 𝑣 does

not send a rewind message to 𝑢, then 𝐵𝑢,𝑣 is unchanged in this Rewind phase. If 𝑣 does

send a rewind message to 𝑢, then we know that just before the message was sent we had

𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “simulate” and 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑣,𝑢 = 0. If 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points”, then

there must have been a hash collision or error between 𝑢 and 𝑣 in the Meeting Points phase,

otherwise they would both have the same status. Otherwise if 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑𝑢,𝑣 = 1,

then 𝑢 has already truncated Π𝑢,𝑣 by one chunk. So the net change to 𝐵𝑢,𝑣 from the

truncation of Π𝑢,𝑣 and Π𝑣,𝑢 that have happened in this rewind phase is nonpositive, as

established in the previous paragraph. Furthermore, after this rewind is sent, both parties

have 𝑎𝑙𝑟𝑒𝑎𝑑𝑦𝑅𝑒𝑤𝑜𝑢𝑛𝑑 = 1, and will not do anything further on this link in the rewind

phase.

Proposition 2.4.2. At the beginning of any iteration 𝑖 of the robust protocol (Algorithm 1), the

following is true for all pairs (𝑢,𝑣) ∈ 𝐸:

0 ≤ 𝐵𝑢,𝑣 ≤ 𝜙𝑢,𝑣 .

As a corollary,
∑︀

(𝑢,𝑣)∈𝐸𝜙𝑢,𝑣 ≥
∑︀

(𝑢,𝑣)∈𝐸 𝐵𝑢,𝑣 .

Proof. If 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢, follows from fact that we can take 𝐶3 > 8𝐶2 + 1. Thus, if 𝑘𝑢,𝑣 is
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large enough such that 𝐶2𝑘
{𝑢,𝑣} > 𝐶3𝐵𝑢,𝑣, this means that we have 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢 > 4𝐵𝑢,𝑣. But

we know that when both 𝑘𝑢,𝑣 and 𝑘𝑣,𝑢 are larger than 2𝐵𝑢,𝑣, both parties are including

hashes of their pairwise transcript truncated below the chunk 𝐺𝑢,𝑣 , which should match.

So this means the fact that 𝑘𝑢,𝑣 and 𝑘𝑣,𝑢 increased so much more without the parties

doing a meeting point transition means that there were many mismatches due to errors -

specifically, 𝑊𝑀{𝑢,𝑣} > 0.6(1/2)𝑘{𝑢,𝑣}. Hence, in this case, the sum of all the terms that do

not include 𝐵𝑢,𝑣 is nonnegative.

If 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢 , then this follows from the fact that 𝑘{𝑢,𝑣} ≥ 2𝐸{𝑢,𝑣} so 0.9𝐶4𝑘
{𝑢,𝑣} ≥ 𝐶4𝐸

{𝑢,𝑣}.

We would like to lower bound ∆(𝜑) with ∆𝑢,𝑣(𝜑). To this end, we define a lower bound

on ∆𝑢,𝑣(𝜑) as follows:

˜∆𝑢,𝑣(𝜑) = (𝐾/𝑚)∆𝑢,𝑣(𝐺𝑢,𝑣)−𝐾 ·∆𝑢,𝑣(𝜙𝑢,𝑣) +𝐶1𝐾 ·∆𝑢,𝑣(𝐺*).

Claim 2.4.3. ∆(𝜑) ≥
∑︀

(𝑢,𝑣)∈𝐸
(︁

˜∆𝑢,𝑣(𝜑) +𝐶7𝐾∆𝑢,𝑣(𝐸𝐻𝐶)
)︁
.

Proof.

∆(𝜑) = (𝐾/𝑚)∆(
∑︁

𝐺𝑢,𝑣)−𝐾 ·∆(
∑︁

𝜙𝑢,𝑣)−𝐶1𝐾 ·∆(𝐵*) +𝐶7𝐾 ·
∑︁

∆𝑢,𝑣(𝐸𝐻𝐶)

≥
∑︁

(𝐾/𝑚)∆(𝐺𝑢,𝑣)−𝐾 ·
∑︁

∆(𝜙𝑢,𝑣) +𝐶1𝐾 ·∆(𝐺*) +𝐶7𝐾 ·
∑︁

∆𝑢,𝑣(𝐸𝐻𝐶)

=
∑︁

(𝐾/𝑚)∆(𝐺𝑢,𝑣)−𝐾 ·
∑︁

∆(𝜙𝑢,𝑣) +𝐶1𝐾 · min
(𝑢,𝑣)∈𝐸

(∆𝑢,𝑣(𝐺*)) +𝐶7𝐾 ·
∑︁

∆𝑢,𝑣(𝐸𝐻𝐶)

≥
∑︁

(𝐾/𝑚)∆(𝐺𝑢,𝑣)−𝐾 ·
∑︁

∆(𝜙𝑢,𝑣) +𝐶1𝐾 ·
∑︁

∆𝑢,𝑣(𝐺*) +𝐶7𝐾 ·
∑︁

∆𝑢,𝑣(𝐸𝐻𝐶)

=
∑︁

(𝑢,𝑣)∈𝐸

(︁
˜∆𝑢,𝑣(𝜑) +𝐶7𝐾∆𝑢,𝑣(𝐸𝐻𝐶)

)︁
.

The second line follows from the fact that parties do not simulate in the meeting points

phase, so ∆(𝐵*) = ∆(𝐻 *) −∆(𝐺*) ≤ −∆(𝐺*). The third line follows from the fact that the

parties all do meeting points in parallel and the definition of 𝐺*: after doing the meeting

points phase, there is some pair of parties (𝑢,𝑣) such that the maximum chunk number
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that they have simulated correctly is the new value of 𝐺*. Then, by definition, we have

that ∆𝑢,𝑣(𝐺*) = ∆(𝐺*). The fourth line follows from the fact that parties do not simulate in

meeting points, so ∆𝑢,𝑣(𝐺*) ≤ 0.

The main claim that we establish in this section is that if 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 or 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 is

“meeting points” after the Meeting Points algorithm, then the function ˜∆𝑢,𝑣(𝜑) rises by

Ω(𝐾) in the meeting points phase between parties 𝑢 and 𝑣 in the absence of errors and

hash collisions. Furthermore, if 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “simulate” after Meeting Points, then 𝜙𝑢,𝑣 does

not change. Note that this implies that the potential 𝜑 rises by at least Ω(𝑐 ·𝐾) where 𝑐 is

the number of pairs of adjacent parties (𝑢,𝑣) such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points” and

no errors or hash collisions occur between them, by Claim 2.4.3. The proof of this is very

similar to the main proof in [70], where he effectively shows that 𝐺𝑢,𝑣 −𝜙𝑢,𝑣 rises by Ω(1)

in each iteration of Meeting Points and Simulation.

In the rest of the section, we will fix parties 𝑢 and 𝑣 and focus on how the potential

between them changes after they do Meeting Points (Algorithm 11) with each other. As

noted earlier, we will drop the superscript {𝑢,𝑣} off terms such as 𝑘{𝑢,𝑣},𝐸{𝑢,𝑣}, 𝑊𝑀{𝑢,𝑣}, etc.

with the understanding that we are only talking about this pairwise interaction.

Proposition 2.4.4. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸. If 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 =

“simulate” after Meeting Points, then 𝜙𝑢,𝑣 is unchanged after Meeting Points, and ˜∆𝑢,𝑣(𝜑) = 0.

Proof. If we have 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “simulate” after Meeting Points, then all variables

in 𝜙𝑢,𝑣 remain unchanged when the Meeting Points method returns. We note that no kind

of truncation occurs in this case, so neither 𝐺𝑢,𝑣 nor 𝐺* change after the Meeting Points

phase in this case, hence ˜∆𝑢,𝑣(𝜑) = 0

Lemma 2.4.5. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸. Then the verification phase of Meeting

Points between 𝑢 and 𝑣 causes the potential 𝜙𝑢,𝑣 to rise by at most 5𝐶6, and we have that

˜∆𝑢,𝑣(𝜑) ≥ −5𝐶6𝐾 when only taking into account changes from the verification phase. Further-

more, in the absence of errors or hash collisions, 𝜙𝑢,𝑣 falls by at least five, and ˜∆𝑢,𝑣(𝜑) ≥ 5𝐾

when only taking into account changes from the verification phase.
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Proof. We start by noting that 𝐸 and 𝑊𝑀 increment by at most 2 in any verification phase.

Furthermore, both 𝑘𝑢,𝑣 and 𝑘𝑣,𝑢 are incremented by one: this means that if they start

equal, they will stay equal. Conversely, if they start different, they will stay different.

Furthermore, note that, since this is a verification phase, no transition occurs, so 𝐵𝑖,𝑖+1

remains the same. Thus 𝜙𝑢,𝑣 rises by at most 5𝐶6, if we take 𝐶6 to be sufficiently large

with respect to 𝐶5.

Case 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢 :

𝑊𝑀 increments only if there was an error or hash collision in the verification phase.

Now suppose there is no error or hash collision. In this case, 𝐸 and 𝑊𝑀 do not increment,

and 𝑘 increments by 2 (one increment for each party), so 𝜙𝑢,𝑣 falls by at least five by taking

𝐶2 > 2.5.

Case 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢 :

Note that 𝑊𝑀, by definition, increments only in the presence of an error, and it will

increase by at most 2. This contributes 4𝐶6 to 𝜙𝑢,𝑣 . Suppose that 𝐸 does not increment by

2. This means that there was a hash collision or error - otherwise, both parties would have

incremented 𝐸. Now suppose that 𝐸 does increment by 2. In this case, 𝜙𝑢,𝑣 falls by at least

(−0.9𝐶4 +𝐶4)2. By choosing 𝐶4 to be a sufficiently large number, this is at least five.

The conclusions about ˜∆𝑢,𝑣(𝜑) follow from the fact that 𝐺𝑢,𝑣 and 𝐺* remain unchanged

in the verification phase, so ˜∆𝑢,𝑣(𝜑) = −𝐾𝜙𝑢,𝑣 .

Before proceeding with the proof, we define some notation we will use.

Notation for remainder of section:

• In proofs, we will often drop superscripts on quantities such as 𝑘{𝑢,𝑣},𝑊𝑀{𝑢,𝑣},𝐸{𝑢,𝑣},

with the understanding that all quantities have {𝑢,𝑣} as an implied superscript.

• Quantities like 𝑘𝑢,𝑣 ,𝑊𝑀𝑢,𝑣 ,𝐸𝑢,𝑣 will refer to the value of these variables just before

the transition phase (that is, after the verification phase). We note that there is one

proposition for which we will use 𝑘𝑢,𝑣 to denote the value of the variable before the

previous verification phase as well - we will be explicit about this abuse of notation

in this case.
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• Define 𝑘′𝑢,𝑣 ,𝑊𝑀 ′𝑢,𝑣 ,𝐸
′
𝑢,𝑣 to be the value of the corresponding variables after the

transition phase. Define 𝑘′𝑣,𝑢 ,𝑊𝑀 ′𝑣,𝑢 ,𝐸
′
𝑣,𝑢 similarly. Finally, define 𝑘′ = 𝑘′𝑢,𝑣 +𝑘′𝑣,𝑢 , and

define 𝐸′ and 𝑊𝑀 ′ similarly.

• We abuse (our own) previous notation and define ∆(𝑘𝑢,𝑣) to be 𝑘′𝑢,𝑣 − 𝑘𝑢,𝑣 - that is,

the difference in the variable after transitioning. Define ∆(𝐸𝑢,𝑣), ∆(𝑊𝑀𝑢,𝑣), ∆𝑢,𝑣(𝐺*),

and ∆(𝐵𝑢,𝑣) similarly as the change incurred in the relevant value by the transition

phase between 𝑢 and 𝑣.

Lemma 2.4.6. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸, and suppose that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points”

after the Meeting-Points phase. Then Meeting-Points phase between 𝑢 and 𝑣 causes the potential

𝜙𝑢,𝑣 to increase by at most 5𝐶6. In the absence of errors or hash collisions, 𝜙𝑢,𝑣 decreases by at

least five. Furthermore, we have that ˜∆𝑢,𝑣(𝜑) ≥ −5𝐶6 ·𝐾 , and in the absence of errors or hash

collisions, ˜∆𝑢,𝑣(𝜑) ≥ 5𝐾 .

Note that the above lemma includes the verifiation and transition phases. We have

already established that this is true for the verification phase alone in Lemma 2.4.5. If

we could also establish that 𝜙𝑢,𝑣 does not increase and ˜∆𝑢,𝑣(𝜑) does not decrease in the

transition phase, we would be able to conclude this lemma as a corollary. However, there is

one case for which we cannot do this - in this case, we need to lump together the transition

phase previous verification phase to argue that the potential rises enough there to pay

for a possible decrease in our transition phase. This will occur in Proposition 2.4.7. We

now split Lemma 2.4.6 into cases and prove each case separately. We assume that there is

no error in the transition phase. Since the decisions of the parties here only depend on

their state, any error does not affect the transition and its corresponding affect on 𝜙𝑢,𝑣 or

˜∆𝑢,𝑣(𝜑).

Proposition 2.4.7. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸. Suppose that 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢, and

exactly one party does a meeting point or reset transition. Then the current invocation of

Meeting Points as a whole causes 𝜙𝑢,𝑣 to rise by at most 5𝐶6 and ˜∆𝑢,𝑣(𝜑) ≥ −5𝐶6 ·𝐾 . If no

error or hash collision occurs, then 𝜙𝑢,𝑣 falls by at least five, and ˜∆𝑢,𝑣(𝜑) ≥ 5𝐾 .
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Proof of Proposition 2.4.7. Suppose wlog that the transitioning party is party 𝑢. Since party

𝑣 did not transition, we have that 𝑘′𝑢,𝑣 , 𝑘
′
𝑣,𝑢 after the transition as well. We now analyze

the parameters for party 𝑢, to analyze how party 𝑢’s contribution to the potential changes.

We assume that 𝑊𝑀𝑢,𝑣 was initially 0, otherwise the decrease in 𝑊𝑀𝑢,𝑣 to 0 will increase

𝜙𝑢,𝑣 . Now, we know that party 𝑢 will set 𝑘𝑢,𝑣 and 𝐸𝑢,𝑣 to 0. Setting 𝑘𝑢,𝑣 to 0 will result in

an increase in potential, and setting 𝐸𝑢,𝑣 to 0 will result in a decrease in potential. The net

change of 𝜙𝑢,𝑣 from these two actions is −0.9𝐶4𝑘𝑢,𝑣 +𝐶4𝐸𝑢,𝑣 .

Note that for a meeting point transition, we have that 𝐸𝑢,𝑣 < 0.5𝑘𝑢,𝑣 , so the expression

above is −0.9𝐶4𝑘𝑢,𝑣 +𝐶4𝐸𝑢,𝑣 ≥ −0.4𝐶4𝑘𝑢,𝑣 . Note that a meeting points transition can affect

𝐵𝑢,𝑣 , 𝐺*, and 𝐺𝑢,𝑣 as well. However, that the change in each of these values is at most 2𝑘𝑢,𝑣 ,

and the constants multiplying them in ˜∆𝑢,𝑣(𝜑) are 𝐶3, 𝐶1, and 1 respectively. Since we can

take these to be much smaller than 𝐶4, the affect on ∆(𝜙𝑢,𝑣) (resp. ˜∆𝑢,𝑣(𝜑)) from changes

in these variables are negligible compared to −0.4𝐶4𝑘𝑢,𝑣 (resp. 0.4𝐶4𝑘𝑢,𝑣 ·𝐾). Hence, by

taking 𝐶4 to be large enough, we get the desired result, that 𝜙𝑢,𝑣 falls by at least five and

˜∆𝑢,𝑣(𝜑) ≥ 5𝐾 .

Now we turn our attention to reset transitions. Note that for reset transitions, 𝐺𝑢,𝑣

and 𝐺* are unchanged, so ˜∆𝑢,𝑣(𝜑) = −𝐾∆(𝜙𝑢,𝑣). Recall that, when 2𝐸𝑢,𝑣 ≥ 𝑘𝑢,𝑣 , 𝑢 will reset.

So, we know that before her most recent increment of 𝑘𝑢,𝑣 in the last verification phase

(and possibly 𝐸𝑢,𝑣), we either had that 𝑘𝑢,𝑣 ,𝐸𝑢,𝑣 = 0 or 2𝐸𝑢,𝑣 is strictly less than 𝑘𝑢,𝑣 . This

means that, after potentially incrementing 𝐸𝑢,𝑣 and 𝑘𝑢,𝑣 in the following iteration, we have

that (currently) 𝐸𝑢,𝑣 ≤ 0.5𝑘𝑢,𝑣 + 0.5.18. Plugging into the expression for potential difference

above, we see that

∆(𝜙𝑢,𝑣) ≤ 𝐶4(−0.9𝑘𝑢,𝑣 +𝐸𝑢,𝑣) ≤ 𝐶4(−0.4𝑘𝑢,𝑣 + 0.5). (2.43)

Note that when 𝑘𝑢,𝑣 > 1, this is at most −5 for sufficiently large 𝐶4, and hence ˜∆𝑢,𝑣(𝜑) ≥ 5𝐾 .

Combining this with the rise in potential during the verification phase (Lemma 2.4.5), we

conclude the proof of Proposition 2.4.7 in the case when 𝑘𝑢,𝑣 > 1.

18Note that this inequality also holds if we started with 𝑘𝑢,𝑣 , 𝐸𝑢,𝑣 equal to 0.
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When 𝑘𝑢,𝑣 = 1, we note that, before the previous verification phase, we must have had

𝑘𝑢,𝑣 = 0. So if we compare 𝑘𝑢,𝑣 before the verification phase to 𝑘′𝑢,𝑣 after the transition phase,

we see that they are both equal. The same is true of 𝐸𝑢,𝑣 before the verification phase and

𝐸′𝑢,𝑣 . So party 𝑢’s contribution to 𝜙𝑢,𝑣 does not increase after one iteration of the meeting

points protocol, and all the other terms in ˜∆𝑢,𝑣(𝜑) are also unchanged. But what about

party 𝑣? By assumption, party 𝑣 does not transition. Further, in the absence of errors

and hash collisions we know that 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “meeting points” after Meeting Points, since

𝑘𝑢,𝑣 , 𝑘𝑣,𝑢. Therefore, 𝑣 goes through a verification phase. By Lemma 2.4.5 and the fact

that 𝑣 does not transition, we get that the contribution of party 𝑣 to 𝜙𝑢,𝑣 decreases by at

least five in the absence of errors and hash collisions, and increases by at most 5𝐶6 in their

presence. Hence, overall, 𝜙𝑢,𝑣 falls by at least five in the absence of errors, and rises by at

most 5𝐶6 in the presence of errors.

Note on notation: ˜∆𝑢,𝑣(𝜑) changes meaning for the rest of the proof, to match with

∆(·).

Proposition 2.4.7 was the only case where we needed to lump together verification and

transition phases to argue that the potentials behave like we want. For the remainder of

the argument, it suffices to show that 𝜙𝑢,𝑣 falls in the transition phase, and that ˜∆𝑢,𝑣(𝜑) > 0

rises. Hence, we abuse our previous notation to define ˜∆𝑢,𝑣(𝜑) := (𝐾/𝑚)∆𝑢,𝑣(𝐺𝑢,𝑣) −𝐾 ·

∆(𝜙𝑢,𝑣) +𝐶1𝐾 ·∆𝑢,𝑣(𝐺*), where we recall that ∆𝑢,𝑣(·) is now defined to be the change in a

variable after the transition phase only.

Proposition 2.4.8. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸. Suppose that 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢 , and both

parties do some transition. Then 𝜙𝑢,𝑣 falls by at least one in the transition phase. Furthermore,

˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Proof of 2.4.8. Since both parties transition, we will have 𝑘′𝑢,𝑣 = 𝑘′𝑣,𝑢 = 0 after the transition.

Furthermore, we will have 𝐸′𝑢,𝑣 = 𝐸′𝑣,𝑢 = 𝑊𝑀 ′𝑢,𝑣 = 𝑊𝑀 ′𝑣,𝑢 = 0 due to the transitioning.

Hence, ∆(𝜙𝑢,𝑣) ≥ −0.9𝐶4𝑘 + 𝐶4𝐸 − 𝐶6𝑊𝑀. Just like in the proof of Proposition 2.4.7,

we note that the reset condition (Line 19) implies that we have 𝐸𝑢,𝑣 ≤ 0.5𝑘𝑢,𝑣 + 0.5, and

149



similarly 𝐸𝑣,𝑢 ≤ 0.5𝑘𝑣,𝑢 + 0.5. So 𝐸 ≤ 0.5𝑘 + 1, and so we get that

∆(𝜙𝑢,𝑣) ≤ 𝐶4(−0.4𝑘 + 1).

Since we know that both 𝑘𝑢,𝑣 and 𝑘𝑣,𝑢 are greater than 1 after the verification phase

and we also know that 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢, we conclude that 𝑘𝑢,𝑣 + 𝑘𝑣,𝑢 ≥ 3. Therefore, the above

expression is at most −0.2𝐶4. This establishes that ∆(𝜙𝑢,𝑣) ≤ −1. To see that indeed

˜∆𝑢,𝑣(𝜑) ≥ 𝐾 , we additionally note that 𝐺* and 𝐺𝑢,𝑣 change by at most 2𝑘, and so we get

that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 · (−2𝑘 + 0.4𝐶4𝑘 − 2𝐶1𝑘 −𝐶4) ≥ 𝐾 · 𝑘(0.4𝐶4 − 2𝐶1 − 2) −𝐶4. By taking 𝐶4

sufficiently large so that 0.05𝐶4 ≥ 2𝐶1 + 2 and using the fact that 𝑘 ≥ 3, we see that this in

turn is ≥ 0.05𝐶4𝐾 , which is greater than 𝐾 since we needed 𝐶4 > 20 earlier.

Proposition 2.4.9. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸. Suppose that 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢 , and exactly

one party transitions. Then 𝜙𝑢,𝑣 falls by at least one in the transition phase. Furthermore,

˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Proof of Proposition 2.4.9. Note that since only one party transitions, 𝑘′𝑢,𝑣 , 𝑘
′
𝑣,𝑢. Wlog,

suppose that the transitioning party is 𝑢. We will directly show that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 : since the

other quantities in the definition of ˜∆𝑢,𝑣(𝜑) do not increase in the Meeting Points phase,

this implies that ∆𝑢,𝑣(𝜙𝑢,𝑣) ≤ −1.

Let us suppose that the transition was a reset transition, so 𝐸𝑢,𝑣 ≥ 0.5𝑘𝑢,𝑣. Then

𝑢’s contribution to the potential will rise, since it sets 𝐸′𝑢,𝑣 = 𝑘′𝑢,𝑣 = 0 and we can take

𝐶5 > 2𝐶2 + 1. But a priori it seems possible that party 𝑣 may have its contribution to 𝜙𝑢,𝑣

fall. This is because the contribution of 𝑘𝑣,𝑢 to the potential was −𝐶2𝑘𝑣,𝑢 , but after party 𝑢

transitions the contribution is 0.9𝐶4𝑘
′
𝑣,𝑢 , since after 𝑢’s transition we are using the potential

function for unequal 𝑘’s. To address this, we note that 𝑘′𝑣,𝑢 = 𝑘𝑣,𝑢 = 𝑘𝑢,𝑣 ≤ 2𝐸𝑢,𝑣 , where the

first equality follows because party 𝑣 did not transition and the second equality holds

by assumption. Hence, the change in 𝜙𝑢,𝑣 is at least −𝐶5𝐸𝑢,𝑣 +𝐶2𝑘𝑢,𝑣 +𝐶2𝑘𝑣,𝑢 +𝐶4𝑘
′
𝑣,𝑢 ≥

(−0.5𝐶5 +2𝐶2 +𝐶4)𝑘𝑢,𝑣 . For sufficiently large choice of 𝐶5, this quantity is at most −1. Since

𝐺𝑢,𝑣 and 𝐺* do not change for a reset trasition, this also implies that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .
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Now let us suppose that the transition was a meeting point transition. For simplicity,

assume that party 𝑢 transitions to meeting point 1; identical reasoning will hold for

transitioning to meeting point 2.

Note that 𝑢 only transitions when 𝑚𝑝𝑐1𝑢,𝑣 ≥ 0.4𝑘𝑢,𝑣. Since 𝑣 is not transitioning, we

know that 𝑚𝑝𝑐1𝑣,𝑢 < 0.4𝑘𝑣,𝑢 = 0.4𝑘𝑢,𝑣 and 𝑚𝑝𝑐2𝑣,𝑢 < 0.4𝑘𝑢,𝑣. Furthermore, we know that

for the last 0.5𝑘𝑢,𝑣 iterations (if 𝑘𝑢,𝑣 = 1, then for 1 iteration), both parties have exchanged

hashes of the same meeting points. Either there was truly a match among these meeting

points or there was not. If there was truly a match (wlog say it is with 𝑣’s first meeting

point), then we know that 𝑊𝑀 ≥ 𝑊𝑀𝑣,𝑢 > 0.1𝑘𝑣,𝑢 = 0.05𝑘, since 𝑣 did not increment

either 𝑚𝑝𝑐1 more than 0.4𝑘𝑢,𝑣 times. Since 𝑘′𝑢,𝑣 , 𝑘
′
𝑣,𝑢 after the transition, the 𝑊𝑀 term

in 𝜙𝑢,𝑣 falls by 0.05𝐶6 · 𝑘 as a result. If there was not truly a match, then we know that

𝑊𝑀𝑢,𝑣 ≥ 0.4𝑘𝑢,𝑣 , since 𝑢 incremented its 𝑚𝑝𝑐1 counter 0.4𝑘𝑢,𝑣 times despite the lack of a

true match. 𝑊𝑀𝑢,𝑣 resets to 0 after 𝑢 transitions, so the of 𝑊𝑀 term in 𝜙𝑢,𝑣 falls by at

least 0.2𝐶6 · 𝑘 after the transition.

Furthermore, the contribution of each of the other terms in 𝜙𝑢,𝑣 is at most 2𝐶5 ·𝑘 due to

this transition. Hence, by taking 𝐶6 to be sufficiently large with respect to 𝐶5, we get that

𝜙𝑢,𝑣 rises by at least Ω(𝐶6 · 𝑘), which is at least 1 for sufficiently large 𝐶6. Furthermore,

𝐺𝑢,𝑣 and 𝐺* also only change by at most 2𝑘, and so by taking 𝐶6 to be sufficiently large, we

get that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Proposition 2.4.10. Fix parties 𝑢 and 𝑣 such that (𝑢,𝑣) ∈ 𝐸. Suppose that 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢, and

both parties transition. Then 𝜙𝑢,𝑣 falls by at least one in the transition phase. Furthermore,

˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Proof of Proposition 2.4.10. The main difference from Proposition 2.4.9 is that we have

𝑘′𝑢,𝑣 = 𝑘′𝑣,𝑢 after the transition. Note that |∆(𝐵𝑢,𝑣)|, |∆(𝐺𝑢,𝑣)|, and |∆𝑢,𝑣(𝐺*)| are all upper

bounded by 2𝑘. Suppose that at least one party (wlog, 𝑢) does a reset transition. Note that

this transition can only decrease 𝑊𝑀, which in turn only decreases 𝜙𝑢,𝑣, so we assume

that 𝑊𝑀 = 0. Furthermore, recall that 𝐸𝑢,𝑣 ≥ 𝑘𝑢,𝑣/2 = 𝑘/4. Then the difference in ˜∆𝑢,𝑣(𝜑)
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caused after both parties transition is at least

˜∆𝑢,𝑣(𝜑) ≥ 𝐾(∆(𝐺𝑢,𝑣) +𝐶5𝐸𝑢,𝑣 +𝐶2∆(𝑘)−𝐶3∆(𝐵𝑢,𝑣) +𝐶1∆𝑢,𝑣(𝐺*))

≥ ((𝐶5/4)𝑘 − 2𝐶3𝑘 −𝐶2𝑘 − 2𝐶1𝑘 − 2𝑘)𝐾 ≥ ((𝐶5/4)− 7𝐶3)𝑘 ·𝐾

By taking 𝐶5 to be larger than 28𝐶3 + 1 and noting that 𝑘 = 𝑘𝑢,𝑣 + 𝑘𝑣,𝑢 > 1, we see that

˜∆𝑢,𝑣(𝜑) > 𝐾 .

Now suppose both parties do a meeting point transition. Suppose that 𝑘𝑢,𝑣 > 4𝐵𝑢,𝑣.

Note that 𝑘𝑢,𝑣 is a power of two by definition since a meeting point transition is occurring.

So if 𝐵𝑢,𝑣 > 0, then 𝑘𝑢,𝑣 is divisible by 4. Then we must have had at least 𝑘𝑢,𝑣/4 iterations

where 𝑢 had some value for 𝑘𝑢,𝑣 that was at least 𝑘𝑢,𝑣/4 > 𝐵𝑢,𝑣, and the same for 𝑣 with

𝑘𝑣,𝑢. In this case, one of party 𝑢’s two meeting points corresponds to Π𝑢,𝑣[1 : 𝑐(𝑘𝑢,𝑣/4)],

where 𝑐 is defined to be the largest integer such that 𝑐 ·𝑘𝑢,𝑣/4 ≤ 𝐺𝑢,𝑣 . This uses the fact that

𝑘𝑢,𝑣 > 0 after the Meeting Points phase implies that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “meeting points”, and that

this prevents 𝑢 from simulating or rewinding Π𝑢,𝑣 . The analogous fact is true of 𝑣 as well,

for identical reasons. Then, by the definition of 𝐺𝑢,𝑣 , we have that

Π𝑢,𝑣[1 : 𝑐(𝑘𝑢,𝑣/4)] = Π𝑣,𝑢[1 : 𝑐(𝑘𝑢,𝑣/4)].

However, the parties did not transition at step 𝑘𝑢,𝑣/2 – this means that we must have

𝑊𝑀 ≥ 0.4(𝑘𝑢,𝑣/2) = 0.1𝑘. Since 𝐶6 is sufficiently large, we get that 𝜙𝑢,𝑣 falls by at least 1

and that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Note that if 𝐵𝑢,𝑣 = 0, then it is possible that we have 𝑘𝑢,𝑣 ∈ {1,2}, which we now address

for completeness. If 𝑘𝑢,𝑣 = 1, then the parties exchanged a single meeting point and are

now doing a meeting point transition. But it cannot be that their hashes matched for the

first meeting point - if this were the case, they would have made their status “simulate”

instead of going into the transition phase. But since we know 𝐵𝑢,𝑣 = 0, their hashes

should have matched on the first meeting point. Hence, we get that 𝑊𝑀 ≥ 𝑘𝑢,𝑣 = 1. If

𝑘𝑢,𝑣 = 2, then note that the parties did not match their Meeting Points when they had
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previously had 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢 = 1. Since 𝐵𝑢,𝑣 = 0, they should have matched, and so we get

that 𝑊𝑀 ≥ 0.5𝑘𝑢,𝑣 . Hence, either way, 𝑊𝑀 is sufficiently large so that 𝜙𝑢,𝑣 falls by at least

1 and that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Now we assume that 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢 ≤ 4𝐵𝑢,𝑣. Note that this implies that 𝐵𝑢,𝑣 > 0, since 𝑘𝑢,𝑣

and 𝑘𝑣,𝑢 are both at least 1. First, we consider the case where 𝐵′𝑢,𝑣 , 0. In this case, their

communication before now must have had at least 0.4𝑘𝑢,𝑣 hash collisions or corruptions to

make them both increment their meeting point counters enough to transition, and so 𝑊𝑀

is at least 0.4𝑘𝑢,𝑣 before the transition. The decrease in 𝑊𝑀 from the transition means

that 𝜙𝑢,𝑣 falls by at least 1 and that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Now assume that 𝐵′𝑢,𝑣 = 0. Then the potential change from this meeting point transition

is at least

𝐾 ·
(︀
∆(𝐺𝑢,𝑣) +𝐶1∆(𝐺*) +𝐶2∆(𝑘)−𝐶3∆(𝐵𝑢,𝑣)

)︀
≥ 𝐾 · ((1 +𝐶1 +𝐶2)(−4𝑘)−𝐶3(−𝑘/8)) .

By taking 𝐶3 to be large enough, we get that ˜∆𝑢,𝑣(𝜑) ≥ 𝐾 .

Since ˜∆𝑢,𝑣(𝜑) > 𝐾 , 𝜙𝑢,𝑣 falls by at least one, as ∆𝑢,𝑣(𝐺*) and ∆(𝐺𝑢,𝑣) are both nonpositive.

Proof of Lemma 2.4.6. First, note that an argument basically identical to the proof of Pro-

position 2.4.4 shows that any party 𝑣 with 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “simulate” after Meeting Points does

not contribute any change to 𝜙𝑢,𝑣 . Hence, we can ignore these parties when establishing

Lemma 2.4.6.

• Suppose neither party transitions. Then the only change to 𝜙𝑢,𝑣 is in the verification

phase, and Lemma 2.4.5 establishes the claim.

• Suppose one party transitions and 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢 . Then Proposition 2.4.7 establishes the

claim.

• Suppose both parties transition and 𝑘𝑢,𝑣 , 𝑘𝑣,𝑢 . Then Lemma 2.4.5 and Proposition

2.4.8 establish the claim.
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• Suppose one party transitions and 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢. Then Lemma 2.4.5 and Proposition

2.4.9 establish the claim.

• Suppose both parties transition and 𝑘𝑢,𝑣 = 𝑘𝑣,𝑢 . Then Lemma 2.4.5 and Proposition

2.4.10 establish the claim.

Now we can prove the final lemma of this section, will be used directly in the proof

that the potential 𝜑 rises during the Meeting Points phase (Lemma 2.2.3).

Lemma 2.4.11. Let 𝑐 be the number of pairs (𝑢,𝑣) ∈ 𝐸 such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 or 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 is

“meeting points” after the Meeting Points phase. Let ℓ1 denote the number of errors and hash

collisions that occur in the network during the Meeting Points phase. Then after all adjacent

parties do Meeting Points, the overall potential rise ∆(𝜑) is at least 5𝑐 ·𝐾 + 0.4𝐶7ℓ1 ·𝐾 .

Now we can prove Lemma 2.4.11

Proof of Lemma 2.4.11. By Claim 2.4.3, we recall that

∆(𝜑) ≥
∑︁

(𝑢,𝑣)∈𝐸

(︁
˜∆𝑢,𝑣(𝜑) +𝐶7𝐾∆𝑢,𝑣(𝐸𝐻𝐶)

)︁

For any pair (𝑢,𝑣) that have an error or hash collision between them during the Meeting

Points phase, ∆𝑢,𝑣(𝐸𝐻𝐶) ≥ 1, so we get that ˜∆𝑢,𝑣(𝜑) +𝐶7𝐾∆𝑢,𝑣(𝐸𝐻𝐶) ≥ 𝐶7 ·𝐾 − 5𝐶6 ·𝐾 ≥

0.5𝐶7 · 𝐾 , where this follows from Lemma 2.4.6 in the case where either 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 or

𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 was “meeting points”. In the case where both parties have 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “simulate,”,

Proposition 2.4.4 gives us that 𝜙𝑢,𝑣 is unchanged after Meeting Points, and so are 𝐺* and

𝐺𝑢,𝑣 . Hence, ˜∆𝑢,𝑣(𝜑) ≥ 𝐶7 ·𝐾 .

For any pair (𝑢,𝑣) such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = “ meeting points” and there is no error between

them, Lemma 2.4.6 gives us that ˜∆𝑢,𝑣(𝜑) ≥ 5𝐾 .

For any pair (𝑢,𝑣) such that 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 = 𝑠𝑡𝑎𝑡𝑢𝑠𝑣,𝑢 = “simulate” after Meeting Points and

there is no error between them, Proposition 2.4.4 gives us that ˜∆𝑢,𝑣(𝜑) ≥ 0.
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Combining these facts, we get that

∆(𝜑) ≥
∑︁

(𝑢,𝑣)∈𝐸

(︁
˜∆𝑢,𝑣(𝜑) +𝐶7𝐾∆𝑢,𝑣(𝐸𝐻𝐶)

)︁
≥ 5𝑐 ·𝐾 + 0.4𝐶7ℓ1 ·𝐾)

where we take 𝐶7 to be sufficiently large such that 𝐶7 − 5𝐶6 ≥ 0.5𝐶7 ≥ 0.4𝐶7 + 5
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2.5 Improving the Noise Rate with a CRS

2.5.1 Overview of Scheme

In this section we detail a coding scheme that tolerates fully general (non-oblivious) adver-

saries with error rate 1/𝑚 loglog(𝑚). This improves the noise rate achieved in Section 2.3,

in the setting where the parties can share a common random string. The parties use a

common hash function ℎ1 which they agree on via their common random string, in the

exact way that they do for the scheme for oblivious adversaries in Section 2.2.

In order to make this scheme robust to non-oblivious adversaries that get to see the

common random string, they need to increase the output size of the shared hash to

Θ(log𝑚), just like in Section 2.3. In addition, each party generates fresh randomness in

each iteration for each of its links, and shares these random strings with their neighbors.

The parties use this randomness to further hash the outputs of the common hash function

ℎ1 down to a constant size.

Since the randomness used for this second hash is generated fresh in each iteration, the

adversary cannot design their errors in previous iterations to cause hash collisions in this

second hash, which allows the output size of this hash to be Θ(1). This technique is also

used in the two-party setting by Haeupler [70] to improve the rate of the coding scheme.

2.5.2 Protocol

Algorithm 12 RobustProtocolV2 (for party 𝑢) for non-oblivious adversaries

1: InitializeState()
2: Let 𝐾 :=𝑚 loglog(𝑚) (so chunk size is 5𝑚 loglog(𝑚)).

3: 𝑆 = {𝑆𝑖,𝑢,𝑣}𝑖,𝑢,𝑣 ←
(︁
{0,1}Θ(|Π|𝐾)

)︁100|Π||𝐸|
uniform shared randomness.

4: for 𝑖 = 1 to 100|Π| do
5: for all 𝑣 ∈𝑁 (𝑢) in parallel do ◁ meeting points
6: 𝑠𝑡𝑎𝑡𝑢𝑠𝑢,𝑣 ←𝑀𝑒𝑒𝑡𝑖𝑛𝑔𝑃 𝑜𝑖𝑛𝑡𝑠𝑉 2(𝑢,𝑣,𝑆𝑖,𝑢,𝑣)

7: Rest same as in Algorithm 1.
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Theorem 2.5.1. Assume a network 𝐺 = (𝑉 ,𝐸) with 𝑛 = |𝑉 | parties and 𝑚 = |𝐸| links. Suppose

Π is a multiparty protocol over the network 𝐺 with communication complexity CC(Π), binary

alphabet and fixed order of speaking. Let |Π| = CC(Π)
5𝑚 loglog(𝑚) and let 𝜀 > 0 be a sufficiently small

constant. Algorithm C correctly simulates Π with communication complexity 𝑂(CC(Π)) with

probability at least 1− exp(−Ω(|Π|))) over the randomness of the parties, in the presence of a

non-oblivious adversary limited to a noise fraction at most 𝜀/𝑚 loglog(𝑚), as long as the parties

are allowed to share a CRS (common random string).

2.5.3 Bounding Hash Collisions for Non-oblivious Adversaries assu-

ming a CRS

We denote the collision probabilities of the hash functions ℎ1 and ℎ2 by 𝑝1 and 𝑝2 respecti-

vely, where we note that 𝑝1 = 1
𝑚Θ(1) and 𝑝2 is a sufficiently small constant. Similar to the

analysis in Section 2.2.4, we create a process 𝜓𝑢,𝑣 that upper bounds 𝜙𝑢,𝑣 , but now we take

into account hash collisions from both hash functions. We will use the terminology that

a hash function ℎ collides in (𝑖,𝑢,𝑣) if there is a hash collision when 𝑢 and 𝑣 exchange

hashes in iteration 𝑖.

Similar to the definition in Section 2.2.4, define 𝑋𝑖,𝑢,𝑣 for iterations when 𝜙𝑢,𝑣 > 0 as

𝑋𝑖,𝑢,𝑣 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if ℎ1 collides in (𝑖,𝑢,𝑣)

0 otherwise

and define 𝑌𝑖,𝑢,𝑣 for iterations when 𝜙𝑢,𝑣 > 0 as

𝑌𝑖,𝑢,𝑣 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 𝑋𝑖,𝑢,𝑣 = 0 and ℎ2 collides in (𝑖,𝑢,𝑣)

0 otherwise

Then we define 𝜓𝑢,𝑣 as follows: We argue that 𝜓𝑢,𝑣 is an upper bound on 𝜙𝑢,𝑣 (that is,

Lemma 2.2.15 holds with this definition of 𝜓𝑢,𝑣). Indeed, in the case of a hash collision in

157



Algorithm 13 MeetingPointsV2(𝑢,𝑣, 𝑆𝑖,𝑢,𝑣) for non-oblivious adversaries with CRS

1: Method called by 𝑢, with 𝑣 ∈𝑁 (𝑢), 𝑆𝑖,𝑢,𝑣 ∈ {0,1}Θ(|Π|𝐾)

2: ℎ1← inner product hash function (Definition 2.1.2) with input length Θ(|Π|𝐾), 𝑝1 = 1
𝑚Θ(1) for a

sufficiently small exponent, 𝑜1 = Θ(log(𝑚)), 𝑠 = |𝑆𝑖,𝑢,𝑣 |.
3: ℎ2← binary hash family from Corollary 2.3.8 with input length 𝑜1, 𝑝2 = Θ(1) sufficiently small,
𝑜2 = Θ1, and 𝑠2 = Θ(loglog(𝑚)).

4: 𝑆1← 𝑆𝑖,𝑢,𝑣

5: 𝑆2
unif← {0,1}𝑠2 are fresh privately generated bits.

6: ℎ𝑆 ← ℎ2,𝑆2
(ℎ1,𝑆1

(·))
7: 𝑘← 𝑘 + 1
8: ̃︀𝑘← 2⌊log𝑘⌋. Let 𝑐 be the largest integer such that 𝑐̃︀𝑘 ≤ |𝑇𝑢,𝑣 |.
9: 𝑇1← 𝑇𝑢,𝑣[1 : 𝑐̃︀𝑘],𝑇2← 𝑇𝑢,𝑣[1 : (𝑐 − 1)̃︀𝑘]

10: Send (𝑆2,ℎ𝑆(𝑘),ℎ𝑆(𝑇1),ℎ𝑆(𝑇2)) to neighbor 𝑣.
11: Receive (𝑆 ′2,𝐻

′
𝑘 ,𝐻

′
𝑇1
,𝐻 ′𝑇2

) from our neighbor 𝑣.
12: ℎ′𝑆 ← ℎ2,𝑆 ′2(ℎ1,𝑆1

(·))
13: (𝐻𝑘 ,𝐻𝑇1

,𝐻𝑇2
)← (ℎ′𝑆(𝑘),ℎ′𝑆(𝑇1),ℎ′𝑆(𝑇2)).

14: if 𝐻𝑘 ,𝐻 ′𝑘 then
15: 𝐸← 𝐸 + 1
16: if 𝑘 = 1,𝐸 = 0, and 𝐻𝑇1

=𝐻 ′𝑇1
then

17: 𝑘← 0
18: 𝑠𝑡𝑎𝑡𝑢𝑠← “simulate” return 𝑠𝑡𝑎𝑡𝑢𝑠
19: if 𝐻𝑇1

=𝐻 ′𝑇1
or 𝐻𝑇1

𝐻 ′𝑇2
then

20: 𝑚𝑝𝑐1←𝑚𝑝𝑐1 + 1
21: else if 𝐻𝑇2

=𝐻 ′𝑇1
or 𝐻𝑇2

=𝐻 ′𝑇2
then

22: 𝑚𝑝𝑐2←𝑚𝑝𝑐2 + 1

23: if 2𝐸 ≥ 𝑘 then
24: 𝑘← 0,𝐸← 0,𝑚𝑝𝑐1← 0,𝑚𝑝𝑐2← 0
25: 𝑠𝑡𝑎𝑡𝑢𝑠← “meeting points”
26: else if 𝑘 =̃︀𝑘 then
27: if 𝑚𝑝𝑐1 > 0.4𝑘 then
28: 𝑇 ← 𝑇1
29: 𝑘← 0,𝐸← 0
30: else if 𝑚𝑝𝑐2 > 0.4𝑘 then
31: 𝑇 ← 𝑇2
32: 𝑘← 0,𝐸← 0
33: 𝑚𝑝𝑐1← 0,𝑚𝑝𝑐2← 0
34: 𝑠𝑡𝑎𝑡𝑢𝑠← “meeting points”
35: else
36: 𝑠𝑡𝑎𝑡𝑢𝑠← “meeting points”

37: return 𝑠𝑡𝑎𝑡𝑢𝑠
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Algorithm 14 The process 𝜓𝑢,𝑣
𝑖← 1,𝜓𝑢,𝑣(1)← 0
for all iterations 𝑖 from 1 to 100|Π| do

if error occurs between 𝑢 and 𝑣 during iteration 𝑖, during any phase then
𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖) + 6𝐶6

else if 𝜙𝑢,𝑣(𝑖) > 0 then
𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖) + (5𝐶6 + 5)𝑋𝑖,𝑢,𝑣 + 5𝐶6(𝑌𝑖,𝑢,𝑣)− 5(1−𝑌𝑖,𝑢,𝑣)

else
𝜓𝑢,𝑣(𝑖 + 1) = 𝜓𝑢,𝑣(𝑖)

ℎ1, note that 𝜓𝑢,𝑣 increases by (5𝐶6 + 5)𝑋𝑖,𝑢,𝑣 + 5𝐶6𝑌𝑖,𝑢,𝑣 −5(1−𝑌𝑖,𝑢,𝑣) = 5𝐶6 + 5−5(1) = 5𝐶6,

and in the case of a hash collision in ℎ2, which only occurs in the absence of a hash collision

in ℎ1, we get that (5𝐶6 + 5)𝑋𝑖,𝑢,𝑣 + 5𝐶6𝑌𝑖,𝑢,𝑣 − 5(1− 𝑌𝑖,𝑢,𝑣) = 5𝐶6. In the absence of a hash

collision in either, we have that 𝑋𝑖,𝑢,𝑣 = 𝑌𝑖,𝑢,𝑣 = 0, and hence 𝜓𝑢,𝑣 decreases by 5. The

remainder of the argument is identical to the proof of Lemma 2.2.15.

We will let 𝐷 denote the number of triples (𝑖,𝑢,𝑣) such that 𝜓𝑢,𝑣(𝑖) > 0 at the beginning

of the iteration. Let 𝐷 ′ ≤𝐷 denote the number of such triples (𝑖,𝑢,𝑣) where, addititionally,

there is no error between 𝑢 and 𝑣 in 𝑖. Let 𝐷2 ≤ 𝐷 ′ denote the number of triples (𝑖,𝑢,𝑣)

where, in addition to this, there is no hash collision in ℎ1 in (𝑖,𝑢,𝑣). These are the triples

where it is possible to have a hash collision in ℎ2, but there is no error. We start with the

following proposition:

Proposition 2.5.2. Let 𝐷 ′ be defined as above. The number of hash collisions in ℎ2 in triples

without errors is at most 2𝑝2𝐷
′ with probability ≥ 1− exp(−Ω(𝑝2𝐷

′)).

Proof. Note that hash collisions in ℎ2 can only occur in triples in 𝐷2 or in triples (𝑖,𝑢,𝑣)

with an error between 𝑢 and 𝑣 in iteration 𝑖. In each of the 𝐷2 triples (𝑖,𝑢,𝑣), the event

of a hash collision in ℎ2 is either iid Ber(𝑝2) or Ber(0), where the latter can happen if

𝑇𝑢,𝑣(𝑖) , 𝑇𝑣,𝑢(𝑖) but 𝜓𝑢,𝑣(𝑖) > 0.

Instead, consider the sum of a sequence of 𝐷 ′ Ber(𝑝2) random variables. This sto-

chastically dominates the number of hash collisions in ℎ2 in triples without errors, since

𝐷2 ≤𝐷 ′ by definition. The statement follows from a standard Chernoff bound applied to

the sum.
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Lemma 2.5.3. Let Err denote the number of errors that the non-oblivious adversary commits

in an execution of RobustProtocolV2 (Algorithm 12), and let CC denote the communication

complexity in the execution. Then with probability 1 − exp(−Ω(|Π|)), we have that either

CC ≤ 200𝛼|Π|𝑚 loglog(𝑚), or that Err > 𝜀
𝑚 loglog(𝑚)CC.

Proof. Recall that we set 𝐾 = 𝑚 loglog(𝑚). We will simply bound the upper probability

that CC > 200𝛼|Π|𝐾 and simultaneously Err ≤ 𝜀
𝐾CC. We invoke Lemma 2.5.4 to establish

that these two events happen only if 𝐷 > 𝛽 · Err, where 𝛽 = 𝐶𝐶
3𝛼𝐾Err ≥

1
3𝛼𝜀 . Note that this

holds for any adversary, oblivious or not.

Lemma 2.5.4 (Reformulation of Lemma 2.2.14 from [58]). Consider a run of Algorithm 12.

Denote the number of dangerous triples in this run by 𝐷, and the number of errors by Err.

Suppose that the communication complexity in this run satisfies CC > 200𝛼|Π|𝐾 , where 𝛼 is the

constant multiplying the communication in Lemma 2.2.3, and suppose that Err ≤ 𝜀
𝐾CC.

If Err > 0, then 𝐷 ≥ 𝛽 · Err, where 𝛽 def= CC
3𝛼𝐾Err ≥

1
3𝛼𝜀 . If Err = 0, then 𝐷 = 0 trivially.

Now our task is to establish that

P[𝐷 > 𝛽Err] ≤ exp(−Ω(|Π|)) (2.44)

for any adversary, which will bound the communication complexity of the protocol for any

adversary. First, we note that if 𝐷 > 𝛽Err, then 𝐷 ′, the number of triples that additionally

have no error, is at least (𝛽 −1)Err. Therefore, Proposition 2.5.2 tells us that the number

of collisions in the hash ℎ2 (in triples without errors) is at most 2𝑝2𝐷
′ with probability at

least 1− exp(−Ω(𝑝2𝐷
′)) ≥ 1− exp(−Ω(𝑝2|Π|)), for any adversary, where we use the fact that

𝐷 ′ ≥ (𝛽 − 1) · Err = Ω(CC/𝐾) = Ω(|Π|).

We can use this to condition on the event that the number of hash collisions in ℎ2 is at

most 2𝑝2𝐷
′, without losing too much in our bound. Formally, Proposition 2.5.2 gives us

that

P[𝐷 > 𝛽Err] ≤ P[(𝐷 > 𝛽Err)|(# hash col in ℎ2 ≤ 2𝑝2𝐷
′)] + exp(−Ω(𝑝2|Π|)) (2.45)
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for any (non-oblivious) adversary. So it suffices to show that, conditioned on the number

of hash collisions in ℎ2 being at most 2𝑝2𝐷
′, no adversary can make 𝐷 > 𝛽Err except with

negligible probability, where the probability is taken over both the CRS and the privately

sampled randomness.

This is done by showing this fact for any adversary that additive and oblivious to

collisions in ℎ1, this occurs with probability at most exp(−Ω(𝛽 · Err · log(𝑚)))(shown below

in Lemma 2.5.6).

To establish the result for arbitrary adversaries, we union bound the above probability

over all possible oblivious, additive adversaries that induce more than errors and show

this is exp(−Ω(𝜀|Π| · log(𝑚))). This is very similar to what we did in Section 2.3.4. The

number of oblivious, additive adversaries that induce exactly Err errors is at most(︃
𝐶𝑚2 loglog(𝑚)|Π|

Err

)︃
· 2Err (2.46)

for some constant 𝐶. For a proof of this fact, see the proof of Claim 2.3.34; the proof of

this fact is identical, with the log(𝑚) replaced by loglog(𝑚) due to the fact that we take

𝐾 =𝑚 loglog(𝑚) in this section. Now, we separate the remainder of the proof into cases.

Case 1: Err ≤ 200𝛼𝜀|Π|. In this case, we use the montonicity of binomial coefficients

where the bottom is much smaller than the top to upper bound the RHS of Eq. (2.46) by(︀𝐶𝑚2 loglog(𝑚)|Π|
200𝛼𝜀|Π|

)︀
. Then, we apply the inequality that

(︀𝑛
𝑘

)︀
≤

(︁
𝑛𝑒
𝑘

)︁𝑘
to get that the number of

such adversaries is at most exp(𝑂(𝜀|Π| · log(𝑚))).

Hence, the probability that there exists an oblivious adversary that makes at most

200𝛼𝜀|Π| errors and manages to make 𝐷 > 𝛽Err (conditioned on the number of hash

collisions in ℎ2 being at most 2𝑝2𝐷
′) is at most

200𝛼𝜀|Π|∑︁
Err=1

exp(𝑂(𝜀|Π| · log(𝑚))) · exp(−Ω(𝛽 · Err · log(𝑚)))
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Using the fact that 𝛽 · Err = Ω(|Π|) by the definition of 𝛽, we can simplify the above to

exp(−Ω(|Π| log(𝑚))),

as desired.

Case 2: Err > 200𝛼𝜀|Π|. In this case, we directly apply the inequality that
(︀𝑛
𝑘

)︀
≤

(︁
𝑛𝑒
𝑘

)︁𝑘
to

get that the number of such adversaries is at most exp(𝑂(Err · log(𝑚))).

Hence, the probability that there exists an oblivious adversary that makes at most

200𝛼𝜀|Π| errors and manages to make 𝐷 > 𝛽Err (conditioned on the number of hash

collisions in ℎ2 being at most 2𝑝2𝐷
′) is at most

𝐶𝑚2 loglog(𝑚)|Π|∑︁
Err=200𝛼𝜀|Π|+1

exp(𝑂(Err · log(𝑚))) · exp(−Ω(𝛽 · Err · log(𝑚)))

Using the fact that 𝛽 ≥ 1/(3𝛼𝜀), we can simplify this down to

exp(−Ω(−𝛽 · Err log(𝑚))

and using the fact that 𝛽 · Err = Ω(|Π|), we get

exp(−Ω(|Π| log(𝑚)))

as desired.

Putting the two cases together with Eq. (2.45), we establish Eq. (2.44), completing the

proof.

Lemma 2.5.5. Let Err denote the number of errors that the non-oblivious adversary commits in

an execution of RobustProtocolV2 (Algorithm 12), let 𝐷 denote the number of triples (𝑖,𝑢,𝑣)

with 𝜓𝑢,𝑣(𝑖) > 0, and let 𝜀* > 0 be a fixed constant larger than 4000𝛼𝐶6𝜀. Then with probability

1− exp(−Ω(|Π|)), we have that Err ≤ 200𝛼𝜀|Π| and 𝐷 ≤ 𝜀*|Π|, or that Err > 𝜀
𝑚 loglog(𝑚)CC.

We note that the probability in Lemma 2.5.5 hides factors of 𝜀* in the exponent.
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However, since 𝜀* is not going to 0 with 𝜀, we do not include it in the exponent.

Proof. First we can bound the probability that Err > 200𝛼𝜀|Π| and simultaneously

Err ≤ (𝜀/𝑚 loglog(𝑚))CC. These two events occur simultaneously only if CC > 200𝛼|Π|𝐾 ,

and we already upper bounded the probability of this event with the desired quantity

in Lemma 2.5.3. All that remains is to bound the probability that Err ≤ 200𝛼𝜀|Π| and

simultaneously 𝐷 > 𝜀*|Π|, which will establish the desired result.

Finally, we consider any adversary and upper bound the probability that it can cause

𝐷 > 𝜀*|Π|, conditioned on the number of errors being at most 200𝛼𝜀|Π|. This implies that

𝐷 ′ > (19/20)𝜀*|Π|, and so Proposition 2.5.2 implies that the number of hash collisions from

ℎ2 is at most 2𝑝2𝐷
′ with probability at least 1− exp(−Ω(𝑝2𝜀

*|Π|)) ≥ 1− exp(−Ω(|Π|)).

Then, it remains to show that our nonoblivious adversary cannot cause 𝐷 to be too

large conditioned on this event, as conditioning on this event can add at most exp(−Ω(|Π|))

to the overall probability. Similar to the proof of Lemma 2.5.3, we apply Lemma 2.5.6 to

get that P[𝐷 > 𝜀*|Π|] < exp(−Ω(𝜀*|Π| log(𝑚))) for any additive adversary that is oblivious to

collisions in ℎ1 and commits at most 200𝛼𝜀|Π| errors.

Doing the same union bound over all oblivious, additive adversaries that make at

most 200𝛼𝜀|Π| errors as done in the proof of Lemma 2.5.3 proves that no adversary

can cause 𝐷 > 𝜀*|Π| with probability more than exp(−Ω(|Π|)). Formally, there are at

most exp(𝑂(𝜀|Π| · log(𝑚))) adversaries that commit at most 200𝛼𝜀|Π| errors. Hence, the

probability that any nonoblivious adversary that commits at most 200𝛼𝜀|Π| errors can

cause 𝐷 > 𝜀*|Π| (conditioned on the number of hash collisions in ℎ2 being at most 2𝑝2𝐷
′)

is at most

200𝛼𝜀|Π|∑︁
Err=1

exp(𝑂(𝜀|Π| · log(𝑚))) · exp(−Ω(𝜀*|Π| log(𝑚))) = exp(−Ω(|Π| log(𝑚))),

which completes the proof.

Lemma 2.5.6. Suppose that the number of hash collisions in ℎ2 in triples without errors is at

most 2𝑝2𝐷
′, where 𝑝2 is the hash collision probability of the second hash function. Let 𝑝1 = 1

𝑚Θ(1)
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be the hash collision probability of ℎ1. Then, fix an arbitrary oblivious adversary, and let 𝑘 be a

number larger than 10𝐶6. Then

P[𝐷 > 𝑘 · Err] ≤ exp(−Ω(𝑘 · Err · log(𝑚)))

Proof. Fix the errors that the adversary commits, then consider running RobustProtocolV2

(Algorithm 12). Suppose that this run has 𝐷 > 𝑘 ·Err. Recall that 𝐷 ′ ≤𝐷 be the set of triples

(𝑖,𝑢,𝑣) where 𝜓𝑢,𝑣(𝑖) > 0 and no error occurs between 𝑢 and 𝑣 in 𝑖. Since the number of

errors is Err, we get that 𝐷 ′ ≥ (𝑘 −1) ·Err. Now we argue that the fraction of hash collisions

required to be in 𝐷 ′ must be very large, and that this occurs with very low probability.

Denote the set of these 𝐷 ′ triples as ̃︀D* for concreteness.

Due to the nonnegativity of
∑︀
𝜓𝑢,𝑣 , this implies that

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*(5𝐶6 + 5)𝑋𝑖,𝑢,𝑣 + 5𝐶6(𝑌𝑖,𝑢,𝑣)− 5(1−𝑌𝑖,𝑢,𝑣) ≥ −6𝐶6Err

Simplifying and using the fact that |̃︀D*| =𝐷 ′ > 6𝐶6Err, we get that

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*(𝑋𝑖,𝑢,𝑣 +𝑌𝑖,𝑢,𝑣) ≥ 4

5𝐶6 + 5
𝐷 ′.

Finally, using the assumption that
∑︀
𝑆 ′ 𝑌𝑖,𝑢,𝑣 ≤ 2𝑝2𝐷

′, and by taking 𝑝2 to be a sufficiently

small constant such that 𝑝2 < 1/(10𝐶6 + 10), this implies that

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥

3
5𝐶6 + 5

𝐷 ′.

So we can upper bound P[𝐷 > 𝑘Err] by upper bounding the probability that
∑︀

(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥
3

5𝐶6+5𝐷
′. Using a Chernoff bound, we get

P

⎡⎢⎢⎢⎢⎢⎢⎢⎣ 1
𝐷 ′

∑︁
(𝑖,𝑢,𝑣)∈̃︀D*𝑋𝑖,𝑢,𝑣 ≥ 𝑝1 +

2
5𝐶6 + 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≤ exp
(︃
−Ω

(︃
𝑘Err log

1
𝑝1

)︃)︃
.
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By using the fact that log(1/𝑝1) = Θ(log(𝑚)), we conclude the result.

Finally, we can put Lemma 2.5.3 and 2.5.6 together to prove Theorem 2.5.1.

Proof of Theorem 2.5.1. Due to Lemmas 2.5.3 and 2.5.6, with probability 1− exp(−Ω(|Π|),

we can conclude that CC ≤ 200𝛼𝐾 |Π| =𝑂(CC(Π)) and that the number of errors and hash

collisions in the protocol is bounded by EHC ≤𝑂(𝜀*|Π|), where 𝜀* > 0 is a constant that is

larger than 𝜀 but is sufficiently smaller than 𝐶7.

Finally, we recall that the potential 𝜑 rises by at least 𝐾 in each iteration, and there are

100|Π| iterations (Lemma 2.2.3). Claim 2.2.19 yields the final result.
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Chapter 3

Efficient Reconstruction of Stochastic

Pedigrees

3.1 Introduction

With this chapter, we start the portion of our thesis on inference. The setting for this

chapter is inspired by biology: given access to genetic data from multiple parties, the

central party would like to infer their mutual family relations, or their pedigree. We model

this as a statistical inference question and provide an efficient algorithm for reconstructing

pedigrees that are generated stochastically. Our model of pedigree inference draws from

previous work [154, 159].

3.1.1 Motivation

The decreased costs of sequencing technologies have enabled large-scale, data-driven

analyses of genomes [82]. Recent science and news articles feature stories only possible

due to this plethora of data, such as the recent identification and capture of a high-

profile criminal [97] predicated on DNA evidence. In this effort, an individual’s genetic

information was compared to a large, curated database called GEDMatch consisting of

over one million individual genomes. In comparison, there exist databases which are
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of several orders of magnitude larger in size such as MyHeritage (∼3.7 million [121]),

23andMe (∼10 million [1]), and Ancestry (∼15 million [8]).

This raises the question: how much kinship information can be learned from DNA?

Current databases already contain a considerable amount of this information. Indeed, it is

estimated that a given US individual of European ancestry, on average, has a third cousin

or closer who is already in the MyHeritage database [45]. However, such databases are still

far from complete. This calls into question the ability to detect missing kinships based on

individuals already present in the database.

This discussion also highlights the issue of genomic privacy. Indeed, it becomes much

easier to identify and locate individuals by combining the genetic and genealogical infor-

mation with outside information (addresses, e-mails, family photos, etc.). This potential,

having already been demonstrated by the resolution of the aforementioned criminal case,

was brought to attention by [45]. From this point of view, the ability to reconstruct ge-

nealogies from collected genetic data is of concern for individuals whose information is

revealed, even if one has never been sequenced. Since our work establishes a positive result

in a pessimistic scenario where we start with no ground truth information, we believe that

our work brings to attention this critical issue via a theoretical framework.

3.1.2 Our contributions

Without any prior knowledge about the ground truth, can we learn everyone’s genealogy

using their genetic information? In this paper, we study the inference problem of recove-

ring ancestral kinship relationships of a population of extant (present-day) individuals,

using only their genetic data. Our goal is to use this extant genetic data to recover the

pedigree of the extant population, under an idealized model. A pedigree is a graph whose

nodes (individuals) have edges that encode parent-sibling relationships. The topology

and reconstruction of pedigrees are well-studied in bioinformatics from both a theore-

tical and empirical perspective, and in general the study of pedigrees poses formidable

computational and statistical challenges.
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In this paper, we introduce a novel recursive algorithm Rec-Gen for pedigree recon-

struction. To demonstrate the effectiveness of our approach, we give a mathematical proof

that for an idealized generative model on pedigrees, our algorithm is able to approximately

recover the true, unknown pedigree only using the genetic data of the extant population.

In terms of sample complexity, which for our purposes refers to the common gene sequence

length of an extant individual, our algorithm greatly outperforms the naive reconstruction

method (estimate pairwise distances between the extant individuals, then construct the

pedigree that produces these distances). We propose our approach in this work as a pro-

totype for the future study of more general pedigrees, including those involving real-life

genetic data, from both a theoretical and empirical perspective. For further discussion on

our model of pedigree generation, as well as its features and limitations, see Section 3.1.4

and Section 3.1.6.

3.1.3 Related works

A common method in theoretical evolutionary biology is to model lineages and inheritance

via a family of directed acyclic graphs. One line of work is that of phylogenetics (refer to

[147] for an overview) which uses trees to model the occurrence of large-scale speciation

events in evolutionary biology. Another line of work is coalescent theory, which focuses on

variable-height inheritance trees between genes as its main statistic to infer large-scale

population sizes, as in e.g. [92]. In contrast, pedigrees capture small-scale individual

genealogies that encode familial relationships. Specifically, most pedigree models are

for human genealogies, where we designate exactly two parents to each individual. By

construction, such graphs are no longer trees and warrant different strategies for inference.

We note that continuous-time random mating models are often used when inferring large-

scale population sizes, for example in [92] as well as [91]. This follows from Wright-Fischer

dynamics; we direct the reader to [22] for more details about this modeling assumption

for populations.

[154] posed the formal definition of pedigrees using graph-theoretic language. In
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that work, the authors gave combinatorial arguments proving that one can reconstruct

complete pedigrees, assuming the correct ancestral history is provided as an input for each

extant individual. Our definition of pedigrees is essentially the same as the one outlined

by these authors, though we make the simplification that we do not identify the vertex set

bipartition (corresponding to the biological sex of the individuals).

To tie in more closely with real-world applications, one must consider the challenge of

estimating these histories from data. Along these lines, [159] studied stochastic processes

that one can associate with the pedigree, in such a way that one can prove negative

results (information-theoretic impossibility) or positive results (an algorithm) for the

reconstruction of the pedigree from extant data. The stochastic process used to show their

positive result was based on a very specific family of Markov chains which allows for

inference but is quite different from our model.

For the problem of performing pedigree reconstruction on real data, there is a wealth

of literature [160, 95, 75, 161, 76, 149, 81, 164]. Such studies apply heuristics that take

into account various complications and phenomena observed in human genomes, such as

varying levels of correlations between different sites and the presence of mutations that

are not inherited from parents.

One line of work particularly relevant to this paper is [75, 76] in which the authors also

tackle the problem of pedigree reconstruction from real extant genetic data. Assuming

answers to queries of the form, “how much DNA did 𝑖 and 𝑗 simultaneously inherit from

their ancestors?”, they design a statistical test that distinguishes between siblings, half-

siblings and cousins. Their method leverages this information with a maximal-clique

finding algorithm to iteratively reconstruct the parents, layer-by-layer. There is no proof

of correctness provided, but they provide benchmarks on real and simulated data to

provide experimental justification. Our contributions have a slightly different flavor:

using a similar iterative strategy but with a different statistical test (the novel part of

our algorithm) and for a more optimistic set of assumptions, one can actually provably

reconstruct the pedigree correctly in a sample-efficient way, in an asymptotic sense.
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The authors of [76] specifically emphasize their method’s ability to reconstruct half-

siblings. Technically speaking, this is not allowed in our model and therefore it may appear

to the reader that there is something too restrictive or suboptimal about our analysis. One

major difference between our model and the aforementioned work is that we model haploid

individuals (one copy of DNA), while in reality humans are diploids (two copies of DNA).

Furthermore, in our proof, we guarantee reconstruction of monogamous couples of haploid

individuals – in other words, up to permutation of the two individuals within each couple.

It can be observed that given a monogamous pedigree with a haploid model, one can

construct a natural, non-monogamous pedigree with a diploid model such that the total

variation of the extant data of the two pedigrees is zero. Therefore, we think that our

results should also hold for a diploid model with minor modifications and have correctness

guarantees to match the empirical results of the aforementioned work [76], for example

by interpreting Fig. 3-1(a) as a pair of diploid half-siblings.

Our work is also closely related to the problem of phylogenetic reconstruction [44,

115, 117, 42]. In this setting, symbols are passed from the root of a phylogenetic tree

to descendants via a Markov process such as in the Cavender–Farris–Neyman model, a

basic model for mutations. Similar to our inference problem in this work, in phylogenetic

reconstruction, one is tasked with reconstructing the tree given only the symbols at the

leaves. The main result of [44] characterizes the sample complexity—the minimal string

length of the data at the leaves such that reconstruction is possible—as logarithmic in

the depth of the tree, a phenomenon that our results suggest also holds for the pedigree

reconstruction problem. The work [117] provides theoretical guarantees for the problem

of learning the phylogenetic generative model (i.e., the topology of the tree as well as

the transition matrices), which includes hidden Markov models as a special case, from

the extant data under a spectral assumption on the transition matrices (see also later

work of [80]). Most closely related to our approach in this paper is the work [115],

which shows how to recursively reconstruct phylogenies using techniques from the theory

of broadcast processes on trees (see also [42]). This approach provides inspiration for
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our main algorithm Rec-Gen, which uses similar techniques to recursively reconstruct

pedigrees. We direct the reader to [46] and [113] for studies of broadcast processes on

trees with binary and large alphabet respectively, and [112] for a generalization to directed

acyclic graphs.

3.1.4 Model description and results

We now give an informal, detailed description of our framework for pedigree recon-

struction, with a more detailed treatment of the generative model in Section 3.3. Our

generative model on pedigrees consists of two parts: a parametric model for generating

the network structure on the set of ancestors and extant individuals, and an inheritance

procedure for transmitting genetic data from the founders, the oldest individuals in the

pedigree, to the extant population.

To generate the pedigree network structure, we begin with a large founding population

of size 𝑁𝑇 . The founders randomly mate monogamously, and each couple gives birth

to a random number of children, so that the average number of offspring per couple is

a constant1 𝛼. This procedure of random monogamous mating continues for 𝑇 subse-

quent generations, eventually yielding the extant nodes and a pedigree 𝒫 formed by the

individuals in generations 0,1, . . . ,𝑇 , with 𝑁𝑖 nodes at each level 𝑖.

Next we describe how genetic data transmits from the founding population to the

extant. Every individual in the pedigree has a gene sequence consisting of 𝐵 symbols

placed in 𝐵 distinct blocks. Each individual in the founding population is initialized with

independent uniformly random draws from a very large alphabet Σ. Now we state how

parents pass down genes to their children. In a given block, a child inherits, with equal

probability, either its mother’s or its father’s symbol in the corresponding block. This

procedure repeats for all couples in a given generation and then continues over subsequent

generations so that genetic data is iteratively transferred through the pedigree, eventually

giving rise to the gene sequences of the extant individuals.

1More precisely, each couple has a random number of children distributed as a Poisson random variable
with expectation 𝛼.
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Our main result is summarized in the following theorem. See Theorem 3.6.1 for a

formal statement.

Theorem 3.1.1 (Main result, informal). Let 𝛼 and 𝛽 denote sufficiently large absolute constants

independent of 𝑁𝑇 , the size of the founding population. Let 𝜀 denote a sufficiently small absolute

constant independent of 𝑁𝑇 . Assume that the alphabet size |Σ| is very large with respect to 𝑁𝑇 .

Then given extant genetic data produced from the generative model with alphabet Σ, growth

rate 𝛼, gene sequence length 𝐵 = 𝛽 log𝑁𝑇 , and number of generations 𝑇 = 𝜀 log𝑁𝑇 as described

above, the algorithm Rec-Gen recovers 90% of the true pedigree in every generation, with high

probability. Moreover, this algorithm runs in polynomial time in the size of the pedigree and the

number of blocks per extant individual.

Let 𝒫 denote the true, unknown pedigree. Our formal version of Theorem 3.1.1

(see Theorem 3.6.1) implies that with high probability Rec-Gen outputs a reconstructed

pedigree 𝒫 whose size is at least 0.9𝑁𝑖 in each generation 𝑖 ∈ {0, . . . ,𝑇 }, such that every

node �̂� ∈ 𝒫 can be identified with exactly one node 𝑢 ∈ 𝒫 , and this identification preserves

relationships in the sense that �̂� is a child of 𝑣 in 𝒫 if and only if 𝑢 is a child of 𝑣 in 𝒫 . In

graph-theoretic terminology, our reconstruction 𝒫 is a (very large) induced subgraph of

the truth 𝒫 .

We note that the stipulation that we recover 90% of the nodes at each level is actually a

simplification; in fact, we can make the fraction of reconstructed nodes in each generation

arbitrarily large by taking 𝛼 to be large enough. We refer the reader to Theorem 3.6.1 for

details.

3.1.5 The Rec-Gen algorithm

The algorithm Rec-Gen consists of a recursive procedure that uses only the genetic infor-

mation from the extant population to construct a good approximation for the true pedigree

𝒫 of depth 𝑇 that generated the observations. In the first phase of recursion, the algorithm

reconstructs the parents of the extant nodes, which we label as the 1st generation. In the

𝑡th phase, the algorithm adds a 𝑡th generation to the partially reconstructed version of the
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true pedigree given by the output of the previous phase. The algorithm terminates after 𝑇

phases of recursion, producing a pedigree 𝒫 with 𝑇 generations that well-approximates

the true, unknown pedigree 𝒫 .

We next give a simplified version of our recursive procedure that serves to illustrate

the main ideas. See Section 3.6 for a detailed description of Rec-Gen. Suppose that we

have constructed a pedigree 𝒫𝑡 of depth 𝑡, and recall that 𝐵 refers to the length of the gene

sequence of an individual. Also recall that a couple refers to a pair of mated individuals.

Note that the first step of our recursive procedure equips each couple with an empirical

gene sequence of length B where each block can contain two distinct symbols. This

empirical gene sequence is constructed based on extant data and should be thought of as

determining which symbols belong to at least one of the individuals from the couple in a

given block. Also, we say that three gene sequences 𝜎,𝜎 ′,𝜎 ′′ overlap in a block if all three

sequences have some symbol in common in that block.

Perform the following steps to output a pedigree 𝒫𝑡+1 of depth 𝑡 + 1.

(1) Collect-Symbols For each couple 𝑐 in generation 𝑡 of 𝒫𝑡, use the extant genetic data

to recover symbols that belong to 𝑐 as follows.

– Recover a symbol 𝜎 in block 𝑏 ∈ [𝐵] of 𝑐 if 𝑐 has three extant descendants

descended from distinct children of 𝑐 that all share symbol 𝜎 in block 𝑏.

– Repeat this procedure to recover at most one other symbol 𝜎 ′ , 𝜎 for 𝑐 in block

𝑏.

(2) Test-Siblinghood For every triple of couples 𝑐,𝑐′, 𝑐′′ ∈ 𝒫𝑡 in generation 𝑡, determine

𝑐,𝑐′, 𝑐′′ to be (mutually) ‘siblings’ if and only if at least 0.21𝐵 of their recovered

symbols mutually overlap.

(3) Assign-Parents For every maximal collection 𝒞 = {𝑐1, 𝑐2, . . . , 𝑐𝑘} of couples in gene-

ration 𝑡 such that every triple in 𝒞 consists of mutual siblings, construct a pair of

parents in generation 𝑡 + 1 that have as children precisely one individual from each
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couple in 𝒞.2

After 𝑇 iterations of the above recursive procedure, we output a pedigree 𝒫𝑇 that gives

a good approximation to the underlying pedigree that generated the extant genetic data

as described in Theorem 3.1.1. We remark that working with triples as above greatly

simplifies our analysis, as discussed in Section 3.2.33.

3.1.6 Model discussion and future directions

Our generative model imposes various constraints on the typical pedigrees that we consider.

We discuss these modeling assumptions here and also consider the problem of investigating

more general models that could more accurately capture properties of real-world data.

First, we consider the assumption that the size of the alphabet Σ is very large with

respect to the size 𝑁𝑇 of the founding population. Since a “block” represents the unit of

inheritance from a parent4, this implies that with very high probability all of the founders

have distinct symbols in their gene sequences, and no two founders share a common

symbol.5 Our large alphabet assumption is equivalent to the assertion that the founders

are unrelated.

Second, the stochastic process describing inheritance in our model has the following

biological interpretation. A standard concept in population genetics refers to long-running

sequence matches as being identical by descent (IBD) if they arose due to inheritance from

a common ancestor [161]. In contrast, the term identity by state refers to the event that two

identical tracts in the genome arose by coincidence – via mutations – in two unrelated

individuals. Our inheritance model contains the assertion that each block corresponds to

true IBD sequences: if two individuals have the same symbol, we can always identify a

common ancestor that gave rise to these symbols.
2We perform this step in such a way that every child is assigned at most 2 parents.
3We note that triples in this work refer to tuples of three nodes in the pedigree; this has nothing to do

with the triples in Chapter 2
4Using biology terminology, each block can be considered as an idealized abstraction of a collection of

single-nucleotide polymorphisms (sites of variation) with high linkage disequilibrium (empirical measure of
correlation) that are passed from parent to child.

5Mathematically, this can be thought of as an improper prior on a countably infinite alphabet Σ.
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Third, we recall the hypothesis that every couple has on average 𝛼 children, where

𝛼 is a sufficiently large absolute constant independent of the size 𝑁𝑇 of the founding

population. This ensures that, roughly speaking, every new generation is a factor 𝛼/2

larger than the previous one. Assuming roughly uniform growth of generations, it is

necessary that 𝛼 > 0 — otherwise the population would die out and there would be no

extant nodes after 𝑇 generations. More subtly, it is necessary that 𝛼 ≥ 2 — otherwise, via

standard results from the theory of branching processes (see, e.g. [94]) a founding node

has a very low probability of passing on its symbols to the extant. In this situation, even

detection of such an ancestor from extant genetic data alone is information-theoretically

impossible. On the other hand, our assumption that 𝛼 is a large constant essentially

amplifies the signal sent from a founder to the extant, and this simplifies our mathematical

analysis.

Our first open question considers relaxing the previously discussed assumptions.

Question 4. What theoretical guarantees can be established for pedigree reconstruction in the

context of our generative model when 𝛼 is very close to 2? What about when the size of the

alphabet Σ is finite? Can we analyze more generic models of inheritance where blocks are not

inherited i.i.d. from parents?

A more subtle consequence of our generative model is inbreeding, a term we use to refer

to the following phenomena: (1) the presence of multiple lowest common ancestors for a

pair of extant nodes, and (2) the presence of mated couples such that the two individuals

in the couple have a lowest common ancestor (LCA) (see Definition 3.3.5 for the formal

definition of an LCA). The degree of inbreeding qualitatively refers to the frequency

of such structures in the pedigree. Moreover, inbreeding as in (2) is mathematically

equivalent to having cycles in the pedigree. In general, a higher degree of inbreeding

makes the pedigree reconstruction problem more difficult and in some cases information-

theoretically impossible (see Section 3.2.1 for detailed examples). Our choice of model

allows for some degree of inbreeding, and our algorithm and analysis are carefully tailored

to circumvent this obstacle.
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Other assumptions inherent in our model include that the pedigree is graded, i.e.,

couples are formed from individuals in the same generation, and monogamous: a given

individual only mates with one other individual. Furthermore, mutations — errors in

the transmission of genetic data from parents to offspring — are a central component in

biological applications that our current model does not incorporate.

Question 5. What theoretical guarantees can be established for reconstruction of pedigrees in

generative models with some combination of (i) a higher degree of inbreeding, (ii) mutations,

(iii) non-monogamous mating, and (iv) inter-generational mating?

3.2 Inference challenges and techniques

In this section, we detail some of the challenges posed by the reconstruction of pedigrees

constructed from our generative model as well as our techniques and analysis for handling

them. To develop some intuition for our strategy, we first illustrate some of the properties

of pedigrees using concrete examples.

3.2.1 Examples: complications from inbreeding

Recall that two individuals 𝑢,𝑣 that share the same set of parents are siblings. If two

individuals share a common subset of grandparents (but not parents), we refer to them as

cousins.

First consider the pedigrees displayed in Fig. 3-1(a). An important statistic for de-

termining relationships is the correlation between symbols of nodes at the same level.

Consider the event 𝐸 that the left extant shares the same symbol as the right extant. Note

that these two extant nodes are cousins sharing a single set of grandparents. The grand-

parents are the founders in this example, so we assign to each of them a unique symbol

(𝑎 , 𝑏 , 𝑐 , 𝑑 , 𝑒 , 𝑓 ). The occurrence of 𝐸 implies that 𝑘 = 𝑐 or 𝑘 = 𝑑 via the left extant

receiving a symbol from its right parent; this occurs with probability 1
2 . Conditioned on
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𝑘 ℓ

𝑔 ℎ 𝑖 𝑗

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓

(a) three sets of grandparents (cousins, one way)

𝑘 ℓ

𝑔 ℎ 𝑖 𝑗

𝑎 𝑏 𝑐 𝑑

(b) two sets of grandparents (cousins, two
ways)

Figure 3-1: Simple examples of depth-3 complete pedigrees with a single block. The letters inside
the boxes represents the block data. 3-1(a): The overlap probability is P(𝑘 = ℓ) = 1

8 . 3-1(b): An
altered version of 3-1(a) with only two sets of grandparents, which yields P(𝑘 = ℓ) = 1

4 .
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𝑘 ℓ

𝑒 𝑓 𝑔 ℎ

𝑎 𝑏

(a) four siblings begetting cousins.

𝑘 ℓ

𝑒 𝑓

𝑎 𝑏

(b) two siblings be-
getting siblings.

Figure 3-2: Two examples of complete pedigrees with inbreeding. The extants in 3-2(a) are
cousins, yet they have a coincidence of 1

2 as if they were generic siblings from unrelated parents.
In comparison, 3-2(b) yields 3

4 which exceeds the coincidence of siblings.

this occurring, the right extant block ℓ is the same as 𝑘 with probability 1
4 , so the overall

probability that both receive the same symbol is 1
8 .

Compare this to the example shown in Fig. 3-1(b), where the two extant are cousins

in two ways (siblings marrying siblings). Note that whichever symbol (out of 𝑎,𝑏,𝑐,𝑑) that

𝑘 is, the right grandchild receives the same independently with probability 1
4 . This is an

example of a type of inbreeding where two extant nodes have more than one LCA.

The examples in Fig. 3-2 demonstrate how the correlation between extant nodes is

boosted due to the presence of inbreeding. Note that in the generic case where extant

siblings have an ancestral pedigree that is a tree, these individuals have a 1
2 fraction overlap

in their blocks. For comparison, let us compute the probability of coincidence for the two

extant nodes in Fig. 3-2(a). The probability that 𝑘 = 𝑎, for example, is

P(𝑘 = 𝑎) = P(𝑒 = 𝑓 = 𝑎) +
1
2
P ({𝑒, 𝑓 } = {𝑎,𝑏}) =

1
4

+
(︂1
2

)︂2
=

1
2
.

Since 𝑘 and ℓ inherit symbols independently from their grandparents, the overall probabi-

lity is

P(𝑘 = ℓ) = P(𝑘 = ℓ = 𝑎) +P(𝑘 = ℓ = 𝑏) =
(︂1
2

)︂2
+
(︂1
2

)︂2
=

1
2
,
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which is precisely the probability that two generic siblings inherit the same symbol.

The situation in Fig. 3-2(b) is even more pronounced. The two parents share the same

symbol (either 𝑎 or 𝑏) with probability 1
2 and have different symbols with probability 1

2 .

This means that the coincidence probability is now 1
2 + 1

2 ×
1
2 = 3

4 : their correlation between

overlaps is much stronger than that of siblings in the generic case.

From the example in Fig. 3-2(a), we conclude that the statistical model of extant

data parametrized by pedigrees is unidentifiable. Stated another way, it is information-

theoretically impossible to distinguish between siblings and inbred cousins using only

extant data. Thus, in order for any algorithm to succeed in reconstructing a large fraction

of the pedigree using only extant data, it is necessary to bound the amount of inbreeding

in the ensemble of pedigrees of interest. We accomplish this using a careful analysis of

our generative model.

3.2.2 Informal analysis of Rec-Gen

In this section, we present a high-level analysis of the Rec-Gen algorithm. Theorem 3.1.1

states that Rec-Gen yields an accurate reconstruction on 90% of nodes for typical pedigrees

from our generative model6. Note that a formal statement of this theorem, our main result,

is given by Theorem 3.6.1, and a complete proof is contained in the upcoming sections.

Suppose we construct a pedigree 𝒫𝑡 on 𝑡 generations that, for simplicity of the discus-

sion, exactly matches the true, unknown pedigree 𝒫 up to generation 𝑡. We show that

Collect-Symbols, Test-Siblings, and Assign-Parents applied to 𝒫𝑡 provide an accurate

reconstruction of 90% of the nodes at generation 𝑡 + 1. In the remainder of this section we

give a high-level argument that the output 𝒫𝑡+1 satisfies the following conditions:

(i) every individual �̂� in 𝒫𝑡+1 can be identified with a unique individual 𝑢 in 𝒫 at

generation 𝑡 + 1,

(ii) at most 10% of the nodes in generation 𝑡+1 of 𝒫 are not identified with an individual

6We note again that the 90% is for simplicity of exposition, and in reality we can recover an arbitrarily
large fraction of nodes. This is made precise in Theorem 3.6.1.

180



in 𝒫𝑡+1, and

(iii) if 𝑣 is a child of �̂� in 𝒫𝑡+1, then 𝑣 is a child of 𝑢 in 𝒫 .

Recall that for the purposes of reconstruction, we only have access to the genetic data of

the extant.

In this discussion, we refer to three couples 𝑐,𝑐′, 𝑐′′ ∈ 𝒫 as (mutual) siblings if there

exist individuals 𝑢 ∈ 𝑐,𝑢′ ∈ 𝑐′, and 𝑢′′ ∈ 𝑐′′ such that 𝑢,𝑢′, and 𝑢′′ are mutually siblings. A

clique refers to a collection of couples 𝒞 = {𝑐1, . . . , 𝑐𝑘} such that every triple from 𝒞 consists

of mutual siblings.

The next two facts are essential to the argument.

(A) If Collect-Symbols recovers symbol 𝜎 in block 𝑏 for a couple 𝑐 in generation 𝑡, then

𝑐 also has the symbol 𝜎 in block 𝑏 in 𝒫 (Claim 3.6.8).

(B) Collect-Symbols recovers at least 99% of the symbols for at least 99% of the couples

in generation 𝑡 (Lemma 3.5.17).

Together, (A) and (B) imply that for 99% of the couples in generation 𝑡, our algorithm

gets all of the siblings relationships between these couples correct. To see why, we can

use a similar calculation as in the first example of Section 3.2.1 to conclude that the

average overlap between the symbols of three individuals that are mutually siblings is

25%. By concentration of binomial random variables about their means, it follows that

with high probability, all triples of individuals that are mutually siblings in 𝒫 have at

least 24.9% mutual overlap between their symbols. A simple union bound combined with

(A) and (B) implies that for most triples of individuals in generation 𝑡 that are mutually

siblings, the recovered symbols from Collect-Symbols in those individuals’ corresponding

couples have overlap at least 21%. Hence, Test-Siblinghood infers correct siblinghood

relationships for a majority of triples.

Moreover, our siblings test on the recovered symbols does not have any false-positives:

(C) Test-Siblinghood never misclassifies non-siblings as siblings (Lemma 3.6.5).
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The next and last key fact argues that our naive assignment of parents to individuals

in cliques as in Assign Parents is in fact the correct assignment in a typical pedigree. This

property holds with very high probability over our generative model.

(D) Let 𝒞 ⊂ 𝒫 denote a clique at generation 𝑡 in the true pedigree. Then there exists

a couple 𝑐, which we refer to as the parents of 𝒞, in generation 𝑡 + 1 of 𝒫 that has

exactly one child in every couple of 𝒞, and no other couple has more than 1 child in

𝒞 (Lemma 3.4.13).

Together, (A), (B), (C), and (D) imply that our reconstruction criteria (i), (ii), and (iii)

from the beginning of this section hold, as we now justify. Recall that we already showed

(A) and (B) imply that we classify a large fraction of the couples at generation 𝑡 correctly

as siblings. Moreover, part (C) and the transitivity of siblinghood in 𝒫 imply that cliques

in our reconstruction really correspond to cliques in the truth. By part (D) such cliques

have unique parents. Thus, for (i), we identify newly constructed couples �̂� ∈ 𝒫𝑡+1 with

the unique parents 𝑢 ∈ 𝒫 of the clique formed by the children of �̂�, further pairing the

two individuals in 𝑢 with those in �̂� arbitrarily. With this identification, (iii) follows

immediately. To show part (ii), later in the paper we give a sufficient condition for a

couple at generation 𝑡 to have 99% of its symbols collected by Collect-Symbols as in

(B) (see Lemma 3.5.17). Then we show that 90% of individuals in generation 𝑡 + 1 have

children in such couples (see Proposition 3.5.16), which proves part (ii). Essentially, this

sufficient condition amounts to saying that a couple 𝑐 at generation 𝑡 has no inbreeding

(cycles) above or below it (i.e. among its ancestors or descendants, respectively) and that

the pedigree of descendants of 𝑐 contains a 𝛼/4-ary tree (see Definition 3.5.14).

3.2.3 Motivation for using triples

It is tempting to employ a seemingly simpler recursive scheme than the one described

in Section 3.1.5 that operates on pairs instead of triples. As an example, consider an

alternative recursive procedure such that:
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1. Collect-Symbols only uses pairs of extant descendants to recover symbols of a

couple 𝑐,

2. Test-Siblinghood considers only pairs of couples at generation 𝑡 and detects them

to be siblings if their strings overlap by at least 49%, and

3. Assign-Parents assigns parents to individuals in maximal collections 𝒞 such that

every pair of couples is (tested as) siblings.

Unfortunately, this simpler approach encounters two major technical complications.

First, working with a pairwise siblings test introduces a problem for the step of as-

signing parents. Define a pairwise clique to be a collection of couples so that every pair

of couples passes the pairwise siblings test. With high probability, it turns out in every

generation there exist a constant number of pairwise cliques that are not explained in the

naive way of assigning to this clique parents that have precisely one child per couple. In

particular, in the true pedigree 𝒫 it is possible to have three couples that mutually pass the

pairwise siblings test, yet there are three distinct parent couples each having precisely two

children among these three couples. See Fig. 3-3 for an illustration. This type of structure,

though rare, occurs a constant number of times in each generation, and thus introduces

inherent errors in our reconstruction that accumulate at every step of iteration.

Figure 3-3: An undesirable subpedigree, where three child couples have mutual siblingship, but
they do not mutually share a parent couple.

A second problem caused by working with pairs arises in the step of collecting symbols.

The pairwise version of our algorithm assigns a symbol to a couple if that symbol occurs

in two extant descendants that are descended from distinct children of that couple. In our
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generative model, it turns out that with high probability there are a logarithmic number of

pairs of extant nodes that have at least two LCA’s. For such pairs, the pairwise algorithm

does not accurately assign symbols to their reconstructed ancestors. Similar to the previous

issue, these errors snowball and make the analysis for proving Theorem 3.1.1 very difficult.

On the other hand, working with an algorithm using triples as described in Section 3.1.5

makes for a much cleaner analysis and nicer reconstruction guarantee. This innovation

circumvents the technical complications of the pairwise version because every clique

(recall that this is a collection of couples where every triple consists of mutual siblings) can

be explained in a naive way (Lemma 3.4.13), and in our generative model every triple of

extant individuals descended from distinct children of a given ancestor have that ancestor

as their unique LCA with very high probability (Lemma 3.4.16).

3.2.4 Outline of technical arguments

The remainder of the paper, which provides a formal proof of Theorem 3.1.1, is divided

into four parts.

• Section 3.3 provides preliminary definitions and a formal definition of our generative

model.

• Section 3.4 proves important properties about the typical network structure of

pedigrees from our generative model.

• Section 3.5 proves important properties about the block statistics of the extant nodes

in a typical pedigree from our generative model.

• Section 3.6 gives a precise description of Rec-Gen and provides a formal statement

and proof of Theorem 3.1.1.

Specifically, in Section 3.4 we rigorously quantify the degree of inbreeding in typical

pedigrees from our model by counting the number of collisions (see Definition 3.4.6 and

Lemma 3.4.8). This has several useful consequences, including that every clique has a

184



unique parent (fact (D) from Section 3.2.2, also see Lemma 3.4.13) and that the extant

individuals used in Collect-Symbols have a unique LCA (see Lemma 3.4.16). In particular,

the latter is key to showing fact (A) from Section 3.2.2.

In Section 3.5, we provide a definition (see Definition 3.5.14) that essentially charac-

terizes the individuals in 𝒫 that are reconstructible via Rec-Gen. We show that couples

involving such individuals, referred to as awesome couples, transmit many of their sym-

bols to the extant, with high probability (see Lemma 3.5.17). In particular, awesome

couples have at least 99% of their symbols recovered by Collect-Symbols (fact (B) from

Section 3.2.2). We also prove an important result for our siblings test: triples of individuals

that are not mutually siblings have mutually overlap at most 19% (see Lemma 3.5.4). This

combined with fact (A) from Section 3.2.2 essentially shows that Test-Siblinghood never

classifies non-siblings as siblings (fact (C) from Section 3.2.2, see also Lemma 3.6.5).

Our final section, Section 3.6 ties everything together, following fairly closely the high-

level argument presented in Section 3.2.2 to prove the formal version of Theorem 3.1.1.

3.3 Preliminaries

3.3.1 Key definitions and terms

Definition 3.3.1. A pedigree 𝒫 = (𝑉 ,𝐸) is a directed acyclic graph (DAG) with vertices 𝑉 and

edges 𝐸 where every vertex has indegree at most 2. The collection of vertices of indegree zero are

referred to as the founders, and the collection of vertices of outdegree zero are referred to as the

extant.

Definition 3.3.2. If the indegree of each vertex in the underlying DAG is either 2 or 0, then 𝒫

is called a complete pedigree.

In this work, we focus on a special family of complete pedigrees that are both graded

and monogamous.
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Definition 3.3.3. 𝒫 is said to be graded if the vertices 𝑉 (𝒫 ) can be partitioned into
⋃︀𝑇
𝑖=0𝑉𝑖(𝒫 )

such that 𝑉𝑇 (𝒫 ) are the founders, 𝑉0(𝒫 ) are the extant, and all directed paths 𝑒𝑇 , . . . , 𝑒1 from

𝑉𝑇 (𝒫 ) to 𝑉0(𝒫 ) can be written as a sequence of edges 𝑒𝑡 = (𝑣𝑡 → 𝑣𝑡−1) where 𝑣𝑡 ∈ 𝑉𝑡(𝒫 ) and

𝑣𝑡−1 ∈ 𝑉𝑡−1(𝒫 ) for each 𝑡. The founders’ index 𝑇 is the depth of the pedigree.

𝒫 is said to be monogamous if for every vertex 𝑢 of outdegree > 0, there exists a unique

vertex 𝑢′ such that (𝑢→ 𝑣) ∈ 𝐸 ⇐⇒ (𝑢′→ 𝑣) ∈ 𝐸. The unordered pair {𝑢,𝑢′} is referred to as

a couple.

We assume that every non-extant individual in the pedigree is in a couple, and so the

number of vertices at each non-extant level is even. This assumption is effectively without

loss of generality—if an individual is not in a couple, then it has no descendants, and so

we cannot recover information about this individual or even its existence.

An example of a complete, graded, monogamous pedigree is shown in Fig. 3-1(a). In

our model, symbols are passed down from parents to children in a completely symmetric

way. Thus, given the data of the children, it is impossible to distinguish the owner of

each symbol from amongst the two parents. The goal of this paper is to show how one

can provably infer the structure of a complete pedigree from extant genetic data via the

reconstruction of the ancestral symbols, modulo block phasing (determining which symbol

belongs to which parent for each block). Therefore, we introduce the following version of

a pedigree which condenses this information.

Definition 3.3.4. A coupled pedigree 𝒬 = (𝑉𝒬,𝐸𝒬) induced by a complete, monogamous

pedigree 𝒫 = (𝑉𝒫 ,𝐸𝒫 ) is defined as follows:

• 𝑉𝒬 ⊂
(︀𝑉𝒫

2
)︀

is obtained by merging couples 𝑐 = {𝑢,𝑢′} ⊂ 𝑉𝒫 into a single node (extant

individuals remain singletons), introducing edge multiplicity.

• 𝐸𝒬 is the result of halving the number of resulting copies of each edge after merging

couples.

In particular, a coupled pedigree is also a pedigree. Examples are drawn in Fig. 3-4 in

relation to Fig. 3-1, where the complete pedigree 3-1(a) induces a coupled pedigree 3-4(a)
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𝑘 ℓ

{𝑔,ℎ} {𝑖, 𝑗}

{𝑎,𝑏} {𝑐,𝑑} {𝑒, 𝑓 }

(a) coupled version of 3-1(a)

𝑘 ℓ

{𝑔,ℎ} {𝑖, 𝑗}

{𝑎,𝑏} {𝑐,𝑑}

(b) coupled version of 3-1(b)

Figure 3-4: 3-1(a) induces coupled pedigree 3-4(a), while 3-1(b) induces 3-4(b).

and 3-1(b) induces 3-4(b).

The only information that is lost after transforming a complete, monogamous pedigree

into a coupled pedigree is the block phasing. Indeed, observe that given the coupled

structure 𝒬 = (𝑉𝒬,𝐸𝒬), one can easily obtain the individual structure 𝒫 = (𝑉𝒫 ,𝐸𝒫 ) up to

block phasing as follows: (1) add the extant individuals in 𝑉0 ⊂ 𝑉𝒬 to 𝑉𝒫 , (2) for every

non-extant node 𝑐 ∈ 𝑉𝒬 add individuals 𝑢𝑐,𝑢′𝑐 to 𝑉𝒫 , and (3) given parents 𝑐1 and 𝑐2 of

𝑐 in 𝒬, add the four edges 𝑢𝑐1 → 𝑢𝑐,𝑢
′
𝑐1 → 𝑢𝑐,𝑢𝑐2 → 𝑢′𝑐,𝑢

′
𝑐2 → 𝑢′𝑐 to 𝐸𝒫 . In addition, if

𝒫 is graded, 𝒬 retains a graded structure 𝑉𝒬 = 𝑉0(𝒬)∪ · · · ∪𝑉𝑇 (𝒬) so that 𝑉0(𝒬) are the

extant nodes and 𝑉1(𝒬), . . . ,𝑉𝑇 (𝒬) are depth-graded couple nodes. In particular, the graph

structure of an individuals pedigree 𝒫 uniquely determines the graph structure of its

associated coupled pedigree 𝒬 and vice versa.

Given the previous discussion, since our goal is to recover the graph structure of an

underlying true pedigree 𝒫 given gene sequences of a large number of extant individuals,

it suffices to reconstruct the associated coupled pedigree 𝒬.

Furthermore, since the graph underlying a pedigree is a DAG, given a subset 𝑆 of the

pedigree, it is natural to consider the notion of “ancestors” (nodes anc(𝑆) from which

there is a directed path to 𝑆) and “descendants” (nodes desc(𝑆) to which there is a directed

path from 𝑆). Also for simplicity, we stipulate that every node 𝑣 is both a descendant and

an ancestor of itself, i.e., 𝑣 ∈ anc(𝑣) and 𝑣 ∈ desc(𝑣). Since the indegree of each node can
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be more than one, it is possible for two nodes to have more than one “lowest common

ancestor”. We define this now.

Definition 3.3.5 (Lowest Common Ancestors). Let 𝑆 denote a set of nodes in a pedigree 𝒫 .

The set of lowest common ancestors of 𝑆, denoted LCA(𝑆), consists of all nodes 𝑢 ∈ 𝒫 such

that 𝑢 is an ancestor of every node in 𝑆, and moreover, no descendant of 𝑢 is an ancestor of every

node in 𝑆.

During our analysis, we often restrict our attention to the information that the pe-

digree contains about the ancestors or descendants of a particular collection of nodes. In

particular, we want to exploit (sub)structures that are not too intertwined. The following

definitions make these ideas precise:

Definition 3.3.6 (Subpedigrees). Let 𝑊 ⊂ 𝑉𝒫 denote a subset of nodes of pedigree 𝒫 . The

subgraph of (𝑉𝒫 ,𝐸𝒫 ) induced by 𝑊 is itself a pedigree, which we call the subpedigree of 𝒫

induced by𝑊 .

Definition 3.3.7 (Ancestral pedigrees). Let 𝑊𝑘 ⊂ 𝑉𝑘(𝒫 ) denote a subset of vertices at level 𝑘

of a graded pedigree 𝒫 . The subpedigree induced by 𝑊𝑘 ∪ anc(𝑊𝑘) is the (level 𝑘) ancestral

subpedigree of 𝒫 induced by 𝑊𝑘.

Definition 3.3.8 (Descendant pedigrees). Let𝑊𝑘 ⊂ 𝑉𝑘(𝒫 ) denote a subset of vertices at level 𝑘

of a graded pedigree 𝒫 . The subpedigree induced by 𝑊𝑘 ∪desc(𝑊𝑘) is the (level 𝑘) descendant

subpedigree of 𝒫 induced by 𝑊𝑘.

Definition 3.3.9 (Tree pedigrees). A pedigree 𝒫 that has no undirected cycles (when the

directions of the edges in 𝐸𝒫 are ignored) is called a tree pedigree.

Note that coupled pedigrees can have edges of multiplicity two, though only in the case

where two siblings form a coupled node, which a rare structure in our generative model.

In coupled pedigrees, we consider a double edge to be an undirected cycle of length two.

Hence, a tree pedigree consists entirely of simple or multiplicity 1 edges.
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As we demonstrate (e.g. Lemma 3.5.4), coupled tree pedigrees exhibit a type of correla-

tion decay between blocks that enable us to perform inference on the structure. In contrast,

non-tree coupled pedigrees correspond to pedigrees with inbreeding, which can arise in

nature and appear in our probabilistic model as well. Section 3.2.1 illustrates examples of

such structures. These types of structures introduce challenges for performing inference

under our generative model.

3.3.2 Siblings in a pedigree

Note that siblinghood is a transitive relationship: if 𝑢,𝑣 are siblings and 𝑣,𝑤 are siblings,

then so are 𝑢,𝑤. As alluded to in Section 3.2.3, it is important to look at these relationships

in triplets. We now detail how one can encode this information as a 3-uniform hypergraph.

Definition 3.3.10. A 3-uniform hypergraph is a pair (𝑉 ,𝐸) of vertices and a multiset of edges,

so that each edge is an unordered triple {𝑢,𝑣,𝑤} of vertices in 𝑉 .

Definition 3.3.11. Let 𝒫 be a coupled pedigree of depth 𝑇 (each non-extant node is a set of

a pair of individuals). The siblinghood hypergraph 𝐺𝑘 of 𝒫 at level 𝑘 > 0 is the 3-uniform

hypergraph that describes the three-way sibling relationships of its level-𝑘 members. For every

triple 𝑒 = {𝑐1, 𝑐2, 𝑐3}, the edge multiplicity 𝑛(𝑒;𝐺𝑘) is

𝑛(𝑒;𝐺𝑘) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
0 if @ (𝑢1,𝑢2,𝑢3) ∈ 𝑐1 × 𝑐2 × 𝑐3 such that 𝑢1,𝑢2,𝑢3 are siblings

1 if ∃ unique (𝑢1,𝑢2,𝑢3) ∈ 𝑐1 × 𝑐2 × 𝑐3 such that 𝑢1,𝑢2,𝑢3 are siblings

2 else

The siblinghood hypergraph 𝐺0 is defined similarly, by considering each extant individual 𝑢 as

a degenerate (cardinality 1) couple 𝑐𝑢 = {𝑢} and applying the above definition (Each hyperedge

appears zero or once, never twice).

Recall that a clique in a 3-uniform hypergraph is a collection of vertices such that all

possible triplets form an edge. The next statement is an observation that follows from the

definition of 𝐺𝑘 and the transitivity of siblinghood.
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Proposition 3.3.12. If 𝑐1, . . . , 𝑐𝑚 are level-𝑘 couples that respectively contain individuals

𝑢1, . . . ,𝑢𝑚 which are siblings, then 𝑐1, . . . , 𝑐𝑚 form a clique in 𝐺𝑘.

3.3.3 Probability Tools

We denote a Poisson distribution with mean 𝜆 as Pois(𝜆). We use some basic tools from

probability theory in our proof. The first is referred to in literature as Poisson thinning, see

e.g. [101].

Proposition 3.3.13 (Poisson Thinning). Let 𝑁 ∼ Pois(𝜆), and let 𝑋1,𝑋2, . . . be iid Ber(𝑝)

random variables that are independent of 𝑁 . Then 𝑋 =
∑︀𝑁
𝑖=1𝑋𝑖 is Pois(𝜆𝑝)-distributed.

Second, we recall that sums of Poisson random variables are themselves Poissons:

Proposition 3.3.14. Fix 𝑁 > 0 and let 𝑋1,𝑋2, . . . ,𝑋𝑁 be iid Pois(𝜆) random variables. Then

𝑋 =
∑︀𝑁
𝑖=1𝑋𝑖 is Pois(𝜆𝑁 )-distributed.

Lastly, we will use the fact that Poisson distributions also have sub-exponential tails.

Proposition 3.3.15 (Poisson tail probability). Let 𝑋 ∼ Pois(𝜆). Then for any 𝑥 > 0, we have

P(|𝑋 −𝜆| ≥ 𝑥) ≤ 2exp
(︃
− 𝑥2

2(𝜆+ 𝑥)

)︃
For a proof, refer to Chapter 2 of [134].

3.4 Structure of Poisson Pedigrees

3.4.1 Model Description

We now describe our simple model for generating a population and its genetic data. The

model is best viewed in two stages. In the first stage, we generate the population as well as

the pedigree topology 𝒫indiv on these individuals, and in the second stage, we generate the
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genetic data given this pedigree structure. Note that the random individual pedigree 𝒫indiv
constructed below is graded, monogamous, and complete.

Part I: Pedigree topology

1. To generate 𝒫indiv, start with 𝑁𝑇 = 𝑁 founding individuals in 𝑉𝑇 and make an

arbitrary maximum matching of these individuals to create a set of mated couples.

For each couple, generate an independent Pois(𝛼) number of children, where 𝛼 > 0 is

a fixed parameter throughout the entire pedigree. These newly generated individuals

form the nodes in 𝑉𝑇−1.

2. Repeat the above process to generate the individuals in 𝑉𝑇−2, . . . ,𝑉0.

Once we have the population and pedigree structure as above, we generate the genetic

data in the following manner.

Part II: Inheritance procedure

1. Each individual 𝑢 in 𝒫indiv has a length-𝐵 string 𝜎𝑢 (𝑢’s gene sequence). The string’s

indices are referred to as blocks.

2. For each founding individual 𝑢 in 𝑉𝑇 and for each block 𝑏 ∈ [𝐵], each 𝜎𝑢(𝑏) is drawn

i.i.d. uniformly from an alphabet Σ. For our model, Σ is an infinite-sized alphabet:

we simply require that each block of each founder has a unique symbol.

3. Every other individual 𝑣 in the population has exactly two parents 𝑓 and 𝑚. Con-

ditioned on 𝜎𝑓 and 𝜎𝑚, independently over [𝐵], the 𝑖th block of 𝑣 copies 𝜎𝑓 (𝑖) with

probability 0.5 and 𝜎𝑚(𝑖) with probability 0.5.

Remark 3.4.1. We adopt the following conventions in the remainder of the paper.

1. We let 𝒫 denote the coupled pedigree induced (see Definition 3.3.4) by the randomly

generated individual pedigree 𝒫indiv constructed in Part I above.
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2. We use the term coupled node, or simply node when the context is clear, to refer to a

vertex of 𝒫 . We use the term individual to refer to an element of 𝒫indiv contained in a

coupled node of 𝒫 . Unless otherwise explicitly noted, parent-child relationships are taken

according to the structure of the coupled pedigree 𝒫 . That is, given 𝑢,𝑣 ∈ 𝒫 we use the

phrase, “𝑢 is a child of 𝑣,” to mean that the couple 𝑢 contains an individual who is an

offspring of the mated couple 𝑣. Finally, we say that coupled nodes 𝑢,𝑣 ∈ 𝒫 are siblings if

𝑢 and 𝑣 contain individuals who are siblings in 𝒫indiv.

3. P denotes the probability measure over the randomly generated pedigree 𝒫 as well as the

random inheritance procedure.

To given an example of our terminology, there are two individuals in a non-extant

coupled node. Each individual is a vertex of 𝒫indiv, and together they form a coupled

node, which is a vertex of 𝒫 . Note that as an artifact of our definitions, extant individuals

are both coupled nodes and individuals in 𝒫 . Moreover extant nodes have exactly one

parent in 𝒫 given by the coupled node containing the individuals comprising that extant

individuals biological parents, as determined by our generative model.

To further emphasize the previous remark, recall that by the discussion in Section 3.3.1,

there is a unique correspondence between coupled pedigrees and individual pedigrees.

Hence, it suffices to give a (partial) reconstruction 𝒫 of 𝒫 to (partially) reconstruct the

original individual pedigree 𝒫indiv. Thus the content of our main result Theorem 3.6.1 and

the remainder of this paper primarily work with the coupled pedigree 𝒫 .

Parameters: For convenience, we collect the various parameters of interest here.

Parameter Description Value

𝑁 Size of founding population

𝐵 Number of blocks for each individual Θ(log(𝑁 ))

𝛼 Expected # of children per couple Θ(1)

𝑇 Number of generations in population 𝜀 log(𝑁 ), 𝜀 =𝑂(1/ log(𝛼))

|Σ| Size of block alphabet ∞
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We set 𝐵 =𝑂(log(𝑁 )) for a sufficiently large constant. The expected number of children per

couple, 𝛼, will be set to a sufficiently large constant that is at least 3. Finally, the number

of generations 𝑇 will be set to 𝜀 log(𝑁 ), where 𝜀 > 0 is sufficiently small with respect to

1/ log(𝛼).

3.4.2 Concentration bounds and upper bounds on inbreeding

In this section we quantify the degree of inbreeding in 𝒫 . To do so, we first describe an

alternative description of our generative model. An equivalent procedure for constructing

the coupled pedigree structure 𝒫 is to (1) sample the generation sizes according to Poisson

random variables with appropriate parameters, (2) pair up individuals in each generation

at random into coupled nodes, and (3) have coupled nodes choose two parent coupled

nodes at random from the previous generation. This is described formally below.

Lemma 3.4.2. The (coupled) pedigree 𝒫 described in Section 3.4.1 can be equivalently viewed

as follows:

1. Let 𝑁𝑇 :=𝑁 be the size of the founding population. For 𝑖 from 𝑇 to 1: Let 𝑁 ′𝑖
𝑑𝑒𝑓
= ⌊𝑁𝑖/2⌋ ·2

be the number of individuals in couples, and sample 𝑁𝑖−1 ∼ Pois(𝛼𝑁 ′𝑖 /2).

2. For each level 𝑖, match the individuals at level 𝑖 randomly, leaving out a single individual

if 𝑁𝑖 was odd.

3. For each level 𝑖, sample a vector v ∈ [𝑁 ′𝑖 /2]𝑁𝑖−1 from a Multinomial distribution with

parameters

(𝑁𝑖−1, (2/𝑁
′
𝑖 , . . . ,2/𝑁

′
𝑖 )).

For any 𝑘 ∈ [𝑁 ′𝑖 /2], the set of coordinates {𝑗 : 𝑣𝑗 = 𝑘} are interpreted as children of the 𝑘𝑡ℎ

couple at level 𝑖 (and are therefore siblings at level 𝑖 − 1).

4. Convert the resulting pedigree on individuals from steps 1–3 to a coupled pedigree 𝒫 .

Proof. The number of vertices at each level in the statement of Lemma 3.4.2 is the same as

the model in Section 3.4.1. This follows by induction. The number of founding vertices 𝑁
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is the same in both models. In the model in Section 3.4.1, the number of individuals at

level 𝑖 − 1 is distributed as
∑︀𝑁 ′𝑖 /2
𝑗=1 𝑋𝑗 , where the 𝑋𝑗 are iid Pois(𝛼) and 𝑁 ′𝑖 is the number of

individuals at level 𝑖 that are matched. The value of this sum is distributed as Pois(𝛼𝑁 ′𝑖 /2)

(due to Proposition 3.3.14), the same as in the statement Lemma 3.4.2.

The random matching in Step 2 of Lemma 3.4.2 is the same as the matching in Section 3.4.1.

The final step in the process above assigns individuals in 𝑉𝑖−1 to parents in 𝑉𝑖 by

sampling a vector v of length 𝑁𝑖−1 with entries in [𝑁 ′𝑖 /2] from a multinomial distribution

and assigning individuals to parents based on these labels. Indeed, if we look at the number

of children of a fixed couple (say, the 𝑗𝑡ℎ couple in 𝑉𝑖), this is distributed as Bin(𝑋,2/𝑁 ′𝑖 ),

where 𝑋 ∼ Pois(𝛼𝑁 ′𝑖 /2). By Poisson thinning (Proposition 3.3.13), this distribution is

simply Pois(𝛼), which is exactly the distribution of the number of children of the 𝑗𝑡ℎ

couple in Section 3.4.1.

Next we use tail bounds on Poisson random variables to show that the sizes of each

level are well-concentrated with high probability, assuming a sufficiently large size of the

initial population. Recall that 𝑁𝑖 denotes the number of individuals in generation 𝑖.

Lemma 3.4.3 (Concentration of generations). Fix 𝛿 such that 0 < 𝛿 < 𝛼/2− 1, and suppose

that the founding population size 𝑁 is at least 𝛼/𝛿 + 1. Then, for some constant 𝐶1 = 𝐶1(𝛿),

with probability at least 1− 𝑇 exp(−𝐶1𝛼𝑁 ) we have that, for all 𝑖 ∈ {0, . . . ,𝑇 − 1}

(𝛼/2− 𝛿)𝑁𝑖+1 ≤𝑁𝑖 ≤ (𝛼/2 + 𝛿) ·𝑁𝑖+1. (3.1)

Remark 3.4.4. An immediate corollary of this result is that

(𝛼/2− 𝛿)𝑖 ·𝑁 ≤𝑁𝑇−𝑖 ≤ (𝛼/2 + 𝛿)𝑖 ·𝑁 (3.2)

for each 𝑖 ≤ 𝑇 with high probability.
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Proof of Lemma 3.4.3. Our goal is to upper bound the right-hand-side of

P[some 𝑁𝑗 fails Eq. (3.1)] ≤
𝑇−1∑︁
𝑖=0

P[𝑁𝑖 fails Eq. (3.1) |𝑁𝑖+1 satisfies Eq. (3.2)]

and so it suffices to show

P[𝑁𝑖 fails Eq. (3.1) |𝑁𝑖+1 satisfies Eq. (3.2)] ≤ 2exp(−Θ(𝛼2(𝑁 − 1)/(𝛼 + 𝛿))).

Consider fixing the number of individuals at level 𝑖 + 1 to be an arbitrary number 𝑁𝑖+1

satisfying Eq. (3.2). We know that the number of individuals at level 𝑖 is distributed as

𝑁𝑖 ∼ Pois(𝛼𝑁 ′𝑖+1/2). By applying the Poisson tail bound Proposition 3.3.15, we see that

P

[︁
|𝑁𝑖 −𝛼𝑁 ′𝑖+1/2| > (𝛿/2)𝑁 ′𝑖+1 |𝑁𝑖+1 satisfies Eq. (3.2)

]︁
(3.3)

< 2exp
(︃
−(𝛼𝑁 ′𝑖+1/2)2

2(𝛼/2 + 𝛿/2)𝑁 ′𝑖+1

)︃
< 2exp

(︃
−𝛼
−𝑁 ′𝑖+1

4(1 + 𝛿)

)︃
(3.4)

We now claim that |𝑁𝑖 −𝛼𝑁𝑖+1/2| > 𝛿𝑁𝑖+1 implies that |𝑁𝑖 −𝛼𝑁 ′𝑖+1/2| > (𝛿/2)𝑁 ′𝑖+1, which

follows from the facts that |𝑁𝑖+1 −𝑁 ′𝑖+1| ≤ 1 and that 𝑁𝑖+1 ≥𝑁 (Eq. (3.2)). Namely, assume

that 𝑁𝑖 > (𝛼/2 + 𝛿)𝑁𝑖+1. Then 𝑁𝑖 > (𝛼/2 + 𝛿/2)𝑁 ′𝑖+1, since 𝑁𝑖+1 ≥𝑁 ′𝑖+1. Now assume instead

that 𝑁𝑖 < (𝛼/2− 𝛿)𝑁𝑖+1. Then

𝑁𝑖 < (𝛼/2− 𝛿)𝑁𝑖+1

≤ (𝛼/2− 𝛿)(𝑁 ′𝑖+1 + 1)

≤ (𝛼/2− 𝛿/2)(𝑁 ′𝑖+1)

where in the last line we use the fact that (𝛿/2)𝑁 ′𝑖+1 ≥ (𝛿/2)(𝑁 − 1) ≥ 𝛼/2.
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Hence, we get that

P[|𝑁𝑖 −𝛼𝑁𝑖+1/2| > 𝛿𝑁𝑖+1 |𝑁𝑖+1 satisfies Eq. (3.2)] ≤ 2exp
(︃
−𝛼

[︃
𝑁 − 1

4(1 + 𝛿)

]︃)︃
where we use the fact that 𝑁𝑖+1 ≥𝑁 since 𝑁𝑖+1 satisfies Eq. (3.2).

Remark 3.4.5 (Dependence on 𝛿). The strategy from this point onwards is to condition on the

event from Eq. (3.1). Since this event fails with probability that is exponentially small in 𝑁 , we

lose only an additive exp(−𝑐𝛿𝛼𝑁 ) probability.

As mentioned in Section 3.2.1, two nodes may have significantly higher amounts of

symbol overlap caused by inbreeding in their ancestral pedigree than would be expected

given their distance in the pedigree. This can cause us to reconstruct an incorrect pedigree

if we attempt to explain the symbol overlap without accounting for inbreeding; for instance,

we may see two nodes and think they are siblings, when in reality they are cousins with

inbreeding in their family tree (see Section 3.2.1 for a detailed example). To formally

connect different patterns of inbreeding with the amount of spurious symbol overlap they

cause, we introduce the notion of collisions in an ancestral pedigree. Roughly speaking,

triples of coupled nodes with relatively few collisions in their ancestral pedigree do not

have many spurious overlaps, which we prove in Section 3.5. We first define collisions and

then bound the number that occur under our probabilistic assumptions in Lemma 3.4.8.

We also give an alternative characterization of collisions in Lemma 3.4.7 that is useful

later.

Definition 3.4.6 (Collisions). Let 𝒫 denote a coupled pedigree. Fix a subset of nodes 𝐴 ⊂ 𝑉𝑘(𝒫 ),

where 𝑘 , 𝑇 . If 𝑘 > 0, we say that this collection has 𝑧 collisions at level 𝑘 + 1 if the set of

parents of 𝐴 in 𝒫 has size 2|𝐴| − 𝑧. If 𝑘 = 0, we say that it has 𝑧 collisions at level 1 if the set of

parents in 𝒫 has size |𝐴| − 𝑧. Write

coll𝑘+1(𝐴) := (# collisions at level 𝑘 + 1 in 𝐴)

Extend the notion of collisions to ancestral subgraphs as follows. If we have nodes 𝑢1, . . . ,𝑢𝐽 ∈
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𝑉𝑘(𝒫 ), the number of collisions between the ancestral subpedigrees anc(𝑢𝑗) for 𝑗 = 1, . . . , 𝐽 is

equal to

coll(𝑢1, . . . ,𝑢𝐽 ) :=
𝑇−𝑘−1∑︁
𝑖=0

coll𝑖+1(anc𝑖(𝑢1)∪ · · · ∪anc𝑖(𝑢𝐽 ))

where anc𝑖(𝑢𝑗) denotes the set of ancestors 𝑖 levels above 𝑢𝑗 .

Lemma 3.4.7 (Ancestral collisions, alternate characterization). Let 𝑢1, . . . ,𝑢𝐽 denote a set of

nodes that are all at the same level. Consider the subpedigree 𝒯 = anc(𝑢1, . . . ,𝑢𝐽 ). Let 𝑘𝑗 denote

the number of nodes in 𝒯 that have outdegree 𝑗 in the subpedigree 𝒯 . Then

coll(𝑢1, . . . ,𝑢𝐽 ) =
∑︁
𝑗≥2

(𝑗 − 1)𝑘𝑗 .

Proof. Let 𝑆 denote a set of nodes at level 𝑖. Let 𝑘𝑖𝑗(𝑆) denote the set of parents of 𝑆 that

have outdegree 𝑗 in the subpedigree anc(𝑆). Let coll𝑖+1(𝑆) denote the number of collisions

that 𝑆 has at level 𝑖 + 1. Then we claim that

coll𝑖+1(𝑆) =
∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆). (3.5)

This is true by induction on the cardinality of 𝑆, as we now demonstrate. We prove this

assuming that 𝑆 is a set of non-extant coupled nodes; the case for extant nodes is extremely

similar. The base case |𝑆 | = 1 follows because the unique node 𝑢 ∈ 𝑆 either has two distinct

parents, in which case there are no collisions and each has outdegree 1, or 𝑢 has a single

parent, in which case the number of collisions is 1 and the parent has outdegree 2. In both

cases Eq. (3.5) holds.

For the inductive step, suppose that Eq. (3.5) is valid for all 𝑆 with |𝑆 | ≤ 𝑠. Now

consider 𝑆 with |𝑆 | = 𝑠+ 1. Choose an arbitrary 𝑢 ∈ 𝑆 and consider 𝑆 ′ = 𝑆∖{𝑢}. Observe that
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by Definition 3.4.6 and induction:

coll𝑖+1(𝑆) = 2|𝑆 | − |𝑝𝑎𝑟(𝑆)|

= 2|𝑆 ′ | − |𝑝𝑎𝑟(𝑆 ′)|+ 2|{𝑢}| − |𝑝𝑎𝑟(𝑢)∖𝑝𝑎𝑟(𝑆 ′)|

= coll(𝑆 ′) + 2− |𝑝𝑎𝑟(𝑢)∖𝑝𝑎𝑟(𝑆 ′)|

=
∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆
′) + 2− |𝑝𝑎𝑟(𝑢)∖𝑝𝑎𝑟(𝑆 ′)|.

Therefore, if 𝑢 has ℓ ∈ {0,1,2} parents contained in 𝑝𝑎𝑟(𝑆 ′), then

coll𝑖+1(𝑆) = ℓ +
∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆
′) =

∑︁
𝑗

(𝑗 − 1)𝑘𝑖𝑗(𝑆),

because each parent of 𝑢 contained in 𝑝𝑎𝑟(𝑆 ′) increases the degree of some node in 𝑆 ′ by 1.

Applying this argument over all levels 𝑖 to the sets ∪𝐽ℓ=1anc𝑖(𝑢ℓ), we see by Defini-

tion 3.4.6 and summing over all levels 𝑖 that Lemma 3.4.7 holds for coupled nodes.

In our model and in light of Lemma 3.4.2, a collision between sets 𝐴 and 𝐵 intuitively

corresponds to a node in 𝐵 “choosing” a parent couple that was already chosen by another

node in 𝐴 ∪ 𝐵. This observation lets us bound the number of collisions between the

ancestors of 3 nodes with high probability.

Lemma 3.4.8 (Exponential tail of collisions). Fix three nodes 𝑢,𝑣,𝑤 ∈ 𝒫 in the same level 𝑘,

and let 𝑐 be a positive integer. Then

P[coll(𝑢,𝑣,𝑤) ≥ 𝑐] =𝑂
(︃

72𝑐 · 22𝑐𝑇

𝑁 𝑐

)︃
(3.6)

Proof. We show that the probability on the left-hand-side of Eq. (3.6) can be upper bounded

by the probability that a binomial random variable with sufficiently small mean is at least

𝑐, from which the result follows.

We assume that each level has at least 𝑁 individuals. This is a high probability event

by Lemma 3.4.3 (which actually describes a much stronger situation). Since we just want
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an upper bound, we condition such an event and this assumption is made without loss of

generality.

Let 𝑆𝑖 := anc𝑖(𝑢)∪ anc𝑖(𝑣)∪ anc𝑖(𝑤). Note that |𝑆𝑖 | ≤ 3 · 2𝑖 , regardless of how many

collisions have happened underneath it. The distribution of coll(anc𝑖(𝑢),anc𝑖(𝑣),anc𝑖(𝑤))

is equal to a sum of at most 3 · 2𝑖+1 Bernoulli random variables, two for each node in 𝑆𝑖 ,

which are indicator random variables that a parent coupled node selected by some node in

𝑢 ∈ 𝑆𝑖 is the same as a parent coupled node previously selected by 𝑣 ∈ 𝑆𝑖 (Lemma 3.4.2).

Furthermore, each of these indicator random variables is 1 with probability at most

3 · 2𝑇+2/𝑁 , even conditioned on the previously set random variables—indeed, there are

only 3 · 2𝑖+1 ≤ 3 · 2𝑇 parents selected in total, so there are only this many nodes that

can be selected from to cause a collision, and there are at least ⌊𝑁/2⌋ ≥ 𝑁/4 coupled

nodes at level 𝑖 + 1. Therefore, the random variable coll(𝑆𝑖) is stochastically dominated by

Bin(3 · 2𝑖+1,3 · 2𝑇+2/𝑁 ). Let 𝑋𝑖 ∼ Bin(3 · 2𝑖+1,3 · 2𝑇+2/𝑁 ). Then we get that

P[coll(𝑢,𝑣,𝑤) ≥ 𝑐] = P[
∑︁
𝑖

coll𝑘+𝑖(𝑆𝑖) ≥ 𝑐]

≤ P[
𝑇−1∑︁
𝑖=𝑘

𝑋𝑖 ≥ 𝑐]

≤ P[𝑋 ≥ 𝑐] (3.7)

where 𝑋 ∼ Bin(3 ·2𝑇+1,3 ·2𝑇+2/𝑁 ). By bounding the binomial tail using Eq. (1.1) and noting

that we take 𝑁 > 144 · 22𝑇 , (Eq. (3.7)) can be bounded by

P[𝑋 ≥ 𝑐] ≤
3·2𝑇+1∑︁
𝑖=𝑐

(︃
3 · 2𝑇+1

𝑖

)︃(︃
3 · 2𝑇+2

𝑁

)︃𝑖

≤
3·2𝑇+1∑︁
𝑖=𝑐

(3 · 2𝑇+1)𝑖
(︃

3 · 2𝑇+2

𝑁

)︃𝑖
≤ 2 · 72𝑐 · 2

2𝑐𝑇

𝑁 𝑐
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In particular, by union bounding over all triples of nodes in the coupled pedigree 𝒫 ,

we get the following corollary. Note that there are most (𝛼/2+𝛿)𝑇 ·𝑁 nodes in the pedigree

when we condition on the high-probability event from Lemma 3.4.3.

Corollary 3.4.9.

P[∃𝑢,𝑣,𝑤 : coll(𝑢,𝑣,𝑤) ≥ 4] =𝑂
(︃

(𝛼/2 + 𝛿)3𝑇 28𝑇

𝑁

)︃
Since we take the ratio 𝑇 / log(𝑁 ) to be sufficiently small (Section 3.4.1), the probability

of the above event is negligible. Hence, we can assume without loss of generality for the

rest of the document that the number of collisions in the ancestral trees of any three nodes

is at most 3.

Additionally, by applying Lemma 3.4.8 to a single node (repeated three times) and ap-

plying linearity of expectation, we can bound the probability that there are many coupled

nodes 𝑢 with collisions in their ancestral pedigrees anc(𝑢) using Markov’s inequality. We

state this as a corollary.

Corollary 3.4.10. For any 𝐶 > 0,

P

[︂⃒⃒⃒⃒
{𝑢 : coll(𝑢) ≥ 1}

⃒⃒⃒⃒
≥ 𝐶(2𝛼 + 4𝛿)𝑇

]︂
≤ 72/𝐶

as long as 𝑁 is sufficiently large.

Definition 3.4.11 (𝑑-Richness). Fix a pedigree 𝒫 , and let 𝑑 ≥ 3 be an integer. All extant nodes

in 𝒫 are 𝑑-rich. For all 𝑘 > 0, a level 𝑘-node is 𝑑-rich if it has at least 𝑑 children that are 𝑑-rich.

Lemma 3.4.12 (Most nodes are 𝑑-rich). Fix a constant 0 < 𝜏 < 1, and let 𝛿 > 0 as in

Lemma 3.4.3. As long as 𝑁 and 𝛼 are sufficiently large, there exists a constant 𝐶2 = 𝐶2(𝜏,𝛿)

such that with probability 1− 𝑇 exp(−𝐶2𝛼𝑁 ), at least (1− 𝜏) fraction of level-𝑘 coupled nodes

in 𝒫 are 𝑑-rich for all 𝑘.
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Proof of Lemma 3.4.12. Let the term “𝑑-poor node” refer to coupled nodes that are not

𝑑-rich. Let 𝑀𝑘 denote the number of coupled nodes at level 𝑘 in 𝒫 . Our goal is to prove

an upper bound on the event that there are at least 𝜏𝑀𝑘+1 𝑑-poor nodes at level 𝑘 + 1,

conditioned on the event that there are at least (1− 𝜏)𝑀𝑘 𝑑-rich nodes at level 𝑘.

Let 𝑅𝑘 denote the event that there are at least (1− 𝜏)𝑀𝑘 𝑑-rich nodes at level 𝑘. Let 𝐸

denote the event (𝛼/2−𝛿)𝑀𝑘+1 ≤𝑀𝑘 ≤ (𝛼/2+𝛿)𝑀𝑘+1 for all 𝑘, which occurs with probability

1−exp(−𝐶1𝛼𝑁 ) by Lemma 3.4.3. We also condition on the sizes of𝑀0, . . . ,𝑀𝑇 , abbreviating

this conditioning as 𝑀0:𝑇 .

Let 𝑆 be an arbitrary subset of nodes at level 𝑘 + 1 of size 𝜏𝑀𝑘+1 + 1, and consider

the event where 𝑆 only consists of 𝑑-poor nodes. This implies that the number of 𝑑-rich

children of 𝑆 is at most (𝑑 − 1)(𝜏𝑀𝑘+1 + 1). Let 𝑋𝑖 be iid Bernoulli RVs, which represent

indicators for the event where the 𝑖th 𝑑-rich child chooses at least one of its parents to be

in 𝑆. Note that P(𝑋𝑖 = 1) =
(︂
1−

(︁
1− |𝑆 |

𝑀𝑘+1

)︁2
)︂
> |𝑆 |
𝑀𝑘+1

.

P(𝑆 only has 𝑑-poor nodes | 𝑅𝑘 ,𝐸,𝑀0:𝑇 )

≤ P

⎡⎢⎢⎢⎢⎢⎢⎣
(1−𝜏)𝑀𝑘∑︁
𝑖=1

𝑋𝑖 ≤ (𝑑 − 1)|𝑆 |
⃒⃒⃒⃒⃒
⃒𝑀0:𝑇

⎤⎥⎥⎥⎥⎥⎥⎦
≤ exp

⎡⎢⎢⎢⎢⎣−(1− 𝜏)𝑀𝑘 |𝑆 |
2𝑀𝑘+1

(︃
1− (𝑑 − 1)𝑀𝑘+1

(1− 𝜏)𝑀𝑘

)︃2⎤⎥⎥⎥⎥⎦ (Chernoff–Hoeffding Bound)

Observe that there are
(︀𝑀𝑘+1
|𝑆 |

)︀
≤

(︁
𝑒
𝜏

)︁𝜏𝑀𝑘+1+1
many choices for 𝑆 (Eq. (1.1)). To apply

a union bound, it suffices for 𝛼 to be large enough so that (1−𝜏)𝑀𝑘
𝑀𝑘+1

(︁
1− (𝑑−1)𝑀𝑘+1

(1−𝜏)𝑀𝑘

)︁2
≈ (1 −

𝜏)𝛼(1− 𝑑−1
(1−𝜏)𝛼 )2 looks linear in 𝛼. In that case, we obtain a bound of the form

P(at least 𝜏𝑀𝑘+1 𝑑-poor nodes at level 𝑘 + 1 | 𝑅𝑘 ,𝐸,𝑀0:𝑇 )

≤ exp(−𝐶𝑀𝑘+1𝛼) .
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Therefore, we may write

P(at least (1− 𝜏) fraction of 𝑑-rich at all levels)

≥ (1− 𝑒−𝐶1𝛼𝑁 )
𝑇∏︁
𝑘=1

(1− exp(−𝐶𝑀𝑘+1𝛼))

≥ 1− exp(−𝐶1𝛼𝑁 )−
𝑇−1∑︁
𝑘=0

exp(−𝐶𝑁 (𝛼/2− 𝛿)𝑘𝛼)

≥ 1− 𝑇 exp(−𝐶2𝛼𝑁 )

for an appropriate constant 𝐶2 depending only on 𝜏 and 𝛿.

Lemma 3.4.13 (Cliques have unique parents). Let 𝐺𝑘 denote the siblinghood hypergraph at

level 𝑘. Let 𝛿 > 0 be as in Lemma 3.4.3. For a constant 𝐶3 = 𝐶3(𝛿), with probability at least

1− 1
𝑁 𝑒

𝐶3𝑇 log𝛼, for all hypercliques 𝒞 ⊂ 𝐺𝑘 with at least one hyperedge, there is a unique node at

level 𝑘 + 1 that is a parent of every node in 𝒞. We refer this node as the parent of 𝒞.

Proof. By Proposition 3.3.12, a hyperclique corresponds to a set of coupled nodes that

contain a set of mutual siblings, where each couple has at least one of the siblings in it.

This establishes that there is a coupled node at level 𝑘 + 1 that is at least one parent of

every node in 𝒞. In the case where 𝒞 is a hyperclique of extant nodes, we are done: every

node in 𝒞 is an individual and has exactly one parent coupled node.

If 𝒞 is at a higher level, note that there can be at most two parents for 𝒞, as defined

above. The reason is that any individual has exactly one parent couple, and since there are

only two individuals in a couple, there cannot be three parent couples each with one child

in each couple in 𝒞.

Next we show that if there are two coupled nodes, both of which are parents of 𝒞, then

there must be many collisions among the ancestors of 𝒞, and therefore we can rule this out

as a low-probability event. Since 𝒞 has at least one hyperedge, we know that |𝒞| ≥ 3. This

means that any arbitrary set of three nodes from 𝒞 must have at least 6− 2 = 4 collisions
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by Definition 3.4.6—but Corollary 3.4.9 shows that with probability 𝑂
(︂

(𝛼/2+𝛿)3𝑇 28𝑇

𝑁

)︂
, this

does not occur anywhere in the pedigree.

Lemma 3.4.14 (Disjointness of maximal cliques). Let 𝐺𝑘 denote the siblinghood hypergraph

at level 𝑘. For 𝑘 = 0, each extant node is contained in a unique maximal clique, and moreover,

the maximal cliques in 𝐺0 are vertex disjoint (and thus, also edge-disjoint). For 𝑘 > 0, each node

is contained in at most two maximal cliques. Moreover, with probability 1 − 1
𝑁 𝑒

𝐶3𝑇 log𝛼, the

maximal cliques in 𝐺𝑘 are edge-disjoint.

Proof. Note that maximal cliques in the siblinghood hypergraph correspond to maximal

sets of siblings. The claim for extant nodes is relatively trivial - extants are individuals,

and so the maximal sets of siblings partition the set of extant nodes.

For 𝑘 > 0, since each individual in a coupled node has one pair of parents, a coupled

node can have at most two parents. Thus it can be part of at most two sets of siblings.

Hence, it is part of at most two maximal cliques.

Finally, we need to establish that the maximal cliques in𝐺𝑘 are edge-disjoint. To do this,

it suffices to show that the intersection between any two maximal cliques is less than 3, so

there can be no hyper-edge. Indeed, if three nodes that are simultaneously in two maximal

cliques, these three nodes would themselves form a clique with two different parents in

level 𝑘 + 1, which occurs with probability at most 1− 1
𝑁 𝑒

𝐶3𝑇 log𝛼 by Lemma 3.4.13.

3.4.3 The joint LCA and its uniqueness

The next two lemmas are crucial in Section 3.6 to show that we can accurately collect

symbols for accurately reconstructed coupled nodes. Here we define the joint lowest

common ancestor, which is a special type of LCA for a triple of coupled nodes.

Definition 3.4.15. Let 𝑢,𝑣,𝑤 denote coupled nodes in 𝒫 . We say that 𝑢,𝑣,𝑤 have a joint LCA

𝑧 if it holds that 𝑧 ∈ LCA(𝑢,𝑣,𝑤) and there exist distinct children 𝑐𝑢 , 𝑐𝑣 , 𝑐𝑤 of 𝑧 so that for all

𝑥 ∈ {𝑢,𝑣,𝑤}, 𝑐𝑥 is an ancestor of 𝑥.
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𝑧

𝑧′

𝑢 𝑣 𝑤

Figure 3-5: “Proof-by-picture” of Lemma 3.4.17.

Lemma 3.4.16 (Joint LCA is unique). Suppose that each triple of coupled nodes in 𝒫 has at

most 3 collisions. Further suppose that 𝑢,𝑣,𝑤 have a joint LCA 𝑧 ∈ LCA(𝑢,𝑣,𝑤). Then 𝑧 is the

unique LCA of 𝑢,𝑣,𝑤.

Proof. For the sake of contradiction, suppose that 𝑢,𝑣,𝑤 have another LCA 𝑧′ , 𝑧. By the

definition of LCA, 𝑧′ is neither an ancestor nor a descendant of 𝑧.

If 𝑧′ is a joint LCA of 𝑢,𝑣,𝑤, then both 𝑧 and 𝑧′ have outdegree 3 in anc(𝑢,𝑣,𝑤), which

by Lemma 3.4.7 implies that anc(𝑢,𝑣,𝑤) has at least 2× (3− 1) = 4 collisions.

If 𝑧′ is not a joint LCA, then 𝑧′ has outdegree 2 in anc(𝑢,𝑣,𝑤). Moreover, there exists a

unique lowest node 𝑦 ∈ desc(𝑧′)∩ anc(𝑢,𝑣,𝑤) that is an ancestor of precisely two nodes

in {𝑢,𝑣,𝑤}. In particular, 𝑦 has outdegree at least 2 in anc(𝑢,𝑣,𝑤). Observe that the

nodes 𝑦,𝑧,𝑧′ are all distinct. Hence by Lemma 3.4.7, the number of collisions is at least

2× (2− 1) + 1× (3− 1) = 4.

In either case, anc(𝑢,𝑣,𝑤) has at least 4 collisions, which is a contradiction.

Lemma 3.4.17 (Inheritance paths go through LCA). Suppose that each triple of coupled nodes

in 𝒫 has at most 3 collisions. Further suppose that 𝑢,𝑣,𝑤 ∈ 𝒫 have an LCA 𝑧. Let 𝑧′ denote a

strict ancestor of 𝑧. Then for some 𝑥 ∈ {𝑢,𝑣,𝑤}, all paths from 𝑧′ to 𝑥 in 𝒫 pass through 𝑧.

Proof. To draw a contradiction, suppose that for all 𝑥 ∈ {𝑢,𝑣,𝑤} that 𝑧′ has a path to 𝑥 that

does not go through 𝑧. Suppose further, without loss of generality, that 𝑧′ is the lowest

node in 𝒫 that is an ancestor of 𝑧 and has this property.
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Let 𝒯 denote a spanning tree on desc(𝑧)∩ anc(𝑢,𝑣,𝑤) (red edges in Fig. 3-5). Also

select a spanning tree 𝒯 ′ on the union of all paths from 𝑧′ to 𝑢,𝑣,𝑤 that do not go through

𝑧 (blue edges in Fig. 3-5). Observe that 𝑧′ has outdegree at least 2 in 𝒯 ′. Since 𝑧′ also has

a path to 𝑧, then 𝑧′ has outdegree at least 3 in anc(𝑢,𝑣,𝑤). Moreover, 𝒯 has 2 collisions.

Since 𝑧′ is not contained in 𝒯 , we conclude by Lemma 3.4.7 that anc(𝑢,𝑣,𝑤) has at least

2 + 1× (3−1) = 4 collisions. The first terms accounts for the collisions in 𝒯 , and the second

applies Lemma 3.4.7 to 𝑧′. This is a contradiction.

Note that by Corollary 3.4.9, Lemmas 3.4.16 and 3.4.17 hold for all triples 𝑢,𝑣,𝑤 ∈ 𝒫

with high probability.

3.5 Lemmas that enable reconstruction

In this section, we prove bounds on “overlap statistics” previously explored in Section 3.2.

Since we now have switched to talking about coupled pedigrees, we re-define its notion

now.

Definition 3.5.1 (Diploid blocks). Let 𝒫indiv induce the coupled pedigree 𝒫 . Given (haploid)

gene sequences (𝜎𝑢)𝑢∈𝑉 (𝒫indiv), we associate with each non-extant couple 𝑣 = {𝑣1,𝑣2} node a

diploid sequence 𝜎𝑣 defined in terms of each block 𝑏 as a multiset 𝜎𝑣(𝑏) := 𝜎𝑣1
(𝑏)∪𝜎𝑣2

(𝑏). Each

extant node’s block is thought of as a singleton set.

Definition 3.5.2 (Diploid overlap). Three diploid sequences 𝜎,𝜎 ′,𝜎 ′′ overlap in block 𝑏 if

𝜎 (𝑏)∩ 𝜎 ′(𝑏)∩ 𝜎 ′′(𝑏) , ∅.

The term fraction of mutual overlaps between coupled nodes 𝑢,𝑣,𝑤 in refers to the statistic

# overlapping blocks of 𝜎𝑢 ,𝜎𝑣 ,𝜎𝑤
𝐵

=
|{𝑏 ∈ [𝐵] : 𝜎𝑢(𝑏)∩ 𝜎𝑣(𝑏)∩ 𝜎𝑤(𝑏) , ∅}|

𝐵
.
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3.5.1 Distinguishing siblings from non-siblings: Coincidence proba-

bility bounds

In this section, we establish the following high-probability separation condition for triples

of coupled nodes at the same level:

• if 𝑢,𝑣,𝑤 are mutually siblings, they overlap in at least 1/4 fraction of blocks.

• if 𝑢,𝑣,𝑤 are not mutually siblings, they overlap in at most 3/16 fraction of blocks.

In order to reconstruct the pedigree, we perform inference on the underlying pedigree

structure from the symbols at the extant level. The key step of our reconstruction algorithm

is to infer which triples of nodes are mutually siblings based on the overlap between

their reconstructed symbols. The conditions stated above justify using the number of

overlapping symbols in triples as a statistic for determining siblinghood. The first fact

(Lemma 3.5.3) is easy to prove. In contrast, the second fact (Lemma 3.5.4) is rather

non-trivial; we prove it using casework.

Lemma 3.5.3 (Symbol overlap in siblings). With probability 1−𝑂(𝛼3𝑇𝑁 3 exp(−𝛾2𝐵)), the

fraction of mutual overlap in symbols between any triple of coupled nodes 𝑢, 𝑣,𝑤 ∈ 𝒫 that are

mutually siblings is at least 1
4 −𝛾 for any arbitrarily small 𝛾 > 0.

Proof. It suffices to consider the overlap of the individuals 𝑢1,𝑣1,𝑤1 in 𝑢,𝑣,𝑤, respectively,

that are siblings, i.e., 𝑢1,𝑣1,𝑤1 have a common parent in 𝒫indiv. We claim that the expected

fraction of overlap for 𝑢1,𝑣1,𝑤1 is at least 1/4. Indeed, any individual symbol at the parent

(couple) node survives to all three children with probability 1/8, and there are 2𝐵 symbols

at the parent (one per block per member of the couple). The Chernoff–Hoeffding bound

gives that for any fixed triple (𝑢,𝑣,𝑤) of siblings, the probability that it has less than

1/4−𝛾 mutual overlap is at most exp(−𝛾2𝐵). To be explicit, let 𝑋𝑖 denote the indicator of

an overlap between 𝑢,𝑣,𝑤 in block 𝑏.
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P(average overlap < 1/4−𝛾) = P

⎛⎜⎜⎜⎜⎜⎝1
𝐵

𝐵∑︁
𝑖=1

𝑋𝑖 < 1/4 +𝛾

⎞⎟⎟⎟⎟⎟⎠
= P

⎛⎜⎜⎜⎜⎜⎝1
𝐵

𝐵∑︁
𝑖=1

(𝑋𝑖 −E[𝑋𝑖]) < 1/4−E[𝑋1] +𝛾

⎞⎟⎟⎟⎟⎟⎠
≤ P

⎛⎜⎜⎜⎜⎜⎝1
𝐵

𝐵∑︁
𝑖=1

(𝑋𝑖 −E[𝑋𝑖]) < −𝛾

⎞⎟⎟⎟⎟⎟⎠
≤ 2exp(−2𝐵𝛾2).

In the second line we use that 𝑋𝑖 are i.i.d., in the third line we use that the expectation is at

least 1/4, and to finish we apply Chernoff–Hoeffding. A union bound over all 𝑂((𝛼𝑇𝑁 )3)

triples of siblings yields the result.

Lemma 3.5.4 (Symbol overlap in non-siblings). Fix 𝛾 > 0. With probability 1−𝑂(1/𝑁𝑇 )−

𝑂(𝛼3𝑇𝑁 3 exp(−𝛾2𝐵)), every triple of coupled nodes 𝑢, 𝑣, and 𝑤 that are at the same level but

are not mutual siblings share overlap in less than 3
16 +𝛾 fraction of their symbols.

Proof of Lemma 3.5.4

Remark 3.5.5. In this proof, we condition on the high probability event from Corollary 3.4.9

that all triples 𝑢,𝑣,𝑤 of coupled nodes have at most 3 collisions in their ancestral subpedigree

anc(𝑢,𝑣,𝑤).

It is clear that if 𝑢,𝑣,𝑤 are completely unrelated, then their mutual overlap is zero,

since we assume an infinite alphabet. If 𝑢,𝑣,𝑤 have a common ancestor, then typically

their ancestral pedigree has two collisions, and all triples have at most three collisions

in their ancestral pedigree by our conditioning in Remark 3.5.5. We refer to triples with

three collisions as being inbred and think of the extra collision as the site of inbreeding, a

notion that we later formalize in this section.

Recall the definition of tree subpedigree (Definition 3.3.9), which we refer to simply as

a tree in what follows. Also recall that an edge of multiplicity 2 in a pedigree is considered

207



to be an undirected cycle of length 2. Thus, a tree subpedigree consists only of simple

(multiplicity 1) edges. Our strategy for proving Lemma 3.5.4 follows the recipe below for

casework.

1. 𝑢,𝑣,𝑤 have exactly two LCAs, and the ancestral pedigree of 𝑢,𝑣,𝑤 is a tree.

2. 𝑢,𝑣,𝑤 have exactly one LCA, and the LCA has a cycle above it.

3. 𝑢,𝑣,𝑤 have exactly one LCA, and the ancestral pedigree of 𝑢,𝑣,𝑤 is a tree.

4. 𝑢,𝑣,𝑤 have exactly one LCA, and the ancestral pedigree of 𝑢,𝑣,𝑤 contains a cycle

that is not completely above the LCA.

We now assert that the above cases cover all possibilities; this is proven in the next two

claims.

Claim 3.5.6. For 𝑢, 𝑣, and𝑤 to have a single LCA, their ancestors must have at least 2 collisions.

Proof. All three nodes need a common ancestor, which means there are at least 2 collisions

are present in anc(𝑢,𝑣,𝑤).

Claim 3.5.7. The nodes 𝑢, 𝑣, and 𝑤 have at most two LCAs, with two LCAs only if anc(𝑢,𝑣,𝑤)

has three collisions. Furthermore, if there are two LCAs, then anc(𝑢,𝑣,𝑤) is a tree pedigree.

Proof. By the previous claim, creating a single LCA for three nodes requires 2 collisions

in anc(𝑢,𝑣,𝑤). By definition, one LCA cannot be an ancestor of another LCA. This means

there must be at least one more collision in anc(𝑢,𝑣,𝑤) to create the second LCA, bringing

the total number of collisions required in anc(𝑢,𝑣,𝑤) to three. This immediately yields

the final part of the claim by Remark 3.5.5.

To establish that there are at most two LCAs, suppose we add a third LCA. Then by

the same argument, this LCA cannot be an ancestor of either of the two other LCAs, and

so there must be another collision to explain it. This leads to four collisions among the

ancestors, which we have ruled out.
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𝑧′

𝑧

𝑝 𝑞

𝑢 𝑣 𝑤

Figure 3-6: The topologies of Lemma 3.5.8 with two LCAs. Others are obtained by swapping
the roles of 𝑢,𝑣,𝑤.

We now upper bound the expected overlap between 𝑢, 𝑣 and 𝑤 by doing the above

casework on the structure of their ancestral pedigrees. We simply upper bound the

expected overlap, relying on the independence of inheritance in the different blocks so

that we can apply a Chernoff–Hoeffding bound.

Lemma 3.5.8 (Case 1: exactly two LCAs). Suppose that 𝑢, 𝑣, and 𝑤 have exactly two LCAs.

Then the expected fraction of mutual overlap is at most 1/8.

Proof. Fig. 3-6 illustrates the topology of interest. First we note that neither of the LCAs

can have repeated symbols, since their ancestral pedigrees contain no collisions. Consider

the ancestral pedigree from 𝑢, 𝑣, and 𝑤 up to any one particular LCA, noting that this

pedigree is a tree by Claim 3.5.7. Any configuration containing 𝑢, 𝑣, 𝑤 and their ancestors

leading up to that LCA has at least 5 edges, since 𝑢,𝑣,𝑤 are not mutual siblings. Therefore,

the probability that a single symbol propagates from that LCA to all of 𝑢, 𝑣, and 𝑤 is

≤ (1/2)5 = 1/32, which yields an expected 1/16 fraction of overlap since there are 2|𝐵|

symbols at the LCA (since it is a coupled node). Since there are two such LCAs, the

expectation is at most 1/8.

In the remaining cases, we assume there is exactly one LCA. Note that any common

symbols across 𝑢, 𝑣, and 𝑤 must be present in this LCA—if 𝑢, 𝑣, and 𝑤 inherit a symbol

that is not present in this LCA, then by tracing their paths of inheritance for the symbol

we can find another LCA. However, this does not guarantee that all common symbols in 𝑢,
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𝑣, and 𝑤 can be traced back to inheritance from the LCA— if there is inbreeding, some

nodes in {𝑢,𝑣,𝑤} can potentially inherit a symbol via an ancestor of the LCA through a

path does not go through the LCA, while the rest inherit it from the LCA.

Lemma 3.5.9 (Case 2: one LCA with cycle above). Suppose that 𝑢, 𝑣, and 𝑤 have exactly

one LCA 𝑧. Furthermore, this LCA has at least one collision in its ancestral pedigree. Then the

fraction of mutual overlap is at most 1/8 in expectation.

Proof. We know that 𝑢, 𝑣, and 𝑤, must have at least two distinct parents between them

that are connected to 𝑧 (else 𝑧 would be their parent). This means there are at least two

edges in the graph between 𝑧 and the parents of 𝑢, 𝑣, and 𝑤, and at least three edges

between 𝑢, 𝑣, and 𝑤 and their respective parents.

Since we know there are at most three collisions among the ancestors of 𝑢, 𝑣, and

𝑤, there can be only one collision in the ancestral pedigree of 𝑧, and the presence of

this collision means there are no other collisions in anc(𝑢,𝑣,𝑤). Therefore, each of the

parent couples of 𝑢, 𝑣, and 𝑤 have an individual that is unrelated to 𝑧, and so there are

no repeated symbols within any of the parent couples. So even if the parents were to get

100% overlap in the blocks due to inheritance from 𝑧, it holds that 𝑢, 𝑣, and 𝑤 inherit at

most 1/8 fraction of these blocks on expectation.

Finally, all common symbols between 𝑢, 𝑣, and 𝑤 must have been inherited from 𝑧— if

a common symbol was instead inherited by some 𝑥 ∈ {𝑢,𝑣,𝑤} from some ancestor of 𝑧, this

would create a fourth collision in anc(𝑢,𝑣,𝑤).

Lemma 3.5.10 (Case 3: one LCA and anc(𝑢,𝑣,𝑤) is a tree). Suppose 𝑢, 𝑣, and 𝑤 have exactly

one LCA and anc(𝑢,𝑣,𝑤) is a tree. Then the fraction of mutual overlap is at most 1/16 in

expectation.

Proof. The lack of any cycles in anc(𝑢,𝑣,𝑤) means that all inheritance of common symbols

comes from the lone LCA 𝑧. Any such union of paths from 𝑧 to 𝑢, 𝑣 and 𝑤 forms a directed

tree with at least five edges; see Fig. 3-7. In addition, 𝑧 has two distinct symbols in every
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𝑧

𝑝 𝑞

𝑢 𝑣 𝑤

𝑧

𝑝 𝑞 𝑟

𝑢 𝑣 𝑤

Figure 3-7: Exhaustive list of topologies from Lemma 3.5.10, up to re-labelling of 𝑢,𝑣,𝑤. Each
edge represents a path of length > 1.

block. Therefore, for any particular symbol the probability that all three of 𝑢,𝑣,𝑤 inherit

it is ≤ (1/2)5 = 1/32, which yields an expected fraction of at most 1/16 overlapping blocks.

The final case is the most complicated one to analyze.

Lemma 3.5.11 (Case 4: one LCA with cycle not completely above). Suppose 𝑢, 𝑣, and

𝑤 have exactly one LCA and anc(𝑢,𝑣,𝑤) contains a cycle that does not lie completely above

𝑧 = LCA(𝑢,𝑣,𝑤). Then the fraction of mutual overlap is at most 3/16 in expectation.

As an aid in proving Lemma 3.5.11, it is helpful to first identify the “most recent”

inbred node. We make this notion precise now.

Definition 3.5.12 (Witness). We call a node 𝑔 ∈ anc(𝑢,𝑣,𝑤) a witness to inbreeding or

simply a witness if 𝑔 is the lowest node in anc(𝑢,𝑣,𝑤) that is part of an undirected cycle.

Lemma 3.5.13 (Unique witness). Under the conditions of Lemma 3.5.11, there exists a unique

witness in anc(𝑢,𝑣,𝑤). Moreover, this witness lies strictly below the LCA 𝑧.

Proof. We know that 𝒯 := anc(𝑢,𝑣,𝑤) is not a tree, so there exists a cycle in 𝒯 . We show

that there can only be one cycle. Suppose that there exist two cycles 𝒞,𝒞′ in 𝒯 . Then we

claim that coll(𝑢,𝑣,𝑤) ≥ 4.

Consider a spanning tree 𝒯 ′ of 𝒯 . Then 𝒯 ′ has two collisions. Moreover, 𝒯 ′∪𝒞 contains

a single cycle, so we conclude that there exists a node in 𝒯 ′ whose outdegree is increased by
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one upon adding the edges from 𝒞 to 𝒯 ′ (Otherwise, 𝒯 ′∪𝒞 would still be a tree). Therefore,

by Lemma 3.4.7, 𝒯 ′ ∪𝒞 has three collisions. By similar reasoning and using that 𝒞 , 𝒞′, we

conclude that 𝒯 ′ ∪𝒞 ∪𝒞′ has 4 collisions. Since 𝒯 ′ ∪𝒞 ∪𝒞′ ⊂ 𝒯 , we conclude that 𝒯 has at

least 4 collisions. But under our conditioning, no subpedigree has 4 or more collisions. It

follows that in Lemma 3.5.11 there is exactly one cycle in 𝒯 , and thus, exactly one witness.

To prove the final statement, note that if the witness is located above 𝑧 in anc(𝑢,𝑣,𝑤),

then the cycle lies completely above 𝑧.

Proof of Lemma 3.5.11. Consider 𝑢,𝑣,𝑤 and the subpedigree 𝒯 = anc(𝑢,𝑣,𝑤) consisting of

the ancestors of 𝑢,𝑣,𝑤. Recall that 𝑧 is the unique LCA of 𝑢,𝑣,𝑤. By Lemma 3.5.13, there

is a unique witness 𝑔 ∈ 𝒯 , which is the lowest node in the unique cycle occurring in 𝒯 .

Subcase 1: LCA(𝑢,𝑣) = LCA(𝑣,𝑤) = LCA(𝑢,𝑤) = LCA(𝑢,𝑣,𝑤).

Without further loss of generality, suppose that the witness 𝑔 lies along the path from

𝑢 to 𝑧. Then it follows that there is a unique path from 𝑣 to 𝑧 in 𝒯 . Otherwise, there

would exist two cycles in 𝒯 , which is a contradiction as this would lead to 4 collisions in

𝒯 . Similarly, there is a unique path from 𝑤 to 𝑧 in 𝒯 . Moreover, anc(𝑧) is a tree. It follows

that the subpedigree anc(𝑣,𝑤) of the ancestors of 𝑣 and 𝑤 is a tree. Observe that 𝑧 is at

least two levels above 𝑣,𝑤, and by the topology of this subcase, there are at least 4 edges in

the tree subpedigree from 𝑧 to 𝑣 and 𝑤. This implies that the expected overlap between 𝑣

and 𝑤 is at most 2 · (1/2)4 = 1/8. Thus the expected overlap between 𝑢,𝑣,𝑤 is at most the

expected overlap between 𝑢 and 𝑣, which is bounded by 1/8.

Subcase 2: Without loss of generality, LCA(𝑢,𝑣) , LCA(𝑢,𝑣,𝑤).

Let 𝑝 = LCA(𝑢,𝑣). Either 𝑔 is on the branch that leads to 𝑢 and 𝑣, or it is on the branch

that leads to 𝑤. First, suppose that 𝑔 is on the branch that leads to 𝑢 and 𝑣. Then we may

further assume 𝑔 is on the path from 𝑧 to 𝑝. For if, say, 𝑔 is on the path from 𝑝 to 𝑢, then

anc(𝑣,𝑤) is a tree, in which case we can argue as in Subcase 1 that the mutual expected

overlap between 𝑢,𝑣,𝑤 is at most 1/8.

Therefore, it suffices to consider the cases 𝑔 is on the path from 𝑧 to 𝑝 or 𝑔 is on the path

from 𝑧 to 𝑤 (Fig. 3-8). In the first case, the descendants of 𝑔 form a tree with at least two
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𝑧 : {𝑥,𝑦}

𝑔

𝑝

𝑢 𝑣

𝑞

𝑤

𝑥

𝑥
𝑧 : {𝑥,𝑦}

𝑔

𝑝

𝑢 𝑣 𝑤

𝑥
𝑥

Figure 3-8: Example of structures being analyzed in the proof of Lemma 3.5.11, Subcase 2. Here
{𝑥,𝑦} depict the symbols of the LCA 𝑧 in a specific block. The red edges delineate the inheritance
events (possibly occurring simultaneously) of a common symbol 𝑥.

edges. Moreover, there is a unique node 𝑞 at the same level as 𝑔 in 𝒯 , and this individual

is located on the path from 𝑧 to 𝑤. Let 𝜎 (𝑧) = {𝑥,𝑦} denote the (distinct) symbols of 𝑧 in a

given block. By these facts, symmetry, and conditional independence of inheritance,

P[𝜎 (𝑢)∩ 𝜎 (𝑣)∩ 𝜎 (𝑤) , ∅]

≤ 2P[𝜎 (𝑔) = {𝑥,𝑥}, 𝑥 ∈ 𝜎 (𝑢)∩ 𝜎 (𝑣)]P[𝑥 ∈ 𝜎 (𝑞),𝑥 ∈ 𝜎 (𝑤)]

+ 2P[𝜎 (𝑔) = {𝑥,𝑦},𝑥 ∈ 𝜎 (𝑢)∩ 𝜎 (𝑣)]P[𝑥 ∈ 𝜎 (𝑞),𝑥 ∈ 𝜎 (𝑤)]

≤ 2×
(︂1
4
× 1

)︂
×
(︂1
2
× 1

2

)︂
+ 2×

(︂1
2
× 1

4

)︂
×
(︂1
2
× 1

2

)︂
=

3
16
.

The second line includes a factor of 2 to account for either 𝑥 or 𝑦 being passed down to

𝑢,𝑣,𝑤. The terms in the third line are ordered to correspond to the events in the two lines

above. In particular, we have by conditional independence of inheritance that

P[𝜎 (𝑔) = {𝑥,𝑥}] ≤ 1/4
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because there are at most 2 paths from 𝑧 to 𝑔, and each has probability at most 1/2 of

passing down 𝑥. The bound

P[𝜎 (𝑔) = {𝑥,𝑦}] ≤ 1/2

holds similarly.

Now suppose that 𝑔 is on the path from 𝑧 to 𝑤. Then

P[𝜎 (𝑢)∩ 𝜎 (𝑣)∩ 𝜎 (𝑤) , ∅] ≤ 2P[𝑥 ∈ 𝜎 (𝑢)∩ 𝜎 (𝑣)]P[𝑥 ∈ 𝜎 (𝑤)]

≤ 2 · 1
8
· 3

4
=

3
16
.

Above, we used the fact that tree pedigree from 𝑧 to 𝑢,𝑣 has at least 3 edges. We also

used the fact

P[𝑥 ∈ 𝜎 (𝑤)] ≤ 3
4
,

which holds because there are at most two paths to 𝑤 from 𝑧, each path has probability at

least 1/2 of not passing down 𝑥, and so by conditional independence of inheritance, the

probability that both paths do not pass down 𝑥 is at least 1/4.

Finally, to finish the proof of Lemma 3.5.4 using Lemmas 3.5.8, 3.5.9, 3.5.10, and

3.5.11, note that in all four cases the expected overlap between coupled nodes 𝑢,𝑣,𝑤 is at

most 3/16. Thus, the probability that 𝑢,𝑣,𝑤 mutually share more than 3/16 +𝛾 fraction

of symbols in all cases is at most 2exp(−2𝐵𝛾2) by Chernoff–Hoeffding, similar to the

analysis of Lemma 3.5.3. Union bounding over all 𝑂((𝛼𝑇𝑁 )3) possible triples gives an

𝑂(𝛼3𝑇𝑁 3 exp(−𝐵𝛾2)) upper bound of the chance that there is some triple with at least

3/16 +𝛾 overlap. By also ruling out the bad event in Corollary 3.4.9 (which occurs with

probability 𝑂(1/𝑁𝑇 )), we obtain the desired upper bound.

3.5.2 Which ancestors are reconstructible?

In this section, we characterize nodes that are of importance in our analysis: couples whose

history lacks inbreeding (e.g. graph structure is reconstructible using blocks) and have ample
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extant information (e.g. blocks are recoverable). We present this in two parts respectively in

Definition 3.5.14 and Definition 3.5.15.

Definition 3.5.14 (Awesome Node). Call a node in the pedigree 𝒫 awesome if:

1. It is 𝑑-rich.

2. It is not an ancestor of any extant node that has a collision within its own ancestral

pedigree (including itself).

Definition 3.5.15 (𝑏-goodness). Let 𝑏 ∈ [𝐵] be a specific block. Say that a coupled node 𝑣 in a

pedigree 𝒫 is 𝑏-good if 𝑣 has at least two sets of three extant descendants 𝑥1, 𝑦1, 𝑧1 and 𝑥2, 𝑦2,

𝑧2 in 𝒫 such that:

1. 𝑣 is a joint LCA of 𝑥1, 𝑦1, 𝑧1 and is a joint LCA of 𝑥2, 𝑦2, 𝑧2.

2. 𝑥1, 𝑦1, and 𝑧1 all have the same symbol 𝜎1 in block 𝑏, and 𝑥2, 𝑦2, and 𝑧2 all have the same

symbol 𝜎2 in block 𝑏.

3. 𝜎1 , 𝜎2.

We furthermore define every extant node to be 𝑏-good, for all 𝑏 ∈ [𝐵].

We now deliver the main message of this section: most nodes have these properties, given

the assumptions of our model (Proposition 3.5.16 and Lemma 3.5.17). Therefore, this

characterization enables a natural reconstruction algorithm (Section 3.6).

Proposition 3.5.16 (Many awesome nodes). Let 𝑑 > 0 (as in Definition 3.5.14) be a constant,

let 𝛼 be a sufficiently large constant with respect to 𝑑, and let 𝑁 be sufficiently large with respect

to both 𝑑 and 𝛼. With probability at least 1 − 𝛼−Ω(𝑇 ), in every layer of the pedigree at least

1− 1/𝑑 fraction of the nodes are awesome.

Proof. Since 𝛼 and 𝑁 are sufficiently large with respect to 𝑑, we can apply Lemma 3.4.12

with 𝜏 = 1/(2𝑑) and 𝛿 = 𝑑. This tells us that at least 1− 1/(2𝑑) fraction of nodes in each

215



layer are 𝑑-rich with probability 1− 𝑇 exp(−𝐶2𝛼𝑁 ), where the constant 𝐶2 = 𝐶2(1/(2𝑑),𝑑)

depends only on 𝑑.

Applying Corollary 3.4.10 with 𝐶 = 𝛼𝑇 , there are at most 𝛼𝑂(𝑇 ) nodes at the extant

level with collisions in their ancestral pedigree, with probability 1−𝛼−Ω(𝑇 ). This means

there are at most 2𝑇 ·𝛼𝑂(𝑇 ) ancestors of these nodes. It follows that the number of nodes

that are 𝑑-rich but not awesome is at most 2𝑇 ·𝛼𝑂(𝑇 ). This is at most 𝑁
2𝑑 , provided 𝑁 is

sufficiently large with respect to 𝑑 and 𝛼 and we take 𝜀 = 𝑇 / log𝑁 to be small with respect

to 1/ log(𝛼).

The first probability 1− 𝑇 exp(−𝐶2𝛼𝑁 ) is exponentially small in 𝑁 , while the second

probability 1 − 𝛼−Ω(𝑇 ) is exponentially small in 𝑇 = 𝜀 log𝑁 . Therefore, the probability

of both events occurring simultaneously can be lower bounded by 1−𝛼−Ω(𝑇 ), by taking

the constant hidden in the Ω to be slightly smaller than what is found in the previous

paragraph.

Lemma 3.5.17 (Awesome implies 𝑏-good). Let 𝑑 > 0 (as in Definition 3.5.14) be a sufficiently

large constant. With probability 1 − exp(−Ω(𝐵)) over the symbol inheritance process, every

awesome coupled node in 𝒫 is 𝑏-good for at least 99% fraction of blocks 𝑏 ∈ [𝐵].

The figure “99%” is an arbitrary choice for simplification. It can be replaced by

anything arbitrarily close to 1, which changes the constant factor of Ω(𝐵) found in the

lemma above. To prove Lemma 3.5.17, first we need a structural claim about awesome

nodes:

Claim 3.5.18. For any awesome coupled node, the subpedigree formed by it and its awesome

descendants contains an induced 𝑑-ary tree that goes down to the extant level.

Proof of Claim 3.5.18. First, we show that this subpedigree has no undirected cycles within

it, which establishes the tree structure. Then, we argue that each node has 𝑑 children

within this subpedigree.

Suppose that there an undirected cycle within this subpedigree. We show that this

implies the presence of a collision within the subpedigree, contradicting the awesomeness
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of all nodes in the subpedigree. Note that there must be a node within this subpedigree

with a cycle in its ancestral pedigree - for instance, take the node at the lowest level within

the cycle. Applying Lemma 3.4.7 to this awesome node, we see it has a collision among its

ancestors, which contradicts condition 2) of Definition 3.5.14.

Now we establish that each node has at least 𝑑 children in the subpedigree. An awesome

coupled node 𝑣 has at least 𝑑 children that are 𝑑-rich, since it is 𝑑-rich itself. Furthermore,

none of these children have descendants with collisions in their ancestral pedigree, so they

are all awesome, which finishes the proof.

Proof of Lemma 3.5.17. Every awesome coupled node in 𝒫 has exactly 2 distinct symbols

in each block. Indeed, assume for contradiction that there is an awesome coupled node

𝑣 with a block in which it only has one distinct symbol. Due to the infinite alphabet

assumption, we know that we can trace any symbol in a block back to a unique founder.

Hence, there must be a collision in the ancestral pedigree of 𝑣, which is a contradiction

with condition 2) of (Definition 3.5.14).

Now we can proceed with showing that every awesome coupled node is 𝑏-good for 99%

fraction of blocks 𝑏 ∈ [𝐵]. Fix an awesome node 𝑣 and a block 𝑏 ∈ [𝐵].

We use condition (1) of awesomeness to show that, with probability tending to 1 as

𝑑→∞, there exist two sets of three extant nodes that both have 𝑣 as a joint LCA, where

the first set has a symbol 𝜎1 in block 𝑏, and the second set has a symbol 𝜎2 , 𝜎1.

Towards this end, let us follow the inheritance of 𝜎1 among an induced 𝑑-ary tree of

awesome descendants, as guaranteed by Claim 3.5.18. The inheritance follows a broadcast

process with copy probability 1/2 on this 𝑑-ary tree. The probability that the symbol

makes it to at least three distinct children of 𝑣, and this symbol in turn survives to the

extant nodes can be expressed as(︃
1− (1/2)𝑑

(︃
1 + 𝑑 +

(︃
𝑑
2

)︃)︃)︃
· 𝑐𝑑,1/2 (3.8)

where 𝑐𝑑,1/2 refers to the survival probability of percolation on the 𝑑-ary tree with copy
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probability 1/2. The first term refers to the probability that the symbol is inherited by at

least 3 of the 𝑑 awesome children of 𝑣. Additionally, these three extant nodes have 𝑣 as an

LCA, as they have paths of inheritance from 𝑣 that do not all intersect at any other node.

Naturally, Eq. (3.8) also gives the probability that 𝜎2 is similarly inherited. Furthermore,

from standard results about Galton-Watson processes (see e.g. [94]), we know that as

𝑑→∞, 𝑐𝑑,1/2→ 1. Hence, we conclude that Eq. (3.8) tends to 1 as 𝑑→∞. Thus it follows

from the union bound the probability that there exist two sets of three extant nodes that

both have 𝑣 as a lowest common ancestor, the first set has 𝜎1 in block 𝑏, and the second set

has 𝜎2, also tends to 1 as 𝑑→∞.

Hence, given a specific block 𝑏, the probability that an awesome coupled node is 𝑏-good

is at least 0.995. The high probability of this occurring for all blocks follows from a

standard Chernoff–Hoeffding bound.

3.6 Reconstructing the Pedigree

On the following page, we provide pseudocode for Rec-Gen which is the proposed recon-

struction procedure, with details of the inner procedures following it (Collect-Symbols,

Test-Siblinghood, and Assign-Parents). Note that for the first iteration of Rec-Gen, we

do not need to collect symbols as the extant genetic data is given to us. Thus we simply

test siblinghood at iteration 𝑘 = 1 by using the true gene sequences.

The goal of the rest of this section is to prove the correctness of Rec-Gen. We now

formally state our guarantee:

Theorem 3.6.1 (Main theorem, formal). Let 𝒫 be the depth-𝑇 coupled pedigree output by the

algorithm Rec-Gen, applied to the gene sequences in 𝑉0(𝒫 ). With probability tending towards

1 as 𝑁 →∞, 𝒫 is an induced subpedigree of 𝒫 such that |𝑉𝑖(𝒫 )| ≥ 𝜂(𝛼)|𝑉𝑖(𝒫 )| for all levels

𝑖 ∈ {0, . . . ,𝑇 }, where 𝜂(𝛼)→ 1 as 𝛼→∞. The probability is over the randomness of the coupled

pedigree 𝒫 and the inheritance procedure with parameters set as in Section 3.4.1.

We define 𝜂(𝛼) := 1− (1/𝑑(𝛼)) where, for a given value of 𝛼, 𝑑(𝛼) is defined to be the
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Algorithm 15 Reconstruct a depth-𝑇 coupled pedigree, given extant individuals 𝑉0.

1: procedure Rec-Gen(𝑇 ,𝑉0)
2: 𝒫 ← (𝑉 = 𝑉0,𝐸 = ∅) ◁ Extant Pedigree with no edges
3: for 𝑘 = 1 to 𝑇 do
4: if 𝑘 > 1 then
5: for all vertices 𝑣 in level 𝑘 − 1 of 𝒫 do
6: Collect-Symbols(𝑣,𝒫 )
7: �̂�← Test-Siblinghood(𝒫 )
8: Assign-Parents(𝒫 , �̂�)
9: return 𝒫

Algorithm 16 Empirically reconstruct the symbols of top-level node 𝑣 in 𝒫 .

1: procedure Collect-Symbols(𝑣,𝒫 )
2: for all blocks 𝑏 ∈ [𝐵] do
3: repeat
4: Find extant triple (𝑥,𝑦,𝑧) such that:

1) 𝑣 is a joint LCA of 𝑥,𝑦,𝑧,
2) 𝑥, 𝑦, and 𝑧 all have the same symbol 𝜎 in 𝑏, and
3) 𝜎 is not yet recorded for block 𝑏 in 𝑣.

5: Record the symbol 𝜎 for block 𝑏 in 𝑣.
6: until two distinct symbols are recorded for block 𝑏, or no such triple exists.

Algorithm 17 Perform statistical tests to detect siblinghood

1: procedure Test-Siblinghood(depth (𝑘 − 1) pedigree 𝒫 )
2: 𝑉 ← {𝑣 ∈ 𝑉𝑘−1(𝒫 ) : (# fully recovered blocks of 𝑣) ≥ 0.99|𝐵|}
3: 𝐸← ∅

4: for all distinct triples {𝑢,𝑣,𝑤} ⊂ 2𝑉 at level 𝑘 − 1 do
5: if ≥ 0.21|𝐵| blocks 𝑏 such that 𝑠𝑢(𝑏)∩ 𝑠𝑣(𝑏)∩ 𝑠𝑤(𝑏) , ∅ then
6: 𝐸← 𝐸 ∪ {𝑢,𝑣,𝑤}
7: return �̂� = (𝑉 ,𝐸) ◁ 3-wise sibling hypergraph

Algorithm 18 Construct ancestors, given top-level 3-way sibling relationship.

1: procedure Assign-Parents(𝒫 ,𝐺)
2: repeat
3: 𝒞 ← Any-Maximal-Clique(𝐺)
4: Remove one copy of all hyper-edges in 𝒞 from 𝐺.
5: If |𝒞| ≥ 𝑑, attach a level-𝑘 parent in 𝒫 for all nodes from 𝒞.
6: until no maximal cliques of size ≥ 𝑑 remain in 𝐺.219



largest value of 𝑑 such that Proposition 3.5.16 holds. Observe that 𝑑(𝛼)→∞ as 𝛼→∞

because Proposition 3.5.16 holds for arbitrarily large values 𝑑. Therefore, 𝜂(𝛼)→ 1 as

𝛼→∞.

We make use of the following high-probability events, provided 𝛼 is a large enough

constant so that 𝑑 = 𝑑(𝛼) satisfies the hypothesis of Lemma 3.5.17, 𝑁 is sufficiently large

with respect to 𝛼, the total number of generations is 𝑇 = 𝜀 log𝑁 , where 𝜀 =𝑂(1/ log𝛼), and

the gene sequence length is 𝐵 = Ω(log𝑁 ).

Proposition 3.6.2 (Key Reductions). With probability tending towards 1 as 𝑁 → ∞, the

pedigree 𝒫 satisfies:

1. For each level 𝑘, each clique of 𝐺𝑘 has a single parent (Lemma 3.4.13).

2. For each level 𝑘, the maximal cliques of 𝐺𝑘 are edge-disjoint, in such a way that each

𝑣 ∈ 𝑉𝑘(𝒫 ) is contained in at most two maximal cliques (Lemma 3.4.14).

3. Each triple 𝑢,𝑣,𝑤 of nodes, has at most 3 collisions (Corollary 3.4.9), implying

(a) their joint LCA is unique (Lemma 3.4.16), and

(b) all inheritance paths for some node 𝑥 ∈ {𝑢,𝑣,𝑤} go through the unique LCA (Lemma 3.4.17).

4. The fraction of overlap is at least 24.9% for siblings in 𝒫 while for non-mutual siblings it

is at most 18.85% (Lemmas 3.5.3 and 3.5.4).

5. For each level 𝑘, at least 𝜂(𝛼) fraction of nodes in 𝑉𝑘(𝒫 ) are awesome (Proposition 3.5.16).

6. If 𝑢 ∈ 𝑉 (𝒫 ) is awesome, then it is 𝑏-good for 99% of blocks 𝑏 ∈ [𝐵] (Lemma 3.5.17).

7. Any two individuals in the pedigree who are siblings overlap in at least 49% of their

blocks (Chernoff + union bound).
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The “probability tending towards 1” portion of Theorem 3.6.1 can be quantified via a

union bound on the probability of failure of any of the events in Proposition 3.6.2, while

the “|𝑉 (𝒫 )| ≥ 𝜂(𝛼)|𝑉 (𝒫 )|” guarantee comes from the fact that we recover 100% of the

awesome nodes in conjunction with Condition 5. With this as a simplification, we proceed

with the proof of Theorem 3.6.1.

The upcoming lemma (Lemma 3.6.3) proves the correctness of the very first itera-

tion (depth 1 from depth 0), and therefore serves as the base case. The inductive step

(Lemma 3.6.4) is presented immediately afterwards. For the remainder of this section,

we write 𝒫𝑘 to denote the depth-𝑘 reconstructed pedigree after the 𝑘th iteration of Rec-

Gen, (𝒫0 is the depth-0 pedigree of all the extant nodes). In contrast, let 𝒫𝑘 denote the

subpedigree of 𝒫 (the ground truth) induced by graded levels 𝑉0 up to 𝑉𝑘.

Lemma 3.6.3. Let �̂�0 denote the estimated 3-regular siblinghood hypergraph for the extant

nodes (line 7 of Test-Siblinghood). Consider the pedigree 𝒫1 created by Assign-Parents

applied to (𝒫0, �̂�0). Then there exists an injective homomorphism 𝜑 : 𝒫1 → 𝒫1 so that the

induced subgraph on 𝜑(𝒫1) is isomorphic to 𝒫1. Moreover, 𝜑(𝒫1) contains 𝐴≤1, where 𝐴≤1 is

the set of awesome nodes at levels ≤ 1 in 𝒫 .

Proof. Let 𝐺0 denote the true siblinghood hypergraph on extant nodes with at least two

siblings. By Condition 4, we have that 𝐺0 � 𝐺0. Since both graphs have the same set of

vertices, we simply write 𝐺0 = 𝐺0.

This gives a natural, explicit characterization of 𝜑. For an extant node 𝑣 ∈ 𝑉0(𝒫1),

define 𝜑(𝑣) = 𝑣 so that it is the identity map on the extant. Given couple �̂� ∈ 𝑉1(𝒫1), define

𝜑(�̂�) to be the parent couple 𝑢 ∈ 𝑉1(𝒫1) of the children of �̂�. The condition 𝐺0 � 𝐺0 implies

that at least one such choice for 𝑢 exists, and moreover by Condition 1, 𝑢 is the unique

parent.

𝜑 is injective: Let �̂�,𝑣 ∈ 𝑉1(𝒫1) with �̂� , 𝑣. At the extant level, the maximal cliques in

𝐺0 are vertex disjoint by Condition 2. Hence, the children of �̂� and the children of 𝑣 have

empty intersection. Moreover in 𝒫1, vertex-disjoint maximal cliques have distinct parents.

Therefore, 𝜑(�̂�) , 𝜑(𝑣), as desired.
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𝜑 respects edges: We already know that (�̂�,𝑣) ∈ 𝐸(𝒫1) =⇒ (𝜑(�̂�),𝑣) ∈ 𝐸(𝒫1). Now

suppose that (𝜑(�̂�),𝑣) is an edge in 𝒫1 for �̂� ∈ 𝑉1(𝒫1) and 𝑣 ∈ 𝑉0(𝒫1). Since 𝑢 is in the image

of 𝜑, it follows that 𝑢 has at least 3 children 𝑤,𝑥,𝑦 that passed the siblings test in our

algorithm. If 𝑣 is one of 𝑤,𝑥,𝑦, we’re done, so suppose not. By Condition 3.5.3, the extant

triples {𝑣,𝑤,𝑥}, {𝑣,𝑥,𝑦}, and {𝑣,𝑤,𝑦} all have at least 24% overlap. Therefore, 𝑣,𝑤,𝑥,𝑦 form

a clique in 𝐺0, and line 5 of Assign-Parents states that �̂� is a parent of all four, so (�̂�,𝑣) is

an edge in 𝒫1.

The image of 𝜑 contains the awesome nodes in 𝒫1: This part is trivially true for the extant

nodes, so consider only the awesome nodes 𝐴1 ⊂ 𝑉1(𝒫1). By definition, any awesome node

𝑢 ∈ 𝑉1(𝒫1) is 𝑑-rich. Since 𝑑 ≥ 3, the children of 𝑢 form a maximal clique of size at least 3

in 𝐺0. Therefore, Assign-Parents creates a parent �̂� for these children in 𝒫1, which gives

the pre-image of 𝑢.

Lemma 3.6.4. Let 𝑘 ≥ 2 and suppose that we are given 𝒫𝑘−1. Assume that there exists an

injective homomorphism 𝜑 : 𝒫𝑘−1→𝒫𝑘−1 which satisfies

1. 𝜑|𝒫0
≡ 𝐼𝑑,

2. 𝜑(𝒫𝑘−1) ⊂ 𝒫𝑘−1 induces a subgraph isomorphic to 𝒫𝑘−1, and

3. 𝜑(𝒫𝑘−1) contains the awesome nodes in sets 𝐴0,𝐴1, . . . ,𝐴𝑘−1.

Let 𝒫𝑘 be the level-𝑘 extension of 𝒫𝑘−1, via lines 4 through 7 of Rec-Gen. Then there exists a

level-𝑘 extension of the map 𝜑 : 𝒫𝑘→𝒫𝑘 with the same properties.

We prove this in two stages. The first part (Lemma 3.6.5) asserts that we reconstruct

the sibling relationships correctly, while the latter (Lemma 3.6.11) assures that the cliques

of this estimated siblinghood hypergraph are actually the faithful, “largest possible”

groupings of siblings.

Lemma 3.6.5. Assume the hypotheses of Lemma 3.6.4, and let �̂�𝑘−1 be the estimated siblinghood

hypergraph constructed by Test-Siblinghood, line 7, on input 𝒫𝑘−1. Then the subgraph of 𝐺𝑘−1

222



induced by 𝜑(�̂�𝑘−1) is isomorphic to �̂�𝑘−1, and moreover 𝜑(�̂�𝑘−1) contains all of the awesome

nodes 𝐴𝑘−1 at level 𝑘 − 1.

The upcoming statements (Claim 3.6.7, Claim 3.6.8 and Claim 3.6.9) are pivotal for

the proof of Lemma 3.6.5.

Definition 3.6.6. For an awesome node 𝑢 ∈ 𝒫𝑘, its awesome subtree is the subgraph of 𝒫𝑘 that

is the union of all paths from 𝑢 to extant nodes that consist entirely of awesome nodes.

Claim 3.6.7. Suppose that there is a reconstruction map 𝜑 : 𝒫𝑘−1→𝒫𝑘−1 satisfying the hypot-

heses in Lemma 3.6.4. Then for any awesome node 𝑢 = 𝜑(�̂�) ∈ 𝑉𝑘−1(𝒫𝑘−1), its awesome subtree

𝑆𝑢 satisfies 𝜑−1(𝑆𝑢) = desc(�̂�).

Proof of Claim 3.6.7. Note that Line 5 of Assign-Parents ensures that every node in 𝒫𝑘−1

is 𝑑-rich. Since 𝜑 is an injective homomorphism, it follows that every node in 𝜑(desc(�̂�))

is also 𝑑-rich in 𝒫 . Furthermore, 𝑢 being awesome implies that all of its descendants are

awesome in 𝒫 , since none of its descendants can have collisions in its ancestral pedigree

(Definition 3.5.14). By the definition of the awesome subtree (Definition 3.6.6), it holds

that 𝜑(desc(�̂�)) ⊆ 𝑆𝑢 .

For the other direction (𝜑(desc(�̂�)) ⊇ 𝑆𝑢), let 𝑣 ∈ 𝑉0(𝒫 ) be an extant node so that there

is a path from 𝑢 to 𝑣 consisting only of awesome nodes. By condition 3 of Lemma 3.6.4, all

of the nodes along this path are in the image of 𝜑.

Claim 3.6.8. Let 𝜑 be as in Lemma 3.6.4, and let 𝑢 = 𝜑(�̂�) for some �̂� ∈ 𝑉𝑘−1(𝒫𝑘−1). Suppose

that in block 𝑏 the symbols 𝜎1 and 𝜎2 are recovered for �̂� by applying Algorithm 1 to �̂�. Then it

holds that 𝑢 also has symbols 𝜎1,𝜎2 in block 𝑏.

Proof of Claim 3.6.8. For 𝑖 = 1,2, suppose that nodes 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 ∈ 𝑉0(𝒫0) = 𝑉0(𝒫 ) have the

symbol 𝜎𝑖 in block 𝑏 and are used by Collect-Symbols to recover 𝜎𝑖 in block 𝑏 of �̂�. Recall

that 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 are all descended from distinct children of �̂�. Let 𝜑(𝒫𝑘−1) induce subpedigree

𝒬 in 𝒫 .

By the hypotheses of Lemma 3.6.4, 𝒬 � 𝒫𝑘−1 and so 𝑢 must be a common ancestor of

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 in 𝒬. By line 4 of Collect-Symbols and because 𝒬 � 𝒫𝑘−1, �̂� – and therefore 𝑢
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– is their joint LCA. With respect to 𝒫 , Conditions 3a and 3b tell us the much stronger

condition that 𝑢 is their only LCA, and that all paths in 𝒫 from any common ancestor

of 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 to 𝑥𝑖 (without loss of generality) must pass through 𝑢. Therefore, if 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 all

inherit symbols 𝜎𝑖 in block 𝑏, the symbol 𝜎𝑖 must have passed through block 𝑏 of 𝑢 via the

infinite symbols assumption.

Claim 3.6.9. Let 𝜑 be as in Lemma 3.6.4, and let 𝑢 = 𝜑(�̂�) for some �̂� ∈ 𝑉𝑘−1(𝒫𝑘−1). Suppose

that 𝑢 is awesome in 𝒫 . If 𝑢 is 𝑏-good and has symbols 𝜎1,𝜎2 in block 𝑏, then Collect-Symbols

recovers the symbols 𝜎1 and 𝜎2 for �̂� in block 𝑏.

Proof of Claim 3.6.9. By Claim 3.6.8, we only need to show that at least two symbols in

block 𝑏 are reconstructed by Collect-Symbols applied to �̂�. Note that 𝑏-goodness implies

𝜎1 , 𝜎2.

By 𝑏-goodness of 𝑢, as in the proof of Lemma 3.5.17, there is a witnessing triple for

each of the 𝜎𝑖 contained in the extant of the awesome subtree 𝑆𝑢 . By Claim 3.6.7, desc(�̂�)

also contains these witnesses. Since extant nodes are the exact same in 𝒫 compared to 𝒫𝑘−1

by hypothesis 1 of Lemma 3.6.4, Collect-Symbols applied to �̂� recovers 𝜎1,𝜎2 in block

𝑏.

Claim 3.6.10. Couples that consist of two siblings in the true pedigree do not appear in the

siblinghood graph 𝜑(�̂�𝑘−1).

Proof. Denote the coupled vertex as 𝑣. We note that any two sibling individuals must

overlap in at least 49% fraction of blocks in the true pedigree (Condition 7). We know that

any symbol that we retrieve for 𝑣 via the symbol collection must actually come from 𝑣,

since the symbols come from triples of extant nodes with 𝑣 as their joint LCA (Conditions

3a and 3b). Hence, for any couples node consisting of two siblings, we can retrieve two

symbols for them in at most 51% of blocks. This means that they do not appear in the

reconstructed siblinghood graph (Line 2), and so they do not appear in �̂�𝑘−1. Due to the

fact that 𝜑(�̂�𝑘−1)) induces a subgraph isomorphic to �̂�𝑘−1, they do not appear in 𝜑(�̂�𝑘−1)

either.
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Since these nodes do not appear in our reconstructed siblings graph, we do not recon-

struct parents for these nodes. We note that this is fine, as such nodes are not awesome

couples nodes; hence, their ancestors are also not awesome, and it is fine not to reconstruct

them. With this, we begin the proof of Lemma 3.6.5.

Proof of Lemma 3.6.5. For this claim, we use the convention that the true siblinghood

graph 𝐺𝑘−1 does not have any hyperedges that contain a single couples node twice; this

fact is true of the reconstructed siblinghood graph �̂�𝑘−1 by construction (Claim 3.6.10).

It is hence crucial in proving the isomorphism, and does not harm our end guarantee,

since we do not miss out on reconstructing any awesome node with this omission by the

discussion above. So, graph isomorphism boils down to showing that any triple of distinct

nodes {𝑢,𝑣,𝑤} has a hyper edge on it iff they are siblings in the true siblinghood graph,

since all hyperedges have multiplicity 1.

By assumption, 𝜑 : �̂�𝑘−1→ 𝐺𝑘−1 is injective. To first see that 𝜑 is a hypergraph homo-

morphism, let �̂�,𝑣, �̂� ∈ 𝑉𝑘−1(𝒫𝑘−1) be distinct nodes satisfying line 2 of Test-Siblinghood,

and let 𝑢 = 𝜑(�̂�),𝑣 = 𝜑(𝑣), and 𝑤 = 𝜑(�̂�) denote their counterparts in 𝒫 .

Suppose that 𝑢,𝑣,𝑤 are not mutually siblings. By Condition 4, 𝑢,𝑣,𝑤 have at most

0.1885|𝐵| mutually overlapping blocks. By Claim 3.6.8, for all 𝑥 ∈ {�̂�,𝑣, �̂�}, the symbols

reconstructed for 𝑥 in block 𝑏 using Collect-Symbols are a subset of the symbols in

block 𝑏 of 𝑥 := 𝜑(𝑥) ∈ {𝑢,𝑣,𝑤}. Therefore, �̂�,𝑣, �̂� have mutually overlapping symbols in at

most 0.1885|𝐵| blocks. Since 0.1885 < 0.21, Test-Siblinghood does not place a hyperedge

between �̂�,𝑣, �̂� in �̂�1.

To show that the induced subgraph 𝜑(�̂�𝑘−1) is isomorphic to �̂�𝑘−1, it remains to show

that if 𝑢,𝑣,𝑤 are distinct nodes that are mutual siblings in 𝒫 , then {�̂�,𝑣, �̂�} is a hyperedge

in �̂�𝑘−1. This suffices because no couples node appears twice in the true siblings graph, by

construction. Note that 99% of the blocks of �̂�,𝑣, �̂� were recovered by Collect-Symbols

by the definition of �̂�𝑘−1, and by Claim 3.6.8, the symbols of �̂�,𝑣, �̂� in block 𝑏 are a

subset of the symbols of 𝑢,𝑣,𝑤, respectively, in block 𝑏. By Condition 4, the mutual

overlap between the siblings 𝑢,𝑣,𝑤 is at least 0.249|𝐵|. Thus, by a union bound on the
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occurrence of 1%-fraction of unrecovered blocks, the mutual overlap between �̂�,𝑣, �̂� is at

least (0.249− 0.03)|𝐵| ≥ 0.21|𝐵|. Therefore, Test-Siblinghood constructs a hyperedge on

�̂�,𝑣, �̂�, as desired.

Finally, we show that the awesome nodes 𝐴𝑘−1 are fully contained in 𝜑(�̂�𝑘−1). By

Condition 6, awesome nodes are 𝑏-good. Now apply Claim 3.6.9, to conclude that Collect-

Symbols reconstructs 99% of the blocks in each awesome node 𝑢, so 𝑢 ∈ �̂�𝑘−1 according to

Line 2 of Test-Siblinghood.

Lemma 3.6.11. Let C denote the maximal (hyper)cliques in the subgraph of 𝐺𝑘−1 induced by

𝜑(�̂�𝑘−1), and let Calgo denote the (hyper)cliques probed by Assign-Parents applied to �̂�𝑘−1.

Given 𝒞 ∈Calgo, define 𝜑(𝒞) to be the set given by the image of 𝒞 under 𝜑. Then 𝜑 is a bijection

between Calgo and C .

Proof. By Lemma 3.6.5, the subgraph 𝐻 induced by 𝜑(�̂�𝑘−1) is isomorphic to �̂�𝑘−1. Hence,

it suffices to show that the cliques probed by Assign-Parents applied to 𝐻 are precisely

the maximal cliques of 𝐻 . Recall that by Condition 2, the maximal cliques in 𝐻 are

edge-disjoint, and every node of 𝐻 is involved in at most 2 cliques.

It is helpful to imagine the cliques 𝒞1,𝒞2, . . . ,𝒞𝑀 ∈Calgo as being listed out in the same

order that they are probed by Assign-Parents, indexed by timesteps 𝑚 = 1,2, . . . ,𝑀. Let

𝐻 (0) =𝐻 , and let 𝐻 (𝑚) denote the result of removing the edges of the clique 𝒞𝑡 from 𝐻 (𝑚−1).

We argue that for all 𝑚, the graph 𝐻 (𝑚) is a union of edge-disjoint maximal cliques,

and any two maximal cliques intersect in at most a single vertex. The base case 𝑚 = 1 is

true by Condition 2. This holds for 𝑚 > 1 because the above property is preserved when all

of the edges are removed from a single maximal clique in 𝐻 (𝑚−1). Moreover, for all 𝑚, the

maximal cliques in 𝐻 (𝑚) are the same as those of 𝐻 (𝑚−1) but with a single maximal clique

𝒞𝑚 in 𝐻 (𝑚−1) removed. Hence, it also follows by induction that for all 𝑚, the maximal

clique 𝒞𝑚 in 𝐻 (𝑚−1) is also a maximal clique in 𝐻 .

Since Assign-Parents terminates at the first time 𝑀 when 𝐻 (𝑀) has no hyperedges, we

conclude that 𝒞1, . . . ,𝒞𝑀 are all of the maximal cliques in 𝐻 , as desired.

Proof of Lemma 3.6.4. We first extend the definition of 𝜑 to level 𝑘. For �̂� ∈ 𝑉𝑘(𝒫𝑘), we
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define 𝜑(�̂�) ∈ 𝑉𝑘(𝒫𝑘) as follows. Let 𝒞 ⊂ 𝑉𝑘−1(𝒫𝑘) denote the children of �̂�. By Lemmas 3.6.5

and 3.6.11, 𝜑(𝒞) is a clique in 𝐺𝑘−1. Define 𝜑(�̂�) ∈ 𝑉𝑘(𝒫𝑘) to be the parent of the children

of the clique 𝜑(𝒞) in 𝒫 . The map 𝜑 is well-defined at level 𝑘 because of Condition 1. It

remains to show that 𝜑 is an isomorphism onto its image, and moreover that its image

contains all of the awesome nodes at level 𝑘.

The map 𝜑 is injective: We know this is true for 𝜑
⃒⃒⃒
𝒫𝑘−1

, so it suffices to consider injectivity

of 𝜑 when restricted to the nodes at level 𝑘 in 𝒫𝑘. Let �̂�,𝑣 ∈ 𝑉𝑘(𝒫𝑘) with �̂� , 𝑣. Let 𝒞

(resp., 𝒞′) denote the maximal clique in �̂�𝑘−1 that consists of the children of �̂� (resp., 𝑣).

By Lemma 3.6.11, 𝜑(𝒞) and 𝜑(𝒞′) are distinct maximal cliques in the induced subgraph

𝜑(�̂�𝑘−1), and therefore, are contained in distinct maximal cliques in𝐺𝑘−1. Distinct maximal

cliques in𝐺𝑘−1 have distinct parents, so by the definition of𝜑, we conclude that𝜑(�̂�) , 𝜑(𝑣),

as desired.

The map 𝜑 is edge-preserving: Suppose that (�̂�,𝑣) is an edge in 𝒫𝑘 with �̂� ∈ 𝑉𝑘(𝒫𝑘) and

𝑣 ∈ 𝑉𝑘−1(𝒫𝑘). Consider the maximal clique 𝒞 containing 𝑣 in �̂�𝑘−1. By Lemma 3.6.11, 𝜑(𝒞)

is a maximal clique in the induced subgraph 𝜑(�̂�𝑘−1) ⊂ 𝐺𝑘−1, and by construction of 𝜑, the

parent of 𝜑(𝒞) is 𝜑(�̂�). Therefore, the edge (𝜑(�̂�),𝜑(𝑣)) is in the pedigree 𝒫𝑘.

Suppose now that the edge (𝑢,𝑣) = (𝜑(�̂�),𝜑(𝑣)) is in the pedigree 𝒫𝑘. Consider the

maximal clique 𝒞′ ⊂ 𝐺𝑘−1 containing 𝑣. By Lemma 3.6.11, 𝒞 := 𝜑−1(𝒞′) = {𝑥 ∈ 𝒫𝑘 : 𝜑(𝑥) ∈ 𝒞′}

is a maximal clique in �̂�𝑘−1. By Lemma 3.6.11 and the construction in Assign-Parents, we

conclude that the parent of 𝑣 in 𝒫𝑘 is mapped to 𝑢 under 𝜑. By injectivity of 𝜑, this parent

is precisely 𝜑−1(𝑢) = �̂�. Therefore, (�̂�,𝑣) is an edge in 𝒫𝑘.

The image of 𝜑 contains the awesome nodes in 𝒫𝑘: It suffices to prove the statement for

the awesome nodes at level 𝑘, which we denote by 𝐴𝑘. Suppose that 𝑢 is an awesome node

at level 𝑘 of 𝒫 . By awesomeness, 𝑢 has at least 𝑑 awesome children. Let 𝒞′ denote the clique

in 𝐺𝑘−1 given by the awesome children of 𝑢. By Lemmas 3.6.5 and 3.6.11, 𝒞 := 𝜑−1(𝒞′)

satisfies |𝒞| = |𝒞′ | ≥ 𝑑 because all of the awesome children up to level 𝑘 − 1 are in the image

of 𝜑, by the inductive hypotheses. By Lemma 3.6.11, the maximal clique 𝒞 containing 𝒞 in

�̂�𝑘−1 satisfies that 𝜑(𝒞) are all children of 𝑢. By the definition of Assign-Parents and 𝜑 at

227



level 𝑘, we conclude that a parent �̂� is constructed for 𝒞 ⊃ 𝒞 and 𝜑(�̂�) = 𝑢, as desired.

Acknowledgments We thank Vishesh Jain for many helpful discussions.
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Chapter 4

Corruption Detection

4.1 Introduction

4.1.1 Corruption Detection and Problem Set-up

Starting from this chapter, we formulate inference problems inspired by social science.

Previously, our inference questions have only involved a passive observer, who sees data

generated by individuals but does not influence the reporting of data in any way. However,

when we look at problems of inference in the setting of social science, it is natural to

broaden the motivations of the central parties and allow them to engage in the underlying

process. For the remainder of this thesis, we look at inference problems in social science

where one or more agents wish to influence the underlying process to promote their own

agenda.

In this chapter we study the problem of identifying truthful nodes in networks, in the

model of corruption detection on networks posed by Alon, Mossel, and Pemantle [6]. In

this model, we have a network represented by a (possibly directed) graph. Nodes can be

truthful or corrupt. Each node audits its outgoing neighbors to see whether they are truthful

or corrupt, and sends reports of their identities to a central agency. The central agent, who

is not part of the graph, aggregates the reports and uses them to identify truthful and

corrupt nodes. Truthful nodes report truthfully (and correctly) on their neighbors, while
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corrupt nodes have no such restriction: they can assign arbitrary reports to their neighbors,

regardless of whether their neighbors are truthful or corrupt, and coordinate their efforts

with each other to prevent the central agency from gathering useful information.

In [6], the authors consider the problem of recovering the identities of almost all nodes

in a network in the presence of many corrupt nodes; specifically, when the fraction of

corrupt nodes can be very close to 1/2. They call this the corruption detection problem.

They show that the central agency can recover the identity of most nodes correctly even

in certain bounded-degree graphs, as long as the underlying graph is a sufficiently good

expander. The required expansion properties are known to hold for a random graph

or Ramanujan graph of sufficiently large (but constant) degree, which yields undirected

graphs that are amenable to corruption detection. Furthermore, they show that some level

of expansion is necessary for identifying truthful nodes, by demonstrating that the corrupt

nodes can stop the central agency from identifying any truthful node when the graph is a

very bad expander (e.g. a cycle), even if the corrupt nodes only make up 0.01 fraction of

the network.

This establishes that very good expanders are very good for corruption detection, and

very bad expanders can be very bad for corruption detection. We note that this begs

the question of how effective graphs that do not fall in either of these categories are for

corruption detection. In the setting of [6], we could ask the following: given an arbitrary

undirected graph, what is the smallest number of corrupt nodes that can prevent the

identification of almost all nodes? When there are fewer than this number, can the central

agency efficiently identify almost all nodes correctly? Alon, Mossel, and Pemantle study

these questions for the special cases of highly expanding graphs and poorly expanding

graphs, but do not address general graphs.

Additionally, [6] considers corruption detection when the corrupt agencies can choose

their locations and collude arbitrarily, with no bound on their computational complexity.

This is perhaps overly pessimistic: after all, it is highly unlikely that corrupt agencies

can solve NP-hard problems efficiently and if they can, thwarting their covert operations
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is unlikely to stop their world domination. We suggest a model that takes into account

computational considerations, by factoring in the computation time required to select the

nodes in a graph that a corrupt party chooses to control. This yields the following question

from the viewpoint of a corrupt party: given a graph, can a corrupt party compute the

smallest set of nodes it needs to corrupt in polynomial time?

In addition to being natural from a mathematical standpoint, these questions are also

well-motivated socially. It would be naïve to assert that we can weed out corruption in

the real world by simply designing auditing networks that are expanders. Rather, these

networks may already be formed, and infeasible to change in a drastic way. Given this, we

are less concerned with finding certain graphs that are good for corruption detection, but

rather discerning how good existing graphs are; specifically, how many corrupt nodes they

can tolerate. In particular, since the network structure could be out of the control of the

central agency, algorithms for the central agency to detect corruption on arbitrary graphs

seem particularly important.

It is also useful for the corrupt agency to have an algorithm with guarantees for any

graph. Consider the following example of a corruption detection problem from the

viewpoint of a corrupt organization. Country A wants to influence policy in country B,

and wants to figure out the most efficient way to place corrupted nodes within country B

to make this happen. However, if the central government of B can confidently identify

truthful nodes, they can weight those nodes’ opinions more highly, and thwart country

A’s plans. Hence, the question country A wants to solve is the following: given the graph

of country B, can country A compute the optimal placement of corrupt nodes to prevent

country B from finding truthful nodes? We note that in this question, too, the graph of

country B is fixed, and hence, country A would like to have an algorithm that takes as

input any graph and computes the optimal way to place corrupt nodes in order to hide all

the truthful nodes.

We study the questions above for a variant of the corruption detection problem in [6],

in which the goal of the central agency is to find a single truthful node. While this goal is
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less ambitious than the goal of identifying almost all the nodes, we think it is a very natural

question in the context of corruption. For one, if the central agency can find a single

truthful node, they can use the trusted reports from that node to identify more truthful

and corrupt nodes that it might be connected to. The central agency may additionally

weight the opinions of the truthful nodes more when making policy decisions (as alluded

to in the example above), and can also incentivize truthfulness by rewarding truthful

nodes that it finds and giving them more influence in future networks if possible (by

increasing their out-degrees). Moreover, our proofs and results extend to finding larger

number of truthful nodes as we discuss below.

Our results stem from a tie between the problem of finding a single truthful node

in a graph and a measure of vertex separability of the graph. This tie not only yields

an efficient and relatively effective algorithm for the central agency to find a truthful

node, but also allows us to relate corrupt party’s strategy to the problem of finding a good

vertex separator for the graph. Hence, by analyzing the purely graph-theoretic problem of

finding a good vertex separator, we can characterize the difficulty of finding a good set

of nodes to corrupt. Similar notions of vertex separability have been studied previously

(e.g. [105, 128, 17]), and we prove NP-hardness for the notion relevant to us assuming the

Small Set Expansion Hypothesis (SSEH). The Small Set Expansion Hypothesis is a hypothesis

posed by Raghavendra and Steurer [137] that is closely related to the famous Unique

Games Conjecture of Khot [90]. In fact, [137] shows that the SSEH implies the Unique

Games Conjecture. The SSEH yields hardness results that are not known to follow directly

from the UGC, especially for graph problems like sparsest cut and treewidth ([138] and

[9] respectively), among others.

4.1.2 Our Results

We now outline our results more formally. We analyze the variant of corruption detection

where the central agency’s goal is to find a single truthful node. First, we study how

effectively the central agency can identify a truthful node on an arbitrary graph, given a
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set of reports. Given an undirected graph1 𝐺, we let 𝑚(𝐺) denote the minimal number of

corrupted nodes required to stop the central agency from finding a truthful node, where

the minimum is taken over all strategies of the corrupt party (not just computationally

bounded ones). We informally call𝑚(𝐺) the “critical” number of corrupt nodes for a graph

𝐺. Then, we show the following:

Theorem 4.3.2. Fix a graph 𝐺 and suppose that the corrupt party has a budget 𝑏 ≤ 𝑚(𝐺)/2.

Then the central agency can identify a truthful node, regardless of the strategy of the corrupt

party, and without knowledge of either 𝑚(𝐺) or 𝑏. Furthermore, the central agency’s algorithm

runs in linear time (in the number of edges in the graph 𝐺).

Next, we consider the question from the viewpoint of the corrupt party: can the corrupt

party efficiently compute the most economical way to allocate nodes to prevent the central

agency from finding a truthful node? Concretely, we focus on a natural decision version of

the question: given a graph 𝐺 and a upper bound on the number of possible corrupted

nodes 𝑘, can the corrupt party prevent the central agency from finding a truthful node?

We actually focus on an easier question: can the corrupt party accurately compute𝑚(𝐺),

the minimum number of nodes that they need to control to prevent the central agency

from finding a truthful node? Not only do we give evidence that computing 𝑚(𝐺) exactly

is computationally hard, but we also provide evidence that 𝑚(𝐺) is hard to approximate.

Specifically, we show that approximating 𝑚(𝐺) to any constant factor is NP-hard under

the Small Set Expansion Hypothesis (SSEH); or in other words, that it is SSE-hard.

Theorem 4.3.5. For every 𝛽 > 1, there is a constant 𝜖 > 0 such that the following is true. Given

a graph 𝐺 = (𝑉 ,𝐸), it is SSE-hard to distinguish between the case where 𝑚(𝐺) ≤ 𝜖 · |𝑉 | and

𝑚(𝐺) ≥ 𝛽 ·𝜖 · |𝑉 |. Or in other words, the problem of approximating the critical number of corrupt

nodes for a graph to within any constant factor is SSE-hard.

This Theorem immediately implies the following Corollary 4.3.9.

1Unless explicitly specified, all graphs are undirected by default.
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Corollary 4.3.9. Assume the SSE Hypothesis and that P , NP. Fix any 𝛽 > 1. There does not

exist a polynomial-time algorithm that takes as input an arbitrary graph 𝐺 = (𝑉 ,𝐸) and outputs

a set of nodes 𝑆 with size |𝑆 | ≤𝑂(𝛽 ·𝑚(𝐺)), such that corrupting 𝑆 prevents the central agency

from finding a truthful node.

We note that in Corollary 4.3.9, the bad party’s input is only the graph 𝐺: specifically,

they do not have knowledge about the value of 𝑚(𝐺).

Our proof for Theorem 4.3.5 is similar to the proof of Austrin, Pitassi, and Wu [9]

for the SSE-hardness of approximating treewidth. This is not a coincidence: in fact, the

“soundness” in their reduction involves proving that their graph does not have a good 1/2

vertex separator, where the notion of vertex separability (from [23]) is very related to the

version we use to categorize the problem of hiding a truthful vertex. We give the proof of

Theorem 4.3.5 in Section 4.3.2.

However, if one allows for an approximation factor of 𝑂(log |𝑉 |), then 𝑚(𝐺) can be

approximated efficiently. Furthermore, this yields an approximation algorithm that the

corrupt party can use to find a placement that hinders detection of a truthful node.

Theorem 4.3.11. There is a polynomial-time algorithm that takes as input a graph 𝐺 = (𝑉 ,𝐸)

and outputs a set of nodes 𝑆 with size |𝑆 | ≤𝑂(log |𝑉 | ·𝑚(𝐺)), such that corrupting 𝑆 prevents

the central agency from finding a truthful node.

The proof of Theorem 4.3.11, given in Section 4.3.2, uses a bi-criterion approximation

algorithm for the 𝑘-vertex separator problem given by [105]. As alluded to in Section 4.1.1,

Theorems 4.3.5 and 4.3.11 both rely on an approximate characterization of 𝑚(𝐺) in terms

of a measure of vertex separability of the graph 𝐺, which we give in Section 4.3.

Additionally, we note that we can adapt Theorems 4.3.2 and 4.3.5 (as well as Corol-

lary 4.3.9) to a more general setting, where the central agency wants to recover some

arbitrary number of truthful nodes, where the number of nodes can be proportional to

the size of the graph. We describe how to modify our proofs to match this more general

setting in Section 4.5.
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Together, Theorems 4.3.2 and 4.3.5 uncover a surprisingly positive result for corruption

detection: it is computationally easy for the central agency to find a truthful node when

the number of corrupted nodes is only somewhat smaller than the “critical” number for

the underlying graph, but it is in general computationally hard for the corrupt party

to hide the truthful nodes even when they have a budget that far exceeds the “critical”

number for the graph.

Results for Directed Graphs As noted in [6], it is unlikely that real-world auditing

networks are undirected. For example, it is likely that the FBI has the authority to audit

the Cambridge police department, but it is also likely that the reverse is untrue. Therefore,

we would like the central agency to be able to find truthful nodes in directed graphs in

addition to undirected graphs. We notice that the algorithm we give in Theorem 4.3.2

extends naturally to directed graphs.

Theorem 4.4.4. Fix a directed graph 𝐷 and suppose that the corrupt party has a budget

𝑏 ≤ 𝑚(𝐷)/2. Then the central agency can identify a truthful node, regardless of the strategy

of the corrupt party, and without the knowledge of either 𝑚(𝐷) or 𝑏. Furthermore, the central

agency’s algorithm runs in linear time.

The proof of Theorem 4.4.4 is similar to the proof of Theorem 4.3.2, and effectively

relates the problem of finding a truthful node on directed graphs to a similar notion of

vertex separability, suitably generalized to directed graphs.

Results for Finding An Arbitrary Number of Good Nodes In fact, the problem of fin-

ding one good node is just a special case of finding an arbitrary number of good nodes,

𝑔, on the graph 𝐺. We define 𝑚(𝐺,𝑔) as the minimal number of bad nodes required to

prevent the identification of 𝑔 good nodes on the graph 𝐺. We relate it to an analogous

vertex separation notion, and prove the following two theorems, which are extensions of

Theorems 4.3.2 and 4.3.5 to this setting.
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Theorem 4.5.3. Fix a graph 𝐺 and the number of good nodes to recover, 𝑔. Suppose that the

corrupt party has a budget 𝑏 ≤𝑚(𝐺,𝑔)/2. If 𝑔 < |𝑉 | − 2𝑏, then the central agency can identify 𝑔

truthful nodes, regardless of the strategy of the corrupt party, and without knowledge either of

𝑚(𝐺,𝑔) or 𝑏. Furthermore, the central agency’s algorithm runs in linear time.

Theorem 4.5.5. For every 𝛽 > 1 and every 0 < 𝛿 < 1 , there is a constant 𝜖 > 0 such that the

following is true. Given a graph 𝐺 = (𝑉 ,𝐸), it is SSE-hard to distinguish between the case where

𝑚(𝐺,𝛿|𝑉 |) ≤ 𝜖 · |𝑉 | and 𝑚(𝐺,𝛿|𝑉 |) ≥ 𝛽 · 𝜖 · |𝑉 |. Or in other words, the problem of approximating

the critical number of corrupt nodes such that it is impossible to find 𝛿|𝑉 | good nodes within

any constant factor is SSE-hard.

The proof of Theorem 4.5.5 is similar to the proof of Theorem 4.3.2, and the hardness

of approximation proof also relies on the same graph reduction and SSE conjecture. Proofs

are presented in Section 4.5.

4.1.3 Related Work

The model of corruptions posed by [6] is identical to a model first suggested by Preparata,

Metze, and Chien [135], who introduced the model in the context of detecting failed

components in digital systems. This work (as well as many follow-ups, e.g. [87, 99]) looked

at the problem of characterizing which networks can detect a certain number of corrupted

nodes. Xu and Huang [166] give necessary and sufficient conditions for identifying a

single corrupted node in a graph, although their characterization is not algorithmically

efficient. There are many other works on variants of this problem (e.g. [156, 37]), including

recovering node identities with one-sided or two-sided error probabilities in the local

reports [111] and adaptively finding truthful nodes [72].

We note that our model of a computationally bounded corrupt party and our stipulation

that the graph is fixed ahead of time rather than designed by the central agency, which

are our main contributions to the model, seem more naturally motivated in the setting

of corruptions than in the setting of designing digital systems. Even the question of

identifying a single truthful node could be viewed as more naturally motivated in the
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setting of corruptions than in the setting of diagnosing systems. We believe there are likely

more interesting theoretical questions to be discovered by approaching the PMC model

through a corruptions lens.

The identifiability of a single node in the corruptions setting was studied in a recent

paper of Mukwembi and Mukwembi [119]. They give a linear time greedy algorithm to

recover the identify of a single node in many graphs, provided that corrupt nodes always

report other corrupt nodes as truthful. Furthermore, this assumption allows them to reduce

identifying all nodes to identifying a single node. They argue that such an assumption is

natural in the context of corruptions, where corrupt nodes are selfishly incentivized not to

out each other. However, in our setting, corrupt nodes can not only betray each other, but

are in fact incentivized to do so for the good of the overarching goal of the corrupt party

(to prevent the central agency from identifying a truthful node). Given [119], it is not a

surprise that the near-optimal strategies we describe for the corrupt party in this paper

crucially rely on the fact that the nodes can report each other as corrupt.

Our problem of choosing the best subset of nodes to corrupt bears intriguing similarities

to the problem of influence maximization studied by [89], where the goal is to find an

optimal set of nodes to target in order to maximize the adoption of a certain technology or

product. It is an interesting question to see if there are further similarities between these

two areas. Additionally, social scientists have studied corruption extensively (e.g.[50],

[125]), though to the best of our knowledge they have not studied it in the graph-theoretic

way that we do in this paper.

4.1.4 Comparison to Corruption in Practice

Finally, we must address the elephant in the room. Despite our theoretical results, corrup-

tion is prevalent in many real-world networks, and yet in many scenarios it is not easy to

pinpoint even a single truthful node. One reason for that is that some of assumptions do

not seem to hold in some real world networks. For example, we assume that audits from

the truthful nodes are not only non-malicious, but also perfectly reliable. In practice this
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assumption is unlikely to be true: many truthful nodes could be non-malicious but simply

unable to audit their neighbors accurately. Further assumptions that may not hold in some

scenarios include the notion of a central agency that is both uncorrupted and has access to

reports from every agency, and possibly even the assumption that the number of corrupt

nodes is less than |𝑉 |/2. In addition, networks 𝐺 may have very low critical numbers 𝑚(𝐺)

in practice. For example, there could be a triangle (named, “President”, “Congress” and

“Houses”) that is all corrupt and cannot be audited by any agent outside the triangle. It is

thus plausible that a corrupt party could use the structure of realistic auditing networks

for their corruption strategy to overcome our worst-case hardness result.

While this points to some shortcomings of our model, it also points out ways to change

policy that would potentially bring the real world closer to our idealistic scenario, where a

corrupt party has a much more difficult computational task than the central agency. For

example, we can speculate that perhaps information should be gathered by a transparent

centralized agency, that significant resources should go into ensuring that the centralized

agency is not corrupt, and that networks ought to have good auditing structure (without

important agencies that can be audited by very few nodes).

4.2 Preliminaries

4.2.1 General Preliminaries

We denote undirected graphs by 𝐺 = (𝑉 ,𝐸), where 𝑉 is the vertex set of the graph and 𝐸 is

the edge set. We denote directed graphs by 𝐷 = (𝑉 ,𝐸𝐷). When the underlying graph is

clear, we may drop the subscripts. Given a vertex 𝑢 in an undirected graph 𝐺, we let𝒩 (𝑢)

denote the neighborhood (set of neighbors) of the vertex in 𝐺. Similarly, given a vertex 𝑢

in a directed graph 𝐷, let𝒩 (𝑢) denote the set of outgoing neighbors of 𝑢: that is, vertices

𝑣 ∈ 𝑉 such that (𝑢,𝑣) ∈ 𝐸𝐷 .

238



Vertex Separator

Definition 4.2.1. (k-vertex separator)([128],[17]) For any 𝑘 ≥ 0, we say a subset of vertices

𝑈 ⊆ 𝑉 is k-vertex separator of a graph 𝐺, if after removing 𝑈 and incident edges, the remaining

graph forms a union of connected components, each of size at most 𝑘.

Furthermore, let

𝑆𝐺(𝑘) = min
(︁
|𝑈 | :𝑈 is a 𝑘-vertex separator of 𝐺

)︁
denote the size of the minimal 𝑘-vertex separator of graph 𝐺.

Small Set Expansion Hypothesis

In this section we define the Small Set Expansion (SSE) Hypothesis introduced in [137].

Let 𝐺 = (𝑉 ,𝐸) be an undirected 𝑑-regular graph.

Definition 4.2.2 (Normalized edge expansion). For a set 𝑆 ⊆ 𝑉 of vertices, denote Φ𝐺(𝑆) as

the normalized edge expansion of 𝑆,

Φ𝐺(𝑆) =
|𝐸(𝑆,𝑉 ∖𝑆)|

𝑑|𝑆 |
,

where |𝐸(𝑆,𝑉 ∖𝑆)| is the number of edges between 𝑆 and 𝑉 ∖𝑆.

The Small Set Expansion Problem with parameters 𝜂 and 𝛿, denoted SSE(𝜂,𝛿), asks

whether 𝐺 has a small set 𝑆 which does not expand or all small sets of 𝐺 are highly

expanding.

Definition 4.2.3 ((SSE(𝜂,𝛿))). Given a regular graph 𝐺 = (𝑉 ,𝐸), distinguish between the

following two cases:

• Yes There is a set of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝛿|𝑉 | and Φ𝐺(𝑆) ≤ 𝜂

• No For every set of vertices 𝑆 ⊆ 𝑉 with 𝑆 = 𝛿|𝑉 | it holds that Φ𝐺(𝑆) ≥ 1− 𝜂

The Small Set Expansion Hypothesis is the conjecture that deciding SSE(𝜂,𝛿) is NP-hard.
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Conjecture 4.2.4 (Small Set Expansion Hypothesis [137]). For every 𝜂 > 0, there is a 𝛿 > 0

such that SSE(𝜂,𝛿) is NP-hard.

We say that a problem is SSE-hard if it is at least as hard to solve as the SSE problem.

The form of conjecture most relevant to our proof is the following “stronger” form of the

SSE Hypothesis. [138] showed that the SSE-problem can be reduced to a quantitatively

stronger form of itself. In order to state this version, we first need to define the Gaussian

noise stability.

Definition 4.2.5. (Gaussian Noise Stability) Let 𝜌 ∈ [−1,1]. Define Γ𝜌 : [0,1] ↦→ [0,1] by

Γ𝜌(𝜇) = 𝑃 𝑟[𝑋 ≤ Φ−1(𝜇)∧𝑌 ≤ Φ−1(𝜇)]

where 𝑋 and 𝑌 are jointly normal random variables with mean 0 and covariance matrix

⎛⎜⎜⎜⎜⎜⎜⎝1 𝜌

𝜌 1

⎞⎟⎟⎟⎟⎟⎟⎠ .
The only fact that we will use for stating the stronger form of SSEH is the asymptotic

behavior of Γ𝜌(𝜇) when 𝜌 is close to 1 and 𝜇 bounded away from 0.

Fact 4.2.6. There is a constant 𝑐 > 0 such that for all sufficiently small 𝜖 and all 𝜇 ∈ [1/10,1/2],2

Γ1−𝜖(𝜇) ≤ 𝜇(1− 𝑐
√
𝜖).

Conjecture 4.2.7 (SSE Hypothesis, Equivalent Formulation [138]). For every integer 𝑞 > 0

and 𝜖,𝛾 > 0, it is NP-hard to distinguish between the following two cases for a given regular

graph 𝐺 = (𝑉 ,𝐸):

• Yes There is a partition of 𝑉 into 𝑞 equi-sized sets 𝑆1, · · · ,𝑆𝑞 such that Φ𝐺(𝑆𝑖) ≤ 2𝜖 for

every 1 ≤ 𝑖 ≤ 𝑞.

• No For every 𝑆 ⊆ 𝑉 , letting 𝜇 = |𝑆 |/ |𝑉 |, it holds that Φ𝐺(𝑆) ≥ 1− (Γ1−𝜖/2(𝜇) +𝛾)/𝜇,

2Note that the lower bound on 𝜇 can be taken arbitrarily close to 0. So the statement holds with 𝜇 ∈ [𝜖′ ,1/2]
for any constant 𝜖′ > 0.
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where the Γ1−𝜖/2(𝜇) is the Gaussian noise stability.

We present two remarks about the Conjecture 4.2.7 from [9], which are relevant to our

proof of Theorem 4.3.5.

Remark 4.2.8. [9] The Yes instance of Conjecture 4.2.7 implies that the number of edges leaving

each 𝑆𝑖 is at most 4𝜖|𝐸|/𝑞, so the total number of edges not contained in one of the 𝑆𝑖 is at most

2𝜖|𝐸|.

Remark 4.2.9. [9] The No instance of Conjecture 4.2.7 implies that for 𝜖 sufficiently small,

there exists some constant 𝑐′ such that Φ𝐺(𝑆) ≥ 𝑐′
√
𝜖, provided that 𝜇 ∈ [1/10,1/2] and setting

𝛾 ≤
√
𝜖. In particular, |𝐸(𝑆,𝑉 ∖𝑆)| ≥Ω(

√
𝜖|𝐸|), for any |𝑉 |/10 ≤ |𝑆 | ≤ 9|𝑉 |/10. 3

Remark 4.2.8 follows from the definition of normalized edge expansion and the fact

that sum of degree is two times number of edges. Remark 4.2.9 follows from Fact 4.2.6. The

strong form of SSE Hypothesis 4.2.7, Remark 4.2.8, and Remark 4.2.9 will be particularly

helpful for proving our SSE-hardness of approximation result (Theorem 4.3.5).

4.2.2 Preliminaries for Corruption Detection on Networks

We model networks as directed or undirected graphs, where each vertex in the network

can be one of two types: truthful or corrupted. At times, we will informally call truthful

vertices “good” and corrupt vertices “bad.” We say that the corrupt party has budget 𝑏 if

it can afford to corrupt at most 𝑏 nodes of the graph. Given a vertex set 𝑉 , and a budget

𝑏, the corrupt entity will choose to control a subset of nodes ℬ ⊆ 𝑉 under the constraint

|ℬ| ≤ 𝑏. The rest of the graph remains as truthful vertices, i.e., 𝒯 = 𝑉 ∖ℬ ⊆ 𝑉 . We assume

that there are more truthful than corrupt nodes (𝑏 < |𝑉 |/2). It is easy to see that in the case

where |ℬ| ≥ |𝒯 |, the corrupt nodes can prevent the identification of even one truthful node,

by simulating truthful nodes (see e.g. [6]).

3Recall that Fact 4.2.6 is true for 𝜇 ∈ [𝜖′ ,1/2] for any constant 𝜖′ > 0. Therefore, Remark 4.2.9 can be
strengthened and states, for any 𝜖′ |𝑉 | ≤ |𝑆 | ≤ (1− 𝜖′)|𝑉 |, |𝐸(𝑆,𝑉 ∖𝑆)| ≥Ω(

√
𝜖|𝐸|). This will be a useful fact for

proving hardness of approximation of 𝑚(𝐺,𝑔) for finding many truthful nodes in Section 4.5.
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Each node audits and reports its (outgoing) neighbors’ identities. That is, each vertex

𝑢 ∈ 𝑉 will report the type of each 𝑣 ∈ 𝒩 (𝑢), which is a vector in {0,1}|𝒩 (𝑢)|. Truthful nodes

always report the truth, i.e., it reports its neighbor 𝑣 ∈ 𝒯 if 𝑣 is truthful, 𝑣 ∈ ℬ if 𝑣 is

corrupt. The corrupt nodes report their neighbors’ identities adversarially. In summary, a

strategy of the bad agents is composed of a strategy to take over at most 𝑏 nodes on the

graph, and reports on the nodes that neighbor them.

Definition 4.2.10 (Strategy for a corrupt party). A strategy for the corrupt party is a function

that maps a graph 𝐺 and budget 𝑏 to a subset of nodes ℬ with size |ℬ| ≤ 𝑏, and a set of reports

that each node 𝑣 ∈ ℬ gives about its neighboring nodes,𝒩 (𝑣).

Definition 4.2.11 (Computationally bounded corrupt party). We say that the corrupt

party is computationally bounded if its strategy can only be a polynomial-time computable

function.

The task for the central agency is to find a good node on this corrupted network, based

on the reports. It is clear that the more budget the corrupt party has, the harder the task

of finding one truthful node becomes. It was observed in [6] that, for any graph, it is

not possible to find one good node if 𝑏 ≥ |𝑉 |/2. If 𝑏 = 0, it is clear that the entire set 𝑉 is

truthful. Therefore, given an arbitrary graph 𝐺, there exists a critical number 𝑚(𝐺), such

that if the bad party has budget lower than 𝑚(𝐺), it is always possible to find a good node;

if the bad party has budget greater than or equal to 𝑚(𝐺), it may not be possible to find a

good node. In light of this, we define the critical number of bad nodes on a graph 𝐺. First,

we formally define what we mean when we say it is impossible to find a truthful node on a

graph 𝐺.

Definition 4.2.12 (Impossibility of finding one truthful node). Given a graph 𝐺 = (𝑉 ,𝐸),

the bad party’s budget 𝑏 and reports, we say that it is impossible to identify one truthful node

if for every 𝑣 ∈ 𝑉 there is a configuration of the identities of the nodes where 𝑣 is bad, and the

configuration is consistent with the given reports, and consists of fewer than or equal to 𝑏 bad

nodes.
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Definition 4.2.13 (Critical number of bad nodes on a graph 𝐺, 𝑚(𝐺)). Given an arbitrary

graph𝐺 = (𝑉 ,𝐸), we define𝑚(𝐺) as the minimum number 𝑏 such that there is a way to distribute

𝑏 corrupt nodes and set their corresponding reports such that it is impossible to find one truthful

node on the graph 𝐺, given 𝐺, the reports and that the bad party’s budget is at most 𝑏.

For example, for a star graph 𝐺 with |𝑉 | ≥ 5, the critical number of bad nodes is

𝑚(𝐺) = 2. If there is at most 1 corrupt node on 𝐺, the central agency can always find a

good node, thus 𝑚(𝐺) , 1. If there are at most 2 bad nodes on 𝐺, then the bad party can

control the center node and one of the leaves. It is impossible for central agency to find

one good node.

Given a graph 𝐺, by definition there exists some set of 𝑚(𝐺) nodes that can make it

impossible to find a good node if they are corrupted. However, this does not mean that

the corrupt party can necessarily find this set in polynomial time. Indeed, Theorem 4.3.5

establishes that they cannot always find this set in polynomial time if we assume the SSE

Hypothesis (Conjecture 4.2.7) and that P , NP.

4.3 Proofs of Theorems 4.3.2, 4.3.5, and 4.3.11

In the following section, we state our main results by first presenting the close relation

of our problem to the 𝑘-vertex separator problem. Then we use this characterization to

prove Theorem 4.3.2. This characterization will additionally be useful for the proofs of

Theorems 4.3.5 and 4.3.11, which we will give in Section 4.3.2 and Section 4.3.3.

4.3.1 2-Approximation by Vertex Separation

Lemma 4.3.1 (2-Approximation by Vertex Separation). The critical number of corrupt nodes

for graph𝐺,𝑚(𝐺), can be bounded by the minimal sum of 𝑘-vertex separator and 𝑘, min𝑘(𝑆𝐺(𝑘)+

𝑘), up to a factor of 2. i.e.,

1
2

min
𝑘

(𝑆𝐺(𝑘) + 𝑘) ≤𝑚(𝐺) ≤min
𝑘

(𝑆𝐺(𝑘) + 𝑘)
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Proof of Lemma 4.3.1. The direction 𝑚(𝐺) ≤min𝑘 𝑆𝐺(𝑘) + 𝑘 follows simply. Let

𝑘* = argmin𝑘(𝑆𝐺(𝑘) + 𝑘). If the corrupt party is given 𝑆𝐺(𝑘*) + 𝑘* nodes to corrupt on the

graph, it can first assign 𝑆𝐺(𝑘*) nodes to the separator, thus the remaining nodes are

partitioned into components of size at most 𝑘*. Then it arbitrarily assigns one of the

components to be all bad nodes. The bad nodes in the connected components report the

nodes in the same component as good, and report any node in the separator as bad. The

nodes in the separator can effectively report however they want (e.g. report all neighboring

nodes as bad). It is impossible to identify even one single good node, because all connected

components of size 𝑘 can potentially be bad, and all vertices in the separator are bad.

The direction (1/2)min𝑘(𝑆𝐺(𝑘) + 𝑘) ≤𝑚(𝐺) can be proved as follows. When there are

𝑏 =𝑚(𝐺) corrupt nodes distributed optimally in 𝐺, it is impossible to find a single good

node by definition, and therefore, in particular, the following algorithm (Algorithm 19)

cannot always find a good node:

Algorithm 19 Finding one truthful vertex on undirected graph 𝐺
Input: Undirected graph 𝐺

• If the reports on edge (𝑢,𝑣) does not equal to (𝑢 ∈ 𝒯 ,𝑣 ∈ 𝒯 ), remove both 𝑢,𝑣 and

any incident edges. Remove a pair of nodes in each round, until there are no bad

reports left.

• Call the remaining graph 𝐻 . Declare the largest component of 𝐻 as good.

Run Algorithm 19 on 𝐺, and suppose the first step terminates in 𝑖 rounds, then:

• No remaining node reports neighbors as corrupt

• |𝑉 | − 2𝑖 nodes remain in graph

• ≤ 𝑏 − 𝑖 bad nodes remain in the graph, because each time we remove an edge with

bad report, and one of the end points must be a corrupt vertex.
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Note that if two nodes report each other as good, they must be the same type (either

both truthful, or both corrupt.) Since graph 𝐻 only contains good reports, nodes within a

connected component of 𝐻 have the same types. If there exists a component of size larger

than 𝑏 − 𝑖, it exceeds bad party’s budget, and must be all good. Therefore, Algorithm 19

would successfully find a good node.

Since Algorithm 19 cannot find a good node, the bad party must have the budget

to corrupt the largest component of 𝐻 , which means it has size at most 𝑏 − 𝑖. Hence,

𝑆𝐺(𝑏 − 𝑖) ≤ 2𝑖. Plugging in 𝑏 =𝑚(𝐺), we get that

𝑚(𝐺) =
2𝑖
2

+ 𝑏 − 𝑖 ≥min
𝑘

(𝑆𝐺(𝑘)/2 + 𝑘) ≥ 1
2

min
𝑘

(𝑆𝐺(𝑘) + 𝑘),

where the first inequality comes from 2𝑖 ≥ 𝑆𝐺(𝑏 − 𝑖).

Furthermore, the upperbound in Lemma 4.3.1 additionally tells us that if corrupt

party’s budget 𝑏 ≤𝑚(𝐺)/2, the set output by Algorithm 19 is guaranteed to be good.

Theorem 4.3.2. Fix a graph 𝐺 and suppose that the corrupt party has a budget 𝑏 ≤ 𝑚(𝐺)/2.

Then the central agency can identify a truthful node, regardless of the strategy of the corrupt

party, and without knowledge of either 𝑚(𝐺) or 𝑏. Furthermore, the central agency’s algorithm

runs in linear time (in the number of edges in the graph 𝐺).

Proof of Theorem 4.3.2. Suppose the corrupt party has budget 𝑏 ≤𝑚(𝐺)/2. Run Algorithm

19. We remove 2𝑖 nodes in the first step, and separate the remaining graph 𝐻 into

connected components. Notice each time we remove an edge with bad report, at least

one of the end point is a corrupt vertex. So we have removed at most 2𝑏 ≤𝑚(𝐺) ≤ ⌈|𝑉 |/2⌉

nodes. Therefore, the graph 𝐻 is nonempty, and the nodes in any connected component of

𝐻 have the same identity. Let 𝑘* ≥ 1 be the size of the maximum connected component of

𝐻 . We can conclude that 𝑆𝐺(𝑘*) ≤ 2𝑖, since 2𝑖 is a possible size of 𝑘*-vertex separator of 𝐺.

Notice there are at most 𝑏 − 𝑖 ≤𝑚(𝐺)/2− 𝑖 bad nodes in 𝐻 by the same fact that at least

one bad node is removed each round. By the upper bound in Lemma 4.3.1,
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𝑏 − 𝑖 ≤𝑚(𝐺)/2− 𝑖 ≤min
𝑘

(𝑆𝐺(𝑘) + 𝑘)/2− 𝑖 ≤ (2𝑖 + 𝑘*)/2− 𝑖 ≤ 𝑘
*

2
.

Since 𝑘* ≥ 1, the connected component of size 𝑘* exceeds the bad party’s remaining

budget 𝑘*/2, and must be all good.

Algorithm 19 is linear time because it loops over all edges and removes any “bad” edge

that does not have reports (𝒯 ,𝒯 ) (takes ≤ |𝐸| time when we use a list with “bad” edges at

the front), and counts the size of the remaining components (≤ |𝑉 | time), and thus is linear

in |𝐸|.

Remark 4.3.3. Both bounds in Lemma 4.3.1 are tight. For the lower bound, consider a complete

graph with an even number of nodes. For the upper bound, consider a complete bipartite graph

with one side smaller than the other.

To elaborate on Remark 4.3.3, for the lower bound, in a complete graph with 𝑛 nodes,

the critical number of bad nodes is 𝑛/2, and min𝑘 𝑆𝐺(𝑘) + 𝑘 = 𝑛.

For the upper bound, consider a complete bipartite graph 𝐺 = (𝑉 ,𝐸). The vertex set is

partitioned into two sets 𝑉 = 𝑆1 ∪ 𝑆2 where the induced subgraphs on 𝑆1 and 𝑆2 consist

of isolated vertices, and every vertex 𝑢 ∈ 𝑆1 is connected with every vertex 𝑣 ∈ 𝑆2. The

smallest sum of 𝑘-vertex separator with 𝑘 is obtained with 𝑘 = 1, i.e., min𝑘 𝑆𝐺(𝑘) + 𝑘 =

min{|𝑆1|, |𝑆2|}+ 1. We argue that this is also the minimal number of bad nodes needed to

corrupt the graph. Without loss of generality , let |𝑆1| < |𝑆2|. If the bad party controls all

of 𝑆1 plus one node in 𝑆2, it can prevent the identification of a good node. On the other

hand, if the bad party controls 𝑏 < |𝑆1|+ 1 nodes, then we can always identify a good node.

Specifically, we are in one of the following cases:

1. The bad party does not control all of 𝑆1. Then there will be a connected component

of size 𝑛− 𝑏 > 𝑏 that report each other as good, because the bad nodes cannot control

all of 𝑆2, and any induced subgraph of a complete bipartite graph with nodes on

both sides is connected.

2. The bad party controls all of 𝑆1. In this case, the largest connected component of
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nodes that all report each other as good is only 1. However, in this case, we conclude

that the bad nodes must control all of 𝑆1 and no other node (due to their budget).

Hence, any node in 𝑆2 is good.

We end by discussing that the efficient algorithm given in this section does not address

the regime when the budget of the bad party, 𝑏, falls in 𝑚(𝐺)/2 < 𝑏 ≤ 𝑚(𝐺). Though

by definition of 𝑚(𝐺), the central agency can find at least one truthful node as long

as 𝑏 ≤ 𝑚(𝐺), by, for example, enumerating all possible assignments of good/bad nodes

consistent with the report, and check the intersection of the assignment of good nodes.

However, it is not clear that the central agency has a polynomial time algorithm for doing

this. Of course, one can always run Algorithm 19, check whether the output set exceeds

𝑏− 𝑖/2, and concludes that the output set is truthful if that is the case. However, there is no

guarantee that the output set will be larger than 𝑏 − 𝑖/2 if 𝑚(𝐺)/2 < 𝑏 ≤𝑚(𝐺). We propose

the following conjecture:

Conjecture 4.3.4. Fix a graph 𝐺 and suppose that the corrupt party has a budget 𝑏 such that

𝑚(𝐺)/2 < 𝑏 ≤𝑚(𝐺). The problem of finding one truthful node given the graph 𝐺, bad party’s

budget 𝑏 and the reports is NP-hard.

4.3.2 SSE-Hardness of Approximation for 𝑚(𝐺)

In this section, we show the hardness of approximation result for𝑚(𝐺) within any constant

factor under the Small Set Expansion (SSE) Hypothesis [137]. Specifically, we prove

Theorem 4.3.5.

Theorem 4.3.5. For every 𝛽 > 1, there is a constant 𝜖 > 0 such that the following is true. Given

a graph 𝐺 = (𝑉 ,𝐸), it is SSE-hard to distinguish between the case where 𝑚(𝐺) ≤ 𝜖 · |𝑉 | and

𝑚(𝐺) ≥ 𝛽 ·𝜖 · |𝑉 |. Or in other words, the problem of approximating the critical number of corrupt

nodes for a graph to within any constant factor is SSE-hard.

In order to prove Theorem 4.3.5, we construct a reduction similar to [9], and show

that the bad party can control auxiliary graph of the Yes case of SSE with 𝑏 =𝑂(𝜖|𝑉 ′ |) and
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cannot control the auxiliary graph of the No case of SSE with 𝑏 = Ω(𝜖0.51|𝑉 ′ |).

Given an undirected 𝑑-regular graph 𝐺 = (𝑉 ,𝐸), construct an auxiliary undirected

graph 𝐺′ = (𝑉 ′,𝐸′) in the following way [9]. Let 𝑟 = 𝑑/2. For each vertex 𝑣𝑖 ∈ 𝑉 , make 𝑟

copies of 𝑣𝑖 and add to the vertex set of 𝐺′, denoted 𝑣𝑖1, · · · ,𝑣𝑖𝑟 . Denote the resulting set

of vertices as 𝑉 = 𝑉 × {1, · · · , 𝑟}. Each edge 𝑒𝑘 ∈ 𝐸 of 𝐺 becomes a vertex in 𝐺′, denoted 𝑒𝑘.

Denote this set of vertices as �̃�. In other words, 𝑉 ′ = 𝑉 ∪ �̃� = 𝑉 × {1, · · · , 𝑟} ∪𝐸. There exists

an edge between a vertex 𝑣𝑖𝑗 and a vertex 𝑒𝑘 of 𝐺′ if 𝑣𝑖 and 𝑒𝑘 were adjacent edge and vertex

pair in 𝐺. Note that 𝐺′ is a bipartite 𝑑-regular graph with 𝑑/2|𝑉 |+ |𝐸| = 2|𝐸| vertices.

Lemma 4.3.6. Suppose 𝑞 = 1/𝜖, and 𝐺 can be partitioned into 𝑞 equi-sized sets 𝑆1, · · · ,𝑆𝑞 such

that Φ𝐺(𝑆𝑖) ≤ 2𝜖 for every 1 ≤ 𝑖 ≤ 𝑞. Then the bad party can control the auxiliary graph 𝐺′ with

at most 4𝜖|𝐸| = 2𝜖|𝑉 ′ | nodes.

Proof of Lemma 4.3.6. Notice by Remark 4.2.8, the total number of edges in 𝐺 not contai-

ned in one of the 𝑆𝑖 is at most 2𝜖|𝐸|.

This implies that a strategy for the bad party to control graph 𝐺′ is as follows. Control

vertex 𝑒𝑘 ∈ �̃� if 𝑒𝑘 ∈ 𝐸 is not contained in any of the 𝑆𝑖s in 𝐺. Call the set of such vertices

𝐸* ⊆ �̃�. Let 𝑆*𝑖 ⊆ 𝑉
′ be the set that contains all 𝑟 copies of nodes in 𝑆𝑖 ⊆ 𝑉 . Control one of

the 𝑆*𝑖 𝑠, say 𝑆*1. Control all the edge nodes in �̃� that are adjacent to 𝑆*1. Call this set𝒩 (𝑆*1).

The corrupt nodes in 𝑆*1 ∪𝒩 (𝑆*1) report their neighbors in 𝑆*1 ∪𝒩 (𝑆*1) as good, and report

𝐸* as bad. Nodes in 𝐸* can effectively report however they want; suppose they report every

neighboring node as bad. Then, it is impossible to identify even one truthful node, since

assigning any 𝑆*𝑖 as corrupt is consistent with the report and within bad party’s budget.

This strategy controls |𝐸*|+ |𝑆*𝑖 |+ |𝒩 (𝑆*1)∖𝐸*| nodes on 𝐺′. Note that |𝒩 (𝑆*1)∖𝐸*| is equal

to the number of edges that are totally contained in 𝑆1 on 𝐺, which is bounded by |𝑆1| ·𝑑/2

(that is if all edges adjacent to 𝑆1 are totally contained in 𝑆1). If 𝑞 = 1/𝜖, this strategy

amounts to controlling |𝐸*|+ |𝑆*𝑖 |+ |𝒩 (𝑆*1)∖𝐸*| ≤ 2𝜖|𝐸|+𝑑/2 · |𝑉 |/𝑞+ |𝑉 |/𝑞 ·𝑑/2 = 4𝜖|𝐸| = 2𝜖|𝑉 ′ |

nodes on 𝐺′. Notice, this number is guaranteed to be smaller than 1/2|𝑉 ′ |, as long as 𝑞 > 4.

Note that, different from the argument in [9], we cannot take 𝑟 to be arbitrarily large
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(e.g. > 𝑂(|𝑉 ||𝐸|)). This is because when 𝑟 is large, 2𝜖|𝐸|+𝑟 · |𝑉 |/𝑞 =𝑂(𝜖(|𝐸|+ |𝑉 ′ |)) =𝑂(𝜖|𝑉 ′ |),

and will not be comparable with the 𝑂(
√
𝜖|𝐸|) in Lemma 4.3.7.

Lemma 4.3.7. Let 𝐺 = (𝑉 ,𝐸) be an undirected 𝑑-regular graph with the property that for every

|𝑉 |/10 ≤ |𝑆 | ≤ 9|𝑉 |/10 we have |𝐸(𝑆,𝑉 ∖ 𝑆)| ≥ Ω(
√
𝜖|𝐸|). If bad party controls 𝑂(𝜖0.51|𝐸|) =

𝑂(𝜖0.51|𝑉 ′ |) < 1/2|𝑉 ′ | nodes on the auxiliary graph 𝐺′ constructed from 𝐺, we can always find

a truthful node on 𝐺′.

Proof of Lemma 4.3.7. Assume towards contradiction that the bad party controls𝑂(𝜖0.51|𝐸|)

vertices of graph 𝐺′, and we can’t identify a truthful node.

Claim 4.3.8. If the bad party controls 𝑂(𝜖0.51|𝐸|) vertices of graph 𝐺′, and it is impossible to

identify a truthful node, then there exists a set 𝐶 of size 𝑂(𝜖0.51|𝐸|) and separates 𝑉 ′∖𝐶 into sets

{𝒯 ′𝑖 }𝑖=1,··· ,ℓ, each of size 𝑂(𝜖0.51|𝐸|).

Proof of Claim 4.3.8. Since the bad nodes can control 𝐺′ with 𝑂(𝜖0.51|𝐸|) vertices, 𝑚(𝐺′) ≤

𝑂(𝜖0.51|𝐸|). By the lower bound in Lemma 4.3.1, min𝑘(𝑆𝐺′ (𝑘) + 𝑘) ≤ 2𝑚(𝐺′) ≤ 𝑂(𝜖0.51|𝐸|).

Let 𝑘* = argmin𝑘(𝑆𝐺′ (𝑘) + 𝑘). Then 𝑘* ≤ 𝑂(𝜖0.51|𝐸|), 𝑆𝐺′ (𝑘*) ≤ 𝑂(𝜖0.51|𝐸|). By definition of

𝑆𝐺′ (𝑘*), there exists a set of size 𝑆𝐺′ (𝑘*) whose removal separates the remainder of the

graph 𝐺′ to connected components of size at most 𝑘*.

Let 𝐶 and 𝒯 ′𝑖 be the sets guaranteed by Claim 4.3.8. Note we have taken 𝑟 = 𝑑/2, and

thus |𝑉 | = |�̃�|. In other words, half of the 𝑉 ′ are “vertex” vertices 𝑉 , and half are “edge”

vertices �̃�. Therefore, with sufficiently small 𝜖, |𝐶∩𝑉 | ≤ |𝐶| < 1/2|𝑉 |, |(∪ℓ𝑖=1𝒯
′
𝑖 )∩𝑉 | ≥ 1/2|𝑉 |,

|𝒯 ′𝑖 ∩𝑉 | ≤ |𝒯
′
𝑖 | < 3/10|𝑉 | for every 𝑖. Therefore, we can merge the different 𝒯 ′𝑖 s in Claim 4.3.8,

and have two sets 𝒯 ′1 and 𝒯 ′2 , such that |𝒯 ′1 ∩𝑉 | ≥ |𝑉 |/5 and |𝒯 ′2 ∩𝑉 | ≥ |𝑉 |/5. Furthermore,

𝒯 ′1 and 𝒯 ′2 are disjoint, and 𝒯 ′1 ,𝒯
′

2 , and 𝐶 cover 𝑉 ′.

Similar to the proof of Lemma 5.1 in [9], we let 𝒯1 ⊆ 𝑉 (resp. 𝒯2 ⊆ 𝑉 ) be the set of

vertices 𝑣 ∈ 𝑉 such that some copy of 𝑣 appears in 𝒯 ′1 (resp. 𝒯 ′2 ). Let 𝑆 ⊆ 𝑉 be the set of

vertices 𝑣 ∈ 𝑉 such that all copies of 𝑣 appear in 𝐶. Since |𝒯 ′1 ∩𝑉 |, |𝒯
′

2 ∩𝑉 | ≥ |𝑉 |/5 = 𝑟 |𝑉 |/5,

both |𝒯1|, |𝒯2| ≥ |𝑉 |/5. Furthermore, we observe that 𝒯1 ∪𝒯2 ∪ 𝑆 = 𝑉 , which follows since

𝒯 ′1 ∪𝒯
′

2 ∪𝐶 = 𝑉 ′. Now we can lower bound |𝒯1 ∪𝒯2| as follows.
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|𝒯1 ∪𝒯2| = |𝑉 ∖𝑆 | ≥ |𝑉 | − |𝐶|/𝑟 ≥ |𝑉 | − 𝑐𝜖0.51|𝐸|/𝑟 = |𝑉 | − 𝑐𝜖0.51|𝑉 |,

where the first equality uses the fact that 𝒯1∪𝒯2∪𝑆 = 𝑉 and that 𝒯1∪𝒯2 is disjoint from 𝑆,

and the following inequality uses the fact that |𝑆 | ≤ |𝐶|/𝑟, which follows by definition.

Since |𝒯1 ∪𝒯2| is sufficiently large, we can find a balanced partition of 𝒯1 ∪𝒯2 into sets

𝑆1 ⊆ 𝒯1, 𝑆2 ⊆ 𝒯2, such that 𝑆1 ∩ 𝑆2 = ∅,𝑆1 ∪ 𝑆2 = 𝒯1 ∪ 𝒯2, and |𝑉 |/10 ≤ |𝑆1|, |𝑆2| ≤ 9|𝑉 |/10.

From the property of 𝐺 that 𝐸(𝑆,𝑉 ∖ 𝑆) ≥Ω(
√
𝜖|𝐸|) in Lemma 4.3.7 and the fact that 𝐺 is

𝑑-regular, we know that

𝐸(𝑆1,𝑆2) = 𝐸(𝑆1,𝑉 ∖ 𝑆1)−𝐸(𝑆1,𝑆) ≥ 𝛼
√
𝜖|𝐸| − 𝑑(𝜖0.51|𝐸|/𝑟) = 𝛼

√
𝜖|𝐸| − 2𝜖0.51|𝐸| = Ω(

√
𝜖|𝐸|),

for some constant 𝛼. In the first equality we use the fact that 𝑆1,𝑆2,𝑆 form a partition

of 𝑉 . Thus 𝐸(𝑆1,𝑉 ∖𝑆1) = 𝐸(𝑆1,𝑆2 ∪ 𝑆) = 𝐸(𝑆1,𝑆2) +𝐸(𝑆1,𝑆).

Note that since 𝑆1 ⊆ 𝒯1 and 𝑆2 ⊆ 𝒯2, and 𝒯 ′1 and 𝒯 ′2 do not have edge between them

in 𝐺′, the edges 𝐸(𝑆1,𝑆2) all have to land as "edge vertices" in 𝐶. In other words, for any

𝑢 ∈ 𝑆1, and 𝑣 ∈ 𝑆2, if (𝑢,𝑣) ∈ 𝐸, then the vertex (𝑢,𝑣) ∈ 𝑉 ′ has to be included in the set 𝐶,

thus |𝐶| ≥Ω(
√
𝜖|𝐸|).

This contradicts the fact that there are only 𝑂(𝜖0.51|𝐸|) vertices in 𝐶.

Combining Lemma 4.3.6 and Lemma 4.3.7, Theorem 4.3.5 follows in standard fashion.

We give a proof here for completeness.

Proof of Theorem 4.3.5. Suppose for contradiction that there exists some constant 𝛽 > 0

such that there is polynomial time algorithm 𝒜 that does the following. For any 𝜖′ > 0 and

an arbitrary graph 𝐺′ = (𝑉 ′,𝐸′), it can distinguish between the case where 𝑚(𝐺′) ≤ 𝜖′ · |𝑉 ′ |

and 𝑚(𝐺′) ≥ 𝛽 · 𝜖′ · |𝑉 ′ |. Specifically, we will suppose this holds for 𝜖′ < 1
𝛽2.05 . Then we can

use this algorithm to decide the SSE problem as follows.
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Fix 𝜖 < 1
1.5𝛽2.05 , 𝑞 = 1/𝜖, 𝛾 > 0 sufficiently small (≤ 𝑜(

√
𝜖) suffices). Let 𝐺 = (𝑉 ,𝐸) be an ar-

bitrary input to the resulting instance of the SSE decision problem (from Conjecture 4.2.7).

Construct the graph 𝐺′ = (𝑉 ′,𝐸′) from 𝐺 as done in the beginning of Section 4.3.2.

If 𝐺 was from the YES case of Conjecture 4.2.7, then 𝑚(𝐺′) ≤ 1.5𝜖|𝑉 ′ | (Lemma 4.3.6).

If 𝐺 was from the NO case of Conjecture 4.2.7, then 𝑚(𝐺′) > 𝜖0.51|𝑉 ′ | (Lemma 4.3.7). We

can invoke our algorithm 𝒜 to distinguish these two cases, by letting 𝜖′ = 1.5𝜖 and noting

that 𝛽 < (1/(𝜖′)0.49) by design, which would decide the problem in Conjecture 4.2.7 in

polynomial time.

Now, we can obtain the following Corollary 4.3.9 from Theorem 4.3.5.

Corollary 4.3.9. Assume the SSE Hypothesis and that P , NP. Fix any 𝛽 > 1. There does not

exist a polynomial-time algorithm that takes as input an arbitrary graph 𝐺 = (𝑉 ,𝐸) and outputs

a set of nodes 𝑆 with size |𝑆 | ≤𝑂(𝛽 ·𝑚(𝐺)), such that corrupting 𝑆 prevents the central agency

from finding a truthful node.

In summary, the analysis in this section tells us that given an arbitrary graph, it is

hard for bad party to corrupt the graph with minimal resources. On the other hand, if the

budget of bad nodes is a factor of two less than 𝑚(𝐺), a good party can always be detected

with an efficient algorithm, e.g. using Algorithm 19.

4.3.3 An 𝑂(log |𝑉 |) Approximation Algorithm for 𝑚(𝐺)

In light of the SSE-hardness of approximation of 𝑚(𝐺) within any constant, and the close

relation of 𝑚(𝐺) with 𝑘-vertex separator, we leverage the best known approximation result

for 𝑘-vertex separator to propose an 𝑂(log𝑛) approximation algorithm for 𝑚(𝐺). It is

useful as a test for central authorities for measuring how corruptible a graph is. Notably,

it is also a potential algorithm for (computationally restricted) bad party to use to decide

which nodes to corrupt.

The paper [105] presents an bicritera approximation algorithm for 𝑘-vertex separator,

with the guarantee that for each 𝑘, the algorithm finds a subset 𝐴𝑘 ⊆ 𝑉 such that |𝐴𝑘 | ≤

251



𝑂( log𝑘
𝜖 ) · 𝑆𝐺(𝑘), and the induced subgraph 𝐺𝑉 ∖𝐴𝑘 is divided into connected components

each of size at most 𝑘/(1− 2𝜖) vertices.

Proposition 4.3.10 (Theorem 1.1, [105]). For any 𝜖 ∈ (0,1/2), there is a polynomial-time

( 1
1−2𝜖 ,𝑂( log𝑘

𝜖 ))- bicriteria approximation algorithm for 𝑘-vertex separator.

Interested readers can refer to [105] Section 3 for the description of the algorithm. Le-

veraging this algorithm for 𝑘-vertex separator, we can obtain a polynomial-time algorithm

for seeding corrupt nodes and preventing the identification of a truthful node.

Theorem 4.3.11 (𝑂(log |𝑉 |) Approximation Algorithm). There is a polynomial-time algo-

rithm that takes as input a graph 𝐺 = (𝑉 ,𝐸) and outputs a set of nodes 𝑆 with size |𝑆 | ≤

𝑂(log |𝑉 | ·𝑚(𝐺)), such that corrupting 𝑆 prevents the central agency from finding a truthful

node.

Proof. The algorithm is as follows. Call the bicriteria algorithm for approximating 𝑘-vertex

separator in [105] 𝑛 times, once for each 𝑘 in 𝑘 = 1, · · · ,𝑛, where 𝑛 = |𝑉 |. Each time the

algorithm outputs a set of vertices 𝐴𝑘 that divides the remaining graph into connected

components with maximum size 𝑔(𝑘). Choose the 𝑘* for which the algorithm outputs the

smallest value of min𝑘 |𝐴𝑘 |+ 𝑔(𝑘). The bad party can control 𝐴𝑘* and one of the remaining

connected components (the size of which is at most 𝑔(𝑘*)), and be sure to prevent the

identification of one good node, by the same argument that lead to the upper bound in

Lemma 4.3.1.

We now prove that |𝐴𝑘* | + 𝑔(𝑘*) is an 𝑂(log |𝑉 |) approximation for the quantity of

consideration min𝑘 𝑆𝐺(𝑘) + 𝑘. For each 𝑘, we denote our approximation for 𝑆𝐺(𝑘) + 𝑘 as

𝑓 (𝑘) := |𝐴𝑘 |+ 𝑔(𝑘). Then by the guarantee given in Proposition 4.3.10, we know

𝑓 (𝑘) = |𝐴𝑘 |+ 𝑔(𝑘) ≤𝑂
(︃

log𝑘
𝜖

)︃
· 𝑆𝐺(𝑘) +

1
1− 2𝜖

𝑘 ≤𝑂
(︃

log𝑘
𝜖

)︃
· (𝑆𝐺(𝑘) + 𝑘).

Thus

min
𝑘
𝑓 (𝑘) ≤min

𝑘
𝑂

(︃
log𝑘
𝜖

)︃
· (𝑆𝐺(𝑘) + 𝑘) ≤𝑂

(︃
log𝑛
𝜖

min
𝑘

(𝑆𝐺(𝑘) + 𝑘)
)︃
≤𝑂 (log𝑛 ·𝑚(𝐺)) .
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The last inequality follows from the fact that that min𝑘(𝑆𝐺(𝑘)+𝑘)/2 ≤𝑚(𝐺) ≤min𝑘(𝑆𝐺(𝑘)+

𝑘) in Lemma 4.3.1, and by taking 𝜖 to be a fixed constant, e.g. 𝜖 = 1/3. So min𝑘 𝑓 (𝑘)

provides an 𝑂(log𝑛) approximation of 𝑚(𝐺). The algorithm consists of 𝑛 calls of the

polynomial-time algorithm in Proposition 4.3.10, so is also polynomial-time.

4.4 Directed Graphs

Here we present the variant of our problem on directed graphs. As discussed in [6], this is

motivated by the fact that in various auditing situations, it may not be natural that any 𝑢

will be able to inspect 𝑣 whenever 𝑣 inspects 𝑢.

Given a directed graph 𝐷 = (𝑉 ,𝐸𝐷), we are asked to to find 𝑚(𝐷), the minimal number

of corrupted agents needed to prevent the identification of a single truthful agent. Firstly,

since undirected graphs are special cases of directed graphs, it is clear that the worst case

hardness of approximation results still hold. In this section, we will define a analogous

notion of vertex separator relevant to corruption detection for directed graphs, and state

the version of Theorem 4.3.2 for directed graphs.

Definition 4.4.1 (Reachability Index). On a directed graph 𝐷 = (𝑉 ,𝐸𝐷), say a vertex 𝑠 can

reach a vertex 𝑡 if there exists a sequence of adjacent vertices (i.e. a path) which starts with 𝑠 and

ends with 𝑡. Let 𝑅𝐷(𝑣) be the set of vertices that can reach a vertex 𝑣. Define the reachability

index of 𝑣 as |𝑅𝐷(𝑣)|, or in other words, as the total number of nodes that can reach 𝑣.

Based on the notion of reachability index, we design the following algorithm, Algorithm

20, for detecting one good node on directed graphs:
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Algorithm 20 Finding one truthful vertex on directed graph 𝐷
Input: Directed graph 𝐷

• If node 𝑢 reports node 𝑣 as corrupt, remove both 𝑢,𝑣 and any incident edges (inco-

ming and outgoing). Remove a pair of nodes in each round. Continue until there are

no bad reports left.

• Call the remaining graph 𝐻 = (𝑉𝐻 ,𝐸𝐻 ). Declare a vertex in 𝐻 with maximum

reachability index as good.

Run Algorithm 20 on directed graph 𝐷, and suppose the first step terminates in 𝑖

rounds. Then:

• No remaining node reports out-neighbors as corrupt

• |𝑉 | − 2𝑖 nodes remain in graph

• ≤ 𝑏 − 𝑖 bad nodes remain in the graph, because each round in step 1 removes at least

one bad node.

The main idea is that, if there exists a node 𝑣 with reachability index larger than 𝑏 − 𝑖,

at least 𝑏− 𝑖 nodes claim (possibly indirectly) that 𝑣 is good, which means at least one good

node also reports 𝑣 as good, and thus 𝑣 must be good. In the rest of the section, we use

this observation to generalize Theorem 4.3.2.

We define a notion similar to 𝑘-vertex separator on directed graphs, show that our

notion provides a 2-approximation for 𝑚(𝐷) when 𝐷 is a directed graph, and that the

equivalent of Theorem 4.3.2 also holds in the directed case.

Definition 4.4.2 (𝑘-reachability separator). We say a set of vertices 𝑆 ⊆ 𝑉 is a 𝑘-reachability

separator of a directed graph 𝐷 = (𝑉 ,𝐸𝐷) if after the removal of 𝑆 and any adjacent edges, all

vertices in the remaining graph are of reachability at most 𝑘.

Since in an undirected graph, any pair of vertices can reach each other if and only if

they belong to the same connected component, one can check that 𝑘-reachability separator
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on an undirected graph is exactly equivalent to a 𝑘-vertex separator. Thus we use a similar

notation, 𝑆𝐷(𝑘), to denote the size of the minimal 𝑘-reachability separator on 𝐷.

Lemma 4.4.3 (2-Approximation Lemma on Directed Graphs).

1
2

min
𝑘

(𝑆𝐷(𝑘) + 𝑘) ≤𝑚(𝐷) ≤min
𝑘

(𝑆𝐷(𝑘) + 𝑘)

Proof. The direction𝑚(𝐷) ≤min𝑘 𝑆𝐷(𝑘)+𝑘 is proved as follows. Let 𝑘* = argmin𝑘(𝑆𝐷(𝑘)+𝑘).

If the corrupt party is given min𝑘(𝑆𝐷(𝑘)+𝑘) nodes to allocate on 𝐷, it can first assign 𝑆𝐷(𝑘*)

nodes to a 𝑘*-reachability separator 𝐶, such that the remaining nodes have reachability in-

dex at most 𝑘*. Then it arbitrarily assigns one of the vertices 𝑣* with maximum reachability

index plus its 𝑅𝐻 (𝑣*) as bad. The bad nodes in 𝑅𝐻 (𝑣*) report any neighbor in the separator

𝐶 as bad and any other neighbor as good. The nodes in the separator can effectively report

however they want (e.g. report all neighboring nodes as bad).

It is impossible to detect a single good node, because every node 𝑣 can only be reached

by 𝑅𝐻 (𝑣) and 𝐶. For every 𝑣 ∈𝐻 , it being assigned as corrupt or good is consistent with

the reports. If 𝑣 is corrupt, 𝑅𝐻 (𝑣) is also assigned as corrupt, thus all nodes in 𝐻 receive

good reports from 𝑅𝐻 (𝑣), bad reports from 𝐶 and give bad reports to 𝐶. If 𝑣 is truthful, all

nodes still receive and give the same reports. So for every 𝑣 ∈ 𝑉𝐻 , assigning 𝑅𝐻 (𝑣) as bad,

and 𝑉𝐻 ∖𝑅𝐻 (𝑣) as good is consistent with the observed reports. It is impossible to find a

good node in 𝐻 by definition.

The proof for 1/2min𝑘(𝑆𝐷(𝑘) + 𝑘) ≤𝑚(𝐷) is given by Algorithm 20. Let there be 𝑚(𝐷)

bad nodes distributed optimally on the graph. By definition, these nodes prevent the

identification of a good node. Run Algorithm 20, and suppose the first step terminates in 𝑖

rounds. This means we have removed at least 𝑖 bad nodes, and there are at most 𝑚(𝐷)− 𝑖

bad nodes left on 𝐻 . If there exists a node on 𝐻 with reachability 𝑚(𝐷)− 𝑖, then this node

must be truthful, since there are not enough bad nodes left to corrupt all the nodes that

can reach it, and all the reports in the remaining graph are good. Thus |𝑅(𝑣)| < 𝑚(𝐷)− 𝑖 for

any 𝑣. Therefore, the set of 2𝑖 removed nodes must be an 𝑚(𝐷)− 𝑖 reachability separator.

Hence, we can bound 𝑚(𝐷) as follows.
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𝑚(𝐷) = (𝑚(𝐷)− 𝑖) + 2𝑖/2 ≥min
𝑘

(𝑘 + 𝑆𝐷(𝑘)/2) ≥ 1
2

min
𝑘

(𝑆𝐷(𝑘) + 𝑘)

where the first inequality follows from the fact that 2𝑖 ≥ 𝑆𝐷(𝑚(𝐷)− 𝑖).

Theorem 4.4.4. Fix a directed graph 𝐷 and suppose that the corrupt party has a budget

𝑏 ≤ 𝑚(𝐷)/2. Then the central agency can identify a truthful node, regardless of the strategy

of the corrupt party, and without the knowledge of either 𝑚(𝐷) or 𝑏. Furthermore, the central

agency’s algorithm runs in linear time.

Proof of Theorem 4.4.4. Suppose the corrupt party has budget 𝑏 ≤𝑚(𝐷)/2. Run Algorithm

20. Notice each time we remove an edge with bad report, at least one of the end point

is a corrupt vertex. So we have removed at most 2𝑏 ≤ 𝑚(𝐷) ≤ ⌈|𝑉 |/2⌉ nodes. Therefore,

the graph 𝐻 is nonempty. Let 𝑘* ≥ 1 be the maximum reachability index in 𝐻 . Since

𝑏 ≤ 𝑚(𝐷)/2, and there are no bad reports in 𝐻 , the reachability index of a bad node in

graph 𝐻 is at most 𝑚(𝐷)/2− 𝑖 ≤min𝑘(𝑆𝐷(𝑘) + 𝑘)/2− 𝑖 ≤ (2𝑖 + 𝑘*)/2− 𝑖 = 𝑘*/2 < 𝑘*.

Then a vertex with reachability index 𝑘* must be found by Algorithm 20, and must be

a truthful node. The linear runtime 𝑂(|𝐸𝐷 |) follows from the same analysis as in the proof

of Theorem 4.3.2.

4.5 Finding an Arbitrary Fraction of Good Nodes on a Graph

Being able to detect one good node may seem limited, but in fact, the same arguments

and construction can be adapted to show that approximating the critical number of bad

nodes to prevent detection of any arbitrary 𝛿 fraction of good nodes is SSE-hard. In this

section, we propose the definition of 𝑔-remainder 𝑘-vertex separator, a vertex separator

notion related to identifying arbitrary number of good nodes, present a 2-approximation

result, and prove hardness of approximation with arguments similar to proof of Theorem

4.3.5 in Section 4.3.2.

We abuse notation and define 𝑚(𝐺,𝑔) to be the minimal number of bad nodes needed

to prevent the identification of 𝑔 nodes.
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Definition 4.5.1 (𝑚(𝐺,𝑔)). We define 𝑚(𝐺,𝑔) as the minimal number of bad nodes such that it

is impossible to find 𝑔 good nodes in 𝐺. In particular, 𝑚(𝐺) =𝑚(𝐺,1).

Definition 4.5.2 (𝑔-remainder 𝑘-vertex Separator). Consider the following separation pro-

perty: after the removal of a vertex set 𝑆, the remaining graph 𝐺𝑉 ∖𝑆 is a union of connected

components, where connected components of size larger than 𝑘 sum up to size less than 𝑔. We

call such a set 𝑆 a 𝑔-remainder 𝑘-vertex separator of 𝐺.

For any integer 0 < 𝑘,𝑔 < |𝑉 |, we denote the minimal size of such a set as 𝑆𝐺(𝑘,𝑔). In

particular, a minimal 𝑘-vertex separator is a 1-remainder 𝑘-vertex separator, i.e., 𝑆𝐺(𝑘) =

𝑆𝐺(𝑘,1).

Theorem 4.5.3. Fix a graph 𝐺 and the number of good nodes to recover, 𝑔. Suppose that the

corrupt party has a budget 𝑏 ≤𝑚(𝐺,𝑔)/2. If 𝑔 < |𝑉 | − 2𝑏, then the central agency can identify 𝑔

truthful nodes, regardless of the strategy of the corrupt party, and without knowledge either of

𝑚(𝐺,𝑔) or 𝑏. Furthermore, the central agency’s algorithm runs in linear time.

Algorithm 21 Finding 𝑔 truthful vertices on an undirected graph 𝐺
Input: Undirected graph 𝐺

• If the reports on edge (𝑢,𝑣) does not equal to (𝑢 ∈ 𝒯 ,𝑣 ∈ 𝒯 ), remove both 𝑢,𝑣 and

any incident edges. Remove a pair of nodes in each round, until there are no bad

reports left.

• Suppose the previous step terminates in 𝑖 rounds. In the remaining graph 𝐻 , rank

the connected component from large to small by size. Declare the largest component

as good and remove the declared component until we have declared 𝑔 nodes as good.

Proof of Theorem 4.5.3. We claim that central agency can use Algorithm 21, and output at

least 𝑔 good nodes if 𝑏 ≤𝑚(𝐺,𝑔)/2. Step 1 of Algorithm 19 must terminate after removing

fewer than 𝑚(𝐺,𝑔) nodes, because each round has to remove at least one bad node, and

there are only𝑚(𝐺,𝑔)/2 bad nodes in total. Let the number of nodes removed be𝑚(𝐺,𝑔)−𝛿,
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so at least 𝑚(𝐺,𝑔)/2− 𝛿/2 ≥ 𝑏 − 𝛿/2 are corrupt. Thus at most 𝛿/2 bad nodes remain in the

graph 𝐻 .

Assume towards contradiction that only 𝑦 < 𝑔 nodes output by Algorithm 19 are

good. This means that the 𝑚(𝐺,𝑔)− 𝛿 removed nodes separate the graph 𝐺 into connected

components where all components with size larger than 𝛿/2 sum to fewer than 𝑔. Then

𝑚(𝐺,𝑔)− 𝛿 =𝑚(𝐺,𝑦) for 𝑦 < 𝑔, contradicting the fact that 𝑚(𝐺,𝑔) is the minimum budget

needed to prevent identification of 𝑔 nodes.

In fact, just like in Section 4.3, Algorithm 21 additionally gives us a characterization of

𝑚(𝐺,𝑔) in terms of the size of the smallest 𝑔-remainder 𝑘-vertex separator of a graph, for

an appropriately chosen value of 𝑘.

Lemma 4.5.4 (2-Approximation by Vertex Separation). The minimal sum of 𝑔-remainder

𝑘-vertex separator and 𝑘, min𝑘 (𝑆𝐺(𝑘,𝑔) + 𝑘), bounds the critical number of bad nodes 𝑚(𝐺,𝑔)

up to a factor of 2. i.e.,

1
2

min
𝑘
𝑆𝐺(𝑘,𝑔) + 𝑘 ≤𝑚(𝐺,𝑔) ≤min

𝑘
𝑆𝐺(𝑘,𝑔) + 𝑘.

Proof of Lemma 4.5.4. The upper bound follows simply. Let 𝑘* = argmin𝑘 𝑆𝐺(𝑘,𝑔)+𝑘. Given

a budget 𝑏 = min𝑘 𝑆𝐺(𝑘,𝑔) + 𝑘, the bad party can remove a set of size 𝑆𝐺(𝑘*, 𝑔) and separate

the graph into connected components of size at most 𝑘*, except for fewer than 𝑔 nodes.

Control one of the connected components of size at most 𝑘*, and construct the reports

similarly as in Lemma 4.3.1. Then the central agency can only identify fewer than 𝑔 good

nodes.

For the lower bound, suppose there are 𝑏 =𝑚(𝐺,𝑔) bad nodes distributed optimally on

𝐺 and thus it’s impossible to find 𝑔 good nodes by definition. Run Algorithm 21. Suppose

the first step terminates in 𝑖 rounds. After the removal of 2𝑖 nodes, the graph must be
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separated into connected components smaller than 𝑏 − 𝑖, except for fewer than 𝑔 nodes.

Then 2𝑖 ≥ 𝑆𝐺(𝑏 − 𝑖,𝑔). Therefore,

1
2

min
𝑘

(𝑆𝐺(𝑘,𝑔) + 𝑘) ≤min
𝑘

(︃
𝑆𝐺(𝑘,𝑔)

2
+ 𝑘

)︃
≤ 1

2
𝑆𝐺(𝑏 − 𝑖,𝑔) + (𝑏 − 𝑖) ≤ 2𝑖

2
+ 𝑏 − 𝑖 =𝑚(𝐺,𝑔)

Now using the characterization given by 𝑔-remainder 𝑘-vertex separator, we are ready

to prove that it is SSE-hard to approximate the budget needed to prevent any arbitrary

number of good nodes, i.e., 𝑚(𝐺,𝑔) for any 𝑔 < |𝑉 |/3.

Theorem 4.5.5. For every 𝛽 > 1 and every 0 < 𝛿 < 1, there is a constant 𝜖 > 0 such that the

following is true. Given a graph 𝐺 = (𝑉 ,𝐸), it is SSE-hard to distinguish between the case where

𝑚(𝐺,𝛿|𝑉 |) ≤ 𝜖 · |𝑉 | and 𝑚(𝐺,𝛿|𝑉 |) ≥ 𝛽 · 𝜖 · |𝑉 |. Or in other words, the problem of approximating

the critical number of corrupt nodes such that it is impossible to find 𝛿|𝑉 | good nodes within

any constant factor is SSE-hard.

We first prove Theorem 4.5.5 for 0 < 𝛿 < 1/3. The proof in this regime follows similar

constructions and arguments as in the proof of Theorem 4.3.5. Note that the proof extends

naturally for any 0 < 𝛿 < 1/2. This is effectively because the range for 𝜇 in Remark 4.2.9

can be made to [𝜖′,1/2], for any constant 𝜖′ > 0. Further explanation is provided in proof

for Lemma 4.5.7.

Firstly, we construct 𝐺′ based on 𝐺 as in Section 4.3.2. Lemma 4.3.6 immediately

implies that:

Lemma 4.5.6. Suppose 𝑞 = 1/𝜖, and 𝐺 can be partitioned into 𝑞 equi-sized sets 𝑆1, · · · ,𝑆𝑞 such

that Φ𝐺(𝑆𝑖) ≤ 2𝜖 for every 1 ≤ 𝑖 ≤ 𝑞. The bad party can prevent the identification of one good

node, and thus 𝛿|𝑉 ′ | good nodes, on the auxiliary graph 𝐺′ with 𝑂(𝜖|𝐸|) =𝑂(𝜖|𝑉 ′ |) nodes.

We reprove the analogous lemma to Lemma 4.3.7.
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Lemma 4.5.7. Let 𝐺 = (𝑉 ,𝐸) be an undirected 𝑑-regular graph with the property that for every

|𝑉 |/10 ≤ |𝑆 | ≤ 9|𝑉 |/10 we have |𝐸(𝑆,𝑉 𝑆)| ≥ Ω(
√
𝜖|𝐸|). If bad party controls 𝑂(𝜖0.51|𝐸|) =

𝑂(𝜖0.51|𝑉 ′ |) < 1/2|𝑉 ′ | nodes on the auxiliary graph 𝐺′ constructed from 𝐺, we can always find

𝛿|𝑉 ′ | truthful nodes on 𝐺′, for any 𝛿 < 1/3.

Proof of Lemma 4.5.7. Let 𝑔 = 𝛿|𝑉 ′ |. Assume towards contradiction that the bad party

controls 𝑂(𝜖0.51|𝐸|) vertices in 𝐺′, and we cannot identify 𝑔 truthful nodes.

Claim 4.5.8. If the bad party controls 𝑂(𝜖0.51|𝐸|) vertices of graph 𝐺′, and we can’t identify

𝑔 truthful node, then there exists a set 𝐶 of size 𝑂(𝜖0.51|𝐸|) and separates 𝑉 ′∖𝐶 into sets

{𝒯 ′𝑖 }𝑖=1,··· ,ℓ, each of size |𝒯 ′𝑖 | ≤ 𝑂(𝜖0.51|𝐸|), and sets {𝐴′𝑗}𝑗=1,··· ,𝐾 , each of size |𝐴′𝑗 | >Ω(𝜖0.51|𝐸|),

and | ∪𝐾𝑗 𝐴
′
𝑗 | < 𝑔.

Proof of Claim 4.5.8. Since the corrupt party can control𝐺′ with𝑂(𝜖0.51|𝐸|) vertices,𝑚(𝐺′, 𝑔) ≤

𝑂(𝜖0.51|𝐸|). By Lemma 4.5.4 min𝑘 𝑆𝐺′ (𝑘,𝑔)+𝑘 ≤ 2𝑚(𝐺′, 𝑔) ≤𝑂(𝜖0.51|𝐸|). Let 𝑘* = argmin𝑘 𝑆𝐺′ (𝑘,𝑔)+

𝑘. Then 𝑘* ≤𝑂(𝜖0.51|𝐸|), 𝑆𝐺′ (𝑘*, 𝑔) ≤𝑂(𝜖0.51|𝐸|). By definition of 𝑆𝐺′ (𝑘*, 𝑔), there exists a set

of size 𝑆𝐺(𝑘*) after whose removal separates the remainder of the graph 𝐺 to connected

components of size at most 𝑘* except for fewer than 𝑔 nodes. Thus components of size

larger than Ω(𝜖0.51|𝐸|) contain fewer than 𝑔 nodes.

Let 𝒯 ′ = ∪ℓ𝑖=1𝒯
′
𝑖 ,𝐴

′ = ∪𝐾𝑗=1𝐴
′
𝑗 . Since |𝐶| =𝑂(𝜖0.51|𝐸|) =𝑂(𝜖0.51|𝑉 |), and 𝐶 ∪𝒯 ′ ∪𝐴′ = 𝑉 ′,

for small enough 𝜖, |(𝒯 ′ ∪𝐴′)∩𝑉 | ≥ 9|𝑉 |/10. From the assumption that we can’t identify 𝑔

truthful nodes, |𝐴′ | < 𝑔 ≤ |𝑉 ′ |/3. Otherwise, we can claim the entire 𝐴′ as good and identify

𝑔 truthful nodes. Thus |𝐴′ ∩𝑉 | ≤ |𝑉 ′ |/3 ≤ 2/3|𝑉 |.4

Additionally, use the fact that |𝒯 ′𝑖 ∩𝑉 | < |𝑉 |/10 for every 𝑖, with sufficiently small 𝜖,

we can merge various sets in {{𝐴𝑗}𝑗=1,··· ,𝐾 , {𝒯𝑖}𝑖=1,··· ,ℓ} and get two sets 𝑉 ′1 and 𝑉 ′2, such that

|𝑉 ′1 ∩𝑉 |, |𝑉
′
2 ∩𝑉 | ≥ |𝑉 |/10, and 𝑉 ′1 and 𝑉 ′2 are separated by 𝐶.

Now, let 𝑉1 ⊆ 𝑉 (resp. 𝑉2 ⊆ 𝑉 ) be the set of vertices 𝑣 ∈ 𝑉 such that some copy of 𝑣

appears in 𝑉 ′1 (resp. 𝑉 ′2). Let 𝑆 ⊆ 𝑉 be the set of vertices 𝑣 ∈ 𝑉 such that all 𝑟 copies of 𝑣

4If we use the fact that |𝐴′ | < 𝑔 ≤ (|𝑉 ′ | − 𝜖′ |𝑉 |)/2, for some constant 𝜖′, then |𝐴′ ∩𝑉 | ≤ (|𝑉 ′ | − 𝜖′ |𝑉 ′ |)/2 ≤
(1−𝜖′)|𝑉 |. We can merge {{𝐴𝑗 }, {𝒯𝑖}} to two sets 𝑉 ′1, 𝑉 ′2 such that |𝑉 ′1∩𝑉 |, |𝑉

′
2∩𝑉 | ≥ 𝜖′ |𝑉 |. The rest of the proof

still goes through.
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appears in 𝐶. Since |𝑉 ′1∩𝑉 |, |𝑉
′
2∪𝑉 | ≥ |𝑉 |/10 = 𝑟 |𝑉 |/10, both |𝑉1|, |𝑉2| ≥ |𝑉 |/10. Furthermore,

we observe that 𝑉1 ∪𝑉2 ∪ 𝑆 = 𝑉 , which follows from 𝑉 ′1 ∪𝑉
′
2 ∪𝐶 = 𝑉 ′. Now we can lower

bound |𝑉1 ∪𝑉2| as follows.

|𝑉1 ∪𝑉2| = |𝑉 ∖𝑆 | ≥ |𝑉 | − |𝐶|/𝑟 ≥ |𝑉 | − 𝑐𝜖0.51|𝐸|/𝑟 = |𝑉 | − 𝑐𝜖0.51|𝑉 |

The first equality again follows from the fact that 𝑉1 ∪ 𝑉2 ∪ 𝑆 = 𝑉 , and that 𝑉1 ∪ 𝑉2 is

disjoint from 𝑆, and the second inequality follows by definition of 𝑆.

Since 𝑉1 ∪ 𝑉2 is sufficiently large, we can find a balanced partition of 𝑉1 ∪ 𝑉2 into

sets 𝑆1 ⊆ 𝑉1, 𝑆2 ⊆ 𝑉2, 𝑆1 ∩ 𝑆2 = ∅,𝑆1 ∪ 𝑆2 = 𝑉1 ∪𝑉2, |𝑉 |/10 ≤ |𝑆1|, |𝑆2| ≤ 9|𝑉 |/10. From the

property of 𝐺 that 𝐸(𝑆,𝑉 ∖ 𝑆) ≥Ω(
√
𝜖|𝐸|) in Lemma 4.3.7 and the fact that 𝐺 is 𝑑-regular,

we know that

𝐸(𝑆1,𝑆2) = 𝐸(𝑆1,𝑉 ∖ 𝑆1)−𝐸(𝑆1,𝑆) ≥ 𝛼
√
𝜖|𝐸| − 𝑑(𝜖0.51|𝐸|/𝑟) = 𝛼

√
𝜖|𝐸| − 2𝜖0.51|𝐸| = Ω(

√
𝜖|𝐸|),

for some constant 𝛼. In the first equality, we use the fact that 𝑆1 ∪ 𝑆2 ∪ 𝑆 = 𝑉 , and 𝑆1,𝑆2,𝑆

are disjoint. Thus 𝐸(𝑆1,𝑉 ∖𝑆1) = 𝐸(𝑆1,𝑆2 ∪ 𝑆) = 𝐸(𝑆1,𝑆2) +𝐸(𝑆1,𝑆).

Note that since 𝑆1 ⊆ 𝑉1 and 𝑆2 ⊆ 𝑉2, and 𝒯 ′1 and 𝒯 ′2 do not have edges between them in

𝐺′, the edges 𝐸(𝑆1,𝑆2) all have to land as "edge vertices" in 𝐶. Formally, 𝐸(𝑆1,𝑆2) ⊆ �̃� ∩𝐶.

In other words, for any 𝑢 ∈ 𝑆1, and 𝑣 ∈ 𝑆2, if (𝑢,𝑣) ∈ 𝐸, then the vertex (𝑢,𝑣) ∈ 𝑉 ′ has to be

included in the set 𝐶, thus |𝐶| ≥Ω(
√
𝜖|𝐸|).

This contradicts the fact that there are only 𝑂(𝜖0.51|𝐸|) vertices in 𝐶.

Using Lemma 4.5.6 and Lemma 4.5.7, we can again obtain Theorem 4.5.5 for 0 < 𝛿 < 1/2,

with the same argument for the proof of Theorem 4.3.5 in Section 4.3.2.

When 1/2 ≤ 𝛿 < 1, we construct an auxiliary graph in the following way. Take as input

any graph 𝐺 = (𝑉 ,𝐸). Let ℎ = 𝛿/(1−𝛿)|𝑉 |, construct 𝐺′ = 𝐺∪ℎ-clique. Note ℎ = 𝛿|𝑉 ′ |. Then,

we claim that the critical number of bad nodes such that it is impossible to detect 𝛿|𝑉 ′ |+ 1

good nodes on 𝐺′ is the same as the critical number of bad nodes such that it is impossible
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to find one good node on 𝐺.

Claim 4.5.9. Given any graph 𝐺, 1/2 ≤ 𝛿 < 1 and 𝐺′ as constructed,

𝑚(𝐺′,𝛿|𝑉 ′ |+ 1) =𝑚(𝐺).

Proof. Firstly, observe that

𝛿|𝑉 ′ | = 𝛿(|𝑉 |+ ℎ) = 𝛿(|𝑉 |+ 𝛿/(1− 𝛿)|𝑉 |) = ℎ.

Therefore, one way to prevent identification of 𝛿|𝑉 ′ |+ 1 good nodes on 𝐺′ is to prevent

identification of one good node on 𝐺. Since the ℎ-clique is of size at least |𝑉 ′ |/2, and report

each other as good, they will be detected as good nodes. This strategy requires bad party

to have budget 𝑏 =𝑚(𝐺). Thus 𝑚(𝐺′,𝛿|𝑉 ′ |+ 1) ≤𝑚(𝐺).

The direction 𝑚(𝐺′,𝛿|𝑉 ′ | + 1) ≥ 𝑚(𝐺) follows by the fact that the strategy above is

optimal. In order to prove this, we make the following observation:

Claim 4.5.10. Given any graph 𝐺 and 𝑔 ≤ |𝑉 |,

𝑚(𝐺) ≤𝑚(𝐺,𝑔) + 𝑔 − 1

Proof of Claim 4.5.10. One way to prevent identification of one good node is to corrupt

𝑚(𝐺,𝑔) nodes plus the (at most) 𝑔 −1 detected good nodes. Call the set of the 𝑔 −1 or fewer

detected nodes 𝑆. Notice that any node in 𝐺∖𝑆 that is adjacent to 𝑆 are reported as bad

by 𝑆. If not, this node has the same identity with 𝑆, and should be detected as good as

well. Therefore, the bad party is able to corrupt the set 𝑆 without incurring any change

in the reports, since all edges incident to 𝑆 now have both endpoints corrupt and so the

reports are arbitrary. Previously, the set 𝑆 were good in any configuration of identities
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consistent with the reports and the budget. But now, the bad party’s budget increases by

at least 𝑔 −1 ≥ |𝑆 |, and any configuration with the set 𝑆’s identity changed to all bad is also

consistent with the reports.

Therefore, no node is good in all configurations, and so no node can be detected as

good. This strategy requires 𝑚(𝐺,𝑔) + 𝑔 − 1 nodes and prevents identification of one good

node. Since 𝑚(𝐺) is the minimal number of bad nodes so that it is impossible to detect one

good node, 𝑚(𝐺) ≤𝑚(𝐺,𝑔) + 𝑔 − 1.

Now we continue to prove the 𝑚(𝐺′,𝛿|𝑉 ′ |+ 1) ≥𝑚(𝐺) direction of Claim 4.5.9. Assume

towards contradiction that there exists a strategy that controls at least one node in the

ℎ-clique, prevents identification of ℎ+ 1 good nodes, and requires fewer than 𝑚(𝐺) bad

nodes in total. Suppose this strategy assigns 𝑎 nodes in the ℎ-clique as bad, where 1 < 𝑎 <

𝑚(𝐺) ≤ |𝑉 |/2 ≤ ℎ/2. Then ℎ− 𝑎 > ℎ/2 > 𝑚(𝐺) > 𝑏. Therefore, the rest of the ℎ-clique forms a

connected component with only good reports, and is of size ℎ− 𝑎, which is larger than the

bad party’s budget 𝑏 < 𝑚(𝐺), thus are declared as good. As a result, the bad party must

prevent identification of 𝑎+ 1 good nodes in 𝐺 with budget strictly less than 𝑚(𝐺)−𝑎. This

contradicts the fact that 𝑚(𝐺)− 𝑎 ≤𝑚(𝐺,𝑎)− 1 < 𝑚(𝐺,𝑎+ 1) by Claim 4.5.10.

Therefore, the strategy of controlling 𝑚(𝐺) nodes on 𝐺 and let the ℎ-clique be detected

as good is an optimal strategy, 𝑚(𝐺′,𝛿|𝑉 ′ |+ 1) =𝑚(𝐺).

Now, with Claim 4.5.9, we conclude that for any 1/2 ≤ 𝛿 < 1, approximating 𝑚(𝐺,𝛿|𝑉 |)

within any constant must be SSE-hard. If not, we will obtain an efficient algorithm for

approximating 𝑚(𝐺) by constructing a graph 𝐺′ by adding a 𝛿
1−𝛿 |𝑉 | clique to any graph

𝐺, for some 𝛿, and approximate 𝑚(𝐺) by approximating 𝑚(𝐺′,𝛿|𝑉 ′ | + 1), which is just

𝑚(𝐺′,𝛿′ |𝑉 ′ |) for some other 0 < 𝛿′ < 1.

Theorem 4.5.5 implies a similar corollary about the SSE-hardness of seeding the nodes

on a graph 𝐺 given any constant multiple of the critical number 𝑚(𝐺,𝛿|𝑉 |) to prevent

detection of any arbitrary fraction of good nodes.

Corollary 4.5.11. Assume the SSE Hypothesis and P , NP. Fix any 𝛽 > 1, and 0 < 𝛿 < 1. There

does not exist a polynomial-time algorithm that takes as input an arbitrary graph 𝐺 = (𝑉 ,𝐸)
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and outputs a set of nodes 𝑆 with size |𝑆 | ≤𝑂(𝛽 ·𝑚(𝐺,𝛿|𝑉 |)), such that corrupting 𝑆 prevents

the central agency from finding 𝛿|𝑉 | truthful nodes.

4.6 Acknowledgements

We would like to thank Paxton Turner and Vishesh Jain for useful conversations about

corruption detection over the past year. We would like to thank Pasin Manurangsi for

pointing us to the Austrin-Pitassi-Wu inapproximability result for treewidth.

4.7 Omitted Results

We give an NP-hardness result for computing min𝑘 𝑆𝐺(𝑘) + 𝑘 exactly. Note that this is

insufficient to say anything about corruption detection, as min𝑘 𝑆𝐺(𝑘) + 𝑘 only gives a

2-approximation to the critical number 𝑚(𝐺), but we include this observation here as it

may be of independent interest.

Theorem 4.7.1. It is NP hard to compute min𝑘 𝑆𝐺(𝑘) + 𝑘 exactly.

Proof. It is known that finding 𝑘-vertex separator for a graph is NP hard [105]. We present

a reduction of the problem of computing min𝑘 𝑆𝐺(𝑘) + 𝑘 to the 𝑘-vertex separator problem.

Assume towards contradiction that there is a polynomial-time algorithm 𝒜 for finding

min𝑘 𝑆𝐺(𝑘) + 𝑘. Then for any graph 𝐺 and any 𝑀 < |𝑉 |, the minimal 𝑀-vertex separator of

the graph 𝐺 = (𝑉 ,𝐸) can be found in the following way. Construct a graph 𝐺′ = (𝑉 ′,𝐸′),

where

𝐺′ = 𝐺∪ {𝑛2 disjoint M-cliques},

with 𝑛≫𝑁 := |𝑉 |. Construct a second auxiliary graph 𝐺′′ = (𝑉 ′′,𝐸′′), such that

𝐺′′ = 𝐺′ ∪ {𝑘𝑛+𝑁 disjoint (𝑛− 1)-cliques appended to each vertex of V’}.

Each (𝑛 − 1)-clique is appended to a vertex of 𝐺′ in the sense that each node of the
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clique is connected to the vertex in 𝐺′ with an edge. The idea is to make each vertex in 𝐺′

"𝑛 times larger".

Run the polynomial-time algorithm 𝒜 for finding min𝑘 𝑆𝐺′′ (𝑘) + 𝑘 on graph 𝐺′′. The

algorithm outputs a vertex set 𝑆 ′′ ⊆ 𝑉 ′′, which divides 𝐺′′ into connected components of

with maximal size 𝑘′′.

Lemma 4.7.2. Let 𝐺′′ be as constructed above, 𝑘′′ and 𝑆 ′′ be the output given by an algorithm

that computes min𝑘 𝑆𝐺′′ (𝑘) + 𝑘. Then 𝑘′′ = 𝑛𝑀, and without loss of generality, the subset 𝑆 ′′

contains only vertices from the original graph 𝐺. In other words, finding min𝑘 𝑆(𝑘) + 𝑘 of 𝐺′′ is

equivalent to finding the 𝑀-vertex separator of 𝐺. i.e.,

argmin
𝑘
𝑆𝐺′′ (𝑘) + 𝑘 = 𝑛𝑀,

min
𝑘
𝑆𝐺′′ (𝑘) + 𝑘 = 𝑆𝐺(𝑀) +𝑛𝑀.

Proof of Lemma 4.7.2. Let 𝑓𝐺′′ (𝑘) := 𝑆𝐺′′ (𝑘) + 𝑘, and let 𝑓 *𝐺′′ := min𝑘 𝑓𝐺′′ (𝑘). Note there exists

following upper bound for 𝑓 *𝐺′′ .

𝑓 *𝐺′′ ≤ 𝑆𝐺(𝑀) +𝑛𝑀

This is achieved by removing the𝑀-vertex separator of𝐺 from𝐺′′ and divide𝐺′′𝑉 ′′∖𝑆𝐺(𝑀)

into connected components with size at most 𝑛𝑀.

Now we prove that 𝑓 *𝐺′′ has to be exactly 𝑆𝐺(𝑀) +𝑛𝑀 by showing that 𝑓𝐺′′ (𝑘) > 𝑓 *𝐺′′ for

𝑘 > 𝑛𝑀, and for 𝑘 < 𝑛𝑀.

1. 𝑓𝐺′′ (𝑘) > 𝑓 *𝐺′′ for all 𝑘 < 𝑛𝑀.

For 𝑘 < 𝑛𝑀:

𝑓𝐺′′ (𝑘) ≥ 𝑛2 + 𝑘 > 𝑆𝐺(𝑀) +𝑛𝑀,

because the separator has to include at least one vertex from each of the 𝑛2 disjoint
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𝑛𝑀-cliques in 𝐺′′. This value 𝑓𝐺′′ (𝑘) is clearly larger than 𝑆𝐺(𝑀) +𝑛𝑀 when 𝑛≫𝑁 >

𝑀.

2. 𝑓𝐺′′ (𝑘) > 𝑓 *𝐺′′ for all 𝑘 > 𝑛𝑀.

Claim 4.7.3. We claim that it suffices to only consider 𝑘 in the form of 𝑘 = 𝑛𝑀 + 𝑛𝛼,

where 𝛼 ∈Z+. i.e. for any 𝑘 > 𝑛𝑀, 𝑓𝐺′′ (𝑘) ≥ 𝑓𝐺′′ (𝑛𝑀 +𝑛𝛼) for some 𝛼 ∈Z+.

Proof of Claim 4.7.3. Call the nodes in 𝐺 to which each of the 𝑛-clique is appended

to (while constructing 𝐺′′) the center of the 𝑛-clique in 𝐺′′. If 𝑘 cannot be expressed

in the form of 𝑛𝑀 + 𝑛𝛼, this means the corresponding separator 𝑆 contain some

non-center nodes of the 𝑛-cliques in 𝐺′′.

If the center < 𝑆, while some other node(s) of the clique ∈ 𝑆, there exists another

𝑆*, |𝑆*| < |𝑆 | that includes the center instead of the other node(s), and suffice to be a

𝑘-vertex separator. This is because after the removal of the center node, the rest of

the clique can be of size at most (𝑛− 1), and 𝑘 > 𝑛𝑀 > 𝑛− 1.

Suppose the center ∈ 𝑆, while some of the other node(s) of the clique also ∈ 𝑆, in

order to obtain a 𝑘-vertex separator. Then 𝑆* that only contains center will suffice to

be 𝑘-vertex separator, because 𝑘 > 𝑛.

By Claim 4.7.3, for any 𝑘 > 𝑛𝑀, 𝑓𝐺′′ (𝑘) ≥ 𝑓𝐺′′ (𝑛𝑀 + 𝑛𝛼) for some 𝛼 ∈ Z+. In words,

there is never any incentive to include any non-center nodes of an 𝑛-cliques in

separator 𝑆. Without loss of generality, 𝑆 ⊆ 𝑉𝐺, and 𝑘 = 𝑛𝑀 +𝑛𝛼 ≥ 𝑛𝑀 +𝑛.

𝑓𝐺′′ (𝑛𝑀 +𝑛𝛼) > 𝑛𝑀 +𝑛 > 𝑆𝐺(𝑀) +𝑛𝑀

when 𝑛≫𝑁 .

Summarizing 1 and 2, we conclude that

𝑓 *𝐺′′ = 𝑓𝐺′′ (𝑛𝑀) = 𝑆𝐺(𝑀) +𝑛𝑀
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This gives us a polynomial algorithm to find any 𝑀-vertex separator for any graph 𝐺,

and any value 𝑀. This contradicts the fact that computing 𝑀-vertex separator is NP-hard.

Therefore, there does not exist polynomial time algorithm for computing min𝑆𝐺(𝑘)+𝑘.
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Chapter 5

Opinion Polarization

5.1 Introduction

We conclude this thesis by discussing a model for opinion polarization. Opinion polariza-

tion is a widely acknowledged social phenomenon, especially in the context of political

opinions [48, 152, 83], leading to recent concerns over “echo chambers” created by mass

media [136] and social networks [35, 129, 12, 11, 52]. The objective of this paper is to

propose a simple, geometric model of the dynamics of polarization where the opinion

structure (that is, correlations within the population’s opinions on various topics) can

change under influence of advertising or political campaigns. Many models have been

proposed to explain how polarization arises, and this remains an active area of research

[127, 10, 126, 77, 110, 15, 38, 41, 98, 132, 140].

Unlike the previous chapters on inference which modified existing mathematical mo-

dels, in this chapter we create a new mathematical model for opinion polarization. Our

attempt aims at simplicity over complexity. As opposed to a large majority of previous

works addressing opinion polarization, we neglect the social network structure and inte-

ractions between individuals. Instead, we focus on influences of advertising or political

campaigns that reach a wide segment of the population. Our main behavioral assumption

is biased assimilation [108]: people tend to be receptive to opinions they agree with, and
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antagonistic to opinions they disagree with.

Another distinguishing feature of our model is the multi-dimensional setting, reflecting

the fact that campaigns can touch on many diverse topics. For example, in the context of

American politics, one might wonder why there exists a significant correlation between

opinions of individuals on, say, abortion access, gun rights and urgency of climate change

[33]. Our model attempts to illustrate how such correlations between opinions can arise as

a (possibly unintended) effect of advertising exploiting different topics and social values.

Our model falls into framework of inference that is similar to that of Chapter 4. We

have two types of parties: influencers, who want to push a campaign, and individuals, who

have a host of opinions about different topics. Given the opinions of different individuals,

the goal of the influencers is to bring as many people as possible as close to their own

campaign values as possible. For example, if the influencer were selling a certain car, their

goal is to make as many people as possible have a positive view of this car. The influencers

know how their advertisements affect opinions in the population, and want to solve an

inference problem to determine what is the best sequence of advertisements to achieve

their goal.

In mathematical terms, we consider a population of agents with preexisting opinions

represented by vectors in R
𝑑 , normalized such that the Euclidean length of each vector

is 1. Each coordinate represents a distinct topic, and the value of the coordinate reflects

the agent’s opinion on the topic, which can be positive or negative. We then consider a

sequence of interventions affecting the opinions. An intervention is also a unit vector in

R
𝑑 , representing the set of opinions expressed in, e.g., an advertising campaign or “news

cycle”. Therefore, all opinions and interventions in our model lie on the unit sphere in R
𝑑 .

We model the effect of intervention 𝑣 on an agent’s opinion 𝑢 in the following way.

Supposing an agent starts with opinion 𝑢 ∈R𝑑 , after receiving an intervention 𝑣 they will

update the opinion to the unit vector proportional to

𝑤 = 𝑢 + 𝜂 · ⟨𝑢,𝑣⟩ · 𝑣 , (5.1)
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where 𝜂 > 0 is a global parameter that controls the influence of an intervention. Most of

our results do not depend on a choice of 𝜂 and in our examples we often take 𝜂 = 1 for the

sake of simplicity. Smaller values of 𝜂 could model campaigns with limited persuasive

power.

Intuitively, the agent evaluates the received message in context of their existing opinion,

and assimilates this message weighted by their “agreement” with it. Our model exhibits

biased assimilation in that if the intervening opinion 𝑣 is positively correlated with an

agent’s opinion 𝑢, then after the update the agent opinion moves towards 𝑣, and conversely,

if 𝑣 is negatively correlated with 𝑢, then the update moves 𝑢 away from 𝑣 and towards the

opposite opinion −𝑣.

There are multiple scenarios that our model could reflect. One way to think of the

intervention is as an exposure to persuasion by a political actor, like a political campaign

message. Another example, in the context of marketing, is a product advertisement that

exploits values besides the quality of the product. In that context, we can think of one of

the 𝑑 coordinates of the opinion vector as representing one’s opinion on a product being

introduced into the market and the remaining coordinates as representing preexisting

opinions on other (e.g., social or political) issues. Then, an intervention would be an

advertising effort to connect the product with a certain set of opinions or values [163].

Some examples are corporate advertising campaigns supporting LGBT rights [153] or

gun manufacturers associating their products with patriotism and conservative values

[141]. More broadly, another example of an intervention could be a company (e.g., a bank

or an airline [51]) announcing its refusal to do business with the gun advocacy group

NRA. It seems plausible to us that such advertising strategies can have a double effect of

convincing potential customers who share relevant values and antagonizing those who do

not.

Furthermore, it seems conceivable (and, as shown later, will provably happen in

some settings in our model) that such interventions, even if intending mainly to increase

sales and without direct intention to polarize, can have a side effect of increasing the
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extent of polarization in the society. For example, it might be that, in a population with

initial opinions distributed uniformly, a number of interventions introduces some weak

correlations. In our model, these correlations can be profitably exploited by advertisers in

subsequent interventions. As a side effect, the interventions strengthen the correlations

and increase polarization.

For example, suppose that after various advertising campaigns, people who tend to like

item A (say, electric cars) tend to be liberal, and people who like a seemingly unrelated item

B (say, firearms) tend to be conservative. This may result from the advertisers exploiting

some obvious connections, e.g., between electric cars and responding to climate change,

and between firearms and respect for the military. Subsequently, future advertising efforts

for electric cars may feature other values associated with liberals in America to appeal to

potential consumers: an advertisement might show a gay couple driving to their wedding

in an electric car. Similarly, future advertisements for firearms may appeal to conservative

values for similar reasons. The end result can be that the whole society becomes more

polarized by the incorporation of political topics into advertisements.

Throughout the paper, we analyze properties of our model in a couple of scenarios.

With respect to the interventions, we consider two scenarios: either there is one entity (an

influencer) trying to persuade agents to adopt their opinion or there are two competing

influencers pushing different agendas. With respect to the time scale of intervations,

we also consider two cases: the influencer(s) can apply arbitrarily many interventions,

i.e., the asymptotic setting, or they need to maximize influence with a limited number

of interventions, i.e., the short-term setting. The questions asked are: (i) What sequence

of interventions should be applied to achieve the influencer’s objective? (ii) What are

the computational resources needed to compute this optimal sequence? (iii) What are

the effects of applying the interventions on the population’s opinion structure? We give

partial answers to those questions. The gist of them is that in most cases, applying desired

interventions increases the polarization of agents.
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5.1.1 Outline and main results

In the asymptotic setting with one influencer with a desired campaign agenda, we show

that the optimal campaigning strategy does not necessarily push the campaign agenda

directly at every step. Instead, it finds a hemisphere with the largest number of initial

opinions, concentrates the opinions in this hemisphere around an arbitrary point, and

only in the last stage nudges them gradually towards the target agenda (Theorem 5.4.3).

We then show that it is computationally hard to approximate this densest hemisphere (and

therefore the optimal strategy) to any additive factor (Theorem 5.4.11). Notably, a very

strong notion of polarization emerges from our dynamic: there exists a pair of antipodal

points such that all opinions converge to one of them. Of course we are not suggesting

that this should occur in practice. Rather, we expect more realistic dynamics to be more

complicated, with similar, but weaker forms of polarization occurring on a shorter time

scale.

In the asymptotic setting with two competing influencers, each pushing their respective

campaign agenda with each intervention, we show that all opinions will converge to the

convex cone between the two campaign agendas (Theorem 5.4.15). One might hope that

having multiple advertisers can make the resulting opinions more spread-out, but in fact

we prove that the same strong form of polarization emerges if the correlation between the

campaign agendas is high enough: the opinions of the population concentrate around two

antipodes moving around in the convex cone of the two agendas (Theorem 5.4.16).

In the short-term setting with one influencer, a similar result for the optimal campaign

holds: the optimal campaign is equivalent to finding a spherical cap containing the largest

number of initial opinions (Theorem 5.8.1). Furthermore, we describe a simple case study

with two agents illustrating polarization as an externality imposed on the society by the

interventions. We define the notion of polarization cost and trace the correlation between

the agents for various interventions, showing that in some settings it might be desirable for

the influencer to apply an intervention that increases the extent of disagreement between

the agents (Section 5.4.3).
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We additionally show that in two dimensions, starting from opinions uniformly distri-

buted on a sphere, random interventions also lead to the strong form of polarization to

antipodes (Theorem 5.4.1).

In Section 5.5 we present two examples with initial opinions distributed uniformly

at random. We illustrate how the opinions evolve and polarization increases as a result

of interventions. The first example shows a clear pattern of polarization when a fixed

intervention is applied repeatedly, in the strong sense that opinions tend to two antipodes.

In the second example we apply two orthogonal interventions in an alternating fashion.

Interestingly, the opinions do not completely polarize, suggesting that polarization in our

model is not inevitable, but biased assimilation in multiple dimensions does tend to lead to

degenerate opinion structures (antipodes as a 1-dimensional and ring as a 2-dimensional

degenerate structure). The results of the simulations are illustrated in Figures 5-3 and 5-4.

5.1.2 Limitations

Before we describe our results, we discuss some limitations of our approach. We present a

basic model intended to capture one mode of emergence of polarization. Most importantly

and in contrast to majority of existing literature, our model neglects opinion changes

induced by interactions between individuals. Furthermore, we do not address aspects such

as replacement of the population or unequal exposure and effects of the interventions. We

do not consider any external influences on the population in addition to the interventions.

We also do not confront theoretical and empirical research suggesting that in certain

settings exposure to conflicting views can decrease polarization [133, 118, 54, 53] or even

questioning the overall extent of polarization in the society [49, 16]. As a matter of fact,

applying a sequence of random interventions in our model results in the polarization of

opinions (but we also present an example where total polarization does not occur). We

leave addressing these limitations for the future.

While we sometimes discuss the uniform distribution of initial opinions on R
𝑑 , we

do not claim that it is the most plausible one and we do not make assumptions about
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the initial distribution in most of our results. We assume that any group of topics can

be combined into an intervention with the effect given by (5.1). We expect that a more

plausible model might feature some “internal” correlations between topics in addition to

“external” correlations arising out of the agents’ opinion structure. For example, topics

may have related meaning, causing inherent correlations between corresponding opinions

(e.g., being positive on renewable energy and recycling). Furthermore, there are certain

topics (e.g., undesirability of murder) on which nearly all members of the population share

the same inclination. As a matter of fact, it is common for marketing strategies to exploit

unobjectionable social values (see, e.g., [163]). However, we presume that under suitable

circumstances (e.g., due to inherent correlations we just mentioned) the “polarizing” topics

might present a more appealing alternative for a campaign. Our model concerns such

a case, where the “unifying” topics might be neglected and excluded from the analysis.

We note that other works have also suggested that focusing on polarizing topics may be

appealing for campaigns (see, e.g., [132]).

One property of our model is that an effect of an intervention using opinion 𝑣 is exactly

the same as for the opposite opinion −𝑣. This might look like a cynical assumption about

human nature, but arguably it is not entirely inaccurate. For example, experiments on

social media show that not only exposure to similar ideas increases polarization (the “echo

chamber” effect), but also exposure to the opinions opposite to one’s own causes beliefs to

become more extreme and polarized [11]. Furthermore, in our model this effect occurs

only if all the components of an opinion are negated.

We also note that our representation of opinions contains some ambiguities. A “weak”

opinion 𝑢𝑖,𝑘 ≈ 0 might signify each of: neutrality, lack of confidence, or lack of interest

in a given subject. More generally, we assume that the agents have a “fixed budget” (one

unit in Euclidean norm) of opinions that they always fully use. On the one hand, one

might expect that different kinds of opinions will update in different manners: a confident

neutral opinion might be harder, while a weak extreme opinion easier to change. On

the other hand, there are psychological reasons to expect that, e.g., “issue interest” and
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“extremity of opinion” are correlated [104, 14] (see also the discussion in [15]).

Finally, we do not study how small modifications of our model, e.g., using a different

norm or a different normalization method, modify its behavior.

5.2 Related Works

As mentioned, there is a multitude of modeling and empirical works studying opinion

polarization in different contexts [127, 10, 126, 77, 110, 120, 15, 38, 41, 98, 140, 13,

132, 11]. Broadly speaking, previous works have proposed various possible sources for

polarization, including peer interactions, bias in individuals’ perceptions, and global

information outlets.

There is an extensive line of models of opinion exchange on networks with peer inte-

ractions, where individuals encounter neighboring individuals’ opinions and update their

own opinions based on, e.g., pre-defined friend/hostile relations [151], or the similarity

and relative strength of opinions [118], etc. This branch of work often attributes polariza-

tion to homophily of one’s social network [38] that is induced by the self-selective nature

of social relations and segregation of like-minded people [165] and exacerbated by the

echo chamber effect of social media [129].

A parallel proposed mechanism are psychological biases in individuals’ opinion for-

mation processes. One example is biased assimilation [108, 38, 15, 11]: the tendency to

reinforce one’s original opinions regardless if other encountered opinions align with them

or not. For example, [11] observed that even when social media users are assigned to follow

accounts that share opposing opinions, they still tend to hold their old political opinions

and often to a more extreme degree. On the modeling side, [38] showed that DeGroot

opinion dynamics with the biased assimilation property on a homophilous network may

lead to polarization.

Existing works have also proposed models where polarization happens even when

information is shared globally [168, 120]. For example, [120] propose a model where

competition for readership between global information outlets causes news to become
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polarized in a single-dimensional setting. Another example is [168], a classical work on

the formation of mass opinion. It theorizes that each individual has political dispositions

formed in their own life experience, education and previous encounters that intermediate

between the message they encounter and the political statement they make. Therefore,

hearing the same political message can cause different thinking processes and changes in

political preferences in different individuals.

It is noteworthy that the majority of previous work focuses on polarization on a

single topic dimension. Two exceptions are [15], which studies biased assimilation with

opinions on multiple topics and [16] that observed non-trivial correlation between people’s

attitudes on different issues. As a matter of fact, [15] uses a different updating rule to

observe dynamics that differ from our work: in their simulations, polarization on one

issue typically does not result in polarization on others. There is also a class of models

[10, 126, 110] that concern multi-dimensional opinions where an opinion on a given

topic takes one of finitely many values (e.g., + or -). These models do not seem to have

a geometric structure of opinion space similar to ours and usually focus on formation

of discrete groups in the society rather than total polarization. Another model in [130]

uses a geometric (affine) rule of updating multi-dimensional opinions. Unlike us, they

seem to be modeling pre-existing, “intrinsic” correlations between topics rather than the

emergence of new ones and they are concerned mostly with convergence and stability of

their dynamics.

A related paper [132] contains a geometric model of opinion (preference) structures.

Both this and our model propose mechanisms through which information outlets acting

for their own benefit can lead to increased disagreement in the society. The key difference

between [132] and our model is that, in [132], the population’s preferences are static and

do not update, but the firms are free to choose how they acquire information. By contrast,

in our model, the influencers have pre-determined ideologies and compete to align agents’

opinions with their own. In other words, [132] focuses on modeling of competitive

information acquisition, and our paper on modeling the influence of marketing on the
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public opinion.

Our model suggests that under the conditions of biased assimilation, opinion manipu-

lation by one or several global information outlets can unintentionally lead to a strong

form of polarization in multi-dimensional opinion space. Not only do people polarize on

individual issues, but also their opinions on previously unrelated issues become correlated.

This form of polarization is particularly related to issue alignment [16] discussed in political

science and sociology literature. Issue alignment refers to an opinion structure where the

population’s opinions on multiple (relatively independent) issues correlate. It is related to

issue radicalization, where the opinions polarize for each issue separately. Compared to

issue radicalization, issue alignment is theorized to pose more constraints on the opinions

an individual can take, resulting in polarized and clustered mass opinions even when the

public opinions are not extreme in any single topic, and presenting more obstacles for

social integration and political stability [16]. In light of this, one way to view our model

is as a mathematical mechanism by which this strong form of polarization can arise and

worsen due to companies’, politicians’, and the media’s natural attempts to gain support

from the public.

On the more technical side, we note that our update equation bears similarity to Kura-

moto model [84] for synchronization of oscillators on a network in the control literature.

In this model, each oscillator 𝑖 is associated with the point 𝜃𝑖 on the two-dimensional

sphere, and 𝑖 updates its point continuously as a function of its neighbors’ points 𝜃𝑗 :

�̇�𝑖 =𝜔𝑖 +
𝐾
𝑁

sin(𝜃𝑗 −𝜃𝑖),

where 𝐾 is the coupling strength and 𝑁 is the number of nodes of the network. In two

dimensions, our model can be compared to Kuramoto model with 𝜔𝑖 = 0 on a star graph,

with the influencers at the center of the star connected to the entire population, where

the influencers’ opinions do not change and the update strength is qualitatively similar to

sin((𝜃𝑣 −𝜃𝑢)/2) (see Equation 5.26 in Section 5.9.2 for the actual function). However, we

note a crucial difference: in the Kuramoto dynamic, 𝜃𝑖 always moves towards 𝜃𝑗 , i.e. nodes
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always move towards synchronization, but in our dynamic, opinions 𝜃𝑖 are allowed to

move further away from 𝜃𝑗 when the angle between their opinions are obtuse. In addition,

the central node in our model can be strategic in choosing their positions, while the central

node in Kuramoto model follows the synchronization dynamics of the system. We think

this property provides a better model for opinion interactions.

5.3 The Model

We consider a group of 𝑛 agents, whose opinions are represented by unit vectors in R
𝑑 ,

where we think of each component as representing a distinct topic. It might be useful

to think of 𝑛 as much larger than 𝑑, though our results do not assume this. We will

look into how those opinions change after receiving a sequence of interventions. Each

intervention is also a unit vector in R
𝑑 , representing the opinion contained in a message

that the influencer (e.g., an advertiser) broadcast to the agents. Our model features one

parameter: 𝜂 > 0, signifying how strongly an intervention influences the opinions.

After each intervention, the agents update their opinions by moving towards or away

from the intervention vector, depending on whether or not they agree with it (which

is determined by the inner product between the vector 𝑣 and the opinion vector), and

normalizing suitably. Suppose the agents’ initial opinions are 𝑢1, . . . ,𝑢𝑛, ||𝑢𝑖 || = 1, and an

intervention 𝑣 is applied, then the updated opinions 𝑢′1, . . . ,𝑢
′
𝑛 are given by

𝑤𝑖 = 𝑢𝑖 + 𝜂⟨𝑢𝑖 ,𝑣⟩ · 𝑣 , (5.2)

𝑢′𝑖 =
𝑤𝑖
‖𝑤𝑖‖

, (5.3)

where we note that

‖𝑤𝑖‖2 = ⟨𝑤𝑖 ,𝑤𝑖⟩ = 1 + (2𝜂 + 𝜂2)⟨𝑢𝑖 ,𝑣⟩2 (5.4)

by expanding out the definition of 𝑤𝑖 . In particular, this implies that ‖𝑤𝑖‖ ≥ 1, and
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consequently that 𝑢′𝑖 is well-defined. The norm in (5.3) and everywhere else throughout is

the standard Euclidean norm. Note that applying 𝑣 and −𝑣 always yields the same results.

Objectives We analyze the strategy of influencers in several settings.

In an “asymptotic scenario”, the influencer wants to apply an infinite sequence of

interventions 𝑣(1),𝑣(2), . . . , that maximizes how many out of the 𝑛 agent opinions converge

to the target vector 𝑣. As is standard, we say that a sequence of vectors 𝑢(1), · · · ,𝑢(𝑡), . . .

converges to a vector 𝑣 if lim𝑡→∞ ||𝑢
(𝑡)
𝑖 − 𝑣|| = 0. One way to interpret this scenario is that a

campaigner wants to establish a solid base of support for their party platform.

In a “multiple-influencer scenario", two influencers (such as two companies or two

parties) who have different objectives apply their two respective interventions on the

population in a certain order. We ask how the opinions change under such competing

influences. This scenario can be interpreted as two parties campaigning their agendas to

the population.

In a “short-term scenario”, the influencer is assumed to be an advertiser, and the

opinions of the product are expressed in the last coordinate of opinion vectors 𝑢𝑖,𝑑 . The

influencer assumes some fixed threshold 0 < 𝑇 < 1 and an upper bound 𝐾 on the number

of interventions, and asks, given 𝑛 opinions 𝑢1, . . . ,𝑢𝑛, how to choose 𝑣(1), · · · ,𝑣(𝐾) in order

to maximize the number of time-𝐾 opinions 𝑢(𝐾)
1 , . . . ,𝑢

(𝐾)
𝑛 with 𝑢(𝐾)

𝑖,𝑑 > 𝑇 . One interpretation

is that advertisers only have a limited number of opportunities to publicize their products

to consumers, and consumers with 𝑢
(𝐾)
𝑖 > 𝑇 will decide to buy the product after the

interventions 𝑣(1), · · · ,𝑣(𝐾) are applied.

There are several possible variants of our model that we find potentially interesting

but do not address in this paper. For example:

• “Targeting”, where the influencer can select subgroups of the population and apply

interventions groupwise.

• Perturbing preferences with noise after each step.
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• Replacement of the population, e.g., introducing new agents with “fresh” opinions

or removing agents that stayed in the population for a long time or who already

“bought” the product, i.e., exceeded the threshold 𝑢𝑖,𝑑 > 𝑇 . For example, this could

correspond to "one-time" purchase product like a house or a fridge, or situations

where the customer’s opinion is more difficult to change as time passes.

• Models where the initial opinions are not observable or partially observable.

• Expanding the model by adding peer effects and social network structure and explo-

ring the resulting dynamics of polarization and opinion formation.

• Strategic competing influencers: in the studied scenarios with competing influencers,

we assume that they apply fixed interventions. One can ask: supposing the influen-

cers have their own target opinions, what is each campaigner’s optimal sequence of

messages in face of the other campaigner? Then, resulting equilibrium of opinion

formation could be analyzed.

5.4 Outline and Summary of Main Results

In this section, we present our results in different settings, with most of the proofs deferred

to later sections.

5.4.1 Asymptotic scenario: random interventions polarize opinions

We analyze the long-term behavior of our model in a simple random setting. We assume

that, in dimension 𝑑 = 2, at the initial time 𝑡 = 1 we are given 𝑛 opinion vectors 𝑢(1)
1 , . . . ,𝑢

(1)
𝑛 .

Subsequently, we apply a sequence of interventions 𝑣(1),𝑣(2), . . . , such that each intervention

𝑣(𝑡) is sampled i.i.d from the uniform distribution on the unit circle 𝑆1. More precisely, at

time 𝑡 we apply the random intervention 𝑣(𝑡) to every opinion vector 𝑢(𝑡)
𝑖 , obtaining a new

opinion 𝑢(𝑡+1)
𝑖 .
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We want to show that the opinions almost surely polarize as time 𝑡 goes to infinity.

We need to be careful about defining the notion of polarization: since the interventions

change at every time step, the opinions cannot converge to a fixed vector. Instead, we show

that for every pair of opinions the angle between them converges either to 0 or to 𝜋. More

formally:

Theorem 5.4.1. For any fixed opinions 𝑢(1)
1 and 𝑢(1)

2 and a sequence of uniform i.i.d. interven-

tions, we have

P

[︂
‖𝑢(𝑡)

1 −𝑢
(𝑡)
2 ‖ → 0∨ ‖𝑢(𝑡)

1 +𝑢(𝑡)
2 ‖ → 0

]︂
= 1 .

This leads to the following corollary for any finite number of agents:

Corollary 5.4.2. For any fixed opinions 𝑢(1)
1 , . . . ,𝑢

(1)
𝑛 and a sequence of uniform i.i.d. interven-

tions, almost surely, there exists 𝑆 ⊆ {1, . . . ,𝑛} such that the diameter of the set

{︂
(−1)1[𝑖∈𝑆] ·𝑢(𝑡)

𝑖 : 𝑖 ∈ {1, . . . ,𝑛}
}︂

converges to zero.

Theorem 5.4.1 is proved in Section 5.6 using martingale convergence. We believe the

theorem holds also for 𝑑 ≥ 3, but our proof does not apply to this case.

5.4.2 Asymptotic scenario: finding densest hemishpere

In this section we study the asymptotic scenario with one influencer. In this setting, the

influencer wishes to propagate a campaign agenda 𝑣* ∈R𝑑 . We assume that the influencer

can use an unlimited number of interventions and their objective is to make the opinions

of as many agents as possible to converge to 𝑣*. More precisely, given the preexisting

opinions of 𝑛 agents, 𝑢1, . . . ,𝑢𝑛, we want to find a sequence of interventions, 𝑣(1),𝑣(2),𝑣(3) . . .

that maximizes the number of agents whose opinions converge to 𝑣*.
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The thrust of our results is that finding a good strategy for the influencer is computati-

onally hard. However, both the optimal strategy and some natural heuristics result in the

polarization of agents.

We first argue that the problem of finding an optimal strategy is equivalent to iden-

tifying an open hemisphere that contains the maximum number of agents. An open

hemishpere is an intersection of the unit sphere with a homogeneous open halfspace of the

form
{︁
𝑢 ∈R𝑑 : ⟨𝑢,𝑣⟩ > 0

}︁
for some 𝑣 ∈R𝑑 .

Theorem 5.4.3. For any 𝑣*, there exists a strategy to make at least 𝑘 agents converge to 𝑣* if

and only if there exists an open hemisphere containing at least 𝑘 of the opinions 𝑢1, . . . ,𝑢𝑛.

Proof of Theorem 5.4.3. First, we prove that the hemisphere condition is sufficient for the

existence of a strategy to make the agents’ opinions converge (Claim 5.4.4). Then we prove

the trickier direction: that the hemisphere condition is also necessary for the existence of

such a strategy (Claim 5.4.9).

Claim 5.4.4. If opinions 𝑢1, . . . ,𝑢𝑘 are contained in an open hemisphere, then there is a sequence

of interventions making all of 𝑢1, . . . ,𝑢𝑘 converge to 𝑣*.

Proof. By definition of open hemisphere, there is a vector 𝑎 ∈ R𝑑 such that ⟨𝑎,𝑢𝑖⟩ > 0 for

every agent 𝑖 = 1, . . . , 𝑘. By (5.2), it is clear that repeated application of 𝑎 makes all the

points converge to 𝑎 as time 𝑡→∞ .

After all the points are clustered close enough to 𝑎, by a similar argument they can be

“moved around” together towards another arbitrary point 𝑣*. For example, if ⟨𝑣*, 𝑎⟩ > 0,

the intervention 𝑣* can be applied repeatedly. If ⟨𝑣*, 𝑎⟩ ≤ 0, one can proceed in two stages:

First applying an intervention proportional to (𝑣* + 𝑎)/2, and then 𝑣*.

Remark 5.4.5. As a possible interpretation of the mechanism in Claim 5.4.4, it is not unheard

of in campaigns on political issues to use an analogous strategy. First, build a consensus around

a (presumably compromise) opinion. Then, “nudge” it little by little towards another direction.

In an extreme case one can imagine this mechanism even flipping the opinions of two

polarized clusters. One example of this could be reversal of the opinions on certain issues of 20th
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century Republican and Democratic parties in the US (this particular phenomenon can be found

in many texts, e.g. [100]).

To prove the other direction of Theorem 5.4.3, we will rely on the notions of conical

combination and convex cone. A conical combination of points 𝑢1, . . . ,𝑢𝑛 ∈R𝑑 is any point

of the form
∑︀𝑛
𝑖=1𝛼𝑖𝑢𝑖 where 𝛼𝑖 ≥ 0 for every 𝑖. A convex cone is a subset of R𝑑 that is closed

under finite conical combinations of its elements. Given a finite set of points 𝑆 ⊆R
𝑑 , the

convex cone generated by 𝑆 is the smallest convex cone that contains 𝑆.

Claim 5.4.6. Let 𝜀 > 0. Suppose that for a given sequence of interventions the opinions 𝑢1, . . . ,𝑢𝑛

get within ℓ2-distance 𝜀 to some point 𝑣*. Then, for any unit vector 𝑢𝑛+1 that lies in the convex

cone of 𝑢1, . . . ,𝑢𝑛 intersected with the unit sphere, we have that 𝑢𝑛+1 gets within distance at

most 2𝜀 of 𝑣*.

Proof. First, we prove that if 𝑢𝑛+1 lies in the convex cone of 𝑢1, . . . ,𝑢𝑛, then after applying

one intervention 𝑣 the new opinion 𝑢′𝑛+1 lies in the convex cone of 𝑢′1, . . . ,𝑢
′
𝑛. This shows

that points in the convex cone always stay within the convex cone, by induction.

To prove this, we can simply write out 𝑢′𝑛+1, using the relation 𝑢𝑛+1 =
∑︀𝑛
𝑖=1𝜆𝑖𝑢𝑖 (where

we use the notation 𝑢 ∝ 𝑣 to mean that 𝑢 = 𝑐 · 𝑣 for some constant 𝑐 > 0):

𝑢′𝑛+1 ∝ 𝑢𝑛+1 + 𝜂 ⟨𝑢𝑛+1,𝑣⟩ · 𝑣

=
𝑛∑︁
𝑖=1

𝜆𝑖𝑢𝑖 + 𝜂 ·
𝑛∑︁
𝑖=1

𝜆𝑖 ⟨𝑢𝑖 ,𝑣⟩ · 𝑣

=
𝑛∑︁
𝑖=1

𝜆𝑖 (𝑢𝑖 + 𝜂 · ⟨𝑢𝑖 ,𝑣⟩ · 𝑣)

=
𝑛∑︁
𝑖=1

𝜆𝑖 · 𝑐𝑖𝑢′𝑖 (5.5)

where the constants in (5.5) are 𝑐𝑖 :=
⃦⃦⃦
𝑢𝑖 + 𝜂 · ⟨𝑢𝑖 ,𝑣⟩ · 𝑣

⃦⃦⃦
. Specifically, they are all nonnega-

tive.

Next, we show that if 𝑢1, . . . ,𝑢𝑛 are within distance 𝜀 of 𝑣*, then so any point in their
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convex cone intersected with the unit sphere is distance at most 2𝜀 away. Let 𝑢 :=
∑︀𝑛
𝑖=1𝜆𝑖𝑢𝑖

be such a point. Let 𝑢* denote 𝑢 with normalized weights; that is, 𝑢* =
∑︀𝑛
𝑖=1𝜂𝑖𝑢𝑖 where

𝜂𝑖 := 𝜆𝑖/
∑︀𝑛
𝑗=1𝜆𝑗 .

||𝑢 − 𝑣|| ≤ ||𝑢 −𝑢*||+ ||𝑢* − 𝑣||

Note that 𝑢 is the closest point to 𝑢* on the unit sphere; indeed for any point 𝑧 on the

unit sphere

||𝑢* − 𝑧||22 = ||𝑢*||22 + 1− 2⟨𝑢*, 𝑧⟩ ≥ ||𝑢*||22 + 1− 2||𝑢*||2

by Cauchy-Schwarz. Furthermore, ||𝑢* − 𝑣|| ≤ 𝜀, which follows from the triangle inequality.

Hence, we get that ||𝑢 − 𝑣|| ≤ 2𝜀 as desired.

Claim 5.4.7. Suppose there are two opinions 𝑢1,𝑢2 that are antipodal, i.e., 𝑢1 = −𝑢2. Then

these two opinions will remain antipodal in future time steps. In particular, they will never

converge to a single point.

Proof. This follows directly from (5.2), noting that, for any intervention 𝑣, we have 𝑢1 + 𝜂 ·

⟨𝑢1,𝑣⟩ · 𝑣 = − (𝑢2 + 𝜂 · ⟨𝑢2,𝑣⟩ · 𝑣).

We will also use the following consequence of the separating hyperplane theorem:

Fact 5.4.8. A collection of unit vectors 𝑎1, . . . , 𝑎𝑛 cannot be placed in an open hemisphere if and

only if the zero vector lies in the convex hull of 𝑎1, . . . , 𝑎𝑛.

Now we are ready to establish the reverse implication in Theorem 5.4.3.

Claim 5.4.9. Suppose that we start with agent opinions 𝑢1, . . . ,𝑢𝑛 and that there is no hemisp-

here that contains 𝑀 of those opinions. Then, there is no strategy that makes 𝑀 of the opinions

converge to the same point.

Proof. Assume towards contradiction that there exists a strategy that makes 𝑀 opinions

converge to the same point, and assume wlog that they are 𝑢1, . . . ,𝑢𝑀 . By assumption,

we know that there is no hemisphere that contains all of 𝑢1, . . . ,𝑢𝑀 , hence, by Fact 5.4.8,

there is a convex combination of 𝑢1, . . . ,𝑢𝑀 that equals 0. Therefore, there is also a conical
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combination of 𝑢1, . . . ,𝑢𝑀−1 that equals −𝑢𝑀 , where wlog we assume that the coefficient

on 𝑢𝑀 is initially nonzero. By Claim 5.4.6, we conclude that if 𝑢1, . . . ,𝑢𝑀−1 converge to

the same point, then so does −𝑢𝑀 . But that means that −𝑢𝑀 and 𝑢𝑀 converge to the same

point, which is a contradiction by Claim 5.4.7.

Remark 5.4.10. One consequence of Theorem 5.4.3 is that if the agent opinions are initially

distributed uniformly on the unit sphere, an optimal strategy converging as many opinions

as possible to 𝑣* results, with high probability, in dividing the population into two groups of

roughly equal size, where the opinions inside each group converge to one of two antipodal limit

opinions (i.e., 𝑣* and −𝑣*).

As mentioned, Theorem 5.4.3 implies that an optimal strategy for the influencer is to

compute the hemisphere that contains the most opinions and then apply the procedure

from Claim 5.4.4 to converge the opinions from this hemisphere to 𝑣*.

The densest hemisphere problem turns out to be equivalent to the previously stu-

died problem of learning noisy halfspaces, allowing us to apply known algorithmic and

computational hardness results. In particular, applying a work by Guruswami and Ragha-

vendra [68] we show in Section 5.7 that it is computationally difficult to even approximate

the densest hemisphere in a strong sense:

Theorem 5.4.11. Unless P=NP, for any 𝜀 > 0, there is no polynomial time algorithm that dis-

tinguishes between instances of densest hemisphere problem such that, letting 𝐷 := {𝑢1, . . . ,𝑢𝑛}:

• Either there exists a hemisphere 𝐻 such that |𝐷 ∩𝐻 |/𝑛 > 1− 𝜀.

• Or for every hemisphere 𝐻 we have |𝐷 ∩𝐻 |/𝑛 < 1/2 + 𝜀.

Consequently, unless P=NP, there is no polynomial time algorithm that, given an instance 𝐷

that has a hemisphere with density more than 1− 𝜀, outputs a hemisphere with density more

than 1/2 + 𝜀.
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At the same time, [20] (relying on earlier work [19]) shows that there exists an algorithm

that finds a dense hemisphere provided that this hemisphere is stable in the sense that it

remains dense even after a small perturbation of its separating hyperplane:

Theorem 5.4.12 ([20]). For every 𝜂 > 0, there exists a polynomial time algorithm that, given an

instance 𝐷 = {𝑢1, . . . ,𝑢𝑛} of the densest hemisphere problem, provides the following guarantee:

If there exists a halfspace 𝐻𝜂 = {𝑥 : ⟨𝑣,𝑥⟩ > 𝜂} such that |𝐷 ∩𝐻𝜂 |/𝑛 > 𝛼, then the algorithm

outputs a hemisphere corresponding to a homogeneous halfspace 𝐻 = {𝑥 : ⟨𝑤,𝑥⟩ > 0} such that

|𝐷 ∩𝐻 |/𝑛 > 𝛼.

In other words, if there exists a hemisphere that contains many opinions, and the

opinions do not lie close to the separating hyperplane, there is an efficient algorithm to

find this hemisphere, which can then be used to persuade the agents.

5.4.3 Short-term scenario: polarization as externality

The analysis of asymptotic setting with unlimited interventions tells us what is feasible and

what is not. A fundamentally different question is how to persuade as many as possible

with limited number of interventions. This is motivated by bounded resources or time that

usually allow only limited placements of campaigns and advertisements. Furthermore,

arguably only the initial interventions can be considered effective: in the long run the

opinions might shift due to external factors and become more unpredictable and harder

to control. Therefore, in this section we discuss influencer strategies when it has only

one intervention at its disposal, and its goal is to get as many agents as possible to have

opinions close to 𝑣*. Throughout this section, we fix 𝜂 = 1 in Equation 5.1, so an opinion 𝑢

is updated to be proportional to 𝑤 = 𝑢 + ⟨𝑢,𝑣⟩ · 𝑣.

We consider a simple example that features only two opinions and one influencer

who is allowed one intervention. We imagine a new product being introduced into the

market such that the agents are initially agnostic about it, i.e., 𝑢𝑖,𝑑 = 0 for 𝑖 = 1,2. Given an

intervention 𝑣, we are interested in two issues: First, what will be new opinions of agents

about the product 𝑢′𝑖,𝑑? Second, assuming that the initial correlation between opinions is
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𝑐 = ⟨𝑢1,𝑢2⟩, what will be the new correlation 𝑐′ = ⟨𝑢′1,𝑢
′
2⟩? We think of the correlation as a

measure of agreement between the agents and therefore interpret differences in correlation

as changes in the extent of polarization.

To this end, we introduce notions of unifying and antagonizing interventions corre-

sponding to two natural strategies:

Definition 5.4.13. The unifying intervention is an intervention that maximizes min(𝑢′1,𝑑 ,𝑢
′
2,𝑑).

The antagonizing intervention maximizes max(𝑢′1,𝑑 ,𝑢
′
2,𝑑).

The motivation for this definition is as follows. If the opinions 𝑢′𝑖,𝑑 correlate with the

probability of the agent buying the product (e.g., an agent will consider buying only if

their opinion exceeds certain threshold 𝑢′𝑖,𝑑 > 𝑇 ), and assuming that inducing as many

sales as possible is the only thing that the influencer cares about, there are two natural

choices for the intervention. One option is to apply 𝑣 that will yield new opinions 𝑢′1,𝑢
′
2

such that min(𝑢′1,𝑑 ,𝑢
′
2,𝑑) is maximized. This corresponds to the case when the influencer

appeals to both agents with the hope of inducing two sales. The other case is to appeal

only to one of the agents, for example, the first agent, disregarding the second agent and

concentrating only on one possible sale.

Due to the geometrical nature of our model, to analyze unifying and antagonizing

strategy in this setting, we can, without loss of generality, assume that 𝑑 = 3 and that the

initial opinions are given by

𝑢1 := (sin𝛼,cos𝛼,0) , 𝑢2 := (−sin𝛼,cos𝛼,0) , (5.6)

for 0 ≤ 𝛼 ≤ 𝜋/2. Accordingly, we have 𝑐 = cos2𝛼 − sin2𝛼 = cos(2𝛼). In particular, 𝛼 = 0

means that the agents are in full agreement, 𝛼 = 𝜋/4 corresponds to the case of orthogonal

opinions and 𝛼 = 𝜋/2 is the case where the opinions are antipodal. The unifying and

antagonizing interventions can be illustrated as shown in Figure 5-1 (see Section 5.8.1 for

fuller derivation):

Rather intuitively, the unifying intervention has the form 𝑣uni = (0,𝑣2,𝑣3), i.e., its

288



𝑢1𝑢2

𝑣⊥ =
√

3/3 ·𝑢1
𝛼𝛼

𝑢1𝑢2 𝑣⊥

𝛼𝛼

Figure 5-1: The projection of antagonizing (left) and unifying (right) interventions onto the
first two dimensions.

projection onto span of 𝑢1 and 𝑢2 is a bisector of those two opinions. On the other hand,

the projection of the antagonizing intervention 𝑣ant is parallel to 𝑢1 (or 𝑢2). As suggested

by the names, applying the antagonizing intervention results in the correlation 𝑐′ant that is

smaller (i.e., more polarized) than the correlation 𝑐′uni resulting from applying the unifying

intervention.

If it is more profitable for the advertiser to apply the antagonizing intervention, the

difference 𝑐′ant − 𝑐′uni can be interpreted as an externality imposed on the society:

Definition 5.4.14 (Polarization Cost). We define the polarization cost, denoted as 𝜌, as the

difference of correlation between two agents after applying an antagonizing intervention and a

unifying intervention, i.e., 𝜌 := 𝑐′𝑢𝑛𝑖 − 𝑐
′
𝑎𝑛𝑡.

Figure 5-2 illustrates the polarization cost as a function of initial correlation 𝑐. Since

the projection of the antagonizing intervention is parallel to 𝑢1, it always achieves the

same outcome that can be computed to be 𝑢′1,3 = 1/3. The difference between 1/3 and

the value of the blue curve is the difference in affinity of the first opinion 𝑢′1 in case of

antagonizing and unifying interventions. It clearly seems that in certain situations this

difference is large enough to justify applying the antagonizing strategy, increasing the

polarization of opinions.

More detailed computations are contained in Section 5.8.1. Additionally, in Section 5.8.2

we discuss the problem of finding an optimal intervention with a larger number of opini-

ons. We assume that there are 𝑛 opinions 𝑢1, . . . ,𝑢𝑛 with 𝑢𝑖,𝑑 = 0 and that we want to find

289



Figure 5-2: Metrics of performance in our example. The blue line shows the affinity 𝑢′1,3 = 𝑢′2,3
after applying the unifying intervention. The red line shows affinity 𝑢′2,3 of the second agent for
the antagonizing intervention (recall that 𝑢′1,3 = 1/3). The green line shows the polarization
cost 𝜌 = 𝑐uni − 𝑐ant.

an intervention maximizing the number of agents with the final opinion 𝑢′𝑖,𝑑 > 𝑇 for some

0 < 𝑇 < 1.

Interestingly, we show that this problem is equivalent to a generalization of the den-

sest hemisphere problem from the long-term scenario discussed in Section 5.4.2. More

precisely, it is equivalent to finding a densest spherical cap of a given radius (that depends

on the threshold 𝑇 ), see Proposition 5.8.1 in Section 5.8.2.

5.4.4 Two influencers: two randomized interventions polarize

Finally, we analyze a scenario where there are two influencers with differing agendas,

represented by different1 intervention vectors 𝑣 and 𝑣′. We consider the randomized

setup, where at each time step, one of the influencers is randomly chosen to apply their

intervention. We demonstrate that this setting also results, in most cases and in a certain

sense, in the polarization of agents.

Recall that a convex cone of two vectors 𝑣 and 𝑣′ is the set {𝛼𝑣+𝛽𝑣′ : 𝛼,𝛽 ≥ 0}. A precise

1We also assume that 𝑣 , −𝑣′ , as otherwise the intervention effects are the same in our model.
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statement that we prove is:

Theorem 5.4.15. Let ⟨𝑣,𝑣′⟩ > 0 and let a starting opinion 𝑢(1) be such that ⟨𝑢(1),𝑣⟩ , 0 or

⟨𝑢(1),𝑣′⟩ , 0. Then, as 𝑡 goes to infinity and almost surely, either the Euclidean distance between

𝑢(𝑡) and the convex cone generated by 𝑣 and 𝑣′ or between 𝑢(𝑡) and the convex cone generated by

−𝑣 and −𝑣′ goes to 0.

In order to justify the assumptions of Theorem 5.4.15, note that if an agent starts with

an opinion 𝑢 such that

⟨𝑢,𝑣⟩ = ⟨𝑢,𝑣′⟩ = 0 , (5.7)

applying 𝑣 or 𝑣′ never changes their opinion. In Theorem 5.4.15 we show that if (5.7) does

not hold and, additionally, ⟨𝑣,𝑣′⟩ , 0, (if ⟨𝑣,𝑣′⟩ < 0 we can exchange 𝑣′ with −𝑣′ without

changing the effects of any interventions), the opinion vector with probability 1 ends up

either converging to the convex cone generated by 𝑣 and 𝑣′ or the convex cone generated

by −𝑣 and −𝑣′. In particular, since vectors 𝑢 for which (5.7) holds form a set of measure 0,

if 𝑛 initial opinions are sampled i.i.d. from an absolutely continuous distribution, almost

surely all opinions converge to the convex cones (which are themselves sets of measure 0).

Furthermore, we attempt to strengthen this notion of polarization. As in Theorem 5.4.1,

the best we can hope for is that for each pair of opinions either the distance between 𝑢(𝑡)
1

and 𝑢(𝑡)
2 or between 𝑢(𝑡)

1 and −𝑢(𝑡)
2 converges to 0. Letting 𝑉 := span{𝑣,𝑣′} and 𝑊 := 𝑉 ⊥ and

writing any vector 𝑢 as a sum of its projections 𝑢 = 𝑢𝑉 +𝑢𝑊 , we show:

Theorem 5.4.16. Suppose that ⟨𝑣,𝑣′⟩ > 1/
√︀

2 + 𝜂 and let 𝑢(1)
1 ,𝑢

(1)
2 be such that ‖(𝑢(1)

1 )𝑉 ‖ , 0,

‖(𝑢(1)
2 )𝑉 ‖ , 0. Then, almost surely, either ‖𝑢(𝑡)

1 −𝑢
(𝑡)
2 ‖ converges to 0, or ‖𝑢(𝑡)

1 +𝑢(𝑡)
2 ‖ converges to

0.

In other words, we prove a stronger notion of convergence in case the correlation

between interventions 𝑣 and 𝑣′ is larger than

⟨𝑣,𝑣′⟩ >
√︂

1
2 + 𝜂

>

√
2

2
≈ 0.71 .
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In particular, for 𝜂 = 1 our result applies if ⟨𝑣,𝑣′⟩ >
√

3/3 ≈ 0.58. Our experiments suggest

that this convergence occurs also for other values of ⟨𝑣,𝑣′⟩, but we do not prove it here.

In the remaining case when 𝑣 and 𝑣′ are orthogonal, there is no natural notion of

a convex cone (the vectors 𝑣 and 𝑣′ form four right angles), but we can still show that

an initial opinion 𝑢(1) converges to the quadrant in which it starts with respect to 𝑣

and 𝑣′. Namely, for all 𝑡, we have that sgn
(︁⟨
𝑢(𝑡),𝑣

⟩)︁
= sgn

(︁⟨
𝑢(1),𝑣

⟩)︁
and sgn

(︁⟨
𝑢(𝑡),𝑣′

⟩)︁
=

sgn
(︁⟨
𝑢(1),𝑣′

⟩)︁
, and furthermore the distance between 𝑢(𝑡) and the subspace 𝑉 goes to 0

with 𝑡:

Corollary 5.4.17. Let ⟨𝑣,𝑣′⟩ = 0 and let an initial opinion 𝑢 = 𝑢(1) be such that ⟨𝑢,𝑣⟩ , 0 and

⟨𝑢,𝑣′⟩ , 0. Then, almost surely, the following facts hold:

1. ‖𝑢(𝑡)
𝑊 ‖ → 0 as 𝑡→∞.

2. For all 𝑡, sgn
(︁⟨
𝑢(𝑡),𝑣

⟩)︁
= sgn

(︁⟨
𝑢(1),𝑣

⟩)︁
and sgn

(︁⟨
𝑢(𝑡),𝑣′

⟩)︁
= sgn

(︁⟨
𝑢(1),𝑣′

⟩)︁
.

The proofs of Theorems 5.4.15 and 5.4.16 and Corollary 5.4.17 are contained in

Section 5.9.

5.5 Illustrative Examples

In this section we give some illustrative examples of the dynamics of our model, by using

simulations with 𝜂 in Equation 5.1 set to 1.

5.5.1 One advertiser

To illustrate our model, suppose an advertiser is marketing a new product. The opinion

of the population has four dimensions. The population consists of 500 agents, each with

random initial opinions 𝑢𝑖 = (𝑢𝑖,1,𝑢𝑖,2,𝑢𝑖,3,0) subject to 𝑢2
𝑖,1 +𝑢2

𝑖,2 +𝑢2
𝑖,3 = 1. The opinion on

the new product is represented by the fourth coordinate, which is initially set to zero for

all agents.
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Suppose the advertiser chooses a strategy of repeatedly applying an intervention that

couples the product with the preexisting opinion on the first coordinate. For example, an

intervention vector could be 𝑣 = (
√

1−𝛼2,0,0,𝛼) for 𝛼 = 3/4.

The evolution of opinions over five consecutive broadcasts of 𝑣 is illustrated in Fi-

gure 5-3. The interventions increase the affinity for the product for some agents while

antagonizing others. Furthermore, the interventions have a side effect in that the agents’

opinions on the first three coordinates also become polarized.

5.5.2 Two advertisers

For another slightly more involved example, suppose there are two advertisers marketing

their products. Agents’ opinions now have five dimensions (𝑑 = 5) with the fourth and fifth

coordinates corresponding to the opinions on these two products. Initially, 500 opinions on

the first three coordinates are distributed randomly and uniformly on a three-dimensional

sphere, and the last two coordinates are equal to zero.

Suppose the two advertisers apply interventions 𝑣1 and 𝑣2 in an alternating fashion.

We take 𝑣1 and 𝑣2 to be orthogonal. For example, let

𝑣1 = (
√

1−𝛼2,0,0,𝛼,0)

𝑣2 = (0,
√

1−𝛼2,0,0,𝛼)

for 𝛼 = 3/4.

In Figure 5-4 we illustrate the agents’ opinions after each advertiser applied their

intervention two, four and six times (so the total of, respectively, four, eight and twelve

interventions have been applied). A pattern of polarization on the fourth and fifth coor-

dinates can be observed. At the same time, the pattern on the first three coordinates is

more complicated: The opinions on these dimensions are scattered around a circle on

the plane spanned by the first two coordinates. This is a somewhat special behavior that

arises because vectors 𝑣1 and 𝑣2 are orthogonal. It is connected to the difference between
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𝑡 = 0 𝑡 = 1

𝑡 = 2 𝑡 = 3

𝑡 = 4 𝑡 = 5

Figure 5-3: Five consecutive interventions of vector 𝑣 = (
√

7/4,0,0,3/4) in R
4. The spatial

position of the points represents their first three coordinates. The fourth dimension, representing
the marketed product, is encoded with a color scale.
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Theorem 5.4.15 and Corollary 5.4.17 discussed in Section 5.4.4.
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𝑡 = 2

𝑡 = 4

𝑡 = 6

Figure 5-4: Two figures are displayed for each time step 𝑡 = 2,4,6. The spatial positions of the
points in both figures correspond to the first three dimensions (they are the same on the left and
right). The colors encode opinions of the two products. The left column presents population’s
opinions on the first product (fourth coordinate). The right column presents the population’s
opinions on the second product (fifth coordinate). The distribution of points at 𝑡 = 0 is uniform
(cf. Figure 5-3).
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5.6 Long-Term Polarization of Random Interventions

Let us explain the outline of the proof of Theorem 5.4.1. We consider a random variable

𝛼𝑡 ∈ [0,𝜋] representing the angle between 𝑢(𝑡)
1 and 𝑢(𝑡)

2 and we show that it is a martingale.

By the martingale convergence theorem, this means that 𝛼𝑡 almost surely converges.

Furthermore, since for 0 < 𝜀 < 𝛼𝑡 < 𝜋 − 𝜀 the conditional variance Var[𝛼𝑡 | 𝛼𝑡−1] is bounded

away from 0, the only possible convergence points are 0 and 𝜋. Below we develop this idea

in more detail.

We also remark that for 𝑑 ≥ 3 simulations suggest that Theorem 5.4.1 is still true,

however our proof fails since 𝛼𝑡 ceases to be a martingale.

As for Corollary 5.4.2, it follows from Theorem 5.4.1 by applying the union bound

(with probability 0 in each term) for each pair of opinions 𝑢(1)
𝑖 ,𝑢

(1)
𝑗 .

Proof of Theorem 5.4.1. To start with, we develop some notation. Let 𝑓 : 𝑆1 × 𝑆1→ 𝑆1 be

the function mapping an opinion 𝑢 and an intervention 𝑣 to an updated opinion 𝑓 (𝑢,𝑣),

according to (5.2) and (5.3). Note that this function is invariant under rotation: namely,

for any real unitary transformation 𝐴 : 𝑆1→ 𝑆1 we have

𝑓 (𝐴𝑢,𝐴𝑣) = 𝐴𝑓 (𝑢,𝑣) . (5.8)

We will now state and prove two claims. In both of them we fix a time 𝑡 and opinions

𝑢 := 𝑢(𝑡)
1 , 𝑢′ := 𝑢(𝑡)

2 . We also let 𝑣 := 𝑣(𝑡). As discussed, define

𝛼𝑡 := arccos⟨𝑢,𝑢′⟩ ∈ [0,𝜋]

as the primary angle between 𝑢 and 𝑢′. One consequence of (5.8) is that we can assume

wlog that 𝑢 = (1,0) and 𝑢′ = (cos𝛼𝑡,sin𝛼𝑡).

Claim 5.6.1. E[𝛼𝑡+1 | 𝛼𝑡] = 𝛼𝑡.

Proof. Let us write the random intervention vector as 𝑣 = (cos𝛽,sin𝛽), where the distribu-
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𝑣
𝑓 (𝑢′,𝑣)𝑢

′

𝑢

𝑓 (𝑢,𝑣)

𝛼𝑡

𝛽

𝛿′

𝛿

𝑢′

𝑣
𝑣*

𝑢𝜀

Figure 5-5: On the left an illustration of the vectors and angles in the proof of Claim 5.6.1. On
the right an illustration for the proof of Claim 5.6.3.

tion of 𝛽 is uniform in [0,2𝜋). We will also write (cf. Figure 5-5 for an overview)

𝑓 (𝑢,𝑣) = (cos𝛿,sin𝛿) , 𝑓 (𝑢′,𝑣) = (cos(𝛼𝑡 + 𝛿′),sin(𝛼𝑡 + 𝛿′)) , 𝛿,𝛿′ ∈ [−𝜋,𝜋) .

Since 𝑓 (𝑢,−𝑣) = 𝑓 (𝑢,𝑣) and since if ⟨𝑢,𝑣⟩ ≥ 0, then 𝑓 (𝑢,𝑣) is a convex combination of 𝑢

and 𝑣, we conclude that an intervention cannot move the angle of vector 𝑢 by more than

𝜋/2: in other words, we have −𝜋/2 < 𝛿,𝛿′ < 𝜋/2. Furthermore, since it is easy to check that

𝛿(𝛽) = −𝛿(2𝜋 − 𝛽), we also have

∫︁ 2𝜋

0
𝛿d𝛽 = 0 , (5.9)

and, similarly, applying (5.8),
∫︀ 2𝜋

0
𝛿′ d𝛽 = 0.

Let 𝛼* := 𝛼𝑡 + 𝛿′ − 𝛿 (mod 2𝜋), i.e., we take 𝛼* to be the directed angle from 𝑓 (𝑢,𝑣) to

𝑓 (𝑢′,𝑣) reduced to lie in the interval [0,2𝜋) A crucial observation is that

0 ≤ 𝛼* ≤ 𝜋 . (5.10)

This is a result of our choice of the coordinate system and the fact that applying an

intervention does not change the orientation of opinion vectors. Let us proceed further,
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assuming (5.10) and deferring its proof until later.

Due to (5.10), we get

𝛼𝑡+1 = arccos⟨𝑓 (𝑢,𝑣), 𝑓 (𝑢′,𝑣)⟩ = arccos(cos(𝛼𝑡 + 𝛿′)cos𝛿+ sin(𝛼𝑡 + 𝛿′)sin𝛿) = arccos(cos(𝛼*)) = 𝛼* .

We can now start substituting

E[𝛼𝑡+1 | 𝛼𝑡] =
1

2𝜋

∫︁ 2𝜋

0
𝛼𝑡+1 d𝛽 =

1
2𝜋

∫︁ 2𝜋

0
𝛼*d𝛽 =

1
2𝜋

∫︁ 2𝜋

0
𝛼𝑡 + 𝛿′ − 𝛿 (mod 2𝜋)d𝛽 . (5.11)

We now argue that

𝛼𝑡 + 𝛿′ − 𝛿 (mod 2𝜋) = 𝛼𝑡 + 𝛿′ − 𝛿 , (5.12)

that is 0 ≤ 𝛼𝑡 + 𝛿′ − 𝛿 < 2𝜋. Indeed, using 0 ≤ 𝛼𝑡 ≤ 𝜋 and −𝜋/2 < 𝛿,𝛿′ < 𝜋/2 we have

−𝜋 < 𝛼𝑡 + 𝛿′ − 𝛿 < 2𝜋 ,

but −𝜋 < 𝛼𝑡+𝛿′−𝛿 < 0 would imply 𝛼* > 𝜋, contradicting (5.10). Finally, substituting (5.12)

and (5.9) into (5.11), we arrive at

E[𝛼𝑡+1 | 𝛼𝑡] = 𝛼𝑡 +
1

2𝜋

∫︁ 2𝜋

0
𝛿′ d𝛽 − 1

2𝜋

∫︁ 2𝜋

0
𝛿d𝛽 = 𝛼𝑡 ,

concluding the proof.

It remains to deal with (5.10):

Fact 5.6.2. 0 ≤ 𝛼* ≤ 𝜋.

Proof. Let us embed our underlying space R
2 in R

3 by setting the last coordinate to zero.

Letting × denote the cross product, we have

𝑢 ×𝑢′ = (0,0,sin𝛼𝑡) , 𝑓 (𝑢,𝑣)× 𝑓 (𝑢′,𝑣) = (0,0,sin𝛼*) .
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Since the case 𝛼𝑡 ∈ {0,𝜋} is easily handled by noticing that 𝛼* = 𝛼𝑡, we can assume that

0 < 𝛼𝑡 < 𝜋. In that case, it is enough that we prove

⟨︀
𝑢 ×𝑢′, 𝑓 (𝑢,𝑣)× 𝑓 (𝑢′,𝑣)

⟩︀
≥ 0 . (5.13)

Setting 𝐶(𝑤) :=
√︀

1 + (2𝜂 + 𝜂2)⟨𝑤,𝑣⟩2, we apply (5.2) and bilinearity of cross product to

compute

𝑓 (𝑢,𝑣)× 𝑓 (𝑢′,𝑣) =
1

𝐶(𝑢)𝐶(𝑢′)

(︂
𝑢 ×𝑢′ + 𝜂

(︁
⟨𝑢,𝑣⟩(𝑣 ×𝑢′) + ⟨𝑢′,𝑣⟩(𝑢 × 𝑣)

)︁)︂
=

1
𝐶(𝑢)𝐶(𝑢′)

(︂
𝑢 ×𝑢′ + 𝜂

(︁
𝑢 ×𝑢′ + (⟨𝑢,𝑣⟩𝑣 −𝑢)× (𝑢′ − ⟨𝑢′,𝑣⟩𝑣)

)︁)︂
(5.14)

=
1 + 𝜂

𝐶(𝑢)𝐶(𝑢′)
𝑢 ×𝑢′ , (5.15)

where in (5.14) we used the identity 𝑎×𝑏+𝑐×𝑑 = 𝑎×𝑑+𝑐×𝑏+(𝑎−𝑐)×(𝑏−𝑑), and in (5.15) we

used that both ⟨𝑢,𝑣⟩𝑣−𝑢 and 𝑢′−⟨𝑢′,𝑣⟩𝑣 are projections of vectors onto the line orthogonal

to 𝑣, and therefore they are parallel and their cross product vanishes.

Consequently, we can conclude that 𝑓 (𝑢,𝑣)× 𝑓 (𝑢′,𝑣) is parallel to 𝑢 ×𝑢′ with a positive

proportionality constant, which implies (5.13) and concludes the proof.

Claim 5.6.3. For every 𝜀 > 0, there exists 𝛿 > 0 such that,

𝜀 ≤ 𝛼𝑡 ≤ 𝜋/2 =⇒ P

[︁
𝛼𝑡+1 < 𝛼𝑡 − 𝛿 | 𝛼𝑡

]︁
> 𝛿 , (5.16)

and, symmetrically,

𝜋/2 ≤ 𝛼𝑡 ≤ 𝜋 − 𝜀 =⇒ P

[︁
𝛼𝑡+1 > 𝛼𝑡 + 𝛿 | 𝛼𝑡

]︁
> 𝛿 . (5.17)

Proof. Note that our intervention function 𝑓 exhibits a symmetry 𝑓 (−𝑢,𝑣) = −𝑓 (𝑢,𝑣).
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Furthermore, we also have arccos⟨𝑢,𝑢′⟩ = 𝜋 − arccos⟨𝑢,−𝑢′⟩. Consequently,

𝛼𝑡+1 −𝛼𝑡 = arccos⟨𝑓 (𝑢,𝑣), 𝑓 (𝑢′,𝑣)⟩ − arccos⟨𝑢,𝑢′⟩

= 𝜋 − arccos⟨𝑓 (𝑢,𝑣), 𝑓 (−𝑢′,𝑣)⟩ − (𝜋 − arccos⟨𝑢,−𝑢′⟩)

= −
(︁
arccos⟨𝑓 (𝑢,𝑣), 𝑓 (−𝑢′,𝑣)⟩ − arccos⟨𝑢,−𝑢′⟩

)︁
.

As a result, it is enough that we prove (5.16) and then (5.17) follows immediately by

replacing 𝑢′ with −𝑢′.

Consider vector 𝑣* := (cos𝜀,sin𝜀) (see Figure 5-5). We will now show that if 𝜀 ≤ 𝛼𝑡 ≤ 𝜋/2

and the intervention 𝑣 is sufficiently close to 𝑣*, then 𝑣 decreases the angle between 𝑢 and

𝑢′. To that end, let us use a metric on 𝑆1 given by

𝐷(𝑢,𝑣) := arccos⟨𝑢,𝑣⟩ .

Note that this metric is strongly equivalent to the standard Euclidean metric on 𝑆1. We

can now us triangle inequality to write

𝛼𝑡+1 =𝐷(𝑓 (𝑢,𝑣), 𝑓 (𝑢′,𝑣))

≤𝐷(𝑓 (𝑢,𝑣), 𝑓 (𝑢,𝑣*)) +𝐷(𝑓 (𝑢,𝑣*),𝑣*) +𝐷(𝑣*, 𝑓 (𝑢′,𝑣*)) +𝐷(𝑓 (𝑢′,𝑣*), 𝑓 (𝑢′,𝑣)) . (5.18)

Let us now bound the terms in (5.18) one by one.

First, since, by (5.2), 𝑓 (𝑢,𝑣*) is a strict convex combination of 𝑢 and 𝑣*, we have

𝐷(𝑓 (𝑢,𝑣*),𝑣*) = 𝑑(𝜀) < 𝐷(𝑢,𝑣*) = 𝜀 .

Similarly,

𝐷(𝑣*, 𝑓 (𝑢′,𝑣*)) ≤𝐷(𝑣*,𝑢′) = 𝛼𝑡 − 𝜀 .

Second, since 𝑓 is continuous, if we assume that 𝐷(𝑣,𝑣*) < 𝛿, or equivalently, ‖𝑣 − 𝑣*‖ < 𝛿
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for small enough 𝛿 > 0, then we can make both 𝐷(𝑓 (𝑢,𝑣), 𝑓 (𝑢,𝑣*)) and 𝐷(𝑓 (𝑢′,𝑣*), 𝑓 (𝑢′,𝑣))

as small as needed (for example, less than (𝜀 − 𝑑(𝜀))/4).

All in all, we have that for some 𝛿 = 𝛿(𝜀) > 0,

‖𝑣 − 𝑣*‖ < 𝛿 =⇒ 𝛼𝑡+1 <
𝜀 − 𝑑(𝜀)

4
+ 𝑑(𝜀) + (𝛼𝑡 − 𝜀) +

𝜀 − 𝑑(𝜀)
4

= 𝛼𝑡 −
𝜀 − 𝑑(𝜀)

2
.

However, clearly, P [‖𝑣 − 𝑣*‖ < 𝛿] = 𝑝(𝜀) > 0. Therefore, taking 𝛿′ := min
(︁
𝑝(𝜀), (𝜀 − 𝑑(𝜀))/2

)︁
,

we have

P [𝛼𝑡+1 < 𝛼𝑡 − 𝛿′ | 𝛼𝑡] > 𝛿′ ,

as claimed in (5.16).

As a consequence of applying Claim 5.6.3 ⌈𝜋/𝛿⌉ times, we obtain that for every 𝜀 > 0

there exist 𝑘 ∈N and 𝜂 < 1 such that

𝜀 ≤ 𝛼𝑡 ≤ 𝜋 − 𝜀 =⇒ P [𝜀 ≤ 𝛼𝑡+𝑘 ≤ 𝜋 − 𝜀 | 𝛼𝑡] ≤ 𝜂 .

Subsequently, it follows that for any fixed 𝜀 > 0 and 𝑇 ∈N,

P [∀𝑡 ≥ 𝑇 : 𝜀 ≤ 𝛼𝑇+𝑡 ≤ 𝜋 − 𝜀] = 0 . (5.19)

To finish the proof of Theorem 5.4.1, we use standard tools from theory of martingales.

By Claim 5.6.1, the sequence of random variables 𝛼𝑡 is a bounded martingale and therefore

almost surely converges. Accordingly, let 𝛼* := lim𝑡→∞𝛼𝑡. To finish the proof, we need to
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show that P[0 < 𝛼* < 𝜋] = 0. To that end,

P[0 < 𝛼* < 𝜋] ≤
∞∑︁
𝑠=1

P

[︂1
𝑠
< 𝛼* < 𝜋 − 1

𝑠

]︂
≤
∞∑︁
𝑠=1

P

[︂
∃𝑇 : ∀𝑡 ≥ 𝑇 :

1
2𝑠
< 𝛼𝑡 < 𝜋 −

1
2𝑠

]︂
≤
∞∑︁
𝑠=1

∞∑︁
𝑇=1

P

[︂
∀𝑡 ≥ 𝑇 :

1
2𝑠
< 𝛼𝑡 < 𝜋 −

1
2𝑠

]︂
= 0 ,

where we applied (5.19) in the last line.

5.7 Long-Term Strategy: Computational Aspects

In this section we provide proof of Theorem 5.4.11.

5.7.1 Computational equivalence to learning halfspaces

By Theorem 5.4.3, computing an optimal strategy to get the most people to agree with an

opinion 𝑣* is equivalent to computing the hemisphere maximizing the number of agent

opinions inside. In this section we discuss the computational consequences of this fact

following from known results. It turns out that the densest hemisphere problem is closely

related to finding a maximum agreement halfspace, studied in the context of learning

halfspaces in perceptron problems. This problem can be stated as follows:

Definition 5.7.1 (Maximum Agreement Halfspace). In the problem of maximum agreement

halfspace, given a labeled set of points 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} ∈R𝑑 × {±1}, the objective is to

find a halfspace 𝐻 = {𝑥 : ⟨𝑣,𝑥⟩ > 𝑐} maximizing the agreement

𝐴(𝐷,𝐻) =
∑︀𝑛
𝑖=11 [𝑦𝑖 · 𝑥𝑖 ∈𝐻]

𝑛
.

As pointed out in [20], there exists a reduction from the maximum agreement halfspace

problem to the densest hemisphere problem that preserves the quality of solutions. Since

this reduction is only briefly sketched in [20], we describe it below.
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The reduction proceeds as follows: Given a labeled set 𝐷 = {(𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)} ∈

R
𝑑 × {±1}, we map it to 𝐷 ′ = {𝑥′1, . . . ,𝑥′𝑛} ∈R𝑑+1 using the formula

𝑥′𝑖 =
𝑦𝑖√︀

1 + ‖𝑥𝑖‖2
· (𝑥𝑖 ,1) .

In other words, we proceed in three steps: First, we add a coordinate and set its value to

1 for every point 𝑥𝑖 . Second, we normalize each resulting point so that it lies on the unit

sphere in R
𝑑+1. Finally, we negate each point that came with negative label 𝑦𝑖 = −1.

This is a so-called “strict reduction”, which is expressed in the following claim:

Claim 5.7.2. The solutions (halfspaces) for an instance of Maximum Agreement Halfspace𝐷 are

in one-to-one correspondence with solutions (hemispheres) for the reduced instance of Densest

Hemisphere 𝐷 ′. Furthermore, for a corresponding pair of solutions (𝐻,𝐻 ′) the agreement

𝐴(𝐷,𝐻) is equal to the density |𝐷 ′ ∩𝐻 ′ |/𝑛.

Proof. It is more convenient to think of solutions for 𝐷 ′ as homogeneous, open halfspaces

𝐻 ′ = {𝑥 ∈R𝑑+1 : ⟨𝑣,𝑥⟩ > 0}.

With that in mind, we map a solution to the maximum agreement halfspace problem

𝐻 = {𝑥 ∈ R𝑑 : ⟨𝑣,𝑥⟩ > 𝑐} to a solution to the densest hemisphere problem 𝐻 ′ = {(𝑥,𝑥𝑑+1) ∈

R
𝑑+1 : ⟨(𝑣,−𝑐)(𝑥,𝑥𝑑+1)⟩ > 0}. Clearly, this is a one-to-one mapping between open halfspaces

in R
𝑑 and homogeneous open halfspaces in R

𝑑+1.

Furthermore, it is easy to verify that 𝑦𝑖 · 𝑥𝑖 ∈ 𝐻 if and only if 𝑥′𝑖 ∈ 𝐻
′ and therefore

𝐴(𝐷,𝐻) = |𝐷 ′ ∩𝐻 ′ |/𝑛.

The reduction allows us to use a strong hardness of approximation result from [68]

(see also [47, 30, 18, 7] for related work):

Theorem 5.7.3 ([68]). Unless P=NP, for any 𝜀 > 0, there is no polynomial time algorithm that

distinguishes the following, given an instance of maximum agreement halfspace problem:

• There exists a halfspace 𝐻 such that 𝐴(𝐷,𝐻) > 1− 𝜀.

• For every halfspace 𝐻 we have 𝐴(𝐷,𝐻) < 1/2 + 𝜀.
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In other words, it is computationally hard to distinguish between instances that have

halfspaces with almost perfect agreement and instances where there is no halfspace

with agreement noticeable larger than 1/2 (of course for any hyperplane, one of the two

halfspaces defined by this hyperplane has an agreement at least 1/2). Consequently, unless

P=NP, there is no polynomial time algorithm that, for any 𝜀 > 0, given an instance that has

a halfspace with agreement 1− 𝜀, finds a halfspace with agreement more than 1/2 + 𝜀. We

note that the results in [68] show hardness for instances with dimension 𝑑 comparable to

the number of points 𝑛.

Finally, by standard (and straightforward) arguments from complexity theory, Theo-

rem 5.4.11 follows from Theorem 5.7.3 and Claim 5.7.2.

5.8 Short-Term Strategies

5.8.1 One intervention, two agents: polarization costs

As discussed, it is enough to consider only three dimensions 𝑑 = 3 with the initial opi-

nions given by (5.6). First, consider the antagonizing intervention where the influencer

maximizes their appeal to the first agent. Clearly, the intervention should be of the form

𝑣 = cos𝛽 ·𝑢1 + sin𝛽 · (0,0,1)

for some 0 ≤ 𝛽 ≤ 𝜋/2. Substituting in (5.2), we compute

(𝑢′1,3)2 =
cos2𝛽 sin2𝛽

1 + 3cos2𝛽
. (5.20)

Maximizing (5.20), we get cos𝛽 =
√

3/3 and 𝑢′1,3 = 1/3. The value 1/3 is the benchmark for

what can be achieved by a single intervention: It is a maximum value for 𝑢′1,3 attainable

provided that initially 𝑢1,3 = 0.

What is the effect of this strategy on the other opinion 𝑢2? Again substituting into (5.2),
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we get

𝑢′2,3 =
𝑐
√

2

3
√

1 + 𝑐2
.

The graph 𝑣2,3 as a function of the correlation 𝑐 ∈ [−1,1] is shown in red in Figure 5-2. In

particular, the graph increases from −1/3 to 1/3, passing through 0 for 𝑐 = 0.

Moving to the unifying strategy, in this case it is not difficult to see (cf. Figure 5-1) that

the intervention vector should be of the form

𝑣 = (0,cos𝛽,sin𝛽)

for some 0 ≤ 𝛽 ≤ 𝜋/2. A computation in computer algebra system (CAS) establishes that

𝑣1,3 = 𝑣2,3 is maximized for

cos2𝛽 =

√
2(
√

3𝑐+ 5−
√

2)
3(𝑐+ 1)

,

yielding a somewhat complicated expression

𝑢′1,3 = 𝑢′2,3 =

√︃
3𝑐+ 7− 2

√
6𝑐+ 10

9(𝑐+ 1)
.

This function is depicted in Figure 5-2 in blue. In particular, for 𝑐 ∈ [−1,1], it increases

from 0 to 1/3 and its value at 0 is approximately 0.27. Furthermore, its growth close to

𝑐 = −1 is of the square-root type.

If the influencer chooses the unifying intervention, the correlation 𝑐′ = ⟨𝑢′1,𝑢
′
2⟩ increases

in comparison to the initial correlation 𝑐. On the other hand, in case of antagonizing

intervetnion, if the initial correlation is negative 𝑐 < 0, the correlation after intervention

will decrease, increasing the polarization of opinions. Let us denote the correlations

⟨𝑢′1,𝑢
′
2⟩ in the unifying and antagonizing cases as, respectively, 𝑐′uni and 𝑐′ant. Another CAS
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computation gives

𝑐′ant =
𝑐
√

2
√
𝑐2 + 1

,

𝑐′uni = 1−
√

2(1− 𝑐)
√

3𝑐+ 5
.

The polarization cost 𝑐′uni − 𝑐
′
ant is shown in Figure 5-2 in green.

Looking at Figure 5-2 one can draw some qualitative conclusions about consequences

of unifying and antagonizing strategies for different values of initial correlation 𝑐. For

example, if the inital opinions are uncorrelated (𝑐 = 0), the unifying strategy gives

𝑢′1,3 = 𝑢′2,3 ≈ 0.27 , 𝑐′uni ≈ 0.37 ,

while the antagonizing strategy has

𝑢′1,3 = 1/3 , 𝑢′2,3 = 0 , 𝑐′ant = 0 .

Depending on their incentives, the influencer might choose the antagonizing strategy,

forgoing a chance for a substantial increase in the agreement among the agents.

A more pronounced case of high polarization cost occurs if the initial opinions are

already substantially polarized. For example, for 𝑐 = −0.7 the unifying strategy has

𝑢′1,3 = 𝑢′2,3 ≈ 0.18 , 𝑐′uni ≈ −0.41 ,

while the antagonizing strategy gives

𝑢′1,3 = 1/3 , 𝑢′2,3 ≈ −0.27 , 𝑐′ant ≈ −0.81 .

Since the difference in 𝑢′1,3 is more pronounced, the influencer might have more incentive

to apply antagonizing strategy resulting in a high polarization cost.
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On the other hand, the polarization cost is low if the initial correlation 𝑐 is either high or

low. If 𝑐 is close to 1, then there is not much difference between unifying and antagonizing

interventions. On the other hand, if 𝑐 is close to −1, then neither strategy changes the

correlation much, while the unifying strategy has also little effect on the agents’ opinions

of the product.

5.8.2 One intervention, many agents: finding the densest spherical

cap

A more general version of the problem of persuading with limited number of interventions

features 𝑛 agents with opinions 𝑢1, . . . ,𝑢𝑛 ∈R𝑑 . The influencer is given a threshold 0 < 𝑇 < 1

and can apply one intervention 𝑣 with the objective of maximizing the number of agents

such that 𝑢′𝑖,𝑑 ≥ 𝑇 . The value 𝑇 can be interpreted as a threshold above which a consumer

decides to buy the advertised product, or more generally take a desired action, such as go

to vote, donate, etc.

Assume that the agents are initially agnostic about the product (𝑢𝑖,𝑑 = 0). In that case

we can also assume 𝑇 ≤ 1/3, since 1/3 is the maximum value that can be achieved in

the 𝑑-th coordinate by a single intervention, cf. (5.20). It turns out an analogy to the

densest hemisphere problem can be observed. We show that after fixing the threshold

𝑇 , the problem becomes equivalent to finding a spherical cap of a given radius in 𝑑 − 1

dimensions that contains the maximum number of agent opinions. To state our result, let

us abuse notation and write vectors 𝑢 ∈R𝑑 as 𝑢 = (𝑢*,𝑢𝑑) for 𝑢* ∈R𝑑−1, 𝑢𝑑 ∈R:

Proposition 5.8.1. In the setting above, let

𝑐 :=
2𝑇

1− 3𝑇 2 , 𝑧 :=

√︀√
1 + 3𝑐2 − 1
√

3𝑐
, 𝛽 := arccos(𝑧) . (5.21)

Then, the number of agents with 𝑢′𝑖,𝑑 ≥ 𝑇 is maximized by applying an intervention

𝑣 := (cos𝛽 · 𝑣*,sin𝛽)
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for 𝑣* ∈R𝑑−1 that maximizes the number of agents satisfying

⟨𝑢*𝑖 ,𝑣
*⟩ ≥ 𝑐 .

Proof. Let us write a generic intervention vector as

𝑣 = (cos𝛽 · 𝑣*,sin𝛽) ,

where 0 ≤ 𝛽 ≤ 𝜋/2,𝑣* ∈ R𝑑−1 and ‖𝑣*‖ = 1. If 𝑣 is applied to an opinion vector 𝑢𝑖 = (𝑢*𝑖 ,0)

and we let 𝑐𝑖 := ⟨𝑢*𝑖 ,𝑣
*⟩, substituting into (5.2) we can compute

𝑢𝑖 + ⟨𝑢𝑖 ,𝑣⟩ · 𝑣 = (𝑢*𝑖 + 𝑐𝑖 cos2𝛽 · 𝑣*, 𝑐𝑖 cos𝛽 sin𝛽) ,

and therefore, using (5.4),

𝑢′𝑖,𝑑 =
𝑐𝑖 cos𝛽 sin𝛽√︁
1 + 3𝑐2

𝑖 cos2𝛽
=
𝑐𝑖𝑧
√

1− 𝑧2√︁
1 + 3𝑐2

𝑖 𝑧
2
, (5.22)

where we let 𝑧 := cos𝛽.

Consider a fixed direction 𝑣* ∈ R𝑑−1. In order to maximize 𝑢′𝑖,𝑑 for a point 𝑢𝑖 with

⟨𝑢*𝑖 ,𝑣
*⟩ = 𝑐, we need to optimize over 𝑧 in (5.22), resulting in 𝑧 =

√︀√
1 + 3𝑐2 − 1/(

√
3𝑐) and,

substituting,

𝑢′𝑖,𝑑 =

√
1 + 3𝑐2 − 1

3𝑐
. (5.23)

Note that from the definitions it is clear that the right-hand side of (5.22) is increasing in

𝑐𝑖 for a fixed 𝑧. Therefore, in order to maximize the number of points with 𝑢′𝑖,𝑑 ≥ 𝑇 for a

fixed 𝑣*, we should solve the equation 𝑇 =
√

1+3𝑐2−1
3𝑐 for 𝑐, resulting in 𝑐 = 2𝑇

1−3𝑇 2 and apply

the intervention

𝑣 = (cos𝛽 · 𝑣*,sin𝛽) ,
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just as claimed in (5.21). This intervention will succeed for all opinions satisfying

𝑢′𝑖,𝑑 ≥ 𝑇 ⇐⇒ ⟨𝑢
*
𝑖 ,𝑣
*⟩ ≥ 𝑐 ,

which means that the points 𝑢*𝑖 on which the objective 𝑢′𝑖,𝑑 ≥ 𝑇 is achieved are exactly

those contained in the spherical cap {𝑥 ∈R𝑑−1 : ⟨𝑥,𝑣*⟩ ≥ 𝑐}. Maximizing over all 𝑣* ∈R𝑑−1

completes the proof.

Note that the solution to this short-term problem for 𝑇 going to zero approaches the

densest hemisphere solution to the long-term problem discussed in Section 5.4.2.

5.9 Asymptotic Effects of Two Dueling Influencers

In this section we provide proofs of Theorems 5.4.15 and 5.4.16 and Corollary 5.4.17. In

the following we will always write ⟨𝑣,𝑣′⟩ = cos(𝜃) for 0 ≤ 𝜃 ≤ 𝜋/2.

5.9.1 Proofs of Theorem 5.4.15 and Corollary 5.4.17

Proof outline of Theorem 5.4.15 First, we show that the distance between 𝑢(𝑡) and 𝑉

almost surely goes to 0 as 𝑡→∞, by showing that the norm of the projection of 𝑢(𝑡) onto

𝑊 converges to 0. This is proved in Proposition 5.9.1.

Then, we demonstrate that the convex cone spanned by 𝑣 and 𝑣′ is absorbing: when

the projection of 𝑢(𝑇 ) onto 𝑉 falls in the cone, then the projections of 𝑢(𝑡) for 𝑡 ≥ 𝑇 always

stay in the cone as well. This is proved in Proposition 5.9.2.

Finally, in Proposition 5.9.3 we show that almost surely the projection of 𝑢(𝑡) onto 𝑉

eventually enters either the cone spanned by 𝑣 and 𝑣′, or the cone spanned by −𝑣 and −𝑣′.

More concretely, we show that at any time 𝑡, there is a sequence of 𝑇 interventions that

lands the projection of 𝑢(𝑡+𝑇 ) in one of the cones, for some 𝑇 that is independent of 𝑡. Since

this sequence occurs with probability 2−𝑇 , which is independent of 𝑡, the opinion almost

surely eventually enters one of the cones.
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Proposition 5.9.1. Let ⟨𝑣,𝑣′⟩ ≥ 0 and take an opinion vector 𝑢 such that ‖𝑢𝑉 ‖ = 𝑐 ≥ 0.

Furthermore, let 𝑢′ be the vector resulting from randomly intervening on 𝑢 with either 𝑣 or 𝑣′.

Then:

1. ‖𝑢′𝑊 ‖2 ≤ ‖𝑢𝑊 ‖2.

2. With probability at least 1/2, ‖𝑢′𝑊 ‖2 ≤ ‖𝑢𝑊 ‖2 · (1− (𝜂2/2 + 𝜂) · 𝑐2𝜃2/16).

Proof. Recall from (5.2)–(5.4) that if 𝑣* ∈ {𝑣,𝑣′} is the intervention vector, then

𝑢′ = 𝛼(𝑢 + 𝜂 ⟨𝑢,𝑣*⟩ · 𝑣*)

where 𝛼 =
√︁

1
1+(2𝜂+𝜂2)·⟨𝑢,𝑣*⟩2 is the normalizing constant. Observe that when we project

onto 𝑊 , the component in the direction of 𝑣* vanishes, so we have that

𝑢′𝑊 = 𝛼 ·𝑢𝑊 ,

and the first claim easily follows since 𝛼 ≤ 1.

To establish the second point, we need to show that with probability 1/2 we have

𝛼2 < 1 or, equivalently, ⟨𝑢,𝑣*⟩2 = ⟨𝑢𝑉 ,𝑣*⟩2 > 0. If 𝜃 > 0, the projected vector 𝑢𝑉 cannot be

orthogonal both to 𝑣 and 𝑣′ (cf. Figure 5-6). More precisely, for at least one of 𝑣* ∈ {𝑣,𝑣′}

the primary angle between 𝑢 and 𝑣* (or −𝑣*) must be at most 𝜋/2−𝜃/2 and consequently

|⟨𝑢𝑉 ,𝑣*⟩| ≥ ‖𝑢𝑉 ‖ · |cos(𝜋/2−𝜃/2)| ≥ 𝑐 ·𝜃/4 ,

resulting in

𝛼2 =
1

1 + (2𝜂 + 𝜂2) · ⟨𝑢𝑉 ,𝑣*⟩2
≤ 1− (𝜂 + 𝜂2/2) · 𝑐

2𝜃2

16
.

Proposition 5.9.2. Let ⟨𝑣,𝑣′⟩ ≥ 0 and take 𝑢 to be an opinion vector and 𝑢′ to be a vector

resulting from intervening on 𝑢 with either 𝑣 or 𝑣′. If 𝑢𝑉 is a conical combination of 𝑣 and 𝑣′,

then also 𝑢′𝑉 is such a conical combination.
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𝑣

𝑣′

𝑢𝑉 𝑢′𝑉

𝜃

Figure 5-6: Projection onto the subspace 𝑉 = span{𝑣,𝑣′}.

Proof. Assume wlog that the vector applied is 𝑣. Then,

𝑢′/𝛼 = 𝑢 + 𝜂 · ⟨𝑢,𝑣⟩ · 𝑣 = 𝑢𝑉 + 𝜂 · ⟨𝑢𝑉 ,𝑣⟩ · 𝑣 +𝑢𝑊 .

Therefore, 𝑢′𝑉 can be written as a nonnegative linear combination of 𝑢𝑉 and 𝑣, where we

use the fact that ⟨𝑢𝑉 ,𝑣⟩ is nonnegative, which follows since 𝑢𝑉 is a conical combination of

𝑣 and 𝑣′, and ⟨𝑣,𝑣′⟩ ≥ 0.

Next, we prove that when ⟨𝑣,𝑣′⟩ > 0, the opinion 𝑢𝑡 not only approaches subspace 𝑉 ,

but also a specific area of 𝑉 , namely, either cone(𝑣,𝑣′) or cone(−𝑣,−𝑣′).

Proposition 5.9.3. Let ⟨𝑣,𝑣′⟩ > 0 and consider a vector 𝑢 = 𝑢𝑡 such that ‖𝑢𝑉 ‖ ≥ 𝑐 > 0. Then,

there exists 𝑇 := 𝑇 (𝑐,𝜃,𝜂) such that for 𝑢′ := 𝑢𝑡+𝑇 , with probability at least 2−𝑇 , vector 𝑢′𝑉 will

either be a conical combination of 𝑣 and 𝑣′ or a conical combination of −𝑣 and −𝑣′.

Proof. First, for any vector 𝑢 such that ‖𝑢𝑉 ‖ ≥ 𝑐 > 0, it is clear that at least one of 𝑣,𝑣′,−𝑣,−𝑣′

has positive inner product with 𝑢 (and 𝑢𝑉 ) which can be lower bounded by a function of

𝑐, 𝜃, and 𝜂 (see Figure 5-6). Take such a vector and call it 𝑣*. Applying it repeatedly will

make 𝑢′𝑉 arbitrarily close to 𝑣* (cf. Proposition 5.9.1).

Finally, after choosing the number of applications of 𝑣* such that both ‖𝑢′ −𝑢′𝑉 ‖ and

‖𝑢′𝑉 − 𝑣*‖ are small enough, we apply the other intervention vector (𝑣 or 𝑣′) once. It is

clear that at this stage vector 𝑢′𝑉 either already is in the convex cone (and the additional
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intervention keeps it inside) or the intervention with the other vector brings it inside the

cone.

Therefore, there exists a sequence of 𝑇 (𝑐,𝜃,𝜂) interventions that make 𝑢𝑉 enter cone(𝑣,𝑣′)

or the cone(−𝑣,−𝑣′).

We combine Propositions 5.9.1, 5.9.2 and 5.9.3 to show that when ⟨𝑣,𝑣′⟩ , 0, almost

any vector 𝑢 eventually approaches one of the convex cones (cone(𝑣,𝑣′) or cone(−𝑣,−𝑣′))

as time goes to infinity.

Proof of Theorem 5.4.15. Let ‖𝑢𝑉 ‖ = 𝑐 > 0. Proposition 5.9.1 tells us that the squared norm

of the component 𝑢𝑊 in the subspace 𝑊 = 𝑉 ⊥ never increases, and with probability 1/2

decreases by a multiplicative factor (1 − (𝜂2/2 + 𝜂) · 𝑐2𝜃2/16). By induction (note that 𝑐

only increases with successive applications), 𝑢𝑊 converges to 0, and consequently ‖𝑢 −𝑢𝑉 ‖

converges to 0, almost surely.

In order to show that additionally convergence to one of the two convex cones occurs,

we apply Proposition 5.9.3. Since at any time step 𝑡, there exists a sequence of 𝑇 choices

that puts 𝑢𝑉 in one of the convex cones, and since 𝑇 depends only on the starting para-

meters 𝑐, 𝜃, and 𝜂, we get that 𝑢𝑉 almost surely eventually enters one of the cones. By

Proposition 5.9.2 and induction, once 𝑢𝑉 enters a convex cone, it never leaves.

As a corollary of Propositions 5.9.1 and 5.9.2, when ⟨𝑣,𝑣′⟩ = 0, 𝑢𝑉 always stays in the

quadrant it starts in.

Proof of Corollary 5.4.17. The first statement is an inductive application of Proposition 5.9.1,

exactly the same as in the proof of Theorem 5.4.15.

The second statement follows from noting that out of four orthogonal pairs of vectors

{𝑣,𝑣′}, {𝑣,−𝑣′}, {−𝑣,𝑣′}, or {−𝑣,−𝑣′}, there is exactly one such that 𝑢𝑉 is a (strict) conical

combination of this pair (by assuming ⟨𝑢,𝑣⟩ , 0 and ⟨𝑢,𝑣′⟩ , 0 we avoid ambiguity in case

𝑢𝑉 is parallel to 𝑣 or 𝑣′). By the same argument as in Proposition 5.9.2 and by induction, if

the initial projection 𝑢𝑉 is strictly inside one of the convex cones, it remains strictly inside

forever.
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5.9.2 Proof of Theorem 5.4.16

Consider the subspace 𝑉 with some coordinate system (cf. Figure 5-6) imposed on it. As

is standard, a unit vector 𝑢 ∈ 𝑉 can be represented in this system by its primary angle

𝛼(𝑢) ∈ [0,2𝜋) as measured clockwise from the positive 𝑥-axis.

Given a unit vector 𝑣* ∈ 𝑉 , let 𝑓𝑣* : [0,2𝜋)→ [0,2𝜋) be the function with the following

meaning: Given a unit vector 𝑢 ∈ 𝑉 with angle 𝛼 = 𝛼(𝑢), the value 𝑓𝑣*(𝛼) = 𝛼(𝑢′) represents

the angle of vector 𝑢′ resulting from applying intervention 𝑣* to vector 𝑢. Note that 𝛼(𝑣*)

is a fixed point of 𝑓𝑣* . Also, the functions 𝑓𝑣 and 𝑓𝑣′ map the the cone(𝑣,𝑣′) to itself.

The main part of our argument is the following lemma, which we prove last:

Lemma 5.9.4. Functions 𝑓𝑣 and 𝑓𝑣′ restricted to the convex cone of 𝑣 and 𝑣′ are contractions,

i.e., there exists 𝑘 = 𝑘(𝜃,𝜂) < 1 such that for all vectors 𝑢,𝑢′ ∈ cone(𝑣,𝑣′), letting 𝛼 := 𝛼(𝑢),𝛽 :=

𝛼(𝑢′),𝑣* ∈ {𝑣,𝑣′}, we have

⃒⃒⃒
𝑓𝑣*(𝛽)− 𝑓𝑣*(𝛼)

⃒⃒⃒
≤ 𝑘 · |𝛽 −𝛼| , (5.24)

where the distances |𝑓𝑣*(𝛽)− 𝑓𝑣*(𝛼)| and |𝛽 −𝛼| are in the metric induced by 𝑆1, i.e., “modulo

2𝜋”.

Lemma 5.9.4 implies that the angle distance between two opinions 𝑢(𝑡)
1 ,𝑢

(𝑡)
2 ∈ 𝑉 starting

in the convex cone (deterministically) converges to 0 as 𝑡 goes to infinity. Of course, this

is equivalent to their Euclidean distance ‖𝑢(𝑡)
1 − 𝑢

(𝑡)
2 ‖ converging to 0. We now make a

continuity argument to show that convergence almost surely occurs also for 𝑢(𝑡)
1 ,𝑢

(𝑡)
2 < 𝑉 .

To this end, we define 𝑔𝑣 , 𝑔𝑣′ : 𝑆𝑑−1→ [0,2𝜋) as natural extensions of 𝑓𝑣 , 𝑓𝑣′ : the value 𝑔𝑣*(𝑢)

denotes the angle of the projection 𝑢′𝑉 of the new opinion onto 𝑉 , after applying 𝑣* on

opinion 𝑢 (cf. Figure 5-6). Note that the value 𝑔𝑣*(𝑢) depends only on the angle 𝛼(𝑢𝑉 ) and

the projection length ‖𝑢𝑊 ‖:

𝑔𝑣*(𝑢) = 𝑔𝑣*
(︁
𝛼(𝑢𝑉 ),‖𝑢𝑊 ‖

)︁
.
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In this parametrization, for 𝑢 ∈ 𝑉 we have 𝑓𝑣*(𝛼(𝑢)) = 𝑔𝑣*(𝑢) = 𝑔𝑣*(𝛼(𝑢),0).

By Theorem 5.4.15, for any starting opinions 𝑢(1)
1 and 𝑢(1)

2 satisfying the assumptions,

almost surely there exists a 𝑡 such that (𝑢(𝑡)
1 )𝑉 and (𝑢(𝑡)

2 )𝑉 end up inside (possibly different)

convex cones. We consider the case of 𝑢(𝑡)
1 and 𝑢(𝑡)

2 both in cone(𝑣,𝑣′), other three cases

being analogous. Furthermore, almost surely, ‖(𝑢(𝑡)
1 )𝑊 ‖ and ‖(𝑢(𝑡)

2 )𝑊 ‖ converge to 0. Hence,

it is enough that we show that almost surely |𝛼((𝑢(𝑡)
1 )𝑉 )−𝛼((𝑢(𝑡)

2 )𝑉 )| (again using 𝑆1 distance)

converges to zero.

To this end, let 𝛿 > 0. By uniform continuity of 𝑓𝑣 , we know that for small enough value

of 𝑟 = ‖𝑢𝑊 ‖, we have

|𝑓𝑣(𝛼,𝑟)− 𝑓𝑣(𝛼,0)| <
1− 𝑘

4
· 𝛿

for every 𝛼 ∈ [0,2𝜋), where 𝑘 is the Lipschitz constant from (5.24). Therefore, almost

surely, for 𝑡 large enough, for 𝑢(𝑡)
1 and 𝑢(𝑡)

2 parameterized as 𝑢(𝑡)
1 = (𝛼1, 𝑟1) and 𝑢(𝑡)

2 = (𝛼2, 𝑟2)

we have

|𝑓𝑣(𝛼1, 𝑟1)− 𝑓𝑣(𝛼2, 𝑟2)| ≤ |𝑓𝑣(𝛼1, 𝑟1)− 𝑓𝑣(𝛼1,0)|+ |𝑓𝑣(𝛼1,0)− 𝑓𝑣(𝛼2,0)|+ |𝑓𝑣(𝛼2,0)− 𝑓𝑣(𝛼2, 𝑟2)|

≤ 1− 𝑘
4
· 𝛿+ 𝑘 · |𝛼1 −𝛼2|+

1− 𝑘
4
· 𝛿 ≤

(︃
𝑘 +

1− 𝑘
2

)︃
·max(|𝛼1 −𝛼2|,𝛿) .

Since 𝑘 + (1− 𝑘)/2 < 1, and applying the same argument to 𝑓𝑣′ , we conclude by induction

that the distance |𝛼1(𝑡)−𝛼2(𝑡)|must go and stay below 𝛿 in a finite number of steps. Since

𝛿 > 0 was arbitrary, it must be that |𝛼1(𝑡)−𝛼2(𝑡)| converges to 0, concluding the proof of

Theorem 5.4.16.

It remains to prove Lemma 5.9.4:

Proof of Lemma 5.9.4. Let 𝑓 := 𝑓(1,0), i.e., 𝑓 corresponds to the intervention along the 𝑥-axis.

Clearly, functions 𝑓𝑣 and 𝑓𝑣′ are cyclic shifts of 𝑓 . More precisely, we have

𝑓𝑣*(𝛼) = 𝛼(𝑣*) + 𝑓
(︁
𝛼 −𝛼(𝑣*)

)︁
, (5.25)

where arithmetic in (5.25) is modulo 2𝜋. Furthermore, 𝑓 is symmetric around the inter-
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vention vector, i.e., 𝑓 (𝛼) = 2𝜋 − 𝑓 (2𝜋 −𝛼) for 0 ≤ 𝛼 ≤ 𝜋. Hence, to prove that 𝑓𝑣 and 𝑓𝑣′

restricted to cone(𝑣,𝑣′) are contractions, it is enough that we show that 𝑓 restricted to the

interval [0,𝜃] is a contraction (recall that we assumed cos2(𝜃) > 1/(2 + 𝜂)).

Figure 5-7: The graph of the “pull function” 𝛼 − 𝑓 (𝛼) in case 𝜂 = 1.

To that end, a computation gives the formula for 𝑓

𝑓 (𝛼) = arccos

⎛⎜⎜⎜⎜⎝ (1 + 𝜂)cos𝛼√︀
1 + (𝜂2 + 2𝜂)cos2𝛼

⎞⎟⎟⎟⎟⎠ . (5.26)

More computation establishes that, additionally, for every 0 ≤ 𝛼 < 𝛽 ≤ 𝜋/2:

1. 𝑓 (𝛼) ≤ 𝛼. In other words, applying the intervention brings vector 𝑢 closer to the

intervention vector.

2. 𝑓 (𝛼) < 𝑓 (𝛽), i.e., applying the intervention does not change relative ordering of

vectors wrt the intervention vector.

3. If 𝛽 ≤ 𝜃* := arccos
(︂√︁

1
2+𝜂

)︂
, then 𝛼 − 𝑓 (𝛼) < 𝛽 − 𝑓 (𝛽), i.e., in absolute terms, the “pull”

on a vector is stronger the further away it is from the intervention vector (until the

correlation reaches the threshold 1/
√︀

2 + 𝜂, cf. Figure 5-7).

The preceding items taken together imply that for every 0 ≤ 𝛼 < 𝛽 ≤ 𝜃* we have 0 <
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𝑓 (𝛽)− 𝑓 (𝛼) < 𝛽 −𝛼. To conclude that 𝑓 is a contraction, we observe that for any 𝜃 < 𝜃* we

have that 𝑓 and 𝑓 ′ are continuous on the interval [0,𝜃] and that 𝑓 ′(𝛼) > 0 for 0 ≤ 𝛼 ≤ 𝜃.
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