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Abstract

Depth sensing is useful for many emerging applications that range from augmented re-
ality to robotic navigation. Time-of-flight (ToF) cameras are appealing depth sensors
because they obtain dense depth maps with minimal latency. However, for mobile and
embedded devices, ToF cameras, which obtain depth by emitting light and estimating
its roundtrip time, can be power-hungry and limit the battery life of the underlying
device. To reduce the power for depth sensing, we present algorithms to address two
scenarios. For applications where RGB images are concurrently collected, we present
algorithms that reduce the usage of the ToF camera and estimate new depth maps
without illuminating the scene. We exploit the fact that many applications oper-
ate in nearly rigid environments, and our algorithms use the sparse correspondences
across the consecutive RGB images to estimate the rigid motion and use it to obtain
new depth maps. Our techniques can reduce the usage of the ToF camera by up to
85%, while still estimating new depth maps within 1% of the ground truth for rigid
scenes and 1.74% for dynamic ones. When only the data from a ToF camera is used,
we propose algorithms that reduce the overall amount of light that the ToF camera
emits to obtain accurate depth maps. Our techniques use the rigid motions in the
scene, which can be estimated using the infrared images that a ToF camera obtains,
to temporally mitigate the impact of noise. We show that our approaches can reduce
the amount of emitted light by up to 81% and the mean relative error of the depth
maps by up to 64%. Our algorithms are all computationally efficient and can obtain
dense depth maps at up to real-time on standard and embedded computing platforms.
Compared to applications that just use the ToF camera and incur the cost of higher
sensor power and to those that estimate depth entirely using RGB images, which are
inaccurate and have high latency, our algorithms enable energy-efficient, accurate,
and low latency depth sensing for many emerging applications.

Thesis Supervisor: Vivienne Sze
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Most of the structures in the visual

world are rigid or at least nearly so.

David Marr

1.1 Motivation

Depth information is useful for many emerging applications, and these range from

augmented reality to robotics. Across these different applications, depth information

enables realistic and safe interactions with the surrounding environment. For example,

in augmented reality, depth information can be used to localize and orient virtual

objects as well as detect user gestures [88]. For robotics, depth is important for

navigation, enabling tasks like localization and obstacle detection [69]. In order to

obtain depth, many of these applications rely on depth sensors. These depth sensors

obtain depth in the form of a depth map, which is an image whose pixels represent

the distance from the sensor to various points in the scene. An example of a depth

map is shown in Figure 1-1.

One appealing sensor that obtains depth maps is a time-of-flight (ToF) camera.

These sensors obtain depth by emitting light and estimating its round-trip time. They

are appealing because they are compact and obtain dense and accurate depth mea-

surements with minimal latency. All of these features are important for applications,
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Figure 1-1: Depth Map Example: A depth map and its corresponding image is
shown. The colors in the depth map represent different depth values.

like robotics, that need depth to react to rapid changes in its environment. How-

ever, one potential drawback of a ToF camera is the fact that it must illuminate the

scene in order to obtain depth. Depending on the range, these sensors can be power-

hungry, especially for applications that need continuous depth measurements. This

makes them unappealing for applications that run on mobile and battery-powered

devices. Furthermore, the high power consumption of ToF cameras also increases

its heat dissipation and forces the addition of cumbersome components such as large

heat sinks.

This thesis addresses the high power consumption of ToF cameras by proposing

algorithms that reduce the sensor power required to obtain accurate depth maps. To

ensure that we can still obtain depth maps with low latency, we are also mindful of

the computational complexity of our approaches so that we can obtain dense depth

maps in near real-time, or 30 frames per second (FPS), using the low power CPUs

of conventional laptop computers and embedded processors. This is a necessary con-

straint that helps ensure that the power for computation is lower than that of the ToF

camera. However, this makes the task of obtaining accurate depth maps challenging

because these processors also have limited computational resources. In this thesis,

we overcome this challenge by developing algorithms that exploit commonly available

data (e.g., RGB images), temporal relationships, and the assumptions made by many

applications (e.g., rigidity) to efficiently obtain dense depth maps. In doing so, our
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algorithms balance the sensor power of the ToF camera, the accuracy of the resulting

depth maps, and the latency which the depth maps are obtained.

In this chapter, we further describe the motivation for our work and provide an

overview of the approaches we take. In Section 1.2, we expand on the appeal of ToF

cameras by comparing them to other commonly used depth sensors. We show that

by emitting light and carefully accumulating its reflection, ToF cameras can reduce

the latency required to obtain dense and accurate depth maps. Unfortunately, this

comes at the cost of increased power consumption, and in Section 1.3, we corroborate

this claim and explain the need for our work. This is followed by an overview of

the contributions of this thesis, namely the approaches we take to efficiently estimate

accurate and dense depth maps while lowering the sensor power in Section 1.4. Finally,

we conclude with an outline of the remainder of this thesis in Section 1.5.

1.2 The Appeal of Time-of-Flight Cameras

As we alluded to in the previous section, there are many sensors that can be used

to measure depth. In this section, we briefly describe and compare commonly used

sensors that obtain dense depth maps, namely: stereo, active stereo, structured light,

and ToF cameras. For each sensor, we comment on its power consumption, the accu-

racy of its depth maps, and the latency in which they are obtained. As summarized

in Table 1.1, we see that a ToF camera offers the best balance between the accuracy

of its depth maps and the latency in which they are obtained, making it ideal for

applications that need responsive depth in order to react to changes in their environ-

ments.

1.2.1 Stereo Camera

Stereo cameras obtain depth for a scene by acquiring and processing two images

that are simultaneously captured from two identical cameras that are separated by a

distance, or baseline. One advantage of a stereo camera is that it estimates depth in

an entirely passive fashion, which means that it does not emit light. Because images
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Feature Stereo Active Stereo Structured Light ToF Camera

High Accuracy X X X
Low Latency X
Low Power X

Table 1.1: Depth Sensor Comparison: We compare stereo, active stereo, struc-
tured light, and ToF cameras in terms of their accuracy, latency, and power consump-
tion.

can be acquired in an energy-efficient manner, stereo cameras estimate depth with

low power.

To estimate depth from these two images, stereo algorithms use the pixel-wise

displacements between the captured images. Because these images are taken from

different positions, the pixels that correspond to the same objects are displaced from

each other. Furthermore, these displacements are a function of the distance between

the object and the stereo camera, where the pixels of an object further away have

smaller displacements than those for objects at a closer distance. Stereo cameras

and their underlying algorithms exploit this property to obtain a depth map by first

finding the corresponding pixels across the two images and then using this information

to obtain depth [28]. This process in shown in Figure 1-2, where we assume that the

two camera images are rectified. From this figure, we see that we can obtain depth by

exploiting the relationship between similar triangles (shown in red and green), where:

𝐵

𝑍𝑖

=
𝐵 − 𝑥𝑖 + 𝑥′

𝑖

𝑍𝑖 − 𝑓
(1.1)

where 𝐵 is length of the baseline that separates the two cameras, 𝑓 is the focal length,

𝑥𝑖 and 𝑥′
𝑖 are the 𝑥-coordinate of the 𝑖th pixel and its correspondence, and 𝑍𝑖 is its

depth. By rearranging the terms of Eq. (1.1), we obtain the following expression for

𝑍𝑖:

𝑍𝑖 =
𝐵𝑓

𝑥𝑖 − 𝑥′
𝑖

(1.2)

In order to determine the corresponding pixels between the two images, block

matching or optical flow algorithms are often used [79]. These algorithms assume
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Figure 1-2: Stereo Camera: We show the configuration of a stereo camera, and
the relevant variables used to estimate depth for the 𝑖th pixel (𝑍𝑖): the two camera
centers (𝐶1 and 𝐶2), their focal length (𝑓), the baseline distance that separates the
cameras (𝐵), and the 𝑥-coordinate of the 𝑖th pixel and its correspondence (𝑥𝑖 and 𝑥′

𝑖).

that corresponding pixels and their neighboring regions have similar intensities. As

such, block matching algorithms take a block of pixels from one image and compare

it to candidates in the other image. Optical flow algorithm relate the pixel-wise dis-

placements to the gradients of the images to estimate the per-pixel displacements

iteratively [37]. To obtain a dense depth map, stereo algorithms need dense cor-

respondences, which are computationally expensive to compute [19]. For a laptop

computer and an embedded processor, this reduces the frame rate and increases the

latency in which depth maps are obtained.

Furthermore, it is also not always possible to accurately determine corresponding

pixels, which negatively impacts the accuracy of the estimated depth maps. For

example, in untextured regions, finding correspondences is inherently ambiguous.

This is also true along edges due to the aperture effect [34]. Due to these ambiguities,

it is not possible to estimate dense depth maps for every scene. To address this

challenge, many stereo algorithms enforce constraints like spatial smoothness to infill

these ambiguous regions. This comes with an additional computational cost, and

these heuristics fail when the assumptions are violated [79].

Another way to overcome this issue is to apply a texture directly onto the object

or scene, which is the approach taken by active stereo and structured light cameras.

29



1.2.2 Active Stereo Camera

Active stereo cameras, like their passive counterparts, estimate depth using images

captured by two cameras separated by a baseline. As implied by its name, these

sensors are active sensors, which means that they emit light in order to estimate depth.

In particular, active stereo cameras use an infrared projector to project a texture

onto the environment so that corresponding pixels can be determined regardless of

the actual texture in the scene [41]. Being infrared, the projected texture is invisible

to humans, but is visible to the infrared cameras and algorithms used to determine

the correspondences. Therefore, active stereo cameras estimate accurate and dense

depth maps for the region that corresponds to the overlap between the field-of-views

of the infrared cameras and the projector. While the accuracy of this sensor is limited

by the resolution of the projector, it nonetheless addresses a major challenge faced

by stereo cameras.

However, this comes at a cost of increased power consumption, especially for

longer ranges. Furthermore, this sensor still needs to find dense correspondences for

the pixels in the overlapping field-of-views, and thus, the high computational costs

and high latency remain.

1.2.3 Structured Light Camera

Structured light cameras are similar to active stereo cameras in that they also project

a coded pattern onto the scene, but differ in that they estimate depth based on how

the pattern, captured by a single infrared camera, deforms. This deformation, or the

correspondence between the pixels in the captured image and those of the projected

pattern, is typically obtained by using stereo matching algorithms. Examples of

structured light cameras include the first generation Kinect and the front facing depth

sensor in the iPhone [6]. One advantage of this sensor over an active stereo camera is

that it reduces the number of cameras required to estimate depth. However, the high

computational costs of determining the deformations for a dense depth map remain.

This sensor is also power-hungry for longer ranges, and the accuracy of its depth maps
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is also limited by the resolution of its projector.

All of the sensors described so far estimate depth using dense correspondences

(or deformations in the case of a structured light camera), which is challenging to

accurately and efficiently compute. In contrast, ToF cameras estimate depth using a

different approach that allows it to obtain dense depth measurements with minimal

computation and latency.

1.2.4 Time-of-Flight Camera

As we previously described, ToF cameras obtain depth by emitting infrared light

and estimating its round-trip travel time. This time-of-flight principle is also used

by sensors like LIDAR, which measures depth by physically scanning the scene with

laser light. What differentiates a ToF camera is that it uses diffuse light in order to

obtain dense depth measurements. As a result, ToF cameras have no moving parts

and are compact, making them ideal to integrate into larger systems. This is another

advantage over the stereo and structured light cameras, which require large baselines

to estimate depth further away. In this section, we focus on ToF cameras, which are

grouped into pulsed and continuous wave cameras.

Pulsed Time-of-Fight Camera

Pulsed ToF cameras obtain depth by emitting pulses of light and estimating its round-

trip travel time. This round-trip time can be estimated for each pixel by accumulating

the reflected light over a sensor array. This process is shown in Figure 1-3 for a single

emitted pulse and pixel, where 𝜏 is the pulse width or the duration in which light is

emitted. We see that its reflection is accumulated over different time intervals. We

denote 𝑆0 as the reflected light that is accumulated over the same time interval in

which the pulse is being emitted. We also accumulate light for an equal duration

afterwards and denote this as 𝑆1. As shown in the figure, the quantity 𝑆0 + 𝑆1 is

proportional to the pulse width, where its area is a function of the intensity of the

emitted light and the material properties of the reflected object. Furthermore, 𝑆1
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Figure 1-3: Pulsed ToF Camera: We depict the operation of a pulsed ToF camera
for a single pulse and pixel. The reflected light is accumulated over two intervals
with an additional period used to account for the background light, from which the
round-trip time and depth can be obtained. In practice, multiple pulses are emitted
and accumulated to reduce noise.

is proportional to the round-trip travel time of the light. Assuming that there is no

contribution from the background, we see that the depth for the 𝑖th pixel located at

(𝑥𝑖, 𝑦𝑖), or 𝑍𝑖, is given by:

𝑍𝑖 =

(︃
𝑐𝜏𝑓

2
√︀

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2

)︃
𝑆1𝑖

𝑆1𝑖 + 𝑆0𝑖

(1.3)

where 𝑐 is the speed of light, 𝑓 is the focal length of the ToF camera, and (𝑥𝑐, 𝑦𝑐)

is its principal point. In practice, there is background infrared light that is also

accumulated in 𝑆0𝑖 and 𝑆1𝑖 and thus, there is an additional shutter period to esti-

mate this background contribution. We denote this as 𝐵𝐺 in Figure 1-3. With this

measurement, we can obtain the corrected depth as follows:

𝑍𝑖 =

(︃
𝑐𝜏𝑓

2
√︀

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2

)︃
𝑆1𝑖 −𝐵𝐺𝑖

𝑆1𝑖 + 𝑆0𝑖 − 2𝐵𝐺𝑖

(1.4)

Furthermore, in addition to obtaining depth maps, the accumulated light can also be

used to obtain an infrared image as shown in Figure 1-4.
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Figure 1-4: Data from ToF Camera: In the processing of obtaining a depth map,
ToF cameras also obtain an infrared image.

Both Eq. (1.3) and Eq. (1.4) assume that 𝑍𝑖 is at most 𝑐𝜏
2

meters, and 𝜏 can be

varied depending on the application. Therefore, the low computation and latency

of these sensors is clear given that depth can be estimated using simple arithmetic

operations as opposed to finding dense and ambiguous correspondences.

Continuous Wave Time-of-Flight Cameras

Another variant of a ToF camera is known as a continuous wave (CW) ToF cam-

era. As shown in Figure 1-5, CW ToF cameras obtain depth by emitting sinusoidal-

modulated light and estimating the phase difference between the emitted light and

its reflection. To estimate the phase difference, a common approach is to compute the

cross-correlation between the signals that represent the emitted and reflected light.

We denote the emitted light as:

𝑠(𝑡) = 𝐴𝑠 cos(𝜔𝑡) + 𝐵𝑠 (1.5)

where 𝐴𝑠 and 𝐵𝑠 are the magnitude and offset of the emitted light, respectively, and

𝜔 is the angular frequency of the modulated light. We denote its reflection as:

𝑟(𝑡) = 𝐴𝑟 cos(𝜔𝑡− 𝜑) + 𝐵𝑟 (1.6)
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Figure 1-5: Continuous Wave ToF Camera: Unlike a pulsed ToF camera, a
CW ToF camera emits sinusoidal-modulated light and estimates the phase difference
between the emitted light and its reflection to obtain depth.

where 𝐴𝑟 and 𝐵𝑟 are the magnitude and offset of the reflected light, respectively, and

𝜑 is the phase difference. The cross-correlation, 𝑐(𝑡), is given by:

𝑐(𝑡) =
𝐴𝑟𝐴𝑠

2
cos(𝜔𝑡 + 𝜑) + 𝐵𝑟𝐵𝑠 (1.7)

To estimate 𝜑, we sample Eq. (1.7) at 4 equally spaced samples with 𝑡 = {0, 𝜋
2𝜔
, 𝜋
𝜔
, 3𝜋
2𝜔
}

to obtain 𝑆0, 𝑆1, 𝑆2, and 𝑆3, respectively. With these quantities, the phase can be

obtained as follows:

𝜑 = tan−1

(︂
𝑆3− 𝑆1

𝑆0− 𝑆2

)︂
(1.8)

This process can be performed efficiently at each pixel by accumulating the reflected

light, and the depth of the 𝑖th pixel located at (𝑥𝑖, 𝑦𝑖) is given by:

𝑍𝑖 =

(︃
𝑓√︀

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2

)︃
𝑐𝜑𝑖

2𝜔
(1.9)

where 𝜑𝑖 is the phase offset of the 𝑖th pixel.

One benefit of this approach is that there is no need to measure the background

infrared light as the difference in the numerator and denominator of Eq. (1.8) accounts

for this. Because the phase wraps around every 2𝜋, we see that depth can only be

measured unambiguously up to 𝑐𝜋
𝜔

meters. For high modulation frequencies, this

distance is small, and many CW ToF cameras use two coprime modulation frequencies

and the Chinese Remainder Theorem to resolve this ambiguity and extend the range
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of the ToF camera [25].

Regardless of the underlying approach used, ToF cameras estimate depth effi-

ciently compared to stereo, active stereo, and structured light cameras. By carefully

acquiring the reflected light, ToF cameras estimate depth using simple, pixel-wise op-

erations instead of computationally expensive correspondence searches. However, this

advantage brought about by illuminating the scene can be a drawback for battery-

powered devices, which we discuss in the next section.

1.3 Time-of-Flight Camera Power Consumption

Because ToF cameras must illuminate a scene in order to measure depth, these sensors

can be power-hungry, and its power consumption depends on the range of the sensor.

As shown in Table 1.2, commercial ToF cameras consume anywhere between 300

mW and 20 W. If an application only requires short range depth intermittently, then

its power consumption may be negligible. However, this is not true for many of

the applications we consider, which need depth continuously. For example, many

augmented reality applications need continuous depth in order to reconstruct the

local environment to allow users to interact with it. Furthermore, long range depth is

essential for robotic applications in order to navigate and quickly react to obstacles

in its surroundings. For both of these scenarios, it is critical to lower the power for

depth sensing to extend the battery life of the underlying device as well as reduce the

dissipated heat.

Model Range (m) Power (W)

Basler [3] 0 - 13 15
IFM O3D302 [39] 0.3 - 8 10
Pico Flexx [70] 0.1 - 4 0.3
Pico Monstar [71] 0.5 - 6 4.5
Swift-E [66] 0.5 - 6 20

Table 1.2: ToF Camera Power Consumption: The range and power consumption
according to the specifications of different ToF cameras is shown. It should be noted
that these ranges are the maximum possible under ideal scenarios.
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To reduce the power for depth sensing, it is appealing to simply reduce the total

amount of light that the ToF camera emits and use the resulting depth map. However,

doing this alone not only reduces the range of the ToF camera, but also increases the

noise in the depth estimates. This is because the accumulated light is also affected by

noise, and it is pronounced when the intensity of the reflected light is low. In Chapter

5, we provide a more rigorous analysis of this noise, but we can visualize its impact in

Figure 1-6. We see that one immediate consequence of lowering the power is not just

reduced range but also reduced depth resolution, where features of the bust cannot

be resolved.

Figure 1-6: Impact of Power: We show the impact of reducing the amount of emit-
ted light by visualizing the resulting point clouds. These depth maps were captured
using an ADI ToF Camera [13].

In this thesis, we propose algorithms that lower the power for depth sensing while

still obtaining accurate and dense depth maps. To ensure that the depth maps can

be obtained with minimal latency, we ensure that our techniques are computationally

efficient so that we can obtain depth maps at up to real-time (30 FPS) on the CPUs

of a standard laptop computer and embedded processor. We provide an overview of

these techniques in the next section.
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1.4 Thesis Contributions

To lower the sensor power of ToF cameras, we propose algorithms that can be broadly

categorized into the following strategies:

∙ Depth Map Estimation Using RGB Images: When RGB images are con-

currently collected, we reduce the duty cycle of the ToF camera and use con-

secutive RGB images and a previous depth map to estimate new depth maps

without turning on the ToF camera.

∙ Low Power Temporal Depth Filtering: When only the ToF camera is used,

we reduce the overall amount of emitted light and use the IR images that a ToF

camera collects to mitigate the effects of noise.

Both of these strategies use the temporal relationship, namely the 3D scene motion,

across consecutive frames to lower the sensor power of the ToF camera while obtaining

low latency and accurate depth maps. Our algorithms estimate the 3D motion for

the following scenarios:

∙ Rigid Objects: The motion of these objects can be described using a single

rotation and translation, which preserves the pairwise distance between any two

points.

∙ Non-Rigid Objects: These objects deform such that the pairwise distance

between any two points may change, but otherwise remain intact. An example

of a non-rigid object is a bending sheet of paper.

∙ Dynamic Scenes: These scenes contain multiple objects undergoing indepen-

dent, rigid and non-rigid motions.

These scenarios encompass a wide variety of scenes and applications.

1.4.1 Depth Map Estimation Using RGB Images

One simple way to reduce the sensor power of a ToF camera is to reduce its usage

as shown in Figure 1-7. However, this is insufficient for applications that need depth

37



maps in real-time, or 30 FPS. To maintain the rate at which depth maps are acquired,

we propose algorithms that leverage concurrently collected and consecutive RGB

images and a previous depth map to estimate a new depth map as shown in Figure

1-8. In many applications, RGB images are typically collected for other purposes,

and we reuse them to estimate depth. Our algorithms assume that the pixels of the

RGB images and depth maps are spatially aligned and use the pixel-wise motion of

these images to estimate the 3D scene motion and new depth maps sequentially.

Time (s) 

To
F
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a 

Po
w

er
 (W

)

Figure 1-7: Reduce the Usage of ToF Camera: By reducing the usage of the ToF
camera, we reduce the overall sensor power.

For the different objects and scenes that we consider, we show how the assumption

of rigidity can be used to efficiently estimate accurate depth maps. In particular, our

contributions are:

∙ When the scene contains a rigid object, we show that its 3D motion can be

estimated using the optical flow at a sparse set of its pixels with linear least

squares. This is relevant for many applications, which range from augmented

reality to robotic navigation, that operate in static environments. By modeling

these scenes as a rigid object, our algorithm is able to estimate dense and

accurate depth maps in real-time on low power embedded processors and lower

the overall system power for depth sensing (Chapter 3).

∙ For non-rigid objects and dynamic scenes, we show that we can still leverage

the assumption of rigidity. By modeling these objects and scenes as locally
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Figure 1-8: Depth Map Estimation: Our algorithms estimate new depth maps
using concurrently collected and consecutive RGB images without using the ToF
camera.

rigid, our algorithms use the previous depth map and the optical flow at a

sparse set of pixels to estimate the rigid motions in the scene and assign them

without computationally expensive operations like rigid motion segmentation.

As a result, our algorithms can estimate accurate depth maps in up to real-

time using the CPUs of a standard laptop computer and increase the variety of

applications that our framework can support (Chapter 4).

The resulting algorithms can reduce the usage of the ToF camera by up to 85% while

obtaining depth maps within 1% of what the ToF camera measures for rigid scenes

and within 1.74% for non-rigid and dynamic ones. Additionally, we also show that

our estimated depth maps can be used in a real augmented reality application in

Section 3.5.
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1.4.2 Low Power Temporal Depth Filtering

We also consider the case where RGB images are not concurrently collected and

only use the data obtained by a ToF camera to reduce the power required to obtain

accurate depth maps. This is important for applications with small form factors that

lack the additional space for an image sensor. Instead of obtaining high power depth

maps for each frame, our algorithms reduce the light the ToF camera emits and use

the consecutive infrared images that a ToF camera collects in the process of obtaining

a depth map to mitigate the effects of noise. One of the challenges of using multiple

sensors is to synchronize the different images and depth maps, but in this scenario,

this is not required as the depth map and infrared images are from the same source.

In contrast to the scenario in Section 1.4.1, the ToF camera is always on, and our

goal is to reduce the overall amount of emitted light while still obtaining accurate

depth maps.

To mitigate the effects of noise, we use the infrared images to estimate the rigid

motions in the scene. Regardless of the noise in the underlying infrared images, we

find that they are accurate enough to estimate sparse optical flow, which we use to

obtain the rigid motions. This allows us to temporally combine the depth maps across

consecutive frames efficiently, enabling the following schemes:

∙ When the amount of light that a ToF camera emits can be varied, we propose

an algorithm that intermittently obtains high power depth maps and uses the

estimated rigid motions to combine them with subsequent low power depth maps

to denoise the low power depth maps. As shown in Figure 1-9a, this approach

reduces the overall amount of power required to obtain accurate depth maps

(Chapter 5).

∙ When only low power depth maps can be acquired (e.g., for sensors with lim-

ited illumination sources) as shown in Figure 1-9b, we propose an algorithm

that denoises these depth maps by recursively filtering them. Our algorithm

estimates the rigid motion between the consecutive depth maps and uses the

rigid motion to efficiently register them as well as account for the changes in

40



depth to mitigate the effects of noise (Chapter 5).
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Figure 1-9: Reduce the Amount of Emitted Light: We show the different sce-
narios in which we reduce the overall amount of light that a ToF camera emits. In
order to mitigate the effect of noise, our algorithms combine the consecutive depth
maps by estimating the rigid motion using the infrared images.

In general, temporal filtering techniques are computationally expensive due to the

need of processing all of the pixels across many frames. By using the assumption

of rigidity, we are able to efficiently obtain accurate depth maps at up to real-time

using the CPUs of an embedded processor, even when the amount of emitted light is

reduced by over 80%.

1.4.3 Evaluation Framework

All of our algorithms balance the sensor power of the ToF camera, the accuracy of

the resulting depth maps, and the latency in which the depth maps are estimated

to obtain a favorable tradeoff. In this thesis, we quantify this using the following

metrics:

Duty Cycle or Power Reduction (%) To quantify the sensor power of the

ToF camera, we use either the duty cycle or power reduction. The duty cycle is

the percentage of depth maps acquired using the ToF camera. This metric is used

to evaluate our approaches that reduce the usage of the ToF camera and estimate
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new depth maps using RGB images instead. The power reduction is the percentage

reduction in the power used to obtain depth maps compared to its regular operation,

where high power depth maps are obtained for each frame. We use this metric to

evaluate our adaptive power depth map scheme as shown in Figure 1-9a, where the

ToF camera is always on but emits less light overall.

Mean Relative Error (%) To quantify the accuracy of the depth maps that our

algorithms obtain, we use the mean relative error. This metric is equal to:

MRE =
100

𝑁

𝑁∑︁
𝑖=1

|𝑍𝑖 − 𝑍𝑖|
𝑍𝑖

(1.10)

where 𝑍𝑖 is the ground truth depth for the 𝑖th pixel, 𝑍𝑖 is the estimate, and 𝑁 is the

total number of pixels. This metric penalizes a unit error more so up close than further

away, which is ideal for applications like robotic navigation that need to quickly react

to changes in its immediate environment. For our evaluations, this metric also allows

us to compare the performance of our algorithm on datasets with different dynamic

ranges.

Estimation Frame Rate (FPS) To quantify the latency in which our algorithms

obtain dense depth maps, we measure its frame rate on the ODROID-XU3 embedded

processor (Cortex-A7/Cortex-A15 Octa Core CPU) [26] and a 2015 MacBook Pro

(i5-5257U Dual Core CPU) [15]. We use these platforms because they are ubiquitous

(e.g., the CPU of the ODROID-XU3 board is used in the Samsung Galaxy S5 [78])

and to ensure that the power for computation is lower than that of a ToF camera.

With these metrics, we show that compared to approaches that rely heavily on com-

putation and those that strictly use the ToF camera in a high power setting, our

algorithms enable energy-efficient, accurate, and low latency depth sensing.
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1.5 Thesis Outline

This thesis is organized as follows. In Chapter 2, we describe how we estimate the rigid

motion using consecutive images and a previous depth map. This is the foundation

for the different approaches proposed in this thesis. In Chapter 3, we describe how

we can use concurrently collected RGB images to reduce the usage of the ToF camera

and estimate depth maps for a single rigid object. This is useful for applications

that interact in static environments. In Chapter 4, we show how RGB images can be

used to estimate depth maps for non-rigid objects and dynamic scenes. This enables

our framework to support a larger variety of applications. We address the case when

RGB images are not available in Chapter 5. We show how we use the infrared images

to estimate both rigid and dynamic motions, which allows us to reduce the amount

of light the ToF camera emits and denoise the low power depth maps. We conclude

in Chapter 6, where we summarize our key insights and discuss future work.

1.5.1 Summary of Publications

Here, we list the publications that went into this thesis. In Table 1.3, we summarize

the scope for each of our publications.

No. Year Venue Section RGB Rigid Non-Rigid Dynamic

1 2017 ICIP 3.1 X X
2 2018 ICIP 4.3 X X
3 2019 ICIP 5.3 X
4 2020 TCSVT 3.1 X X
5 2020 arXiv 4.5 X X
6 2020 - 5.6 X

Table 1.3: Publications: We categorize each of the publications that went into
this thesis. If the approach uses RBG images, we check the RGB column. We also
indicate whether the publication is focused on rigid objects (Rigid), non-rigid objects
(Non-Rigid), or dynamic scenes (Dynamic).
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Conference Publications

1. J. Noraky and V. Sze, "Low Power Depth Estimation for Time-of-Flight imag-

ing," IEEE International Conference on Image Processing (ICIP), Beijing, China,

2017, pp. 2114-2118.

2. J. Noraky and V. Sze, "Depth Estimation of Non-Rigid Objects for Time-of-

Flight Imaging," IEEE International Conference on Image Processing (ICIP),

Athens, Greece, 2018, pp. 2925-2929.

3. J. Noraky, C. Mathy, A. Cheng and V. Sze, "Low Power Adaptive Time-of-

Flight Imaging for Multiple Rigid Objects," IEEE International Conference on

Image Processing (ICIP), Taipei, Taiwan, 2019, pp. 3517-3521.

Journal Publications and Preprints

4. J. Noraky, V. Sze, "Low Power Depth Estimation of Rigid Objects for Time-of-

Flight Imaging," IEEE Transactions on Circuits and Systems for Video Tech-

nology (TCSVT), 2020.

5. J. Noraky, V. Sze, "Depth Map Estimation of Dynamic Scenes Using Prior

Depth Information," Under Review, February 2020. Available: http://arxiv.

org/abs/2002.00297

6. J. Noraky, V. Sze, "Low Power Depth Map Denoising for Mobile Time-of-Flight

Cameras," In Preparation, 2020.
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Chapter 2

Rigid Motion Estimation

As summarized in Chapter 1, the algorithms in this thesis lower the sensor power

of time-of-flight (ToF) cameras by estimating the rigid motions in the scene. In this

chapter, we review the common assumptions and approaches used by our different

techniques to estimate this 3D motion using the data from consecutive frames.

In Section 2.1, we first introduce the image formation model that we use to describe

how 3D objects and their motions are mapped onto 2D images. Our techniques

invert this model by using the 2D pixel-wise motion of the consecutive images to

estimate the 3D scene motion. When this motion is rigid, we show in Section 2.2

that it can be estimated using the pixel-wise motion at a sparse set of pixels. As

we demonstrate throughout this thesis, this allows us to lower the latency in which

we estimate accurate depth maps for a variety of different scenarios. Finally, in

Section 2.3, we summarize the notation that we introduced, which will be used for

the remainder of this thesis.

2.1 Image Formation Model

Our approaches assume perspective projection, which describes how 3D objects are

projected onto 2D images. As shown in Figure 2-1, the 2D projection of the 3D point,

𝑃𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)
𝑇 , is found by taking the intersection of the line that connects 𝑃𝑖

to the center of projection with the image plane. Denoting the 2D coordinate of the
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Figure 2-1: Perspective Projection: We assume images are formed by perspective
projection as described by Eq. (2.1).

projection as 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖)
𝑇 , we have the following relationship:

𝑥𝑖 − 𝑥𝑐

𝑓
=

𝑋𝑖

𝑍𝑖

and
𝑦𝑖 − 𝑦𝑐

𝑓
=

𝑌𝑖

𝑍𝑖

(2.1)

where 𝑓 is the principal distance (focal length), and (𝑥𝑐, 𝑦𝑐) is the principal point

(center). As shown in the figure, the principal point is the perpendicular intersection

of the line that connects the center of projection to the image plane, and the length

of that segment is the principal distance.

In our algorithms, we use the relationship in Eq. (2.1) to determine the 3D position

of each pixel in a depth map. For the 𝑖th pixel, we have:

𝑃𝑖 =
𝑍𝑖

𝑓
(𝑥𝑖 − 𝑥𝑐, 𝑦𝑖 − 𝑦𝑐, 𝑓)𝑇 (2.2)

where 𝑍𝑖 is its depth taken from the depth map. Conversely, given the 3D coordinate
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of a point, we can also obtain the 2D coordinate of its projection. This is the basis for

the reprojection operation that we use in our algorithms to obtain new depth maps.

From Eq. (2.1), we have:

𝑥𝑖 = 𝑓
�̂� · 𝑃𝑖

𝑧 · 𝑃𝑖

+ 𝑥𝑐 and 𝑦𝑖 = 𝑓
𝑦 · 𝑃𝑖

𝑧 · 𝑃𝑖

+ 𝑦𝑐 (2.3)

where · denotes the dot product and x̂,𝑦, 𝑧 are the unit vectors oriented along the

coordinate axes.

Naturally, as the 3D point moves, its 2D pixel location also moves. We denote the

3D displacement of 𝑃𝑖 as �̇�𝑖 = (�̇�𝑖, �̇�𝑖, �̇�𝑖)
𝑇 , where we use the ˙ notation to indicate

its temporal displacement. Therefore, its new 3D position, 𝑃 ′
𝑖 , is given by:

𝑃 ′
𝑖 = 𝑃𝑖 + �̇�𝑖 (2.4)

where we use ′ to denote its new corresponding location. Using Eq. (2.3), we can then

obtain its new pixel location, 𝑝′
𝑖 = (𝑥′

𝑖, 𝑦
′
𝑖), as follows:

𝑥′
𝑖 = 𝑓

𝑋𝑖 + �̇�𝑖

𝑍𝑖 + �̇�𝑖

+ 𝑥𝑐 (2.5)

𝑦′𝑖 = 𝑓
𝑌𝑖 + �̇�𝑖

𝑍𝑖 + �̇�𝑖

+ 𝑦𝑐 (2.6)

This is the relationship that our algorithms exploit in order to estimate the 3D scene

motion using the data in our problem setup as shown in Figure 2-2. To solve this

system, one common approach is to first linearize these rational equations and then

solve the resulting linear system. However, we still cannot solve this linear system

because it is underdetermined. Our algorithms overcome this by assuming rigid mo-

tion, which not only converts this underdetermined system into an overdetermined

one, but also allows us to estimate the 3D motion of all the pixels of a rigid object

using the data from a sparse subset of its pixels.
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Figure 2-2: Problem Setup: Our algorithm estimates the 3D scene motion between
the consecutive frames by using the depth and 2D motion of the pixels in the previous
frame. The depth of the pixel located at (𝑥𝑖, 𝑦𝑖) in the previous frame is given by 𝑍𝑖.
We can use this information to obtain its 3D position, or 𝑃𝑖, using Eq. (2.3). Due
to the motion in the scene, 𝑃𝑖 moves to 𝑃 ′

𝑖 , and its new pixel location is given by
(𝑥′

𝑖, 𝑦
′
𝑖).
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2.2 Rigid Motion Estimation

If 𝑃𝑖 undergoes rigid motion, we can obtain its new corresponding position, 𝑃 ′
𝑖 , using

its pose. The pose is composed a 3 × 3 rotation matrix, 𝑅, and a 3D vector, 𝑇 . It

allows us to rewrite Eq. (2.4), which describes 𝑃 ′
𝑖 in terms of a general motion, in

terms of its rigid motion:

𝑃 ′
𝑖 = 𝑅𝑃𝑖 + 𝑇 (2.7)

Many methods estimate the pose by using the 2D coordinates of 𝑃𝑖 and 𝑃 ′
𝑖 to first

estimate the essential matrix and then factor it to obtain 𝑅 and 𝑇 . The essential

matrix can be estimated using techniques that range from performing a singular value

decomposition (when 8 corresponding pixels are known) [54] to finding the roots of a

tenth order polynomial (when 5 corresponding pixels are known) [60]. The essential

matrix can then be factored to obtain 4 potential poses [28, 33].

We do not use these methods because they do not utilize the depth data and other

assumptions of our problem setup. By taking these into account, we show that the

rigid motion can be directly estimated with fewer correspondences using linear least

squares. As shown in Chapters 3 to 4, this is advantageous when used with techniques

like RANSAC [18], especially when there is noise in the depth and pixel-wise motion

data.

2.2.1 Instantaneous Approximation

When the 3D motion between consecutive frames is small, which is a reasonable

assumption for applications where frames are captured at 30 FPS or higher, we can

linearize Eq. (2.5) and Eq. (2.6) by using their Taylor approximation:

𝑥′
𝑖 = 𝑓

𝑋𝑖 + �̇�𝑖

𝑍𝑖 + �̇�𝑖

+ 𝑥𝑐 ≈ 𝑓
𝑋𝑖

𝑍𝑖

+ 𝑓
�̇�𝑖

𝑍𝑖

− 𝑓
𝑋𝑖

𝑍2
𝑖

�̇�𝑖 + 𝑥𝑐 (2.8)

𝑦′𝑖 = 𝑓
𝑌𝑖 + �̇�𝑖

𝑍𝑖 + �̇�𝑖

+ 𝑦𝑐 ≈ 𝑓
𝑌𝑖

𝑍𝑖

+ 𝑓
�̇�𝑖

𝑍𝑖

− 𝑓
𝑌𝑖

𝑍2
𝑖

�̇�𝑖 + 𝑦𝑐 (2.9)
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By using Eq. (2.3), we can simplify Eq. (2.8) and Eq. (2.9) to obtain:

�̇�𝑖 =
𝑓�̇�𝑖 − 𝑥𝑖�̇�𝑖

𝑍𝑖

(2.10)

𝑦𝑖 =
𝑓�̇�𝑖 − 𝑦𝑖�̇�𝑖

𝑍𝑖

(2.11)

where �̇�𝑖 = 𝑥′
𝑖 − 𝑥𝑖 and 𝑦𝑖 = 𝑦′𝑖 − 𝑦𝑖 are the pixel-wise motion of the 𝑖th pixel. In

our problem setup (Figure 2-2), the depth in the previous frame (𝑍𝑖) is known, and

thus, Eq. (2.10) and Eq. (2.11) linearly relate the 3D motion of the 𝑖th point in the

previous frame, �̇�𝑖, �̇�𝑖, �̇�𝑖, to its 2D pixel-wise motion, �̇�𝑖, 𝑦𝑖.

To obtain an expression for �̇�𝑖 and 𝑦𝑖 in terms of the rigid motion, we need to

rewrite �̇�𝑖, �̇�𝑖, �̇�𝑖 in terms of the parameters of the pose. However, one challenge is

that the rotation matrix, 𝑅, has non-linear constraints. This would prevent the rigid

motion parameters from being estimated using linear least squares. To overcome this

challenge, we again make use of the fact that the time between frames is small, which

allows us to represent �̇�𝑖, �̇�𝑖, �̇�𝑖 using its instantaneous rotation. We will show that

the resulting formulation is linear.

To do so, we first define the quantity 𝑃𝑖(𝑡), which is the 3D position of the 𝑖th

point at time 𝑡, as:

𝑃𝑖(𝑡) = 𝑅(𝑡)𝑃𝑖(0) + 𝐷(𝑡) (2.12)

where 𝑃𝑖(0) is the initial position of the point, 𝑅(𝑡) is a 3× 3 rotation matrix that

describes its orientation, and 𝐷(𝑡) is a 3D vector that describes its displacement from

the origin. Both 𝑅(𝑡) and 𝐷(𝑡) vary with time. To obtain �̇�𝑖, �̇�𝑖, �̇�𝑖, we take the

derivative of Eq. (2.12) with respect to time. We have:

�̇�𝑖(𝑡) = �̇�(𝑡)𝑃𝑖(0) + �̇�(𝑡) = �̇�(𝑡)𝑅(𝑡)𝑇𝑅(𝑡)𝑃𝑖(0) + �̇�(𝑡) (2.13)

where �̇�𝑖(𝑡) = (�̇�𝑖, �̇�𝑖, �̇�𝑖)
𝑇 is the derivative of 𝑃𝑖(𝑡), �̇�(𝑡) is the derivative of 𝑅(𝑡),

and �̇�(𝑡) is the derivative of 𝐷(𝑡). The second equality in Eq. (2.13) is obtained by
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using the identity 𝑅(𝑡)𝑇𝑅(𝑡) = 𝐼. This allows us to rewrite Eq. (2.13) as:

�̇�𝑖(𝑡) = Ω(𝑡)𝑃𝑖(𝑡) + 𝑉 (𝑡) (2.14)

where Ω(𝑡) = �̇�(𝑡)𝑅(𝑡)𝑇 and 𝑉 (𝑡) = �̇�(𝑡) − Ω(𝑡)𝐷(𝑡). We see that Ω(𝑡) is

a 3 × 3 skew-symmetric matrix. This can be seen by differentiating the identity

𝑅(𝑡)𝑅(𝑡)𝑇 = 𝐼 with respect to time:

�̇�(𝑡)𝑅(𝑡)𝑇 + 𝑅(𝑡)�̇�(𝑡)𝑇 = 0 (2.15)

and thus, Ω(𝑡)𝑇 = −Ω(𝑡). Furthermore, 𝑉 (𝑡) is a 3D vector.

Because a skew-symmetric matrix product corresponds to a cross product, we can

rewrite Eq. (2.14) as:

�̇�𝑖(𝑡) = 𝜔(𝑡)× 𝑃𝑖(𝑡) + 𝑉 (𝑡) (2.16)

where × denotes the cross product and 𝜔(𝑡) is a 3D vector such that 𝜔(𝑡)×𝑃𝑖(𝑡) =

Ω(𝑡)𝑃𝑖(𝑡). This allows us to interpret 𝜔(𝑡) and 𝑉 (𝑡) as the angular and translational

velocity of the 𝑖th 3D point.

This linear algebraic manipulation is important because it allows us to replace

the rotation matrix, which has non-linear constraints, with a linear skew-symmetric

matrix. Therefore, we can linearly relate the 3D rigid motion of an object to its 2D

pixel-wise motion, a relationship that our algorithms exploit.

2.2.2 Estimating Angular and Translational Velocity

In order to estimate the rigid motion in the scene, we first substitute Eq. (2.16)

into Eq. (2.10) and Eq. (2.11). For a given time, we can drop the dependence on 𝑡

and represent the angular and translation velocity simply as 𝜔 and 𝑉 . With 𝜔 =

(𝜔0, 𝜔1, 𝜔2)
𝑇 and 𝑉 = (𝑉0, 𝑉1, 𝑉2)

𝑇 , we have:

�̇�𝑖 =
𝑓

𝑍𝑖

𝑉0 −
𝑥𝑖 − 𝑥𝑐

𝑍𝑖

𝑉2 −
(𝑥𝑖 − 𝑥𝑐)(𝑦𝑖 − 𝑦𝑐)

𝑓
𝜔0 +

(︂
𝑓 +

(𝑥𝑖 − 𝑥𝑐)
2

𝑓

)︂
𝜔1 − (𝑦𝑖 − 𝑦𝑐)𝜔2

(2.17)
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𝑦𝑖 =
𝑓

𝑍𝑖

𝑉1 −
𝑦𝑖 − 𝑦𝑐
𝑍𝑖

𝑉2 −
(︂
𝑓 +

(𝑦𝑖 − 𝑦𝑐)
2

𝑓

)︂
𝜔0 +

(𝑥𝑖 − 𝑥𝑐)(𝑦𝑖 − 𝑦𝑐)

𝑓
𝜔1 + (𝑥𝑖 − 𝑥𝑐)𝜔2

(2.18)

Both Eq. (2.17) and Eq. (2.18) are linear because in our problem setup, the depth is

known in the previous depth map (e.g., 𝑍𝑖) and its pixel-wise motion (e.g., �̇�𝑖, 𝑦𝑖) can

be determined by finding the corresponding pixels of the consecutive images (e.g.,

(𝑥𝑖, 𝑦𝑖) and (𝑥′
𝑖, 𝑦

′
𝑖)). Furthermore, for each pixel where 𝑍𝑖 and (�̇�𝑖, 𝑦𝑖) are known, we

obtain 2 linear equations in 6 unknowns. This means that we can obtain the angular

and translational velocity by solving a 6 × 6 linear system using the data from just

3 pixels. In practice, more pixels are used to mitigate the noise in the data, but the

rigid motion can still be estimated by solving a 6× 6 linear system. This can be seen

by converting Eq. (2.17) and Eq. (2.18) into matrix form as follows:

⎛⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

𝑓
𝑍𝑖

0 −𝑥𝑖−𝑥𝑐

𝑍𝑖
− (𝑥𝑖−𝑥𝑐)(𝑦𝑖−𝑦𝑐)

𝑓
𝑓 +

(𝑥′
𝑖−𝑥𝑐)2

𝑓
−(𝑦𝑖 − 𝑦𝑐)

0 𝑓
𝑍𝑖
−𝑦𝑖−𝑦𝑐

𝑍𝑖
−𝑓 − (𝑦𝑖−𝑦𝑐)2

𝑓
(𝑦𝑖−𝑦𝑐)(𝑥𝑖−𝑥𝑐)

𝑓
(𝑥𝑖 − 𝑥𝑐)

...
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝐴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑉0

𝑉1

𝑉2

𝜔0

𝜔1

𝜔2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝛽

=

⎛⎜⎜⎜⎜⎜⎜⎝

...

�̇�𝑖

𝑦𝑖
...

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

Δ

(2.19)

where the solution is given by the pseudoinverse:

𝛽 =
(︀
𝐴𝑇𝐴

)︀−1
𝐴𝑇Δ (2.20)

With the rigid motion parameters estimated, we can then compute the 3D motion for

all of the remaining pixel of a rigid object using Eq. (2.16). As we will show in this

thesis, the ability to estimate the 3D motion of a dense set of pixels using the data

from a sparse subset allows our algorithms to obtain depth maps with low latency.

Because our algorithms depend heavily on estimating the rigid motion, an im-

portant question to ask is: how accurate can we estimate the rigid motion with our

approach? We know from [35, 36] that, with the exception of rare critical surfaces,
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the 2D pixel-wise motion induced by rigid motion is unique. However, our approaches

estimate the rigid motion using the 2D optical flow, which is the apparent pixel-wise

motion, obtained using low-complexity algorithms.

To see how errors in the 2D pixel-wise motion might affect the estimated rigid

motion, consider the pixel-wise motion that arises due to a rotation about the 𝑦-axis

and a translation along the 𝑥-axis. This is shown in Figure 2-3, where for a small

field-of-view, the pixel-wise motions appear similar. That means that if there are

errors in the estimated optical flow, we may not be able to distinguish between these

two distinct rigid motions. The same is also true for a rotation about the 𝑥-axis and

a translation along the 𝑦-axis. To understand the limitations of our approach, we

analyze the former scenario, which can be easily adapted for the latter case as well.

Translation Along x-axis Rotation About y-axis

Figure 2-3: Translation Along 𝑥-axis and Rotation About 𝑦-axis: When the
field-of-view is small, it hard to distinguish between the pixel-wise motions.

To analyze the case shown in Figure 2-3, we substitute 𝜔 = (0, 𝜔1, 0)𝑇 and 𝑉 =

(𝑉0, 0, 0)𝑇 into Eq. (2.17) and Eq. (2.18). We can then estimate these parameter by

solving the following linear system:⎛⎜⎜⎜⎜⎜⎜⎝

...
...

𝑓
𝑍𝑖

𝑓 + (𝑥𝑖−𝑥𝑐)2

𝑓

0 (𝑥𝑖−𝑥𝑐)(𝑦𝑖−𝑦𝑐)
𝑓

...
...

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎝𝑉0

𝜔1

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

...

�̇�𝑖

𝑦𝑖
...

⎞⎟⎟⎟⎟⎟⎟⎠ (2.21)
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Our goal is to see how sensitive the parameters, namely 𝑉0 and 𝜔1, are to errors in

optical flow estimates, namely �̇�𝑖 and 𝑦𝑖. We see that if the field-of-view is small (e.g.,

when 𝑓 is large), the matrix on the left-hand side of Eq. (2.21) is near singular and

thus, has a high condition number. This means that the parameter estimates are

sensitive to the noise in the optical flow, which matches our expectation for the case

shown in Figure 2-3.

While this scenario seems unfavorable, we know that we can mitigate this in part

by using a ToF camera with a larger field-of-view. Even when the field-of-view is fixed,

we can also mitigate the impact of erroneous optical flow estimates by estimating the

rigid motion with techniques like RANSAC [18].

2.2.3 Estimating the Pose

In some applications, the 3D motion between frames can be sufficiently large such that

the approximation in Eq. (2.8) and Eq. (2.9) is invalid. In these scenarios, we must

iteratively estimate the pose, which is composed of a rotation 𝑅 and a translation 𝑇 .

To do so we, we first rearrange the terms of Eq. (2.5) and Eq. (2.6) to obtain:

(𝑥′
𝑖 − 𝑥𝑐)(𝑍𝑖 + �̇�𝑖) = 𝑓(𝑋𝑖 + �̇�𝑖) (2.22)

(𝑦′𝑖 − 𝑦𝑐)(𝑍𝑖 + �̇�𝑖) = 𝑓(𝑌𝑖 + �̇�𝑖) (2.23)

Given the pose, we can rearrange Eq. (2.7) to obtain:

�̇�𝑖 = (𝑅 − 𝐼)𝑃𝑖 + 𝑇 (2.24)

where �̇�𝑖 = 𝑃 ′
𝑖 −𝑃𝑖 and 𝐼 is a 3× 3 identity matrix. This allows us to use Eq. (2.22)

and Eq. (2.23) to obtain the following expressions that relate the pose (𝑅 and 𝑇 ) of

the the 𝑖th 3D point (𝑃𝑖) to its pixel-wise motion:

∆𝑥𝑖(𝑅,𝑇 ) =
𝑓

𝑍𝑖

�̂� · ((𝑅 − 𝐼)𝑃𝑖 + 𝑇 )− 𝑥′
𝑖 − 𝑥𝑐

𝑍𝑖

𝑧 · ((𝑅 − 𝐼)𝑃𝑖 + 𝑇 ) (2.25)
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∆𝑦𝑖(𝑅,𝑇 ) =
𝑓

𝑍𝑖

𝑦 · ((𝑅 − 𝐼)𝑃𝑖 + 𝑇 )− 𝑦′𝑖 − 𝑦𝑐
𝑍𝑖

𝑧 · ((𝑅 − 𝐼)𝑃𝑖 + 𝑇 ) (2.26)

where ∆𝑥𝑖(𝑅,𝑇 ) and ∆𝑦𝑖(𝑅,𝑇 ) represent the components of the 2D pixel-wise mo-

tion.

Given the 3D position of 𝑁 points (𝑃𝑖) and their estimated pixel-wise motion (�̇�𝑖

and 𝑦𝑖), we can use Eq. (2.25) and Eq. (2.26) to solve for 𝑅 and 𝑇 in a least squares

sense by minimizing:

min
𝑅,𝑇

1

𝑁

𝑁∑︁
𝑖=1

(︀
�̇�𝑖 −∆𝑥𝑖(𝑅,𝑇 ))2 + (𝑦𝑖 −∆𝑦𝑖(𝑅,𝑇 )

)︀2
subject to: 𝑅𝑇𝑅 = 𝐼

det(𝑅) = 1

(2.27)

where the constraints in Eq. (2.27) ensure that 𝑅 is a proper rotation. We also define

the summand of Eq. (2.27) as the residual. We define the residual for the 𝑖th pixel as:

𝑟𝑖 =
(︀
�̇�𝑖 −∆𝑥𝑖(𝑅,𝑇 ))2 + (𝑦𝑖 −∆𝑦𝑖(𝑅,𝑇 )

)︀2 (2.28)

The residual is used in subsequent chapters to estimate the pose robustly.

When estimating the pose, we do not directly estimate the rotation matrix but

instead use Rodrigues’ Formula [34]. This parameterization is more compact, and we

estimate only 4 parameters instead of the 9 parameters of a rotation matrix. With

Rodrigues’ Formula, we can represent 𝑅 as follows:

𝑅 = 𝐼 + sin 𝜃
[︁
�̂�
]︁
×

+ (1− cos 𝜃)
[︁
�̂�
]︁2
×

(2.29)

This describes a rotation of 𝜃 radians about an axis, �̂�. The vector �̂� is a unit vector,

whose elements form the skew-symmetric matrix,
[︁
�̂�
]︁
×

, such that
[︁
�̂�
]︁
×
𝑃𝑖 = �̂�×𝑃𝑖.

With this representation, we can rewrite Eq. (2.25) and Eq. (2.26) as:

∆𝑥𝑖(�̂�, 𝜃,𝑇 ) =
𝑓

𝑍𝑖

�̂� · (𝑊𝑃𝑖 + 𝑇 )− 𝑥′
𝑖 − 𝑥𝑐

𝑍𝑖

𝑧 · (𝑊𝑃𝑖 + 𝑇 ) (2.30)
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∆𝑦𝑖(�̂�, 𝜃,𝑇 ) =
𝑓

𝑍𝑖

𝑦 · (𝑊𝑃𝑖 + 𝑇 )− 𝑦′𝑖 − 𝑦𝑐
𝑍𝑖

𝑧 · (𝑊𝑃𝑖 + 𝑇 ) (2.31)

where 𝑊 = sin 𝜃
[︁
�̂�
]︁
×

+ (1− cos 𝜃)
[︁
�̂�
]︁2
×

. We can then obtain the pose by solving

the following optimization problem:

min
�̂�,𝜃,𝑇

1

𝑁

𝑁∑︁
𝑖=1

(︁
�̇�𝑖 −∆𝑥𝑖(�̂�, 𝜃,𝑇 )

)︁2
+
(︁
𝑦𝑖 −∆𝑦𝑖(�̂�, 𝜃,𝑇 )

)︁2
subject to: ||�̂�||22 = 1

(2.32)

To obtain 𝑅 from �̂� and 𝜃, we use Eq. (2.29).

Because the objective function in Eq. (2.32) is non-linear, we must solve it itera-

tively and update the variables incrementally. To determine these updates, we first

linearize 𝑊 , the only non-linear term in Eq. (2.30) and Eq. (2.31), about 𝜃 = 0. We

have:

𝑊 = sin(𝛿𝜃)
[︁
�̂�
]︁
×

+ (1− cos(𝛿𝜃))
[︁
�̂�
]︁2
×
≈ 𝛿𝜃

[︁
�̂�
]︁
×

(2.33)

where the right most term is obtained by using the small angle approximation. This

approximation is important because it allows us to remove the constraint on �̂� in

the objective function in Eq. (2.32) and treat 𝑊 as an arbitrary skew-symmetric

matrix (since 𝛿𝜃 and �̂� are independent of each other). Therefore, we can solve for

the iterative update using linear least squares.

Denoting the entries of 𝑊 and 𝑇 as:

𝑊 =

⎛⎜⎜⎜⎝
0 −𝑊2 𝑊1

𝑊2 0 −𝑊0

−𝑊1 𝑊0 0

⎞⎟⎟⎟⎠ 𝑇 =

⎛⎜⎜⎜⎝
𝑇0

𝑇1

𝑇2

⎞⎟⎟⎟⎠ (2.34)

we can rewrite the expressions in Eq. (2.30) and Eq. (2.31) to obtain:

�̇�𝑖 =
𝑓

𝑍𝑖

𝑇0 −
𝑥′
𝑖 − 𝑥𝑐

𝑍𝑖

𝑇2 −
(𝑥′

𝑖 − 𝑥𝑐)𝑌𝑖

𝑍𝑖

𝑊0 +

(︂
𝑓 +

(𝑥′
𝑖 − 𝑥𝑐)𝑋𝑖

𝑍𝑖

)︂
𝑊1 −

𝑓𝑌𝑖

𝑍𝑖

𝑊2 (2.35)

𝑦𝑖 =
𝑓

𝑍𝑖

𝑇1 −
𝑦′𝑖 − 𝑦𝑐
𝑍𝑖

𝑇2 −
(︂
𝑓 +

(𝑦′𝑖 − 𝑦𝑐)𝑌𝑖

𝑍𝑖

)︂
𝑊0 +

(𝑦′𝑖 − 𝑦𝑐)𝑋𝑖

𝑍𝑖

𝑊1 +
𝑓𝑋𝑖

𝑍𝑖

𝑊2 (2.36)
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We see that Eq. (2.35) and Eq. (2.36) are linear in the parameters that describe

𝑊 and 𝑇 . Therefore, for each pixel whose optical flow and depth are known, we

obtain 2 linear equations in 6 unknowns. Similar to the case where we estimated the

angular and translational velocity, we can solve for the incremental update and pose

by solving a 6× 6 linear system using the data from just 3 pixels. In practice, more

pixels are used to mitigate the noise in the optical flow and depth values, but the

incremental update is still equivalent to solving a 6 × 6 linear system. This can be

seen by converting Eq. (2.35) and Eq. (2.36) into matrix form as follows:

⎛⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

𝑓
𝑍𝑖

0 −𝑥′
𝑖−𝑥𝑐

𝑍𝑖
− (𝑥′

𝑖−𝑥𝑐)𝑌𝑖

𝑍𝑖
𝑓 +

(𝑥′
𝑖−𝑥𝑐)𝑋𝑖

𝑍𝑖
−𝑓𝑌𝑖

𝑍𝑖

0 𝑓
𝑍𝑖
−𝑦′𝑖−𝑦𝑐

𝑍𝑖
−𝑓 − (𝑦′𝑖−𝑦𝑐)𝑌𝑖

𝑍𝑖

(𝑦′𝑖−𝑦𝑐)𝑋𝑖

𝑍𝑖

𝑓𝑋𝑖

𝑍𝑖

...
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝐴

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑇0

𝑇1

𝑇2

𝑊0

𝑊1

𝑊2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

𝛽

=

⎛⎜⎜⎜⎜⎜⎜⎝

...

�̇�𝑖

𝑦𝑖
...

⎞⎟⎟⎟⎟⎟⎟⎠
⏟  ⏞  

Δ

(2.37)

where the solution is again given by the pseudoinverse as in Eq. (2.20). With the

derivation of the incremental update, we summarize how we estimate 𝑅 and 𝑇 in

Algorithm 1.

2.3 Summary of Notation

Before we conclude this chapter, we summarize the notation we will use for the re-

mainder of this thesis. We denote (RGB or IR) images and depth maps as 𝐼(𝑥, 𝑦)

and 𝐷(𝑥, 𝑦), respectively. When appropriate, we use subscripts to indicate the tem-

poral relationship between the images and depth maps. For example, we refer to the

previous image and depth map pair as 𝐼𝑡−1(𝑥, 𝑦) and 𝐷𝑡−1(𝑥, 𝑦), respectively, and the

current pair as 𝐼𝑡(𝑥, 𝑦) and 𝐷𝑡(𝑥, 𝑦), respectively. We also define frames to be the

images and depth maps acquired at the same time instance.

We assume that both the digital and ToF cameras are calibrated and have the
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Algorithm 1 Estimating 𝑅 and 𝑇

input: Corresponding pixels (𝑥𝑖, 𝑦𝑖) and (𝑥′
𝑖, 𝑦

′
𝑖); depth 𝑍𝑖; principal distance 𝑓 and

point (𝑥𝑐, 𝑦𝑐); number of iterations 𝑁𝐼

output: 𝑅 and 𝑇

1: 𝑅← 𝐼
2: 𝑇 ← 0
3: Compute 𝑃𝑖 using Eq. (2.2) for 𝑖 = 1, 2, . . . 𝑁
4: counter← 1
5: repeat
6: 𝑃𝑖 ← 𝑅𝑃𝑖 + 𝑇 for 𝑖 = 1, 2, . . . 𝑁
7: Update (𝑥𝑖, 𝑦𝑖) using 𝑃𝑖 and Eq. (2.3) for 𝑖 = 1, 2, . . . 𝑁
8: �̇�𝑖 ← 𝑥′

𝑖 − 𝑥𝑖 and 𝑦𝑖 ← 𝑦′𝑖 − 𝑦𝑖 for 𝑖 = 1, 2, . . . 𝑁
9: Form 𝐴 and Δ in Eq. (2.37) using 𝑃𝑖, �̇�𝑖, and 𝑦𝑖

10: (𝛿𝑇 𝑇 , 𝛿𝑊 𝑇 )𝑇 ← (𝐴𝑇𝐴)−1𝐴𝑇Δ

11: 𝛿𝑅← 𝐼 + sin(||𝛿𝑊 ||2)
||𝛿𝑊 ||2 [𝛿𝑊 ]× + 1−cos(||𝛿𝑊 ||2)

||𝛿𝑊 ||22
[𝛿𝑊 ]2×

12: 𝑅← 𝛿𝑅𝑅 and 𝑇 ← 𝛿𝑅𝑇 + 𝛿𝑇
13: counter← counter + 1
14: until counter = 𝑁𝐼

same intrinsic parameters. We denote 𝑓 is the principal distance (focal length), and

(𝑥𝑐, 𝑦𝑐) as the principal point (center). We refer to the 3D coordinate of the 𝑖th

point as 𝑃𝑖 = (𝑋𝑖, 𝑌𝑖, 𝑍𝑖)
𝑇 , and the 2D coordinate of its projection as 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖)

𝑇 .

These quantities are defined in Eq. (2.2) and Eq. (2.3), respectively. As done in this

chapter, we will continue to distinguish vectors and matrices from scalars by bolding

the former.

To simplify notation, we also define the projection operator, 𝜋 (𝑃𝑖) = 𝑝𝑖, to map a

3D point to its pixel coordinate. We also make use of standard linear algebra notation.

We denote �̂�,𝑦, 𝑧 as the unit vectors oriented along the 3D coordinate axes. We also

use standard operations like the dot product, e.g. 𝑃𝑖 · 𝑃𝑗 , and the cross product,

𝑃𝑖 × 𝑃𝑗 .
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Chapter 3

Depth Map Estimation for Rigid

Objects

3.1 Introduction

In this chapter, we describe how we use concurrently collected RGB images to reduce

the usage of a time-of-flight (ToF) camera and estimate new depth maps for rigid

objects. This is shown in Figure 3-1, where our algorithm sequentially estimates new

depth maps without turning on the ToF camera. This is especially useful for tasks

that assume that their surrounding environments are static, where the changes from

frame to frame are due to ego-motion (e.g., the motion of the user or robot). In

these scenarios, we can treat the entire scene as a single rigid object. These tasks

include simultaneous localization and mapping (SLAM) [30], object detection and

avoidance [31], and object manipulation [17]. These tasks all benefit from using depth

information and are central to applications that range from augmented reality to

robotic navigation. While the assumption of rigidity may seem limiting, our approach

only requires the local environment that the ToF camera can sense to be rigid. For

many mobile applications, this is a reasonable assumption because the range of the

ToF camera is limited.

The assumption of rigidity is also important because it allows us to efficiently

estimate new depth maps using the optical flow at a sparse set of pixels and a single,
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Figure 3-1: Depth Map Estimation: We estimate causal depth maps using con-
currently collected images and a previously measured depth map. The ToF camera
is only used when an accurate depth map cannot be estimated.

previously measured depth map. This not only allows us to reduce the sensor power,

but also reduce the overall system power for depth sensing by enabling our algorithm

to estimate accurate depth maps in real-time on a low power embedded platform.

Our contribution, therefore, is an optimized algorithm that combines computationally

efficient techniques to obtain an accurate and dense depth map with minimal latency.

Our approach balances the usage of the ToF camera, the computational costs of the

algorithm, and the quality of the estimated depth map. In particular, we present the

following:

∙ We introduce an algorithm that lowers the usage of the ToF camera while

maintaining the acquisition of depth maps. To obtain new depth maps, our al-

gorithm estimates the 3D motion in the scene and uses it to update a previously

measured depth map.

∙ We reduce the computation required to estimate the 3D motion of every pixel

by estimating the rigid motion, or pose, instead. We show that it is possible
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to obtain an accurate depth map by using the pose, which can be estimated

with the optical flow determined by a block matching heuristic on a sparse and

uniformly-spaced grid. This is essential for our approach to run in real-time on

a low power embedded platform, which also allows the overall system power for

depth sensing to be reduced.

∙ We propose a policy that adaptively enables the ToF camera when an accurate

depth map cannot be estimated. This is crucial because it is not always pos-

sible to estimate accurate optical flow (especially with limited computational

resources), which is required for our technique.

To demonstrate the efficiency of our approach and quantify the reduction in power,

we implement our algorithm on the ODROID XU-3 board [26] using only the low

power CPUs. We demonstrate a real-time implementation that reduces the overall

system power for depth sensing and show that the depth maps can be used in a real

augmented reality pipeline. In addition to estimating depth maps temporally, we also

show how our algorithm can be used to infill depth spatially and extend the range of

a ToF camera.

This chapter is based on our work in [62,64] and is organized as follows. In Section

3.2, we describe other related approaches that use images to aid in the estimation of

depth maps. This is followed by a description of our approach in Section 3.3, where

we describe how we robustly estimate the rigid motion across consecutive frames and

use the rigid motion to obtain a new depth map. In Section 3.4, we evaluate our

algorithm on a variety of RGB-D datasets, where we also analyze the impact of our

design choices and compare our algorithm to other techniques. While quantitative

evaluations are important, we also show that our depth maps can be used in real

applications, and in Section 3.5, we show how our estimated depth maps can be used

for augmented reality. To estimate the reduction in the power for depth sensing, we

quantify the overall system power of our approach in Section 3.6. In Section 3.7,

we show how our algorithm can also be used to infill depth spatially. Finally, we

summarize the key impact of our work in Section 3.8.
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3.2 Background

The idea of using RGB images to help estimate new depth maps has been explored

in many applications. Given its breadth, we only focus on techniques that have

similar problem setups, namely those that estimate new depth maps temporally using

concurrently collected RGB images and previously measured depth maps (Section

3.2.1) and those that only use consecutive RGB images (Section 3.2.2).

3.2.1 Temporal Depth Map Estimation

Here, we describe techniques that use RGB images to temporally estimate new depth

maps from previously measured ones for applications where both depth maps and

RGB images are concurrently collected. Choi et al. [11] addresses the fact that depth

maps are typically acquired at lower frame rates than RGB images for many applica-

tions. To equalize the frame rates, the authors applied bidirectional block matching

algorithms to estimate the optical flow between RGB images without any correspond-

ing depth maps and those with it. These optical flow vectors are used to identify the

depth blocks that are averaged to form a new depth map. Similarly, Wang et al. [89]

and Zhang et al. [95] also estimate depth maps between frames that have both RGB

images and depth maps available using block matching algorithms. Wang et al. [89]

selects the depth block from either the preceding or future depth map based on the

edges of the corresponding RGB image blocks. Zhang et al. [95] estimates depth by

performing a weighted average guided by the underlying texture in the RGB images.

All of these approaches use block matching algorithms to obtain dense optical flow

fields, but this process is computationally expensive. To reduce the complexity, Li

et al. [50] reuse the motion vectors generated in compressed video to accelerate the

process of depth map estimation.

Unfortunately, we cannot directly use these techniques to obtain new depth maps

because computing a dense optical flow field has prohibitively high latency on embed-

ded processors. For example, OpenCV’s implementation of dense optical flow [16]

runs at 0.88 frames per second on our embedded device (ODROID-XU3 [26]) for
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640 × 480 images. For applications like 3D video frame upsampling, which can be

performed offline, this is not necessarily a problem, but for applications like robotic

navigation, these approaches are unsuitable because the underlying applications are

sensitive to latency. Furthermore, most of these approaches also estimate depth maps

by using the depth from preceding and future frames. This is not possible for real-

time applications, where we require the estimation of depth maps to be causal. As

we show in Section 3.3, our algorithm uses the assumption of rigidity to significantly

reduce the computation required to obtain low latency and causal depth maps.

3.2.2 Pose Estimation and Structure-from-Motion

As stated in Section 3.1, our algorithm estimates the rigid motion from frame to

frame. This motion can be represented by the relative pose, which is composed of

a rotation and translation. A common way to estimate the pose exploits epipolar

geometry and uses the pixel-wise correspondences between consecutive RGB images

(which can be trivially obtained using the optical flow) to obtain an intermediate

quantity known as the essential matrix, which can then factored to obtain the rotation

and translation [28]. Depending on the number of correspondences, the essential

matrix can be estimated using techniques that range from performing a singular

value decomposition (8 correspondences) [54] to finding the roots of a tenth order

polynomial (5 correspondences) [60].

One potential benefit of this approach is that it only requires RGB images to

obtain the pose, although the estimated translation is known only to scale (the mag-

nitude of the translation vector is not known). Furthermore, once the pose is obtained,

relative depth can also be estimated by triangulating the corresponding pixels. These

techniques are known as structure-from-motion (SfM) [14, 81, 84, 91], and we refer

the interested reader to a comparison [5] of popular and state-of-the-art pipelines.

Unfortunately, one drawback of these approaches is that they typically only estimate

depth at a sparse set of keypoints. This is problematic for applications like obstacle

avoidance, which require dense depth maps. Furthermore, these techniques also only

estimate relative depth. Unlike the SfM techniques, our approach estimates the pose
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using the method described in Section 2.2.3, which obtains the rotation and absolute

translation with fewer correspondences than the essential matrix-based approaches.

We then use this pose to update a previously measured depth map to obtain a dense

depth map.

3.3 Proposed Algorithm

Our proposed algorithm takes as input consecutive RGB images and a previous depth

map and outputs a new one as shown in Figure 3-2. Our proposed technique is

computationally efficient, and we highlight our design choices so that our algorithm

can run in real-time on an embedded platform. We also describe our strategy to

adaptively use the ToF camera when an accurate depth map cannot be estimated.

The pipeline of our approach is shown in Figure 3-3.
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Figure 3-2: Problem Setup: Our algorithm estimates the pose and a new depth
map using two consecutive RGB images and a previous depth map.
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Figure 3-3: Depth Map Estimation Pipeline: Our algorithm estimates the pose
by using the optical flow across the consecutive images and the previous depth mea-
surements. It then uses this pose to reproject the previous depth map to obtain a
new one. When a reliable pose cannot be estimated, we use the ToF camera to obtain
a new depth map instead.

3.3.1 Optical Flow Estimation

As shown in Figure 3-3, we begin by first estimating the optical flow between the

consecutive RGB images using the three step search (TSS) algorithm [45]. The TSS

algorithm obtains the optical flow for a block of pixels in the RGB image by searching

for the block in the next RGB image that minimizes a cost function. However, instead

of an exhaustive search, the TSS algorithm only considers select locations to reduce

computation.

Our decision to use the TSS algorithm is motivated by its runtime on an embedded

platform. We compare the runtime of the TSS algorithm to the commonly used

Lucas Kanade algorithm [56] by profiling both approaches on the ODROID-XU3

board [26], which is an embedded platform that is representative of the compute

resources available on mobile devices. We use the low power Cortex-A7 cores to

compute the optical flow for 640 × 480 images. In our experiments across a variety

of different datasets (Section 3.4), we find that using the TSS algorithm with 15× 15

blocks with a step size of 8 on the pixels of a uniformly-spaced, 12× 12 grid enabled

our algorithm to estimate low latency and accurate depth maps. For the same set of

pixels, we use the Lucas Kanade algorithm with 15× 15 blocks and 3 pyramid levels

so that we have a similar search area. On average, we find that the TSS algorithm
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requires 13 ms whereas the Lucas Kanade algorithm requires 51 ms. We also profile

the time required to identify corners. We found that the Harris corner detector [27]

requires 120 ms, which is intolerable for real time applications, whereas the time to

locate the pixels on a uniform grid is negligible. We summarize these runtimes in

Table 3.1.

Algorithm Runtime (ms) Frame Rate (FPS)

Three Step Search 13 76.9
Lucas Kanade 51 19.6
Harris Corner 120 8.3

Table 3.1: Runtime Comparisons: We profile our design choices on the ODROID-
XU3 board [26]. We opt to use the TSS algorithm to ensure our implementation can
estimate depth maps in real-time.

However, as shown in Figure 3-4, one drawback of using the TSS algorithm is

that our optical flow estimates can be inaccurate. In the next section, we show how

we can mitigate this to robustly estimate the pose and depth map. With the pose

estimated, in addition to obtaining a new depth map, we can also correct the optical

flow field as shown in Figure 3-5.

t = 0 t = 1

Figure 3-4: Optical Flow from TSS: We show examples of optical flow vectors
estimated using the TSS algorithm.
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t = 0 t = 1

Figure 3-5: Optical Flow from Pose: We show examples of the optical flow vectors
computed using the estimated pose.

3.3.2 Relative Pose Estimation

With the optical flow estimated, we can then estimate the relative pose using Al-

gorithm 1 as described in Section 2.2.3. However, using the optical flow directly is

problematic because it can be different from the underlying motion field [34]. Image

sensor noise, occlusions, and the algorithm used to estimate the optical flow affect the

accuracy of the estimated pose. Furthermore, because the optical flow is estimated

using image intensities, it can be different from the underlying motion field even in

the absence of these issues. In regions with uniform intensity, for example, the optical

flow would be zero even when the underlying motion field is not. Moreover, the pre-

vious depth map can also be affected by sensor noise in addition to irregularities that

arise from multipath reflections, specular reflections, and interference [25]. Because

Algorithm 1 directly uses these depth values, these errors can also adversely affect

the estimated pose.

While these errors are in part mitigated by our least squares formulation in

Eq. (2.32), we need a mechanism to distinguish accurate optical flow and depth from

erroneous ones because the squared penalty in our formulation is not robust against
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large errors in the optical flow. This is possible when the pose is known, and we can

distinguish the accurate optical flow estimates, or inliers, from the erroneous ones, or

outliers, because the former satisfy Eq. (2.25) and Eq. (2.26). This insight suggests

that we estimate the pose using RANSAC [18].

We proceed by randomly selecting the optical flow estimates and its corresponding

depth to obtain an initial pose hypothesis. We use 3 optical flow estimates, which is

the minimum required to estimate pose using our technique, to minimize the likelihood

of choosing an outlier. To judge the quality of the pose hypotheses, we relax the

requirement that the pose must satisfy Eq. (2.25) and Eq. (2.26) for all of the inliers

and instead compute the residual error for each optical flow estimate using Eq. (2.28).

If the number of optical flow estimates with low residual errors, which is determined

by the RANSAC threshold, exceed a fraction of the total number of estimates, we

then re-estimate the pose using only these inliers. We repeat this procedure and

select the candidate pose with the lowest mean residual error. When there are no

candidates, we enable the ToF camera to acquire a new depth map. This adaptive

control of the ToF camera, which is a beneficial side effect of using RANSAC, allows

for accurate depth maps to be obtained. We summarize our approach in Algorithm

2.

To show that Algorithm 2 can mitigate the impact of errors in the depth and the

optical flow, we first simulate the idealized depth and optical flow for a given pose

and corrupt a subset of them. To reflect the fact that our approach uses the TSS

algorithm, we also round each optical flow vector to the nearest integer displacement.

We then estimate the pose with and without RANSAC and compare it to the pose

we used to simulate the data with using the root mean squared error (RMSE) of the

translation as defined in [85]. In Table 3.2, we see that RANSAC substantially lowers

the RMSE of the translation across all scenarios. This is significant because RANSAC

allows us to use the optical flow obtained from the TSS algorithm to estimate the

pose accurately.

In our experiments across a variety of datasets (Section 3.4), we use 30 RANSAC

iterations and set the RANSAC threshold to 4 and accept a pose hypothesis if the size
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Algorithm 2 Adaptive Pose Estimation
input: Optical flow (∆𝑥𝑖,∆𝑦𝑖), depth (𝑍𝑖), and RANSAC parameters (No. of iter-

ations, thresh, and min. size)
output: Pose (𝑅 and 𝑇 ) or signal to use ToF camera

1: repeat ◁ Get the inlier set
2: Randomly sample 3 optical flow vectors and its depth and estimate the pose

using Algorithm 1
3: Compute the residuals, 𝑟𝑖, as defined in Eq. (2.28)
4: Get inlier set, ℐ = {𝑖 : 𝑟𝑖 < thresh}
5: Retain ℐ with lowest mean residual; |ℐ| > min. size
6: until End of RANSAC

7: if |ℐ| = 0 then ◁ Get pose or depth map
8: Use the ToF camera
9: else

10: Estimate the pose using Algorithm 1 with ℐ
11: end if

Depth Optical Flow Reduction (%)

X 68.0
X 59.4

X X 45.1

Table 3.2: Impact of RANSAC: We present the reduction in the RMSE obtained
using RANSAC when there is noise in the depth measurements, the optical flow, and
in both.

of its inlier set is at least 10% of the number of optical flow estimates. When obtaining

the initial pose, we perform 1 iteration of Algorithm 1, which is similar to estimating

the angular and translation velocity (Section 2.2.2). We then estimate the pose using

the inlier set by performing 3 iterations of Algorithm 1. As we describe in Section

3.4.1, this accounts for a small fraction of the overall run-time of our algorithm. This

is essential to obtaining accurate depth maps in real-time.

3.3.3 Depth Reprojection

Once the pose is estimated, we obtain a new depth map by applying the pose to each

3D point in the first depth map and projecting its depth, or its 𝑧-coordinate, to an
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image. For every pixel in the first depth map, we first compute its 3D point, 𝑃𝑖, using

Eq. (2.2). The reprojected depth map is then obtained as follows:

𝐷

[︂
𝑓
�̂� · (𝑅𝑃𝑖 + 𝑇 )

𝑧 · (𝑅𝑃𝑖 + 𝑇 )
+ 𝑥𝑐, 𝑓

𝑦 · (𝑅𝑃𝑖 + 𝑇 )

𝑧 · (𝑅𝑃𝑖 + 𝑇 )
+ 𝑦𝑐

]︂
= 𝑧 · (𝑅𝑃𝑖 + 𝑇 ) (3.1)

where 𝐷 represents the depth map whose entries are indexed by its 𝑥- and 𝑦-coordinates

and 𝑅,𝑇 is the pose. If multiple points are mapped onto the same pixel location, we

retain the smallest depth value.

When more than one depth map is predicted consecutively, we obtain a new

depth map by reprojecting the last measured depth map. To do so, we update the

pose accordingly. Let 𝑅𝑐 and 𝑇𝑐 represent the current pose that is estimated using

the previously estimated depth map. We also assume that the previously estimated

depth map was obtained by reprojecting the last measured depth map using 𝑅𝑡−1

and 𝑇𝑡−1. Then, the pose which we now use to reproject the previously measured

depth map, denoted as 𝑅𝑡 and 𝑇𝑡, is:

𝑅𝑡 = 𝑅𝑐𝑅𝑡−1 𝑇𝑡 = 𝑇𝑐 + 𝑅𝑐𝑇𝑡−1 (3.2)

The resulting depth map contains depth estimates for pixels that correspond to

the overlapping field-of-views between the image where the last depth map was mea-

sured and the current image. It should be noted that without any additional post-

processing, this method also introduces artifacts as shown in Figure 3-6. These holes

arise because the pixels belonging to the same object are treated independently and

are not constrained to be contiguous after reprojection and because regions that were

previously occluded have been uncovered. While reverse warping would eliminate

these holes, it also erroneously infills the previously occluded regions. We want to

avoid this, especially as we predict many depth maps consecutively, in the event

where the previously occluded region has a different depth from its surroundings. We

confirm this by applying our algorithm to sequences from the TU Munich RGB-D

dataset [85] and find that reverse warping increases the overall mean relative error

(as defined in Section 3.4.3) by 17.4% compared to our approach. Furthermore, if
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the application needs the depth in the previously occluded regions, this could serve

as another signal to use the ToF camera.

One potential way to remove the first type of holes is by applying a median filter

with a small kernel size to the resulting depth map as shown in Figure 3-6. While this

may give inconsistent behaviors at depth boundaries, we find in our experiments with

the TU Munich RGB-D dataset, the overall mean relative error remains unchanged.

However, as our computational resources are limited, we ignore this additional step

because these types of holes are minimal, accounting for less than 3% of the estimated

pixels while imposing an additional 20 ms overhead. In the next section, we see that

this is intolerable for real-time performance.

Unfiltered Median Filtered

Figure 3-6: Reprojected Depth Maps: The reprojected depth maps have artifacts
where depth is not available. While a median filter can infill these regions, we ignore
this post-processing step because the holes constitute a small portion of the depth
map.

3.4 Algorithm Evaluation

3.4.1 Implementation

We implement our algorithm on the ODROID XU-3 board [26], which is an embedded

platform with an Exynos 5422 processor. The Exynos processor is used in the Sam-

sung Galaxy S5 [78] and is representative of the compute power available on mobile

devices. Our implementation uses the low power Cortex-A7 cores of the board and
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outputs 640×480 depth maps in real time, or 30 frames per second (FPS). To achieve

this frame rate, we parallelize our computation across the 4 Cortex-A7 cores. We use

the parameter settings described in Section 3.3 and the OpenCV library whenever

possible.

As shown in Figure 3-7, most of the time of our implementation is spent on

estimating the optical flow and reprojecting the depth map. This figure further

justifies our decision to use the TSS algorithm. Since the time required to reproject a

depth map is fixed, we are limited in what we can allocate to obtain the optical flow

if we want to estimate depth maps at 30 FPS. We discuss the impact of this decision

on the accuracy of the estimated depth maps in Section 3.4.5. This figure also shows

that when only the pose is required, which is the case for SLAM, our algorithm can

run at nearly 58 FPS.

Relative Pose
Estimation

12%

Depth Reprojection
48%

Optical Flow 
Estimation

40%

Figure 3-7: Runtime Breakdown: We profile the implementation of our algorithm
on the ODROID-XU3 [26] board, which produces 640× 480 depth maps at 30 FPS.
Because the time to reproject a new depth map is fixed, we work to reduce the
computation time required to estimate the optical flow.

3.4.2 Dataset

We evaluate our algorithm on RGB-D datasets used to benchmark SLAM, visual

odometry, 3D reconstruction, and navigation algorithms. These tasks are relevant
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for many mobile applications, and the images and depth maps are representative of

what our approach will encounter. We adapt these datasets to test our approach by

using consecutive images and select depth maps to predict new ones, which we then

compare to that in the dataset. For our experiments, we use the provided intrinsic

parameters and tools to synchronize the images with the depth maps for each dataset.

We use sequences from the following datasets: TU Munich RGB-D [85], NYU

Depth V2 [83], Indoor RGB-D [80], CoRBS [90], and ICL-NUIM [24]. These datasets

contain 640× 480 RGB images and depth maps and most are collected at 30 FPS.

3.4.3 Methodology

We apply our algorithm to the first 100 frames of the sequences in each dataset. We

quantify the accuracy of the depth maps using:

∙ Mean Relative Error (MRE): This metric is defined in Eq. (1.10) and pe-

nalizes a unit error more so up close than further away, which is an appropriate

metric for applications (e.g., robotic navigation) that need to react quickly to

changes in its immediate surroundings. It also allows us to compare the perfor-

mance of our algorithm across datasets with different dynamic ranges.

To highlight the different dynamic ranges, we also compute the following error metrics:

∙ Mean Absolute Error (MAE): This is defined as 1
𝑁

∑︀𝑁
𝑗=1 |𝑍𝑗 − 𝑍𝑗| and pre-

sented in centimeters.

∙ Root Mean Squared Error (RMSE): This is defined as
√︁

1
𝑁

∑︀𝑁
𝑗=1 (𝑍𝑗 − 𝑍𝑗)2

and presented in centimeters.

Because our algorithm uses the ToF camera adaptively, we also quantify the frequency

at which it is used using:

∙ Duty Cycle (DC): This is equal to
∑︀100

𝑖=1 1(𝑖), where 1(𝑖) equals 1 if the 𝑖th

depth map is obtained using the ToF camera and 0 if the depth map is estimated

instead. The DC is presented as a percentage.
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To reduce the power required to obtain accurate depth maps, our goal is to lower the

ToF camera’s duty cycle while maintaining a baseline accuracy. In our analysis, we

focus on the MRE because it allows us to compare the performance of our algorithm

across datasets that have different ranges of depth. Therefore, for each dataset, we set

the threshold parameter in Algorithm 2 to achieve a median MRE of approximately

1% across its sequences in order to measure its duty cycle.

3.4.4 Results

We summarize the performance of our algorithm for each dataset in Table 3.3, where

we compute the median of each error metric across the depth maps. Examples of

the estimated depth maps are shown in Figure 3-8. Across the datasets, we achieve

a median MRE of 0.96% and a median duty cycle of 15.0%. In Table 3.3, we see

that the duty cycle for Indoor RGB-D [80] is higher than that of the other datasets.

This is expected because this dataset contains sequences of a robot moving abruptly

in a sparsely textured environment. Furthermore, this shows that our technique can

adapt to and still reduce the usage of the ToF camera in these challenging scenarios.

Dataset MRE (%) MAE (cm) RMSE (cm) DC (%)

TU Munich RGB-D 0.96 2.27 7.63 16.0
NYU Depth V2 0.95 4.04 9.01 10.0
Indoor RGB-D 1.03 2.11 7.54 33.0
CoRBS 1.04 1.79 8.98 15.0
ICL-NUIM 0.67 2.04 5.65 10.0

Mean 0.93 2.45 7.76 16.8
Median 0.96 2.11 7.63 15.0

Table 3.3: Algorithm Evaluation: We summarize the MRE, MAE, RMSE and DC
that our algorithm achieves.

Because different applications have different accuracy requirements for depth maps,

we also quantify the tradeoff between the duty cycle and the MRE for our approach.

To do so, we vary the RANSAC threshold in Algorithm 2 that determines if an optical

flow estimate is an inlier. In our pipeline, we expect that a lower threshold, which

assumes accurate optical flow estimates, will result in depth maps with a lower MRE
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Image Ground Truth Depth Map Estimated Depth Map

Figure 3-8: Estimated Depth Maps: We show the estimated depth maps for select
sequences in [85]. A video can be found at https://youtu.be/47L4xebYHTI.

but also a higher duty cycle because the TSS algorithm cannot consistently obtain

accurate optical flow estimates. By the same reasoning, we expect the MRE to be

higher but the duty cycle to be lower when the threshold is high. We present this

tradeoff in Figures 3-9 to 3-13, where each point labeled This Work in the legend

represents the median duty cycle and MRE pair across all of the sequences in each

dataset for different thresholds.

3.4.5 Impact of Optical Flow Algorithm

To quantify the impact of the TSS algorithm on the overall accuracy of estimated

depth maps, we compare our algorithm to a variant that uses the Lucas Kanade
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Figure 3-9: Tradeoff Between Duty Cycle and MRE for TU Munich RGB-
D [85]: We compare our technique (This Work) to the following: Non-Adaptive
(Section 3.4.6) and Copy (Section 3.4.7). Because our technique is adaptive, our duty
cycles do not align with the competing techniques, which estimate depth at regular
intervals.
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Figure 3-10: Tradeoff Between Duty Cycle and MRE for NYU Depth V2
[83]: We compare our technique (This Work) to the following: Non-Adaptive (Section
3.4.6) and Copy (Section 3.4.7). Because our technique is adaptive, our duty cycles do
not align with the competing techniques, which estimate depth at regular intervals.
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Figure 3-11: Tradeoff Between Duty Cycle and MRE for Indoor RGB-D [80]:
We compare our technique (This Work) to the following: Non-Adaptive (Section 3.4.6)
and Copy (Section 3.4.7). Because our technique is adaptive, our duty cycles do not
align with the competing techniques, which estimate depth at regular intervals.

76



10.0 12.5 15.0 17.5 20.0 22.5 25.0

Duty Cycle (%)

0

2

4

6

8

M
R

E
(%

)

This Work

Non-Adaptive

Copy

Figure 3-12: Tradeoff Between Duty Cycle and MRE for CoRBS [90]: We
compare our technique (This Work) to the following: Non-Adaptive (Section 3.4.6)
and Copy (Section 3.4.7). Because our technique is adaptive, our duty cycles do not
align with the competing techniques, which estimate depth at regular intervals.
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Figure 3-13: Tradeoff Between Duty Cycle and MRE for ICL-NUIM [24]: We
compare our technique (This Work) to the following: Non-Adaptive (Section 3.4.6)
and Copy (Section 3.4.7). Because our technique is adaptive, our duty cycles do not
align with the competing techniques, which estimate depth at regular intervals.
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algorithm to estimate optical flow. We expect the TSS algorithm to perform worse

than the Lucas Kanade algorithm in estimating the optical flow because the TSS

algorithm only considers select locations in its search for the best matching block,

and to increase the overall MRE of the estimated depth map. In Tables 3.4 to 3.6,

we compare this variant (LK ) to our approach (This Work) for the same duty cycle.

Dataset This Work LK Non-Adaptive Copy SfM-SIFT

TU Munich RGB-D 0.96 0.86 1.80 3.20 36.14
NYU Depth V2 0.95 0.82 2.24 3.25 43.03
Indoor RGB-D 1.03 1.49 2.32 2.30 32.29
CoRBS 1.04 1.02 1.54 4.16 38.61
ICL-NUIM 0.67 0.14 1.14 1.42 39.76

Mean 0.93 0.87 1.81 2.87 37.97
Median 0.96 0.86 1.80 3.20 38.61

Table 3.4: MRE Comparison: We compare the MRE (%) of our algorithm to
variants and competing techniques for approximately the same duty cycle to show
that our approach estimates accurate depth maps.

Dataset This Work LK Non-Adaptive Copy SfM-SIFT

TU Munich RGB-D 2.27 1.68 6.26 5.80 83.77
NYU Depth V2 4.04 3.34 5.98 10.04 171.00
Indoor RGB-D 2.11 3.53 5.31 5.41 119.32
CoRBS 1.79 1.66 2.94 9.44 80.52
ICL-NUIM 2.04 0.39 3.21 3.98 126.38

Mean 2.45 2.12 4.74 6.93 116.20
Median 2.11 1.68 5.31 5.80 119.32

Table 3.5: MAE Comparison: We compare the MAE (cm) of our algorithm to
variants and competing techniques for approximately the same duty cycle to show
that our approach estimates accurate depth maps.

From this comparison, we see that our hypothesis is confirmed and that using

the Lucas Kanade algorithm in our pipeline reduces the overall median MRE from

0.96% to 0.86%. However, while the Lucas Kanade algorithm reduces the MRE of

the estimated depth maps by over 10%, it does not justify the 50% decrease in the

estimation frame rate when profiled on the ODROID board. As shown in Table 3.7,

its frame rate is 15 FPS, which is intolerable for real time applications.
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Dataset This Work LK Non-Adaptive Copy SfM-SIFT

TU Munich RGB-D 7.63 7.55 13.83 25.97 104.99
NYU Depth V2 9.01 8.11 14.65 40.25 212.91
Indoor RGB-D 7.54 13.20 14.96 20.04 154.14
CoRBS 8.98 9.82 12.28 34.87 106.66
ICL-NUIM 5.65 3.02 8.26 10.62 158.74

Mean 7.76 8.34 12.80 26.35 147.49
Median 7.63 8.11 13.83 25.97 154.14

Table 3.6: RMSE Comparison: We compare the RMSE (cm) of our algorithm to
variants and competing techniques for approximately the same duty cycle to show
that our approach estimates accurate depth maps.

Algorithm Frame Rate (FPS)

This Work 30
LK 15
Non-Adaptive [62] 30
Copy [89] 0.83
SfM-SIFT [5] 0.12
SfM-SURF [5] 0.36
SfM-ORB [5] 1.81

Table 3.7: Algorithm Frame Rate Comparison: We compare the estimation
frame rates our approach and other techniques on the ODROID-XU3 board [26].

3.4.6 Benefit of Adaptive Estimation Due to RANSAC

One key feature of our algorithm is that it adaptively uses the ToF camera when an

accurate depth map cannot be estimated. This is necessary because it is not always

possible to obtain accurate optical flow estimates. We compare our adaptive scheme

to our previous work [62], which predicts depth maps at regular intervals. We apply

this approach to the datasets in Section 3.4.2 and plot the duty cycle and MRE pairs,

which are denoted as Non-Adaptive in Figures 3-9 to 3-13.

In these figures, we see that the adaptive scheme of our approach outperforms [62]

across all duty cycles with a negligible increase in complexity. For the same duty

cycle, we see in Table 3.4 that our adaptive schemes reduces the median MRE from

1.80% to 0.96%. Furthermore, this result make sense upon inspecting the images in

the datasets. Images with rapid motion are blurred and contain large displacements,
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making the estimation of accurate optical flow challenging. Our algorithm is opti-

mized to detect these scenarios and uses the ToF camera while estimating depth maps

for frames with slower motion.

3.4.7 Comparison to Previous Work

Temporal Depth Map Estimation

We compare our algorithm to a causal variant of [89] as described in Section 3.2.1.

This technique estimates depth by copying previous measurements guided by the

optical flow. Since our setup requires depth maps to be estimated in real time, we use

the optical flow between the current and preceding images to copy the depth from a

previous frame. In our experiments, we compute a dense optical flow field using [16].

The estimation of dense optical flow is prohibitively slow on our embedded processor,

and this technique, which we denote as Copy, runs at 0.83 FPS as shown in Table 3.7.

However, we still perform this experiment to quantify the effectiveness of remapping

depth. We expect this approach to perform well when the motion between frames is

small.

We apply this approach to the datasets and plot the duty cycle and MRE pairs

in Figures 3-9 to 3-13. From these figures, we see that our approach outperforms

Copy across all duty cycles and datasets. This result shows that our dataset contains

non-trivial changes in depth that cannot be captured by simply remapping the pixels

of a previous depth map. Furthermore, this experiment suggests that the changes in

depth can be estimated by our technique.

Structure-from-Motion

We also compare our algorithm to a structure-from-motion (SfM) pipeline that es-

timates relative depth. Even though SfM estimates relative depth at a sparse set

of points, these techniques only use images and can be compelling if it can run in

real-time on a low-power embedded platform. We implement an incremental SfM

pipeline following standard and state of the art approaches described in [5]. We use
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SIFT [55] to localize keypoints, match consecutive keypoints using brute force match-

ing, perform geometric validation using the 8 point algorithm, and triangulate using

the direct linear transform method [28]. We apply the SfM pipeline to our setup and

estimate the depth using two consecutive images. Across the different datasets, our

SfM pipeline estimates the depth at approximately 210 keypoints.

As summarized in Table 3.7, our implementation (SfM-SIFT ) runs at 0.12 FPS

on the ODROID XU-3 board, where most of the time is spent on computing and

matching the keypoints. Due to the low frame rate, we also experimented with using

SURF [4] (SfM-SURF ) and ORB [77] (SfM-ORB) features instead of SIFT. These

variants estimate sparse depth at 0.36 and 1.8 FPS, respectively. While these variants

have a higher frame rate than the standard pipeline, they are still far from real time.

To quantify the accuracy of the depth estimates obtained using the standard SfM

pipeline, we find the scale factor so that the estimated relative depth best matches

the ground truth. We summarize the MRE for each dataset in Table 3.4, where

we also compare it (SfM-SIFT ) to our approach and other competing techniques.

Because our pipeline uses only two images, the high MRE is expected. We can lower

the MRE by incorporating more frames and performing bundle adjustment [28], but

this would increase latency and further decrease the estimation frame rate. Due to

the high MRE and the low frame rate, we see that SfM is impractical for the scenario

we consider.

3.5 Augmented Reality Example

In addition to evaluating the accuracy of the estimated depth maps, we also qualita-

tively show that they can be used in an actual augmented reality (AR) pipeline that

renders 3D models. We insert our depth map estimation algorithm into the pipeline,

where the estimated depth maps are used to help localize the camera position and

to estimate the surface normals in the scene. For AR, localizing the camera enables

rendered objects to remain in fixed locations as the user (e.g., camera) moves. To lo-

calize the camera position, our AR pipeline uses ORB-SLAM [59] on the consecutive
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image and depth map pairs. We also estimate the surface normals using the esti-

mated depth maps to correctly orient the 3D models. In Figure 3-14, we show select

frames from this AR application, where we see that the object is correctly oriented

and remains fixed as the camera moves.

Figure 3-14: Augmented Reality: We show that our estimated depth maps can be
used in an actual augmented reality pipeline.

3.6 System Power Reduction

To lower the overall power for depth sensing, our strategy is to lower the duty cycle

of the ToF camera and estimate depth maps instead. However, this implies that the

power required to estimate a new depth map is less than that of using a ToF camera.

Here, we measure the power of an implementation of our algorithm on the ODROID

XU-3 board and use it to estimate the overall system power of a system that uses our

algorithm alongside the ToF camera to obtain depth.

The ODROID XU-3 board has 4 Cortex-A7 CPUs and 4 Cortex-A15 CPUs. To

keep the computation power low, we only use the Cortex-A7 cores to estimate the

depth maps. This leaves the Cortex-A15 cores available for other mobile applications

that use depth maps and further underscores that our implementation, which outputs

640×480 depth maps in real time, is efficient. The resulting implementation consumes
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a total of 0.69 W, of which the idle power is 0.19 W. We summarize the power

breakdown of our implementation in Table 3.8.

Category Power (W)

Core Active 0.63
Idle 0.16

DRAM Active 0.06
Idle 0.03

Total Active 0.69
Idle 0.19

Table 3.8: Power Breakdown: We measure the power of our implementation on
the ODROID-XU3 board [26].

Given the power of our implementation, we now estimate the overall system power

of a hybrid system that uses the ToF camera and our algorithm to obtain depth. We

define the overall system power, denoted as 𝑃𝑆, as follows:

𝑃𝑆 =
𝑂𝑁

100
· (𝑃𝑇𝑜𝐹 + 𝑃𝐼) + (1− 𝑂𝑁

100
) · (𝑃𝐶 + 𝑃𝑀) (3.3)

where we denote 𝑂𝑁 as the duty cycle of the ToF camera, 𝑃𝑇𝑜𝐹 is the power of the

ToF camera, 𝑃𝐼 is the total idle power, 𝑃𝐶 is the active power of the A7 cores, and

𝑃𝑀 is the active power of the DRAM. Because we assume that images are routinely

collected for other purposes, we ignore its contribution in Eq. (3.3). Based on a survey

of commercial ToF cameras (with ranges up to 4 meters), we also assume that 𝑃𝑇𝑜𝐹

ranges from 1 to 5 W [2] [12].

Taking the duty cycle to be 15% and using the measurements in Table 3.8, we

plot the power of the hybrid system in Figure 3-15. For the datasets in Table 3.3,

this translates to a median power reduction of 23%-73% compared to just using the

ToF camera while producing depth maps with a median MRE of 0.96%.
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Figure 3-15: Overall System Power: We estimate the power of a system that uses
our algorithm to estimate depth alongside the ToF camera. For commercial ToF
cameras, our algorithm can reduces the overall system power by 23%-73%.

3.7 Infilling Depth Maps

In the previous section, we describe how we use our algorithm to estimate new depth

maps temporally to lower the power for ToF imaging. Here, we show that our algo-

rithm can also be used to estimate depth spatially to infill missing depth values. This

means that our algorithm can be used to address two deficiencies of ToF imaging,

namely when the sensor goes out of range and when the sensor saturates (e.g., when

the reflected light overloads the image sensor). We consider both cases and show how

we can, in effect, extend the range of a ToF camera without increasing the power of

its illumination source and overcome saturation.

We first consider the scenario where the ToF camera goes out of range by acquiring

images and depth maps of a scene shown in the first image of Figure 3-16. We use the

Pico Zense DCAM710 RGB-D sensor [68], which contains a ToF and digital camera

that outputs 640 × 480 depth maps and 1080 × 1920 RGB images, respectively. We

expect that as we move the sensor away from the objects in the scene, we will not be

able to measure depth for every object. We show an instance of this in the second

image of Figure 3-16, where the ToF camera goes out of range and the depth for

the box is unknown. To infill the depth values for the box, we use a previously

measured image and depth map pair, where depth is available for the box, and the

current image to estimate a new depth map, which is shown in the last image of
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Figure 3-16. One limitation of our approach is that we can only infill regions where

we have previous depth, and in this case, we cannot estimate depth for the wall. To

evaluate the accuracy of our depth map, we compute the mean relative error for the

overlapping pixels between the measured and estimated depth maps. Because the

scene is rigid, which means that the relative distance between the box and chair does

not change, we expect that this mean relative error is also representative of what we

would obtain if the depth for the box is available in the measured depth map. In this

example, we achieve a mean relative error of 0.87%.

Image Measured Depth Map Estimated Depth Map

Figure 3-16: Out of Range: We estimate the depth for objects that exceed the ToF
camera’s range using our algorithm. The purple regions cannot be sensed by the ToF
camera.

We also consider the scenario where a ToF camera becomes saturated by acquiring

images and depth maps of a scene, shown in the first image of Figure 3-17, as we

move the ToF camera closer to the book. As shown in the second image of Figure

3-17, the sensor saturates and depth is not available in the center of the book. By

using a previous image and depth map pair, we are able to overcome this deficiency

and estimate depth in this region, achieving a mean relative error of 0.6% for the

overlapping pixels.

3.8 Summary

In this chapter, we present an algorithm to estimate causal depth maps for rigid ob-

jects and scenes using concurrently collected images and previously measured depth.

We use this approach to reduce the power of ToF imaging. Instead of using the ToF
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Figure 3-17: Saturation: We estimate the depth for pixels that are saturated using
our algorithm. The purple regions cannot be sensed by the ToF camera.

camera continuously to acquire depth, we estimate depth maps using our technique

and only use the ToF camera when an accurate depth map cannot be estimated. To

ensure that the overall power for depth sensing is reduced, we design our algorithm

to run efficiently on a low power embedded platform by obtaining new depth maps

using the pose, which can be estimated using sparse operations. The resulting imple-

mentation produces 640× 480 depth maps in real time, or 30 frames per second. We

evaluated our approach on several RGB-D datasets, where our technique produces

depth maps with a mean relative error of 0.96% and lowers the usage of the ToF

camera by 85%. When used with commercial ToF cameras, our algorithm can reduce

the total power for depth sensing by up to 73%.
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Chapter 4

Depth Map Estimation for Non-Rigid

Objects and Dynamic Scenes

4.1 Introduction

While the rigidity assumption is made for many applications, in reality, many still

operate in non-rigid and dynamic environments. In this chapter, we show how we can

use concurrently collected RGB images to reduce the usage of a time-of-flight (ToF)

camera and estimate new depth maps for non-rigid objects and dynamic scenes as

shown in Figure 4-1. We define a non-rigid object as an object that deforms such

that the pair-wise distance between any two points can change from frame to frame

while remaining intact. An example of a non-rigid object is a bending sheet of paper.

We also consider dynamic scenes, which we define as a collection of rigid and non-

rigid objects that have independent motions. We show examples of these different

scenarios in Figure 4-2.

To estimate the depth map for both non-rigid objects and dynamic scenes, we

take an approach similar to that in Chapter 3 by first estimating the 3D motion in

the scene and then using it to update a previously measured depth map. We estimate

the 3D motion for these objects and scenes by assuming that they are locally rigid,

which means that the points in a small spatial neighborhood, or region, behave like a

rigid object. For the non-rigid objects, neighboring regions have similar rigid motions,
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Figure 4-1: Depth Estimation Setup: The inputs to our algorithm are two con-
secutive and concurrently collected images and a previous depth map. The algorithm
then estimates the current depth map. Because the previous depth map can either
be measured or estimated, our technique can be used to sequentially estimate depth
to further reduce the usage of the ToF camera.

whereas for dynamic scenes, these regions can have substantially different rigid mo-

tions. These differences will result in different depth map estimation algorithms, but

the assumption of local rigidity allows both algorithms to estimate the 3D motion in

each scenario without explicit rigid motion segmentation. This allows us to efficiently

estimate accurate depth maps and reduce the sensor power of the ToF camera. The

contributions of this chapter are as follows:

∙ For both non-rigid objects and dynamic scenes, we show that we can estimate

their 3D motion using the optical flow and depth at a sparse set of pixels. This

reduces the latency in which we obtain depth maps.

∙ For non-rigid objects, we show that we can accurately estimate depth maps

by subdividing the pixels in the previous frame into overlapping rigid segments

and constraining the pixels in the overlapping regions to have the same motion.

We show that we can formulate this as a sparse linear system, which can be
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Figure 4-2: Non-Rigid Objects and Dynamic Scenes: We show frames from two
sequences that depict either a non-rigid object or a dynamic scene. In the non-rigid
object example, the sheet of paper is bending and remains intact. In the dynamic
scene, the character, her hand, and the background are all moving independently of
each other.

efficiently solved and increase the throughput of our approach.

∙ For dynamic scenes, we show that the rigid motions in the scene can be clustered

and assigned to the pixels of the previous depth map by using the photometric

error between the current image and one obtained by reprojecting the previous

image. Compared to rigid motion segmentation, computing the photometric

error is efficient as its complexity is linear with respect to the number of pixels

in the image. This increases the throughput at which we estimate accurate

depth maps.

The resulting algorithms estimate dense depth maps in up to real-time using the

CPUs of a laptop computer (i5-5257U dual core) and outperform similar approaches

in the literature in terms of both accuracy and latency. While our algorithms are not

as efficient as the technique proposed in Chapter 3, these algorithms can support a

larger variety of scenes and applications.

This chapter is based on our work in [63,65] and is organized as follows. In Section
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4.2, we describe similar techniques that estimate depth maps using consecutive images

for non-rigid objects and dynamic scenes and highlight why they are insufficient for

our purpose. The remainder of this chapter is divided into two parts. In Part I

(Sections 4.3 to 4.4), we focus on non-rigid objects. In Section 4.3, we first describe

how we estimate the depth maps for non-rigid objects using the data from consecutive

RGB images and a previous depth map. We then evaluate our approach using both

synthetic and real datasets in Section 4.4. In Part II (Sections 4.5 to 4.6), we focus

on dynamic scenes. In Section 4.5, we describe how we estimate depth maps for

dynamic scenes using the data from consecutive RGB images and a previous depth

map without computing dense optical flow or rigid motion segmentation. This is

followed by an evaluation of our algorithm in Section 4.6, where we also compare it to

similar techniques. Finally, we summarize and conclude this chapter in Section 4.7.

4.2 Background

Many approaches have been proposed to estimate depth for non-rigid objects and

dynamic scenes for a variety of different applications. Given its breadth, we only

summarize techniques that estimate depth with a similar setup or those that only

use consecutive RGB images. However, many of these approaches are insufficient

for the applications that we consider because they estimate depth maps with either

high latency or high computational complexity. We list these methods in Table 4.1,

and we highlight the different features that pertain to latency and computational

complexity. For latency, we note whether the technique is non-causal or if it is a

multi-frame approach (requiring more than 2 consecutive frames to estimate a depth

map). For computational complexity, we note whether the technique requires dense

optical flow (denoted as Dense Flow in the table), segmentation, or is a deep neural

network (denoted as DNN) based approach. These features are all computationally

expensive [19, 92].
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4.2.1 Depth Transfer Methods (DTM)

Similar to our approach, the depth transfer methods estimate new depth maps using

previously measured ones [11, 43, 50, 89, 95]. However, instead of estimating the 3D

motion in the scene, these approaches instead estimate the dense optical flow between

the current image and one that corresponds to a previous depth map and use the

optical flow to warp the previous depth map to obtain a new one.

The authors of [11,50,89,95] use this framework to equalize the frame rate between

recorded image and depth video. They estimate new depth maps using frames where

both images and depth maps are available, and these techniques have the advantage

that they have data from both the preceding and future frames. While these tech-

niques are effective for increasing the frame rates of depth videos, they are not causal.

While Wang et al. [89] and Li et al. [50] can be adapted to causally estimate depth

using only two frames, these approaches do not account for changes in depth since

the preceding depth maps are simply warped. This is sufficient for small changes in

depth or in-plane motion, but it cannot be generalized to all non-rigid objects and

dynamic scenes.

Karsch et al. [43] similarly warps a previously measured depth map, but differs

in that it uses depth maps taken from a training set of image and depth map pairs

of similar scenes. One benefit of this approach is that it can support monocular

depth estimation. To estimate the depth maps for consecutive images, these authors

improve accuracy by using motion cues to estimate temporally consistent depth maps.

This method fails when the training set does not contain image and depth map pairs

of similar scenes. As our approaches do not rely on a training set, they do not suffer

from this issue.

4.2.2 Non-Rigid Structure-from-Motion (NRSFM)

Non-rigid structure-from-motion techniques estimate relative depth using only images

by exploiting statistical and physical heuristics [42]. Here, we focus on the methods

that estimate dense depth maps in dynamic scenes, namely [46, 47, 73, 76, 94]. Like
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our approach, these methods are all causal and with the exception of [76,94] estimate

depth using only two consecutive frames.

However, unlike our approach, these techniques have high complexity. The au-

thors of [73, 76, 94] estimate depth by first segmenting the pixels into rigid regions.

Zhang et al. [94] directly segments the pixels whereas Roussos et al. [76] and Ranftl et

al. [73] first compute a dense optical flow field and then segment it to initialize their

algorithms. This comes with a high computational cost and lowers the throughput

at which depth can be estimated, a detriment for many applications. However, this

rigid motion segmentation is necessary because estimating depth is underdetermined

without geometric assumptions like rigidity. Noting the challenge of rigid motion seg-

mentation, other approaches use simpler partitions [46,47]. Kumar et al. [46] assumes

that dynamic scenes are locally rigid and partitions the scene into rigid superpixels.

This technique then computes the dense optical flow and uses it to estimate the depth

within each superpixel. Our approaches are similar to these techniques in that they

model both non-rigid objects and dynamic scenes using rigid motions, but they avoid

both dense optical flow and prior segmentation. This is because our techniques lever-

age the previous depth map to both estimate the rigid motions and assign them to

the pixels of the previous depth map. As we will show, this enables efficient depth

map estimation.

4.2.3 Neural Networks for Depth Estimation (NNFDE)

In addition to the previous approaches, many deep neural networks have recently

been proposed to estimate depth using monocular images. We focus on techniques

that use consecutive images to estimate depth in dynamic scenes [9, 23, 51]. In ad-

dition to consecutive images, some of these methods require prior segmentation as

an input before depth can be estimated. Casser et al. [9] and Li et al. [51] require

object-level segmentation masks whereas Gordon et al. [23] requires bounding boxes

of possibly mobile objects. Li et al. [51] even requires an initial depth map obtained

using structure-from-motion techniques, underscoring the inherent difficulty of esti-

mating depth for dynamic scenes. While these techniques are promising, they are
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computationally complex, and their performance is limited by the diversity of their

training set. Unlike these approaches, our techniques estimate depth by exploiting

physical heuristics and do not require a training set.

Across a variety of different approaches that estimate depth in dynamic scenes,

we see that many methods require a dense optical flow field or prior segmentation.

As summarized in Table 4.1, none of these approaches satisfy our requirements. In

this chapter, we show how we can avoid these operations for our problem setup to

efficiently estimate depth for both non-rigid objects and dynamic scenes.

4.3 Part I: Depth Map Estimation of Non-Rigid Ob-

jects

In this section, we describe how we reduce the usage of the ToF camera and estimate

new depth maps for non-rigid objects. As summarized in Figure 4-3, our algorithm

takes as input two consecutive images and a previous depth map. To estimate the

non-rigid deformation and depth, our algorithm assumes that non-rigid objects are

composed of locally rigid segments. As such, our technique first partitions the pixels

into rigid regions. We then use the optical flow to estimate the 3D motion and depth

of each region. We describe this next.

3D Point 
Partitioning

Constrained
Motion Estimation

Obtaining
Depth

{𝑪𝒋} {(𝝎𝒋, 𝑻𝒋)}

Figure 4-3: Non-rigid Depth Map Estimation Pipeline: Our algorithm takes
as input consecutive images and previous depth measurements. Nearby pixels are
partitioned into regions that have the same rigid motion. Because regions can overlap,
we solve a constrained optimization problem to estimate the new 3D position of each
point and then obtain depth.
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4.3.1 3D Point Partitioning

Our approach assumes that nearby points undergo the same rigid motion. As such,

we first group these points together using their 3D coordinates. We first compute

the 3D coordinate of the pixels in the previous depth map using Eq. (2.2). We then

assign each 3D point to regions that are centered on predefined centers. For example,

the region centered on the 𝑗th predefined point is the following set of points:

𝐶𝑗 = {𝑃𝑖 : ||𝑃𝑖 − 𝑃𝑗||2 < 𝜖 𝑖 = 1, 2, . . . , 𝑁} (4.1)

where we denote 𝑃𝑖 as the 3D coordinate of the 𝑖th point, 𝜖 as the radius of each region,

and 𝑁 as the total number of 3D points that are partitioned. Because neighboring

pixels have similar motion and depth, we only partition the pixels on a uniformly

spaced grid to reduce computation. We then distribute the region centers uniformly

across this grid. In our experiments (Section 4.4), we find that a 10 × 15 grid with

regions centered on every tenth pixel (with 𝜖 = 70) offered the best tradeoff between

the accuracy of the estimated depth maps and the latency in which they are obtained.

Because the points in each region are rigid, they must satisfy Eq. (2.17) and

Eq. (2.18), which we duplicate here in matrix form:

⎛⎝ 𝑓
𝑍𝑖

0 −𝑥𝑖−𝑥𝑐

𝑍𝑖
− (𝑥𝑖−𝑥𝑐)(𝑦𝑖−𝑦𝑐)

𝑓
𝑓 +

(𝑥′
𝑖−𝑥𝑐)2

𝑓
−(𝑦𝑖 − 𝑦𝑐)

0 𝑓
𝑍𝑖
−𝑦𝑖−𝑦𝑐

𝑍𝑖
−𝑓 − (𝑦𝑖−𝑦𝑐)2

𝑓
(𝑦𝑖−𝑦𝑐)(𝑥𝑖−𝑥𝑐)

𝑓
(𝑥𝑖 − 𝑥𝑐)

⎞⎠⎛⎝𝑇

𝜔

⎞⎠ =

⎛⎝�̇�𝑖

𝑦𝑖

⎞⎠ (4.2)

where (𝑥𝑖, 𝑦𝑖) is the 2D pixel coordinate of 𝑃𝑖, (�̇�𝑖, 𝑦𝑖) is its optical flow, 𝑓 is the focal

length, and (𝑥𝑐, 𝑦𝑐) is the principal point. Here, we use angular and translational

velocity to represent the rigid motion within each region, which we denote as 𝑇 and

𝜔, respectively.

To determine the points that have the same rigid motion, we first compute the

optical flow using the Lucas Kanade algorithm [56] and then solve the linear system

that results from Eq. (4.2) with RANSAC to determine the inlier set, or the set of

points that have residual errors within a threshold 𝜌. For each region, we only retain

the points in this inlier set. In our experiments, we empirically find that 𝜌 = 0.5
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results in accurate depth maps, and we further discuss the impact of RANSAC in

Section 4.4.4.

4.3.2 Constrained Motion Estimation

Once the points are partitioned, we want to estimate the rigid motion for each region

to obtain the new 3D positions. However, given the placement of the region centers,

some points belong to multiple regions. We need to ensure that the new position of

each point is consistent across the regions it belongs to. For these points, we have

the following consistency constraint:

𝜔𝑘 × 𝑃𝑖 + 𝑇𝑘 = 𝜔𝑙 × 𝑃𝑖 + 𝑇𝑙 (4.3)

where 𝑃𝑖 ∈ 𝐶𝑘 ∩ 𝐶𝑙, which means that the 𝑖th point belongs to both the 𝑘th and

𝑙th region. Without loss of generality, we also denote 𝜔𝑗 and 𝑇𝑗 as the angular and

translational velocity of the 𝑗th region, respectively. We rewrite Eq. (4.3) in matrix

form, which is convenient for our final formulation.

(︁
𝐼 −[𝑃𝑖]× −𝐼 [𝑃𝑖]×

)︁
⎛⎜⎜⎜⎜⎜⎜⎝
𝑇𝑘

𝜔𝑘

𝑇𝑙

𝜔𝑙

⎞⎟⎟⎟⎟⎟⎟⎠ = 0 (4.4)

where we denote [𝑃𝑖]× as the skew-symmetric matrix such that [𝑃𝑖]×𝑃𝑗 = 𝑃𝑖 × 𝑃𝑗

and 𝐼 as the identity matrix.

To estimate the motion, we then combine the rigidity constraints in Eq. (4.2) with

the consistency constraints above to formulate an optimization problem to estimate

the motion within each region:

min
𝛽

1

2
||𝐴𝛽 −Δ||22

subject to: 𝐷𝛽 = 0

(4.5)
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where 𝛽 is the concatenation of the rigid motions in all of the regions, 𝐴 and Δ contain

the rigidity constraints in Eq. (4.2) for each point, and 𝐷 contain the consistency

constraints in Eq. (4.4) for the points that belong to multiple regions.

It should be noted that the constraint 𝐷𝛽 = 0 makes neighboring regions with

overlapping points have similar rigid motion as described in Section 4.1. When there

are more than 3 overlapping pixels, this constraint merges the regions. While this

may seem like a limitation, this is by design because intuitively, regions with signifi-

cant overlap should have the same rigid motion. In our experiments, we empirically

chose the partitioning parameters to avoid overlapping regions unless the regions have

similar rigid motions.

The solution, 𝛽, to Eq. (4.5) can be found by solving the following unconstrained

linear system: ⎛⎝𝐴𝑇𝐴 𝐷𝑇

𝐷 0

⎞⎠⎛⎝𝛽

𝜆

⎞⎠ =

⎛⎝𝐴𝑇Δ

0

⎞⎠ (4.6)

where 𝜆 is a vector of the Lagrange multipliers that enforce the equality constraints.

The matrix in Eq. (4.6) is sparse, where 𝐴𝑇𝐴 is block-wise diagonal and every row of

𝐷 contains at most six elements. Therefore, this system can be efficiently solved. For

Eq. (4.6) to have a unique solution, we note that the columns of 𝐷𝑇 and (𝐴𝑇 , 𝐷𝑇 )𝑇

must all be linearly independent, and we can select them using QR factorization.

4.3.3 Obtaining Depth

Once the motion within each region is estimated, we can obtain the new 3D position

for the point 𝑃𝑖 in the 𝑘th region as follows:

𝑃 ′
𝑖 = 𝑃𝑖 + 𝜔𝑘 × 𝑃𝑖 + 𝑇𝑘 (4.7)

To obtain a depth map, we project the depth of each point using the camera intrinsics.

Because we estimate motion on a subsampled grid, the resulting depth map is sparse,

but we can obtain a dense depth map using linear interpolation.
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4.4 Part I: Evaluation for Non-Rigid Objects

4.4.1 Methodology

We evaluate our algorithm on both synthetic and real data that have substantial

changes in depth from frame to frame. We synthesize 640×480 planar images bending

smoothly (syn_bend) and being sharply folded in the middle (syn_crease). We also

test our algorithm on the RGB-D sequences kinect_paper and kinect_tshirt from [86].

We crop out the object undergoing the non-rigid deformation to test our algorithm.

We assume that we only have depth measurements in the first frame and estimate it

until the fourth frame. We quantify the accuracy of our estimated depth maps using

the percent mean relative error (MRE) defined as in Eq. (1.10).

4.4.2 Implementation

We implement our algorithm on a laptop with an i5-5257U CPU and an embedded

platform [26] with an Exynos 5422 processor. Our laptop implementation can esti-

mate a dense (640 × 480) and sparse depth map in approximately 17 and 50 frames

per second (FPS), respectively, and the bottleneck is linear interpolation. When us-

ing only the Cortex-A7 cores on the embedded platform, which consumes 352 mW

(Idle Power: 178 mW), our algorithm obtains dense and sparse depth estimates in

3 and 11 FPS, respectively. In contrast, non-rigid structure-from-motion approaches

like Kumar et al. [46] require minutes to obtain depth on a desktop computer with

an i7 processor.

4.4.3 Results

We present the MRE in percentage form for each sequence and frame in Table 4.2.

The average MRE across all sequences and frames is 0.37%. We also show an example

of a 3D reconstruction of a frame from the kinect_paper sequence using our estimated

depth map in Figure 4-4.
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Frame Number

Sequence 2 3 4 Mean
kinect_paper 0.19 0.43 0.23 0.28
kinect_tshirt 0.35 0.52 1.16 0.68
syn_bend 0.27 0.25 0.24 0.26
syn_crease 0.27 0.27 0.27 0.27

Mean - Real 0.27 0.48 0.69 0.48
Mean 0.27 0.37 0.47 0.37

Table 4.2: Non-Rigid Depth Map Results: We present the percent MRE for
each sequence and frame number for both real (kinect_paper and kinect_tshirt) and
synthetic sequences (syn_bend and syn_crease).

Figure 4-4: Reconstruction of kinect_paper : We present the 3D reconstruction
of the kinect_paper using the depth map estimated by our approach. We rotated the
paper to show its contours between points A and B.

4.4.4 Discussion

Algorithm Outperforms Non-Rigid Structure-from-Motion Approaches

We compare our algorithm to an adapted approach that first uses techniques like Ku-

mar et al. [46] to obtain depth to scale, and then use the previous depth measurements

to estimate the unknown scale factor. For approaches that perform monocular depth

estimation, this same procedure is followed to evaluate the accuracy of their recon-

struction. Kumar et al. [46] also uses this procedure to benchmark the performance

of their algorithm on sequences from [86].

As summarized in Table 4.3, Kumar et al. [46] report a MRE of 4.76% for

kinect_paper and a MRE of 4.80 % for kinect_tshirt. In contrast, our algorithm
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Sequence This Work Kumar et al. [46]

kinect_paper 0.28 4.76
kinect_tshirt 0.68 4.80

Table 4.3: Non-rigid Structure-from-Motion Comparison: We compare the
percent MRE of our approach to techniques benchmarked in Kumar et al. [46].

achieves a lower MRE of 0.28% and 0.68% for these respective sequences. This sug-

gests that integrating previous depth measurements directly into the depth estimation

process not only simplifies our algorithm but also improves its accuracy.

Impact of RANSAC in 3D Point Partitioning on MRE

In our experiments, we find that using RANSAC to refine our regions lowers the MRE

by up to 25%. Because the MRE is an average statistic computed over all the pixels,

this metric alone does not reflect how our refinement step preserves the underlying

structure. To show that the additional refinement step preserves the underlying

structure of the depth map, we test our algorithm on syn_crease and compare the

3D reconstructions in Figure 4-5. We see that without this refinement step, the

presence of noisy optical flow estimates and our selection of the point partitioning

radius results in a curved plane instead of a sharply folded sheet. This failure mode

makes sense because nearby points with different motions are partitioned together,

and RANSAC mitigates this.

Figure 4-5: Comparing Reconstructed Shape: Using RANSAC to refine our
point partition preserves the underlying shape.
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4.4.5 Limitations of Our Approach

Our algorithm was designed with the assumption that the optical flow can be ac-

curately estimated. A natural consequence of this is that this technique will fail

when the images are textureless. Moreover, even when the images are textured, our

partitioning scheme assumes that the texture is well distributed across the non-rigid

object. This makes our algorithm sensitive to parameters like 𝜖 and 𝜌 as previously

defined. In the next sections, we describe how we overcome these limitations and

generalize this approach to not only estimate depth for non-rigid objects but also

dynamic scenes.

4.5 Part II: Depth Map Estimation for Dynamic Scenes

We now describe how we reduce the usage of the ToF camera and estimate new depth

maps for dynamic scenes using concurrently collected RGB images. Here, we assume

that dynamic scenes contain a collection of rigid and non-rigid objects that have

independent motions. To estimate these motions, we assume that the scene is locally

rigid. However, unlike our algorithm for non-rigid objects, we will not constrain the

neighboring rigid regions to have similar rigid motions. The pipeline of our algorithm

is depicted in Figure 4-6 and is composed of two major stages: one that estimates

the independent rigid motions in the scene (Section 4.5.1) and another that assigns

them to obtain a new depth map (Section 4.5.2).

4.5.1 Independent Rigid Motion Estimation

As we previously stated, our technique assumes that the motion in dynamic scenes

can be approximated using independent rigid motions. In order to estimate it, we

invert an image formation model that relates the 3D motion in the scene to its 2D

displacement across the consecutive images. In this section, we describe how we

accomplish this.
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Figure 4-6: Depth Map Estimation of Dynamic Scene Pipeline: Our algorithm
takes as input two consecutive images and a previous depth map. It uses these
inputs to first estimate the independent and rigid motions in the scene using the
sparse optical flow computed from the images and its corresponding depth. Our
technique then obtains a depth map by assigning the estimated rigid motions to
the appropriate pixels of the previous depth map, guided by the photometric error
obtained by reprojecting the images.

Sparse Optical Flow

Unlike the approaches described in Section 4.2, our technique estimates the 3D scene

motion using the optical flow at a sparse set of pixels. To do so, we first detect corners

in the previous image by using the FAST corner detector [75] and then estimate the

optical flow at these pixels using the Lucas Kanade algorithm [56]. Compared to

our approach for non-rigid objects, which computed the optical flow on a uniformly

spaced grid, this is more computationally expensive. However, it is necessary because

the independently moving objects in a dynamic scene are positioned throughout the

image, and a uniform grid may undersample the pixels that correspond to those

objects. Without localizing these pixels, this means that the optical flow and the

motion of each object may not be accurately estimated.

If the optical flow for the 𝑖th pixel in the previous frame, or 𝑝𝑖, is known, then

its correspondence in the current frame, 𝑝′
𝑖, can be trivially found. Furthermore, for

every pixel detected by the FAST corner detector, we also compute its 3D coordinate,

𝑃𝑖, by using the previous depth map, 𝐷0(𝑥, 𝑦), using Eq. (2.2).
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Motion Estimation

With the optical flow estimated, we now describe how the independent rigid motions

are obtained. In the simplest case, there is a single rigid motion, and we describe how

to estimate it in Section 2.2.

To estimate the multiple and independent rigid motions in the scene, we sequen-

tially estimate them individually using RANSAC as previously described. In addition

to obtaining the rigid motion, RANSAC also determines the inlier set, which is defined

as:

ℐ =
{︁
𝑖 :
⃒⃒⃒⃒
𝜋
(︀
𝑃 ′

𝑖

)︀
− 𝑝𝑖

′⃒⃒⃒⃒2
2
≤ 𝜖
}︁

(4.8)

where 𝜖 is a threshold based on the projection error.

In our approach, we adapt RANSAC to estimate 𝜔 and 𝑇 that maximizes the size

of the inlier set. We then remove the pixels in the inlier set from further consideration

and repeat this process to greedily estimate the rigid motions as shown in Figure

4-7. This is done to increase the diversity of the estimated rigid motions to best

represent the dynamic motion in the scene and to reduce the complexity of the motion

assignment process, described in the next section. This process is repeated until the

size of the inlier set falls below a minimum size, 𝑁min. As a result, our approach does

not need the number of rigid motions to be specified. The output of this algorithm

is the set of estimated rigid motions, which we denote as ℳ = {(𝜔𝑖,𝑇𝑖)}. We

summarize our approach in Algorithm 3.

Figure 4-7: Sequential Rigid Motion Estimation: We depict how the estimated
rigid motions are obtained. In the first image, we highlight the pixels (shown in red)
where 𝑃𝑖 and 𝑝𝑖

′ are known. We use RANSAC to estimate the rigid motion with
the largest inlier set, shown in green in the second image, and remove these pixels
from further consideration. This process is repeated, as shown in the third and fourth
images, until the size of the inlier set falls below a threshold.
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Algorithm 3 Independent Rigid Motion Estimation
input: 𝐼0(𝑥, 𝑦), 𝐼1(𝑥, 𝑦), and 𝐷0(𝑥, 𝑦); 𝑁min, 𝜖
output: ℳ = {(𝜔𝑖,𝑇𝑖)}
1: 𝒫 ← {(𝑥𝑖, 𝑦𝑖)} using FAST corner detector on 𝐼0
2: 𝒫 ′ ← {(𝑥′

𝑖, 𝑦
′
𝑖)} using Lucas Kanade on 𝒫 , 𝐼0 and 𝐼1

3: 𝒵 ← {𝐷0(𝑥𝑖, 𝑦𝑖) for (𝑥𝑖, 𝑦𝑖) ∈ 𝒫}
4: ℳ← {}
5: repeat
6: 𝜔𝑖,𝑇𝑖, ℐ𝑖 ← Estimate rigid motion with largest inlier set using RANSAC
7: if |ℐ𝑖| > 𝑁min then
8: Remove inlier values from 𝒫 ,𝒫 ′,𝒵
9: ℳ←ℳ∪ (𝜔𝑖,𝑇𝑖)

10: end if
11: until |ℐ𝑖| < 𝑁𝑚𝑖𝑛 or 𝒫 is empty

4.5.2 Depth Map Estimation

Once the rigid motions are estimated, we obtain a new depth map by using these

estimated rigid motions to reproject the previous depth map. To do so, we obtain the

3D position of each pixel, apply the appropriate rigid motion, and project its updated

depth. In this section, we describe how we determine which estimated rigid motion

to use in order to obtain a new depth map.

Motion Assignment

To determine the motion assignment, we exploit the fact that in the previous frame,

both the image and the depth map are spatially aligned. This allows us to reproject

the previous image. This is important because if a set of pixels move with a certain

rigid motion, then its reprojection must coincide with its corresponding pixels in the

next frame. Consequently, the pixel-wise difference between these reprojected pixels

and its correspondences in the next frame, or the photometric error, must have a low

magnitude. Our approach uses this insight to assign the estimated rigid motions to

the appropriate pixels of the previous depth map.

We begin by reprojecting the previous image, or 𝐼0(𝑥, 𝑦), using each of the es-

timated rigid motions. We obtain the 3D coordinate of each pixel in the previous
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image, or 𝑃 𝑖, by using Eq. (2.2) and 𝐷0(𝑥, 𝑦). Given the 𝑗th estimated rigid motion,

we first compute 𝑃 ′
𝑖 by applying the rigid motion, from which the reprojected image,

denoted as 𝐼𝑗(𝑥, 𝑦), can be defined as follows:

𝐼𝑗(𝑥′
𝑖, 𝑦

′
𝑖) = 𝐼0(𝑥𝑖, 𝑦𝑖) (4.9)

where (𝑥′
𝑖, 𝑦

′
𝑖)
𝑇 = 𝜋 (𝑃 ′

𝑖). Here, we use the superscript of 𝐼 to represent the index of

the pose used to reproject the previous image, whereas the subscript of 𝐼 is used to

indicate the temporal relation between images. The photometric error is the absolute

difference between this reprojected image and the current one, 𝐼1(𝑥, 𝑦), and we define

it as:

𝐸𝑗(𝑥𝑖, 𝑦𝑖) =
⃒⃒
𝐼1(𝑥

′
𝑖, 𝑦

′
𝑖)− 𝐼𝑗(𝑥′

𝑖, 𝑦
′
𝑖)
⃒⃒

(4.10)

with (𝑥′
𝑖, 𝑦

′
𝑖) similarly defined. To ensure that the photometric error is locally smooth,

we also filter 𝐸𝑗(𝑥, 𝑦) with a guided filter [29] and use 𝐼0(𝑥, 𝑦) as the guide image.

We show examples of the reprojected image and the resulting photometric error in

Figure 4-8.
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Figure 4-8: Photometric Error: We reproject the previous image using the previous
depth map and the estimated rigid motions as shown in the first row. The photometric
error, shown in the second row, is then obtained by computing the absolute difference
between the reprojected images and the current one and filtering this output using a
guided filter.
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Figure 4-9: Motion Assignment: We show the motion assignment, where different
colors represent the different estimated rigid motions, and the resulting depth map.
Without filtering, the estimated rigid motions are spuriously assigned and results in
artifacts in the depth map. When the photometric error is filtered, we see that the
motion assignment is locally smooth and the depth map contains fewer artifacts.

Finally, we assign the 𝑗th estimated rigid motion to the 𝑖th pixel if it minimizes

the photometric error. We express this mathematically as follows:

𝑗 = argmin
1≤𝑘≤|ℳ|

𝐸𝑘(𝑥𝑖, 𝑦𝑖) (4.11)

We solve Eq. (4.11) for every pixel in the previous depth map, and we visualize an

example of this motion assignment in Figure 4-9. This figure also shows the impact of

the guided filtering. In our experiments, we find that filtering the photometric error

is essential and helps ensure that the motion assignment is also locally smooth, which

agrees with our intuition that dynamic scenes are locally rigid. Furthermore, we also

see that the resulting depth maps also have fewer artifacts, and we discuss the cause

of these artifacts in Section 4.6.5. Our approach is similar to the framework proposed

in [74], which applied the same filtering operations for optical flow estimation and

stereo matching.

In the process of assigning the estimated rigid motions, our algorithm also seg-
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ments the rigid motion in the scene. This is in contrast to some of the approaches in

Section 4.2, which require dense optical flow estimation and rigid motion segmenta-

tion before depth can be estimated. We are able to do this without these operations

because we have a previous depth map, which allows us to compute the photomet-

ric error to determine the best rigid motion assignment. Furthermore, this process

is also computationally efficient. Computing and filtering the photometric error in

Eq. (4.10) has 𝑂(𝑛) complexity, where 𝑛 is the total number of pixels in the previous

depth map. This is repeated for each of the |ℳ| estimated rigid motions, and this

computation can be parallelized. We note that |ℳ| ≤ 𝑁
𝑁min

, where 𝑁 and 𝑁min are

the parameters used to estimate the rigid motions in Section 4.5.1. In our experi-

ments, we choose these parameters to balance the accuracy of the estimated depth

maps with its throughput. As a result of this, we are able to estimate dense depth

maps in real-time, or under 33.3 milliseconds for each depth map, on a standard

laptop computer (2.7 GHz i5-5257U cores) compared to the minutes reported by the

methods summarized in Section 4.2.

Reprojection

Finally, once the estimated rigid motions are assigned, we estimate the current depth

map by reprojecting the previous one. For every pixel in the previous depth map, we

first compute its 3D coordinate, 𝑃𝑖, using Eq. (2.2) and then compute 𝑃𝑖
′ using its

rigid motion determined by Eq. (4.11). The depth map is finally obtained as follows:

𝐷1(𝑥
′, 𝑦′) = 𝑧 · 𝑃𝑖

′ (4.12)

where (𝑥′, 𝑦′)𝑇 = 𝜋 (𝑃𝑖
′). When multiple 3D points are reprojected to the same pixel

location, we retain the smaller depth value. We summarize our depth estimation

process in Algorithm 4.
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Algorithm 4 Depth Map Estimation
input: 𝐼0(𝑥, 𝑦), 𝐼1(𝑥, 𝑦), and 𝐷0(𝑥, 𝑦);ℳ = {(𝜔𝑖, 𝑡𝑖)}
output: 𝐷1(𝑥, 𝑦)
1: 𝑗 ← 1
2: repeat
3: Reproject 𝐼0(𝑥, 𝑦) using 𝜔𝑗 ,𝑇𝑗 , and 𝐷0(𝑥, 𝑦)
4: Compute and filter 𝐸𝑗(𝑥, 𝑦) using Eq. (4.10)
5: 𝑗 ← 𝑗 + 1
6: until 𝑗 = |ℳ|
7: repeat
8: Compute the best motion 𝑗 using Eq. (4.11)
9: Compute 𝑃 ′

𝑖 using 𝑃𝑖, 𝜔𝑗 and 𝑇𝑗 with Eq. (4.7)
10: (𝑥′

𝑖, 𝑦
′
𝑖)
𝑇 ← 𝜋(𝑃 ′

𝑖 )
11: 𝐷1(𝑥

′
𝑖, 𝑦

′
𝑖)← 𝑧 · 𝑃 ′

𝑖

12: until all pixels are reprojected

4.6 Part II: Evaluation for Dynamic Scenes

4.6.1 Methodology

To evaluate our algorithm, we use RGB-D datasets that contain calibrated image and

dense depth map pairs of different dynamic scenes. These datasets are also used to

evaluate the approaches in Section 4.2 and include:

∙ Deformable Surfaces (DS) [87]: This dataset contains real sequences of ob-

jects undergoing non-rigid deformations. We use the kinect_paper and kinect_tshirt

sequences. We also used this dataset previously to evaluate our algorithm for

non-rigid objects.

∙ MPI Sintel (MPI) [7]: This dataset contains synthetic scenes with both ar-

ticulated and camera motion. We use the clean video sequences of alley_1, am-

bush_7, bandage_1, bandage_2, shaman_2, shaman_3, sleeping_1, and sleep-

ing_2.

∙ TU Munich RGB-D (TUM) [85]: This dataset is typically used to bench-

mark SLAM algorithms. We use the sequences in the Dynamic Objects category,

which contain both camera and human motion.
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∙ Virtual KITTI (VKITTI) [21]: This dataset contains synthetic scenes from

the perspective of a car driving through different urban environments. We use

the overcast sequences for 1, 2, 6, 18, and 20.

We test our approach by estimating depth maps sequentially: we first estimate a

new depth map using its corresponding image and a previous image and measured

depth map pair, and for consecutive frames, we then use the estimated depth map to

obtain the next one.

To evaluate the estimated depth maps, we compute the percent mean relative

error (MRE) as defined in Eq. (1.10). This metric penalizes a unit error at a close

range more than that further away, which is an appropriate metric for applications

that use depth to interact with its immediate environment. The MRE also allows

us to compare the performance of our algorithm across datasets that have different

dynamic ranges. To highlight the different dynamic ranges for the different datasets,

we also compute the mean absolute error (MAE) and the root mean squared error

(RMSE). These metrics are defined as follows:

MAE =
1

𝑁

𝑁∑︁
𝑖=1

|𝑍𝑖 − 𝑍𝑖| (4.13)

RMSE =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

(𝑍𝑖 − 𝑍𝑖)2 (4.14)

where 𝑍𝑖 and 𝑍𝑖 are the estimated and measured depth for the 𝑖th pixel, respectively,

and 𝑁 is the total number of depth estimates. In our evaluation, we compute these

metrics for pixels with ground truth depth values that are within 20 meters. We

compute these metrics for 10 sequentially estimated depth maps and average them

over 100 different starting points for the sequences in each dataset (except the MPI

dataset, where each sequence only has 50 frames).

109



4.6.2 Implementation

We implement our algorithm following the details stated in Sections 4.5.1 and 4.5.2

and tune algorithm parameters separately for each dataset. Whenever possible, we use

OpenCV to implement our approach. As shown in Table 4.4, our code estimates dense

depth maps in real-time, or over 30 frames per second (FPS), for the DS and TUM

datasets and in near real-time for the other datasets on a standard laptop computer

(2.7 GHz i5-5257U cores). This is significantly faster than the approaches in Section

4.2, which report several minutes to estimate depth maps of the same resolution. Our

computation is dominated by the motion assignment, where approximately 75% of

the time is spent on assigning the estimated rigid motions, and the remaining 25% of

the time is spent on estimating the rigid motions.

Dataset Resolution Frame Rate (FPS) Time Per Frame (ms)

DS 640× 480 32 31.3
MPI 1024× 436 12 83.3
TUM 640× 480 34 29.4
VKITTI 1242× 375 14 71.4

Table 4.4: Throughput: We summarize the median frame rate and the estimation
time per frame for the sequences of each dataset as profiled on a standard laptop com-
puter (2.7 GHz i5-5257U cores). This is significantly faster than previous approaches,
like Kumar et al. [46], which require several minutes to estimate a 1024× 436 depth
map.

4.6.3 Results

The results of our evaluation are shown in Figures 4-10 to 4-12, where we plot the

MRE, MAE, and RMSE for the depth maps as they are sequentially estimated. Addi-

tionally, we also average the MRE, MAE, and RMSE over the frames for each dataset

in Table 4.5 and show examples of the estimated depth maps in Figure 4-13.

We observe that all of the error metrics increase as more consecutive depth maps

are estimated, and this is due to the errors in the motion estimation and assign-

ment that accumulate across frames. This is especially pronounced in the TUM and
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Figure 4-10: Sequential Estimation Results: The average MRE of consecutively
estimated depth maps are plotted for the datasets we evaluate on.
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Figure 4-11: Sequential Estimation Results: The average MAE of consecutively
estimated depth maps are plotted for the datasets we evaluate on.

VKITTI datasets, which have higher errors than the DS and MPI datasets. For the

TUM dataset, the images are affected by motion blur and are not perfectly time syn-

chronized with the depth maps. This impacts the motion assignment as described

in Section 4.5.2. For the VKITTI dataset, the difference between the foreground

and background depth is large. Therefore, errors at these boundaries between the

foreground and background (due to erroneous motion assignments, for example) are

high.

Nonetheless, our algorithm is still accurate, and when averaged across the different

datasets, we see that our algorithm obtains a MRE between 1.3%-3.7%. Moreover,

our results also suggest that we can reduce the usage of the depth sensor by over 90%
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Figure 4-12: Sequential Estimation Results: The average RMSE of consecutively
estimated depth maps are plotted for the datasets we evaluate on.

Dataset MRE (%) MAE (cm) RMSE (cm)

DS 1.8 1.3 4.1
MPI 1.8 3.3 25.6
TUM 3.0 9.9 38.4
VKITTI 3.5 37.2 93.5

Mean 2.5 12.9 40.4

Table 4.5: Results for Dynamic Scenes: We summarize the performance of our
approach on each dataset by averaging the different metrics over the frames we esti-
mate.

but still estimate depth maps within 2.5% of the ground truth for general scenes.

4.6.4 Comparison to Previous Approaches

To better evaluate our approach, we compare its performance to the approaches in

Section 4.2. We use the depth transfer methods, namely Wang et al. [89] and Karsch

et al. [43], because they have the most similar setup. For the non-rigid structure-from-

motion techniques, we compare our technique to Kumar et al. [46], which estimates

dense depth using consecutive frames without segmentation. We do not compare

our technique to the neural network-based approaches because these networks are

trained on images with different resolutions and characteristics compared to those in

the datasets we evaluate on as that would negatively bias its performance.
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Figure 4-13: Estimated Depth Maps: We compare our estimated depth maps
(This Work) against the ground truth. The white areas indicate regions where depth
is unavailable. We discuss the cause of these regions in our estimated depth maps in
Section 4.6.5.

Comparison to Depth Transfer Techniques

We compare our approach to a causal variant of Wang et al. [89], which only uses the

previously measured depth maps to estimate a new one. As stated in Section 4.2, this

method would be effective for small changes in depth and in-plane motion. In Figure

4-14, we see that the MRE for Wang et al. [89] increases significantly from frames

to frame. This suggests substantial changes in depth in the scenes, which the dense

optical flow cannot account for, but is captured by our approach. Consequently, as

shown in Table 4.6, our technique outperforms this approach for every dataset we

evaluate on.

Karsch et al. [43] estimates depth maps by querying from a training set of image

and depth map pairs captured from similar scenes. For our experiments, we randomly

selected image and depth map pairs from each dataset for this technique to use. We

use the default parameters, where each depth map is estimated using 8 examples from

the training set. However, even with a training set taken from the same scenes, we
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Figure 4-14: Comparison to Depth Transfer Techniques: Our technique not
only remaps the pixels of a previous depth maps but also accounts for the changes in
depth.

Dataset This Work Wang et al. [89] Karsch et al. [43] Kumar et al. [46]

DS 1.8 4.6 6.9 4.8
MPI 1.8 3.6 13.9 16.7
TUM 3.0 6.0 18.5 -
VKITTI 3.5 20.6 14.9 10.45

Table 4.6: Comparison to Previous Approaches: We summarize the MRE of the
depth maps estimated by our algorithm and the previous techniques. The code for
Kumar et al. [46] is not publicly available, and we report the results from their paper.

see in Table 4.6 that our approach outperforms Karsch et al. [43]. This makes sense

because similar images of the same scenes are not guaranteed to have the same depth,

and this is reflected by the high MRE.

Comparison to Non-Rigid Structure-from-Motion

We also compare our approach to Kumar et al. [46], which is similar to our technique

in that it estimates depth maps using only two frames and assumes that the scene

is locally rigid. This approach is different in that it does not have any previous

depth. Therefore in order to estimate depth, it first oversegments the scene into rigid

superpixels and then uses the per-pixel, dense optical flow to estimate the depth within

each superpixel while ensuring scale consistency. This requires restrictive assumptions

for each superpixel and is sensitive to the accuracy of the optical flow, which is not
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always possible to accurately estimate. While this method produces encouraging

results (especially since it does not use any previous depth measurements like in our

approach and the previous ones), our technique still outperforms it as shown in Table

4.6. This shows that using prior depth allows us to both efficiently and accurately

estimate depth in dynamic scenes.

4.6.5 Limitations of Our Approach

As described in Section 4.5.1, our algorithm estimates the independent and rigid

motions in the scene using the optical flow at a sparse set of key points. Therefore,

our approach will naturally fail for scenes with limited texture. Another consequence

of this is that our approach also fails to estimate the motion of small rigid segments,

where key points are not detected and the optical flow not estimated. One way to

detect these scenarios is to examine the photometric error and use it as a measure of

confidence for the estimated depth, an area of future exploration.

Another drawback of our approach stems from the motion assignment and depth

map estimation in Section 4.5.2. For regions with limited texture, the pose can be

incorrectly assigned and lead to pixels being erroneously reprojected. However, even

when the pose is correctly assigned, we still have missing depth estimates in the depth

map. Some of these missing pixels arise because reprojecting the neighboring pixels of

a rigid segment does not constrain them to be contiguous in the estimated depth map.

However, these missing pixels are smaller in area compared to those in regions which

were previously occluded, but uncovered due to the motion in the scene. This is shown

in Figure 4-15. Furthermore, as the depth maps are sequentially estimated, these

holes become more pronounced. While there are many promising infilling approaches

[8, 32, 53, 58, 72], we avoid them because they often require assumptions that are not

geometrically motivated. We can also avoid these infilling techniques because in our

problem setup, we can still use the depth sensor. For example, when the depth in a

previously occluded region is required by the underlying application, this event can

be used to trigger the depth sensor to obtain a new depth map as done in [64].
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Figure 4-15: Missing Depth: As the hand moves, part of the background becomes
unoccluded, and because its depth was not previously measured, they are missing in
the reprojected depth map.

4.7 Summary

In this chapter, we present algorithms that reduce the usage of ToF cameras and

estimate new depth maps using concurrently collected RGB images for non-rigid

objects and dynamic scenes. We present solutions that balance the acquisition of

depth between the ToF camera and computation without incurring a large cost. Our

contribution is to incorporate the previous depth measurements into our formulation,

which allows us to efficiently estimate the rigid motions in the scene using sparse

optical flow and to accurately assign the estimated rigid motions to the pixels of

the previous depth map to obtain a new one. The resulting algorithms are efficient

and, in the case of dynamic scenes, we estimate dense depth maps in up to real-

time (30 FPS) on a standard laptop computer. Across different datasets, we show

that our techniques can reduce the usage of the ToF camera by up to 90% but still

estimate depth maps with an average mean relative error of 2.5%, outperforming

related techniques.
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Chapter 5

Low Power Temporal Depth Filtering

5.1 Introduction

In the previous chapters, we assumed that RGB images are concurrently collected,

and we used them to reduce the usage and sensor power of the time-of-flight (ToF)

camera. To maintain the acquisition of depth, we then estimated new depth maps

using the RGB images. Here, we examine how we can reduce the sensor power using

only the data from the ToF camera. To do so, we take a different approach and

focus instead on obtaining accurate depth maps while reducing the overall amount of

emitted light. In contrast to the previous settings, the ToF camera is always on in

this scenario.

Naturally, one simple way to reduce the sensor power is to reduce the amount of

light the ToF camera emits per frame. As a result, the intensity of the reflected light

that is captured by the ToF camera is also reduced. One consequence of this is the

loss of range because the reflection from distant objects cannot be discerned from the

ambient light. Even for applications that only need depth in the immediate vicinity,

this simple strategy is still unappealing because the reduced intensity also increases

the noise in the resulting depth map.

To address this limitation, we propose algorithms that reduce the sensor power of

a ToF camera and mitigate the noise in the low power depth maps by combining the

data across consecutive frames. To do so, our algorithms use the infrared (IR) images
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that a ToF camera obtains in place of the RGB images to estimate the 3D scene

motion using the techniques described in the preceding chapters. This 3D motion

can be estimated efficiently using the optical flow and depth at a sparse set of pixels.

In particular, we propose the following:

∙ Adaptive Power Depth Map Denoising: To reduce the overall sensor power

of the ToF camera, we reduce the frequency in which high power depth maps

are obtained and use them to denoise subsequent low power depth maps for

dynamic scenes. Our key insight here is that the 3D scene motion can be

estimated using infrared images obtained under different power settings, and we

use the estimated rigid motions to combine the high power depth maps with the

low power ones sequentially. The resulting algorithm reduces the mean relative

error of the low power depth maps by up to 64% and the overall amount of

emitted light by up to 81%.

∙ Recursive Temporal Filtering: When only low power depth maps are col-

lected, we propose an algorithm to temporally filter these depth maps recur-

sively. Because the range of a low power depth maps is reduced, we assume that

the region that the ToF camera can sense is rigid. Our technique estimates this

rigid motion and uses it to efficiently align consecutive depth maps spatially

and account for the changes in depth. The resulting filter reduces the mean

relative error of the low power depth maps by 77%.

By exploiting sparse and recursive processing, both algorithms filter depth maps in

up to real-time using the CPU of an embedded processor (Cortex-A7/A15 octa core).

This chapter is based on [61] and is organized as follows. In Section 5.2, we analyze

the noise in low power depth maps that our methods aim to mitigate. The remainder

of the chapter is divided between our two approaches. In Part I (Sections 5.3 to 5.5),

we describe our adaptive power depth map denoising algorithm. In Section 5.3, we

provide an overview of the assumptions we made for this approach. We then describe

the algorithm in Section 5.4 and evaluate it in Section 5.5. In Part II (Sections 5.6

to 5.8), we describe our recursive temporal filtering approach. In Section 5.6, we

118



motivate the need for this approach and describe the assumptions we made. We then

describe the filtering approach in Section 5.7 and evaluate it in Section 5.8. Finally,

we conclude this chapter in Section 5.9.

5.2 Shot Noise in Time-of-Flight Cameras

As described in Chapter 1, ToF cameras estimate depth by emitting pulses of light

and accumulating its reflection over carefully-timed intervals. Due to the discrete

nature of light, the amount of light that is reflected and accumulated by the sensor

is affected by shot noise, which is also known as Poisson noise [40]. To see how this

affects the resulting depth map, we analyze its impact on a pulsed ToF camera.

Pulsed ToF cameras obtain depth by estimating the round trip time of the emitted

pulses of light. We show the operation of a pulsed ToF camera in Figure 5-1 for a

single pulse and pixel. In the figure, we indicate the interval in which the light

is emitted as well as the intervals, denoted as Shutter 0 and Shutter 1, where the

reflected light is accumulated. To simplify our analysis, we will assume that there is

no ambient contribution or multi-path interference.

Figure 5-1: Pulsed Time-of-Flight Camera: We depict the operation of a pulsed
ToF camera for a single pulse and pixel. In particular, we show the time interval
where the pulse of light is emitted and the intervals (e.g., Shutter 0 and Shutter 1)
where the reflected light pulse is accumulated.

To estimate the depth for the 𝑖th pixel, we observe that the light accumulated
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in Shutter 1, which we denote as 𝑆1𝑖, is proportional to the round trip time of the

emitted light. Furthermore, the light accumulated in both Shutter 0 and Shutter 1,

or 𝑆0𝑖 + 𝑆1𝑖, is proportional to the entire pulse width. This allows us to obtain the

depth, denoted as 𝑍𝑖, as follows:

𝑍𝑖 =
𝑐𝜏𝑓

2
√︀

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2

𝑆1𝑖

𝑆0𝑖 + 𝑆1𝑖

(5.1)

where 𝑓 and (𝑥𝑐, 𝑦𝑐) are the intrinsic parameters, 𝜏 is the pulse width of the emitted

light, and 𝑐 is the speed of light. This is repeated for every pixel on the image sensor

to obtain a depth map, or 𝐷(𝑥, 𝑦). These same measurements can also be used to

obtain an IR image, or 𝐼(𝑥, 𝑦), where the intensity of each pixel is proportional to

the light accumulated in Shutter 0 and Shutter 1.

Because the accumulated light is affected by shot noise, the process shown in

Figure 5-1 is often repeated for many pulses to obtain reliable depth estimates [25].

However, when the amount of the accumulated light is still low, which is the case

when the amount of emitted light is reduced, the impact of shot noise is pronounced

in the resulting depth map. To see this, we approximate the variance of the estimated

depth, denoted as 𝜎2
𝑍𝑖

, by using the propagation of uncertainty method:

𝜎2
𝑍𝑖
≈
(︂

𝜕𝑍𝑖

𝜕𝑆0𝑖

)︂2

𝜎2
𝑆0𝑖

+

(︂
𝜕𝑍𝑖

𝜕𝑆1𝑖

)︂2

𝜎2
𝑆1𝑖

(5.2)

where 𝜎2
𝑆0𝑖

and 𝜎2
𝑆1𝑖

are the variances of 𝑆0𝑖 and 𝑆1𝑖, respectively.

Assuming that shot noise is the dominant noise source, we model 𝑆0𝑖 and 𝑆1𝑖 as

scaled and independent Poisson random variables (e.g., 𝑆0𝑖/𝛼 and 𝑆1𝑖/𝛼 are Poisson

distributed for some constant 𝛼) to obtain 𝜎2
𝑆0𝑖

and 𝜎2
𝑆1𝑖

. Using this fact and by sub-

stituting Eq. (5.1) into Eq. (5.2), we can rearrange the terms to obtain the following

expression:

𝜎2
𝑍𝑖
≈ 𝑍𝑖

(︃
𝑐𝜏𝑓

2
√︀

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2
− 𝑍𝑖

)︃
𝛼

𝑆0𝑖 + 𝑆1𝑖

(5.3)

120



where we see that 𝜎2
𝑍𝑖

is inversely proportional to the intensity of the reflected light,

or 𝑆0𝑖 + 𝑆1𝑖. Therefore, when this intensity is low, the depth variance is especially

high, and a consequence of this is that the depth resolution is reduced. A similar

expression can also be derived for continuous wave ToF cameras following the same

procedure.

The high noise in low power depth maps shows why the simple approach of just

reducing the amount of emitted light is insufficient for our goal. This motivates the

approaches that we propose to increase the accuracy of the low power depth maps.

It should also be noted that in addition to shot noise, the depth maps obtained by

a ToF camera are also affected by other statistical and systematic noise sources. In

this chapter, we only focus on shot noise as it is especially pronounced in low power

depth maps.

5.3 Part I: Adaptive Power Depth Maps Denoising

In this section, we present an algorithm that obtains adaptive power depth maps and

lowers the overall power required to obtain accurate depth maps for a ToF camera.

Our algorithm accomplishes this by reducing the frequency in which high power depth

maps are obtained and using the high power depth maps to denoise subsequent low

power ones. This is shown in Figure 5-2.

In order to denoise the low power depth maps, our algorithms estimate the 3D

motion between the consecutive frames. We show that this 3D motion can be esti-

mated using the consecutive IR images, regardless of whether it was obtained in a high

or low power setting. This is because features are still preserved in the IR images,

which is essential for the estimation of optical flow. In our algorithm, we use these

IR images to estimate the motion in dynamic scenes by adapting the technique in

Chapter 4. We describe this adaptation next.
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Figure 5-2: Adaptive Power Depth Map Denoising: We adaptively vary the
power of a ToF camera in each frame. Here, we assume that high power depth maps
are obtained with 10× as much power as the low power ones. To increase the accuracy
of the first low power depth map (𝑡 = 1), we estimate and use the 3D scene motion
to combine the previous high power depth map with it. We repeat this sequentially
to increase the accuracy of the next low power depth map (𝑡 = 2).

5.4 Part I: Proposed Algorithm

To increase the accuracy of the low power depth maps, our algorithm takes as input

the previous IR image and depth map along with the current IR image and depth

map. We denote the previous IR image and depth map as 𝐼𝑡−1(𝑥, 𝑦) and �̂�𝑡−1(𝑥, 𝑦),

respectively. We use the �̂�(𝑥, 𝑦) notation to indicate that the depth map has either

been filtered or obtained in a high power setting. We denote the current IR image

and depth map as 𝐼𝑡(𝑥, 𝑦) and 𝐷𝑡(𝑥, 𝑦), respectively. We assume that 𝐷𝑡(𝑥, 𝑦) is a

low power depth map, and our goal is to filter it to obtain �̂�𝑡(𝑥, 𝑦).

As shown in Figure 5-3, our algorithm accomplishes this by first estimating the

3D motion between the consecutive frames. When the motion can be estimated, our

algorithm combines the previous depth map with the current one. However, when

the motion cannot be estimated, we obtain a new high power depth map using the

ToF camera.
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Figure 5-3: Adaptive Power Depth Map Denoising Pipeline: Our algorithm
increases the accuracy of the current low power depth map by combining it with a
previously filtered or high power one. It does this efficiently by estimating the 3D
motion in the scene, and when this motion cannot be estimated, it signals the ToF
camera to obtain another high power depth map.

5.4.1 Estimating Rigid Motions

Similar to Chapter 4, we model the dynamic scene using independent rigid motions.

To estimate these motions, we follow an approach similar to that described in Section

4.5.1 by clustering the rigid motions in order of their inlier set sizes using the sparse

optical flow computed across the consecutive IR images, 𝐼𝑡−1(𝑥, 𝑦) and 𝐼𝑡(𝑥, 𝑦), and

the corresponding depth taken from the previous depth map, �̂�𝑡−1(𝑥, 𝑦).

Here, we represent the rigid motion using the pose, which is composed of a rotation

matrix and a 3D vector. We also compute the optical flow for the pixels on a sparse

and uniformly spaced grid. This minimizes the computation because we do not need

to localize key points. For the scenes that we consider, which contain a small number

of independently moving objects, this is a reasonable tradeoff. We also estimate

optical flow using block matching with normalized correlation. In our experiments,

we found that performing block matching using 15× 15 blocks centered on the pixels

of a 20× 20 sparse grid offered the best tradeoff between the accuracy of the filtered

depth map and the latency in which they are obtained. With the poses estimated,

we use them to combine the previous depth map with the current one.
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5.4.2 Depth Map Fusion

To denoise the current depth map, we first need to assign the rigid motions to the

appropriate pixels of the previous depth map. Once the rigid motions are assigned,

we then reproject the previous depth map and combine it with the current depth map

using a weighted average.

Depth Map Reprojection

To assign the rigid motions to the pixel of the previous depth map, the approach in

Section 4.5.2 reprojects the previous image and uses the photometric error (e.g., the

absolute difference between the reprojected image and the current one) to guide the

rigid motion assignment. Here, we take a different approach and instead reproject

the previous depth map and compare it to current depth map. By using the current

depth map, we will show that we can avoid the overhead of reprojecting the entire

depth map for each of the estimated poses.

As shown in Figure 5-4, we first reproject the previous depth map using the pose

with the largest inlier set. We assume that this pose corresponds to the largest rigid

region in the image. We first obtain the 3D position of each pixel in the previous

depth map, which we denote as 𝑃𝑖, by using Eq. (2.2) and �̂�𝑡−1(𝑥, 𝑦). We then apply

the pose, which we denote as 𝑅0 and 𝑇0, to each point and obtain its new pixel

coordinate, (𝑥′
𝑖, 𝑦

′
𝑖), and updated depth 𝑍 ′

𝑖, as follows:

(𝑥′
𝑖, 𝑦

′
𝑖)
𝑇 = 𝜋 (𝑅0𝑃𝑖 + 𝑇0) 𝑍 ′

𝑖 = 𝑧 · (𝑅0𝑃𝑖 + 𝑇0) (5.4)

where 𝜋(·) is the projection operator defined in Section 2.3.

As shown in Figure 5-4, we only retain the updated depth where |𝑍 ′
𝑖−𝐷𝑡(𝑥

′
𝑖, 𝑦

′
𝑖)| <

𝜖, where 𝜖 is a depth threshold. For these pixels, we update the reprojected depth

map, denoted as �̃�𝑡−1(𝑥, 𝑦), as follows:

�̃�𝑡−1(𝑥
′
𝑖, 𝑥

′
𝑖) = 𝑍 ′

𝑖 (5.5)
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Figure 5-4: Depth Map Reprojection Pipeline: We apply the poses in order of
its inlier set size and use the current depth map to help assign the correct pose to
each pixel.

We repeat this process with the remaining pixels (e.g., where |𝑍 ′
𝑖 − 𝐷𝑡(𝑥

′
𝑖, 𝑦

′
𝑖)| ≥ 𝜖)

using the remaining poses in order of their inlier set sizes. Therefore, this approach

reprojects fewer pixels than the approach in Section 4.5.2, which reprojects every

pixel in the previous image for each pose. Even though the current low power depth

map is inaccurate, we find that it still can be used to guide the pose assignment.

We show examples of the pose assignment for 2 scenarios in Figure 5-5. In the

third column of this figure, we color code each pixel according to its assigned pose.

We see that the pose assignment is consistent with the segments that have different

motions. This qualitatively shows that our approach estimates and correctly assigns

the motion.

t = 0 t = 1 Assigned Pose

Figure 5-5: Assigned Pose: We show examples of the assigned pose, which is con-
sistent with the rigid object motion in the scene.
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Weighted Average

To obtain �̂�𝑡(𝑥, 𝑦), we combine the non-zero pixels of the reprojected depth map

with the current one using a weighted average. It can be shown that choosing the

weights based on the variances of the depth lowers the expected mean squared error.

Therefore, we obtain the filtered depth map as follows:

�̂�𝑡(𝑥, 𝑦) =
𝜎2
𝑡 �̃�𝑡−1(𝑥, 𝑦) + 𝜎2

𝑡−1𝐷𝑡(𝑥, 𝑦)

𝜎2
𝑡 + 𝜎2

𝑡−1

(5.6)

where we denote 𝜎2
𝑡−1 as the variance of �̃�𝑡−1(𝑥, 𝑦) and 𝜎2

𝑡 as the variance of 𝐷𝑡(𝑥, 𝑦).

These variances must be computed for every pixel using Eq. (5.2) and also updated as

the pixels are reprojected. To reduce this computation, we approximate the weights

as follows:
𝜎2
𝑡

𝜎2
𝑡 + 𝜎2

𝑡−1

≈ 𝑀

𝑀 + 1
(5.7)

where 𝑀 is the ratio of the power used to obtain a high power depth map to that of a

low power one. This approximation shows that more weight is given to the reprojected

depth, which makes sense because it contains information from the last high power

depth map. Furthermore, in our experiments, we find that using the approximation

in Eq. (5.7) had a negligible impact on the mean relative error of the filtered depth

maps when compared to using the actual variances.

5.4.3 Adaptive Control

As shown in Figure 5-3, we obtain a high power depth map when the motion cannot

be estimated. This occurs when there are not enough features in the IR images or if

accurate optical flow cannot be estimated. We also track the number of pixels that

are filtered using Eq. (5.6). In our implementation, if that number falls below 50% of

the pixels, we also obtain another high power depth map.
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5.5 Part I: Evaluation

5.5.1 Methodology

To evaluate our algorithm, we capture 640×480 IR image and depth map pairs using

the Pico Zense ToF camera [68]. In our experiments, the high power depth maps are

obtained with 10× as much power as the low power ones. We obtain two datasets as

shown in Figure 5-6:

1. Indoor Sequences : This dataset is obtained by moving the ToF camera around

different indoor environments. We use the captured data as ground truth and

simulate high and low power depth maps by adding shot noise to the measure-

ments.

2. Rail Sequence: This stop sequence dataset is collected using a rail that moves

a calibration target away from the ToF camera. We move the target in 5 cm

increments and capture 300 depth maps. We use a single depth map to represent

a low power depth map, average 10 for a high power one, and average all 300

for the ground truth.

The rail sequence also tests the performance of our algorithm for scenes with multiple

rigid objects since the calibration target moves while its surroundings do not.

Indoor Sequences Rail Sequence

Figure 5-6: Datasets: We show select frames from the indoor and rail sequences
used to evaluate our approach.

We apply our algorithm to these sequences and use the high power depth maps

when it is required. For each depth map, we compute the percent mean relative error
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(MRE) over the 𝑁 pixels of the filtered depth map as defined in Eq. (1.10). We also

note the percentage of high power depth maps that we use in our approach.

5.5.2 Implementation

We implement our algorithm on the ODROID XU-3 board [26], which is an embedded

platform with an Exynos 5422 processor. This processor is used in the Samsung

Galaxy S5 [78], and we evaluate our approach using this processor because it is

representative of the computational resources available on mobile devices, which our

algorithm is designed for. The resulting implementation outputs depth maps in real-

time (30 FPS) for the data we evaluate on, and the processing time is spent equally

between estimating the rigid motions and the depth map fusion.

5.5.3 Results

We summarize the performance of our algorithm in Table 5.1, where we average

the MRE across all of the depth maps. For each dataset, we choose the algorithm

parameters, namely 𝜖, that minimize the MRE. We see that the MRE of our depth

maps are 64% and 63% lower than the MRE of the low power depth maps for the

indoor and rail datasets, respectively. Our algorithm also only obtains high power

depth maps for 10% and 18% of these frames for the respective sequences. This means

that we reduce the power for obtaining the depth maps by up to 81%. An example

of our filtered depth map (This Work) is shown in Figure 5-7, where it is compared

against the low (Low Power) and high (High Power) power depth maps. We see that

our depth map is less noisy and visually sharper than the low power one.

5.5.4 Comparison to Alternative Denoising Strategies

Here, we compare our approach to alternative denoising strategies. This includes

spatial filters and obtaining low power depth maps with a constant and equivalent

power for each frame.

128



Configuration Indoor Rail

This Work 3.2% 4.3%
High Power 2.6% 3.7%
Low Power 8.8% 11.5%

This Work+Bilateral Filter 2.3% 3.4%
Low Power+Bilateral Filter 6.3% 11.0%
Equivalent Power 6.2% 6.8%

Table 5.1: Mean Relative Error: Our adaptive algorithm only obtains high power
depth maps for 10% and 18% of the frames for the indoor and rail sequences, respec-
tively.

IR Image High Power Low Power This Work

Figure 5-7: Filtered Depth Map: We an example of our filtered depth map, which
is less noisy than the low power one.

Comparison to Spatial Filters

We compare our depth maps to a low power one that is spatially filtered. A common

spatial filter is the bilateral filter [82], and it has been shown to give competitive

results [48]. To compare our approach, we apply a 5 × 5 bilateral filter to the low

power depth maps and compute its MRE (Low Power+Bilateral Filter). As shown

in Table 5.1, the MRE of the filtered low power depth map remains high. This

is because the noise in the low power depth maps causes the depth values to vary

significantly from pixel to pixel and appear as edges. Because the bilateral filter is

an edge-preserving filter, these pixels remain unprocessed. In contrast, by using the

data from a high power depth map, our technique is able to lower the MRE of the

low power depth map and outperform the bilateral filter.

Furthermore, it should also be noted that computing the weights of a bilateral

filter is not trivial. On the ODROID-XU3 board, applying the bilateral filter lowers

the frame rate to 8.6 FPS, which is lower than that of our approach. We can also
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apply the bilateral filter to our depth maps (This Work+Bilateral Filter), which

further reduces the MRE. However, this would cause the frame rate of our approach

to fall below 30 FPS.

Comparison to Equivalent Power

Because our algorithm adaptively alternates between obtaining high power depth

maps and low power ones, we also compare our depth maps to those obtained with

a constant and equivalent power. We can simulate these depth maps by adding the

appropriate noise and averaging the proper number of frames for the indoor and

rail sequences, respectively. If these depth maps have a lower MRE, then simply

increasing the power for each frame is more desirable than any additional processing.

As shown in the Table 5.1, this (Equivalent Power) is not the case, and our approach

has a lower MRE. This is because at low power, the impact of noise on the MRE is

heavily pronounced.

5.6 Part II: Recursive Temporal Filtering

In this section, we describe an algorithm that lowers the power for depth sensing by

obtaining only low power depth maps and mitigates the noise in them. In contrast to

the previous approach, this algorithm obtains each depth map with the same amount

of light. This approach is useful for applications that run on small mobile devices,

where the lack of physical space for additional illumination sources limits the amount

of light that can be emitted. Furthermore, this does not even have to be a power

issue. For example, many applications need depth maps at high frame rates, and as

a consequence, the intermediate measurements (e.g., 𝑆0 and 𝑆1) used to estimate

depth must be obtained at an even higher frame rate. Due to the reduced exposure

time, the accumulation of the reflected light is also reduced and increases the noise

in the resulting depth maps. Even when the exposure time can be increased, doing

so may lead to motion blur when there is motion from frame to frame [25].

Because the low power depth maps have limited range, we will assume that the
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regions that the ToF camera can sense is rigid. Our algorithm then uses the IR images

that a ToF camera obtains to estimate this rigid motion (following the approach in

Chapter 3) and uses it to temporally filter the depth maps recursively. Naturally,

denoising depth maps is well explored in the literature, and we provide a brief overview

of the existing techniques to distinguish our approach from them.

5.6.1 Spatial Filtering

To mitigate noise in depth maps, many different spatial filters are used [10, 20, 38,

49, 67, 82, 93]. These include the standard Gaussian and median filters [20]. To

ensure that edges are preserved in the filtered depth maps, both bilateral filters [82]

and total variation techniques [49] are also used. Out of these different approaches,

the bilateral filter is the most popular [48]. For many applications, images are also

typically collected alongside depth maps, and many techniques [10,38,67,93] use them

to help filter and enhance the depth maps. In our approach, we will show that the

IR images that a ToF camera collects is sufficient to accurately filter depth maps.

While these methods are useful for individual depth maps, in many applications,

depth maps are continuously collected, and spatial filters do not exploit this additional

information to further reduce noise. Our approach and many other temporal filtering

techniques use this redundant data to increase the accuracy of the filtered depth

maps. We describe these approaches next.

5.6.2 Temporal Filtering

Temporal filters exploit the fact that neighboring frames are similar and use this

redundant information to filter noisy depth maps. When there is no motion between

consecutive depth maps, averaging them reduces the depth variance as if the intensity

of the reflected light is increased. To see this, let 𝑍𝑖,𝑘 represent the depth of the 𝑖th

pixel in the 𝑘th depth map. Each 𝑍𝑖,𝑘 can be thought of as a sample from the same
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distribution. Given this, we see that the variance of the sample mean is equal to:

var

(︃
1

𝐹

𝐹−1∑︁
𝑗=0

𝑍𝑖,𝑘−𝑗

)︃
=

𝜎2
𝑍𝑖

𝐹
= 𝑍𝑖

(︃
𝑐𝜏𝑓

2
√︀

(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2
− 𝑍𝑖

)︃
𝛼

𝐹 (𝑆0𝑖 + 𝑆1𝑖)

(5.8)

where we substitute Eq. (5.2) for 𝜎2
𝑍𝑖

and 𝐹 is the number of the averaged frames. We

see that the denominator in the right-most term of Eq. (5.8) shows that the intensity,

𝑆0𝑖 + 𝑆1𝑖, is scaled by the number of averaged frames and is equivalent to increasing

the intensity of the reflected light.

This concept is leveraged in many temporal filtering approaches including the one

proposed here, which we summarize in Table 5.2. Unfortunately, in many applications,

there is typically motion between consecutive depth maps. Realizing this, Lin et

al. [52] average the same pixels across multiple depth maps as long as they are within

a threshold of that in the current depth map. To account for the motion between

frames, the techniques in [1, 22, 44, 57] compute the optical flow to first align depth

maps before they are averaged. In order to compute the optical flow, the techniques

in [1,44,57] all use concurrently collected RGB images, which are not available in our

problem setup. To reduce the complexity of estimating the dense optical flow, the

techniques in [22,57] use block matching. Recognizing that the optical flow does not

account for changes in depth along the 𝑧-axis, Kim et al. [44] uses the optical flow to

determine the pixels of stationary objects (e.g. where the optical flow is zero) so that

they can be averaged.

Method RGB Images Dense Optical Flow

This Work
Lin et al. [52]
Georgiev et al. [22] X
Avetisyan et al. [1] X X
Kim et al. [44] X X
Matyunin et al. [57] X X

Table 5.2: Comparison of Temporal Filtering Techniques: We compare the
different temporal filtering techniques and use a checkmark to indicate whether the
technique needs concurrently collected RGB images or dense optical flow.
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In contrast, we take a different approach. Instead of computing the dense optical

flow to align the depth maps, we first estimate the pose using just data from the

ToF camera. As we have shown in the preceding chapters, the pose can be efficiently

estimated using sparse correspondences. We then use the pose to directly compute

the dense correspondences for the remaining pixels and also account for changes in

depth along the 𝑧-axis. Furthermore, many of these previous approaches need to store

many previous depth maps. Our technique avoids this by instead filtering the depth

maps recursively. In our evaluation (Section 5.8), we will compare our technique to

Lin et al. [52] and a variant of the techniques that use optical flow to show the benefits

of our design decisions.

5.7 Part II: Proposed Algorithm

In this section, we describe how we temporally filter depth maps recursively as shown

in Figure 5-8. Our algorithm takes as input the consecutive IR images and depth

maps. We denote the previous IR image and depth map as 𝐼𝑡−1(𝑥, 𝑦) and �̂�𝑡−1(𝑥, 𝑦),

respectively. We use the �̂�(𝑥, 𝑦) notation to indicate that the depth map has been

previously filtered. We denote the current IR image and depth map as 𝐼𝑡(𝑥, 𝑦) and

𝐷𝑡(𝑥, 𝑦), respectively.

Pose 
Estimation

Weighted 
Average

𝑰𝒕"𝟏 𝒙, 𝒚 , 𝑫& 𝒕"𝟏 𝒙, 𝒚 ,𝑪𝒕"𝟏 𝒙,𝒚
𝑹, 𝑻 𝑫& 𝒕 𝒙,𝒚 , 𝑪𝒕(𝒙,𝒚)

𝑰𝒕 𝒙, 𝒚 , 𝑫𝒕 𝒙,𝒚

Reprojection

𝑫, 𝒕"𝟏 𝒙,𝒚
𝑪, 𝒕"𝟏 𝒙,𝒚

𝑫& 𝒕"𝟏 𝒙, 𝒚 , 𝑪𝒕"𝟏 𝒙,𝒚

𝑫𝒕 𝒙, 𝒚

Figure 5-8: Algorithm Pipeline: Our algorithm takes as input the current IR image
and depth map pair, the previous IR image and filtered depth map pair, a confidence
map that stores the number of previous depth maps used to obtain the previously
filtered estimates. The output of our approach is the current filtered depth map and
an updated confidence map.
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In addition, our algorithm also requires a confidence map, 𝐶𝑡−1(𝑥, 𝑦). For every

pixel in the previously filtered depth map, 𝐶𝑡−1(𝑥, 𝑦) stores the number of depth

maps used to obtain the filtered estimate. (Accordingly, we initialize 𝐶0(𝑥, 𝑦) = 1.)

Our algorithm uses 𝐶𝑡−1(𝑥, 𝑦) to weigh the pixels of the previous depth map. Our

algorithm then outputs the filtered depth map, �̂�𝑡(𝑥, 𝑦), and an updated confidence

map, 𝐶𝑡(𝑥, 𝑦). As our approach is recursive, we then use �̂�𝑡(𝑥, 𝑦) and 𝐶𝑡(𝑥, 𝑦) to filter

the next depth map.

5.7.1 Pose Estimation

As shown in Figure 5-8, we first estimate the pose between the consecutive frames

using the method described in Section 2.2.3. In our implementation, we preprocess

the consecutive IR images by normalizing them so that they have the same mean

intensity and dynamic range. As the intensity of an IR image varies as function of

depth, this is done so that the brightness constancy assumption is approximately

maintained when there is motion along the 𝑧-axis, which is important for estimating

the optical flow.

Because the IR image and depth map come from the same source, we can esti-

mate the pose accurately without being impacted by errors in their synchronization.

Therefore, unlike our approach in Section 5.4, we estimate the sub-pixel optical flow

using the Lucas-Kanade algorithm [56] at the pixels detected by the FAST corner

detector [75]. This allows us to accurately align the depth maps, which maximizes

the number of pixels that are averaged and denoised. When the pose cannot be esti-

mated, we use 𝑅 = 𝐼 and 𝑇 = 0. This makes our approach similar to that proposed

to Lin et al. [52]. However, in our experiments, this rarely happened because most

scenes were sufficiently textured.

5.7.2 Reprojection

With the pose estimated, we then reproject the previous depth map, �̂�𝑡−1(𝑥, 𝑦), and

the confidence map, 𝐶𝑡−1(𝑥, 𝑦). This will align the pixels of the previous depth map
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(and confidence map) with that of the current depth map as well as account for the

changes in depth between them.

To do so, we first obtain the 3D position of each pixel in the previous depth map.

The 3D position of the 𝑖th pixel located at (𝑥𝑖, 𝑦𝑖), or 𝑃𝑖, can be obtained using

Eq. (2.2) and �̂�𝑡−1(𝑥, 𝑦). We then apply the pose, which we denote as 𝑅 and 𝑇 , to

each 3D point and obtain its new pixel coordinate, (𝑥′
𝑖, 𝑦

′
𝑖), and updated depth 𝑍 ′

𝑖, as

follows:

(𝑥′
𝑖, 𝑦

′
𝑖)
𝑇 = 𝜋 (𝑅𝑃𝑖 + 𝑇 ) 𝑍 ′

𝑖 = 𝑧 · (𝑅𝑃𝑖 + 𝑇 ) (5.9)

where 𝜋(·) is the projection operator as defined in Section 2.3.

This allows us to reproject both the depth map and confidence map, which we

denoted as �̃�𝑡−1(𝑥, 𝑦) and 𝐶𝑡−1(𝑥, 𝑦), respectively, where:

�̃�𝑡−1(𝑥
′
𝑖, 𝑦

′
𝑖) = 𝑍 ′

𝑖 𝐶𝑡−1(𝑥
′
𝑖, 𝑦

′
𝑖) = 𝐶𝑡−1(𝑥, 𝑦) (5.10)

5.7.3 Weighted Average

With the motion between the consecutive frames accounted for, we can now tempo-

rally average the depth maps to obtain �̂�𝑡(𝑥, 𝑦). We first apply a box filter to the

current low power depth map, 𝐷𝑡(𝑥, 𝑦), to help reduce the noise in its pixels. We

then perform a weighted average and weigh the pixels of the reprojected depth map,

�̃�𝑡−1(𝑥, 𝑦), using 𝐶𝑡−1(𝑥, 𝑦). For the 𝑖th pixel, 𝐶𝑡−1(𝑥𝑖, 𝑦𝑖) stores the number of pre-

vious depth maps used to obtain the depth value, �̃�𝑡−1(𝑥𝑖, 𝑦𝑖). Furthermore, when

𝐶𝑡−1(𝑥𝑖, 𝑦𝑖) is high, �̃�𝑡−1(𝑥𝑖, 𝑦𝑖) can be thought of as a depth estimate from a high

power depth map because it combines the data from many low power depth maps.

With this intuition, we combine the depth maps as follows:

�̂�𝑡(𝑥, 𝑦) =

⎧⎪⎨⎪⎩𝛾�̃�𝑡−1(𝑥, 𝑦) + (1− 𝛾)𝐷𝑡(𝑥, 𝑦) if |�̃�𝑡−1(𝑥, 𝑦)−𝐷𝑡(𝑥, 𝑦)| < 𝜖

𝐷𝑡(𝑥, 𝑦) otherwise
(5.11)
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where:

𝛾 =
𝐶𝑡−1(𝑥, 𝑦)

𝐶𝑡−1(𝑥, 𝑦) + 1
(5.12)

and 𝜖 is a threshold to ensure that misalignments at depth boundaries (due to er-

rors in the estimated pose) are not averaged. From Eq. (5.12), we see that when

𝐶𝑡−1(𝑥, 𝑦) >> 1, we give more weight to the pixels in the previously filtered depth

map. This is because those values are heavily filtered and less noisy than the current

depth measurements. We visualize 𝐶𝑡−1(𝑥, 𝑦) alongside its corresponding depth map

in Figure 5-9, where the brighter colors indicate the pixels in �̂�𝑡−1(𝑥, 𝑦) that have

been recursively filtered using many previous depth maps.

𝑪𝒕"𝟏 𝒙,𝒚 𝑫& 𝒕"𝟏(𝒙, 𝒚)

Figure 5-9: Confidence Map: We visualize the confidence map, where the brighter
colors indicate the pixels in the depth map that have been recursively filtered using
the data from many previous frames.

We also update the confidence map recursively. Denoting the updated confidence

map as 𝐶𝑡(𝑥, 𝑦), we have:

𝐶𝑡(𝑥𝑖, 𝑦𝑖) =

⎧⎪⎨⎪⎩1 + 𝐶𝑡−1(𝑥𝑖, 𝑦𝑖) if |�̃�𝑡−1(𝑥, 𝑦)−𝐷𝑡(𝑥, 𝑦)| < 𝜖

1 otherwise
(5.13)

5.8 Part II: Evaluation

In this section, we evaluate the accuracy our approach using the data collected from a

ToF camera and compare it to the previous approaches. We show that our algorithm
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estimates accurate depth maps and outperforms the previous approaches.

5.8.1 Methodology

To evaluate our approach, we use a dataset of indoor scenes captured using a pulsed

ToF camera [61]. This dataset contains 9 sequences, with frames that contain both a

640× 480 IR image and a 640× 480 depth map. Examples of these scenes are shown

in Figure 5-10. To simulate the data obtained under various power settings, we add

shot noise to these measurements. From Eq. (5.1), we see that the accumulated light

for the 𝑖th pixel, denoted as 𝑆1𝑖 and 𝑆0𝑖, can be written as:

𝑆1𝑖 =
2𝑍𝑖

√︀
(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2 + 𝑓 2

𝑐𝑓𝜏
𝐼𝑖 (5.14)

𝑆0𝑖 = 𝐼𝑖 − 𝑆1𝑖 (5.15)

where 𝑍𝑖 is its depth taken from the depth map, 𝐼𝑖 is its intensity taken from the

IR image, (𝑥𝑖, 𝑦𝑖) is its pixel coordinate, 𝑓 is the principal distance, (𝑥𝑐, 𝑦𝑐) is the

principal point, 𝜏 is the pulse width of the emitted light, and 𝑐 is the speed of light.

In our experiments, we infer 𝜏 from the maximum range of the sensor [68].

Therefore, we can simulate depth maps obtained under different power settings

by scaling 𝐼𝑖 and sample measurements of 𝑆0𝑖 and 𝑆1𝑖 from a Poisson distribution

with rates equal to the expressions in Eq. (5.14) and Eq. (5.15). As stated in [40],

this models the noise that affects ToF cameras. This also gives us a ground truth

depth map that can be used to evaluate our approach.

In our experiments, we apply our algorithm to 100 frames of each sequence for 10

different power settings. To evaluate the accuracy of our filtered depth maps, we use

the percent mean relative error (MRE) as defined in Eq. (1.10). This is an appropriate

metric for applications that need accurate depth in its immediate vicinity.
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Figure 5-10: Dataset: We show examples of IR images and depth maps taken from
the sequences used to evaluate our approach.

5.8.2 Implementation

We implement our algorithm on the ODROID XU-3 board [26], which is an embed-

ded platform with an Exynos 5422 processor. This processor is used in the Samsung

Galaxy S5 [78], and we evaluate our approach on this processor because it is repre-

sentative of the computational resources available on mobile devices.

The resulting implementation filters depth maps in near real-time at 15.2 FPS for

the data we evaluate on. Compared to the method in the first part of this chapter, this

technique has the additional overhead of estimating corners using the FAST corner

detector and estimating optical flow using the Lucas Kanade algorithm. Additionally,

this algorithm also preprocesses the current depth map using a box filter as described

in Section 5.7.3. These additional steps are required to ensure that our filtered depth

maps are accurate.

5.8.3 Results

In Figure 5-11, we plot and compare the MRE of our filtered depth maps (denoted

as This Work) to that of the unfiltered low power depth maps (denoted as Low

Power). For each power setting (e.g., the scale factor as described in Section 5.8.1),

we average the MRE of all of the depth maps for both This Work and Low Power.

We also chose the parameters of our algorithm, namely 𝜖, separately for each power

setting to minimize this MRE. In this figure, our algorithm reduces the MRE of the
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low power depth maps by up to 77%. As summarized in Table 5.3, when averaged

across the different power settings, we see that we reduce the MRE of the low power

depth maps from 10.45% to 2.97%. We show examples of our filtered depth maps

in Figure 5-12 and provide an enlarged comparison of the low power depth and the

filtered one in Figure 5-13.
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Figure 5-11: Algorithm Performance Across Different Settings: We compare
the MRE of the various filtered depth maps to the unfiltered low power one across
different power settings. We see that our approach achieves the lowest MRE and
outperforms all of the different approaches.

Mean Min Max

This Work 2.97% 1.44% 8.16%
Low Power 10.43% 6.27% 21.89%
Bilateral 7.11% 2.82% 19.36%
Temp-Thresh 7.47% 4.03% 18.35%
Temp-Flow 5.46% 3.65% 11.17%

Table 5.3: MRE Statistics: We present the mean, minimum, and maximum MRE
across the different power settings for each of the different techniques. Our technique
outperforms all of the competing approaches.

5.8.4 Comparison to Previous Approaches

We also compare our algorithm to approaches that are representative of those de-

scribed in Section 5.6 as shown in Figure 5-11 and Table 5.3. For the spatial filtering

techniques, we compare our approach to the bilateral filter (denoted as Bilateral),

which is commonly used [48]. For the temporal filtering approaches, we compare our

algorithm to the temporal filter proposed in [52] (denoted as Temp-Thresh), which

139



Low PowerInfrared Image This Work Ground Truth

Figure 5-12: Estimated Depth Maps: We show examples of our filtered depth
maps (denoted as This Work) and compare them to the low power and ground truth
depth maps.

temporally averages the current pixel value with those taken from the same location

in previous depth maps and are within a certain threshold of the current value. As

stated in Section 5.7, our algorithm is similar to Temp-Thresh when the pose can-

not be estimated. We also compare our approach to one that uses dense optical

flow computed using the IR images to align and temporally filter multiple previous

depth maps. This is similar to the approaches taken in [1,22,44,57]. We denote this

adapted technique as Temp-Flow and compute the optical flow using the IR images

with the algorithm in [16]. For each of these algorithms, we choose the parameters

that minimize the MRE for each power level.

Comparison to Spatial Filter

In Figure 5-11 and Table 5.3, we see that our algorithm outperforms the bilateral

filter (Bilateral). Like other spatial filters, the bilateral filter assumes that the depth

in a small region is constant and by averaging these pixels, the effects of noise can

be mitigated. What makes the bilateral filter appealing is that it does not filter the
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Low Power This Work

Figure 5-13: Low Power Depth Map vs. This Work: We show an enlarged
example of the low power depth map before and after it is filtered (denoted as This
Work).

pixel at edges (e.g., depth boundaries), which would introduce artifacts that make

the filtered depth map appear blurry and inaccurate. The poor performance of the

bilateral filter makes sense because the noise in the depth map is non-stationary. As

shown in Eq. (5.3), the distribution of the noise varies from pixel to pixel depending on

the intensity of the reflected light. This makes it difficult to set the filter parameters,

in particular those of the spatial kernel, for the entire depth map because the noise

distribution varies spatially. As a result, certain regions may appear to be edges even

though they are not, and consequently, those pixels are not filtered.

In contrast, our approach does not take the local depth difference into account and

instead directly averages the pixels of the reprojected and the current depth map at

the same pixel coordinates to mitigate the noise. Because the reprojected and current

depth maps are spatially aligned, these pixels have the same noise distribution. We

also avoid artifacts at depth boundaries. Due to the noise in the low power depth

map, we want to ensure that the depth maps are accurately aligned, which requires

the pose to be estimated with sub-pixel optical flow at corners. As we stated in

Section 5.8.2, this comes at the cost of increased latency. However, as we described

in the first part of this chapter, computing the weights of a bilateral filter also has

a non-trivial overhead. As shown in Table 5.4, our approach still has a higher frame
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rate than that of the bilateral filter.

Frame Rate (FPS)

This Work 15.2
Bilateral 8.6
Temp-Thresh 25.4
Temp-Flow 0.7

Table 5.4: Frame Rate Comparison: We profile the different approaches on an
embedded processor with a Cortex-A15/Cortex-A7 octa core [26]. Due to our design
choices, our approach offers the best tradeoff between the accuracy of the depth maps
and the frame rate in which they are obtained.

Comparison to Temporal Filters

We also see that our approach outperforms the temporal filtering techniques, denoted

as Temp-Thresh and Temp-Flow in Figure 5-11 and Table 5.3. As previously stated,

Temp-Thresh simply averages the same pixel across multiple depth maps as long as

they are within some of threshold of the current depth value. One advantage of this

approach is its simplicity. As shown in Table 5.3, it filters depth maps with a higher

frame rate than our approach. However, this comes at the cost of accuracy. Because

the depth variance varies from pixel to pixel, it is challenging to select a threshold

so that pixels with similar depth values are averaged. Furthermore, when there is

motion between consecutive frames, fewer pixels are also averaged due to the changes

in depth. Our algorithm does not suffer from these issues because it spatially align

the depth maps and accounts for changes in depth.

This is also why our algorithms outperforms Temp-Flow, which aligns the previ-

ous depth maps with the current one by estimating dense optical flow between the IR

images. Temp-Flow can only account for in-plane motion or small changes in depth,

making it insufficient for the non-trivial motion in the dataset we evaluate on. Fur-

thermore, computing accurate optical flow is also challenging. Because our approach

uses the pose, which can be estimated robustly using sparse correspondences, it is

less impacted by issues like uniform texture or the aperture effect. Another drawback

of Temp-Flow is that computing dense optical flow is computationally expensive. As
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shown in Table 5.3, we see that these techniques filter depth maps with a frame rate

of 0.7 FPS, which is substantially lower than that of our approach.

Across all of these previous techniques, we see that our algorithm offers the best

tradeoff between the accuracy of the filtered depth maps and the latency in which

they are obtained.

5.8.5 Impact of Recursive Processing

We also compare our approach to a variant that is not recursive. To estimate depth

maps, this algorithm, which we denote as Multi-Frame, stores multiple previous IR

image and depth map pairs. To temporally filter a depth map, this approach estimates

the pose between each of the previous depth maps and the current depth map, aligns

them (as well as account for the changes in depth), and averages them all together.

We compare the MRE of our approach to that of Multi-Frame in Figure 5-14. For

each power setting, we use the optimal parameters, namely the number of previous

frames to use, and compare its MRE to that of our recursive approach. Averaged

across all of the power settings, we see that this variant has a MRE of 2.92%, which

is slightly lower than the MRE of our approach (2.97%).
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Figure 5-14: Comparison to Multi-Frame Approach: We compare our algorithm
to a multi-frame variant that filters depth maps using a buffer of previous IR image
and depth map pairs. We see that our recursive algorithm performs negligibly worse.

However, our approach uses less data. To quantify this, we define an array to be

a 640× 480 array of numbers. There are 3 types of arrays: images, depth maps, and

confidence maps. For example, This Work stores three types of arrays (IR images,

depth maps, and confidence maps), Multi-Frame and Temp-Flow store two types of
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arrays (IR images and depth maps), and Temp-Thresh only stores one type (depth

maps).

In Figure 5-15, we plot the total number of arrays that each approach has to

store for the different power levels. For each power level, we searched for the minimal

number that approximately minimizes the average MRE (e.g., we stop when more

arrays only reduces the MRE negligibly) for This Work, Multi-Frame, Temp-Thresh,

and Temp-Flow. We see that as the power increases, the total number of arrays

generally decreases. This makes sense because the accuracy of the individual depth

maps increases with power and any additional gain from temporal averaging is muted.

Our approach also only needs to store three arrays in total (e.g., an IR image, a depth

map, and a confidence map) which is lower than all of the other techniques. Because

the other techniques are not recursive, they need to store multiple IR images and

depth maps, which increases the total number of stored arrays. This is especially

true for the lower power settings. Therefore, our approach also offers a beneficial

tradeoff between the amount of data stored and the accuracy of the resulting depth

map.
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Figure 5-15: Number of Arrays Stored: We plot the minimum number of arrays
that each algorithm needs to minimize the MRE for each power setting. Our recursive
approach needs to store the least amount of data.

5.9 Summary

In this chapter, we address the challenge of lowering the power of ToF cameras using

only the data from the sensor itself. To that end, we propose two approaches that
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exploit the fact that the rigid motions in the scene can be efficiently estimated using

the sparse optical flow between the IR images that a ToF camera acquires alongside

the depth maps. First, we use this motion to adaptively vary the amount of light

that the ToF camera emits. Instead of obtaining high power depth maps continuously,

our approach obtains them at a lower frequency and uses the estimated motion to

combine them with subsequent low power depth maps. This allows us to reduce the

overall amount of emitted light by 81% while still obtaining accurate depth maps. We

also consider the scenario where we only obtain low power depth maps. To denoise

these depth maps, we then show that we can use the estimated rigid motion to

recursively filter these depth maps efficiently. Compared to other similar approaches,

our technique offers a better balance between the accuracy of the estimated depth

map, the latency in which they are obtained, and the amount of data that must be

stored. The resulting algorithm reduces the mean relative error of the low power

depth maps by up to 77%, outperforming similar approaches. As a result of our

design choices, both of these algorithms also run in up to real-time using the CPUs

of an embedded processor.
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Chapter 6

Conclusion and Future Work

In this thesis, we present different algorithms to lower the power of depth sensing

for time-of-flight (ToF) cameras, which are appealing yet power hungry sensors. In

this concluding chapter, we summarize our contributions and key insights and discuss

future avenues of research.

6.1 Summary of Contributions and Key Insights

To lower the power for depth sensing using ToF cameras, our algorithms leverage

multimodal data, temporal relationships, and the assumption of rigidity to obtain

accurate depth maps efficiently. When RGB images are concurrently collected, we

use them to reduce the usage of the ToF camera and to estimate new depth maps

instead. When only using the data from a ToF camera, we use its infrared images

to reduce the power required to obtain accurate depth maps. We demonstrate the

accuracy of our algorithms using a variety of different datasets and show that our

depth maps can be used in a real augmented reality application. We also show that

our algorithms are efficient and can obtain depth maps with low latency by evaluating

them on both a standard laptop computer and an embedded processor [26]. In all of

our approaches, we leverage the following insights.
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The World Is Nearly Rigid We find that leveraging rigidity allows us to efficiently

obtain accurate depth maps. When RGB images are concurrently collected, we use

their sparse pixel-wise motions to estimate the rigid motions in the scene. As a result,

we are able to obtain new depth maps with a mean relative error (MRE) of 1% even

when we reduce the usage of the ToF camera by 85%. For a dynamic scene, we find

that by modeling its motion to be composed of multiple independent rigid motions,

we are able to estimate new depth maps with a MRE of 2.5% even when we reduce

the usage of the ToF camera by 90%. When only using the data from a ToF camera,

we use the pixel-wise motion of its infrared images to estimate the rigid motions and

use them to temporally combine consecutive depth maps. This is essential for our

scheme that adaptively varies the amount of emitted light to infrequently obtain high

power depth maps and use them to denoise subsequent low power ones. Using the

rigid motion to account for the changes in depth between the high power depth maps

and the subsequent low power ones allows us to combine them and reduce the mean

relative error of the low power depth maps by up to 64% and the amount of emitted

light by 81%. The same is true for our recursive filtering approach, where we reduce

the mean relative error of the low power depth maps by 77%.

Sparse Processing Trumps Dense Operations Another benefit of the rigidity

assumption is that it allows us to use sparse operations, in particular sparse optical

flow, to reduce computation. Because the rigid motion can be estimated using sparse

optical flow, we are able to avoid estimating the dense optical flow, unlike many

approaches in the literature. The use of sparse optical flow algorithms allows our

techniques to run in up to real-time on both standard and embedded computing

platforms. In the case of rigid objects and scenes, we are even able to lower the

overall system power for depth sensing because our algorithms can estimate depth

maps in real-time on the low power cores of our embedded processor [26]. For our

recursive filtering approach, we use the rigid motion obtained through the sparse

operations to directly compute the dense correspondences between the consecutive

depth maps instead of estimating the dense optical flow.
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Using Previous Depth Reduces Computational Complexity Another way of

looking at our strategies is that by adding a small amount of depth into the problem

formulation (e.g., that of depth map estimation), we can reduce the computation

required to solve an otherwise computationally expensive problem. This is especially

true when we estimate depth in dynamic scenes, where we use the previous depth

map to compute the photometric error to guide the assignment of the estimated rigid

motions. This allows us to avoid object-level segmentation used by similar approaches.

6.2 Future Directions

There are many exciting ways to extend our research. We describe some directions

below.

Towards a Real-Time and Low Power Implementation One way to increase

throughput and reduce the overall power for depth sensing is to implement our al-

gorithms in hardware. By designing energy efficient accelerators for our approach,

our algorithms can be directly deployed alongside ToF cameras to reduce the overall

system power for depth sensing.

Infilling Missing Depth When a previously occluded region is uncovered, its

depth is missing in consecutively estimated depth maps. One way to potentially

fill this in is to leverage ideas from structure-from-motion and exploit concurrently

collected images to triangulate the depth in these missing regions. The research

question would be centered on how to do this accurately and efficiently, especially for

small baselines.

Depth Map Super-Resolution Typically, the resolution of depth maps lag be-

hind that of images. One way to resolve this is to apply multi-frame super-resolution

techniques to increase the resolution of the depth map. For rigid scenes and environ-

ments, we may be able to use the estimated rigid motion to align the depth maps to

obtain a higher resolution depth map in an efficient manner.
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