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Abstract

Phasor-field (𝒫-field) imaging is a promising recent solution to the task of non-line-of-
sight (NLoS) imaging, colloquially referred to as “seeing around corners”. It consists
of treating the oscillating envelope of amplitude-modulated, spatially-incoherent light
as if it were itself an optical wave, akin to the oscillations of the underlying electro-
magnetic field. We present a formal analysis of 𝒫-field propagation using paraxial
wave optics and demonstrate how it can be used to form images of hidden diffuse
targets both computationally and with physical lenses. In both cases, we find that
hidden target planes can be imaged at the modulation-wavelength diffraction limit,
despite the presence of intervening diffusers. To model propagation through more
general scenarios, we introduce the two-frequency spatial Wigner distribution and
derive primitives that characterize its behavior. These primitives are used to analyze
occlusion-aided imaging scenarios as well as to verify intuitive results in the geometric-
optics limit. Consistent with prior work, we find that intervening occluders offer the
potential to form convolutional images of hidden target planes, even in the absence
of time-of-flight information. Additionally, we demonstrate how to extend our frame-
work beyond the paraxial regime and include a thorough exploration of the effects of
speckle, which we find are likely manageable in realistic scenarios.

Thesis Supervisor: Jeffrey H. Shapiro
Title: Julius A. Stratton Professor of Electrical Engineering
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Chapter 1

Introduction

Non-line-of-sight (NLoS) imaging, colloquially known as imaging around corners, is

an important and growing area of research in the imaging community. Kirmani et

al. [1] introduced the concept of transient NLoS imaging by using short pulses and

time-resolved detection together with multipath analysis to recover the geometry of

simple, occluded scenes. Their approach was independent of bidirectional reflectance

distribution function (BRDF) and albedo, and they demonstrated its experimental

feasibility. Velten et al. [2] revisited the problem, focusing on the case of diffuse

reflection, using ultrafast streak cameras and computational backprojection. With

these more powerful and developed tools, they were able to demonstrate human-

identifiable reconstructions of relatively detailed geometry from around a corner. A

major obstacle to applying Velten et al.’s approach in practice is the relative ex-

pense of their advanced equipment. This barrier was addressed by Heide et al. [3]

who applied similar techniques with success to data collected by relatively inexpen-

sive photonic-mixer-device (PMD) time-of-flight sensors. Buttafava et al. [4] also

improved upon the practical feasibility—bearing in mind cost, power, size, etc.— of

implementing these approaches by demonstrating NLoS imaging with single-photon

avalanche diode (SPAD) detectors. Whereas all of this work had focused on static

geometry reconstruction, Gariepy et al. [5] extended these techniques, using SPAD

detectors, to detect motion and track moving objects around corners. With an aware-

ness of the breadth of the preceding work, Kadambi et al. [6] provided a unified

15



theoretical framework for the problem of occluded geometry reconstruction and mo-

tion tracking, including an analysis of expected performance and a consideration of

commercially available equipment. They also generalized their theory to deal with

imaging through diffusers in addition to the around-the-corner scenario and offered

experimental demonstration of the effectiveness of their framework. Pointing out that

the experimentally collected data in the previous literature had quality and resource

issues owing to experimental practicalities, Klein et al. [7] developed a simulation en-

gine fit for thinking more broadly about NLoS imaging tasks without the limitations

of real data. Additionally, leveraging their newfound ability to quickly simulate NLoS

scenarios, they developed and demonstrated a new simulation-based inversion tech-

nique as an alternative to the computational backprojection methods that had been

used in most of the prior work. Making further improvements in the area of recon-

struction techniques and coping with practical resource limitations, O’Toole et al. [8]

demonstrated a confocal NLoS imaging system which facilitated the development and

use of a closed-form inversion formula.

With the goal of further advancing the field of NLoS imaging, Reza et al. [9]

recently introduced the phasor-field (𝒫-field) representation for light transport that

involves diffuse reflection (such as occurs in NLoS imaging) or diffuse transmission.

The phasor-field concept exploits the wave-like propagation behavior of the oscillating

envelope of amplitude-modulated, spatially-incoherent light. It relies on the fact that

the physical correlates of diffuse phase disruption, while being large compared to

the wavelength of the optical carrier field, are insignificant in scale to the much

longer wavelength of radio-frequency amplitude modulation. As a result, walls that

diffusely scatter light, owing to their roughness at the optical-wavelength scale (as

shown in Fig. 1-1), appear smooth to the 𝒫 field, and thin transmissive diffusers

appear invisible. The upshot is that traditional wave-optical imaging techniques,

e.g., lenses, can be applied despite the presence of these optically disruptive elements.

Attempting to apply Reza et al.’s light transport model to NLoS geometries that

include intervening occluding objects or non-Lambertian reflections will reveal that

the 𝒫-field is an insufficient summary of the underlying field at the site of such fea-
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Figure 1-1: Illustration of diffuse scattering of an incident plane wave (left) by a
rough, reflective surface by means of distorting the reflected wavefront (right). 𝜆0

represents the optical wavelength and ℎ(𝜌) represents the height fluctuations of the
surface, with standard deviation 𝜎ℎ ≫ 𝜆0 and correlation length 𝜌𝑐 ∼ 𝜆0. In isotropic
media like air, light propagates perpendicular to surfaces of constant phase. Hence,
the phase disruption induced by the surface scatters light in all directions, shown here
by small black arrows normal to the reflected wavefront.

tures. Nevertheless, Liu et al. [10] used the 𝒫-field approach to propose and demon-

strate that line-of-sight imaging techniques can be fruitfully applied, in a computa-

tional manner, to NLoS operation, even in the presence of intervening occluders and

non-Lambertian reflections. In doing so, they presented what may be the most robust

and detailed reconstructions of NLoS scenes to date. Their success in this endeavor

is due to their development of reconstruction techniques that obviate the need for

a full light transport model by relying on there being initial and final Lambertian

reflections. These techniques are fortunately, and somewhat surprisingly, not bur-

dened by the limitations inherent in applying 𝒫-field propagation to scenarios more

general than purely Lambertian reflections. The success of Liu et al.’s experiments is

impressive and promising. However, we believe that even greater performance might

be possible if afforded a complete transport model that can account for all features

that might be encountered in NLoS imaging. At the very least, such a transport

model would facilitate anticipatory preparation and analysis for particular scenarios

of interest. The argument could be made that the propagation rules for the optical-
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frequency field—not those for the 𝒫-field—already provide such a transport model,

but the aforementioned work has demonstrated the intuitive utility of the 𝒫-field
approach. Consequently, we believe it is worthwhile to pursue propagation primitives

that can establish the 𝒫-field input-output relation for the initial and final Lam-

bertian reflections when occluders and non-Lambertian reflectors are present in the

intervening space.

In this thesis, we develop a set of propagation primitives that extend the 𝒫-field
formalism to scenarios that go beyond what was considered in Ref. [9]. For con-

venience, we mostly assume a transmissive geometry (without reflections) that is

an unfolded proxy for occlusion-aided, three-bounce NLoS imaging [11, 12] and use

scalar-wave, paraxial optics although these restrictions are not essential. In Chapter 2

we present our own development and analysis of the 𝒫-field notion. We begin by trac-

ing light propagation through an example transmissive geometry wherein a natural

definition for the 𝒫 field presents itself. Continuing this analysis, we arrive at a parax-

ial 𝒫-field propagator analogous to that reported by Reza et al. [9]. Using this result,

we analyze the performance of 𝒫-field imaging for unoccluded transmissive geometries

using a computational approach to reconstruction. Then, we derive a set of primitives

characterizing 𝒫-field propagation through lenses and demonstrate how images can

be reconstructed physically. Next, moving beyond the 𝒫-field, in Chapter 3 we intro-

duce the two-frequency spatial Wigner distribution (TFSWD) and derive primitives

for its propagation through a diffuser, through a deterministic occluder, through a

specular-plus-diffuser mask, and through Fresnel diffraction. With these primitives,

we then derive the 𝒫-field input-output relation for occlusion-aided, diffuse-object,

transmissive imaging. With that analysis in hand, we compare the 𝒫-field point-

spread function for diffuse-object imaging using modulated light in the absence of an

occluder with those for diffuse-object imaging using unmodulated light that is aided

by the presence of either a Gaussian-pinhole occluder or a Gaussian-pinspeck oc-

cluder. We then abstract these results by deriving a 𝒫-field input-output relation for

occluder-interrupted, post-diffuser propagation and verify an intuitive simplification

of this result in the geometric-optics limit. In Chapter 4 we extend our formalism be-
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yond the paraxial regime. In particular, we show how our Fresnel propagation results

for the 𝒫 field can be extended to Rayleigh–Sommerfeld propagation. Then, using

an intuitive geometric argument, we propose equivalent behavior for the TFSWD.

We verify that it reproduces the expected 𝒫-field result and provide a more formal

derivation for the special case of partial coherence. Additionally, we derive a pair

of differential equations that characterize the TFSWD more generally. In Chapter 5

we consider the effects of speckle. We start by analyzing multi-bounce speckle effects

for monochromatic illumination and consider how geometry and averaging techniques

can reduce speckle’s ill effects. Then we explore the effects of first-order speckle on

modulated illumination and investigate a concrete example. The impact on overall

signal-to-noise ratio in conjunction with shot noise is considered, and a treatment of

speckle in the limit of small reflectors is provided, where we find additional results

can be derived. Finally, in Chapter 6 we summarize our results and consider options

for future work.

19



20



Chapter 2

𝒫-Field Propagation and Imaging

In this chapter we consider electromagnetic field propagation through a paraxial,

transmissive geometry that serves as a surrogate for an around-the-corner imaging

configuration.1 As was done by Reza et al. [9], we define the 𝒫 field as the Fourier

transform of the diffuser-averaged short-time average (STA) irradiance. Using this

definition, we derive a formula for paraxial propagation of the 𝒫 field, which we find

to be similar to the traditional Fresnel-diffraction formula for the propagation of the

electromagnetic field, as reported by Reza et al. [9]. We then apply this understanding

of the 𝒫 field to the task of computationally imaging through diffusers and analyze

the associated performance. Finally, we consider how the 𝒫 field interacts with a

variety of lens configurations and demonstrate that targets hidden by diffusers can

be directly imaged physically, i.e., without the need for nontrivial computation.

2.1 Setup for Paraxial Propagation through Multi-

ple Diffusers

Figure 2-1 shows the transmissive geometry we shall address in this chapter for 𝒫-
field propagation within the paraxial regime, i.e., wherein Fresnel diffraction applies.

1Throughout this thesis, we will work almost entirely with such paraxial, transmissive geometries.
Extending our techniques to nonparaxial propagation is discussed in Chapter 4, and a discussion
of how our transmissive framework can be applied to typical reflective geometries can be found in
Appendix A.
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Here, 𝐸0(𝜌0, 𝑡) is the baseband, complex field envelope for a quasimonochromatic,

scalar-wave, modulated laser field entering the 𝑧 = 0 plane, expressed as a func-

tion of the transverse spatial coordinates, 𝜌0 = (𝑥0, 𝑦0), and time, 𝑡. This field has

center frequency 𝜔0 and bandwidth ∆𝜔 ≪ 𝜔0, so that the optical-frequency field is

Re[𝐸0(𝜌0, 𝑡)𝑒
−𝑖𝜔𝑜𝑡]. Its units are

√︁
W/m2, making 𝐼0(𝜌0, 𝑡) = |𝐸0(𝜌0, 𝑡)|2 the STA

irradiance2 illuminating the 𝑧 = 0 plane. It will be assumed, in all that follows, that

∆𝜔 is such that available photodetectors can fully resolve the time dependence of

𝐼0(𝜌0, 𝑡). As soon will be seen, it will be valuable to employ the time-domain Fourier

transform of 𝐸0(𝜌0, 𝑡), viz.
3,

ℰ0(𝜌0, 𝜔) ≡
∫︁

d𝑡 𝐸0(𝜌0, 𝑡)𝑒
𝑖𝜔𝑡, (2.1)

for use analyzing the Fig. 2-1 configuration.

z = 0

E0(⇢0, t)

z = L1 + L2

E2(⇢2, t)

z = L1

E1(⇢1, t)

T (⇢1)

h2(⇢2)h1(⇢1)h0(⇢0)

Figure 2-1: Unfolded geometry for three-bounce NLoS active imaging. Scalar, parax-
ial diffraction theory is assumed, with {𝐸𝑘(𝜌𝑘, 𝑡) : 0 ≤ 𝑘 ≤ 2} being the baseband
complex field envelopes illuminating the 𝑧 = 0, 𝑧 = 𝐿1, and 𝑧 = 𝐿1 + 𝐿2 planes, re-
spectively, written as functions of the transverse spatial coordinates, {𝜌𝑘 = (𝑥𝑘, 𝑦𝑘) :
0 ≤ 𝑘 ≤ 2}, in those planes and time, 𝑡. The blue rectangles represent thin transmis-
sive diffusers, and the black line represents a thin transmission screen whose intensity
transmission pattern, 𝑇 (𝜌1), is to be imaged using the light that emerges from the
𝑧 = 𝐿1 + 𝐿2 plane.

After propagating through the thin diffuser ℎ0(𝜌0), the Fourier-domain field at

𝑧 = 0+ is

ℰ ′
0(𝜌0, 𝜔) = ℰ0(𝜌0, 𝜔) exp[𝑖(𝜔0 + 𝜔)ℎ0(𝜌0)/𝑐], (2.2)

2The STA 𝑧-plane irradiance is the instantaneous irradiance averaged over a time 𝑇𝑎 satisfying
𝜔0𝑇𝑎 ≫ 1 and Δ𝜔𝑇𝑎 ≪ 1.

3In what follows, integrals without explicit limits are over the integration variable’s entire domain.
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where 𝑐 is light speed and we have normalized away the diffuser’s refractive index.

Physically, we are modeling this diffuser as a space-dependent ℎ0(𝜌0)/𝑐 time de-

lay. Because it is unreasonable to presume we can accurately account for this de-

lay as a deterministic quantity, we shall suppress its average value—across an en-

semble of statistically identical diffusers—and consider ℎ0(𝜌0) to be a zero-mean,

homogeneous, isotropic, Gaussian random function of 𝜌0, with covariance function

𝐾ℎ(|∆𝜌|) = ⟨ℎ0(𝜌0 + ∆𝜌)ℎ0(𝜌0)⟩, where angle brackets denote ensemble average.

Moreover, in keeping with ℎ0(𝜌0)’s being a diffuser, we shall take its standard devia-

tion, 𝜎ℎ =
√︀

𝐾ℎ(0) to be much greater than the center wavelength, 𝜆0 = 2𝜋𝑐/𝜔0, and

its coherence length 𝜌𝑐—the transverse distance beyond which 𝐾ℎ(|∆𝜌|) vanishes—to

be at most a few 𝜆0. Furthermore—and this condition is essential to there being a use-

ful 𝒫-field propagator—we shall assume that 𝜎ℎ is much smaller than the wavelength

of the modulation bandwidth, ∆𝜆 = 2𝜋𝑐/∆𝜔.

Within the paraxial (Fresnel-diffraction) propagation regime we have that

ℰ1(𝜌1, 𝜔) =

∫︁
d2𝜌0 ℰ ′

0(𝜌0, 𝜔)
exp[𝑖(𝜔0 + 𝜔)𝐿1/𝑐 + 𝑖(𝜔0 + 𝜔)|𝜌1 − 𝜌0|2/2𝑐𝐿1](𝜔0 + 𝜔)

𝑖2𝜋𝑐𝐿1

,

(2.3)

is the time-domain Fourier transform of 𝐸1(𝜌1, 𝑡), the field illuminating the 𝑧 = 𝐿1

plane. This illumination results in

ℰ ′
1(𝜌1, 𝜔) = ℰ1(𝜌1, 𝜔)

√︀
𝑇 (𝜌1) exp[𝑖(𝜔0 + 𝜔)ℎ1(𝜌1)/𝑐], (2.4)

being the time-domain Fourier transform of 𝐸 ′
1(𝜌1, 𝑡), the field that emerges at 𝑧 =

𝐿1+ , after propagation through a deterministic thin transmission screen with inten-

sity transmission pattern 𝑇 (𝜌1), and a thin diffuser, ℎ1(𝜌1), that we will take to be

statistically independent of, but identically distributed as, ℎ0(𝜌0).

Paraxial propagation to 𝑧 = 𝐿1 + 𝐿2, now gives us

ℰ2(𝜌2, 𝜔) =

∫︁
d2𝜌1 ℰ ′

1(𝜌1, 𝜔)
exp[𝑖(𝜔0 + 𝜔)𝐿2/𝑐 + 𝑖(𝜔0 + 𝜔)|𝜌2 − 𝜌1|2/2𝑐𝐿2](𝜔0 + 𝜔)

𝑖2𝜋𝑐𝐿2

,

(2.5)
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and propagation through the thin diffuser at 𝑧 = 𝐿1 + 𝐿2 results in

ℰ ′
2(𝜌2, 𝜔) = ℰ2(𝜌2, 𝜔) exp[𝑖(𝜔0 + 𝜔)ℎ2(𝜌2)/𝑐], (2.6)

being the time-domain Fourier transform of 𝐸 ′
2(𝜌2, 𝑡), the field that emerges at 𝑧 =

(𝐿1 +𝐿2)+. We will assume that ℎ2(𝜌2) is statistically independent of, but identically

distributed as, ℎ0(𝜌0) and ℎ1(𝜌1).

Before proceeding further, let us briefly comment on how the Fig. 2-1 geometry

relates to three-bounce NLoS active imaging. The 𝑧 = 0 diffuser, which is illuminated

by modulated laser light, represents a Lambertian-reflecting visible wall with a uni-

form albedo. The combination of the intensity transmission pattern 𝑇 (𝜌1) and the

𝑧 = 𝐿1 diffuser represent a Lambertian-reflecting hidden wall with spatially-varying

albedo 𝑇 (𝜌1). The 𝑧 = 𝐿1 + 𝐿2 diffuser represents a second Lambertian reflection at

the visible wall, where statistical independence from the first visible-wall reflection

can be ensured by the NLoS imaging sensor’s viewing a different section of that wall

than what the laser illuminates. The goal of three-bounce NLoS active imaging in

this setting is to use the third-bounce light returned from the visible wall to recon-

struct the hidden wall’s albedo 𝑇 (𝜌1). In the next section, we will derive the 𝒫-field
propagator for the preceding transmission geometry.

2.2 𝒫-Field Propagator in the Paraxial Regime

To start our derivation, consider ⟨𝐼1(𝜌1, 𝑡)⟩, where 𝐼1(𝜌1, 𝑡) ≡ |𝐸1(𝜌1, 𝑡)|2 is the STA
irradiance illuminating the 𝑧 = 𝐿1 plane and angle brackets denote averaging over

the statistics of ℎ0(𝜌0). Going to the temporal-frequency domain, we have that

⟨𝐼1(𝜌1, 𝑡)⟩ =

∫︁
d𝜔

2𝜋

∫︁
d𝜔′

2𝜋
⟨ℰ1(𝜌1, 𝜔)ℰ*

1 (𝜌1, 𝜔
′)⟩𝑒−𝑖(𝜔−𝜔′)𝑡 (2.7)

=

∫︁
d𝜔−

2𝜋

[︂∫︁
d𝜔+

2𝜋
⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*

1 (𝜌1, 𝜔+ − 𝜔−/2)⟩
]︂
𝑒−𝑖𝜔−𝑡 (2.8)

=

∫︁
d𝜔−

2𝜋
𝒫1(𝜌1, 𝜔−)𝑒−𝑖𝜔−𝑡, (2.9)
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where * denotes complex conjugate, 𝜔+ ≡ (𝜔 + 𝜔′)/2, 𝜔− ≡ 𝜔 − 𝜔′, and we have

introduced the 𝒫 field at the 𝑧 = 𝐿1 plane as the Fourier transform of ⟨𝐼1(𝜌1, 𝑡)⟩.
Next, employing Eqs. (2.2) and (2.3), we get

𝒫1(𝜌1, 𝜔−) =

∫︁
d2𝜌0

∫︁
d2𝜌′

0

∫︁
d𝜔+

2𝜋
ℰ0(𝜌0, 𝜔)ℰ*

0 (𝜌′
0, 𝜔

′)⟨𝑒𝑖[(𝜔0+𝜔)ℎ0(𝜌0)−(𝜔0+𝜔′)ℎ0(𝜌′
0)]/𝑐⟩

× (𝜔0 + 𝜔)(𝜔0 + 𝜔′)𝑒𝑖(𝜔−𝜔′)𝐿1/𝑐+𝑖[(𝜔0+𝜔)|𝜌1−𝜌0|2−(𝜔0+𝜔′)|𝜌1−𝜌′
0|2]/2𝑐𝐿1/(2𝜋𝑐𝐿1)

2, (2.10)

where, as before, 𝜔+ ≡ (𝜔+𝜔′)/2 and 𝜔− ≡ 𝜔−𝜔′. Because ∆𝜔 ≪ 𝜔0 and 𝜎ℎ ≪ ∆𝜆,

the preceding result can be reduced to

𝒫1(𝜌1, 𝜔−) =

∫︁
d2𝜌0

∫︁
d2𝜌′

0

∫︁
d𝜔+

2𝜋
ℰ0(𝜌0, 𝜔)ℰ*

0 (𝜌′
0, 𝜔

′)⟨𝑒𝑖𝜔0[ℎ0(𝜌0)−ℎ0(𝜌′
0)]/𝑐⟩𝜔2

0/(2𝜋𝑐𝐿1)
2

× 𝑒𝑖(𝜔−𝜔′)𝐿1/𝑐+𝑖[(𝜔0+𝜔)|𝜌1−𝜌0|2−(𝜔0+𝜔′)|𝜌1−𝜌′
0|2]/2𝑐𝐿1 . (2.11)

Since ℎ0(𝜌) is a zero-mean Gaussian process, its samples at 𝜌0 and 𝜌′
0 are zero-

mean jointly Gaussian random variables whose joint characteristic function is given

by

⟨𝑒𝑖𝜔0[ℎ0(𝜌0)−ℎ0(𝜌′
0)]/𝑐⟩ = exp{−𝜔2

0[𝜎2
ℎ −𝐾ℎ(|𝜌0 − 𝜌′

0|)]/𝑐2}. (2.12)

Then, because 𝜎ℎ ≫ 𝜆0 and 𝜌𝑐 ∼ 𝜆0 we can use an impulse approximation, viz.,

⟨𝑒𝑖𝜔0[ℎ0(𝜌0)−ℎ0(𝜌′
0)]/𝑐⟩ ≈ 𝜆2

0𝛿(𝜌0 − 𝜌′
0), (2.13)

in Eq. (2.11) to obtain

𝒫1(𝜌1, 𝜔−) =

∫︁
d2𝜌0

∫︁
d𝜔+

2𝜋
ℰ0(𝜌0, 𝜔)ℰ*

0 (𝜌0, 𝜔
′)𝑒𝑖(𝜔−𝜔′)𝐿1/𝑐+𝑖(𝜔−𝜔′)|𝜌1−𝜌0|2/2𝑐𝐿1/𝐿2

1

(2.14)

=

∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−)𝑒𝑖𝜔−𝐿1/𝑐+𝑖𝜔−|𝜌1−𝜌0|2/2𝑐𝐿1/𝐿2

1. (2.15)
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Here, the 𝒫 field at 𝑧 = 0 is

𝒫0(𝜌0, 𝜔−) =

∫︁
d𝜔+

2𝜋
ℰ0(𝜌0, 𝜔+ + 𝜔−/2)ℰ*

0 (𝜌0, 𝜔+ − 𝜔−/2), (2.16)

with no averaging brackets required, because the laser illumination of the 𝑧 = 0 plane

is deterministic.

Equation (2.15)—which coincides with the result of applying the Fresnel approx-

imation to Reza et al.’s Rayleigh-Sommerfeld 𝒫-field propagator [9]—is our essential

result for paraxial 𝒫-field propagation over a distance 𝐿1. It shows that the field

emerging from a diffuser that imposes complete spatial incoherence at the optical

frequency, but is smooth at the modulation frequency, leads to paraxial 𝒫-field prop-

agation at frequency 𝜔− over a distance 𝐿1 that is governed by a modified version

of the ℰ-field’s Fresnel-diffraction formula, viz., one in which the exponent’s optical

frequency in the ℰ-field Fresnel formula is replaced by the 𝒫 field’s modulation fre-

quency and the ℰ-field formula’s 𝜔0/𝑖2𝜋𝑐𝐿1 factor is replaced by the 𝒫 field’s 1/𝐿2
1

factor. The physical implication of this result is illustrated in the double-slit config-

urations shown in Fig. 2-2. By inverse Fourier transformation of Eq. (2.15), we see

that irradiance propagation from the diffuser at 𝑧 = 0 to the 𝑧 = 𝐿1 plane is governed

by

⟨𝐼1(𝜌1, 𝑡)⟩ =

∫︁
d2𝜌0 𝐼0(𝜌0, 𝑡− 𝐿1/𝑐− |𝜌1 − 𝜌0|2/2𝑐𝐿1)/𝐿

2
1, (2.17)

which has the following pleasing physical interpretation: Paraxial propagation of the

diffuser-averaged STA irradiance from the diffuser’s output to the 𝑧 = 𝐿1 presumes

that

exp

[︂
𝑖𝜔
√︁

𝐿2
1 + |𝜌1 − 𝜌0|2/𝑐

]︂

√︁
𝐿2
1 + |𝜌1 − 𝜌0|2

≈ exp(𝑖𝜔𝐿1/𝑐 + 𝑖𝜔|𝜌1 − 𝜌0|2/2𝑐𝐿1)

𝐿1

, for |𝜔| ≤ ∆𝜔

(2.18)

can be employed, and results in ⟨𝐼1(𝜌1, 𝑡)⟩ being governed by the paraxial form of

geometric optics, viz., the differential contribution of 𝐼0(𝜌0, 𝑡) to ⟨𝐼1(𝜌1, 𝑡)⟩ is time

delayed by 𝐿1/𝑐 + |𝜌1 − 𝜌0|2/2𝑐𝐿1 and attenuated by the inverse-square-law factor
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1/𝐿2
1.

Paralleling the previous development, it is now easy to show that

𝒫2(𝜌2, 𝜔−) ≡
∫︁

d𝜔+

2𝜋
⟨ℰ2(𝜌2, 𝜔+ + 𝜔−/2)ℰ*

2 (𝜌2, 𝜔+ − 𝜔−/2)⟩ (2.19)

=

∫︁
d2𝜌1𝒫1(𝜌1, 𝜔−)𝑇 (𝜌1) exp(𝑖𝜔−𝐿2/𝑐 + 𝑖𝜔−|𝜌2 − 𝜌1|2/2𝑐𝐿2)/𝐿

2
2,

(2.20)

where the averaging brackets in Eq. (2.19) represent averaging over the ℎ0(𝜌0) and

the ℎ1(𝜌1) ensembles. Combining this result with what we have already obtained for

relating 𝒫1(𝜌1, 𝜔−) to 𝒫0(𝜌0, 𝜔−) we get

𝒫2(𝜌2, 𝜔−) =

∫︁
d2𝜌1

(︂∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−) exp(𝑖𝜔−𝐿1/𝑐 + 𝑖𝜔−|𝜌1 − 𝜌0|2/2𝑐𝐿1)/𝐿

2
1

)︂

× 𝑇 (𝜌1) exp(𝑖𝜔−𝐿2/𝑐 + 𝑖𝜔−|𝜌2 − 𝜌1|2/2𝑐𝐿2)/𝐿
2
2. (2.21)

Before continuing, it is crucial to note the behavior of 𝒫2(𝜌2, 0). From Eq. (2.21)

we immediately find that

𝒫2(𝜌2, 0) =

∫︁
d2𝜌1 𝑇 (𝜌1)

∫︁
d2𝜌0𝒫0(𝜌0, 0)/(𝐿1𝐿2)

2, (2.22)

indicating that there is no spatial information about 𝑇 (𝜌1) available in 𝒫2(𝜌2, 0).

This behavior is a consequence of using the paraxial approximation. Going beyond

the paraxial-propagation regime—to Rayleigh-Sommerfeld diffraction—will yield a

𝒫2(𝜌2, 0) containing some spatial information about 𝑇 (𝜌1), but the inverse problem

for recovering 𝑇 (𝜌1) from 𝒫2(𝜌2, 0) will still be poorly conditioned in the Fig. 2-1

configuration. This behavior has been seen by Xu et al. [11] and Thrampoulidis et

al. [12] in their work on NLoS active imaging with pulsed illumination, in which

occlusion-aided operation was needed to obtain useful albedo reconstructions when

transient behavior was ignored.
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z = L
<latexit sha1_base64="Eop2GyTNTQjvkV8Lb2jOGEabbLc=">AAAB6nicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgTDNhYWEQ0F0iWMDuZTYbMzi4zs0Jc8gg2FopY6jv4Hjbi2zibpNDEHwY+/v8c5pzjx5wp7TjfVm5peWV1Lb9ub2xube8UdvcaKkokoXUS8Ui2fKwoZ4LWNdOctmJJcehz2vSHF1nevKNSsUjc6lFMvRD3BQsYwdpYN/eVq26h6JScidAiuDMonn/Ylfjty651C5+dXkSSkApNOFaq7Tqx9lIsNSOcju1OomiMyRD3adugwCFVXjoZdYyOjNNDQSTNExpN3N8dKQ6VGoW+qQyxHqj5LDP/y9qJDs68lIk40VSQ6UdBwpGOULY36jFJieYjA5hIZmZFZIAlJtpcxzZHcOdXXoRGueSelMrXTrFahqnycACHcAwunEIVLqEGdSDQhwd4gmeLW4/Wi/U6Lc1Zs559+CPr/QdKU5C8</latexit>

0
<latexit sha1_base64="sRY+0yQeRIBXKrNrruLxkrruwZs=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkLnQjFty4bMFeoA1lMj1px04mYWYilNAncONCEbf6EL6HG/FtnF4W2vrDwMf/n8Occ4KEM6Vd99vKrayurW/kN+2t7Z3dvcL+QUPFqaRYpzGPZSsgCjkTWNdMc2wlEkkUcGwGw+tJ3rxHqVgsbvUoQT8ifcFCRok2Vs3tFopuyZ3KWQZvDsWrD/syef+yq93CZ6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTFOzwljaZ7QztT93ZGRSKlRFJjKiOiBWswm5n9ZO9XhhZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFldehka55J2VyjW3WCnDTHk4gmM4BQ/OoQI3UIU6UEB4gCd4tu6sR+vFep2V5qx5zyH8kfX2A79uj9U=</latexit>

⇡/2
<latexit sha1_base64="T3ETZANNjwL0/82FfKV3QAPaKls=">AAAB7HicbVDLSsNAFL2pr1pftS7dDBahq5qkC10W3LisYNpCE8pkOmmHTiZhZiKU0G/oxoUibv0QP8GdH+Le6WOhrQcuHM65l3vvCVPOlLbtL6uwtb2zu1fcLx0cHh2flE8rbZVkklCPJDyR3RArypmgnmaa024qKY5DTjvh+Hbudx6pVCwRD3qS0iDGQ8EiRrA2kuen7Mrtl6t23V4AbRJnRarNil/7/pj5rX750x8kJIup0IRjpXqOneogx1Izwum05GeKppiM8ZD2DBU4pirIF8dO0aVRBihKpCmh0UL9PZHjWKlJHJrOGOuRWvfm4n9eL9PRTZAzkWaaCrJcFGUc6QTNP0cDJinRfGIIJpKZWxEZYYmJNvmUTAjO+subpO3WnUbdvTdpuLBEEc7hAmrgwDU04Q5a4AEBBjN4hhdLWE/Wq/W2bC1Yq5kz+APr/QfTF5Gq</latexit>

�⇡/2
<latexit sha1_base64="i52QJ3i3/ofMk+JduSMJwF1CfsA=">AAAB7XicbVC7SgNBFL3rM8ZXjKXNYBDSGHfXQsuAjWUE84BsCLOT2WTM7MwyMyuEJd+gjYUitv6Hn2Dnh9g7eRSaeODC4Zx7ufeeMOFMG9f9clZW19Y3NnNb+e2d3b39wkGxoWWqCK0TyaVqhVhTzgStG2Y4bSWK4jjktBkOryZ+854qzaS4NaOEdmLcFyxiBBsrNU6DhJ353ULJrbhToGXizUmpWgzK3x8PQa1b+Ax6kqQxFYZwrHXbcxPTybAyjHA6zgeppgkmQ9ynbUsFjqnuZNNrx+jEKj0USWVLGDRVf09kONZ6FIe2M8ZmoBe9ifif105NdNnJmEhSQwWZLYpSjoxEk9dRjylKDB9Zgoli9lZEBlhhYmxAeRuCt/jyMmn4Fe+84t/YNHyYIQdHcAxl8OACqnANNagDgTt4hGd4caTz5Lw6b7PWFWc+cwh/4Lz/AD0nkeE=</latexit>

�⇡
<latexit sha1_base64="al7GFrnmYnIP25xy2OTWAuD6iYM=">AAAB63icbZC7SgNBFIbPeo3xFrW0GQyCjWE3FtoZsLGMkBskS5idzCZDZmeHmVkhLHkE01goYusb+CR2Nr6HnbNJCk38YeDj/89hzjmB5Ewb1/10VlbX1jc2c1v57Z3dvf3CwWFDx4kitE5iHqtWgDXlTNC6YYbTllQURwGnzWB4k+XNe6o0i0XNjCT1I9wXLGQEm8w670jWLRTdkjsVWgZvDsXrbzn5qr0/VLuFj04vJklEhSEca932XGn8FCvDCKfjfCfRVGIyxH3atihwRLWfTmcdo1Pr9FAYK/uEQVP3d0eKI61HUWArI2wGejHLzP+ydmLCKz9lQiaGCjL7KEw4MjHKFkc9pigxfGQBE8XsrIgMsMLE2PPk7RG8xZWXoVEueRel8p1brJRhphwcwwmcgQeXUIFbqEIdCAxgAk/w7ETOo/PivM5KV5x5zxH8kfP2A/oCkp0=</latexit>

⇡
<latexit sha1_base64="VRrcTxq/nKdvf/ZqRzeHF7beLEU=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVm6qJuxIIblxXtBdqhZNJMG5rJhCQjlKGP4MaFIi71HXwPN+LbmF4W2vpD4OP/zyHnnFBypo3nfTu5ldW19Y38pru1vbO7V9g/aOgkVYTWScIT1QqxppwJWjfMcNqSiuI45LQZDq8mefOeKs0ScWdGkgYx7gsWMYKNtW47knULRa/kTYWWwZ9D8fLDvZBvX26tW/js9BKSxlQYwrHWbd+TJsiwMoxwOnY7qaYSkyHu07ZFgWOqg2w66hidWKeHokTZJwyaur87MhxrPYpDWxljM9CL2cT8L2unJjoPMiZkaqggs4+ilCOToMneqMcUJYaPLGCimJ0VkQFWmBh7HdcewV9ceRka5ZJ/VirfeMVqGWbKwxEcwyn4UIEqXEMN6kCgDw/wBM8Odx6dF+d1Vppz5j2H8EfO+w+WEpDu</latexit>

!0Dx/cL

<latexit sha1_base64="FnWWLTj/uFoeD7zQH0aaH9L6n1o="></latexit>

IL(x)
<latexit sha1_base64="AYgmSN4MTF2+ytr6sY/9UiCAwT0=">AAAB7XicbVC7SgNBFL3rM8ZXjKXNYBBiE3ZjoWXARsEignlANoTZyWwyZnZmmZkVw5Jv0MZCEVv/w0+w80PsnTwKTTxw4XDOvdx7TxBzpo3rfjlLyyura+uZjezm1vbObm4vX9cyUYTWiORSNQOsKWeC1gwznDZjRXEUcNoIBudjv3FHlWZS3JhhTNsR7gkWMoKNleqXnavi/XEnV3BL7gRokXgzUqjk/eL3x4Nf7eQ+/a4kSUSFIRxr3fLc2LRTrAwjnI6yfqJpjMkA92jLUoEjqtvp5NoROrJKF4VS2RIGTdTfEymOtB5Gge2MsOnreW8s/ue1EhOetVMm4sRQQaaLwoQjI9H4ddRlihLDh5Zgopi9FZE+VpgYG1DWhuDNv7xI6uWSd1IqX9s0yjBFBg7gEIrgwSlU4AKqUAMCt/AIz/DiSOfJeXXepq1LzmxmH/7Aef8BNAKR2w==</latexit>

(a) Double-slit diffraction.

-π -π
2 0

π
2 π

I0
<latexit sha1_base64="E8OtOOce6FxGMxNDqIK0SsmG7qs=">AAAB6nicbVA9SwNBEJ2LGmP8ilraLAbBKtzFQsuAjXYJmg9IjrC32UuW7O0eu3tCOPITLLSIiK3gf7G0E/+Mm49CEx8MPN6bYWZeEHOmjet+OZm19Y3sZm4rv72zu7dfODhsaJkoQutEcqlaAdaUM0HrhhlOW7GiOAo4bQbDq6nfvKdKMynuzCimfoT7goWMYGOl25uu2y0U3ZI7A1ol3oIUK9na98fk8b3aLXx2epIkERWGcKx123Nj46dYGUY4Hec7iaYxJkPcp21LBY6o9tPZqWN0apUeCqWyJQyaqb8nUhxpPYoC2xlhM9DL3lT8z2snJrz0UybixFBB5ovChCMj0fRv1GOKEsNHlmCimL0VkQFWmBibTt6G4C2/vEoa5ZJ3XirXbBplmCMHx3ACZ+DBBVTgGqpQBwJ9eIAJPDvceXJenNd5a8ZZzBzBHzhvPyptkWo=</latexit>

IL(x)
<latexit sha1_base64="AYgmSN4MTF2+ytr6sY/9UiCAwT0=">AAAB7XicbVC7SgNBFL3rM8ZXjKXNYBBiE3ZjoWXARsEignlANoTZyWwyZnZmmZkVw5Jv0MZCEVv/w0+w80PsnTwKTTxw4XDOvdx7TxBzpo3rfjlLyyura+uZjezm1vbObm4vX9cyUYTWiORSNQOsKWeC1gwznDZjRXEUcNoIBudjv3FHlWZS3JhhTNsR7gkWMoKNleqXnavi/XEnV3BL7gRokXgzUqjk/eL3x4Nf7eQ+/a4kSUSFIRxr3fLc2LRTrAwjnI6yfqJpjMkA92jLUoEjqtvp5NoROrJKF4VS2RIGTdTfEymOtB5Gge2MsOnreW8s/ue1EhOetVMm4sRQQaaLwoQjI9H4ddRlihLDh5Zgopi9FZE+VpgYG1DWhuDNv7xI6uWSd1IqX9s0yjBFBg7gEIrgwSlU4AKqUAMCt/AIz/DiSOfJeXXepq1LzmxmH/7Aef8BNAKR2w==</latexit>

z = 0
<latexit sha1_base64="T42geRYwf5kKXZpooMmy65ZmNt8=">AAAB6nicbZDLSgMxFIZPvNbxVnXpJlgEV2WmLnRTLLhxWdFeoB1KJs20oZnMkGSEOvQR3LhQxKW+g+/hRnwb08tCW38IfPz/OeScEySCa+O632hpeWV1bT234Wxube/s5vf26zpOFWU1GotYNQOimeCS1Qw3gjUTxUgUCNYIBpfjvHHHlOaxvDXDhPkR6UkeckqMtW7uy24nX3CL7kR4EbwZFC4+nHLy9uVUO/nPdjemacSkoYJo3fLcxPgZUYZTwUZOO9UsIXRAeqxlUZKIaT+bjDrCx9bp4jBW9kmDJ+7vjoxEWg+jwFZGxPT1fDY2/8taqQnP/YzLJDVM0ulHYSqwifF4b9zlilEjhhYIVdzOimmfKEKNvY5jj+DNr7wI9VLROy2Wrt1CpQRT5eAQjuAEPDiDClxBFWpAoQcP8ATPSKBH9IJep6VLaNZzAH+E3n8AH+OQoA==</latexit>

z = L
<latexit sha1_base64="Eop2GyTNTQjvkV8Lb2jOGEabbLc=">AAAB6nicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgTDNhYWEQ0F0iWMDuZTYbMzi4zs0Jc8gg2FopY6jv4Hjbi2zibpNDEHwY+/v8c5pzjx5wp7TjfVm5peWV1Lb9ub2xube8UdvcaKkokoXUS8Ui2fKwoZ4LWNdOctmJJcehz2vSHF1nevKNSsUjc6lFMvRD3BQsYwdpYN/eVq26h6JScidAiuDMonn/Ylfjty651C5+dXkSSkApNOFaq7Tqx9lIsNSOcju1OomiMyRD3adugwCFVXjoZdYyOjNNDQSTNExpN3N8dKQ6VGoW+qQyxHqj5LDP/y9qJDs68lIk40VSQ6UdBwpGOULY36jFJieYjA5hIZmZFZIAlJtpcxzZHcOdXXoRGueSelMrXTrFahqnycACHcAwunEIVLqEGdSDQhwd4gmeLW4/Wi/U6Lc1Zs559+CPr/QdKU5C8</latexit>

0
<latexit sha1_base64="sRY+0yQeRIBXKrNrruLxkrruwZs=">AAAB6HicbZDLSsNAFIZP6q3GW9Wlm2ARXJWkLnQjFty4bMFeoA1lMj1px04mYWYilNAncONCEbf6EL6HG/FtnF4W2vrDwMf/n8Occ4KEM6Vd99vKrayurW/kN+2t7Z3dvcL+QUPFqaRYpzGPZSsgCjkTWNdMc2wlEkkUcGwGw+tJ3rxHqVgsbvUoQT8ifcFCRok2Vs3tFopuyZ3KWQZvDsWrD/syef+yq93CZ6cX0zRCoSknSrU9N9F+RqRmlOPY7qQKE0KHpI9tg4JEqPxsOujYOTFOzwljaZ7QztT93ZGRSKlRFJjKiOiBWswm5n9ZO9XhhZ8xkaQaBZ19FKbc0bEz2drpMYlU85EBQiUzszp0QCSh2tzGNkfwFldehka55J2VyjW3WCnDTHk4gmM4BQ/OoQI3UIU6UEB4gCd4tu6sR+vFep2V5qx5zyH8kfX2A79uj9U=</latexit>

⇡/2
<latexit sha1_base64="T3ETZANNjwL0/82FfKV3QAPaKls=">AAAB7HicbVDLSsNAFL2pr1pftS7dDBahq5qkC10W3LisYNpCE8pkOmmHTiZhZiKU0G/oxoUibv0QP8GdH+Le6WOhrQcuHM65l3vvCVPOlLbtL6uwtb2zu1fcLx0cHh2flE8rbZVkklCPJDyR3RArypmgnmaa024qKY5DTjvh+Hbudx6pVCwRD3qS0iDGQ8EiRrA2kuen7Mrtl6t23V4AbRJnRarNil/7/pj5rX750x8kJIup0IRjpXqOneogx1Izwum05GeKppiM8ZD2DBU4pirIF8dO0aVRBihKpCmh0UL9PZHjWKlJHJrOGOuRWvfm4n9eL9PRTZAzkWaaCrJcFGUc6QTNP0cDJinRfGIIJpKZWxEZYYmJNvmUTAjO+subpO3WnUbdvTdpuLBEEc7hAmrgwDU04Q5a4AEBBjN4hhdLWE/Wq/W2bC1Yq5kz+APr/QfTF5Gq</latexit>

�⇡/2
<latexit sha1_base64="i52QJ3i3/ofMk+JduSMJwF1CfsA=">AAAB7XicbVC7SgNBFL3rM8ZXjKXNYBDSGHfXQsuAjWUE84BsCLOT2WTM7MwyMyuEJd+gjYUitv6Hn2Dnh9g7eRSaeODC4Zx7ufeeMOFMG9f9clZW19Y3NnNb+e2d3b39wkGxoWWqCK0TyaVqhVhTzgStG2Y4bSWK4jjktBkOryZ+854qzaS4NaOEdmLcFyxiBBsrNU6DhJ353ULJrbhToGXizUmpWgzK3x8PQa1b+Ax6kqQxFYZwrHXbcxPTybAyjHA6zgeppgkmQ9ynbUsFjqnuZNNrx+jEKj0USWVLGDRVf09kONZ6FIe2M8ZmoBe9ifif105NdNnJmEhSQwWZLYpSjoxEk9dRjylKDB9Zgoli9lZEBlhhYmxAeRuCt/jyMmn4Fe+84t/YNHyYIQdHcAxl8OACqnANNagDgTt4hGd4caTz5Lw6b7PWFWc+cwh/4Lz/AD0nkeE=</latexit>

�⇡
<latexit sha1_base64="al7GFrnmYnIP25xy2OTWAuD6iYM=">AAAB63icbZC7SgNBFIbPeo3xFrW0GQyCjWE3FtoZsLGMkBskS5idzCZDZmeHmVkhLHkE01goYusb+CR2Nr6HnbNJCk38YeDj/89hzjmB5Ewb1/10VlbX1jc2c1v57Z3dvf3CwWFDx4kitE5iHqtWgDXlTNC6YYbTllQURwGnzWB4k+XNe6o0i0XNjCT1I9wXLGQEm8w670jWLRTdkjsVWgZvDsXrbzn5qr0/VLuFj04vJklEhSEca932XGn8FCvDCKfjfCfRVGIyxH3atihwRLWfTmcdo1Pr9FAYK/uEQVP3d0eKI61HUWArI2wGejHLzP+ydmLCKz9lQiaGCjL7KEw4MjHKFkc9pigxfGQBE8XsrIgMsMLE2PPk7RG8xZWXoVEueRel8p1brJRhphwcwwmcgQeXUIFbqEIdCAxgAk/w7ETOo/PivM5KV5x5zxH8kfP2A/oCkp0=</latexit>

⇡
<latexit sha1_base64="VRrcTxq/nKdvf/ZqRzeHF7beLEU=">AAAB6nicbZDLSgMxFIbP1Fsdb1WXboJFcFVm6qJuxIIblxXtBdqhZNJMG5rJhCQjlKGP4MaFIi71HXwPN+LbmF4W2vpD4OP/zyHnnFBypo3nfTu5ldW19Y38pru1vbO7V9g/aOgkVYTWScIT1QqxppwJWjfMcNqSiuI45LQZDq8mefOeKs0ScWdGkgYx7gsWMYKNtW47knULRa/kTYWWwZ9D8fLDvZBvX26tW/js9BKSxlQYwrHWbd+TJsiwMoxwOnY7qaYSkyHu07ZFgWOqg2w66hidWKeHokTZJwyaur87MhxrPYpDWxljM9CL2cT8L2unJjoPMiZkaqggs4+ilCOToMneqMcUJYaPLGCimJ0VkQFWmBh7HdcewV9ceRka5ZJ/VirfeMVqGWbKwxEcwyn4UIEqXEMN6kCgDw/wBM8Odx6dF+d1Vppz5j2H8EfO+w+WEpDu</latexit>

hIL(x)i
<latexit sha1_base64="MATXc1PgJHloN3AS/e9OIx+ttds=">AAAB/nicbVC7SgNBFJ2NrxhfMWJlMxiE2ITdWGgZsFGwiGAekF2W2clNMmR2dpmZFcMS8A/8BhsLRWyt/QQ7P8TeyaPQxAMXzpxzL3PvCWLOlLbtLyuztLyyupZdz21sbm3v5HcLDRUlkkKdRjySrYAo4ExAXTPNoRVLIGHAoRkMzsd+8xakYpG40cMYvJD0BOsySrSR/Py+y4noccCX/lXp7tiVk5efL9plewK8SJwZKVYLbun748Gt+flPtxPRJAShKSdKtR071l5KpGaUwyjnJgpiQgekB21DBQlBeelk/RE+MkoHdyNpSmg8UX9PpCRUahgGpjMkuq/mvbH4n9dOdPfMS5mIEw2CTj/qJhzrCI+zwB0mgWo+NIRQycyumPaJJFSbxHImBGf+5EXSqJSdk3Ll2qRRQVNk0QE6RCXkoFNURReohuqIohQ9omf0Yt1bT9ar9TZtzVizmT30B9b7D9q9mGY=</latexit>

!0Dx/cL

<latexit sha1_base64="FnWWLTj/uFoeD7zQH0aaH9L6n1o="></latexit>

(b) Diffuser eliminates fringes.

z = 0
<latexit sha1_base64="T42geRYwf5kKXZpooMmy65ZmNt8=">AAAB6nicbZDLSgMxFIZPvNbxVnXpJlgEV2WmLnRTLLhxWdFeoB1KJs20oZnMkGSEOvQR3LhQxKW+g+/hRnwb08tCW38IfPz/OeScEySCa+O632hpeWV1bT234Wxube/s5vf26zpOFWU1GotYNQOimeCS1Qw3gjUTxUgUCNYIBpfjvHHHlOaxvDXDhPkR6UkeckqMtW7uy24nX3CL7kR4EbwZFC4+nHLy9uVUO/nPdjemacSkoYJo3fLcxPgZUYZTwUZOO9UsIXRAeqxlUZKIaT+bjDrCx9bp4jBW9kmDJ+7vjoxEWg+jwFZGxPT1fDY2/8taqQnP/YzLJDVM0ulHYSqwifF4b9zlilEjhhYIVdzOimmfKEKNvY5jj+DNr7wI9VLROy2Wrt1CpQRT5eAQjuAEPDiDClxBFWpAoQcP8ATPSKBH9IJep6VLaNZzAH+E3n8AH+OQoA==</latexit>

z = L
<latexit sha1_base64="Eop2GyTNTQjvkV8Lb2jOGEabbLc=">AAAB6nicbZC7SgNBFIbPxltcb1FLm8EgWIXdWGgTDNhYWEQ0F0iWMDuZTYbMzi4zs0Jc8gg2FopY6jv4Hjbi2zibpNDEHwY+/v8c5pzjx5wp7TjfVm5peWV1Lb9ub2xube8UdvcaKkokoXUS8Ui2fKwoZ4LWNdOctmJJcehz2vSHF1nevKNSsUjc6lFMvRD3BQsYwdpYN/eVq26h6JScidAiuDMonn/Ylfjty651C5+dXkSSkApNOFaq7Tqx9lIsNSOcju1OomiMyRD3adugwCFVXjoZdYyOjNNDQSTNExpN3N8dKQ6VGoW+qQyxHqj5LDP/y9qJDs68lIk40VSQ6UdBwpGOULY36jFJieYjA5hIZmZFZIAlJtpcxzZHcOdXXoRGueSelMrXTrFahqnycACHcAwunEIVLqEGdSDQhwd4gmeLW4/Wi/U6Lc1Zs559+CPr/QdKU5C8</latexit>

I0(t)
<latexit sha1_base64="NtzIiBXd79WxDfdIT+6RQ4wylhc=">AAAB7XicbVC7SgNBFL3rM8ZXjKXNYBBiE3ZjoWXARrsI5gHZJcxOZpMxszPLzKwQlnyDNhaK2PoffoKdH2Lv5FFo4oELh3Pu5d57woQzbVz3y1lZXVvf2Mxt5bd3dvf2CwfFppapIrRBJJeqHWJNORO0YZjhtJ0oiuOQ01Y4vJz4rXuqNJPi1owSGsS4L1jECDZWal533bI57RZKbsWdAi0Tb05KtaJf/v548OvdwqffkySNqTCEY607npuYIMPKMMLpOO+nmiaYDHGfdiwVOKY6yKbXjtGJVXooksqWMGiq/p7IcKz1KA5tZ4zNQC96E/E/r5Oa6CLImEhSQwWZLYpSjoxEk9dRjylKDB9Zgoli9lZEBlhhYmxAeRuCt/jyMmlWK95ZpXpj06jCDDk4gmMogwfnUIMrqEMDCNzBIzzDiyOdJ+fVeZu1rjjzmUP4A+f9BwMqkbs=</latexit>

IL(x, t)
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(c) Modulated fringes emerge when illumination is modulated.

Figure 2-2: Illustration of 𝒫-field double-slit diffraction in a simplified geometry
with one transverse dimension (𝑥) and one longitudinal dimension (𝑧). (a) Illu-
minating a double-slit screen (slit widths = 𝑑, slit spacing 𝐷 ≫ 𝑑) at 𝑧 = 0
with a normally-incident, monochromatic (frequency 𝜔0) plane wave of irradiance
𝐼0 produces a fringe-patterned irradiance, 𝐼𝐿(𝑥) ∝ 𝐼0[1 + cos(𝜔0𝐷𝑥/𝑐𝐿)], in the
𝑧 = 𝐿 plane. (b) Placing a diffuser immediately behind the double-slit screen in
the setup from (a) results in there being no fringe pattern in the diffuser-averaged
irradiance, ⟨𝐼𝐿(𝑥)⟩. (c) Illuminating the screen-plus-diffuser setup from (b) with a
single-sideband modulated (at frequency ∆𝜔 ≪ 𝜔0), normally-incident plane wave
with STA irradiance 𝐼0(𝑡) = 𝒫0[1 + cos(∆𝜔𝑡)] produces a 𝑧 = 0+ plane 𝒫 field
𝒫0(𝑥, 𝜔−) = 𝜋𝒫0[𝛿(𝜔−+∆𝜔)+2𝛿(𝜔−)+𝛿(𝜔−−∆𝜔)]𝑃 (𝑥), where 𝑃 (𝑥) is the double-slit
screen’s transmissivity pattern. Propagating this 𝒫 field to the 𝑧 = 𝐿 plane produces
the time-varying fringe pattern, ⟨𝐼𝐿(𝑥, 𝑡)⟩ ∝ 𝒫0[1+cos[∆𝜔(𝑡−𝐿/𝑐)] cos[∆𝜔𝐷𝑥/2𝑐𝐿]],
in the diffuser-averaged STA irradiance, where we have assumed ∆𝜔𝐷2/8𝑐𝐿 ≪ 1
and ∆𝜔𝑥2/2𝑐𝐿 ≪ 1. The five lines in (c) show ⟨𝐼𝐿(𝑥, 𝑡𝑛)⟩ for 𝑡𝑛 = 𝜋𝑛/4∆𝜔 with
𝑛 = 0, 1, 2, 3, 4 and cos(∆𝜔𝐿/𝑐) = 1.
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2.3 𝑇 (𝜌1) Reconstruction in the Paraxial Regime 𝒫-
Field Formalism

Equation (2.21) shows that the intensity transmission pattern, 𝑇 (𝜌1), we wish to

reconstruct is illuminated by 𝒫1(𝜌1, 𝜔−), the 𝒫 field that results from propagation of

the laser illumination’s 𝒫0(𝜌0, 𝜔−) from 𝑧 = 0 to 𝑧 = 𝐿1. After transmission through

𝑇 (𝜌1) and the diffuser ℎ1(𝜌1), 𝒫-field propagation from to 𝑧 = 𝐿1 + 𝐿2 results in

𝒫2(𝜌2, 𝜔−), which encounters another diffuser. Because that last diffuser will render

the field emerging from it spatially incoherent, we will use the conventional thin-lens

imaging system, shown in Fig. 2-3, to gather the data needed to reconstruct 𝑇 (𝜌1).

Let 𝐸 ′
2(𝜌2, 𝑡) be the baseband, complex field envelope emerging from the diffuser

in the 𝑧 = 𝐿1 + 𝐿2 plane, and let ℰ ′
2(𝜌2, 𝜔) be its time-domain Fourier transform.

After Fresnel propagation from 𝑧 = 𝐿1 +𝐿2 to 𝑧 = 𝐿1 +𝐿2 +𝐿3, propagation through

the diameter-𝐷 circular-pupil, focal-length-𝑓 thin lens, and Fresnel propagation over

an additional 𝐿im distance where 1/𝑓 = 1/𝐿3 + 1/𝐿im, the resulting image-plane field

𝐸im(𝜌, 𝑡) has time-domain Fourier transform given by

ℰim(𝜌im, 𝜔) =

∫︁

|𝜌3|≤𝐷/2

d2𝜌3

𝑒𝑖(𝜔0+𝜔)𝐿im/𝑐+𝑖(𝜔0+𝜔)|𝜌im−𝜌3|2/2𝑐𝐿im−𝑖(𝜔0+𝜔)|𝜌3|2/2𝑐𝑓

𝑖𝜆0𝐿im

×
∫︁

d2𝜌2 ℰ ′
2(𝜌2, 𝜔)

𝑒𝑖(𝜔0+𝜔)𝐿3/𝑐+𝑖(𝜔0+𝜔)|𝜌3−𝜌2|2/2𝑐𝐿3

𝑖𝜆0𝐿3

(2.23)

= 𝑒𝑖(𝜔0+𝜔)|𝜌im|2/2𝑐𝐿im

∫︁
d2𝜌2 ℰ ′

2(𝜌2, 𝜔)
𝑒𝑖(𝜔0+𝜔)(𝐿3+𝐿im)/𝑐+𝑖(𝜔0+𝜔)|𝜌2|2/2𝑐𝐿3

𝑖𝜆0𝐿3

×
∫︁

|𝜌3|≤𝐷/2

d2𝜌3

𝑒−𝑖(𝜔+𝜔0)𝜌3·(𝜌2/𝐿3+𝜌im/𝐿im)/𝑐

𝑖𝜆0𝐿im

. (2.24)
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Performing the integration over 𝜌3 results in

ℰim(𝜌im, 𝜔) =𝑒𝑖(𝜔0+𝜔)|𝜌im|2/2𝑐𝐿im

∫︁
d2𝜌2 ℰ ′

2(𝜌2, 𝜔)
𝑒𝑖(𝜔0+𝜔)(𝐿3+𝐿im)/𝑐+𝑖(𝜔0+𝜔)|𝜌2|2/2𝑐𝐿3

−𝜆2
0𝐿3𝐿im

× 𝜋𝐷2

4

𝐽1

(︁
𝜋𝐷
𝜆0

⃒⃒
⃒𝜌2
𝐿3

+
𝜌im
𝐿im

⃒⃒
⃒
)︁

𝜋𝐷
2𝜆0

⃒⃒
⃒𝜌2
𝐿3

+
𝜌im
𝐿im

⃒⃒
⃒

, (2.25)

where 𝐽1(·) is the first-order Bessel function of the first kind, and we have used 𝜋𝐷/𝜆0

in lieu of (𝜔0 + 𝜔)𝐷/2𝑐 in the Airy pattern because ∆𝜔 ≪ 𝜔0.

z = L1 + L2

E2(⇢2, t)

h2(⇢2)

z = L1 + L2 + L3

D

Lim

dim

<latexit sha1_base64="LiXEw8e++BK5GxTN2zrN6GIzIwI="></latexit>

Figure 2-3: Thin-lens imaging setup. A focal-length-𝑓 thin lens casts an inverted
image of the intensity pattern that emerges from the diffuser at 𝑧 = 𝐿1 + 𝐿2. The
image is located in the plane—shown as a black dashed line—a distance 𝐿im behind
the lens, where 1/𝑓 = 1/𝐿3 + 1/𝐿im. We imagine that the STA irradiance at this
plane will be detected by a detector array of diameter 𝑑im.

The presence of the diffuser ℎ2(𝜌2) makes

⟨ℰ ′
2(𝜌2, 𝜔)ℰ ′*

2 (𝜌′
2, 𝜔

′)⟩ ≈ 𝜆2
0⟨ℰ2(𝜌2, 𝜔)ℰ*

2 (𝜌2, 𝜔
′)⟩𝛿(𝜌2 − 𝜌′

2), (2.26)

which together with Eq. (2.25) yields

𝒫im(𝜌im, 𝜔−) =

∫︁
d2𝜌2𝒫2(𝜌2, 𝜔−)𝑒𝑖𝜔−(𝐿3+𝐿im)/𝑐+𝑖𝜔−|𝜌2|2/2𝑐𝐿3+𝑖𝜔−|𝜌im|2/2𝑐𝐿im

×

⎡
⎣ 𝜋𝐷2

4𝜆0𝐿3𝐿im

𝐽1

(︁
𝜋𝐷
𝜆0

⃒⃒
⃒𝜌2
𝐿3

+
𝜌im
𝐿im

⃒⃒
⃒
)︁

𝜋𝐷
2𝜆0

⃒⃒
⃒𝜌2
𝐿3

+
𝜌im
𝐿im

⃒⃒
⃒

⎤
⎦

2

. (2.27)
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and hence

⟨𝐼im(𝜌im, 𝑡)⟩ =

∫︁
d2𝜌2 ⟨𝐼2(𝜌2, 𝑡− (𝐿3 + 𝐿im)/𝑐− |𝜌2|2/2𝑐𝐿3 − |𝜌im|2/2𝑐𝐿im)⟩

×

⎡
⎣ 𝜋𝐷2

4𝜆0𝐿3𝐿im

𝐽1

(︁
𝜋𝐷
𝜆0

⃒⃒
⃒𝜌2
𝐿3

+
𝜌im
𝐿im

⃒⃒
⃒
)︁

𝜋𝐷
2𝜆0

⃒⃒
⃒𝜌2
𝐿3

+
𝜌im
𝐿im

⃒⃒
⃒

⎤
⎦

2

. (2.28)

So, by measuring ⟨𝐼im(𝜌im, 𝑡)⟩, i.e., the diffuser-averaged, STA, image-plane irradi-

ance, we obtain a 1.22𝜆0/𝐷-angular-resolution, image of ⟨𝐼2(𝜌2, 𝑡 − (𝐿3 + 𝐿im)/𝑐 −
|𝜌2|2/2𝑐𝐿3 − |𝜌im|2/2𝑐𝐿im)⟩. From that irradiance image we can then compute a

1.22𝜆0/𝐷-angular-resolution image of 𝒫2(𝜌2, 𝜔−) at any modulation frequency of in-

terest.

For reconstructing 𝑇 (𝜌1), let us suppose that the 𝑧 = 0 illumination is a duration

𝑡0, cosinusoidally-modulated, collimated Gaussian-beam laser field where ∆𝜔𝑡0 ≫ 1,

i.e.,

𝐸0(𝜌0, 𝑡) =

⎧
⎪⎨
⎪⎩

√︂
8𝑃0

𝜋𝑑2
𝑒−4|𝜌0|2/𝑑2 cos(∆𝜔𝑡/2), for |𝑡| ≤ 𝑡0/2,

0, otherwise,

(2.29)

with 𝑃0𝑡0/2 being the energy illuminating the 𝑧 = 0 plane. This field’s STA irradiance

is then

𝐼0(𝜌0, 𝑡) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

8𝑃0

𝜋𝑑2
𝑒−8|𝜌2

0/𝑑
2

cos2(∆𝜔𝑡/2)

= 4𝑃0

𝜋𝑑2
𝑒−8|𝜌2

0/𝑑
2
[1 + cos(∆𝜔𝑡)], for |𝑡| ≤ 𝑡0/2,

0, otherwise,

(2.30)

which leads to

𝒫0(𝜌0, 𝜔−) =
8𝑃0𝑡0
𝜋𝑑2

𝑒−8|𝜌0|2/𝑑2

×
[︂

sin(𝜔−𝑡0/2)

𝜔−𝑡0/2
+

sin[(𝜔− + ∆𝜔)𝑡0/2]

(𝜔− + ∆𝜔)𝑡0
+

sin[(𝜔− − ∆𝜔)𝑡0/2]

(𝜔− − ∆𝜔)𝑡0

]︂
, (2.31)

31



and hence

𝒫1(𝜌1,∆𝜔) ≈
∫︁

d2𝜌0

4𝑃0𝑡0
𝜋𝑑2

𝑒−8|𝜌0|2/𝑑2 exp(𝑖∆𝜔𝐿1/𝑐 + 𝑖∆𝜔|𝜌1 − 𝜌0|2/2𝑐𝐿1)

𝐿2
1

, (2.32)

because ∆𝜔𝑡0 ≫ 1. Although this expression can be evaluated analytically, we shall

not bother. We just note that with ∆𝜔/2𝜋 ∼ 1GHz, 𝑑 ∼ 1mm, and 𝐿1 ∼ 1m, we

have 𝑐𝐿1/∆𝜔𝑑2 ≫ 1 from which it follows that the spatial extent of 𝒫1(𝜌1,∆𝜔) will

be ∼𝑐𝐿1/∆𝜔𝑑 ≫ 𝑑. In other words, the effect of the diffuser ℎ0(𝜌0) is to ensure that

a finite, but much larger than diameter-𝑑, region of the 𝑧 = 𝐿1 plane is illuminated

by the frequency-∆𝜔 𝒫 field.

To proceed further, assume we have generated the computed image,

𝒫2(𝜌2,∆𝜔) ≡(𝐿im/𝐿3)
2𝒫im(−𝜌2𝐿im/𝐿3,∆𝜔)

× 𝑒−𝑖Δ𝜔(𝐿3+𝐿im)/𝑐−𝑖Δ𝜔|𝜌2|2/2𝑐𝐿3−𝑖Δ𝜔|𝜌im|2/2𝑐𝐿im , (2.33)

of 𝒫2(𝜌2,∆𝜔) from the ⟨𝐼im(𝜌im, 𝑡)⟩ measurement. We can computationally invert

Eq. (2.20) to obtain a reconstruction of 𝑇 (𝜌1)𝒫1(𝜌1,∆𝜔) and use our knowledge of

𝒫1(𝜌1,∆𝜔) to obtain a 𝑇 (𝜌1) image. In particular, suppose we measure ⟨𝐼im(𝜌im, 𝑡)⟩
for |𝜌im| ≤ 𝑑im/2, and then define 𝑇 (�̃�1) by

𝑇 (�̃�1)|𝒫1(�̃�1,∆𝜔)| =

⃒⃒
⃒⃒
⃒⃒
⃒

∫︁

|𝜌2|≤𝐷′/2

d2𝜌2𝒫2(𝜌2,∆𝜔)
𝑒−𝑖Δ𝜔|𝜌2|2/2𝑐𝐿2+𝑖Δ𝜔𝜌2·�̃�1/𝑐𝐿2

∆𝜆2

⃒⃒
⃒⃒
⃒⃒
⃒
, (2.34)

where 𝐷′ ≡ 𝑑im𝐿3/𝐿im. Neglecting noise, and assuming that the 1.22𝜆0/𝐷 angular

resolution is sufficient to make

𝒫2(𝜌2,∆𝜔) ≈ 𝒫2(𝜌2,∆𝜔), (2.35)
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Figure 2-4: The Airy-disk function.

for |𝜌2| ≤ 𝐷′/2, Eq. (2.34) leads to

𝑇 (�̃�1)|𝒫1(�̃�1,∆𝜔)| =

⃒⃒
⃒⃒
⃒

∫︁
d2𝜌1𝒫1(𝜌1,∆𝜔)𝑇 (𝜌1)𝑒

𝑖Δ𝜔|𝜌1|2/2𝑐𝐿2

× 𝜋

4

(︂
𝐷′

∆𝜆𝐿2

)︂2

Ai(𝜋𝐷′|�̃�1 − 𝜌1|/∆𝜆𝐿2)

⃒⃒
⃒⃒
⃒, (2.36)

where Ai(𝑥) ≡ 2𝐽1(𝑥)/𝑥 denotes the Airy disk, plotted in Fig 2-4. Thus, over the

region in the 𝑧 = 𝐿1 plane wherein |𝒫1(𝜌1,∆𝜔)| has an appreciable value, the 𝒫-
field imager using cosinusoidal 𝐸-field modulation at frequency ∆𝜔/2 achieves a spa-

tial resolution of 1.22∆𝜆𝐿2/𝐷
′, where: ∆𝜆 = 2𝜋𝑐/∆𝜔; 𝐿2 is the distance from the

transparency-containing plane to the plane visible to the sensor; and 𝐷′ = 𝑑im𝐿3/𝐿im,

with 𝐿3 being the distance from the plane visible to the sensor to the sensor’s entrance

pupil, 𝐿im being the distance from that entrance pupil to the image plane where irra-

diance measurements are made, and 𝑑im being the diameter of the image-plane region

over which those measurements are made, as shown in Figs. 2-1 and 2-3.

This is an exciting result, that the 𝒫-field framework enables us to use a wave-

optical imaging approach to form diffraction-limited reconstructions of targets hidden

by diffusers. However, Fig. 2-3 might leave one wondering whether we cannot go

a step further and configure our lens to directly image the target plane as if the

intervening diffuser were not there at all. With this motivation in mind, we turn our

attention to understanding the input-output behavior of the 𝒫 field for a variety of

lens configurations.
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2.4 𝒫-Field Propagation Through Lenses

In this section, we consider the propagation of the 𝒫 field through lenses. In par-

ticular, we assume thin lenses modeled by quadratic phase shifts. We consider the

scenario depicted in Fig. 2-1, and ask how the target plane at 𝑧 = 𝐿1 might be directly

interrogated with the help of lenses in the accessible space—𝑧 < 0 and 𝑧 > 𝐿1 + 𝐿2.

2.4.1 Plane-Wave Focusing

D

z = 0

E0(⇢0, t)

z = L1

E1(⇢1, t)

h0(⇢0)

Ein(t)
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Figure 2-5: Geometry for focusing a plane wave onto a hidden target plane. The lens
is taken to have a Gaussian field-transmission aperture 𝑒−|𝜌|2/2𝐷2

.

First we attempt to focus an infinite plane wave of complex field envelope 𝐸in(𝑡)

onto the target plane by means of a focal-length-𝑓 = 𝐿in + 𝐿1 lens that is set back a

distance 𝐿in from the first diffuser, as depicted in Fig. 2-5. The temporal-frequency-

domain complex field envelope at the first diffuser is given by

ℰ0(𝜌0, 𝜔) =
𝑒𝑖

𝜔0+𝜔
𝑐

𝐿in

𝑖𝜆0𝐿in

∫︁
d2𝜌in ℰin(𝜔)𝑒

𝑖
𝜔0+𝜔

𝑐

|𝜌0−𝜌in|
2

2𝐿in 𝑒−𝑖
𝜔0+𝜔

𝑐

|𝜌in|
2

2𝑓 𝑒−
|𝜌in|

2

2𝐷2 , (2.37)

where ℰin(𝜔), the Fourier transform of 𝐸in(𝑡), doesn’t depend on 𝜌in because the

input illumination is an infinite plane wave. Physically, the resolving power of the

lens will be limited by a finite aperture diameter, which should appear as limits on

this integral. However, for simplicity we assume a Gaussian aperture with 𝑒−1/2-field-

attenuation radius 𝐷, which appears as the last term in the integral. The Gaussian

model allows us to obtain closed-form results while still capturing the essential physics
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of the limitations induced by a physical aperture.4 Rearranging terms we have

ℰ0(𝜌0, 𝜔) =
𝑒𝑖

𝜔0+𝜔
𝑐

𝐿in

𝑖𝜆0𝐿in

ℰin(𝜔)𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌0|

2

2𝐿in

∫︁
d2𝜌in 𝑒

−𝑖
𝜔0+𝜔

𝑐
𝜌0
𝐿in

·𝜌in𝑒
−𝑖

𝜔0+𝜔
𝑐

|𝜌in|
2

2

(︁
1
𝑓
− 1

𝐿in

)︁
𝑒−

|𝜌in|
2

2𝐷2

(2.38)

=
𝑒𝑖

𝜔0+𝜔
𝑐

𝐿in

𝑖𝜆0𝐿in

ℰin(𝜔)𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌0|

2

2𝐿in
2𝜋

1
𝐷2 − 𝑖𝑓−𝐿in

𝑓𝐿in

𝜔0+𝜔
𝑐

𝑒
− |𝜌0|

2

2
(𝜔0+𝜔)2

𝑐2𝐿2
in

1
𝐷2 +𝑖

𝑓−𝐿in
𝑓𝐿in

𝜔0+𝜔
𝑐

1
𝐷4 +( 𝑓−𝐿in

𝑓𝐿in

𝜔0+𝜔
𝑐 )

2

,

(2.39)

where the integral can be evaluated by treating it as a Fourier transform of a complex-

valued Gaussian. To simplify this result, we impose the reasonable assumption that

𝐷 ≫
√︁

𝑓𝐿in

𝑓−𝐿in

𝑐
𝜔0+𝜔

. For 𝑓 = 2m, 𝐿in = 1m, and 𝜆0 = 500 nm this approximately

reduces to 𝐷 ≫ 0.3mm, which is eminently reasonable. Using this assumption we

find that

ℰ0(𝜌0, 𝜔)

=
𝑒𝑖

𝜔0+𝜔
𝑐

𝐿in

𝑖𝜆0𝐿in

ℰin(𝜔)𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌0|

2

2𝐿in
2𝜋

1
𝐷2 − 𝑖𝑓−𝐿in

𝑓𝐿in

𝜔0+𝜔
𝑐

𝑒
− |𝜌0|

2

2𝐷2
𝑓2

(𝑓−𝐿in)
2 𝑒

−𝑖
𝜔0+𝜔

𝑐
𝑓

𝐿in(𝑓−𝐿in)
|𝜌0|

2

2 ,

(2.40)

which ultimately yields

𝒫0(𝜌0, 𝜔−) =
𝑓 2

(𝑓 − 𝐿in)2
𝑒𝑖

𝜔−
𝑐

𝐿in𝒫in(𝜔−)𝑒
𝑖

𝜔−|𝜌0|
2

2𝑐(𝐿in−𝑓) 𝑒
− |𝜌0|

2

𝐷2
𝑓2

(𝑓−𝐿in)
2 . (2.41)

4In the absence of the diffuser, a hard-aperture lens would focus the plane wave down to an
Airy disk, whereas a Gaussian-aperture lens would result in a Gaussian spot. The spatial extent of
the focused spot, in both cases, scales as 𝜆0𝐿/𝐷, where 𝐿 is the propagation distance and 𝐷 the
aperture diameter. The difference is in the ringing artifacts of the Airy disk, induced by the hard
aperture’s edge. Thus, for the sake of analyzing resolution limits, the Gaussian model provides a
sufficient, simplified alternative.
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Using the Fresnel-diffraction formula for 𝒫-fields now gives us

𝒫1(𝜌1, 𝜔−) =
𝑒𝑖

𝜔−
𝑐

𝐿1

𝐿2
1

∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−)𝑒

𝑖
𝜔−
𝑐

|𝜌1−𝜌0|
2

2𝐿1 (2.42)

=
𝑓 2

(𝑓 − 𝐿in)2
𝒫in(𝜔−)

𝑒𝑖
𝜔−
𝑐

(𝐿in+𝐿1)

𝐿2
1

𝑒
𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿1

×
∫︁

d2𝜌0 𝑒
−𝑖

𝜔−𝜌1
𝑐𝐿1

·𝜌0𝑒
− |𝜌0|

2

𝐷2
𝑓2

(𝑓−𝐿in)
2 𝑒

𝑖
𝜔−
𝑐

|𝜌0|
2

2

(︁
1

𝐿in−𝑓
+ 1

𝐿1

)︁
. (2.43)

By focusing the lens on the 𝑧 = 𝐿1 plane we have 𝑓 = 𝐿in +𝐿1, which eliminates the

final exponential term. The integral that remains evaluates to a Gaussian leaving

𝒫1(𝜌1, 𝜔−) = 𝜋
𝐷2

𝐿2
1

𝑒𝑖
𝜔−
𝑐

(𝐿in+𝐿1)𝑒
𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿1 𝒫in(𝜔−)𝑒
− |𝜌1|

2

4

𝜔2
−𝐷2

𝑐2(𝐿in+𝐿1)
2 . (2.44)

Using 𝑓 = 𝐿in + 𝐿1 this result simplifies to

𝒫1(𝜌1, 𝜔−) = 𝜋
𝐷2

𝐿2
1

𝑒𝑖𝜔−𝑓/𝑐𝑒𝑖𝜔−|𝜌1|2/2𝑐𝐿1𝒫in(𝜔−)𝑒−(𝜔−𝐷/2𝑐𝑓)2|𝜌1|2 . (2.45)

The implication of this result is that the incident plane wave creates a 𝒫-field illumi-

nation that is tightly focused by the lens onto a small point—diffraction limited at

the modulation wavelength—in the center of the desired plane. From the perspective

of phasor-field imaging, this enables us to raster scan the target as if the initial dif-

fuser weren’t present. Having said that, although this enables the 𝒫 field at a given

modulation frequency to be spatially focused, it does not focus the optical power,

which is still spread out by the diffuser, as verified by Reza et al. [13]. Since the

𝒫 field is ultimately supported by the optical field, its peak strength, like the STA

irradiance’s, is still subject to inverse-square falloff, even in the presence of the lens.

That Eq. (2.45) suggests otherwise—i.e., that the inverse-square falloff can be com-

pensated for by increasing 𝐷—is only a function of the fact that we have assumed

infinite-plane-wave illumination, and thus by increasing the size of the aperture 𝐷

we allow more and more power to pass through the lens, proportional to the area

of the aperture. Correcting for this scaling it is clear that the peak 𝒫 field follows

inverse-square falloff relative to the input power, regardless of the aperture diameter,
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i.e., how tightly the 𝒫 field is confined in the target plane.

2.4.2 Lens-Aided Bucket Detection

z = L1 + L2

E2(⇢2, t)

z = L1

E1(⇢1, t)

T (⇢1)

h2(⇢2)h1(⇢1)

Lim
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D

Figure 2-6: Geometry for detecting the 𝒫 field from a small region on a hidden target
plane by means of a lens and bucket detection. The detector is assumed to have an
active region |𝜌| ≤ 𝐷/2.

The dual of our focusing result is also readily obtained. Considering again the

same transmissive geometry, we examine the effect of placing a lens of focal length

𝑓 = 𝐿2+𝐿im at a distance 𝐿im beyond the final diffuser, followed by a bucket detector,

as depicted in Fig. 2-6. Paralleling what we did in Sec. 2.3 and ignoring, for now, the

finite lens aperture, we have that

𝒫im (𝜌im, 𝜔−)

=
𝑒𝑖

𝜔−
𝑐

(𝐿2+𝐿im)

𝐿2
2𝐿

2
im

𝑒−𝑖
𝜔−
𝑐

|𝜌im|2
2𝑓

∫︁
d2𝜌2 𝑒

𝑖
𝜔−
𝑐

|𝜌im−𝜌2|
2

2𝐿im

∫︁
d2𝜌1 𝑒

𝑖
𝜔−
𝑐

|𝜌2−𝜌1|
2

2𝐿2 𝑇 (𝜌1)𝒫1(𝜌1, 𝜔−)

(2.46)

=
𝑒𝑖

𝜔−
𝑐

(𝐿2+𝐿im)

𝐿2
2𝐿

2
im

𝑒
𝑖
𝜔−
𝑐

|𝜌im|2
2

(︁
1

𝐿im
− 1

𝑓

)︁ ∫︁
d2𝜌1𝒫1(𝜌1, 𝜔−)𝑇 (𝜌1)𝑒

𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿2

×
∫︁

d2𝜌2 𝑒
−𝑖

𝜔−
𝑐

(︁
𝜌im
𝐿im

+
𝜌1
𝐿2

)︁
·𝜌2𝑒

𝑖
𝜔−
𝑐

|𝜌2|
2

2

(︁
1

𝐿im
+ 1

𝐿2

)︁
(2.47)

= 𝑖
2𝜋𝑐

𝜔−

𝑒𝑖
𝜔−
𝑐

(𝐿2+𝐿im)

𝐿2𝐿im(𝐿2 + 𝐿im)
𝑒
𝑖
𝜔−
𝑐

|𝜌im|2
2

(︁
1

𝐿im+𝐿2
− 1

𝑓

)︁

×
∫︁

d2𝜌1𝒫1(𝜌1, 𝜔−)𝑇 (𝜌1)𝑒
𝑖

𝜔−
𝑐(𝐿2+𝐿im)

(|𝜌1|2/2−𝜌im·𝜌1). (2.48)

Taking the lens to be focused on the target plane, 𝑓 = 𝐿2 + 𝐿im, the 𝜌im-dependent
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leading exponential term vanishes. Integrating over the 𝑧 = 𝐿1 + 𝐿2 + 𝐿im plane,

representing bucket detection, constrained by a diameter 𝐷 representing the smaller

of either the lens’s aperture or the detector’s active region leaves us with

∫︁

|𝜌im|≤𝐷/2

d2𝜌im𝒫im(𝜌im, 𝜔−)

= 𝑖
2𝜋𝑐

𝜔−

𝑒𝑖
𝜔−
𝑐

(𝐿2+𝐿im)

𝐿2𝐿im(𝐿2 + 𝐿im)

∫︁
d2𝜌1𝒫1(𝜌1, 𝜔−)𝑇 (𝜌1)𝑒

𝑖
𝜔−|𝜌1|

2

2𝑐(𝐿2+𝐿im)
𝜋𝐷2

4

𝐽1

(︁
𝐷𝜔−

2𝑐(𝐿2+𝐿im)
|𝜌1|
)︁

𝐷𝜔−
4𝑐(𝐿2+𝐿im)

|𝜌1|
.

(2.49)

Using 𝑓 = 𝐿2 + 𝐿im, denoting the active area of the detector by 𝐴 ≡ 𝜋𝐷2/4, and

denoting the Airy disk by Ai(𝑥) ≡ 2𝐽1(𝑥)/𝑥, this result simplifies to

∫︁

|𝜌im|≤𝐷/2

d2𝜌im𝒫im(𝜌im, 𝜔−) = 𝑖
2𝜋𝑐

𝜔−

𝐴

𝐿2𝐿im𝑓
𝑒𝑖𝜔−𝑓/𝑐

×
∫︁

d2𝜌1𝒫1(𝜌1, 𝜔−)𝑇 (𝜌1)𝑒
𝑖𝜔−|𝜌1|2/2𝑐𝑓Ai((𝜔−𝐷/2𝑐𝑓)|𝜌1|). (2.50)

Ignoring inessential phase and scaling terms, the result, as expected, is a detection

of the center of the target plane’s 𝒫-field weighted by the modulation wavelength’s

Airy disk. Taking this result together with the previous result for an initial, focusing

lens, one could imagine adjusting the focusing paths of both lenses via galvos, thus

creating the NLoS 𝒫-field analogy of a scanning confocal microscope. The bucket

detector in Fig. 2-6 might take the physical form of a large single-element detec-

tor, or a small single-element detector coupled to a large collimator. By the Fourier

transform’s linearity, spatial integration of the diffuser-averaged STA irradiance cor-

responds to spatial integration of the 𝒫 field. However, this bucket-detector scenario

seems somewhat contrived, physically speaking, and is presented here primarily for

theoretical interest as it is the mathematical dual of the focusing case. In prac-

tice, high-bandwidth single-element detectors have very small active areas, and if we

wanted to use such detectors in conjunction with optics to probe a small region of the

target plane, why not configure our optics for imaging? In fact, as one might hope,
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the use of lenses with 𝒫 fields allows us to go a step further than these two scenar-

ios to project arbitrary 𝒫-field patterns onto the target plane and directly image its

outgoing 𝒫 field.

2.4.3 Lens Primitive for Projecting and Imaging Cases

z = 0

E0(⇢0, t)

z = L1 + L2z = L1

h0(⇢0)

D E2(⇢2, t)

Figure 2-7: Fresnel propagation with an intervening lens.

In this section we derive a 𝒫-field propagation primitive for Fresnel propagation

with an intervening focal-length-𝑓 thin lens limited by a Gaussian aperture of 𝑒−1/2-

field-attenuation radius 𝐷, as depicted in Fig. 2-7. This will prove useful for both the

projection and imaging cases that follow. We have that

ℰ2(𝜌2, 𝜔) =
𝑒𝑖

𝜔0+𝜔
𝑐

(𝐿1+𝐿2)

−𝜆2
0𝐿1𝐿2

∫︁
d2𝜌1 𝑒

𝑖
𝜔0+𝜔

𝑐
|𝜌2−𝜌1|

2

2𝐿2 𝑒−𝑖
𝜔0+𝜔

𝑐
|𝜌1|

2

2𝑓 𝑒−
|𝜌1|

2

2𝐷2

×
∫︁

d2𝜌0 ℰ0(𝜌0, 𝜔)𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌1−𝜌0|

2

2𝐿1 𝑒𝑖
𝜔0+𝜔

𝑐
ℎ0(𝜌0) (2.51)

=
𝑒𝑖

𝜔0+𝜔
𝑐

(𝐿1+𝐿2)

−𝜆2
0𝐿1𝐿2

𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌2|

2

2𝐿2

∫︁
d2𝜌0 ℰ0(𝜌0, 𝜔)𝑒

𝑖
𝜔0+𝜔

𝑐
|𝜌0|

2

2𝐿1 𝑒𝑖
𝜔0+𝜔

𝑐
ℎ0(𝜌0)

×
∫︁

d2𝜌1 𝑒
−𝑖

𝜔0+𝜔
𝑐

𝜌1·
(︁

𝜌0
𝐿1

+
𝜌2
𝐿2

)︁
𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌1|

2

2

(︁
1
𝐿1

+ 1
𝐿2

− 1
𝑓

)︁
𝑒−

|𝜌1|
2

2𝐷2 (2.52)

=
𝑒𝑖

𝜔0+𝜔
𝑐

(𝐿1+𝐿2)

−𝜆2
0𝐿1𝐿2

𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌2|

2

2𝐿2

∫︁
d2𝜌0 ℰ0(𝜌0, 𝜔)𝑒

𝑖
𝜔0+𝜔

𝑐
|𝜌0|

2

2𝐿1 𝑒𝑖
𝜔0+𝜔

𝑐
ℎ0(𝜌0)

× 2𝜋
1
𝐷2 − 𝑖 1

Π(𝑓,𝐿1,𝐿2)
𝜔0+𝜔

𝑐

𝑒

−
| 𝜌0𝐿1

+
𝜌2
𝐿2
|2

2
(𝜔0+𝜔)2

𝑐2

1
𝐷2 +𝑖 1

Π(𝑓,𝐿1,𝐿2)
𝜔0+𝜔

𝑐

1
𝐷4 +

(︂
1

Π(𝑓,𝐿1,𝐿2)
𝜔0+𝜔

𝑐

)︂2

, (2.53)

where

Π(𝑓, 𝐿1, 𝐿2) ≡
1

1/𝐿1 + 1/𝐿2 − 1/𝑓
=

𝑓𝐿1𝐿2

𝑓(𝐿1 + 𝐿2) − 𝐿1𝐿2

(2.54)
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Similar to what was done before for plane-wave focusing, we assume

𝐷 ≫
√︁

Π(𝑓, 𝐿1, 𝐿2)
𝑐

𝜔0+𝜔
, which is satisfied in both the projecting and imaging sce-

narios to follow for parameter values similar to those chosen for the focusing case.

With this assumption we have that

ℰ2(𝜌2, 𝜔) =
𝑒𝑖

𝜔0+𝜔
𝑐

(𝐿1+𝐿2)

−𝜆2
0𝐿1𝐿2

𝑒
𝑖
𝜔0+𝜔

𝑐
|𝜌2|

2

2𝐿2

∫︁
d2𝜌0 ℰ0(𝜌0, 𝜔)𝑒

𝑖
𝜔0+𝜔

𝑐
|𝜌0|

2

2𝐿1 𝑒𝑖
𝜔0+𝜔

𝑐
ℎ0(𝜌0)

× 2𝜋
1
𝐷2 − 𝑖 1

Π(𝑓,𝐿1,𝐿2)
𝜔0+𝜔

𝑐

𝑒−
| 𝜌0𝐿1

+
𝜌2
𝐿2
|2

2𝐷2 Π2(𝑓,𝐿1,𝐿2)

× 𝑒−𝑖
𝜔0+𝜔

𝑐

| 𝜌0𝐿1
+

𝜌2
𝐿2
|2

2
Π(𝑓,𝐿1,𝐿2), (2.55)

from which it follows that

𝒫2(𝜌2, 𝜔−) =

(︂
Π(𝑓, 𝐿1, 𝐿2)

𝐿1𝐿2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿1+𝐿2)𝑒
𝑖
𝜔−
𝑐

|𝜌2|
2

2𝐿2

×
∫︁

d2𝜌0𝒫0(𝜌0, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌0|
2

2𝐿1 𝑒−
| 𝜌0𝐿1

+
𝜌2
𝐿2
|2

𝐷2 Π2(𝑓,𝐿1,𝐿2)

× 𝑒−𝑖
𝜔−
𝑐

| 𝜌0𝐿1
+

𝜌2
𝐿2
|2

2
Π(𝑓,𝐿1,𝐿2) (2.56)

=

(︂
Π(𝑓, 𝐿1, 𝐿2)

𝐿1𝐿2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿1+𝐿2)𝑒
𝑖
𝜔−
𝑐

|𝜌2|
2

2𝐿2

(︁
1−Π(𝑓,𝐿1,𝐿2)

𝐿2

)︁

×
∫︁

d2𝜌0𝒫0(𝜌0, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌0|
2

2𝐿1

(︁
1−Π(𝑓,𝐿1,𝐿2)

𝐿1

)︁
𝑒−

| 𝜌0𝐿1
+

𝜌2
𝐿2
|2

𝐷2 Π2(𝑓,𝐿1,𝐿2)

× 𝑒
−𝑖

𝜔−
𝑐

Π(𝑓,𝐿1,𝐿2)
𝐿1𝐿2

𝜌0·𝜌2 . (2.57)

2.4.4 Projecting

With the Eq. (2.57) primitive in hand, we turn our attention first to the task of

projecting an arbitrary 𝒫-field pattern onto a hidden target plane. Considering the

Fig. 2-1 scenario, we imagine that the initial diffuser is preceded by an instance of the

lens primitive depicted in Fig. 2-7, as shown in Fig. 2-8. To avoid confusion with the

Fig. 2-7 scenario’s preexisting notation, we will label the transverse coordinate of its

input plane as 𝜌in, its first distance as 𝐿in1 , and its second distance as 𝐿in2 . The output

plane transverse coordinate remains as 𝜌0, leading into the same notation as Fig. 2-1
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D

z = 0

E0(⇢0, t)

z = L1

E1(⇢1, t)

T (⇢1)

h1(⇢1)h0(⇢0)

Lin1
<latexit sha1_base64="RWuGdek/kJYjs9ahulNm0cjeekM="></latexit>

Lin2
<latexit sha1_base64="+bKjHJBjG8J1FVIcXtLzPopizYI="></latexit>

Ein(⇢in, t)
<latexit sha1_base64="jhJaJcK0m0ahh8svLKD+EpmB7KM="></latexit>

Figure 2-8: Geometry for projecting an arbitrary 𝒫-field pattern onto a hidden target
plane.

for the rest of the geometry. We take the lens to be configured to project the input 𝒫
field onto the 𝑧 = 𝐿1 plane so that its focal length obeys 1/𝑓 = 1/𝐿in1 +1/(𝐿in2 +𝐿1).

For this configuration, Π(𝑓, 𝐿in1 , 𝐿in2) = 𝐿in2(𝐿1 +𝐿in2)/𝐿1, and so the lens primitive

gives us

𝒫0(𝜌0, 𝜔−) =

(︂
𝐿1 + 𝐿in2

𝐿1𝐿in1

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿in1
+𝐿in2

)𝑒
−𝑖

𝜔−
𝑐

|𝜌0|
2

2𝐿1

×
∫︁

d2𝜌in𝒫in(𝜌in, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌in|
2

2𝐿in1

(︂
1−

𝐿in2
(𝐿1+𝐿in2

)

𝐿1𝐿in1

)︂

× 𝑒
−

⃒⃒⃒⃒
⃒ 𝜌in
𝐿in1

+
𝜌0

𝐿in2

⃒⃒⃒⃒
⃒
2

𝐷2

(︂
𝐿in2

(𝐿1+𝐿in2
)

𝐿1

)︂2

𝑒
−𝑖

𝜔−
𝑐

𝐿1+𝐿in2
𝐿1𝐿in1

𝜌in·𝜌0
, (2.58)

which, after Fresnel propagation, leads to

𝒫1(𝜌1, 𝜔−) =

(︂
𝐿1 + 𝐿in2

𝐿2
1𝐿in1

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿in1
+𝐿in2

+𝐿1)𝑒
𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿1

×
∫︁

d2𝜌in𝒫in(𝜌in, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌in|
2

2𝐿in1

(︂
1−

𝐿in2
(𝐿1+𝐿in2

)

𝐿1𝐿in1

)︂

×
∫︁

d2𝜌0 𝑒
−

⃒⃒⃒⃒
⃒ 𝜌in
𝐿in1

+
𝜌0

𝐿in2

⃒⃒⃒⃒
⃒
2

𝐷2

(︂
𝐿in2

(𝐿1+𝐿in2
)

𝐿1

)︂2

𝑒
−𝑖

𝜔−
𝑐𝐿1

𝜌0·
(︂
𝜌1+

𝐿1+𝐿in2
𝐿in1

𝜌in

)︂
(2.59)
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= 𝜋

(︂
𝐷

𝐿1𝐿in1

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿in1
+𝐿in2

+𝐿1)𝑒
𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿1

×
∫︁

d2𝜌in𝒫in(𝜌in, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌in|
2

2𝐿in1

(︂
1−

𝐿in2
(𝐿1+𝐿in2

)

𝐿1𝐿in1

)︂
𝑒
−

𝜔2
−𝐷2

4𝑐2

⃒⃒⃒⃒
⃒𝜌1+𝐿1+𝐿in2

𝐿in1
𝜌in

⃒⃒⃒⃒
⃒
2

(𝐿1+𝐿in2
)2

× 𝑒
𝑖
𝜔−
𝑐

𝐿in2
𝐿1𝐿in1

𝜌in·
(︂
𝜌1+

𝐿1+𝐿in2
𝐿in1

𝜌in

)︂
(2.60)

= 𝜋

(︂
𝐷

𝐿1𝐿in1

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿in1
+𝐿in2

+𝐿1)𝑒
𝑖

𝜔−|𝜌1|
2

2𝑐(𝐿1+𝐿in2
)

×
∫︁

d2𝜌in𝒫in(𝜌in, 𝜔−)𝑒
𝑖
𝜔−|𝜌in|

2

2𝑐𝐿in1 𝑒
−

𝜔2
−𝐷2

4𝑐2

⃒⃒⃒⃒
⃒𝜌1+𝐿1+𝐿in2

𝐿in1
𝜌in

⃒⃒⃒⃒
⃒
2

(𝐿1+𝐿in2
)2

× 𝑒
𝑖
𝜔−
2𝑐

𝐿in2
𝐿1(𝐿1+𝐿in2

)

⃒⃒⃒⃒
𝜌1+

𝐿1+𝐿in2
𝐿in1

𝜌in

⃒⃒⃒⃒2
. (2.61)

Now we assume a more stringent condition for 𝐷, in particular that

𝐷 ≫
√︁

𝑐
𝜔−

𝐿in2
(𝐿1+𝐿in2

)

𝐿1
. For meter-scale distances and 10-GHz-scale modulation this

reduces to approximately 𝐷 ≫ 10 cm which, although likely difficult to meet in

practice, is at least imaginable, perhaps by using a large concave mirror to function

as the lens. Each order-of-magnitude increase of the modulation frequency reduces

the requirement on 𝐷 by half an order of magnitude, so THz-scale modulation—

as implemented by the synthetic-wavelength-holography approach of Willomitzer et

al. [14] that we discuss further in Appendix D—would reduce this condition to a more

reasonable 𝐷 ≫ 1 cm. If we can achieve this condition, then the final phase term in

Eq. (2.61) can be ignored and we get

𝒫1(𝜌1, 𝜔−) =𝜋

(︂
𝐷

𝐿1𝐿in1

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿in1
+𝐿in2

+𝐿1)𝑒
𝑖

𝜔−|𝜌1|
2

2𝑐(𝐿1+𝐿in2
)

×
∫︁

d2𝜌in𝒫in(𝜌in, 𝜔−)𝑒
𝑖
𝜔−|𝜌in|

2

2𝑐𝐿in1 𝑒
−

𝜔2
−𝐷2

4𝑐2

⃒⃒⃒⃒
⃒𝜌1+𝐿1+𝐿in2

𝐿in1
𝜌in

⃒⃒⃒⃒
⃒
2

(𝐿1+𝐿in2
)2 . (2.62)
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Defining 𝐿prj ≡ 𝐿in2 +𝐿1 and denoting the magnification/minification factor by 𝑀 ≡
𝐿prj/𝐿in1 , this result simplifies to

𝒫1(𝜌1, 𝜔−) =𝜋

(︂
𝐷

𝐿1𝐿in1

)︂2

𝑒𝑖𝜔−(𝐿in1
+𝐿prj)/𝑐𝑒𝑖𝜔−|𝜌1|2/2𝑐𝐿prj

×
∫︁

d2𝜌in𝒫in(𝜌in, 𝜔−)𝑒𝑖𝜔−|𝜌in|2/2𝑐𝐿in1𝑒−(𝜔−𝐷/2𝑐𝐿prj)
2|𝜌1+𝑀𝜌in|

2

. (2.63)

Ignoring inessential phase and scaling terms, this is a projected copy of the input 𝒫
field,

𝒫in(𝜌in, 𝜔−) =

∫︁
d𝜔+

2𝜋
ℰin(𝜌in, 𝜔+ + 𝜔−/2)ℰ*

in(𝜌in, 𝜔+ − 𝜔−/2), (2.64)

subject to image inversion and magnification/minification, with resolution diffraction

limited at the modulation wavelength.

2.4.5 Imaging

D

z = L1 + L2

E2(⇢2, t)

z = L1

E1(⇢1, t)

T (⇢1)

h2(⇢2)h1(⇢1)

Lim1
<latexit sha1_base64="ajlHNPObayT3nTlIVMe25iE68E0="></latexit>

Lim2
<latexit sha1_base64="I7rrDkZC9Pd+37kHBNnH0j4qJtg="></latexit>

Figure 2-9: Geometry for directly imaging a hidden target plane.

We can obtain the same kind of result we’ve just exhibited for projection for

imaging the hidden plane by placing the lens primitive behind Fig. 2-1’s final diffuser

so that the transverse coordinate of the first plane of the primitive is 𝜌2, as depicted

in Fig. 2-9. We denote the lens primitive’s two distances 𝐿im1 and 𝐿im2 , and we denote

the transverse coordinate of the primitive’s final plane as 𝜌im with the intention in

mind that a multipixel detector capable of measuring the 𝒫 field will be present

there. The hidden plane is imaged onto this hypothetical detector by taking the focal

length of the lens to obey 1/𝑓 = 1/(𝐿2 + 𝐿im1) + 1/𝐿im2 . For this configuration
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Π(𝑓, 𝐿im1 , 𝐿im2) = 𝐿im1(𝐿2 + 𝐿im1)/𝐿2, and so we have that

𝒫im(𝜌im, 𝜔−) =

(︂
𝐿2 + 𝐿im1

𝐿2𝐿im2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿im1
+𝐿im2

)𝑒
𝑖
𝜔−
𝑐

|𝜌im|2
2𝐿im2

(︂
1−

𝐿im1
(𝐿2+𝐿im1

)

𝐿2𝐿im2

)︂

×
∫︁

d2𝜌2𝒫2(𝜌2, 𝜔−)𝑒
−𝑖

𝜔−
𝑐

|𝜌2|
2

2𝐿2 𝑒
−

⃒⃒⃒⃒
⃒ 𝜌2
𝐿im1

+
𝜌im
𝐿im2

⃒⃒⃒⃒
⃒
2

𝐷2

(︂
𝐿im1

(𝐿2+𝐿im1
)

𝐿2

)︂2

× 𝑒
−𝑖

𝜔−
𝑐

𝐿2+𝐿im1
𝐿2𝐿im2

𝜌im·𝜌2
(2.65)

=

(︂
𝐿2 + 𝐿im1

𝐿2
2𝐿im2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿im1
+𝐿im2

+𝐿2)𝑒
𝑖
𝜔−
𝑐

|𝜌im|2
2𝐿im2

(︂
1−

𝐿im1
(𝐿2+𝐿im1

)

𝐿2𝐿im2

)︂

×
∫︁

d2𝜌1 𝑇 (𝜌1)𝒫1(𝜌1, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿2

×
∫︁

d2𝜌2 𝑒
−

⃒⃒⃒⃒
⃒ 𝜌2
𝐿im1

+
𝜌im
𝐿im2

⃒⃒⃒⃒
⃒
2

𝐷2

(︂
𝐿im1

(𝐿2+𝐿im1
)

𝐿2

)︂2

𝑒
−𝑖

𝜔−
𝑐𝐿2

𝜌2·
(︂
𝜌1+

𝐿2+𝐿im1
𝐿im2

𝜌im

)︂

(2.66)

= 𝜋

(︂
𝐷

𝐿2𝐿im2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿im1
+𝐿im2

+𝐿2)𝑒
𝑖
𝜔−
𝑐

|𝜌im|2
2𝐿im2

(︂
1−

𝐿im1
(𝐿2+𝐿im1

)

𝐿2𝐿im2

)︂

×
∫︁

d2𝜌1 𝑇 (𝜌1)𝒫1(𝜌1, 𝜔−)𝑒
𝑖
𝜔−
𝑐

|𝜌1|
2

2𝐿2 𝑒
−

𝐷2𝜔2
−

4𝑐2

⃒⃒⃒⃒
⃒𝜌1+𝐿2+𝐿im1

𝐿im2
𝜌im

⃒⃒⃒⃒
⃒
2

(𝐿2+𝐿im1
)2

× 𝑒
𝑖
𝜔−
𝑐

𝐿im1
𝐿im2

𝐿2
𝜌im·

(︂
𝜌1+

𝐿2+𝐿im1
𝐿im2

𝜌im

)︂
(2.67)

= 𝜋

(︂
𝐷

𝐿2𝐿im2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿im1
+𝐿im2

+𝐿2)𝑒
𝑖
𝜔−|𝜌im|2

2𝑐𝐿im2

×
∫︁

d2𝜌1 𝑇 (𝜌1)𝒫1(𝜌1, 𝜔−)𝑒
𝑖

𝜔−|𝜌1|
2

2𝑐(𝐿2+𝐿im1
) 𝑒

−
𝐷2𝜔2

−
4𝑐2

⃒⃒⃒⃒
⃒𝜌1+𝐿2+𝐿im1

𝐿im2
𝜌im

⃒⃒⃒⃒
⃒
2

(𝐿2+𝐿im1
)2

× 𝑒
𝑖
𝜔−
2𝑐

𝐿im1
𝐿2(𝐿2+𝐿im1

)

⃒⃒⃒⃒
𝜌1+

𝐿2+𝐿im1
𝐿im2

𝜌im

⃒⃒⃒⃒2
. (2.68)

Similar to the projection case, we enforce the assumption 𝐷 ≫
√︁

𝑐
𝜔−

𝐿im1
(𝐿2+𝐿im1

)

𝐿2
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so that we can ignore the final phase term which leaves us with

𝒫im(𝜌im, 𝜔−) =𝜋

(︂
𝐷

𝐿2𝐿im2

)︂2

𝑒𝑖
𝜔−
𝑐

(𝐿im1
+𝐿im2

+𝐿2)𝑒
𝑖
𝜔−|𝜌im|2

2𝑐𝐿im2

×
∫︁

d2𝜌1 𝑇 (𝜌1)𝒫1(𝜌1, 𝜔−)𝑒
𝑖

𝜔−|𝜌1|
2

2𝑐(𝐿2+𝐿im1
) 𝑒

−
𝐷2𝜔2

−
4𝑐2

⃒⃒⃒⃒
⃒𝜌1+𝐿2+𝐿im1

𝐿im2
𝜌im

⃒⃒⃒⃒
⃒
2

(𝐿2+𝐿im1
)2 . (2.69)

Defining 𝐿out ≡ 𝐿2 + 𝐿im1 and denoting the magnification/minification factor by

𝑀 ≡ 𝐿out/𝐿im2 , this result simplifies to

𝒫im(𝜌im, 𝜔−) =𝜋

(︂
𝐷

𝐿2𝐿im2

)︂2

𝑒𝑖𝜔−(𝐿out+𝐿im2
)/𝑐𝑒𝑖𝜔−|𝜌im|2/2𝑐𝐿im2

×
∫︁

d2𝜌1 𝑇 (𝜌1)𝒫1(𝜌1, 𝜔−)𝑒𝑖𝜔−|𝜌1|2/2𝑐𝐿out𝑒−(𝜔−𝐷/2𝑐𝐿out)2|𝜌1+𝑀𝜌im|2 .

(2.70)

Again ignoring inessential terms, this is an inverted and magnified/minified 𝒫-field
image of the hidden target plane with resolution diffraction limited at the modulation

wavelength. Although it may prove difficult to implement in practice with existing

technology, this offers the potential to directly image NLoS scenes with little to no

computational overhead.
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Chapter 3

Two-Frequency Spatial Wigner

Distribution and Occlusion-Aided

Imaging

In this chapter, we consider a generalized version of our paraxial, transmissive geom-

etry that allows for the presence of deterministic occluders in the light’s path and

a more general target transmissivity mask. The 𝒫 field alone does not suffice to

track the evolution of the light through all intermediate planes of this geometry, so

we go beyond this quantity to define a more comprehensive one: the two-frequency

spatial Wigner distribution. We demonstrate how the two-frequency spatial Wigner

distribution relates to other better-known quantities for characterizing propagation

through random media, and we present a set of propagation primitives for it that

are relevant to our transmissive geometry. We use these propagation primitives to

analyze occlusion-aided imaging scenarios and demonstrate that the presence of inter-

vening occluders has the potential to improve performance, as seen previously in Xu

et al. [11] and Thrampoulidis et al. [12]. Finally, we isolate the key component of such

scenarios to derive a concise, general 𝒫-field propagation primitive and demonstrate

that its behavior is intuitive in the geometric-optics limit.

47



3.1 Setup for Paraxial Propagation through Multi-

ple Diffusers with Occlusion

Figure 3-1 shows a generalized setup for transmissive 𝒫-field imaging. Here, two

occluders, having field-transmission functions 𝑃 (𝜌𝑑) and 𝑃 ′(𝜌′
𝑑), have been introduced

in the 𝑧 = 𝐿1 − 𝐿𝑑 and 𝑧 = 𝐿1 + 𝐿′
𝑑 planes, and the 𝑧 = 𝐿1 plane contains a field-

transmission mask 𝐹 (𝜌1) that has both specular and diffuse components. In the NLoS

analogy, the two occluders represent objects in the hidden space—encountered by the

light as it propagates towards and returns from the hidden wall, respectively—and

the generalized field-transmission mask accounts for more general, non-Lambertian

hidden walls. This configuration—if 𝐹 (𝜌1) is purely diffuse with a space-varying

albedo that is to be imaged, i.e., equivalent to the stacked intensity-transmission mask

and thin diffuser from Fig. 2-1—is our unfolded proxy for Xu et al.’s experiments [11].

The ultimate goal of a phasor-field transport model is to provide the diffuser-

averaged STA irradiance at the output of some system—or equivalently, its Fourier

transform: the 𝒫 field—given the STA irradiance1, or its associated 𝒫 field, at

the input of the system. This is possible in NLoS or diffuse transmissive-imaging

scenarios—provided that the system can be summarized by a linear transformation

of the underlying electromagnetic field—when the input and output facets of the sys-

tems in question are Lambertian walls (NLoS case) or diffusers (transmissive case).

Such facets destroy all directionality information, viz., all spatial coherence, so that

𝒫-fields fully characterize the light they reflect (NLoS case) or transmit (transmissive

case). Free-space propagation increases spatial coherence, but provided we only care

about relating the STA irradiance at the input plane to the diffuser-averaged STA

irradiance at the output plane when those planes contain pure diffusers, a 𝒫-field
input-output model propagation is possible as those diffusers will, respectively, de-

stroy the initial and propagation-created coherence. If, however, as at 𝑧 = 𝐿1 − 𝐿𝑑,

𝑧 = 𝐿1, or 𝑧 = 𝐿1 + 𝐿′
𝑑 in Fig. 3-1, we are interested in planes that do not contain

pure diffusers, the 𝒫 field is insufficient to fully characterize the electromagnetic field

1For laser illumination at the system’s input, diffuser averaging is unnecessary.

48



emerging from them. Thus, owing to what can be viewed as a lack of directionality

information, the 𝒫 field at those output planes fails to provide enough information to

determine the increased spatial coherence that will accrue from subsequent free-space

diffraction. Accordingly, we find the 𝒫 field insufficient for the task of building a

complete light-transport model for scenarios including occluders and specular-plus-

diffuser masks. Indeed, although omitted for brevity, carrying out a Fig. 3-1 prop-

agation analysis—like that done for Fig. 2-1—confirms that a 𝒫-field input-output

relation built up from propagating the 𝒫 field from each plane containing an optical

element to the next such plane is impossible. A simple demonstration of the underly-

ing issue is presented in Appendix B, where we show that even free-space propagation

cannot be cascaded for the 𝒫 field.

Figure 3-1: Unfolded geometry for three-bounce, occlusion-aided NLoS active imag-
ing. Scalar, paraxial diffraction theory is assumed, with 𝐸0(𝜌0, 𝑡) being the baseband
complex field envelope illuminating the 𝑧 = 0 plane and 𝐸 ′

2(𝜌2, 𝑡) being the baseband
complex field envelope emerging from the 𝑧 = 𝐿1 + 𝐿2 plane. These fields are writ-
ten as functions of their transverse spatial coordinates, {𝜌𝑘 = (𝑥𝑘, 𝑦𝑘) : 𝑘 = 0, 2},
in their respective planes and time, 𝑡. The blue rectangles represent thin transmis-
sive diffusers, and the black line at 𝑧 = 𝐿1 represents a thin specular-plus-diffuser
transmission mask with field-transmission function 𝐹 (𝜌1), whose associated intensity-
transmission pattern is to be imaged using the light that emerges from the 𝑧 = 𝐿1+𝐿2

plane. That imaging process is aided by the presence of occluders in the 𝑧 = 𝐿1 −𝐿𝑑

and 𝑧 = 𝐿1 + 𝐿′
𝑑 planes, whose field-transmission functions are 𝑃 (𝜌𝑑) and 𝑃 ′(𝜌′

𝑑),
respectively.

To tackle these scenarios, we start from the beginning, and instead of consider-

ing the STA irradiance we consider a variant with directionality information—the

time-dependent specific irradiance from small-angle-approximation linear transport
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theory [15]:

𝐼𝑧(𝜌+, s, 𝑡) ≡
∫︁

d2𝜌−

𝜆2
0

⟨𝐸𝑧(𝜌+ + 𝜌−/2, 𝑡)𝐸*
𝑧 (𝜌+ − 𝜌−/2, 𝑡)⟩𝑒−𝑖2𝜋s·𝜌−/𝜆0 , (3.1)

where s is the transverse component of the propagation direction, i.e., a normalized

copy of the transverse wave vector k. In computer vision, this quantity is known as

the 5D light field [16–18]. By replacing 2𝜋s/𝜆0 with k, the time-dependent specific

irradiance can be seen to be a time-indexed spatial Wigner distribution, cf. the spatial

Wigner distribution of a monochromatic scalar wave, viz.,

𝑊 (𝜌+,k) ≡
∫︁

d2𝜌−𝐸𝑧(𝜌+ + 𝜌−/2)𝐸*
𝑧 (𝜌+ − 𝜌−/2)𝑒−𝑖k·𝜌− , (3.2)

which has long been recognized as a useful tool in optics, see, e.g., [19–21]. The

diffuser-averaged STA irradiance is obtained from 𝐼𝑧(𝜌+, s, 𝑡) by integrating out its

directionality information,

⟨𝐼𝑧(𝜌+, 𝑡)⟩ =

∫︁
d2s 𝐼𝑧(𝜌+, s, 𝑡), (3.3)

and the 𝒫 field is then obtained by time-domain Fourier transformation.

As before, we find it convenient to carry out our analysis in the temporal-frequency

domain. Paralleling the development in Eqs. (2.7)–(2.9) we have:

𝐼𝑧(𝜌+, s, 𝑡)

=

∫︁
d𝜔

2𝜋

∫︁
d𝜔′

2𝜋

∫︁
d2𝜌−

𝜆2
0

⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔)ℰ*
𝑧 (𝜌+ − 𝜌−/2, 𝜔′)⟩𝑒−𝑖 2𝜋s

𝜆0
·𝜌−𝑒−𝑖(𝜔−𝜔′)𝑡

(3.4)

=

∫︁
d𝜔−

2𝜋

[︂∫︁
d𝜔+

2𝜋

(︂∫︁
d2𝜌−

𝜆2
0

⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔)ℰ*
𝑧 (𝜌+ − 𝜌−/2, 𝜔′)⟩𝑒−𝑖 2𝜋s

𝜆0
·𝜌−

)︂]︂
𝑒−𝑖𝜔−𝑡,

(3.5)

where 𝜔+ ≡ (𝜔+𝜔′)/2 and 𝜔− ≡ 𝜔−𝜔′ as we employed in Chapter 2. The bracketed

quantity in Eq. (3.5) is the Fourier transform of the time-dependent specific irradiance,
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so it contains equivalent information. Comparing to our Chapter 2 analysis, this

quantity is the directionality-augmented analog of the 𝒫 field, and as it turns out

would be sufficient to build a transport model for the Fig. 3-1 scenario. Out of

prudence though, having learned from the insufficient generality of the 𝒫 field, we

feel it is wise to build our Fig. 3-1 analysis on the quantity in parentheses within

Eq. (3.5), the two-frequency spatial Wigner distribution (TFSWD):

𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−)

≡
∫︁

d2𝜌− ⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*
𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩𝑒−𝑖k·𝜌− , (3.6)

from which the time-dependent specific irradiance can be obtained via

𝐼𝑧(𝜌+, s, 𝑡) =
1

𝜆2
0

∫︁
d𝜔−

2𝜋

∫︁
d𝜔+

2𝜋
𝑊ℰ𝑧(𝜌+, 2𝜋s/𝜆0, 𝜔+, 𝜔−)𝑒−𝑖𝜔−𝑡. (3.7)

The merit of the TFSWD’s added generality can be seen by considering the space-

time autocorrelation function,

Γ𝑧(𝜌1,𝜌2, 𝑡1, 𝑡2) ≡ ⟨𝐸𝑧(𝜌1, 𝑡1)𝐸
*
𝑧 (𝜌2, 𝑡2)⟩, (3.8)

that is used in parabolic-approximation propagation theory through random me-

dia [22]. The time-dependent specific irradiance can be found from the space-time

autocorrelation function, viz., we have that

𝐼𝑧(𝜌+, s, 𝑡) =

∫︁
d2𝜌−

𝜆2
0

Γ𝑧(𝜌+ + 𝜌−/2,𝜌+ − 𝜌−/2, 𝑡, 𝑡)𝑒−𝑖2𝜋s·𝜌−/𝜆0 , (3.9)

but the converse is not true, i.e., the space-time autocorrelation function cannot

in general be found from knowledge of the time-dependent specific irradiance alone.

However, the space-time autocorrelation function is equivalent to the TFSWD because
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we have that

𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌−

∫︁
d𝑡1

∫︁
d𝑡2 𝑒

𝑖(𝜔+𝑡−+𝜔−𝑡+−k·𝜌−)

× Γ𝑧(𝜌+ + 𝜌−/2,𝜌+ − 𝜌−/2, 𝑡+ + 𝑡−/2, 𝑡+ − 𝑡−/2), (3.10)

where 𝑡+ ≡ (𝑡1 + 𝑡2)/2, 𝑡− ≡ 𝑡1 − 𝑡2, and

Γ𝑧(𝜌+ + 𝜌−/2,𝜌+ − 𝜌−/2, 𝑡+ + 𝑡−/2, 𝑡+ − 𝑡−/2)

=

∫︁
d2k

(2𝜋)2

∫︁
d𝜔+

2𝜋

∫︁
d𝜔−

2𝜋
𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−)𝑒−𝑖(𝜔+𝑡−+𝜔−𝑡+−k·𝜌−). (3.11)

For 𝐸-field propagation through an arbitrary linear transformation of the form

𝐸𝑧′(𝜌
′, 𝑡) =

∫︁
d𝜏

∫︁
d2𝜌𝐸𝑧(𝜌, 𝜏)ℎ(𝜌′,𝜌; 𝑡, 𝜏), (3.12)

the input’s space-time autocorrelation function suffices to determine the output’s

space-time autocorrelation function, and hence the output-plane 𝒫 field. Moreover,

the same must be true for the TFSWD. Because knowledge of the time-dependent

specific irradiance alone does not in general determine the space-time autocorrelation

function, it does not suffice to characterize second-moment propagation through an

arbitrary linear transformation of the form given in Eq. (3.12), i.e., it cannot deter-

mine the output 𝒫 field. For example, the time-dependent specific irradiance cannot

account for propagation that involves a linear time-invariant filtering in time, e.g.,

through a transparency that has a frequency-dependent transmissivity. So, although

this capability is not fully exploited in this thesis, by building our theory around

the TFSWD we are prepared to handle arbitrary linear transformations of the 𝐸

field, rather than just those that can be characterized by the time-dependent specific

irradiance. Note that the 6D light field,

𝐼𝑧(𝜌+, s, 𝜔+, 𝑡) ≡
1

𝜆2
0

∫︁
d𝜔−

2𝜋
𝑊 (𝜌+, 2𝜋s/𝜆0, 𝜔+, 𝜔−)𝑒−𝑖𝜔−𝑡, (3.13)
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would also suffice in this regard, as it is the time-domain inverse Fourier transform of

the TFSWD.

The 𝑧-plane 𝒫 field can be found from that plane’s TFSWD as follows:

𝒫𝑧(𝜌+, 𝜔−) =

∫︁
d𝜔+

2𝜋

∫︁
d2k

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−). (3.14)

From this result we see that the TFSWD allows us to realize the goal of analyzing

occluded phasor-field imaging if we can: (1) propagate 𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−) through a

𝑧-plane field-transmission mask, whether that be a diffuser, deterministic occluder, or

specular-plus-diffuser mask; and (2) propagate 𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−) through a distance

𝐿 of Fresnel diffraction. All of these propagation calculations are done Appendix C.

For convenience, we summarize these results below:

Propagation through a diffuser:

For propagation through a diffuser characterized by the impulse approximation in

Eq. (2.13), we have

𝑊ℰ ′
0
(𝜌+,k, 𝜔+, 𝜔−) = 𝜆2

0

∫︁
d2k′

(2𝜋)2
𝑊ℰ0(𝜌+,k

′, 𝜔+, 𝜔−). (3.15)

Propagation through a deterministic occluder:

With 𝑊𝑃 (𝜌+,k) ≡
∫︀

d2𝜌− 𝑃 (𝜌+ + 𝜌−/2)𝑃 *(𝜌+ − 𝜌−/2)𝑒−𝑖k·𝜌− , we have

𝑊ℰ ′
𝐿1−𝐿𝑑

(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝐿1−𝐿𝑑

(𝜌+,k
′, 𝜔+, 𝜔−)𝑊𝑃 (𝜌+,k− k′). (3.16)

Propagation through a specular-plus-diffuser mask:

With 𝐹 (𝜌1) having nonzero mean ⟨𝐹 (𝜌1)⟩ ≠ 0 and covariance

⟨∆𝐹 (𝜌+ + 𝜌−/2)∆𝐹 *(𝜌+ − 𝜌−/2)⟩ ≈ 𝜆2
0ℱ(𝜌+)𝛿(𝜌−) where 0 ≤ ℱ(𝜌+) ≤ 1 , we get

𝑊ℰ ′
𝐿1

(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝐿1

(𝜌+,k
′, 𝜔+, 𝜔−)𝑊⟨𝐹 ⟩(𝜌+,k− k′)

+ 𝜆2
0ℱ(𝜌+)

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝐿1

(𝜌+,k
′, 𝜔+, 𝜔−). (3.17)
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Fresnel diffraction:

For Fresnel diffraction from the 𝑧 = 0+ plane to the 𝑧 = 𝐿1 − 𝐿𝑑 plane, we get

𝑊ℰ𝐿1−𝐿𝑑
(𝜌+,k, 𝜔+, 𝜔−)=𝑊ℰ ′

0

(︂
𝜌+ − 𝑐(𝐿1 − 𝐿𝑑)k

𝜔0

,k, 𝜔+, 𝜔−

)︂
𝑒
𝑖
𝜔−(𝐿1−𝐿𝑑)

𝑐

(︂
1+

𝑐2|k|2

2𝜔2
0

)︂
.(3.18)

3.2 Occlusion-Aided Imaging

In Chapter 2 we noted that, in the paraxial limit, unoccluded imaging configurations

without modulated light are unconditioned with respect to reconstructing the target

mask’s albedo. Moreover, we showed that the addition of modulation enabled re-

construction of the target mask’s albedo at a resolution limited by the bandwidth of

that modulation. What remains then is to examine the unmodulated and modulated

cases for occluded geometries. For clarity and convenience, we will consider a sim-

plified version of Fig. 3-1 in which the first occluder is absent, the screen at 𝑧 = 𝐿1

is purely diffuse, and the occluder that is present at 𝑧 = 𝐿1 + 𝐿′
𝑑 is denoted 𝑃 (·)

instead of 𝑃 ′(·). In the NLoS analogy, this corresponds to a geometry in which a

single occluding object is encountered in the hidden space only on the light’s return

trip from a Lambertian hidden wall. Further convenience, without appreciable loss of

generality, is afforded by our assuming that the laser light incident on the 𝑧 = 0 plane

is a +𝑧-going plane wave of STA irradiance 𝐼0(𝑡), and that the distances in Fig. 3-1

satisfy 𝐿1 = 𝐿2 = 𝐿, and 𝐿′
𝑑 = 𝐿/2.

The TFSWD of the plane-wave laser light is easily shown to be

𝑊ℰ0(𝜌+,k, 𝜔+, 𝜔−) = 𝑊in(𝜔+, 𝜔−)(2𝜋/𝜆0)
2𝛿(k), (3.19)

where

𝑊in(𝜔+, 𝜔−) ≡ 𝜆2
0

∫︁
d𝑡
√︀

𝐼0(𝑡)𝑒
𝑖(𝜔++𝜔−/2)𝑡

∫︁
d𝑢
√︀

𝐼0(𝑢)𝑒−𝑖(𝜔+−𝜔−/2)𝑢. (3.20)
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After the diffuser in the 𝑧 = 0 plane we get

𝑊ℰ ′
0
(𝜌+,k, 𝜔+, 𝜔−) = 𝑊in(𝜔+, 𝜔−), (3.21)

and after propagation to the 𝑧 = 𝐿 plane, we find

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−) = 𝑊in(𝜔+, 𝜔−)𝑒𝑖(𝜔−𝐿/𝑐)(1+𝑐2|k|2/2𝜔2
0). (3.22)

At 𝑧 = 𝐿1 this Wigner distribution encounters a diffuse target mask, i.e., one

whose field-transmission function 𝐹 (𝜌1) has zero mean and covariance

⟨∆𝐹 (𝜌1)∆𝐹 *(𝜌2)⟩ = 𝜆2
0ℱ [(𝜌1 + 𝜌2)/2]𝛿(𝜌1 − 𝜌2), (3.23)

which results in

𝑊ℰ ′
𝐿
(𝜌+,k, 𝜔+, 𝜔−) = ℱ(𝜌+)𝑊in(𝜔+, 𝜔−)𝑒𝑖𝜔−𝐿/𝑐 2𝜋𝑖𝑐/𝜔−𝐿. (3.24)

Fresnel propagation to 𝑧 = 3𝐿/2 now gives us

𝑊ℰ3𝐿/2
(𝜌+,k, 𝜔+, 𝜔−) =ℱ(𝜌+ − 𝑐𝐿k/2𝜔0)𝑊in(𝜔+, 𝜔−)

× 𝑒𝑖𝜔−3𝐿/2𝑐𝑒𝑖𝜔−𝑐𝐿|k|2/4𝜔2
0 2𝜋𝑖𝑐/𝜔−𝐿, (3.25)

and passage through the occluder in that plane leads to

𝑊ℰ ′
3𝐿/2

(𝜌+,k, 𝜔+, 𝜔−) = 𝑊in(𝜔+, 𝜔−)

∫︁
d2k′

(2𝜋)2
ℱ(𝜌+ − 𝑐𝐿k′/2𝜔0)𝑒

𝑖𝜔−3𝐿/2𝑐𝑒𝑖𝜔−𝑐𝐿|k′|2/4𝜔2
0

×𝑊𝑃 (𝜌+,k− k′)2𝜋𝑖𝑐/𝜔−𝐿. (3.26)
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Fresnel propagation over another 𝐿/2 distance then gives

𝑊ℰ2𝐿(𝜌+,k, 𝜔+, 𝜔−) = 𝑊in(𝜔+, 𝜔−)

∫︁
d2k′

(2𝜋)2
ℱ(𝜌+ − 𝑐𝐿(k′ + k)/2𝜔0)𝑒

𝑖𝜔−2𝐿/𝑐

× 𝑒𝑖𝜔−𝑐𝐿(|k|2+|k′|2)/4𝜔2
0 𝑊𝑃 (𝜌+ − 𝑐𝐿k/2𝜔0,k− k′)2𝜋𝑖𝑐/𝜔−𝐿,

(3.27)

from which we get

𝒫2𝐿(𝜌+, 𝜔−) =

∫︁
d𝜔+

2𝜋
𝑊in(𝜔+, 𝜔−)

∫︁
d2k

(2𝜋)2

∫︁
d2k′

(2𝜋)2
ℱ(𝜌+ − 𝑐𝐿(k′ + k)/2𝜔0)𝑒

𝑖𝜔−2𝐿/𝑐

× 𝑒𝑖𝜔−𝑐𝐿(|k|2+|k′|2)/4𝜔2
0𝑊𝑃 (𝜌+ − 𝑐𝐿k/2𝜔0,k− k′)2𝜋𝑖𝑐/𝜔−𝐿. (3.28)

Now, using

𝒫0(𝜌+, 𝜔−) =

∫︁
d𝜔+

2𝜋

∫︁
d2k

(2𝜋)2
𝑊ℰ0(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d𝑡 𝐼0(𝑡)𝑒

𝑖𝜔−𝑡, (3.29)

and changing variables to k− = k− k′ and k+ = (k + k′)/2 we have

𝒫2𝐿(𝜌+, 𝜔−) = 𝜆2
0𝒫0(𝜔−)𝑒𝑖𝜔−2𝐿/𝑐

∫︁
d2k+

(2𝜋)2

∫︁
d2k−

(2𝜋)2
ℱ(𝜌+ − 𝑐𝐿k+/𝜔0)

× 𝑒𝑖𝜔−𝑐𝐿(2|k+|2+|k−|2/2)/4𝜔2
0𝑊𝑃 (𝜌+ − 𝑐𝐿(k+/2 + k−/4)/𝜔0,k−)2𝜋𝑖𝑐/𝜔−𝐿,

(3.30)

where we have suppressed the 𝜌+ argument of 𝒫0(𝜌+, 𝜔−) because that field has

no such dependence for the plane-wave source we have assumed. We define a new

function

𝐺(𝜌, 𝜔−) =

∫︁
d2k−

(2𝜋)2
𝑒𝑖𝜔−𝑐𝐿|k−|2/8𝜔2

0 𝑊𝑃 (−𝜌/2 − 𝑐𝐿k−/4𝜔0,k−)2𝜋𝑖𝑐/𝜔−𝐿. (3.31)
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With this definition we have

𝒫2𝐿(𝜌+, 𝜔−) = 𝜆2
0𝒫0(𝜔−)𝑒𝑖𝜔−2𝐿/𝑐

∫︁
d2k+

(2𝜋)2
ℱ(𝜌+ − 𝑐𝐿k+/𝜔0)

×𝐺(−2𝜌+ + 𝑐𝐿k+/𝜔0, 𝜔−)𝑒𝑖𝜔−𝑐𝐿|k+|2/2𝜔2
0 . (3.32)

Changing variables again, �̃� = 𝜌+ − 𝑐𝐿k+/𝜔0, we get our final result

𝒫2𝐿(𝜌+, 𝜔−) = 𝒫0(𝜔−)𝑒𝑖𝜔−2𝐿/𝑐

∫︁
d2�̃�ℱ(�̃�)𝐺(−𝜌+ − �̃�, 𝜔−)

𝑒𝑖𝜔−|𝜌+−�̃�|2/2𝑐𝐿

𝐿2
. (3.33)

Owing to the Fresnel-propagation kernel in Eq. (3.33), this result is a superposition

integral with image inversion, rather than a convolution integral with image inversion.

To get to a simpler result that will afford us insight into the advantage of occlusion-

aided imaging, we shall assume that the initial laser illumination is monochromatic,

i.e., the optical-frequency field that illuminates the 𝑧 = 0 plane is Re[𝐸0(𝜌0)𝑒
−𝑖𝜔0𝑡].

In this unmodulated case we can use the usual spatial Wigner distribution, i.e.,

𝑊𝐸0(𝜌+,k) ≡
∫︁

d2𝜌−𝐸0(𝜌+ + 𝜌−/2)𝐸*
0(𝜌+ − 𝜌−/2)𝑒−𝑖k·𝜌− , (3.34)

of the 𝑧 = 0-plane field, in lieu of the TFSWD. The propagation primitives given

earlier for the TFSWD all apply to the spatial Wigner distribution function for the

unmodulated case with the only difference being that we set 𝜔− = 0 in the Fresnel-

diffraction primitive. Paralleling the development that led to Eq. (3.33) assuming

that 𝐸0(𝜌0) =
√
𝐼0 is a constant, we get

⟨𝐼2𝐿(𝜌+)⟩ ≡ ⟨|𝐸2𝐿(𝜌+)|2⟩ = 𝐼0

∫︁
d2�̃�ℱ(�̃�)𝐺(−𝜌+ − �̃�), (3.35)

where

𝐺(𝜌) ≡ 𝜋

𝐿2

∫︁
d2k−

(2𝜋)2
𝑊𝑃 (−𝜌/2 − 𝑐𝐿k−/4𝜔0,k−), (3.36)

and we have used the evanescence cutoff, |k| ≤ 2𝜋/𝜆0, to justify replacing
∫︀

d2k 𝐼0/(2𝜋)2

with 𝜋𝐼0/𝜆
2
0.
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Equations (3.35) and (3.36) show that this unmodulated case offers no spatial

information about ℱ(𝜌) in the absence of an occluder, i.e., we get 𝐺(𝜌) = 𝜋/𝐿2

when 𝑃 (𝜌) = 1, as seen previously in Eq. (2.22). To quantify the spatial information

afforded by the presence of an occluder in the unmodulated scenario, we consider two

simple cases: the Gaussian pinhole

𝑃ph(𝜌) = exp
(︀
−|𝜌|2/2𝜌20

)︀
, (3.37)

and the Gaussian pinspeck,

𝑃ps(𝜌) = 1 − exp
(︀
−|𝜌|2/2𝜌20

)︀
, (3.38)

where 𝜌0 is the 𝑒−1/2-attenuation radius of the Gaussian functions. The Gaussian-

pinhole camera can be analyzed with far less complication than our approach to

obtaining Eqs. (3.35) and (3.36), but (after accounting for image inversion) its point-

spread function (psf) 𝐺ph(𝜌) is revealing. The Gaussian-pinspeck camera, on the

other hand, is more relevant to the experiments of Xu et al. [11], but its psf 𝐺ph(𝜌)

is more complicated. In both cases, however, the Gaussian functions involved enable

us to get closed-form psf results.

For the Gaussian pinhole, we find that

𝐺ph(𝜌) =
𝜋Ω2

𝐿2(1 + Ω2)
exp

[︂
− Ω2

1 + Ω2

|𝜌|2
4𝜌20

]︂
, (3.39)

where 𝑘0 ≡ 𝜔0/𝑐 = 2𝜋/𝜆0 is the wave number at the optical frequency and Ω ≡
4𝑘0𝜌

2
0/𝐿 is the Fresnel number for the pinhole’s propagation geometry. The spatial

resolution of 𝐺ph(𝜌) improves with decreasing 𝜌0 when Ω > 1, and degrades with

decreasing 𝜌0 when Ω < 1. Thus the Gaussian pinhole’s resolution-optimized psf,

𝐺opt
ph (𝜌) =

𝜋 exp(−𝜋|𝜌|2/𝜆0𝐿)

2𝐿2
, (3.40)

is obtained when 𝜌0 =
√︀

𝐿/4𝑘0 =
√︀

𝜆0𝐿/8𝜋. The optimized psf’s spatial resolution—
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taken to be its 𝑒−𝜋-attenuation radius—is then
√
𝜆0𝐿, which is far superior to the

1.22∆𝜆𝐿/𝐷′ for the unoccluded, modulated case governed by Eq. (2.36). For example,

with 𝜆0 = 1𝜇m and 𝐿 = 1m the optimum spatial resolution of occlusion-aided

unmodulated imaging is 1mm, while that of unoccluded modulated imaging, with

∆𝜆 = 3 cm (∆𝜔/2𝜋 = 10GHz) and 𝐷′ = 10 cm, is 37 cm at 𝐿 = 1m. For comparison

with the Gaussian pinspeck’s psf, it is worth noting that the Gaussian pinhole’s

psf maintains its Gaussian shape for all values of its Fresnel number Ω, with only

its overall amplitude 𝐺ph(0) and its spatial resolution 𝜌res(Ω) ≡
√︀

4𝜋(1 + Ω2) 𝜌0/Ω

changing, i.e., we have that

𝐺ph(𝜌)/𝐺ph(0) = exp[−𝜋|𝜌2|/𝜌2res(Ω)], (3.41)

for the Gaussian pinhole, as shown in Fig. 3-2(a).

For the Gaussian pinspeck, we get

𝐺ps(𝜌) =
𝜋

𝐿2

⃒⃒
⃒⃒1 − Ω√

1 + Ω2
exp

[︂
− Ω

1 + Ω2

|𝜌|2
8𝜌20

(Ω − 𝑖) − 𝑖 tan−1(1/Ω)

]︂⃒⃒
⃒⃒
2

. (3.42)

This psf is a bit more complicated than what we found for the Gaussian pinhole.

Nevertheless, it shows the expected result for a pinspeck camera, viz., that the image-

bearing part of the psf is embedded in a uniform background term whose presence

creates photodetection shot noise that degrades signal-to-noise ratio. As was the case

for the Gaussian pinhole, we see that optimum spatial resolution occurs when Ω = 1,

in which case we get

𝐺opt
ps (𝜌) =

𝜋

𝐿2

⃒⃒
⃒⃒1 − exp(−𝜋|𝜌|2(1 − 𝑖)/2𝜆0𝐿− 𝑖𝜋/4)√

2

⃒⃒
⃒⃒
2

. (3.43)

On the other hand, unlike the Gaussian pinhole’s psf, the Gaussian pinspeck’s psf

does not preserve its shape as the Fresnel number is varied. This is illustrated in

Fig. 3-2(b), where we have plotted 𝐺ps(𝜌)/𝐺ps(∞) versus 𝜌/𝜌res(Ω) for 𝜌 = (𝑥, 0)

and Ω = 0.1, 1, and 10, where 𝜌res(Ω) is the Gaussian pinhole’s spatial resolution.

Note that in the near-field region, wherein Ω ≫ 1, Eq. (3.42) reduces to the
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Figure 3-2: (a) Plot of 𝐺ph(𝜌)/𝐺ph(0) for the Gaussian pinhole versus 𝜌/𝜌res(Ω) for
𝜌 = (𝑥, 0). (b) Plots of 𝐺ps(𝜌)/𝐺ps(∞) for the Gaussian pinspeck versus 𝜌/𝜌res(Ω)
for 𝜌 = (𝑥, 0) and Ω = 0.1, 1, and 10.

geometric-optics result,

𝐺ps(𝜌)/𝐺ps(∞) = [1 − exp(−|𝜌|2/8𝜌20)]
2, (3.44)

which is analogous to the geometric-optics treatment used by Xu et al. [11] and

Thrampoulidis et al. [12] for the hard-aperture, circular occluder

𝑃 (𝜌) = circ(2𝜌/𝑑) ≡

⎧
⎨
⎩

1, for |𝜌| ≤ 𝑑/2

0, otherwise.
(3.45)

In fact, the geometric-optics approach can be shown to be valid more generally, as we

will discuss in Sec. 3.4.

3.3 A General 𝒫-Field Propagation Primitive

In this section, we use our results so far to derive the 𝒫-field input-output relation for

propagation through a transmissive paraxial system characterized by: transmission

through a diffuser at plane 𝑧 = 0, Fresnel diffraction over a distance 𝐿1, transmission

through a specular-plus-diffuser mask, and Fresnel diffraction over a distance 𝐿2 such

that the total distance propagated is 𝐿𝑇 = 𝐿1+𝐿2. This scenario is depicted in Fig. 3-
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Figure 3-3: Fresnel propagation with an intervening specular-plus-diffuser mask.

3. This is the key component of our Sec. 3.2 analysis, and abstracting it suffices to

analyze a broad variety of scenarios relevant to transmissive 𝒫-field imaging. The

Fresnel propagation primitive derived in Chapter 2 can be seen as the special case

in which 𝐹 (𝜌) = 1 for all 𝜌. The unoccluded imaging scenario we analyzed there

can be seen as a single instance of this primitive in which 𝐹 is purely diffuse. The

simplified occluded scenario analyzed in Sec. 3.2 can be seen as a concatenation of

two of these primitives, both with strictly deterministic 𝐹 functions and the first with

𝐿2 = 0. Our treatment even allows for the deterministic portion of 𝐹 to be complex

valued, enabling analysis of propagation through phase masks. The thin lenses in

Chapter 2 were modeled as phase masks but must be treated more carefully owing to

the imposed phase shift being dependent on the underlying radiation frequency. One

could, however, imagine deriving a new TFSWD primitive for propagation though

frequency-dependent transmissivity masks, which would enable modifying Eq. (3.53)

to deal with this even broader class of scenarios.

Starting at the input plane, the TFSWD after the initial diffuser is

𝑊ℰ ′
0
(𝜌+,k, 𝜔+, 𝜔−) = 𝜆2

0

∫︁
d2k′

(2𝜋)2
𝑊ℰ0(𝜌+,k

′, 𝜔+, 𝜔−). (3.46)

After 𝐿1-distance Fresnel propagation, we have

𝑊ℰ𝐿1
(𝜌+,k, 𝜔+, 𝜔−) = 𝜆2

0𝑒
𝑖
𝜔−
𝑐

𝐿1𝑒
𝑖
𝜔−
𝑐

𝐿1
|k|2

2𝑘20

∫︁
d2k′

(2𝜋)2
𝑊ℰ0(𝜌+ − 𝐿1k/𝑘0,k

′, 𝜔+, 𝜔−),

(3.47)

where 𝑘0 = 2𝜋/𝜆0 = 𝜔0/𝑐 is the wavenumber for the optical-frequency field. At

𝑧 = 𝐿1 the field encounters a transmissivity mask 𝐹 (𝜌+) with both deterministic and
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random (diffuse) components, resulting in

𝑊ℰ𝐿′
1
(𝜌+,k, 𝜔+, 𝜔−) =𝜆2

0𝑒
𝑖
𝜔−
𝑐

𝐿1

∫︁
d2k′

(2𝜋)2
𝑒
𝑖
𝜔−
𝑐

𝐿1
|k′|2

2𝑘20 (𝑊⟨𝐹 ⟩(𝜌+,k− k′) + 𝜆2
0ℱ(𝜌+))

×
∫︁

d2k′′

(2𝜋)2
𝑊ℰ0(𝜌+ − 𝐿1k

′/𝑘0,k
′′, 𝜔+, 𝜔−). (3.48)

Finally, after 𝐿2-distance Fresnel propagation, the output TFSWD is given by

𝑊ℰ𝐿𝑇
(𝜌+,k, 𝜔+, 𝜔−) =𝜆2

0𝑒
𝑖
𝜔−
𝑐

𝐿𝑇 𝑒
𝑖
𝜔−
𝑐

𝐿2
|k|2

2𝑘20

∫︁
d2k′

(2𝜋)2
𝑒
𝑖
𝜔−
𝑐

𝐿1
|k′|2

2𝑘20

∫︁
d2k′′

(2𝜋)2

× (𝑊⟨𝐹 ⟩(𝜌+ − 𝐿2k/𝑘0,k− k′) + 𝜆2
0ℱ(𝜌+ − 𝐿2k/𝑘0))

×𝑊ℰ0(𝜌+ − 𝐿1k
′/𝑘0 − 𝐿2k/𝑘0,k

′′, 𝜔+, 𝜔−). (3.49)

Now, to get a 𝒫-field input-output relation we use Eq. (3.14) and, after rearranging

terms, we have

𝒫𝐿𝑇
(𝜌+, 𝜔−) =𝜆2

0𝑒
𝑖
𝜔−
𝑐

𝐿𝑇

∫︁
d2k

(2𝜋)2

∫︁
d2k′

(2𝜋)2
𝑒
𝑖
𝜔−
𝑐

𝐿1|k
′|2+𝐿2|k|

2

2𝑘20

× (𝑊⟨𝐹 ⟩(𝜌+ − 𝐿2k/𝑘0,k− k′) + 𝜆2
0ℱ(𝜌+ − 𝐿2k/𝑘0))

× 𝒫0(𝜌+ − (𝐿1k
′ + 𝐿2k)/𝑘0, 𝜔−). (3.50)

Changing variables to k+ = (𝐿1k
′ + 𝐿2k)/𝐿𝑇 and k− = k− k′ yields

𝒫𝐿𝑇
(𝜌+, 𝜔−)

= 𝜆2
0𝑒

𝑖
𝜔−
𝑐

𝐿𝑇

∫︁
d2k+

(2𝜋)2

∫︁
d2k−

(2𝜋)2
𝑒
𝑖
𝜔−
𝑐

𝐿𝑇
|k+|2

2𝑘20 𝑒
𝑖
𝜔−
𝑐

𝐿1𝐿2
𝐿𝑇

|k−|2

2𝑘20 𝒫0(𝜌+ − 𝐿𝑇k+/𝑘0, 𝜔−)

(︂
𝑊⟨𝐹 ⟩

(︂
𝜌+ − 𝐿2k+

𝑘0
− 𝐿1𝐿2

𝐿𝑇

k−

𝑘0
,k−

)︂
+ 𝜆2

0ℱ
(︂
𝜌+ − 𝐿2k+

𝑘0
− 𝐿1𝐿2

𝐿𝑇

k−

𝑘0

)︂)︂
. (3.51)
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Then, after changing variables to �̃� = 𝜌+ − 𝐿𝑇k+/𝑘0 and defining

𝑔(𝜌, 𝜔−)

≡
∫︁

d2k−

(2𝜋)2
𝑒
𝑖
𝜔−
𝑐

𝐿1𝐿2
𝐿𝑇

|k−|2

2𝑘20

(︂
𝑊⟨𝐹 ⟩

(︂
𝜌− 𝐿1𝐿2

𝐿𝑇

k−

𝑘0
,k−

)︂
+ 𝜆2

0ℱ
(︂
𝜌− 𝐿1𝐿2

𝐿𝑇

k−

𝑘0

)︂)︂
,

(3.52)

we have

𝒫𝐿𝑇
(𝜌+, 𝜔−) =

𝑒𝑖𝜔−𝐿𝑇 /𝑐

𝐿2
𝑇

∫︁
d2�̃� 𝑒

𝑖
𝜔−

2𝑐𝐿𝑇
|𝜌+−�̃�|2𝒫0(�̃�, 𝜔−)𝑔((𝐿1𝜌++𝐿2�̃�)/𝐿𝑇 , 𝜔−). (3.53)

Although Eq. (3.53) seems difficult to evaluate, in particular because of the cumber-

some form of 𝑔, a much simpler form can be applied in the geometric-optics limit.

3.4 Geometric-Optics Limit for 𝒫-Field Propagation
Through Occluders

z = 0 z = L1 + L2z = L1

P (⇢1)
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Figure 3-4: Fresnel propagation with an intervening occluder. A hypothetical ray in
the geometric-optics sense is depicted as a dashed red line together with labels for
the transverse spatial coordinates at which it intersects each of the planes of interest.

Consider the scenario from Sec. 3.3 with a deterministic occluder specified by

𝑃 (𝜌), as depicted in Fig. 3-4. Geometric-optics intuition would suggest that the

input 𝒫 field at 𝜌0 would make a differential contribution

d2𝜌0

1

𝐿2
𝑒𝑖

𝜔−
𝑐

(𝐿𝑇+|𝜌𝐿𝑇
−𝜌0|2/2𝐿𝑇 )𝒫0(𝜌0, 𝜔−)|𝑃 (𝜌int(𝜌0,𝜌𝐿𝑇

))|2 (3.54)
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to the output 𝒫 field at 𝜌𝐿𝑇
, where 𝜌int(𝜌0,𝜌𝐿𝑇

) is the transverse position at which

the ray connecting 𝜌0 to 𝜌𝐿𝑇
intersects the 𝑧 = 𝐿1 plane, where the occluder lies,

viz., 𝜌int(𝜌0,𝜌𝐿𝑇
) = 𝜌0 + 𝐿1(𝜌𝐿𝑇

− 𝜌0)/𝐿𝑇 = (𝐿1𝜌𝐿𝑇
+ 𝐿2𝜌0)/𝐿𝑇 . The d2𝜌0 term

characterizes the differential area of the source contribution. The 1/𝐿2 term accounts

for the attenuation of the overall (paraxial) propagation. The 𝑒𝑖
𝜔−
𝑐

(𝐿𝑇+|𝜌𝐿𝑇
−𝜌0|2/2𝐿𝑇 )

term accounts for the phase delay associated with the paraxial propagation distance.

The 𝒫0(𝜌0, 𝜔−) term is the source strength at the input location of interest, and the

|𝑃 (𝜌int(𝜌0,𝜌𝐿𝑇
))|2 term accounts for the attenuation this ray experiences due to the

intervening occluder. Integrating over all differential contributions we have

𝒫𝐿𝑇
(𝜌𝐿𝑇

, 𝜔−) =
𝑒𝑖𝜔−𝐿𝑇 /𝑐

𝐿2

∫︁
d2𝜌0 𝑒

𝑖
𝜔−

2𝑐𝐿𝑇
|𝜌𝐿𝑇

−𝜌0|2𝒫0(𝜌0, 𝜔−)|𝑃 ((𝐿1𝜌𝐿𝑇
+ 𝐿2𝜌0)/𝐿𝑇 )|2.

(3.55)

Does this intuition ever provide the right answer? In fact, this result is identical to

Eq. (3.53) if 𝑔(𝜌, 𝜔−) = |𝑃 (𝜌)|2. Examining Eq. (3.52), taking ⟨𝐹 ⟩ = 𝑃 and ℱ = 0,

we see that it would suffice if we could neglect both the phase term in that integral

and the k−-dependent offset to the spatial coordinate, as we would then have

𝑔(𝜌, 𝜔−) =

∫︁
d2k−

(2𝜋)2
𝑒
𝑖
𝜔−
𝑐

𝐿1𝐿2
𝐿𝑇

|k−|2

2𝑘20 𝑊𝑃 (𝜌− (𝐿1𝐿2/𝐿𝑇 )k−/𝑘0,k−) (3.56)

=

∫︁
d2k−

(2𝜋)2
𝑊𝑃 (𝜌,k−) (3.57)

= |𝑃 (𝜌)|2 (3.58)

by the properties of spatial Wigner distributions. This happens trivially when either

𝐿1 or 𝐿2 are identically zero. This also happens when 𝜆0 is taken to approach zero

mathematically, as in traditional derivations of the geometric-optics limit. It is clearly

nonphysical to have 𝜆0 = 0, though the limit is intended to represent the physical

scenario of 𝜆0 being sufficiently small that diffraction can be neglected. These cases

are more generally captured by the limit in which either of 𝐿1/𝑘0 or 𝐿2/𝑘0 approach

zero. Still, it is unclear when this is physically meaningful outside of the trivial

examples. These are dimensioned quantities that are likely to take finite values in
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practice, and so it doesn’t make sense to say they approach zero in an absolute sense—

saying they become small compared to some other quantity with the same dimensions

would be preferable. A more physically insightful argument, if not entirely formal

here, can be made as follows. Suppose that the occluder in question has a finite

spatial bandwidth 1/𝜎 so that its spatial Wigner distribution 𝑊𝑃 (𝜌,k) is negligible

for |k| > 1/𝜎, as can be shown to be the case for Gaussian pinspecks and pinholes

and can reasonably be assumed to hold true for most occluders of interest. In that

case, taking k− to be as large as possible, the conditions to neglect the two terms

from above are

𝜔−

𝑐

𝐿1𝐿2

𝐿𝑇

1

2𝑘2
0𝜎

2
≪ 1 (3.59)

|𝜌| ≫ 𝐿1𝐿2

𝐿𝑇𝜎𝑘0
. (3.60)

Defining Fresnel numbers for this geometry, Ω1 = 𝜎2𝑘0/𝐿1 and Ω2 = 𝜎2𝑘0/𝐿2, these

can be written as

𝜔−

𝜔0

≪ Ω1 + Ω2 (3.61)

|𝜌| ≫ 𝜎

Ω1 + Ω2

. (3.62)

In the first of these conditions, we already have 𝜔− ≪ 𝜔0, so it can easily be fulfilled

by taking either of the Fresnel numbers to be at least 1. The second condition then

implies that 𝑔 will behave like |𝑃 |2 except for at worst a small region in the center

which can be made arbitrarily small by making either Fresnel number sufficiently

large. Considering the case in which the effect of the occlusion is primarily multi-

plicative instead of convolutional, i.e., 𝐿1 ≫ 𝐿2, this predicts that deviations from

geometric optics visible at the output plane will be confined to a small region about

the center, which is evocative of the well-known Poisson’s spot [23]. The Fresnel num-

bers can be made large enough so that this region is much smaller than the resolution

limit of whatever measuring optics are being used, at which point the geometric-optics

description is functionally accurate. When 𝑔 acts convolutionally, the deviations from
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geometric optics are confined to the center of a convolution kernel and thus may show

up anywhere in the final result, but it seems their impact should be minimal in the

high-Fresnel-number limit.

An alternative approach to the second condition is to consider when the spatial

offset term is small compared to the spatial feature size of 𝑊𝑃 . Having taken the

spatial bandwidth to be 1/𝜎, this feature size is 𝜎. The resulting condition reads

Ω1 + Ω2 ≫ 1, which is consistent with the above analysis.
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Chapter 4

Nonparaxial Propagation

In this chapter, we extend the paraxial 𝒫-field propagation framework we’ve devel-

oped so far to nonparaxial operation. In particular, we replace our assumption of

Fresnel diffraction of the underlying field with that of Rayleigh–Sommerfeld diffrac-

tion. First we derive, from the complex-field-envelope diffraction integral, the ap-

propriate 𝒫-field propagation integral for free space propagation following a diffuser.

Then we show the equivalent implication for the propagation of the diffuser-averaged

STA irradiance. Next we review the paraxial free-space propagation primitive for the

TFSWD and show its equivalent formulation in terms of the 6D light field. Using

geometric intuition we propose a replacement procedure for the paraxial terms of the

primitive with nonparaxial equivalents. This provides us with a proposed nonparaxial

free-space propagation primitive for the 6D light field. We verify this proposal im-

plies the correct behavior for the diffuser-averaged STA irradiance, and then show its

equivalent formulation in terms of the TFSWD. We provide a more formal derivation

of the TFSWD equivalent that is valid under certain conditions. Finally, we provide

a set of differential equations that govern the TFSWD more generally.

4.1 Rayleigh–Sommerfeld 𝒫-Field Propagation

Our development of a Rayleigh–Sommerfeld propagation primitive for the 𝒫 field

parallels that for Fresnel propagation as in Chapter 2. We consider propagation first
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through a diffuser and then through a free-space distance 𝐿1, as depicted in the first

portion of Fig. 2-1. The key difference in the derivation is to replace Eq. (2.3)—

the Fresnel diffraction integral for the complex field envelope—with the Rayleigh–

Sommerfeld diffraction integral [24]

ℰ1(𝜌1, 𝜔) =

∫︁
d2𝜌0 ℰ ′

0(𝜌0, 𝜔)
exp
[︁
𝑖(𝜔0 + 𝜔)

√︀
𝐿2
1 + |𝜌1 − 𝜌0|2/𝑐

]︁
(𝜔0 + 𝜔)𝐿1

𝑖2𝜋𝑐(𝐿2
1 + |𝜌1 − 𝜌0|2)

, (4.1)

where we have substituted 𝐿1/
√︀

𝐿2
1 + |𝜌1 − 𝜌0|2 in place of the cosine obliquity factor.

The derivation then proceeds as in the Fresnel case, utilizing the same assumptions

regarding the diffuser statistics and modulation frequency:

𝒫1(𝜌1, 𝜔−) =

∫︁
d𝜔+

2𝜋
⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*

1 (𝜌1, 𝜔+ − 𝜔−/2)⟩ (4.2)

=

∫︁
d𝜔+

2𝜋

∫︁
d2𝜌0

∫︁
d2𝜌0 ℰ0(𝜌0, 𝜔+ + 𝜔−/2)ℰ*

0 (𝜌0, 𝜔+ − 𝜔−/2)

× ⟨𝑒𝑖𝜔0
𝑐
(ℎ0(𝜌0)−ℎ0(𝜌0))⟩𝜔

2
0𝑒

𝑖
𝜔0+𝜔++𝜔−/2

𝑐

√
𝐿2
1+|𝜌1−𝜌0|

2−𝑖
𝜔0+𝜔+−𝜔−/2

𝑐

√
𝐿2
1+|𝜌1−𝜌0|

2

(2𝜋𝑐)2(𝐿2
1 + |𝜌1 − 𝜌0|2)(𝐿2

1 + |𝜌1 − 𝜌0|2)
(4.3)

=

∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−)

exp
(︁
𝑖𝜔−
√︀

𝐿2
1 + |𝜌1 − 𝜌0|2/𝑐

)︁
𝐿2
1

(𝐿2
1 + |𝜌1 − 𝜌0|2)2

. (4.4)

Now, remembering that the 𝒫 field is the Fourier transform of the diffuser-averaged

STA irradiance, so that

⟨𝐼1(𝜌1, 𝑡)⟩ ≡ ⟨|𝐸1(𝜌1, 𝑡)|2⟩ =

∫︁
d𝜔−

2𝜋
𝒫1(𝜌1, 𝜔−)𝑒−𝑖𝜔−𝑡, (4.5)

it immediately follows that

⟨𝐼1(𝜌1, 𝑡)⟩ =

∫︁
d2𝜌0 𝐼0

(︂
𝜌0, 𝑡−

√︁
𝐿2
1 + |𝜌1 − 𝜌0|2/𝑐

)︂
𝐿2
1/(𝐿2

1 + |𝜌1 − 𝜌0|2)2, (4.6)

where

𝐼0(𝜌0, 𝑡) ≡ |𝐸0(𝜌0, 𝑡)|2 (4.7)
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is the STA irradiance illuminating the 𝑧 = 0 plane and ⟨𝐼1(𝜌1, 𝑡)⟩ is the diffuser-

averaged STA irradiance illuminating the 𝑧 = 𝐿1 plane. This accords perfectly with

our intuition: each point on the diffuser contributes incoherently to the final irradi-

ance, is delayed according to the distance it travels, is scaled by the inverse square of

said distance, and is scaled by the cosine-squared obliquity factor.

4.2 The 6D Light Field and TFSWD

Next we turn our attention to the TFSWD. As discussed in Chapter 3, the 𝒫 field

alone will not suffice to analyze all of the scenarios of interest to NLoS imaging. The

TFSWD by contrast provides a complete characterization of the relevant properties of

the underlying field, and so it is desirable to have propagation primitives for it from

which 𝒫-field input-output relations can be constructed. Fortunately, most of the

TFSWD primitives derived in Chapter 3 suffice for nonparaxial propagation as they

only describe interactions that occur at a single plane. So, to extend the TFSWD

formalism to the nonparaxial regime, it suffices for us to derive a Rayleigh–Sommerfeld

propagation primitive to replace the previously-derived Fresnel propagation primitive,

which for convenience we reproduce here:

𝑊ℰ1(𝜌+,k, 𝜔+, 𝜔−) = 𝑊ℰ0+ (𝜌+ − 𝐿1k/𝑘0,k, 𝜔+, 𝜔−)𝑒
𝑖
𝜔−𝐿1

𝑐

(︂
1+

|k|2

2𝑘20

)︂
, (4.8)

where 𝑘0 = 𝜔0/𝑐 is the wavenumber of the optical carrier. In terms of the 6D light

field—i.e., the inverse Fourier transform of the TFSWD, similar to the time-dependent

specific irradiance albeit augmented by a frequency coordinate—we have that

𝐼1(𝜌+, s, 𝜔+, 𝑡) =
1

𝜆2
0

∫︁
d𝜔−

2𝜋
𝑊ℰ1(𝜌+, 2𝜋s/𝜆0, 𝜔+, 𝜔−)𝑒−𝑖𝜔−𝑡 (4.9)

=
1

𝜆2
0

∫︁
d𝜔−

2𝜋
𝑊ℰ0+ (𝜌+ − 𝐿1s, 𝑘0s, 𝜔+, 𝜔−)𝑒

𝑖
𝜔−𝐿1

𝑐

(︂
1+

|s|2
2

)︂
𝑒−𝑖𝜔−𝑡 (4.10)

= 𝐼0+(𝜌+ − 𝐿1s, s, 𝜔+, 𝑡− 𝐿1/𝑐− |s|2 𝐿1/2𝑐), (4.11)
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where s = 2𝜋k/𝜆0 = k/𝑘0 is the transverse component of the unit vector pointing in

the nominal propagation direction.

Let’s take a moment to interpret this result for the 6D light field. If we take the

first argument of 𝐼0+ to be a transverse spatial coordinate for the initial plane 𝜌0,

we see that s =
(︀
𝜌+ − 𝜌0

)︀
/𝐿1. This makes perfect sense in the paraxial regime: s

represents the transverse component of the propagation direction, and this says that

it equals the ratio of the transverse spatial offset to the approximate propagation

distance. So, the spatial profile of the 6D light field is merely sheared according to

the propagation direction. The propagation direction itself doesn’t change, nor does

the frequency, and we see that the time dependence is delayed by an effective distance

𝐿1 + |s|2 𝐿1/2 = 𝐿1 +
⃒⃒
𝜌+ − 𝜌0

⃒⃒2
/2𝐿1, which is precisely the paraxial propagation

distance. This interpretation confirms that the 6D light field formalizes the ray optics

intuition for light propagation.

This interpretation also immediately exposes the imprecision of the Fresnel ap-

proach. Neither 𝐿1, as in the denominator of our interpretation for s, nor 𝐿1 +
⃒⃒
𝜌+ − 𝜌0

⃒⃒2
/2𝐿1, as in the time delay, are really the propagation distance of such

a hypothetical ray. That distance would be
√︁

𝐿2
1 +

⃒⃒
𝜌+ − 𝜌0

⃒⃒2
. Say then we take

s =
(︀
𝜌+ − 𝜌0

)︀
/
√︁

𝐿2
1 +

⃒⃒
𝜌+ − 𝜌0

⃒⃒2
. What then would 𝜌0 be? We have that

𝜌+ − 𝜌0 = s

√︁
𝐿2
1 +

⃒⃒
𝜌+ − 𝜌0

⃒⃒2
(4.12)

⃒⃒
𝜌+ − 𝜌0

⃒⃒2
= |s|2 𝐿2

1 + |s|2
⃒⃒
𝜌+ − 𝜌0

⃒⃒2
(4.13)

⃒⃒
𝜌+ − 𝜌0

⃒⃒2
=

|s|2 𝐿2
1

1 − |s|2
(4.14)

𝜌0 = 𝜌+ +
𝐿1s√︁

1 − |s|2
, (4.15)

where Eq. (4.15) follows from substituting Eq. (4.14) into Eq. (4.12). Equation (4.15)

makes perfect, intuitive sense. Define 𝜃 to be the angle the propagation direction

makes with the 𝑧 axis, as depicted in Fig. 4-1. Trigonometrically, 𝐿1 represents

the adjacent propagation distance. Since the propagation direction is a unit vec-

tor, and s is its transverse component, we have |s| = sin 𝜃,
√︁

1 − |s|2 = cos 𝜃, and
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|s| /
√︁

1 − |s|2 = tan 𝜃, opposite over adjacent. So 𝐿1 |s| /
√︁

1 − |s|2 is the opposite,

i.e., transverse, propagation distance. Removing the absolute value from s gives the

vector-valued transverse displacement in the correct direction. The total propagation

distance is then
√︁

𝐿2
1 +

⃒⃒
𝜌+ − 𝜌0

⃒⃒2
= 𝐿1/

√︁
1 − |s|2.
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⇢0

<latexit sha1_base64="kWxjz2v6JrlrJNho9BZqYpYFgGY="></latexit>

Figure 4-1: Trigonometry for Rayleigh–Sommerfeld propagation of the 6D light field.
The red arrow represents a unit vector pointing in the propagation direction of a
hypothetical ray propagating from (𝜌0, 0) to (𝜌+, 𝐿1).

Taking the appropriately corrected values for the transverse offset and the total

time delay, this suggests that the correct free-space propagation primitive for the 6D

light field is

𝐼1(𝜌+, s, 𝜔+, 𝑡) = 𝐼0+

⎛
⎝𝜌+ − 𝐿1s√︁

1 − |s|2
, s, 𝜔+, 𝑡−

𝐿1

𝑐
√︁

1 − |s|2

⎞
⎠ . (4.16)

To check this result, we can ask what it implies about the propagation of the diffuser-

averaged STA irradiance following a diffuser. It follows from the diffuser TFSWD

primitive that

𝐼0+(𝜌+, s, 𝜔+, 𝑡) =

∫︁
d2s′ 𝐼0(𝜌+, s

′, 𝜔+, 𝑡). (4.17)
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So, we have that

⟨𝐼1(𝜌1, 𝑡)⟩ =

∫︁
d𝜔+

2𝜋

∫︁
d2s 𝐼1(𝜌1, s, 𝜔+, 𝑡) (4.18)

=

∫︁
d𝜔+

2𝜋

∫︁
d2s

∫︁
d2s′ 𝐼0

⎛
⎝𝜌1 −

𝐿1s√︁
1 − |s|2

, s′, 𝜔+, 𝑡−
𝐿1

𝑐
√︁

1 − |s|2

⎞
⎠ .

(4.19)

Now we change variables so that s = (𝜌1 − 𝜌0) /
√︁
𝐿2
1 + |𝜌1 − 𝜌0|2. Computing the

appropriate Jacobian determinant we find
∫︀

d2s =
∫︀

d2𝜌0 𝐿
2
1/
(︀
𝐿2
1 + |𝜌1 − 𝜌0|2

)︀2
, so

we now have

⟨𝐼1(𝜌1, 𝑡)⟩ =

∫︁
d𝜔+

2𝜋

∫︁
d2𝜌0

𝐿2
1(︀

𝐿2
1 + |𝜌1 − 𝜌0|2

)︀2

×
∫︁

d2s′ 𝐼0

⎛
⎝𝜌0, s

′, 𝜔+, 𝑡−

√︁
𝐿2
1 + |𝜌1 − 𝜌0|2

𝑐

⎞
⎠ (4.20)

=

∫︁
d2𝜌0 𝐼0

⎛
⎝𝜌0, 𝑡−

√︁
𝐿2
1 + |𝜌1 − 𝜌0|2

𝑐

⎞
⎠ 𝐿2

1(︀
𝐿2
1 + |𝜌1 − 𝜌0|2

)︀2 , (4.21)

which is precisely our result for Rayleigh–Sommerfeld propagation of the diffuser-

averaged STA irradiance after a diffuser. Moreover, note how the cosine-squared

obliquity factor is automatically accounted for by this approach.

Inspired by this success, we propose the equivalent nonparaxial free-space propa-

gation primitive for the TFSWD

𝑊ℰ1(𝜌+,k, 𝜔+, 𝜔−) = 𝑊ℰ0+

⎛
⎝𝜌+ − 𝐿1k√︁

𝑘2
0 − |k|2

,k, 𝜔+, 𝜔−

⎞
⎠ 𝑒

𝑖𝜔−𝐿1𝑘0

𝑐
√

𝑘20−|k|2 , (4.22)

which can be obtained by Fourier transforming Eq. (4.16). In principle, one would

hope to derive this formula directly from substituting the Rayleigh–Sommerfeld diffrac-

tion integral for the complex field envelope into the definition of the TFSWD. Unfor-

tunately, we find this approach untenable. However, this result can be derived under
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special circumstances by adapting a technique developed elsewhere for the traditional

optical Wigner distribution [21].

We shift our attention to the angular spectrum representation, whereby the optical

field is expressed as a superposition of propagating plane waves and all evanescent

components are ignored. The implications for the complex field envelope ℰ(𝜌, 𝜔) and

its propagation are summarized by the equations below, which define a new quantity

ℰ̃(s, 𝜔), its angular spectrum:

ℰ𝑧(𝜌, 𝜔) =

∫︁
d2s

(2𝜋)2
ℰ̃𝑧(s, 𝜔) exp (𝑖 (𝜔0 + 𝜔)𝜌 · s/𝑐) (4.23)

ℰ̃𝑧(s, 𝜔) = ℰ̃0(s, 𝜔) exp (𝑖 (𝜔0 + 𝜔) 𝑧𝑠𝑧(s)/𝑐) , (4.24)

where |s| < 1 and 𝑠𝑧(s) =
√︁

1 − |s|2. Substituting these into the definition of the

TFSWD we have that

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌− 𝑒−𝑖k·𝜌−⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*

𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩ (4.25)

=

∫︁
d2𝜌−

∫︁
d2s1
(2𝜋)2

∫︁
d2s2
(2𝜋)2

𝑒−𝑖k·𝜌−𝑒𝑖
𝜔0+𝜔++𝜔−/2

𝑐 ((𝜌++𝜌−/2)·s1+𝑧𝑠𝑧(s1))

× 𝑒−𝑖
𝜔0+𝜔+−𝜔−/2

𝑐 ((𝜌+−𝜌−/2)·s2+𝑧𝑠𝑧(s2))⟨ℰ̃0(s1, 𝜔+ + 𝜔−/2)ℰ̃*
0 (s2, 𝜔+ − 𝜔−/2)⟩. (4.26)

Now we switch to sum and difference coordinates, s+ = (s1 + s2) /2 and s− = s1− s2.

After reorganizing some terms we have that

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌−

∫︁
d2s+
(2𝜋)2

∫︁
d2s−
(2𝜋)2

× 𝑒
𝑖𝜌−·

(︁
𝜔0+𝜔+

𝑐
s++

𝜔−
4𝑐

s−−k
)︁
𝑒
𝑖𝜌+·

(︁
𝜔0+𝜔+

𝑐
s−+

𝜔−
𝑐

s+
)︁

× 𝑒𝑖
𝜔0+𝜔+

𝑐
𝑧(𝑠𝑧(s++s−/2)−𝑠𝑧(s++s−/2))𝑒𝑖

𝜔−
𝑐

𝑧(𝑠𝑧(s++s−/2)+𝑠𝑧(s+−s−/2))/2

× ⟨ℰ̃0(s+ + s−/2, 𝜔+ + 𝜔−/2)ℰ̃*
0 (s+ − s−/2, 𝜔+ − 𝜔−/2)⟩.

(4.27)
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Performing the 𝜌− integral yields

∫︁
d2𝜌− 𝑒

𝑖𝜌−·
(︁

𝜔0+𝜔+
𝑐

s++
𝜔−
4𝑐

s−−k
)︁

=

(︂
𝑐

𝜔0 + 𝜔+

)︂2

𝛿

(︂
s+ − 𝑐k

𝜔0 + 𝜔+

+
𝜔−s−

4 (𝜔0 + 𝜔+)

)︂
,

(4.28)

where the last term in the argument of the delta function can be ignored owing to

our quasimonochromatic assumption. Defining 𝑘0 ≡ (𝜔0 + 𝜔+)/𝑐 and completing the

s+ integral then gives us

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2s−
(2𝜋)2

𝑒𝑖𝜌+·(𝑘0s−+𝜔−k/𝑐𝑘0)𝑒𝑖𝑘0𝑧(𝑠𝑧(k/𝑘0+s−/2)−𝑠𝑧(k/𝑘0+s−/2))

× 𝑒𝑖
𝜔−
𝑐

𝑧(𝑠𝑧(k/𝑘0+s−/2)+𝑠𝑧(k/𝑘0−s−/2))/2

× ⟨ℰ̃0(k/𝑘0 + s−/2, 𝜔+ + 𝜔−/2)ℰ̃*
0 (k/𝑘0 − s−/2, 𝜔+ − 𝜔−/2)⟩.

(4.29)

Next we introduce the first of our two key assumptions. Consider the case in which the

angular-spectrum correlation ⟨ℰ̃0(s+ + s−/2, 𝜔+ + 𝜔−/2)ℰ̃*
0 (s+ − s−/2, 𝜔+ − 𝜔−/2)⟩

differs from 0 only when |s−| ≪ 1. In that case, we can approximate 𝑠𝑧 by its

first-order expansion in s−, i.e., 𝑠𝑧(s+ ± s−/2) ≈ 𝑠𝑧(s+) ± ∇𝑠𝑧(s+) · s−/2 where

∇𝑠𝑧(s+) = −s+/𝑠𝑧(s+). Using this approximation and reorganizing terms we now

have

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2s−
(2𝜋)2

1

𝑘2
0

𝑒𝑖𝑘0s−·(𝑧∇𝑠𝑧(k/𝑘0)+𝜌+)𝑒𝑖
𝜔−
𝑐 (𝑧𝑠𝑧(k/𝑘0)+𝜌+·k/𝑘0)

⟨ℰ̃0(k/𝑘0 + s−/2, 𝜔+ + 𝜔−/2)ℰ̃*
0 (k/𝑘0 − s−/2, 𝜔+ − 𝜔−/2)⟩.

(4.30)

Because the angular spectrum can be obtained from the complex field envelope via

ℰ̃0(s, 𝜔) =

∫︁
d2𝜌 ℰ0(𝜌, 𝜔) exp (−𝑖 (𝜔0 + 𝜔)𝜌 · s/𝑐) , (4.31)

74



we find that

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌 1

∫︁
d2𝜌 2

∫︁
d2s−
(2𝜋)2

1

𝑘2
0

𝑒𝑖𝑘0s−·(𝑧∇𝑠𝑧(k/𝑘0)+𝜌+)𝑒𝑖
𝜔−
𝑐 (𝑧𝑠𝑧(k/𝑘0)+𝜌+·k/𝑘0)

𝑒−𝑖
𝜔0+𝜔++𝜔−/2

𝑐
𝜌1·(k/𝑘0+s−/2)𝑒𝑖

𝜔0+𝜔+−𝜔−/2

𝑐
𝜌2·(k/𝑘0−s−/2)

⟨ℰ0(𝜌1, 𝜔+ + 𝜔−/2)ℰ*
0 (𝜌2, 𝜔+ − 𝜔−/2)⟩. (4.32)

Changing to sum and difference coordinates again and reorganizing terms we have

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌+

∫︁
d2𝜌−

∫︁
d2s−
(2𝜋)2

1

𝑘2
0

𝑒
−𝑖𝑘0s−·

(︁
𝜌+−(𝜌++𝑧∇𝑠𝑧(k/𝑘0))+

𝜔−𝜌−
4(𝜔0+𝜔+)

)︁

× 𝑒−𝑖k·𝜌−𝑒𝑖
𝜔−
𝑐 (𝑧𝑠𝑧(k/𝑘0)+(𝜌+−𝜌+)·k/𝑘0)

× ⟨ℰ0(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*
0 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩.

(4.33)

Now the s− integral can be done to yield a delta function:

∫︁
d2s−
(2𝜋)2

1

𝑘2
0

𝑒
−𝑖𝑘0s−·

(︁
𝜌+−(𝜌++𝑧∇𝑠𝑧(k/𝑘0))+

𝜔−𝜌−
4(𝜔0+𝜔+)

)︁

= 𝛿

(︂
𝜌+ −

(︁
𝜌+ + 𝑧∇𝑠𝑧(k/𝑘0)

)︁
+

𝜔−𝜌−

4(𝜔0 + 𝜔+)

)︂
. (4.34)

Here we introduce the second of our key assumptions, that the complex-field-envelope

correlation ⟨ℰ0(𝜌+ +𝜌−/2, 𝜔+ +𝜔−/2)ℰ*
0 (𝜌+−𝜌−/2, 𝜔+−𝜔−/2)⟩ differs significantly

from 0 only for
⃒⃒
𝜌−
⃒⃒
small enough that our quasimonochromatic assumption suffices

for us to neglect the final term in the argument of the preceding delta function. In

this case, we carry out the 𝜌+ with the help of the delta function and get

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌− 𝑒−𝑖k·𝜌−𝑒𝑖

𝜔−𝑧

𝑐 (𝑠𝑧(k/𝑘0)+∇𝑠𝑧(k/𝑘0)·k/𝑘0)

× ⟨ℰ0(𝜌+ + 𝑧∇𝑠𝑧(k/𝑘0) + 𝜌−/2, 𝜔+ + 𝜔−/2)

× ℰ*
0 (𝜌+ + 𝑧∇𝑠𝑧(k/𝑘0) − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩ (4.35)
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=𝑊0(𝜌+ + 𝑧∇𝑠𝑧(k/𝑘0),k, 𝜔+, 𝜔−)𝑒𝑖
𝜔−𝑧

𝑐 (𝑠𝑧(k/𝑘0)+∇𝑠𝑧(k/𝑘0)·k/𝑘0) (4.36)

=𝑊0

⎛
⎝𝜌+ − 𝑧k√︁

𝑘2
0 − |k|2

,k, 𝜔+, 𝜔−

⎞
⎠ 𝑒

𝑖
𝜔−𝑧

𝑐

(︃√
�̃�20−|k|2

�̃�0
+

|k|2

�̃�0

√
�̃�20−|k|2

)︃
(4.37)

=𝑊0

⎛
⎝𝜌+ − 𝑧k√︁

𝑘2
0 − |k|2

,k, 𝜔+, 𝜔−

⎞
⎠ 𝑒

𝑖
𝜔−𝑧�̃�0

𝑐
√

�̃�20−|k|2 . (4.38)

Finally, we make use of our quasimonochromatic assumption one more time to say

𝑘0 ≈ 𝑘0 which gives us the final result we desire:

𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) = 𝑊0

⎛
⎝𝜌+ − 𝑧k√︁

𝑘2
0 − |k|2

,k, 𝜔+, 𝜔−

⎞
⎠ 𝑒

𝑖
𝜔−𝑧𝑘0

𝑐
√

𝑘20−|k|2 . (4.39)

Before moving on, let’s take a moment to consider our two assumptions more

carefully: (1) that ⟨ℰ̃0(s1, 𝜔1)ℰ̃*
0 (s2, 𝜔2)⟩ differs from 0 only when |s−| ≪ 1 and (2)

that ⟨ℰ0(𝜌1, 𝜔1)ℰ*
0 (𝜌2, 𝜔2)⟩ differs significantly from 0 only for

⃒⃒
𝜌−
⃒⃒
small enough that⃒⃒

⃒⃒𝜌+ − 𝑧k/
√︁

𝑘2
0 − |k|2

⃒⃒
⃒⃒ ≫ 𝜔−

⃒⃒
𝜌−
⃒⃒
/4(𝜔0 + 𝜔+). First let’s assume that the complex

field envelopes at the 𝑧 = 0 plane can be factored into spatial and temporal compo-

nents:

𝐸0(𝜌0, 𝑡) = 𝐸0(𝜌0)𝑆(𝑡) (4.40)

ℰ0(𝜌0, 𝜔) = 𝐸0(𝜌0)𝒮(𝜔). (4.41)

Then we have that

⟨ℰ̃0(s1, 𝜔1)ℰ̃*
0 (s2, 𝜔2)⟩ =𝒮(𝜔1)𝒮*(𝜔2)

∫︁
d2𝜌+

∫︁
d2𝜌− ⟨𝐸0(𝜌1)𝐸

*
0(𝜌2)⟩

× 𝑒−𝑖𝜌+·(𝜔−s++(𝜔0+𝜔+)s−)/𝑐𝑒−𝑖𝜌−·(𝜔−s−/4+(𝜔0+𝜔+)s+)/𝑐 (4.42)

and

⟨ℰ0(𝜌1, 𝜔1)ℰ*
0 (𝜌2, 𝜔2)⟩ = 𝒮(𝜔1)𝒮*(𝜔2)⟨𝐸0(𝜌1)𝐸

*
0(𝜌2)⟩. (4.43)
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Next, let’s assume that the spatial correlation function has a Schell model, viz.,

⟨𝐸0(𝜌1)𝐸
*
0(𝜌2)⟩ = 𝐼(𝜌+)𝑅(𝜌−), (4.44)

for some functions 𝐼(·) and 𝑅(·).1 In this case,

⟨ℰ̃0(s1, 𝜔1)ℰ̃*
0 (s2, 𝜔2)⟩ =𝒮(𝜔1)𝒮*(𝜔2)

∫︁
d2𝜌+

∫︁
d2𝜌− 𝐼(𝜌+)𝑅(𝜌−)

× 𝑒−𝑖𝜌+·(𝜔−s++(𝜔0+𝜔+)s−)/𝑐𝑒−𝑖𝜌−·(𝜔−s−/4+(𝜔0+𝜔+)s+)/𝑐 (4.45)

=𝒮(𝜔1)𝒮*(𝜔2)ℐ((𝜔−s+ + (𝜔0 + 𝜔+)s−)/𝑐)

×ℛ((𝜔−s−/4 + (𝜔0 + 𝜔+)s+)/𝑐) (4.46)

≈𝒮(𝜔1)𝒮*(𝜔2)ℐ(𝑘0s−)ℛ(𝑘0s+), (4.47)

where

ℐ(k) ≡
∫︁

d2𝜌 𝐼(𝜌) exp(−𝑖𝜌 · k) (4.48)

ℛ(k) ≡
∫︁

d2𝜌𝑅(𝜌) exp(−𝑖𝜌 · k). (4.49)

So, our two assumptions then amount to (1) 𝐼(𝜌+) being broad enough and (2)

𝑅(𝜌−) being narrow enough. A pure diffuser at the 𝑧 = 0 plane, as we’ve analyzed in

Chapters 2 and 3, will trivially suffice for our second assumption, as 𝑅(𝜌−) ∝ 𝛿(𝜌−)

for that case, but propagation from such planes is already characterized by our 𝒫 field

primitive in Eq. (4.4). However, these assumptions allow us to consider propagation

from planes containing partial diffusers with relaxed homogeneity assumptions and

larger coherence lengths. To gain further insight, let’s assume that the Schell model

is Gaussian so that

𝐼(𝜌+) = 𝐴𝐼 exp(−
⃒⃒
𝜌+ − 𝜇

⃒⃒2
/2𝜌2𝐼) (4.50)

𝑅(𝜌−) = 𝐴𝑅 exp(−
⃒⃒
𝜌−
⃒⃒2
/2𝜌2𝑅), (4.51)

1Not to be confused with other uses of 𝐼 and 𝑅 in this thesis. Though we will generally have
𝐼(𝜌+) = ⟨𝐼0(𝜌+)⟩ = ⟨|𝐸0(𝜌+)|2⟩ and hence 𝑅(0) = 1.
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where 𝐴𝐼 and 𝐴𝑅 represent scaling coefficients, 𝜌𝐼 and 𝜌𝑅 represent the functions’

𝑒−1/2-attenuation radii, and we permit 𝐼(𝜌+) to have a nonzero spatial offset 𝜇.

Then we have that

ℐ(k) = 2𝜋𝜌2𝐼𝐴𝐼 exp(−𝜌2𝐼 |k|2 /2 − 𝑖k · 𝜇) (4.52)

ℛ(k) = 2𝜋𝜌2𝑅𝐴𝑅 exp(−𝜌2𝑅 |k|2 /2). (4.53)

From these expressions it follows that our assumptions will be satisfied if (1) 𝜌𝐼 ≫
𝜆0 and (2)

⃒⃒
⃒⃒𝜌+ − 𝑧k/

√︁
𝑘2
0 − |k|2

⃒⃒
⃒⃒ ≫ 𝜔−𝜌𝑅/𝜔0. The first constraint will be easily

satisfied for any 𝑧 = 0-plane configuration of interest. The second constraint is more

interesting. Recalling our geometric interpretation, it follows from Eq. (4.15) that⃒⃒
⃒⃒𝜌+ − 𝑧k/

√︁
𝑘2
0 − |k|2

⃒⃒
⃒⃒ = |𝜌0|. Thus, the second constraint is |𝜌0| ≫ 𝜔−𝜌𝑅/𝜔0, which

implies that Eq. (4.39) is valid except for rays—i.e., 𝜌+,k pairs—that originate at

the 𝑧 = 0 plane within a small radius about the origin. For the case of a partial

diffuser, this radius is given by a small fraction of its coherence length. Taking

𝜔−/2𝜋 = 10GHz and 𝜆0 = 532 nm, we have 𝜔−/𝜔0 ≈ 1.8 × 10−5. So, our results

should be valid for any rays that originate outside |𝜌0| ≫ 𝜌𝑅/56000.

We can also handle propagation from occluders within this framework. In partic-

ular, let’s consider the Gaussian pinhole occluder analyzed in Chapter 3, modified to

permit a nonzero spatial offset:

𝑃ph(𝜌) = exp
(︀
−|𝜌− 𝜇|2/2𝜌20

)︀
. (4.54)

Assuming that this occluder is broadly illuminated, such that we can ignore the

spatial profile of the incident field, it is not hard to see that the correlation func-

tion at the plane of the occluder will have a Gaussian Schell model with 𝐼(𝜌+) =

exp(−
⃒⃒
𝜌+ − 𝜇

⃒⃒2
/𝜌20) and 𝑅(𝜌−) = exp(−

⃒⃒
𝜌−
⃒⃒2
/4𝜌20). In this case, 𝜌𝐼 = 𝜌0/

√
2 and

𝜌𝑅 =
√

2𝜌0. Our first constraint will be easily satisfied by any physical pinhole, and

second constraint will be satisfied by |𝜌0| ≥ 𝜌0/2000. For realistic pinholes, it seems

that the second constraint should be easily satisfied by almost all rays of interest.
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Even if we take 𝜌0 = 1m, our result should be valid for all rays propagating from

outside |𝜌0| ≥ 0.5mm. For a pinhole centered about the origin, the excluded rays

comprise a very small fraction of the most significant ones. Curiously, this constraint

doesn’t depend on 𝜇, and so the issue is of even less concern for off-center pinholes,

whose most significant rays will originate from a region displaced from the origin.

4.3 The Helmholtz Equation

From this chapter’s last result, it seems that even to reproduce the nonparaxial

Rayleigh–Sommerfeld behavior of the 𝒫 field from the TFSWD requires copious ap-

proximation. So, it is worth considering whether a more generally applicable descrip-

tion of TFSWD behavior is obtainable. In terms of the underlying positive-frequency

optical field—which, in the time domain we’ll denote 𝑈𝑧(𝜌, 𝑡) = 𝐸𝑧(𝜌, 𝑡)𝑒
−𝑖𝜔0𝑡—the

most general description we can provide is the wave equation:

(︂
∇2

𝜌 + 𝜕2
𝑧 −

1

𝑐2
𝜕2
𝑡

)︂
𝑈𝑧(𝜌, 𝑡) = 0, (4.55)

where ∇𝜌 is the 2D gradient with respect to the transverse coordinate 𝜌 and ∇2
𝜌 is

the associated Laplacian. The implication for the frequency-domain complex field

envelope then is that it satisfies the Helmholtz equation with a frequency offset:

(︂
∇2

𝜌 + 𝜕2
𝑧 −

(𝜔0 + 𝜔)2

𝑐2

)︂
ℰ𝑧(𝜌, 𝜔) = 0. (4.56)

One might expect that the Rayleigh–Sommerfeld diffraction integral, Eq. (4.1), would

satisfy this equation with ℰ0 as a boundary condition. However, it does not, as the

Rayleigh–Sommerfeld integral as we’ve presented it is in fact an approximation of a
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more formal diffraction integral we’ll call the Rayleigh diffraction integral [25]:

ℰ𝑧(𝜌1, 𝜔) =

∫︁
d2𝜌0 ℰ0(𝜌0, 𝜔)

1

2𝜋

⎛
⎝ 1√︁

𝑧2 + |𝜌1 − 𝜌0|2
− 𝑖

𝜔0 + 𝜔

𝑐

⎞
⎠

× 𝑧

𝑧2 + |𝜌1 − 𝜌0|2
𝑒𝑖

𝜔0+𝜔
𝑐

√
𝑧2+|𝜌1−𝜌0|

2

, (4.57)

which, as it turns out, does satisfy Eq (4.56) with ℰ0 as a boundary condition. Equa-

tion (4.1) is obtained from Eq. (4.57) in the limit of 𝜆0 ≪ 𝑧, which is trivially true for

any scenario of practical interest. Though more formally valid, the Rayleigh diffrac-

tion integral is even more cumbersome to manage, and it doesn’t lend itself as readily

to intuitive physical interpretation. Accordingly, we are at a loss to find an appro-

priate TFSWD primitive for its behavior. Nevertheless, it is not hard to see that the

implied 𝒫-field post-diffuser propagation is given by

𝒫1(𝜌1, 𝜔−) =

∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−)

(︃
1 +

𝜆2
0

4𝜋2
(︀
𝐿2
1 + |𝜌1 − 𝜌0|2

)︀
)︃

× 𝐿2
1(︀

𝐿2
1 + |𝜌1 − 𝜌0|2

)︀2 𝑒𝑖
𝜔−
𝑐

√
𝐿2
1+|𝜌1−𝜌0|

2

, (4.58)

which implies the following result for the diffuser-averaged STA irradiance,

⟨𝐼1(𝜌1, 𝑡)⟩ =

∫︁
d2𝜌0 𝐼0

(︂
𝜌0, 𝑡−

√︁
𝐿2
1 + |𝜌1 − 𝜌0|2

)︂(︃
1 +

𝜆2
0

4𝜋2
(︀
𝐿2
1 + |𝜌1 − 𝜌0|2

)︀
)︃

× 𝐿2
1(︀

𝐿2
1 + |𝜌1 − 𝜌0|2

)︀2 . (4.59)

Despite it not being clear what the appropriate TFSWD free-space propagation

primitive would be, we can characterize its behavior quite generally. First we note

that the TFSWD is a Fourier transform of the complex-field-envelope correlation

⟨ℰ𝑧(𝜌1, 𝜔1)ℰ*
𝑧 (𝜌2, 𝜔2)⟩. It is not hard to see that this correlation must obey two

Helmholtz equations, one for the first transverse spatial coordinate and frequency,

and another for the second pair of coordinates. Following from the chain rule and

the fact that the Fourier transform of 0 is 0, we can easily derive a pair of differential
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equations for the TFSWD which can be summarized by

(︃
1

4
∇2

𝜌+
+ 𝜕2

𝑧 ± 𝑖k · ∇𝜌+
+

(𝜔0 + 𝜔+ ± 𝜔−/2)2

𝑐2
− |k|2

)︃
𝑊𝑧(𝜌+,k, 𝜔+, 𝜔−) = 0.

(4.60)

If we define an angular spectrum for the TFSWD by Fourier transforming its trans-

verse spatial coordinate, i.e.

�̃�𝑧(k+,k−, 𝜔+, 𝜔−) =

∫︁
d2𝜌+𝑊𝑧(𝜌+,k+, 𝜔+, 𝜔−)𝑒−𝑖k−·𝜌+ , (4.61)

then the equivalent pair of equations are given by

(︃
𝜕2
𝑧 +

(𝜔0 + 𝜔+ ± 𝜔−/2)2

𝑐2
− |k+ ± k−/2|2

)︃
�̃�𝑧(k+,k−, 𝜔+, 𝜔−) = 0. (4.62)

Not surprisingly, Eq. (4.22) doesn’t satisfy these differential equations. After all,

it only suffices to reproduce the approximate Rayleigh–Sommerfeld behavior of the

𝒫 field and not the full Rayleigh-diffraction behavior. However, it seems unlikely

that any clean propagation primitive will satisfy these equations exactly, as all our

propagation derivations thus far have made copious use of the quasimonochromatic

assumption, which is of course not captured by the Helmholtz equation. Still, it

is intellectually satisfying to have a general description in terms of such differential

equations, and they may prove useful for some presently unforeseen circumstances.
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Chapter 5

Speckle

In this chapter, we provide an analysis of speckle as it pertains to the task of NLoS

active imaging. We begin by considering the continuous-wave (CW) case and ana-

lyze transmissive third-order speckle—i.e., speckled speckled speckle—as an analog

to the received irradiance in 3-diffuse-bounce NLoS imaging scenarios. There, using

Gaussian assumptions for statistics and transverse spatial profiles, we are able to

find closed-form results that indicate the final speckle can be as bad as seven times

stronger than ordinary1 (first-order) speckle. However, we also find that this speckle

can be mitigated by a time-averaging illumination technique or naturally minimized

by the geometry of the problem. We conclude that the geometry of expected NLoS

imaging scenarios in fact reduces the strength of third-order speckle to that of ordi-

nary speckle and that these remaining variations will be automatically averaged out

by any reasonable detector area.

Next we move on to consider speckle as it impacts modulated illumination in the

𝒫-field framework. Here, our analysis is limited to first-order speckle. We establish a

bound on the zero-frequency-component speckle for space-time factorable illumination

patterns, finding that such speckle at worst is of ordinary strength and in general is

weaker than that. We then remark on the result of Teichman [27] for factorable, single-

frequency modulation, which finds the modulation-frequency-component speckle to

1Ordinary speckle is characterized by the STA irradiance measured at a single location and
moment in time being exponentially distributed with var(𝐼(𝜌, 𝑡)) = ⟨𝐼(𝜌, 𝑡)⟩2 [26]. This is the
speckle associated with propagation through a single pure diffuser.
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be stronger than ordinary speckle in general. We analyze a concrete test signal in an

effectively single-frequency-modulation limiting case that establishes the applicability

of Teichman’s result to our 𝒫-field framework and demonstrates our bound for the

zero-frequency component. Using realistic values for NLoS imaging scenarios, we

conclude that the speckle enhancement effect reported by Teichman is likely to be

minimal in practice.

Moving further, we analyze the first-order-speckle size for the modulated case and

find it to be quite small, suggesting that speckle in the modulated case may well be

integrated out by the spatial extent of a realistic detector. Moreover, we find this

size to be comparable with the first-order-speckle size of the CW case, and note that

if this correspondence holds in the multi-bounce cases that the situation is likely to

only improve for typical geometries.

To demonstrate the impact of detector spatial integration, we analyze the implied

photodetection statistics. We demonstrate that speckle arises as an excess noise

term beyond the fundamental shot-noise limit, which has the effect of bounding the

maximum attainable signal-to-noise ratio. For typical parameter values, we find this

upper bound to be generous, and thus conclude that the impact of speckle is unlikely

to be significant in practice.

Finally, to push past our first-bounce restriction on analyzing the modulated case,

we consider the small-reflector limit as an alternative geometry. In this limit we find

it possible to derive the full irradiance distribution together with all its moments

for 𝑛th-order speckle in the CW case and both the first and second moments of the

modulated-component 𝑛th-order speckle of quasimonochromatic illumination in the

modulated case.

5.1 Continuous-Wave Speckle

We begin by considering multi-bounce speckle for CW illumination. As before we use

a paraxial, transmissive geometry, with, for simplicity, no albedo pattern on the hid-

den plane. The geometry for our speckle analysis is depicted in Fig. 5-1. Illumination
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Figure 5-1: Geometry for multi-bounce speckle analysis. Thin blue rectangles repre-
sent idealized, thin diffusers. The black frames in front of the diffusers in planes 1
and 2 represent Gaussian pupils that capture the essence of the target and wall sizes
respectively. The dashed line represents the detection plane.

is incident at plane 0 which contains a diffuser representing the first bounce at the

visible wall in the standard NLoS imaging configuration. Plane 1 contains a diffuser

and a Gaussian pupil, representing light reflecting off a finite-sized diffuse object in

the hidden scene. Plane 2 contains another diffuser and Gaussian pupil pair, repre-

senting the final, return bounce off the visible wall. Here the pupil represents the

finite size of the wall and allows us to obtain closed-form, convergent results in the

paraxial regime. This aperture is not necessary at plane 0 as we assume the initial

illumination will be self-limited to within the boundaries of the wall. Finally, plane 3

represents the standoff from the visible wall to the detection plane.

We assume a Gaussian illumination pattern at the first plane whose field envelope

is given by

𝐸0(𝜌0;𝜇) =
√︁

8𝑃/𝜋𝑑20 exp
(︀
−4 |𝜌0 − 𝜇|2 /𝑑20

)︀
, (5.1)

where 𝑑0 represents the transverse extent of the illumination and 𝜇 denotes a trans-

verse offset that will prove useful later. Following Fresnel propagation, the field

envelope at plane 1 is given by

𝐸1(𝜌1;𝜇) =
𝑒𝑖

𝜔0𝐿
𝑐

𝑖𝜆0𝐿

∫︁
d2𝜌0𝐸0(𝜌0;𝜇)𝑒𝑖

𝜔0
2𝑐𝐿

|𝜌1−𝜌0|
2

𝑒𝑖
𝜔0
𝑐
ℎ0(𝜌0), (5.2)
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and the field envelope at plane 2 is given by

𝐸2(𝜌2;𝜇) =
𝑒𝑖

𝜔0𝐿
𝑐

𝑖𝜆0𝐿

∫︁
d2𝜌1𝐸1(𝜌1;𝜇)𝑒𝑖

𝜔0
2𝑐𝐿

|𝜌2−𝜌1|
2

𝑒𝑖
𝜔0
𝑐
ℎ1(𝜌1)𝑒

− 4

𝑑21
|𝜌1|

2

, (5.3)

where we’ve included the effect of the pupil at plane 1. The envelope at plane 3 can

be obtained by a similar formula, changing subscripts as appropriate. We make the

same diffuser assumptions as in Chapter 2, so that the diffuser thicknesses at planes

0, 1, and 2 are statistically independent Gaussian random processes satisfying

⟨𝑒𝑖𝜔0(ℎ𝑘(𝜌)−ℎ𝑘(𝜌))/𝑐⟩ = 𝜆2
0𝛿(𝜌− 𝜌) (5.4)

⟨𝑒𝑖𝜔0(ℎ𝑘(𝜌)+ℎ𝑘(𝜌))/𝑐⟩ = 0, (5.5)

for 𝑘 = 0, 1, 2.

From the preceding field envelopes, the STA irradiances can be obtained from

𝐼(𝜌) = |𝐸(𝜌)|2. Averaged over the diffusers, these irradiances incident at each plane

are given by

⟨𝐼1(𝜌1;𝜇)⟩0 = ⟨𝐼1⟩ ≡
𝑃

𝐿2
(5.6)

⟨𝐼2(𝜌2;𝜇)⟩0,1 = ⟨𝐼2⟩ ≡
𝜋𝑑21
8𝐿2

⟨𝐼1⟩ (5.7)

⟨𝐼3(𝜌3;𝜇)⟩0,1,2 = ⟨𝐼3⟩ ≡
𝜋𝑑22
8𝐿2

⟨𝐼2⟩, (5.8)

where angle brackets represent ensemble averaging over the diffusers at the planes

listed in the subscripts. Note that these diffuser-averaged irradiances do not depend

on the transverse spatial coordinates, nor the offset of the initial illumination.

Since we take the diffuser phase shifts—𝑒𝑖𝜔0ℎ𝑘(𝜌𝑘)/𝑐—to be random at each trans-

verse position with correlation widths on the order of the optical wavelength, the

integrals in Eqs. (5.2) and (5.3) imply that the field envelopes at planes 1 and 2

(and analogously, 3) are sums of a large number of independent random contribu-

tions. Accordingly, by the central limit theorem, we can take these field envelopes

to be Gaussian random processes conditioned on knowledge of the previous plane’s
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field envelope. In doing so, we can evaluate fourth moments of these envelopes by

Gaussian moment factoring. In particular, we have

⟨𝐼2(𝜌2;𝜇)𝐼2(𝜌2; �̃�)⟩1 = ⟨𝐸2(𝜌2;𝜇)𝐸*
2(𝜌2;𝜇)𝐸2(𝜌2; �̃�)𝐸*

2(𝜌2; �̃�)⟩1 (5.9)

= ⟨𝐸2(𝜌2;𝜇)𝐸*
2(𝜌2;𝜇)⟩1⟨𝐸2(𝜌2; �̃�)𝐸*

2(𝜌2; �̃�)⟩1
+ |⟨𝐸2(𝜌2;𝜇)𝐸2(𝜌2; �̃�)⟩1|2 + |⟨𝐸2(𝜌2;𝜇)𝐸*

2(𝜌2; �̃�)⟩1|2.
(5.10)

Note, here we are taking a conditional mean where we’ve assumed a known field

envelope at plane 0. The second term in this sum is 0 due to the diffuser statistics.

Using Fresnel propagation the remaining terms expand to give

⟨𝐼2(𝜌2;𝜇)𝐼2(𝜌2; �̃�)⟩1 =
1

𝐿4

[︃∫︁
d2𝜌1

∫︁
d2𝜌1 𝐼1(𝜌1;𝜇)𝐼1(𝜌1; �̃�)𝑒

− 8

𝑑21
(|𝜌1|

2+|𝜌1|
2)

+

∫︁
d2𝜌1

∫︁
d2𝜌1𝐸1(𝜌1;𝜇)𝐸*

1(𝜌1; �̃�)𝐸*
1(𝜌1;𝜇)𝐸1(𝜌1; �̃�)

× 𝑒
− 8

𝑑21
(|𝜌1|

2+|𝜌1|
2)
𝑒−𝑖

𝜔0
𝑐𝐿

(𝜌1−𝜌1)·(𝜌2−𝜌2)

]︃
. (5.11)

Now, using the law of iterated expectation and taking advantage of the linearity of

expectation, we can average over the statistics of the first diffuser yielding

⟨𝐼2(𝜌2;𝜇)𝐼2(𝜌2; �̃�)⟩0,1 =
1

𝐿4

[︃∫︁
d2𝜌1

∫︁
d2𝜌1 ⟨𝐼1(𝜌1;𝜇)𝐼1(𝜌1; �̃�)⟩0𝑒

− 8

𝑑21
(|𝜌1|

2+|𝜌1|
2)

+

∫︁
d2𝜌1

∫︁
d2𝜌1 ⟨𝐸1(𝜌1;𝜇)𝐸*

1(𝜌1; �̃�)𝐸*
1(𝜌1;𝜇)𝐸1(𝜌1; �̃�)⟩0

× 𝑒
− 8

𝑑21
(|𝜌1|

2+|𝜌1|
2)
𝑒−𝑖

𝜔0
𝑐𝐿

(𝜌1−𝜌1)·(𝜌2−𝜌2)

]︃
. (5.12)

A similar analysis provides similar formulas for this moment at planes 1 and 3,

which differ only in the subscripts and the presence of the pupil term. As is clear

from this result, the moment at each plane depends on that for the one prior. This

allows us to cascade these results from plane to plane, provided however that we also
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have a result for one other fourth-order moment, namely

⟨𝐸2(𝜌2;𝜇)𝐸*
2(𝜌2; �̃�)𝐸*

2(𝜌2;𝜇)𝐸2(𝜌2; �̃�)⟩0,1

=
1

𝐿4

[︃∫︁
d2𝜌1

∫︁
d2𝜌1 ⟨𝐸1(𝜌1;𝜇)𝐸*

1(𝜌1; �̃�)𝐸*
1(𝜌1;𝜇)𝐸1(𝜌1; �̃�)⟩0𝑒

− 8

𝑑21
(|𝜌1|

2+|𝜌1|
2)

+

∫︁
d2𝜌1

∫︁
d2𝜌1 ⟨𝐼1(𝜌1;𝜇)𝐼1(𝜌1; �̃�)⟩0𝑒

− 8

𝑑21
(|𝜌1|

2+|𝜌1|
2)
𝑒−𝑖

𝜔0
𝑐𝐿

(𝜌1−𝜌1)·(𝜌2−𝜌2)

]︃
, (5.13)

which follows from a similar analysis and which can be further extended to similar

results for planes 1 and 3.

Given our initial, Gaussian illumination envelope, each of these integrals can be

evaluated in closed form. We find

⟨𝐼1(𝜌1;𝜇)𝐼1(𝜌1; �̃�)⟩0 = ⟨𝐼1⟩2
[︂
1 + 𝑒

− 4

𝑑21
Ω2

01|𝜌1−𝜌1|
2

𝑒
− 4

𝑑20
|𝜇−�̃�|2

]︂
, (5.14)

⟨𝐼2(𝜌2;𝜇)𝐼2(𝜌2; �̃�)⟩0,1 =⟨𝐼2⟩2
[︃

1 + 𝑒
− 4

𝑑20
Ω2

01|𝜌2−𝜌2|
2

𝑒
− 4

𝑑20
|𝜇−�̃�|2

+
1

1 + Ω2
01

𝑒
− 4

𝑑20
|𝜇−�̃�|2

+
1

1 + Ω2
01

𝑒
− 4

𝑑20

Ω2
01

1+Ω2
01

|𝜌2−𝜌2+𝜇−�̃�|2
]︃
, (5.15)

and

⟨𝐼3(𝜌3;𝜇)𝐼3(𝜌3; �̃�)⟩0,1,2

= ⟨𝐼3⟩2
[︃

1 + 𝑒
− 4

𝑑21
Ω2

12|𝜌3−𝜌3|
2

𝑒
− 4

𝑑20
|𝜇−�̃�|2

+
1

1 + Ω2
01

𝑒
− 4

𝑑20
|𝜇−�̃�|2

+
1

1 + Ω2
12

𝑒
− 4

𝑑20
|𝜇−�̃�|2

+
1

1 + Ω2
01

𝑒
− 4

𝑑21
Ω2

12|𝜌3−𝜌3|
2

𝑒
− 4

𝑑20

Ω2
01

1+Ω2
01

|𝜇−�̃�|2
+

1

1 + Ω2
12

𝑒
− 4

𝑑21

Ω2
12

1+Ω2
12

|𝜌3−𝜌3|
2

+
1

1 + Ω2
01 + Ω2

12

𝑒
− 4

𝑑20

Ω2
01

1+Ω2
01+Ω2

12
|𝜇−�̃�|2

+
1

1 + Ω2
01 + Ω2

12

𝑒
− 4

𝑑21
Ω2

12

1+Ω2
01

1+Ω2
01+Ω2

12
|𝜌3−𝜌3|

2

𝑒
− 4

𝑑20
|𝜇−�̃�|2

]︃
, (5.16)

where for notational convenience we have defined mixed Fresnel numbers Ω𝑖𝑗 ≡
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𝜔0𝑑𝑖𝑑𝑗/8𝑐𝐿. Ordinary speckle has an irradiance variance that equals the square of

the mean irradiance. Observing Eq. (5.16) then, subtracting the squared-mean irra-

diance from both sides and evaluating at 𝜌3 = 𝜌3 and 𝜇 = �̃�, reveals that the plane

3 speckle strength can be as bad as 7 times that of ordinary speckle. However, we

propose two methods that can reduce this a great deal.

Stating our results as we have in terms of an offset in the initial illumination now

allows us to ask whether we can reduce speckle by varying the center of the initial

illumination and integrating over time. We imagine varying the initial illumination’s

center about a small circle with radius 𝑟 and integrating over one full revolution

which occurs in some time 𝑡0 slow enough that this variation doesn’t modify the

unmodulated Fresnel diffraction formula we’ve been using but fast enough that we

need not worry about the scene changing appreciably. Accordingly, the offset is given

by

𝜇 = 𝜇(𝑡) = 𝑟

[︂
cos(2𝜋𝑡/𝑡0)

sin(2𝜋𝑡/𝑡0)

]︂
. (5.17)

Focusing our attention on the plane 3 speckle, we see that the effect of the offset

appears only in Gaussian factors present in some of the terms. In particular, to find

the result of this temporal variation and averaging, we need only evaluate one integral:

∫︁ 𝑡0

0

d𝑡

∫︁ 𝑡0

0

d𝑡𝑒−𝛼|𝜇(𝑡)−𝜇(𝑡)|2 = 𝑡20𝑒
−2𝛼𝑟2BI0(2𝛼𝑟

2) (5.18)

where 𝛼 takes on values as dictated by the various terms of Eq. (5.16) and BI0 denotes

the zeroth-order modified Bessel function of the first kind. That this temporal washing

out actually helps is demonstrated by

lim
𝑟→∞

𝑒−2𝛼𝑟2BI0(2𝛼𝑟
2) = 0, (5.19)

i.e., as the radius of the variation gets large, the terms of the plane 3 speckle that

contain the offset factors vanish completely after averaging. However, in practice

we will want to keep 𝑟 small so as to not lose spatial resolution. The question is
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how quickly this tradeoff occurs. Looking at those terms for which 𝛼 = 4/𝑑20 (which

amounts to all the relevant terms when Ω01 ≫ 1), by numerical evaluation we find

that

𝑒−2𝛼𝑟2BI0(2𝛼𝑟
2) ≈ 0.14𝑑0/𝑟 (5.20)

for 𝑟/𝑑0 in the range 1 to 100.

The tradeoff between resolution and speckle reduction afforded by our time vari-

ation method may not prove sufficient in practice. However, another method for

reducing speckle is found in manipulating the mixed Fresnel numbers. Ignoring the

initial term of Eq. (5.16), all but one of the remaining terms fall off as Ω01 and Ω12 get

large, vanishing entirely in the infinite limit. Taking values close to what we might

expect in practice—𝜆0 = 532 nm optical wavelength, 𝐿 = 1m to 10m scene depth and

standoff, 𝑑0 = 1mm to 1 cm spot size, 𝑑1 = 3 cm to 2m target size, and 𝑑2 = 1m to

10m wall size—we find that Ω01 ≈ 4.43 to 2.95×104 and Ω12 ≈ 4.43×104 to 2.95×107.

Even the least favorable attenuation factor implied by this is 1/(1 + Ω2
01) ≈ 0.05. So

in practice, we can expect this Fresnel-number attenuation effect to make most of the

terms in Eq. (5.16) insignificant.

Before proceeding, it’s worth considering the extent to which temporal-averaging

and Fresnel-number attenuation effects reduce the speckle at each plane. Their behav-

iors are summarized in Table 5.1. The table assumes that each form of help is strong

enough to make the terms they attenuate insignificant. For plane 3, we can see that

either form of help is sufficient to reduce the speckle to ordinary strength. Moreover,

we can eliminate speckle entirely by employing both methods simultaneously.

The preceding results indicate that the Fresnel-number attenuation effect seems

very promising in practice, whereas the temporal-averaging attenuation is perhaps

less so. In fact, we argue that speckle will not be a concern for this CW case.

Considering the Fresnel-number attenuation effect alone, the remaining ordinary

speckle is accounted for by the second term in Eq. (5.16). This term’s value at

𝜌3 = 𝜌3 is the usual ordinary speckle strength, but its nominal spatial extent is only
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Plane No help Ω help 𝑡 help both
1 ordinary ordinary none none
2 3× ordinary none none
3 7× ordinary ordinary none

Table 5.1: Speckle strength as measured by the peak irradiance variance relative to the
squared-mean irradiance. The first column lists the unmitigated speckle strengths for
each plane. The second column lists the strengths for the case in which Ω01,Ω12 ≫ 1
but no temporal averaging is employed. The third column lists the strengths for the
case in which revolving illumination and temporal averaging is successfully employed
but the Fresnel numbers are not large enough to significantly attenuate any terms.
The last column lists the strengths for the case in which both the temporal-averaging
technique is employed and Ω01,Ω12 ≫ 1.

|𝜌3 − 𝜌3| = 4𝐿𝜆0/2𝜋𝑑2, which in practice will be of the order of an optical wavelength.

So, for any reasonable detector size, we can expect these speckles to be averaged out.

5.2 Modulated Speckle

In this section we turn our attention to modulated speckle, i.e., the case of relevance

to 𝒫-field imaging.

5.2.1 Speckle Strength

Unfortunately, although we found quantitative—even favorable—results for CW speckle,

the modulated case proves more challenging to analyze. Accordingly, our analysis will

be limited to the speckle at plane 1, i.e., the speckle shining on the hidden target in

the NLoS analogy. We begin by introducing

𝒫𝑧(𝜌𝑧, 𝜔−) ≡
∫︁

d𝜔+

2𝜋
ℰ𝑧(𝜌𝑧, 𝜔+ + 𝜔−/2)ℰ*

𝑧 (𝜌𝑧, 𝜔+ − 𝜔−/2), (5.21)

whose ensemble average over any relevant diffusers is the 𝒫 field, i.e., ⟨𝒫𝑧(𝜌𝑧, 𝜔−)⟩ =

𝒫𝑧(𝜌𝑧, 𝜔−).
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In general, at the first plane we have

⟨|𝒫1(𝜌1, 𝜔−)|2⟩0

=

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*
1 (𝜌1, 𝜔+ − 𝜔−/2)ℰ*

1 (𝜌1, �̃�+ + 𝜔−/2)ℰ1(𝜌1, �̃�+ − 𝜔−/2)⟩0

=

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋[︃
⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*

1 (𝜌1, 𝜔+ − 𝜔−/2)⟩0⟨ℰ*
1 (𝜌1, �̃�+ + 𝜔−/2)ℰ1(𝜌1, �̃�+ − 𝜔−/2)⟩0

+ ⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*
1 (𝜌1, �̃�+ + 𝜔−/2)⟩0⟨ℰ*

1 (𝜌1, 𝜔+ − 𝜔−/2)ℰ1(𝜌1, �̃�+ − 𝜔−/2)⟩0

+ ⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ1(𝜌1, �̃�+ − 𝜔−/2)⟩0⟨ℰ*
1 (𝜌1, 𝜔+ − 𝜔−/2)ℰ*

1 (𝜌1, �̃�+ + 𝜔−/2)⟩0
]︃
,

(5.22)

which follows from Gaussian moment factoring. Here however, the factoring takes

place for each pair of integrated center frequencies but is still afforded by the fact

that ℰ1 falls within the scope of the central limit theorem. As in the CW case, the

last of these terms vanishes owing to the diffuser statistics. The first term, after inte-

gration, is merely |𝒫1(𝜌1, 𝜔−)|2. Hence the remaining term, which can be expanded

symbolically via the Fresnel propagation formula, is the 𝒫-field’s variance, viz.,

⟨|𝒫1(𝜌1, 𝜔−)|2⟩0 − |𝒫1(𝜌1, 𝜔−)|2

=

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

⟨ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*
1 (𝜌1, �̃�+ + 𝜔−/2)⟩0⟨ℰ*

1 (𝜌1, 𝜔+ − 𝜔−/2)ℰ1(𝜌1, �̃�+ − 𝜔−/2)⟩0
(5.23)

=
1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d𝜌0

∫︁
d𝜌0

ℰ0(𝜌0, 𝜔+ + 𝜔−/2)ℰ*
0 (𝜌0, �̃�+ + 𝜔−/2)ℰ*

0 (𝜌0, 𝜔+ − 𝜔−/2)ℰ0(𝜌0, �̃�+ − 𝜔−/2)

× 𝑒𝑖
𝜔+−�̃�+

2𝑐𝐿 (|𝜌1−𝜌0|
2−|𝜌1−𝜌0|

2). (5.24)

Although symbolically articulable, this result seems impenetrable without further
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specificity.

To simplify this result further, we assume that the initial illumination can be

factored into a spatial component and a temporal one, viz.,

𝐸0(𝜌0, 𝑡) = 𝐸0(𝜌0)𝑆(𝑡) (5.25)

ℰ0(𝜌0, 𝜔) = 𝐸0(𝜌0)𝒮(𝜔). (5.26)

Notably, this assumption will not carry over to 𝐸1 owing to the nature of Fresnel

propagation, which will mix the space and time dependence. Applying it to our

variance result yields

⟨|𝒫1(𝜌1, 𝜔−)|2⟩0 − |𝒫1(𝜌1, 𝜔−)|2

=
1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d𝜌0

∫︁
d𝜌0 |𝐸0(𝜌0)|2 |𝐸0(𝜌0)|2 𝑒𝑖

𝜔+−�̃�+
2𝑐𝐿 (|𝜌1−𝜌0|

2−|𝜌1−𝜌0|
2)

× 𝒮(𝜔+ + 𝜔−/2)𝒮*(�̃�+ + 𝜔−/2)𝒮*(𝜔+ − 𝜔−/2)𝒮(�̃�+ − 𝜔−/2), (5.27)

which, while simpler, still doesn’t lend itself to further evaluation. However, this

result does allow us to establish an upper bound on the variance of 𝒫1(𝜌1, 0):

⟨|𝒫1(𝜌1, 0)|2⟩0 − |𝒫1(𝜌1, 0)|2

=
1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d𝜌0

∫︁
d𝜌0 |𝐸0(𝜌0)|2 |𝐸0(𝜌0)|2 |𝒮(𝜔+)|2 |𝒮(�̃�+)|2

× 𝑒𝑖
𝜔+−�̃�+

2𝑐𝐿 (|𝜌1−𝜌0|
2−|𝜌1−𝜌0|

2)

≤ 1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d𝜌0

∫︁
d𝜌0 |𝐸0(𝜌0)|2 |𝐸0(𝜌0)|2 |𝒮(𝜔+)|2 |𝒮(�̃�+)|2

=

⃒⃒
⃒⃒ 1

𝐿2

∫︁
d𝜌0𝒫0(𝜌0, 0)

⃒⃒
⃒⃒
2

= |𝒫1(𝜌1, 0)|2 . (5.28)

The bound in (5.28) shows the speckle in the zero-frequency component of the 𝒫 field

at the target plane is no stronger than ordinary speckle and may even be appreciably

weaker.
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At first, this result may seem at odds with that of Teichman [27], who found

that the 𝒫-field speckle strength will at best be that of ordinary speckle and in

general be stronger. His result considers the special case of single-frequency sinusoidal

modulation, and—though not rederived here—we find it can be reproduced line-by-

line in our paraxial framework using Gaussian moment factoring of the field envelope

in place of his regional analysis of the four-point diffuser correlation function. As

it turns out, the apparent discrepancy is owed to the fact that the 𝒫-field speckle

analyzed by Teichman is the speckle of the component at the modulation frequency,

whereas the bound above applies only to the zero-frequency component.

To illustrate these results side-by-side concretely, we consider the following mod-

ulation:

𝑆(𝑡) = 𝑒−𝑡2/𝑇 2

cos(Ω𝑡) (5.29)

𝒮(𝜔) =
√
𝜋
𝑇

2

(︁
𝑒−

𝑇2

4
(𝜔−Ω)2 + 𝑒−

𝑇2

4
(𝜔+Ω)2

)︁
. (5.30)

The Gaussian temporal attenuation is employed to avoid dealing with impulse func-

tions. We assume Ω𝑇 ≫ 1, i.e., that the signal lasts many modulation periods,

which effectively corresponds to Teichman’s single-frequency-modulation case. Note,

whereas the field envelope modulation frequency is Ω, the modulation frequency of the

irradiance is 2Ω, and so that is the relevant frequency at which we will be concerned

with the 𝒫 field.

Using our narrowband modulation assumption, we can approximate the relevant

product of 𝒮 functions in Eq. (5.27)—evaluated at 𝜔− = 2Ω—accordingly:

𝒮(𝜔+ + Ω)𝒮*(�̃�+ + Ω)𝒮*(𝜔+ − Ω)𝒮(�̃�+ − Ω) ≈ 𝜋2𝑇 4

16
𝑒−

𝑇2

2
(𝜔2

++�̃�2
+). (5.31)

This product effectively acts as a low pass filter on the integration frequencies in

Eq. (5.27). As a result, we have |𝜔+ − �̃�+| /2𝑐𝐿 ≪ Ω/2𝑐𝐿 = 𝜋/Λ𝐿 (where Λ =

2𝜋𝑐/Ω is the modulation wavelength), and so if we have sufficiently narrow initial

illumination such that 𝐸0(𝜌0) ≈ 0 for |𝜌0| >
√

Λ𝐿 (≈ 22 cm for Λ = 5 cm and
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𝐿 = 1m), the Fresnel propagation term can be approximated by a Fourier transform

kernel, yielding

⟨|𝒫1(𝜌1, 2Ω)|2⟩0 − |𝒫1(𝜌1, 2Ω)|2

=
1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d𝜌0

∫︁
d𝜌0 𝐼0(𝜌0)𝐼0(𝜌0)

𝜋2𝑇 4

16
𝑒−

𝑇2

2
(𝜔2

++�̃�2
+)𝑒−𝑖

𝜔+−�̃�+
𝑐𝐿

𝜌1·(𝜌0−𝜌0),

(5.32)

where we’ve defined 𝐼0(𝜌) = |𝐸0(𝜌)|2 in analogy with the CW case. Equation (5.32)

affords us a much more tractable result for a reasonably practical scenario. This

expression can be evaluated in closed form if we use the Gaussian illumination profile

from the CW case,

𝐼0(𝜌0) =
(︀
8𝑃/𝜋𝑑20

)︀
exp

(︀
−8 |𝜌0|2 /𝑑20

)︀
, (5.33)

with 𝑑20 < Λ𝐿 to satisfy our assumption. We then get

⟨|𝒫1(𝜌1, 2Ω)|2⟩0 − |𝒫1(𝜌1, 2Ω)|2 =
𝜋𝑃 2𝑇 2

32𝐿4

√︃
1

1 +
(︀

𝑑0
2𝑐𝐿𝑇

)︀2 |𝜌1|2
. (5.34)

This result is maximized on axis, where the square-root term vanishes. Say |𝜌1| < 2𝐿,

as is certainly necessary for paraxial operation. From 𝑑20 < Λ𝐿 it then follows that

(︂
𝑑0

2𝑐𝐿𝑇

)︂2

|𝜌1|2 <
(︃

2𝜋

Ω𝑇

√︂
𝐿

Λ

)︃2

≪ 1 (5.35)

provided Ω𝑇 ≫ 2𝜋
√︀

𝐿/Λ, which amounts to ≈ 28.1 for 𝐿 = 1m and Λ = 5 cm. In

this reasonable regime, the square-root term in Eq. (5.34) can be neglected entirely

so that

⟨|𝒫1(𝜌1, 2Ω)|2⟩0 − |𝒫1(𝜌1, 2Ω)|2 =
𝜋𝑃 2𝑇 2

32𝐿4
. (5.36)

Using the same assumptions we’ve employed so far, but being stricter so that
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𝑑20 ≪ Λ𝐿, we can approximate and evaluate the squared-mean 𝒫 field using a similar

process resulting in

|𝒫1(𝜌1, 2Ω)|2 =
1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d𝜌0

∫︁
d𝜌0

𝐼0(𝜌0)𝐼0(𝜌0)
𝜋2𝑇 4

16
𝑒−

𝑇2

2
(𝜔2

++�̃�2
+)𝑒−𝑖 2Ω

𝑐𝐿
𝜌1·(𝜌0−𝜌0) (5.37)

=
𝜋𝑃 2𝑇 2

32𝐿4
𝑒−( 𝑑0Ω

2𝑐𝐿 )
2
|𝜌1|

2

. (5.38)

This implies that the speckle at the modulation frequency is as strong as ordinary

speckle on axis and is stronger off axis, in complete agreement with Teichman. How-

ever, we can see that in the worst case it is enhanced only by a factor

exp
(︀
(𝑑0Ω|𝜌1|/2𝑐𝐿)2

)︀
< exp

(︀
(2𝜋𝑑0/Λ)2

)︀
≈ 1.08, (5.39)

which follows from taking |𝜌1| < 2𝐿, Λ = 5 cm, and 𝑑0 = 2.2mm. So while Teichman’s

result is qualitatively accurate, in practice it seems the speckle at the modulation

frequency has approximately ordinary strength, at least within the paraxial regime.

Of course, it should be emphasized however that this result is limited to the speckle

shining on the target plane, and our present analysis doesn’t suffice to go further.

To illustrate our zero-frequency bound, we proceed by analyzing the zero-frequency-

component speckle for our specific modulation. Now the relevant product of 𝒮 func-

tions is approximated by

|𝒮(𝜔+)|2 |𝒮(�̃�+)|2 ≈ 𝜋2𝑇 4

16

(︁
𝑒−

𝑇2

2
(𝜔+−Ω)2 + 𝑒−

𝑇2

2
(𝜔++Ω)2

)︁(︁
𝑒−

𝑇2

2
(�̃�+−Ω)2 + 𝑒−

𝑇2

2
(�̃�++Ω)2

)︁
.

(5.40)

The same analysis as the modulation frequency component case can be used to eval-
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uate the zero-frequency variance. We find that

⟨|𝒫1(𝜌1, 0)|2⟩ − |𝒫1(𝜌1, 0)|2 =
𝜋𝑃 2𝑇 2

16𝐿4
√︀

1 + 𝛼2|𝜌1|2

(︃
1 + 𝑒

−Ω2𝑇2𝛼2|𝜌1|
2

1+𝛼2|𝜌1|2 + 2𝑒−Ω2𝑇 2

+ 4𝑒
−Ω2𝑇2

4

(︂
2+3𝛼2|𝜌1|

2

1+𝛼2|𝜌1|2

)︂)︃
, (5.41)

where 𝛼 ≡ 𝑑0/2𝑐𝐿𝑇 . Equation (5.41) has its unique maximum on axis, where it takes

the value

⟨|𝒫1(0, 0)|2⟩0 − |𝒫1(0, 0)|2 =
𝜋𝑃 2𝑇 2

8𝐿4

(︁
1 + 𝑒−Ω2𝑇 2

+ 2𝑒−Ω2𝑇 2/2
)︁
. (5.42)

Moreover, we find that

|𝒫1(𝜌1, 0)|2 =
𝜋𝑃 2𝑇 2

8𝐿4

(︁
1 + 𝑒−Ω2𝑇 2

+ 2𝑒−Ω2𝑇 2/2
)︁
, (5.43)

which together with the variance result implies that the zero-frequency speckle has

ordinary strength on axis and is attenuated off axis, in complete agreement with our

bound from (5.28).

5.2.2 Speckle Size

As we saw in the CW case, although the speckle variance is important to consider, the

speckle size can perhaps be even more impactful as the speckles may be sufficiently

small so as to be naturally averaged out by a finite-area detector. Carrying out a

similar analysis for the modulated case though proves more difficult, as expected.

The quantity of concern, the spatial covariance, can be derived via a process similar

to what was done above for the variance, relying on Gaussian moment factoring and

the Fresnel propagation integral:
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⟨𝒫1(𝜌1, 𝜔−)𝒫*
1 (𝜌1, 𝜔−)⟩0 − 𝒫1(𝜌1, 𝜔−)𝒫*

1 (𝜌1, 𝜔−)

=
1

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d2𝜌0

∫︁
d2𝜌0

ℰ0(𝜌0, 𝜔+ + 𝜔−/2)ℰ*
0 (𝜌0, �̃�+ + 𝜔−/2)ℰ*

0 (𝜌0, 𝜔+ − 𝜔−/2)ℰ0(𝜌0, �̃�+ − 𝜔−/2)

× 𝑒𝑖
𝜔0+𝜔++𝜔−/2

2𝑐𝐿
|𝜌1−𝜌0|

2

𝑒−𝑖
𝜔0+�̃�++𝜔−/2

2𝑐𝐿
|𝜌1−𝜌0|

2

𝑒−𝑖
𝜔0+𝜔+−𝜔−/2

2𝑐𝐿
|𝜌1−𝜌0|

2

𝑒𝑖
𝜔0+�̃�+−𝜔−/2

2𝑐𝐿
|𝜌1−𝜌0|

2

.

(5.44)

The differing spatial coordinates in each of the four exponential terms makes it impos-

sible to group them in any useful way, regardless of their frequency terms. Expanding

the squares (not shown here) does not make the situation particularly more illumi-

nating. Removing the exponentials altogether to obtain an upper bound, as we did

earlier for the zero-frequency variance, is not an option as that removes all the spatial

dependence, which is precisely the property we wish to analyze. Assuming a space-

time factorable illumination also doesn’t seem to help, as it wouldn’t alleviate the

issue with evaluating the exponential terms. However, by a combination of assump-

tions mimicking our earlier approach, we can proceed to get some insight. First, we

assume factorable illumination with a narrowband cosine modulation and a narrow

enough spatial profile that the Fresnel kernel can be approximated by a Fourier trans-

form kernel. Then, we evaluate at 𝜔− = 2Ω, which enables us to use the simple form

of the 𝒮-function product we found earlier. Subsequent results will be limited to the

modulated component, but ultimately that is the component that will be of interest

for imaging. We find

⟨𝒫1(𝜌1, 2Ω)𝒫*
1 (𝜌1, 2Ω)⟩0 − 𝒫1(𝜌1, 2Ω)𝒫*

1 (𝜌1, 2Ω)

=
𝑒𝑖

Ω
𝑐𝐿(|𝜌1|

2−|𝜌1|
2)

𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

∫︁
d2𝜌0

∫︁
d2𝜌0 𝐼0(𝜌0)𝐼0(𝜌0)

𝜋2𝑇 4

16
𝑒−

𝑇2

2 (𝜔2
++�̃�2

+)

× 𝑒𝑖
1
𝑐𝐿

[−𝜌0·𝜌1(𝜔0+𝜔++Ω)+𝜌0·𝜌1(𝜔0+�̃�++Ω)+𝜌0·𝜌1(𝜔0+𝜔+−Ω)−𝜌0·𝜌1(𝜔0+�̃�+−Ω)]. (5.45)
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By assuming the same Gaussian form for 𝐼0 as we used earlier, i.e., Eq. (5.33), this

integral is composed entirely of Gaussian terms and so can be evaluated in closed

form. Unfortunately though, the guarantee of a closed-form result is not the guar-

antee of a simple result, and we find the result to be too cumbersome to display

here. However, we can proceed with further analysis by assuming fixed values for the

physical parameters and numerically evaluating the width of the magnitude of this

covariance. In particular, we take 𝜆0 = 532 nm, Λ = 5 cm, 𝐿 = 1m, 𝑑0 = 3mm, and

𝑇 = 1 s.

Analysis is further complicated by the fact that the covariance depends on both 𝜌1

and 𝜌1 individually, and does not afford a simple expression in terms of only 𝜌1−𝜌1,

i.e., 𝒫1(𝜌1, 2Ω)−𝒫1(𝜌1,Ω) is not statistically homogeneous. So, we proceed by fixing

a value for 𝜌1, then treating the magnitude of the covariance as a weighting function

in terms of 𝜌1. We numerically normalize this function so it can be treated like a pdf

and then find its standard deviation to define the speckle size. That is, defining

𝑓𝜌1
(𝜌1;𝜌1) ≡

⃒⃒
⃒⟨𝒫1(𝜌1, 2Ω)𝒫*

1 (𝜌1, 2Ω)⟩0 − 𝒫1(𝜌1, 2Ω)𝒫*
1 (𝜌1, 2Ω)

⃒⃒
⃒

∫︀
d2𝜌1

⃒⃒
⃒⟨𝒫1(𝜌1, 2Ω)𝒫*

1 (𝜌1, 2Ω)⟩0 − 𝒫1(𝜌1, 2Ω)𝒫*
1 (𝜌1, 2Ω)

⃒⃒
⃒
, (5.46)

we take the speckle size at 𝜌1 to be

𝜎sp(𝜌1) ≡
√︃∫︁

d2𝜌1 |𝜌1|2𝑓𝜌1
(𝜌1;𝜌1) −

⃒⃒
⃒⃒
∫︁

d2𝜌1 𝜌1𝑓𝜌1
(𝜌1;𝜌1)

⃒⃒
⃒⃒
2

. (5.47)

Conveniently, we find that the result is consistent to about 5 significant figures

across a large variety of values for 𝜌1, varying from the origin all the way to 10m

off-axis in both directions.2 So, for all practical purposes, we find the speckle size for

these physical parameters to be approximately 𝜎sp ≈ 1.13 × 10−4m. Coincidentally,

this works out to be the same number, to similar precision, as 𝑑1/2Ω01 = 4𝑐𝐿/𝑑0𝜔0,

the 𝑒−1-attenuation radius of the first-bounce CW speckle from Eq. (5.14). To make

2This suggests that the covariance could be well approximated by a Schell model, viz.,

cov(𝒫1(𝜌1, 2Ω),𝒫1(𝜌1, 2Ω)) ≈ var(𝒫1((𝜌1 + 𝜌1)/2, 2Ω))𝑅(𝜌1 − 𝜌1), (5.48)

for some function 𝑅(·) such that 𝑅(0) = 1.
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a fair comparison though, we should use the standard deviation of the CW case as

well, which differs by a factor of
√

2. So, it seems that the modulated first-bounce

speckle size is only a factor of
√

2 greater than the CW speckle. Should this similarity

hold for further bounces, the situation is quite favorable. Considering Eqs. (5.15)

and (5.16), only the leading nontrivial term matters in each, as we’ve argued before

that realistic parameter values will lead to mixed Fresnel numbers that significantly

attenuate all the other terms. What’s left then in each case is effectively a single-

bounce speckle covariance that depends only on the previous pupil size. As the pupils

only get larger (illumination size < target size < wall size), the speckle size only gets

smaller. In particular we find speckle widths on the order of 10−6m and 10−7m

for the second and third bounce respectively of the CW case, although sub-optical-

wavelength correlation lengths would fall prey to the evanescence cutoff. Should such

widths carry over to the modulated case, it is beyond question that any reasonable

detector area will necessarily average over many speckles.

5.3 Shot-Noise Limit

The impact of a finite detector area integrating over multiple speckles can be perhaps

most readily seen in analyzing the resulting statistics for semiclassical photodetection.

The traditional semiclassical approach for analyzing photodetection statistics models

the detected power (spatially-integrated irradiance) as generating a stochastic cur-

rent in the form of a conditionally Poisson impulse train of elementary charge carriers

conditioned on that detected power. This current is then divided by the elementary

charge and integrated over time to yield a photon count 𝑁 , which takes the form of a

Poisson random variable conditioned on knowledge of the detected power. Since Pois-

son random variables are notable for their variance equaling their mean, the resulting

signal-to-noise ratio (SNR) is ⟨𝑁⟩2/⟨∆𝑁2⟩ = ⟨𝑁⟩, which increases monotonically as

the detected power increases. This summarizes the shot-noise limit, in which the

SNR is limited only by this fundamental photodetection noise whose ultimate origin

is the quantum nature of the underlying charge carriers. When the input irradiance is
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itself a random process, the unconditioned statistics of 𝑁 may take a form other than

Poisson. The resulting variance cannot be lower than the mean, i.e., the shot-noise

limit, but on the other hand may contain additional excess-noise terms that threaten

to degrade the SNR beyond what is already imposed by quantum theory. Speckle is

an example of such excess noise, and using the results we’ve established so far we can

analyze its impact on photodetection statistics.

For simplicity, we proceed in the CW case, where our results for multi-bounce

speckle are best established. We imagine that the final irradiance is detected over a

finite area 𝐴 to produce a power

𝑃 (𝑡) = 𝑃 =

∫︁

𝐴

d2𝜌 𝐼(𝜌), (5.49)

where the lack of temporal dependence follows from the CW assumption. Here we

use 𝑃 to denote the detected power, not to be confused with our earlier use of 𝑃 for

the initial illumination power. Without loss of generality, we choose to work here in

units in which 𝐼 is measured in photons/m2 so that 𝑃 is measured in photons. The

resulting photon count 𝑁 is conditionally Poisson, such that its mean and variance

conditioned on knowledge of 𝑃 are given by

⟨∆𝑁2⟩|𝑃 = ⟨𝑁⟩|𝑃 = 𝜂𝑃𝑇 (5.50)

where 𝜂 is the detector’s quantum efficiency and 𝑇 the detector integration time.

Accordingly, the unconditioned mean is given by

⟨𝑁⟩ = 𝜂⟨𝑃 ⟩𝑇. (5.51)

The unconditioned variance of 𝑁 can be found in terms of the statistics of 𝑃 via
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the law of iterated expectation or, equivalently, the law of total variance:

⟨∆𝑁2⟩ = ⟨𝑁2⟩ − ⟨𝑁⟩2 (5.52)

= ⟨⟨𝑁2⟩|𝑃 ⟩ − (𝜂⟨𝑃 ⟩𝑇 )2 (5.53)

= ⟨⟨∆𝑁2⟩|𝑃 + ⟨𝑁⟩2|𝑃 ⟩ − 𝜂2⟨𝑃 ⟩2𝑇 2 (5.54)

= ⟨𝜂𝑃𝑇 + 𝜂2𝑃 2𝑇 2⟩ − 𝜂2⟨𝑃 ⟩2𝑇 2 (5.55)

= 𝜂⟨𝑃 ⟩𝑇 + 𝜂2⟨∆𝑃 2⟩𝑇 2, (5.56)

where the first term is the shot noise and the second term is the excess noise imposed

by speckle. In the absence of speckle, the irradiance and accordingly the detected

power are deterministic, and so the excess noise term is 0. However, in the presence

of speckle, the relevant statistics of 𝑃 can be found from

⟨𝑃 ⟩ =

∫︁

𝐴

d2𝜌 ⟨𝐼(𝜌)⟩ (5.57)

⟨𝑃 2⟩ =

∫︁

𝐴

d2𝜌

∫︁

𝐴

d2𝜌 ⟨𝐼(𝜌)𝐼(𝜌)⟩, (5.58)

where ⟨𝐼(𝜌)𝐼(𝜌)⟩ is the correlation function we found for each bounce in Eqs. (5.14)–

(5.16) evaluated at zero offset, i.e., 𝜇 = �̃� = 0. For our purposes, we will assume

the detected light is that from the third bounce. Recalling that our irradiance cor-

relation functions depend only on the magnitude of the difference of their spatial

coordinates, i.e., that we found the irradiances to be statistically homogeneous and

isotropic random processes, we define

cov𝐼3(|𝜌−|) ≡ ⟨𝐼3(𝜌+ + 𝜌−/2;0)𝐼3(𝜌+ − 𝜌−/2;0)⟩0,1,2 − ⟨𝐼3⟩2. (5.59)

Switching to sum and difference coordinates 𝜌− = 𝜌3 − 𝜌3 and 𝜌+ = (𝜌3 + 𝜌3) /2,

taking a circular detector area of radius 𝑅, and performing the 𝜌+ integration, we
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have that

⟨∆𝑃 2⟩ =

∫︁
d2𝜌− cov𝐼3(|𝜌−|)𝑂(|𝜌−|, 2𝑅) (5.60)

= 𝐾⟨𝑃 ⟩2, (5.61)

where

𝑂(𝜁,𝐷) =

⎧
⎪⎪⎨
⎪⎪⎩

𝐷2

2

[︂
cos−1

(︀
𝜁
𝐷

)︀
− 𝜁

𝐷

√︁
1 − 𝜁2

𝐷2

]︂
if 0 ≤ 𝜁 ≤ 𝐷

0 else

(5.62)

is the overlap area between two circles of diameter 𝐷 whose origins are separated by

a distance 𝜁, and

𝐾 ≡ 1

𝜋2𝑅4

∫︁
d2𝜌−

cov𝐼3(|𝜌−|)
⟨𝐼3⟩2

𝑂(|𝜌−|, 2𝑅) (5.63)

=
1

4𝑅2

[︃
4𝑅2

1 + Ω2
01

+
4𝑅2

1 + Ω2
12

+
4𝑅2

1 + Ω2
01 + Ω2

12

+
𝑑21

Ω2
12

(1 + Ω12)

(︂
1 +

1

1 + Ω2
01

)︂

− 𝑑21(2 + Ω2
01)

Ω12(1 + Ω2
01)

𝐵

(︂
8𝑅2Ω12

𝑑21

)︂
− 𝑑21

Ω2
12

𝐵

(︂
8𝑅2Ω2

12

𝑑21(1 + Ω2
12)

)︂

− 𝑑21
Ω2

12(1 + Ω2
01)

𝐵

(︂
8𝑅2Ω2

12(1 + Ω2
01)

𝑑21(1 + Ω2
01 + Ω2

12)

)︂]︃
, (5.64)

where

𝐵(𝑥) ≡ exp(−𝑥) × (BI0(𝑥) + BI1(𝑥)) , (5.65)

with BI𝑛 being the 𝑛th-order modified Bessel function of the first kind. In terms of

this result, the photon-count variance is

⟨∆𝑁2⟩ = ⟨𝑁⟩ + 𝐾⟨𝑁⟩2. (5.66)

So, provided ⟨𝑁⟩ ≪ 1/𝐾, the second term will be negligible compared to the first,

and accordingly it can be said that we’re operating in the shot-noise limit and that
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the effects of speckle can be ignored. In terms of the SNR’s behavior as ⟨𝑁⟩ grows
without bound, the shot-noise limit allows for the SNR to likewise grow without

bound, whereas the effect of speckle can be seen as bounding this growth at SNR ≤
1/𝐾 because we have that

lim
⟨𝑁⟩→∞

⟨𝑁⟩2
⟨∆𝑁2⟩ = lim

⟨𝑁⟩→∞

⟨𝑁⟩2
⟨𝑁⟩ + 𝐾⟨𝑁⟩2 =

1

𝐾
. (5.67)

Note, 𝐾 monotonically decreases with increasing 𝑅, and we have that

lim
𝑅→0

𝐾 =
3 + Ω2

01

1 + Ω2
01

+
2

1 + Ω2
12

+
2

1 + Ω2
01 + Ω2

12

, (5.68)

and

lim
𝑅→∞

𝐾 =
3 + Ω4

01 + 4Ω2
01 + 3Ω2

01Ω
2
12 + 4Ω2

12 + Ω4
12

(1 + Ω2
01)(1 + Ω2

12)(1 + Ω2
01 + Ω2

12)
. (5.69)

Moreover, for Ω01,Ω12 ≪ 1 we have that lim𝑅→0𝐾 ≈ 7 and lim𝑅→∞ 𝐾 ≈ 3, and for

Ω01,Ω12 ≫ 1 we have that lim𝑅→0𝐾 ≈ 1 and lim𝑅→∞𝐾 ≈ 0. So, integrating over

a large enough detector area negates one bounce’s worth of speckle, and taking the

two Fresnel numbers to be large enough negates the remaining two bounce’s worth

of speckle. Taking reasonable parameter values 𝜆0 = 532 nm, 𝐿 = 1m, 𝑑0 = 1mm,

𝑑1 = 10 cm, 𝑑2 = 1m, and 𝑅 = 1 cm, we find that 1/𝐾 ≈ 4700. So, speckle at worst

limits the SNR to a very high value as ⟨𝑁⟩ grows without bound.

5.4 Small-Reflector Limit

Despite the fact that our results for the modulated case have been thus far limited to

first-order speckle, we find that further results can be obtained in the limit in which

there is no spatial dependence. Physically, in the NLoS analogy, this corresponds to

the case in which the initial illumination covers a very small area, the target is very

small, and the third-bounce area is very small. The last constraint might be fulfilled,

for example, if a small, diffuse object is used to see into an occluded space, as opposed
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to a large wall. In the CW case, this amounts to the limit in which the mixed Fresnel

numbers approach zero, which as we saw earlier leads to ordinary speckle strength

after the first bounce, 3× ordinary speckle strength after the second bounce, and 7×
ordinary speckle strength after the third bounce. In fact, for this case, the complete

distributions of the speckle and speckled speckle irradiances are known [26]. Ignoring

the attenuation factors from free-space propagation and the finite pupil sizes we have

𝑝𝐼1(𝐼1) =

⎧
⎪⎨
⎪⎩

exp (−𝐼1/⟨𝐼1⟩) /⟨𝐼1⟩ for 𝐼1 ≥ 0

0 else

(5.70)

𝑝𝐼2(𝐼2) =

⎧
⎪⎨
⎪⎩

2𝐾0

(︁
2
√︀

𝐼2/⟨𝐼1⟩
)︁
/⟨𝐼1⟩ for 𝐼2 ≥ 0

0 else,

(5.71)

where 𝑝𝑋 is the probability density function for the random variable 𝑋 and 𝐾0 is the

zeroth-order modified Bessel function of the second kind. The second result follows

from taking the speckled speckle to be negative exponentially distributed given the

mean irradiance, which is itself taken to be negative exponentially distributed. We

can carry this analysis another step to find the speckled speckled speckle distribution:

𝑝𝐼3(𝐼3) =

⎧
⎪⎨
⎪⎩
𝐺3,0

0,3 (𝐼3/⟨𝐼1⟩| 0, 0, 0) /⟨𝐼1⟩ for 𝐼3 ≥ 0

0 else,

(5.72)

where 𝐺𝑚,𝑛
𝑝,𝑞 is the Meijer G function [28]. All three are plotted in Fig. 5-2 with the

first mean normalized to 1. It can be seen that each diffuser increases the variance

of the resulting distribution. In fact, the means and variances can be calculated

numerically from these distributions, and we find them to be in complete accordance

with our earlier CW results, leading to ordinary, 3× ordinary, and 7× ordinary speckle

strength at each respective plane. As one might expect, these three cases follow a

pattern that generalizes to an arbitrary number of diffusers. For 𝑛 diffusers where 𝑛
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is any positive integer, we have

𝑝𝐼𝑛(𝐼𝑛) =

⎧
⎪⎨
⎪⎩
𝐺𝑛,0

0,𝑛 (𝐼𝑛/⟨𝐼1⟩| 0, . . . , 0) /⟨𝐼1⟩ for 𝐼𝑛 ≥ 0

0 else.

(5.73)

This can be proven inductively using standard properties of the Meijer G function [29].

All three of the examples above serve as base cases, and the inductive step follows

from 𝑝𝐼𝑛+1(𝑤) = 0 for 𝑤 < 0 and

𝑝𝐼𝑛+1(𝑤) =

∫︁ ∞

0

d𝑧 𝑝𝐼𝑛(𝑧) exp(−𝑤/𝑧)/𝑧 (5.74)

=

∫︁ ∞

0

d𝑧 𝐺𝑛,0
0,𝑛(𝑧 | 0, . . . , 0) exp(−𝑤/𝑧)/𝑧 (5.75)

=

∫︁ ∞

0

d𝑥𝐺𝑛,0
0,𝑛(1/𝑥 | 0, . . . , 0) exp(−𝑤𝑥)/𝑥 (5.76)

=

∫︁ ∞

0

d𝑥𝐺0,𝑛
𝑛,0(𝑥 | 1, . . . , 1) exp(−𝑤𝑥)/𝑥 (5.77)

= 𝐺0,𝑛+1
𝑛+1,0(1/𝑤 | 1, 1, . . . , 1) (5.78)

= 𝐺𝑛+1,0
0,𝑛+1(𝑤 | 0, 0, . . . , 0), (5.79)

for 𝑤 ≥ 0, where Eqs. (5.77)–(5.79) make use of those standard properties. The 𝑚th

moment can also be found from known properties of 𝐺:

∫︁ ∞

0

d𝑧 𝑧𝑚 𝐺𝑛,0
0,𝑛(𝑧 | 0, . . . , 0) = (Γ(𝑚 + 1))𝑛 = (𝑚!)𝑛, (5.80)

from which it follows that the 𝑛th bounce in the CW small-reflector limit will expe-

rience (2𝑛 − 1)× ordinary speckle strength.

More interesting than the CW case, however, this small-reflector limit allows us to

analyze the speckle statistics at planes 2 and 3 for the modulated case. Following our

earlier analysis of the modulated case, we can trivially take the initial illumination

to be space-time factorable, so that the speckle at plane 1 has the variance given in

Eq. (5.27). Now, we assume a narrow-enough initial illumination such that 𝐼0(𝜌0) ≈
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Figure 5-2: Plot of the probability density functions for the small-reflector-limit irra-
diances at planes 1 (blue), 2 (orange), and 3 (green). The vertical axis is log10 scale,
and the first mean has been normalized to 1.

𝑃𝛿(𝜌0), which reduces the result to

⟨|𝒫1(𝜌1, 𝜔−)|2⟩0 − |𝒫1(𝜌1, 𝜔−)|2 =

⃒⃒
⃒⃒ 𝑃
𝐿2

∫︁
d𝜔+

2𝜋
𝒮(𝜔+ + 𝜔−/2)𝒮*(𝜔+ − 𝜔−/2)

⃒⃒
⃒⃒
2

(5.81)

=

⃒⃒
⃒⃒ 1

𝐿2

∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−)

⃒⃒
⃒⃒
2

(5.82)

= |𝒫1(𝜌1, 𝜔−)|2 , (5.83)

i.e., there is ordinary speckle at plane 1.

For plane 2, we proceed as before using the central limit theorem, Gaussian mo-
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ment factoring, and the law of iterated expectation:

⟨|𝒫2(𝜌2, 𝜔−)|2⟩1

=

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋

⟨ℰ2(𝜌2, 𝜔+ + 𝜔−/2)ℰ*
2 (𝜌2, 𝜔+ − 𝜔−/2)ℰ*

2 (𝜌2, �̃�+ + 𝜔−/2)ℰ2(𝜌2, �̃�+ − 𝜔−/2)⟩1

=

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋[︃
⟨ℰ2(𝜌2, 𝜔+ + 𝜔−/2)ℰ*

2 (𝜌2, 𝜔+ − 𝜔−/2)⟩1⟨ℰ*
2 (𝜌2, �̃�+ + 𝜔−/2)ℰ2(𝜌2, �̃�+ − 𝜔−/2)⟩1

+ ⟨ℰ2(𝜌2, 𝜔+ + 𝜔−/2)ℰ*
2 (𝜌2, �̃�+ + 𝜔−/2)⟩1⟨ℰ*

2 (𝜌2, 𝜔+ − 𝜔−/2)ℰ2(𝜌2, �̃�+ − 𝜔−/2)⟩1
]︃
.

(5.84)

The relevant Fresnel diffraction formula is now

ℰ2(𝜌2, 𝜔) =
𝑒𝑖

(𝜔0+𝜔)𝐿
𝑐

𝑖𝜆0𝐿

∫︁
d2𝜌1 ℰ1(𝜌1, 𝜔)𝑒𝑖

𝜔0+𝜔
2𝑐𝐿

|𝜌2−𝜌1|
2

𝑒𝑖
𝜔0+𝜔

𝑐
ℎ1(𝜌1)𝑒

− 4

𝑑21
|𝜌1|

2

. (5.85)

So we have

⟨ℰ2(𝜌2,𝜔+ + 𝜔−/2)ℰ*
2 (𝜌2, 𝜔+ − 𝜔−/2)⟩1

=
𝑒𝑖

𝜔−𝐿

𝑐

𝐿2

∫︁
d2𝜌1 ℰ1(𝜌1, 𝜔+ + 𝜔−/2)ℰ*

1 (𝜌1, 𝜔+ − 𝜔−/2)𝑒𝑖
𝜔−
2𝑐𝐿

|𝜌2−𝜌1|
2

𝑒
− 8

𝑑21
|𝜌1|

2

.

(5.86)

Now we take the pupil to be small so that exp
(︀
−8 |𝜌1|2 /𝑑21

)︀
≈ 𝜋𝑑21𝛿(𝜌1)/8 can be

used in Eq. (5.86). From this it follows that

⟨ℰ2(𝜌2, 𝜔+ + 𝜔−/2)ℰ*
2 (𝜌2, 𝜔+ − 𝜔−/2)⟩1

=
𝜋𝑑21
8𝐿2

𝑒𝑖
𝜔−𝐿

𝑐 𝑒𝑖
𝜔−
2𝑐𝐿

|𝜌2|
2ℰ1(0, 𝜔+ + 𝜔−/2)ℰ*

1 (0, 𝜔+ − 𝜔−/2). (5.87)
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Similar calculations follow for the other moments, with the result being that

⟨|𝒫2(𝜌2, 𝜔−)|2⟩1 =
𝜋2𝑑41
32𝐿4

∫︁
d𝜔+

2𝜋

∫︁
d�̃�+

2𝜋
ℰ1(0, 𝜔+ + 𝜔−/2)ℰ*

1 (0, 𝜔+ − 𝜔−/2)

× ℰ*
1 (0, �̃�+ + 𝜔−/2)ℰ1(0, �̃�+ − 𝜔−/2) (5.88)

=
𝜋2𝑑41
32𝐿4

|𝒫1(0, 𝜔−)|2 , (5.89)

and so

⟨|𝒫2(𝜌2, 𝜔−)|2⟩0,1 =
𝜋2𝑑41
32𝐿4

|𝒫1(0, 𝜔−)|2 . (5.90)

For the squared mean, a similar analysis—without the need for Gaussian moment

factoring—yields

|𝒫2(𝜌2, 𝜔−)|2 =
𝜋2𝑑41
64𝐿4

|𝒫1(0, 𝜔−)|2 , (5.91)

which combined with our ordinary-speckle result for plane 1, namely

⟨|𝒫1(𝜌1, 𝜔−)|2⟩0 = 2 |𝒫1(𝜌1, 𝜔−)|2 , (5.92)

leads to

⟨|𝒫2(𝜌2, 𝜔−)|2⟩0,1 = 4 |𝒫2(𝜌2, 𝜔−)|2 , (5.93)

i.e., that the speckle variance at plane 2 is 3× as strong as that of ordinary speckle.

The above analysis can be repeated for plane 3 by changing subscripts appropriately

with the result that the extra factor of 2 in this last step will stack and leave

⟨|𝒫3(𝜌3, 𝜔−)|2⟩0,1,2 = 8 |𝒫3(𝜌3, 𝜔−)|2 , (5.94)

i.e., that the speckle variance at plane 3 is 7× as strong as that of ordinary speckle.

Accordingly, it’s clear that in this small-reflector limit, the modulated speckle for a
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𝑛th bounce return will have a speckle variance that is (2𝑛 − 1)× as strong as that of

ordinary speckle, just as in the CW case.
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Chapter 6

Summary and Future Work

In summary, we have presented a complete light transport model, in phasor-field

terms, capable of describing propagation through a transmissive, paraxial geometry—

including intervening occluders, specular-plus-diffuser masks, and lenses—that serves

as an unfolded proxy for occlusion-aided, three-bounce NLoS imaging. For imag-

ing purely-diffuse objects without intervening occluders, we phrased our analysis in

terms of the 𝒫 field and provided a straightforward derivation of its propagation

behavior, analogous to that reported by Reza et al. [9], as well as its interaction

with a variety of lens configurations. To handle more general propagation scenarios,

we introduced and presented propagation primitives for the two-frequency spatial

Wigner distribution (TFSWD). With these in hand, we turned our attention to the

task of diffuse-object, occlusion-aided imaging and arrived at closed-form results for

occlusion-aided imaging with unmodulated light using either a Gaussian-pinhole oc-

cluder or a Gaussian-pinspeck occluder. Inspired by observations from this scenario,

we abstracted its most significant component, deriving a 𝒫-field input-output rela-

tion for occluder-interrupted post-diffuser propagation, which enabled us to derive

simplified, intuitive behavior in the geometric-optics limit.

Our results show that imaging unoccluded diffuse objects with unmodulated light

is not possible in the paraxial regime, but phasor-field imaging provides techniques

for image construction if modulated light is used or object occlusion can be exploited.

For imaging non-occluded diffuse objects with modulated light, spatial resolution is
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the diffraction limit at the modulation frequency. For occlusion-aided imaging of the

same object with unmodulated light, spatial resolution is set by the optical-frequency

diffraction limit of the occluder. Although the latter can be far superior to the former,

blind determination of the occluder’s characteristics poses a challenge for exploiting

its presence, and even with a known occluder, imaging performance will be limited

by its size and shape.

Mindful of the limitations of our paraxial assumption, we have derived nonparaxial

post-diffuser propagation primitives for the 𝒫 field and, equivalently, the diffuser-

averaged STA irradiance using the Rayleigh–Sommerfeld diffraction integral for the

complex field envelope. We have also proposed nonparaxial free-space propagation

primitives for the 6D light field and, equivalently, the TFSWD. Our proposal was

inspired by applying geometric intuition to our result for the Fresnel limit, and its

validity is suggested by the fact that it reproduces our derived propagation result for

the diffuser-averaged STA irradiance. We then provided a more formal derivation of

this primitive using the angular-spectrum representation of the complex field envelope

under certain constraints on the relevant correlation functions. Pushing past these

constraints, we provided a more general characterization of TFSWD behavior by

deriving a set of differential equations it obeys.

Returning to the paraxial regime, we then explored the impacts of speckle. We

provided an analysis of third-order speckle for unmodulated illumination and first-

order speckle for modulated illumination. For the unmodulated case, our results are

promising as we find the geometry of typical NLoS scenarios is likely to minimize

most of the final speckle and the finite size of the detector is likely to average out the

rest. We also established that time-averaged illumination techniques provide another

method for speckle management. For the modulated case, we found that the zero-

frequency speckle for space-time factorable illumination is no stronger than ordinary

speckle. By analyzing a specific, asymptotically single-frequency signal, we were able

to demonstrate this bound in addition to establishing the validity of Teichman’s [27]

result that the modulation-frequency-component speckle is in general stronger than

ordinary speckle. On a positive note, although Teichman’s result appears valid, our
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analysis suggests that in practice any speckle enhancement effect is likely to be min-

imal, leaving us to conclude that modulated first-order speckle is probably about as

strong as ordinary speckle.

Considering the correlation length of first-order modulated speckle, we concluded

that it is likely to be averaged out by realistic detectors. Using semiclassical photode-

tection theory, we demonstrated that the effect of finite-aperture detectors integrat-

ing over multiple speckles is such that, for realistic parameter values, the imposed

excess noise is either negligible or it sets a very high ultimate limit on the mea-

surement’s SNR. Finally, considering small-reflector geometries, we derived the full

irradiance distribution and all its moments for arbitrary-order speckle in the CW case.

For the modulated case, we derived the first and second moments of arbitrary-order

modulated-component speckle. In both cases, we find the 𝑛th order speckle variance

to be (2𝑛 − 1)× as strong as that of ordinary speckle.

Although we have covered considerable ground in providing a formal analysis of

phasor-field imaging, there are many topics suitable for future research. Regard-

ing our forward-model framework, it would be appealing to reframe our result for

occluder-interrupted propagation to account for nonparaxial behavior. A straightfor-

ward extension seems untenable, but approximations afforded by the geometric-optics

limit may prove favorable. More generally, it would be ideal to find a TFSWD prop-

agation primitive for arbitrary linear transformations of the underlying field. Such a

primitive could capture all of our phasor-field propagation results, e.g., for free space,

masks, and lenses, while expanding the range of applicability to other optical com-

ponents like frequency-dependent filters. It might also enable us to handle nontrivial

elements of the NLoS geometry, such as nonplanar targets and angled walls. Regard-

ing speckle, a pressing open question is how higher-order modulated speckle behaves

in more typical NLoS geometries. Our analysis of the modulated case has also left

out methods for speckle reduction. Additionally, it seems worthwhile to design and

execute experiments to investigate to what extent if any the effects of speckle are

actually present in NLoS imaging scenarios, modulated or otherwise.

Notably, our imaging analysis has left out a proposal for how occlusion might
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be leveraged synergistically with modulated light. Future research would do well

to consider this question. One complication is that the convolutional image formed

by the occluder is recovered by imaging the final diffuser, whereas the image formed

from the 𝒫 field modulation is accessed by focusing, either physically or computation-

ally, through the final diffuser onto the hidden target plane. A synergistic approach

would need to determine where to focus, perhaps on the final diffuser to recover the

occlusion-aided image and then use computational techniques to extract the 𝒫-field
image. Another complication is that the resolution provided by either of these re-

construction modalities may dominate the other. For example, in cursory numerical

analysis of discretized-forward-model singular values for simple occluded, modulated

cases—not included in this thesis—we found that the addition of centimeter-scale oc-

cluders seemed to add little benefit to the already significant conditioning provided by

centimeter-scale modulation. This finding is tentative though, and further considera-

tion of this topic is merited. Those looking to leverage both occlusion and modulation

might look into the possibility of imaging an unknown occluder via modulated illu-

mination and then leveraging its now known properties to form better images of the

scene behind it.

Finally, the most exciting avenue opened by this work is the possibility of imag-

ing around the corner with physical optics. Experimental demonstrations of our

theoretical proposals for focusing, projecting, and imaging the 𝒫 field through inter-

vening diffuse transmission or reflection with actual lenses would be very inspiring.

As noted in that analysis, our mathematics assumed rather large lenses, which can

be alleviated while improving resolution by increasing the 𝒫-field frequency. For the

standard modulate-and-detect approach to 𝒫-field imaging, the accessible 𝒫 field fre-

quency is likely to be limited by the bandwidth of available detectors. At optical

wavelengths, fiber-coupled detectors with 40 GHz bandwidth are readily available,

and at communications wavelengths, e.g., 𝜆0 = 1550 nm, detectors with 100 GHz

bandwidth can also be obtained today. Experimentalists looking to push past these

numbers in physical-optics demonstrations may find it useful to consider the synthetic-

wavelength-holography approach we discuss in Appendix D. There, the need for fast
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detectors is traded for a requirement to coherently detect at high spatial resolution,

but the attainable 𝒫-field frequency is in principle only limited by the diffuser surface

roughness, which is likely to become significant around 1 THz. The required spatial

resolution will be determined by the speckle geometry and the need to avoid signal

fading, so initial experiments may consider geometries with small reflectors to ensure

the full speckle pattern is resolved at the detector. Detection of light from large re-

flectors, e.g., entire walls, may need to await technological advances in the resolution

of lock-in cameras [30, 31], which combine traditional detector arrays with lock-in

amplifiers at each detector element, enabling single-shot spatially-resolved coherent

detection. Alternatively, one might consider scanned heterodyne configurations or

application of photonic lanterns [32], which couple light from a multi-mode fiber into

many individual single-mode fibers.

115



116



Appendix A

Non-Line-of-Sight Geometry

Illumina(on	

Diffuse	Visible	Wall	

Barrier	

Imaging	
Setup	

Targets	

Figure A-1: An example of a typical NLoS geometry. Laser illumination is focused
on a small spot on a diffuse visible wall which in turn flood illuminates a scene of
diffuse reflecting targets. The returned light is detected by an optical configuration
that images the visible wall.

Throughout this thesis, we have made exclusive use of transmissive geometries. In

practice, NLoS scenarios are often entirely reflective geometries. This may seem like

the most significant shortcoming of our framework for application to seeing around

corners. However, as we will show now, our transmissive framework can be adapted

to address typical reflective NLoS geometries. Consider the typical NLoS scenario

depicted in Fig. A-1. Incident laser illumination is focused on a small spot on a

diffuse reflecting visible wall which in turn flood illuminates a scene of diffuse reflecting
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targets. These targets then reflect some light back to the visible wall, which is then

imaged by a detector together with imaging optics. If we take the initial illumination

spot on the visible wall to have small spatial extent, as is often the case, and we

assume that the resolution of the imaging optics suffices to capture all relevant detail

of the diffuser-averaged STA irradiance at the visible wall, then the first and final

bounces in the light’s path can effectively be ignored. What remains is to understand

the 𝒫-field input-output relation for point-source illumination at the plane of the

visible wall propagating into the scene and returning back to the visible wall.

If the scene can be approximated by a set of fronto-planar facets, then a simple

transmissive analogy can be readily applied. In our example, we’ve depicted three

opaque, diffuse, fronto-planar targets at two planes, which we’ll call planes 1 and

2. If we temporarily imagine time gating our detection so that we only see return

light from the first plane, the transmissive analogy is obvious. Focused illumination

is incident upon a diffuser, propagates a distance, then falls upon a transmissivity

mask 𝑇1(𝜌1) which takes the value 0 wherever no target is present and takes on values

according to the albedo patterns of each target at their locations. This mask is butted

up against another diffuser which represents the diffuse reflectivity of the target. The

illumination then continues propagating a final distance corresponding to the return

trip to the visible wall.

Now imagine time gating our detection so as to only see return light from the

second target plane. In that case the transmissive analogy would be that focused

illumination passes through a diffuser, propagates a distance to plane 1, is blocked

by an occlusion mask 𝑃1(𝜌1) that takes the value 0 wherever a target is present at

plane 1 and 1 otherwise, propagates another distance to plane 2, passes through a

transmissivity mask 𝑇2(𝜌2) and diffuser, propagates back to plane 1 where it is once

again occluded by 𝑃1(𝜌1), and then propagates a final distance accounting for the

return trip to the visible wall. The actual detected diffuser-averaged STA irradiance

pattern will be a sum of these two scenarios, as each incurs the appropriate roundtrip

time delays. By the linearity of the Fourier transform, the resulting 𝒫 field is also
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just a sum of the output 𝒫 field from each of these transmissive scenarios. That is

𝒫out(𝜌out, 𝜔−) =
∑︁

𝑛

𝒫out𝑛(𝜌out, 𝜔−), (A.1)

where each 𝒫out𝑛 represents the output from one of these transmissive analogies, as

depicted in Fig. A-2.

Pout1
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Figure A-2: A sum of transmissive geometries that encapsulates the relevant behavior
of our example NLoS geometry.

In general, there may be many more transmissive geometries that need to be

considered, e.g., if there are many planes containing targets. Even in our simple

two-plane scenario, one might argue that light could reflect off the target in plane 2,

then off the backs of the targets in plane 1, then back off of the target in plane 2

before returning to the visible wall. Although this scenario could be depicted with an

appropriate higher-order transmissive diagram, it represents a fifth-bounce geometry,

which is in general much weaker than the third-bounce geometry that our original
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intent was to model with the Fig. A-1 setup.

Nondiffuse targets can also be modeled with appropriate use of the specular-plus-

diffuser masks we discussed in Chapter 3, as can partially transparent targets. The

main drawback to this approach then, beyond its complexity, is its inability to deal

with angled targets, which might reflect the illumination off axis, or nonplanar targets

more generally. This approach to NLoS modeling will also be frustrated if the visible

wall is not purely diffuse, or if we don’t wish to use such simple techniques for initial

illumination and final detection—e.g., if we want to use the 𝒫-field projecting and

direct-imaging techniques discussed at the end of Chapter 2—as the significant angle

that the source and detector make with the visible wall will then be relevant. Some of

these issues may be manageable within the transmissive framework and undoubtedly

some may not. We leave these issues open as a worthwhile topic for future research.
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Appendix B

The Limits of Cascading Propagation

In Chapter 3 we argued that the 𝒫 field alone does not suffice to explain propagation

starting from planes that contain spatial coherence, i.e., that are not a pure diffusive

element which destroys the coherence accumulated from any preceding propagation.

The upshot of this fact is that one cannot draw up a set of 𝒫-field propagation prim-

itives that correctly derive the 𝒫-field input-output relation for a general, complex

geometry such as that in Fig. 3-1 by means of propagating the 𝒫 field piecemeal to

and from arbitrarily chosen planes of interest. The analysis presented in Sec. 3.4,

however, may lead one to believe that such a simplified 𝒫-field-only propagation in-

tuition can be relied upon at least in some limit, e.g., the geometric-optics limit.

Nonetheless, a very simple example suggests that such is not the case.

Consider analyzing the scenario from Sec. 3.4 by naively propagating the 𝒫 field

to and from the intervening occluder-containing plane. Using 𝒫2(𝜌2, 𝜔−) to denote

the putative 𝒫 field obtained by this procedure, we have that

𝒫2(𝜌2, 𝜔−) =
𝑒𝑖𝜔−(𝐿1+𝐿2)/𝑐

𝐿2
1𝐿

2
2

∫︁
d2𝜌1 𝑒

𝑖
𝜔−
2𝑐𝐿2

|𝜌2−𝜌1|2|𝑃 (𝜌1)|2
∫︁

d2𝜌0 𝑒
𝑖

𝜔−
2𝑐𝐿1

|𝜌1−𝜌0|2𝒫0(𝜌0, 𝜔−)

(B.1)

=
𝑒𝑖𝜔−(𝐿1+𝐿2)/𝑐

𝐿2
1𝐿

2
2

𝑒
𝑖

𝜔−
2𝑐𝐿2

|𝜌2|2
∫︁

d2𝜌0 𝑒
𝑖

𝜔−
2𝑐𝐿1

|𝜌0|2𝒫0(𝜌0, 𝜔−)

×
∫︁

d2𝜌1 𝑒
𝑖
𝜔−
2𝑐

|𝜌1|2
(︁

1
𝐿1

+ 1
𝐿2

)︁
|𝑃 (𝜌1)|2𝑒

−𝑖
𝜔−
𝑐

𝜌1·
(︁

𝜌0
𝐿1

+
𝜌2
𝐿2

)︁
. (B.2)
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Defining

𝒯 (k) ≡
∫︁

d2𝜌 |𝑃 (𝜌)|2 exp (−𝑖k · 𝜌) (B.3)

to be the Fourier transform of |𝑃 (𝜌)|2, and

𝒢(k) ≡ exp

(︂
−𝑖

𝑐

2𝜔−

𝐿1𝐿2

𝐿1 + 𝐿2

|k|2
)︂
, (B.4)

we can reduce Eq. (B.2) to

𝒫2(𝜌2, 𝜔−) =
𝑖2𝜋𝑐

𝜔−

1

𝐿1𝐿2

𝑒𝑖𝜔−(𝐿1+𝐿2)/𝑐

𝐿1 + 𝐿2

𝑒
𝑖

𝜔−
2𝑐𝐿2

|𝜌2|2

∫︁
d2𝜌0 𝑒

𝑖
𝜔−
2𝑐𝐿1

|𝜌0|2𝒫0(𝜌0, 𝜔−)ℋ
(︂
𝜔−

𝑐

(︂
𝜌0

𝐿1

+
𝜌2

𝐿2

)︂)︂
, (B.5)

where

ℋ(k) ≡
∫︁

d2k′

(2𝜋)2
𝒯 (k′)𝒢(k− k′), (B.6)

is the convolution of 𝒯 and 𝒢. Paralleling our previous analysis we take 𝒯 to be

of nominal width 1/𝜎. Note that 𝒢 is of nominal extent |k| ≤ 𝜔−
𝑐

𝐿1+𝐿2

𝐿1𝐿2
, in that it

becomes highly oscillatory for |k| > 𝜔−
𝑐

𝐿1+𝐿2

𝐿1𝐿2
. Thus the geometric-optics limit from

Sec. 3.4—in which Ω1 + Ω2 ≫ 1—is precisely the limit in which 𝒯 is very narrow

compared to 𝒢, so that 𝒯 behaves like a delta function in the convolution. In such

a limit, the 𝒯 dependence in Eq. (B.5) vanishes, leaving behind at most a constant,

which clearly can’t be valid outside of the trivial cases of an infinite, uniformly-

attenuating mask or the absence of any mask. Even so, consider the latter case, in

which there is no intervening occluder and we are effectively trying to build up free-

space Fresnel propagation for the 𝒫 field by propagating to and from an arbitrary

intermediate free-space plane. In that case we know the correct answer is given by

𝒫2(𝜌2, 𝜔−) =
𝑒𝑖𝜔−𝐿𝑇 /𝑐

𝐿2
𝑇

∫︁
d2𝜌0 𝑒

𝑖
𝜔−

2𝑐𝐿𝑇
|𝜌2−𝜌0|2𝒫0(𝜌0, 𝜔−), (B.7)
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where 𝐿𝑇 = 𝐿1 + 𝐿2. The result predicted by our piecemeal analysis however is

𝒫2(𝜌2, 𝜔−) =
𝑖2𝜋𝑐

𝜔−

1

𝐿1𝐿2

𝑒𝑖𝜔−(𝐿1+𝐿2)/𝑐

𝐿1 + 𝐿2

𝑒
𝑖

𝜔−
2𝑐𝐿2

|𝜌2|2

∫︁
d2𝜌0 𝑒

𝑖
𝜔−
2𝑐𝐿1

|𝜌0|2𝒫0(𝜌0, 𝜔−)𝑒
−𝑖

𝜔−
2𝑐

𝐿1𝐿2
𝐿1+𝐿2

(︁
𝜌0
𝐿1

+
𝜌2
𝐿2

)︁
(B.8)

=
𝑖2𝜋𝑐

𝜔−

1

𝐿1𝐿2

𝑒𝑖𝜔−(𝐿1+𝐿2)/𝑐

𝐿1 + 𝐿2

∫︁
d2𝜌0 𝑒

𝑖
𝜔−

2𝑐(𝐿1+𝐿2)
|𝜌2−𝜌0|2𝒫0(𝜌0, 𝜔−) (B.9)

=
𝑖2𝜋𝑐

𝜔−

𝐿1 + 𝐿2

𝐿1𝐿2

𝒫2(𝜌2, 𝜔−). (B.10)

This prediction differs from the correct result by a factor that depends not only on the

distances to and from the intermediate plane used but on the modulation frequency as

well. For any modulation that isn’t single frequency, this implies that the piecemeal

analysis predicts a modulation shape distortion relative to the true result. So, this

sort of piecemeal analysis simply cannot be relied on. It is worth noting however,

by contrast, the Fresnel propagation primitive for the underlying optical field does

permit this sort of cascaded construction. That 𝒫-field propagation can’t be built

up in this way is a demonstration of the fact that the 𝒫 field does not obey the sort

of wave equation that the underlying optical field does, as one may easily be misled

into believing. By contrast, the TFSWD propagation primitive does permit cascaded

construction. Moreover, the evolution of the space-time autocorrelation function,

which is equivalent to the TFSWD in information content, can be characterized by

a pair of differential equations [22, 25]. So, it should be possible to write down

differential equations for the TFSWD (or 6D light field) in analogy to the wave

equation. This idea is explored in Chapter 4.
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Appendix C

TFSWD-Primitive Derivations

In this appendix we provide derivations for the TFSWD’s propagation primitives

given earlier in Eqs. (3.15)–(3.18).

C.1 Propagation Through a Diffuser

Consider propagation through one of our diffusers: assume that we know𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−)

and we want to find 𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−), where, for (𝑧, 𝑘) = (0, 0), (𝐿1, 1), (𝐿1 +𝐿2, 2),

ℰ ′
𝑧(𝜌, 𝜔) = ℰ𝑧(𝜌, 𝜔)𝑒𝑖(𝜔0+𝜔)ℎ𝑘(𝜌)/𝑐 ≈ ℰ𝑧(𝜌, 𝜔)𝑒𝑖𝜔0ℎ𝑘(𝜌)/𝑐, (C.1)

with

⟨𝑒𝑖𝜔0[ℎ𝑘(𝜌)−ℎ𝑘(𝜌
′)]/𝑐⟩ ≈ 𝜆2

0𝛿(𝜌− 𝜌′). (C.2)
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In this case we immediately get

𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌−𝑒

−𝑖k·𝜌−

× ⟨ℰ ′
𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ ′*

𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩
(C.3)

=

∫︁
d2𝜌− 𝑒−𝑖k·𝜌−

× ⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*
𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩

× ⟨𝑒𝑖𝜔0[ℎ𝑧(𝜌++𝜌−/2)−ℎ𝑘(𝜌+−𝜌−/2)]/𝑐⟩ (C.4)

=𝜆2
0⟨ℰ𝑧(𝜌+, 𝜔+ + 𝜔−/2)ℰ*

𝑧 (𝜌+, 𝜔+ − 𝜔−/2)⟩ (C.5)

=𝜆2
0

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k

′, 𝜔+, 𝜔−). (C.6)

Physically, the k dependence of the TFSWD carries the field’s spatial-frequency infor-

mation, i.e., its directionality. The result we have just obtained shows that the diffuser

has completely destroyed the directionality of ℰ𝑧(𝜌, 𝜔), because 𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−) is

independent of k.

C.2 Propagation Through a Deterministic Occluder

Now consider propagation through a deterministic transmission mask. Here we want

to find 𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−) given 𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−) and a deterministic 𝑃 (𝜌), where

ℰ ′
𝑧(𝜌, 𝜔) = ℰ𝑧(𝜌, 𝜔)𝑃 (𝜌). (C.7)

For this case we have that

𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌− ⟨ℰ ′

𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ ′*
𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩𝑒−𝑖k·𝜌− (C.8)
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=

∫︁
d2𝜌− ⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*

𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩

× 𝑃 (𝜌+ + 𝜌−/2)𝑃 *(𝜌+ − 𝜌−/2)𝑒−𝑖k·𝜌− (C.9)

=

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k

′, 𝜔+, 𝜔−)

∫︁
d2𝜌− 𝑃 (𝜌+ + 𝜌−/2)𝑃 *(𝜌+ − 𝜌−/2)𝑒−𝑖(k−k′)·𝜌−

(C.10)

=

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k

′, 𝜔+, 𝜔−)𝑊𝑃 (𝜌+,k− k′), (C.11)

where

𝑊𝑃 (𝜌+,k) ≡
∫︁

d2𝜌− 𝑃 (𝜌+ + 𝜌−/2)𝑃 *(𝜌+ − 𝜌−/2)𝑒−𝑖k·𝜌− (C.12)

is the spatial Wigner distribution of 𝑃 (𝜌). In words, Eq. (C.11) shows that multiply-

ing ℰ𝑧(𝜌, 𝜔) by a deterministic field-transmission mask implies that𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−)

is obtained from a k-space convolution of𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−) with the field-transmission

mask’s spatial Wigner distribution. Moreover, Eq. (C.12), together with Eq. (3.14),

immediately leads to

𝒫𝑧(𝜌+, 𝜔−) =

∫︁
d𝜔+

2𝜋

∫︁
d2k

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k, 𝜔+, 𝜔−) (C.13)

=

∫︁
d𝜔+

2𝜋

∫︁
d2k

(2𝜋)2

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k

′, 𝜔+, 𝜔−)𝑊𝑃 (𝜌+,k− k′) (C.14)

=

∫︁
d𝜔+

2𝜋

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝑧(𝜌+,k

′, 𝜔+, 𝜔−)|𝑃 (𝜌+)|2 = 𝒫𝑧(𝜌+, 𝜔−)|𝑃 (𝜌+)|2,

(C.15)

as could have been directly obtained from Eq, (C.7) and the 𝒫-field’s definition.

C.3 Propagation Through a Specular-Plus-Diffuser

Mask

Combining the approaches for the diffuser and deterministic transmission mask allows

us to model the propagation through a specular-plus-diffuser mask. We take such a
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mask to be a multiplicative random process 𝐹 (𝜌1) having nonzero mean ⟨𝐹 (𝜌1)⟩ ≠ 0,

and covariance, ⟨∆𝐹 (𝜌+ + 𝜌−/2)∆𝐹 *(𝜌+ − 𝜌−/2)⟩ ≈ 𝜆2
0ℱ(𝜌+)𝛿(𝜌−) where 0 ≤

ℱ(𝜌+) ≤ 1 and ∆𝐹 (𝜌) ≡ 𝐹 (𝜌) − ⟨𝐹 (𝜌)⟩. The propagation analysis follows from

combining the two previous analyses:

𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌− ⟨ℰ ′

𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ ′*
𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩𝑒−𝑖k·𝜌−

(C.16)

=

∫︁
d2𝜌− ⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*

𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩

× ⟨𝐹 (𝜌+ + 𝜌−/2)𝐹 *(𝜌+ − 𝜌−/2)⟩𝑒−𝑖k·𝜌− . (C.17)

From expanding 𝐹 (𝜌) into a sum of its (deterministic) mean and zero-mean random

portions, it follows that

𝑊ℰ ′
𝑧
(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌− ⟨ℰ𝑧(𝜌+ + 𝜌−/2, 𝜔+ + 𝜔−/2)ℰ*

𝑧 (𝜌+ − 𝜌−/2, 𝜔+ − 𝜔−/2)⟩

× (⟨𝐹 (𝜌+ + 𝜌−/2)⟩⟨𝐹 *(𝜌+ − 𝜌−/2)⟩ + ⟨∆𝐹 (𝜌+ + 𝜌−/2)∆𝐹 *(𝜌+ − 𝜌−/2)⟩)𝑒−𝑖k·𝜌−

(C.18)

=

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝐿1

(𝜌+,k
′, 𝜔+, 𝜔−)𝑊⟨𝐹 ⟩(𝜌+,k− k′) + 𝜆2

0ℱ(𝜌+)

∫︁
d2k′

(2𝜋)2
𝑊ℰ𝐿1

(𝜌+,k
′, 𝜔+, 𝜔−).

(C.19)

C.4 Fresnel Diffraction

Our final task is to find 𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−) when

ℰ𝐿(𝜌𝐿, 𝜔) =

∫︁
d2𝜌0 ℰ0(𝜌0, 𝜔)

(𝜔0 + 𝜔)𝑒𝑖(𝜔0+𝜔)(𝐿/𝑐+|𝜌𝐿−𝜌0|2/2𝑐𝐿)

𝑖2𝜋𝑐𝐿
, (C.20)
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i.e., for Fresnel diffraction over a distance 𝐿 1. This calculation turns out to be more

complicated than its predecessors in this appendix. We start from

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−) =

∫︁
d2𝜌−

∫︁
d2𝜌0

∫︁
d2𝜌′

0 ⟨ℰ0(𝜌0, 𝜔+ + 𝜔−/2)ℰ*
0 (𝜌′

0, 𝜔+ − 𝜔−/2)⟩

× 𝑒𝑖𝜔−𝐿/𝑐𝑒−𝑖k·𝜌−
(𝜔0 + 𝜔+ + 𝜔−/2)𝑒𝑖(𝜔0+𝜔++𝜔−/2)|𝜌++𝜌−/2−𝜌0|2/2𝑐𝐿

𝑖2𝜋𝑐𝐿

× (𝜔0 + 𝜔+ − 𝜔−/2)𝑒−𝑖(𝜔0+𝜔+−𝜔−/2)|𝜌+−𝜌−/2−𝜌′
0|2/2𝑐𝐿

−𝑖2𝜋𝑐𝐿
. (C.21)

Exploiting ∆𝜔 ≪ 𝜔0, and making the coordinate transformation from 𝜌0 and 𝜌′
0 to

𝜌0+ ≡ (𝜌0 + 𝜌′
0)/2 and 𝜌0− ≡ 𝜌0 − 𝜌′

0, we can reduce Eq. (C.21) to

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌−

∫︁
d2𝜌0+

∫︁
d2𝜌0− ⟨ℰ0(𝜌0+ + 𝜌0−/2, 𝜔+ + 𝜔−/2)ℰ*

0 (𝜌0+ − 𝜌0−/2, 𝜔+ − 𝜔−/2)⟩

× 𝑒𝑖𝜔−𝐿/𝑐

(𝜆0𝐿)2
𝑒𝑖(𝜔0+𝜔+)(𝜌+−𝜌0+

)·(𝜌−−𝜌0− )/𝑐𝐿𝑒𝑖𝜔−(|𝜌+−𝜌0+
|2+|𝜌−−𝜌0− |2/4)/2𝑐𝐿𝑒−𝑖k·𝜌− . (C.22)

Rearranging terms allows us to put the 𝜌− integral inside the 𝜌0+ and 𝜌0− integrals,

i.e.,

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌0+

∫︁
d2𝜌0− ⟨ℰ0(𝜌0+ + 𝜌0−/2, 𝜔+ + 𝜔−/2)ℰ*

0 (𝜌0+ − 𝜌0−/2, 𝜔+ − 𝜔−/2)⟩𝑒
𝑖𝜔−𝐿/𝑐

(𝜆0𝐿)2

× 𝑒−𝑖(𝜔0+𝜔+)(𝜌+−𝜌0+
)·𝜌0−/𝑐𝐿𝑒𝑖𝜔−(|𝜌+−𝜌0+

|2/2𝑐𝐿+|𝜌0− |2/8𝑐𝐿)

×
∫︁

d2𝜌− 𝑒𝑖𝜔−|𝜌−|2/8𝑐𝐿𝑒−𝑖[k−(𝜔0+𝜔+)(𝜌+−𝜌0+
)/𝑐𝐿+𝜔−𝜌0−/4𝑐𝐿)]·𝜌− . (C.23)

1For notational convenience, we have assumed that the diffraction takes place between the 𝑧 = 0
and 𝑧 = 𝐿 planes, but the result we obtain will apply for +𝑧-going Fresnel diffraction over a distance
𝐿 starting from an arbitrary 𝑧 plane.

129



Performing the 𝜌− integral then yields

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌0+

∫︁
d2𝜌0− ⟨ℰ0(𝜌0+ + 𝜌0−/2, 𝜔+ + 𝜔−/2)ℰ*

0 (𝜌0+ − 𝜌0−/2, 𝜔+ − 𝜔−/2)⟩𝑒
𝑖𝜔−𝐿/𝑐

(𝜆0𝐿)2

× 𝑒−𝑖(𝜔0+𝜔+)(𝜌+−𝜌0+
)·𝜌0−/𝑐𝐿𝑒𝑖𝜔−|𝜌+−𝜌0+

|2/2𝑐𝐿𝑒𝑖𝜔−|𝜌0− |2/8𝑐𝐿(𝑖8𝜋𝑐𝐿/𝜔−)

× 𝑒−2𝑖𝑐𝐿|k−(𝜔0+𝜔+)(𝜌+−𝜌0+
)/𝑐𝐿+𝜔−𝜌0−/4𝑐𝐿|2/𝜔− , (C.24)

which, after some terms cancel, gives

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−)

=

∫︁
d2𝜌0+

∫︁
d2𝜌0− ⟨ℰ0(𝜌0+ + 𝜌0−/2, 𝜔+ + 𝜔−/2)ℰ*

0 (𝜌0+ − 𝜌0−/2, 𝜔+ − 𝜔−/2)⟩

× 𝑒𝑖𝜔−𝐿/𝑐

(𝜆0𝐿)2
𝑒𝑖𝜔−|𝜌+−𝜌0+

|2/2𝑐𝐿𝑒−2𝑖𝑐𝐿|k−(𝜔0+𝜔+)(𝜌+−𝜌0+
)/𝑐𝐿|2/𝜔−𝑒−𝑖k·𝜌0− (𝑖8𝜋𝑐𝐿/𝜔−) (C.25)

=

∫︁
d2𝜌0+ 𝑊ℰ0(𝜌0+ ,k, 𝜔+, 𝜔−)

𝑒𝑖𝜔−𝐿/𝑐

(𝜆0𝐿)2
𝑒𝑖𝜔−|𝜌+−𝜌0+

|2/2𝑐𝐿

× 𝑒−2𝑖𝑐𝐿|k−(𝜔0+𝜔+)(𝜌+−𝜌0+
)/𝑐𝐿|2/𝜔−(𝑖8𝜋𝑐𝐿/𝜔−). (C.26)

The term

𝑒−2𝑖𝑐𝐿|k−(𝜔0+𝜔+)(𝜌+−𝜌0+
)/𝑐𝐿|2/𝜔−𝑖8𝜋𝑐𝐿/𝜔−(𝜆0𝐿)2

in Eq. (C.26)’s integrand behaves like the impulse 𝛿[𝜌0+ − 𝜌+ + 𝑘𝑐𝐿/(𝜔0 + 𝜔+)].

This delta-function behavior follows because: (1) The term in question is a highly-

oscillatory function outside of a narrow slow-oscillation region that is centered at

𝜌+ − 𝑘𝑐𝐿/(𝜔0 + 𝜔+) with nominal width
√
𝜔−𝑐𝐿/2(𝜔0 + 𝜔+), and 𝜔0 ≫ max |𝜔+|

implies that it integrates to one. (2) The other 𝜌0+-dependent terms in Eq. (C.26)

are the oscillatory term, exp(𝑖𝜔−|𝜌+ − 𝜌0+ |2/2𝑐𝐿), which varies much more slowly

than its predecessor, because 𝜔0 ≫ max |𝜔−|, and the Wigner distribution, whose 𝜌0+

dependence can reasonably be assumed to be nearly constant over regions of diameter
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√
𝜔−𝑐𝐿/2(𝜔0 +𝜔+). So, using the delta-function approximation in Eq. (C.26), we get

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−) = 𝑊ℰ ′
0

(︂
𝜌+ − 𝑐𝐿k

(𝜔0 + 𝜔+)
,k, 𝜔+, 𝜔−

)︂
𝑒
𝑖
𝜔−𝐿

𝑐

(︂
1+

𝑐2|k|2

2(𝜔0+𝜔+)2

)︂
. (C.27)

Finally, again making use 𝜔0 ≫ 𝜔+, we have

𝑊ℰ𝐿(𝜌+,k, 𝜔+, 𝜔−) = 𝑊ℰ ′
0

(︂
𝜌+ − 𝑐𝐿k

𝜔0

,k, 𝜔+, 𝜔−

)︂
𝑒
𝑖
𝜔−𝐿

𝑐

(︂
1+

𝑐2|k|2

2𝜔2
0

)︂
. (C.28)

As a consistency check on Eq. (C.28), let us use it to calculate 𝒫𝐿(𝜌+, 𝜔−) when

𝑧 = 0 illumination with TFSWD 𝑊ℰ0(𝜌0+ ,k, 𝜔+, 𝜔−) passes through the diffuser

specified in Eq. (C.1) before undergoing Fresnel diffraction over a distance 𝐿. We

then have that

𝒫𝐿(𝜌+, 𝜔−) =

∫︁
d𝜔+

2𝜋

∫︁
d2k

(2𝜋)2
𝑊ℰ ′

0

(︂
𝜌+ − 𝑐𝐿k

𝜔0

,k, 𝜔+, 𝜔−

)︂
𝑒
𝑖
𝜔−𝐿

𝑐

(︂
1+

𝑐2|k|2

2𝜔2
0

)︂
. (C.29)

Using Eq. (C.6) now gives us

𝒫𝐿(𝜌+, 𝜔−) = 𝜆2
0

∫︁
d𝜔+

2𝜋

∫︁
d2k

(2𝜋)2

∫︁
d2k′

(2𝜋)2
𝑊ℰ ′

0

(︂
𝜌+ − 𝑐𝐿k

𝜔0

,k′, 𝜔+, 𝜔−

)︂
𝑒
𝑖
𝜔−𝐿

𝑐

(︂
1+

𝑐2|k|2

2𝜔2
0

)︂
.

(C.30)

Changing variables so that k = 𝜔0(𝜌+ − 𝜌0)/𝑐𝐿 leaves us with

𝒫𝐿(𝜌+, 𝜔−) =

∫︁
d𝜔+

2𝜋

∫︁
d2𝜌0

∫︁
d2k′

(2𝜋)2
𝑊ℰ0 (𝜌0,k

′, 𝜔+, 𝜔−)
𝑒𝑖

𝜔−𝐿

𝑐
(1+|𝜌+−𝜌0|2/2𝐿2)

𝐿2
.(C.31)

which reduces to the result from Chapter. 2,

𝒫𝐿(𝜌+, 𝜔−) =

∫︁
d2𝜌0𝒫0(𝜌0, 𝜔−)

𝑒𝑖𝜔−𝐿/𝑐𝑒𝑖𝜔−|𝜌+−𝜌0|2/2𝑐𝐿

𝐿2
, (C.32)

by virtue of Eq. (3.14).
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Appendix D

Synthetic-Wavelength-Holography

Approach

In this appendix, we will develop the synthetic-wavelength-holography approach of

Willomitzer et al. [14] in our 𝒫-field framework. Within the limitations of current laser

and detector technology, this approach offers a more practical method to access higher

𝒫-field frequencies than is possible with the naive approach of modulating incident

illumination then directly detecting the returning diffuser-averaged STA irradiance

and computing its spectrum. To begin, consider the simple 𝒫 field associated with

single-frequency irradiance modulation at angular frequency Ω:

𝒫(𝜌, 𝜔−) = 𝒫*
Ω(𝜌)2𝜋𝛿(𝜔− + Ω) + 𝒫0(𝜌)2𝜋𝛿(𝜔−) + 𝒫Ω(𝜌)2𝜋𝛿(𝜔− − Ω). (D.1)

It consists of three peaks, one at zero frequency, one at the modulation frequency, and

one at the negated modulation frequency. The zero-frequency component 𝒫0(𝜌) is

positive, owing to the positivity of the diffuser-averaged STA irradiance. The fact that

the modulation-frequency components have a conjugate relationship follows from the

diffuser-averaged STA irradiance’s being real valued. Moreover, |𝒫Ω(𝜌)| ≤ 𝒫0(𝜌)/2 is

required because the STA irradiance is non-negative. So, this represents the simplest

physical 𝒫 field one can generate. One way to generate it is by coherently summing

optical fields at two angular frequencies, 𝜔1 and 𝜔2. Taking 𝜔1 = 𝜔0 to be our
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optical frequency and 𝜔2 = 𝜔0 + ∆𝜔 to be detuned from 𝜔0 by ∆𝜔 = 𝜔2 − 𝜔1, the

frequency-domain complex field envelope associated with such a signal is then

ℰ(𝜌, 𝜔) = ℰ𝜔1(𝜌)2𝜋𝛿(𝜔) + ℰ𝜔2(𝜌)2𝜋𝛿(𝜔 − ∆𝜔). (D.2)

The 𝒫 field associated with this complex field envelope is given by

𝒫(𝜌, 𝜔−) =

∫︁
d𝜔+

2𝜋
⟨ℰ(𝜌, 𝜔+ + 𝜔−/2)ℰ*(𝜌, 𝜔+ − 𝜔−/2)⟩ (D.3)

=⟨ℰ𝜔1(𝜌)ℰ*
𝜔2

(𝜌)⟩2𝜋𝛿(𝜔− + ∆𝜔) + (⟨|ℰ𝜔1(𝜌)|2⟩ + ⟨|ℰ𝜔2(𝜌)|2⟩)2𝜋𝛿(𝜔−)

+ ⟨ℰ*
𝜔1

(𝜌)ℰ𝜔2(𝜌)⟩2𝜋𝛿(𝜔− − ∆𝜔). (D.4)

This is a single-frequency 𝒫 field for frequency ∆𝜔. In particular, we have that

𝒫0(𝜌) = ⟨|ℰ𝜔1(𝜌)|2⟩ + ⟨|ℰ𝜔2(𝜌)|2⟩ (D.5a)

𝒫Δ𝜔(𝜌) = ⟨ℰ*
𝜔1

(𝜌)ℰ𝜔2(𝜌)⟩. (D.5b)

For systems that are linear and time invariant with respect to the optical field—as

is true for all elements discussed in this thesis—the frequency structure of the 𝒫 field

and complex field envelope remain unchanged, and our goal becomes simply to relate

the input quantities to the output quantities at each frequency. For single-frequency

modulation in particular this means that there exist relations

ℰin,𝜔1(𝜌) → ℰout,𝜔1(𝜌) (D.6)

ℰin,𝜔2(𝜌) → ℰout,𝜔2(𝜌) (D.7)

𝒫in,0(𝜌) → 𝒫out,0(𝜌) (D.8)

𝒫in,Δ𝜔(𝜌) → 𝒫out,Δ𝜔(𝜌), (D.9)

and that these relations suffice to fully characterize the phasor-field input-output

behavior. Provided diffuser averaging can be accounted for, it follows from Eq. (D.5)
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that the relations for the complex field envelope suffice to characterize the relations

for the 𝒫 field. More importantly, for linear time-invariant systems, the input-output

relations for ℰ𝜔1(𝜌) and ℰ𝜔2(𝜌) are the same as the complex-field-envelope input-

output relations for illuminating the system with unmodulated light at each frequency

individually. The implication is that, provided we can accurately measure the output

complex field envelope and account for diffuser averaging, phasor-field imaging tasks

can be carried out by sequentially illuminating the system with unmodulated inputs,

meaning we are not burdened by needing direct detectors that are sufficiently fast to

capture the 𝒫-field modulation frequency. We will turn now to each of these concerns.

�
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Figure D-1: Setup for balanced heterodyne detection. The signal field is combined
with a strong local oscillator, detuned from the optical frequency by 𝜔𝐼𝐹 , on a 50-50
beam splitter. The outputs of the beam splitter are detected with arrays of pho-
todetectors (shown by the dashed lines). The two detection signals are subtracted,
then twice the local oscillator amplitude is divided out, and the resulting signal is
demodulated at 𝜔𝐼𝐹 . The result is a detection of the signal field’s complex field
envelope.

To measure the output complex field envelope, we propose using balanced het-

erodyne detection, as depicted in Fig. D-1. The signal—characterized by positive-

frequency optical field 𝑈𝑆(𝜌, 𝑡) = ℰ𝜔(𝜌)𝑒−𝑖𝜔𝑡—is mixed on a 50-50 beam splitter

with a strong, plane-wave local oscillator—characterized by positive-frequency opti-

cal field 𝑈𝐿𝑂(𝑡) = ℰ𝐿𝑂𝑒−𝑖(𝜔−𝜔𝐼𝐹 )𝑡—detuned from the optical frequency by an inter-

mediate frequency 𝜔𝐼𝐹 that is slow enough for electronics to capture. The positive-
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frequency optical fields at the output arms of the beam splitter are given by 𝑈±(𝜌, 𝑡) =

(𝑈𝑆(𝜌, 𝑡) ± 𝑈𝐿𝑂(𝑡))/
√

2. Each output arm is then directly detected, at high spatial

resolution, i.e., with a detector array. For simplicity, we will assume ideal continuum

photodetection. We will also ignore the effects of noise1 and assume the detectors

have unity quantum efficiency 𝜂 = 1. In effect, we take each detector to accurately

detect the STA irradiance, at full spatial resolution:

𝐼±(𝜌, 𝑡) = |𝑈±(𝜌, 𝑡)|2 (D.10)

=
|ℰ𝜔(𝜌)|2 + |ℰ𝐿𝑂|2

2
±ℜ

[︀
ℰ*
𝐿𝑂ℰ𝜔(𝜌)𝑒−𝑖𝜔𝐼𝐹 𝑡

]︀
. (D.11)

We then subtract the two detector outputs and divide2 by twice the local oscillator

amplitude, leaving

𝐼+(𝜌, 𝑡) − 𝐼−(𝜌, 𝑡)

2 |ℰ𝐿𝑂|
= ℜ

[︀
ℰ𝜔(𝜌)𝑒−𝑖(𝜔𝐼𝐹 𝑡−𝜃)

]︀
, (D.12)

where ℰ𝐿𝑂 = |ℰ𝐿𝑂| 𝑒𝑖𝜃. The desired optical-frequency complex-field envelope now

appears at the intermediate frequency. Thus the quadratures of that signal can be

extracted by standard communication electronics and we obtain ℰ𝜔(𝜌). Applying this

technique at the output of the system of interest and sequentially illuminating the

input at frequencies 𝜔1 and 𝜔2 allows us to recover ℰout,𝜔1(𝜌) and ℰout,𝜔2(𝜌).

Now we can computationally form ℰ*
out,𝜔1

(𝜌)ℰout,𝜔2(𝜌),3 but we still need to ac-

count for diffuser averaging. Unfortunately, it does not suffice to rely on our detectors

averaging over multiple speckles, as we did in Chapter 5. In fact, if our detector ele-

ments are large enough to do so, we lose the signal entirely in that

⟨
𝐼+(𝜌, 𝑡) − 𝐼−(𝜌, 𝑡)

2 |𝐸𝐿𝑂|

⟩
= ℜ

[︀
⟨ℰ𝜔(𝜌)⟩𝑒−𝑖(𝜔𝐼𝐹 𝑡−𝜃)

]︀
= 0. (D.13)

1A strong local oscillator serves to increase the signal-to-noise ratio of the direct detection, as
compared to detecting the signal field alone. However, some fundamental quantum noise is unavoid-
able.

2A physical implementation would omit this division. However, it serves here to improve the
aesthetics of the theory.

3Since the information relevant to imaging tasks is encoded in the modulation frequency compo-
nent of the 𝒫 field, we ignore the zero-frequency component, although that too could be computed.
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So, it is critical that we use high-enough resolution detectors to resolve the speckle

pattern. In practice, we want no more than a few speckle cells to fall on a single

pixel of our detector to avoid the associated signal attenuation. Instead, we propose

low-pass spatial filtering our computed correlation with a 𝑒−1/2-attenuation-radius-𝑅

Gaussian spatial filter to generate an estimate, 𝒫out,Δ𝜔(𝜌), given by

𝒫out,Δ𝜔(𝜌) ≡ 1

2𝜋𝑅2

∫︁
d2𝜌 𝑒−|𝜌−𝜌|2/2𝑅2ℰ*

out,𝜔1
(𝜌)ℰout,𝜔2(𝜌). (D.14)

Provided that our filter is finer than the spatial feature size of the 𝒫 field, viz. 𝑅 <

∆𝜆 ≡ 2𝜋𝑐/∆𝜔, then this is an approximately unbiased estimate of the desired 𝒫-field
component:

⟨𝒫out,Δ𝜔(𝜌)⟩ =
1

2𝜋𝑅2

∫︁
d2𝜌 𝑒−|𝜌−𝜌|2/2𝑅2⟨ℰ*

out,𝜔1
(𝜌)ℰout,𝜔2(𝜌)⟩ (D.15)

=
1

2𝜋𝑅2

∫︁
d2𝜌 𝑒−|𝜌−𝜌|2/2𝑅2𝒫out,Δ𝜔(𝜌) (D.16)

≈ 𝒫out,Δ𝜔(𝜌). (D.17)

What remains then is to assess our estimate’s variance. To do so, we hark back

to our speckle analysis in Chapter 5, and consider the three-bounce scenario from

Fig. 5-1 with the input illumination of Eq. (5.1), taking 𝜇 = 0 without loss of gener-

ality: ℰin,𝜔1(𝜌0) = ℰin,𝜔2(𝜌0) = 𝐸0(𝜌0; 0). Since we’re probing the system sequentially

at each frequency, our unmodulated analysis from Chapter 5 suffices. Moreover, as

in Chapter 5, we will assume that there is no albedo pattern on the hidden plane.

Furthermore, we shall also assume that the Fresnel numbers Ω01 and Ω12 are large

enough that the third-bounce speckle is well-approximated as single-bounce speckle

from the final diffuser, so that the output complex field envelope is Gaussian dis-
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tributed. Under these conditions, Gaussian moment factoring gives us

var(𝒫out,Δ𝜔(𝜌)) =⟨|𝒫out,Δ𝜔(𝜌)|2⟩ − |⟨𝒫out,Δ𝜔(𝜌)⟩|2

=
1

4𝜋2𝑅4

∫︁
d2𝜌3

∫︁
d2𝜌3 𝑒

−(|𝜌−𝜌3|
2+|𝜌−𝜌3|

2)/2𝑅2

× ⟨ℰ*
out,𝜔1

(𝜌3)ℰout,𝜔1(𝜌3)⟩⟨ℰout,𝜔2(𝜌3)ℰ*
out,𝜔2

(𝜌3)⟩, (D.18)

where

ℰout,𝜔(𝜌3) = ℰ3,𝜔(𝜌3) =
𝜔

𝑖2𝜋𝑐𝐿
𝑒𝑖𝜔𝐿/𝑐

∫︁
d2𝜌2 ℰ2,𝜔(𝜌2)𝑒

𝑖𝜔|𝜌3−𝜌2|
2/2𝑐𝐿𝑒𝑖𝜔ℎ2(𝜌2)/𝑐𝑒−4|𝜌2|

2/𝑑22 ,

(D.19)

and similar relations hold for the previous bounces. Accordingly, we find that

⟨ℰ*
out,𝜔(𝜌3)ℰout,𝜔(𝜌3)⟩ = ⟨𝐼3⟩𝑒−

𝜔2𝑑22
32𝑐2𝐿2 |𝜌3−𝜌3|

2

𝑒−𝑖𝜔(|𝜌3|
2−|𝜌3|

2)/2𝑐𝐿, (D.20)

with ⟨𝐼3⟩ as in Eq. (5.8). This in turn implies

var(𝒫out,Δ𝜔(𝜌)) =
⟨𝐼3⟩2

4𝜋2𝑅4

∫︁
d2𝜌3

∫︁
d2𝜌3 𝑒

−(|𝜌−𝜌3|
2+|𝜌−𝜌3|

2)/2𝑅2

× 𝑒−
(𝜔2

0+(𝜔0+Δ𝜔)2)𝑑22
32𝑐2𝐿2 |𝜌3−𝜌3|

2

𝑒𝑖Δ𝜔(|𝜌3|
2−|𝜌3|

2)/2𝑐𝐿 (D.21)

=
⟨𝐼3⟩2 exp

(︀
−∆𝜔2𝑅2 |𝜌|2 /𝑐2𝐿2𝑍(𝑅)

)︀

𝑍(𝑅)
, (D.22)

where

𝑍(𝑅) ≡ 1 +
∆𝜔2𝑅4

𝑐2𝐿2
+

𝑑22𝑅
2

8𝑐2𝐿2
(𝜔2

1 + 𝜔2
2). (D.23)

Equation (D.22) takes its maximum value at 𝜌 = 0, so we’ll limit our attention to

that bound. It’s not hard to see that |⟨𝒫out,Δ𝜔(𝜌)⟩|2 = ⟨𝐼3⟩2, and so the ratio of the

squared mean to the variance is bounded below by

|⟨𝒫out,Δ𝜔(𝜌)⟩|2
var(𝒫out,Δ𝜔(𝜌))

≥ |⟨𝒫out,Δ𝜔(𝜌)⟩|2
var(𝒫out,Δ𝜔(0))

= 𝑍(𝑅). (D.24)
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It’s clear that the variance approaches zero as 𝑅 gets large. However, we’d like to find

that the variance is significantly less than the squared mean for a small enough value

of 𝑅 that we don’t destroy the 𝒫 field’s spatial detail. Taking reasonable parameter

values 𝜆0 = 532 nm, 𝐿 = 1m, 𝑑2 = 2m, we ambitiously take the difference frequency

to be ∆𝜔/2𝜋 = 1THz so that ∆𝜆 = 300𝜇m. Even setting our low-pass-filter width

as small as 𝑅 = 1𝜇m we find 𝑍(1𝜇m) ≈ 141, implying that the squared mean greatly

exceeds the variance, and so 𝒫out,Δ𝜔(𝜌) ≈ 𝒫out,Δ𝜔(𝜌). Of course, we have traded the

need for exceedingly good time resolution in detection for exceedingly good spatial

resolution, as sub-micron pixel sizes (to avoid speckle averaging at the detectors) seem

unrealistic. Moreover, our thin diffusers model a surface scattering process, and for

NLoS imaging applications, subsurface-scattering phenomena may become significant

at THz-scale frequency differences. Nevertheless, Willomitzer et al. [14] have provided

some promising proofs-of-concept for this technique in experimental NLoS imaging

scenarios.
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