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Abstract

Many conventional problems in ocean engineering remain challenging due to the
stochastic nature of ocean waves, viscous effects of the flow, nonlinear resonance,
etc., and the combination of these factors. Data-driven techniques is an prospective
approach complementary to traditional methods to model physical problems since
data from experiments, field tests or high-fidelity simulations are mostly informative
about actual physical systems. Machine learning algorithms, especially kernel based
methods have very good generalization capability as well as statistical inference. This
thesis targets to establish a framework that how we can use data from real-time
measurements or data gathered from experiments and field tests and simulations
to provide an alternative approach for physical modeling or practical engineering
solutions. In this thesis, we mainly target two different types of problems–mapping
highly nonlinear physical relations and predicting time series, to prove the feasibility
of such a framework.

More specifically, one problem is the short-term wave prediction based on real-
time measurements and its application to the advanced controls of renewable energy.
The other one is the modeling of nonlinear viscous hydrodynamic loads of ships and
offshore platforms. The Support Vector Machines (SVM) is used in solving both
the problems. In the thesis, the SVM regression model are developed for the real-
time short-term forecast of wave elevations and wave excitation forces. Optimal
controllers aiming to reduce the structural loads or optimize energy capture with
the knowledge of the forecasted wave force are established for offshore floating wind
turbines and wave energy converters. A series of CFD simulations of a rectangular
barge with bilge keels are conducted and validated, along with the experiment data
of a fixed offshore cylindrical platform, to serve as the baseline data set to model
the nonlinear viscous hydrodynamic loads. Using the wave elevations and ship roll
kinematics as features, the SVM regression models are trained and tested to predict
the nonlinear hydrodynamic loads. The influence of the stochastic effect and different
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feature selections and kernel selections are discussed in the thesis as well.
Key words: Machine learning, SVM regression, short-term forecast, model

predictive control, nonlinear viscous hydrodynamic loads
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Chapter 1

Introduction

1.1 Data-driven methods in physical problems

Many conventional problems in ocean engineering remain challenging due to the

stochastic nature of ocean waves, viscous effects of the flow, nonlinear resonance,

etc., and the combination of these factors. Traditionally, to solve these problems, we

mostly would explore theoretical and numerical methods and conduct experiments

to understand the physics and provide engineering solutions. While traditional

development of fluid/fluid-structure models has focused on incorporating more physics

to improve model accuracy and predictive capabilities, an alternative approach is

raising up recently, that is to utilize data directly [84]. Data-driven modeling is

considered as a prospective approach since data from experiments, field tests or high-

fidelity simulations are mostly informative about the actual physical systems.

The physical-related problems we are interested in can be categorized into two

types, which are mapping highly nonlinear physical relations and predicting time

series. Machine learning algorithms, either kernel based methods or deep neural

networks, have very good generalization capability as well as statistical inference that

makes them good at solving these types of problems. Raissi et. al. [71] used neural

network to reconstruct the velocity and pressure field for vortex induced vibrations.

Zhou et.al. [91] used Support Vector Machines (SVM) to predict wind velocity

based on measurements. The exploit of machine learning methods in physical-related
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problems can be also found in the works of many researchers through many domains

[23] [70] [47].

Among various machine learning techniques mentioned above, SVM stands out

as one of the most widely used algorithms to establish models connecting pertinent

features to physical quantities of interest [18] [76]. The essence of SVM algorithms

is to use kernels instead of an explicit set of basis functions in order to establish a

more compact and generalized model based upon a set of explanatory variables or

features. The selected kernel with optimized hyperparameters encodes the covariance

structure between the features, which forms the basis of the learning algorithm that

relates the quantity being modeled to the features, from the perspective of statistical

learning theory.

1.2 Short-term wave prediction and model

predictive control in renewable energy

The ocean provides enormous sources of renewable energy, among which two of the

promising kind are ocean wind and wave energy (Fig.1-1, Fig.1-2). Research on ocean

wind and wave energy systems has drawn a lot of attention over the past decades. One

important element of the developing research is the control system. The development

of advanced control algorithms for offshore wind and wave energy system focuses on

two objectives, energy capture and load mitigation.

13



Figure 1-1: Offshore Floating Wind Turbine (OFWT): Integrated aero-hydro-elastic-
servo system [51]
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Figure 1-2: Schematic of an oscillating heaving point absorber [90]

Several advanced control approaches were proposed in the last decades to achieve

load reduction or power optimization of onshore and offshore wind turbines. One

promising approach is to use feedforward or model predictive control (MPC) to

improve disturbance rejection. Extensive studies have been done on model predictive

controls on onshore and offshore wind turbines with regard to wind induced loading

[39] [41] [69]. These studies have shown that, with a model predictive controller, the

fatigue loads at critical structural sections can be significantly reduced when wind

speed predictions are provided to the controller. So far, the majority of studies on

advanced control algorithms targets the mitigation of loads induced by incoming wind

speed. For offshore floating wind turbines, wave excitation force is also a dominant

persistent disturbance that excites dynamic and structural responses. Control issues

for modelling floating wind turbines were mentioned earlier with regard to the

coupling between the pitch controller and the platform motion [87] [43]. Without
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adjustment, such coupling effects would cause negatively damped responses thus

resulting in instability of the system. However, little research has been done aiming

at resisting wave disturbance using similar advanced control approaches as MPC.

As for wave energy converters, the most concerning issue is to achieve optimal

energy extraction under irregular sea states while reducing the risk of device damage,

in which the control algorithm plays a critical role. Several studies have been carried

out to explore the performance of model predictive controls on wave energy converters

[32] [11] [17]. These studies have shown that it is possible to develop a controller that

maximizes the energy capture within constraints if it is provided with a sufficiently

accurate real-time prediction of the wave excitation force. Price et al. [68] discussed

the need for knowledge of the future wave excitation forces in computation of the

optimal control command.

As stated, the design of advanced model predictive controls requires a sufficiently

accurate prediction of the wave elevations or wave excitation forces. Efforts have

been made to predict wave elevations or wave excitation forces by various approaches.

Hals et al. [32] used the augmented Kalman filter with a simple damped harmonic

oscillator to model and predict the wave forces with a forecast horizon 2.2 seconds

under an irregular sea state for their model predictive controller. Fusco & Ringwood

[29] compared four different approaches for predicting short-term wave elevations,

which were cyclical models, sinusoidal extrapolation with the Extended Kalman

filter, autoregressive models, and the neutral networks. The prediction models were

validated using field measurements from two sites. Casanovas [13] compared the

performance of autoregressive models and ESPRIT (Estimation of Signal Parameters

via Rotational Invariance Techniques) models to forecast wave elevations.

Although some work has been done on this issue, there are still gaps to achieve real-

time implementation. Hals et al. [32] stated that the forecast horizon and accuracy

had a great impact on the overall performance of the MPC algorithm. The augmented

Kalman filter did not fulfil such requirements very well even though it was tested

by simulated sea states. Fusco & Ringwood [29] used ideal non-causal filters to

preprocess the raw wave elevations to get a better forecast performance which could
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not be implemented in real-time. Casanovas [13] validated the AR and ESPRIT

model using simulated wave elevations which contained no noise thus much easier to

predict.

Therefore, more refined methods to predict real-time wave elevations and wave

excitation forces need to be developed and validated. Also, the performance of optimal

control algorithms for offshore floating wind turbines and wave energy converters need

to be validated under real-time prediction of wave elevations or wave excitation forces

instead of an assumption of perfect prediction.

1.3 Modeling of nonlinear hydrodynamic loads

Ships and offshore platforms are subject to the hydrodynamics loads excited by

ocean waves. The modeling of hydrodynamics loads has developed for decades to

understand the relevant physics and predict the wave-structure interaction. Linear

frequency-domain analysis derived from the panel methods based on potential flow

theory is one of the most popular tools because of its efficiency, reliability and

conciseness [58]. However, in many scenarios, the nonlinear and viscous effects are

not negligible due to large-amplitude body motions, nonlinear resonance and flow

separations etc. To better model the nonlinear hydrodynamic loads for ships and

offshore platforms, different methods have been developed using both potential flow

theory and computational fluid dynamics (CFD).

For some problems where the nonlinearity is largely excited due to large-amplitude

body motions or steep large-amplitude waves, the potential flow theory is sufficient

as it is still dominated by inertia rather than viscous effects. The potential flow

theory solves the boundary value problem (BVP) by applying the nonlinear boundary

conditions on the free surface or the body wetted surface or both [75]. The most

common computational method used in solving the problem is via boundary element

methods (BEM) which can be formulated in two different ways: the Rankine panel

method or the transient free surface Green function method. (e.g. [7]).

After having solved the fluid flow solution upon the nonlinear boundary conditions
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for the wave-body interaction problems, the hydrodynamic pressure over the body

surface can be obtained by the Bernoulli equation. However, since the direct

integration of the pressure over the instantaneous body surface involves a partial

temporal derivative and spatial derivative of the velocity potential over the body

surface, it is usually challenging in terms of the computational cost [44]. Sclavounos

[75] proposed another approach by applying the momentum conservation principle

that does not involve the temporal and spatial derivatives of the potential to get

the nonlinear hydrodynamic force and moment on the body. In addition, for slender

bodies, the total hydrodynamic loads are usually corrected by Morison’s equation to

take account of the viscous effects [73].

These methods require the discretization of the body surface and some also

require the discretization of the free surface, which can be very demanding in both

delicate numerical treatment and computational cost. Meanwhile, depending on the

surface and body boundary conditions imposed, the numerical schemes can only take

account contributions from certain nonlinear aspects to a certain order. Therefore,

establishing a direct generalized model for nonlinear wave loads from a data-driven

perspective could be very prospective in terms of accuracy and efficiency, which could

be further applied in various design and operation practises.

On the other hand, for some problems, the viscous effects are non-negligible and

more complicated to model. Among these problems, the ship roll hydrodynamics is

a classical topic. It is highly nonlinear and subjected to significant viscous effects

arising from eddies shed from the hull, lift effect in case of a ship advancing with a

forward speed and bilge keel damping, etc. [26] (Figure 1-3). While all other degrees

of freedom motion can be predicted well by potential flow theory, the estimation

of ship roll hydrodynamics remains a challenge. Numerous experiments and CFD

simulations have been conducted to study the flow patterns and the modeling of

roll hydrodynamics. Since experiments and CFD simulations are expensive in terms

of budget, computational resources and computational time, such experiments and

CFD simulations are mostly combined with existing semi-empirical models for further

design purposes and the prediction of motion responses [86] [38] [54] [53]. The semi-
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empirical models are usually based on polynomial approximations that connect the

nonlinear damping and restoring forces with the ship velocities and displacements.

Figure 1-3: Vorticity around bilge keels

However, as discussed by many researchers, the widely-used semi-empirical models

with constant coefficents and linear or quadratic damping terms cannot fully capture

the characteristics of ship roll hydrodynamics. Memory effects, the behavior under

a large roll amplitude, the stochastic nature of irregular wave conditions, etc., need

to be carefully taken into account. Towards this objective, Bassler [6] proposed a

piece-wise damping model to better predict large amplitude roll damping. However,

we still lack a more general model that takes into account all pertinent features of

this problem.

1.4 Outline of current work

In the present work, we are interested in establishing such a framework that how we

can use data from real-time measurements or data gathered from experiments and

simulations to provide an alternative SVM model for physical modeling and practical

engineering solutions. This thesis will focus on two different types of problems in

the ocean applications to prove the feasibility of such a framework: the short-term

wave prediction based on real-time measurements and its application to the advanced

controls of renewable energy; the modeling of nonlinear hydrodynamics of ships and

offshore platforms.
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The first contribution of this thesis is to fill the gaps in designing advanced model

predictive controls taking the wave loading as targeted persistent disturbances for

offshore wind and wave energy systems. To achieve this, it involves two tasks. The

first one is the development of a SVM regression model for real-time short-term

forecast of wave elevations and wave excitation forces [48]. The model is trained

and validated using measurements from a wave tank test, which is considered as a

good representative of the real ocean measurements. The SVM regression model is

compared with a conventional subspace method ESPRIT and proved to have better

generalization capability and consistently better performance.

Following the successful prediction of the wave force over a finite horizon into the

future, two model predictive control algorithms are then designed for the offshore

floating turbines and wave energy converters separately since they target different

objectives and have different system characteristics.

For the offshore floating wind turbines, the model predictive control is formed

as a finite-horizon linear-quadratic-regulator (LQR) controller based on its system

characteristics. The controller is designed to reduce the fore-aft tower base bending

moment, especially the components excited by the wave force. In the thesis, it has

demonstrated that the performance of this optimal control is effective and robust for

the aimed load reduction comparing to the baseline speed regulator.

For the wave energy converters, the objective is to maximize the energy capture

under stochastic seas. A state-space model is derived for the causal impulse response

function of the radiation problem and its non-causal counterpart in the diffraction

problem. The objective along with the system dynamics as constraints have formed

a convex quadratic programming problem to be optimized [77]. The cumulative

power of the wave energy converter under two different sea states are shown increased

significantly under this optimal control.

The second major contribution of this thesis is to provide an alternative approach

using SVM regression to model the nonlinear hydrodynamic loads of ships and offshore

platforms.

In the thesis, a series of CFD simulations of a rectangular barge with bilge keels
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are conducted and validated to provide a baseline data set used to establish the SVM

regression model. Using the wave elevations and ship roll kinematics as features, an

SVM regression model is trained and tested to predict the nonlinear hydrodynamic

loads. Furthermore, by comparing the two models using training data from free decay

tests and from irregular wave cases, the influence of the stochastic effect is discussed.

The study also compares and discusses the different feature and kernel selections used

in the model.

Other than CFD simulations, experimental data are also a reliable source used

to build the data-driven model. A set of experiments for a shallow water bottom

fixed cylinder are studied in the thesis to develop the SVM regression model of the

nonlinear wave loads. Different feature and target selections are discussed as well.

To summarize, the reminder of this thesis is organized as follows. In Chapter

2, the SVM regression methodology is thoroughly discussed. In Chapter 3, the

study on short-term wave prediction is demonstrated. Following that, Chapter 4

and Chapter 5 show the modeling and performance of the model predictive control

for offshore floating wind turbines and wave energy converters. Chapter 6 is devoted

to the modeling of the nonlinear viscous ship roll hydrodynamics. The modeling of

the nonlinear wave loads of a fixed cylinder is described in Chapter 7. The overall

conclusions and possible future work are described in Chapter 8.

21



Chapter 2

Support Vector Machines Regression

2.1 Introduction

Support vector machines are supervised learning models which can be used in various

of classification and regression problems [34] [33]. The original SVM was first proposed

to construct a linear classifier based on the maximum-margin hyperplane principle

and then extended to nonlinear classifiers using the kernel trick [9] [8]. Later it was

introduced to solve regression problems as well [21].

SVM regression is a powerful machine learning method which has been successfully

used for time-series prediction in various fields [81] [91] [72]. It uses a hypothesis

space of linear functions in a high dimensional feature space, which is trained with a

learning algorithm from optimization theory that implements a learning bias derived

from statistical learning theory. An important property of support vector machines is

that the determination of the model parameters corresponds to a convex optimization

problem, and so any local solution is also a global optimum [8]. Following the

general work of SVM, Suykens and Vandewalle [79] also proposed a least-squares

version of SVM, which uses equality constraints and leads to solving a set of linear

equations instead of a convex quadratic programming (QP) problem of classical SVM

algorithms.

In this chapter, the theory of least-squares support vector machines regression

is introduced, which would be applied to solve the proposed problems in ocean
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application in the following chapters. Cross-validation is briefly described to optimize

the hyperparameters. A more thorough discussion on general kernel selection is also

included in this chapter.

2.2 Mathematical formulation of least-squares

support vector machines regression

The LS-SVM regression model assumes the following functional dependence of a

physical quantity y on relevant K-dimensional vector features x = (𝑥1, 𝑥2, ..., 𝑥𝐾)𝑇

𝑦𝑓 = w𝑇𝜑(x) + 𝑏 (2.1)

The series expansion in (2.1) involves the unknown weight vector w =

(𝑤1, 𝑤2, ..., 𝑤𝑀)𝑇 and vector basis functions 𝜑(x) = (𝜑1(x), 𝜑2(x), ..., 𝜑𝑀(x)). The

number of the basis functions M is a priori unknown and may be infinite. The

constant b is the bias term. Given a sample of training data {(xi, 𝑦𝑖)}𝑁𝑖=1, LS-SVM

determines the optimal weight vector and bias term by minimizing the cost function

R:

min
w,e

𝑅(w, e) =
1

2
‖w‖2 +

1

2
𝛾‖e‖2 (2.2)

subject to the equality constraints:

𝑦𝑖 = w𝑇𝜑(xi) + 𝑏+ 𝑒𝑖, 𝑖 = 1, 2, ..., 𝑁 (2.3)

Where, ‖ · ‖ denotes the Euclidean norm. 𝛾 is the regularization parameter which

controls the trade-off between the bias and variance of the LS-SVM model. e is the

error vector, e = (𝑒1, 𝑒2, ..., 𝑒𝑁)𝑇 .

The equations (2.2)-(2.3) form a standard optimization problem with equality
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constraints. The Lagrangian of such a problem is:

𝐿(w, 𝑏, e, 𝜆) = 𝑅(w, e) −
𝑁∑︁
𝑖=1

𝜆𝑖(w
𝑇𝜑(xi) + 𝑏+ 𝑒𝑖 − 𝑦𝑖) (2.4)

Where, 𝜆𝑖 are the Lagrange multipliers.

According to the Karush-Kuhn-Tucker Theorem, the conditions of optimality are:

𝜕𝐿

𝜕𝑤
= 0 → w =

𝑁∑︁
𝑖=1

𝜆𝑖𝜑(xi)

𝜕𝐿

𝜕𝑏
= 0 →

𝑁∑︁
𝑖=1

𝜆𝑖 = 0

𝜕𝐿

𝜕𝑒𝑖
= 0 → 𝜆𝑖 = 𝛾𝑒𝑖

𝜕𝐿

𝜕𝜆𝑖
= 0 → w𝜑(xi) + 𝑏+ 𝑒𝑖 − 𝑦𝑖 = 0

(2.5)

Cast (2.5) into a linear matrix equation:

⎡⎣ 0 1𝑇

1𝑇 K + 𝛾−1I

⎤⎦⎡⎣𝑏
𝜆

⎤⎦ =

⎡⎣0

y

⎤⎦ (2.6)

Where, 1 = (1, 1, ..., 1)𝑇 . I is the identity matrix. y = (𝑦1, 𝑦2, ..., 𝑦𝑁)𝑇 . 𝐾 =

(𝑘(xi,xj))
𝑁
𝑖,𝑗=1 is called the kernel or Gram matrix defined by the inner product of the

feature basis function 𝑘(xi,xj) = 𝜑𝑇 (xi)𝜑(xj). The length of the vector 𝜑𝑇 (xi) is M

and the dimensions of the square kernel matrix K are 𝑁 ×𝑁 .

It follows that using the LS-SVM regression model, the physical quantity that

needs to be predicted as a function of a new feature x can be expressed in the form:

𝑦𝑓 (x) =
𝑁∑︁
𝑖=1

𝜆𝑖𝑘(x,xi) + 𝑏 (2.7)

From (2.6) and (2.7), it can be seen that neither the basis function 𝜑𝑗(x) nor their

number M need to be specified explicitly. All LS-SVM requires is the inner product

of 𝜑𝑗(x), i.e., the kernel function 𝑘(xi,xj). This property is known as the "kernel
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trick" and is a key attribute of the SVM regression algorithm.

Some widely used kernels are the linear, polynomial and Gaussian functions.

Gaussian kernel: 𝑘(x, z) = 𝑒𝑥𝑝(−‖x− z‖2/𝜎2) (2.8)

Linear kernel: 𝑘(x, z) = x𝑇z (2.9)

Polynomial kernel: 𝑘(x, z) = (x𝑇z + 𝑡)𝑑 (2.10)

In (2.8), ‖ · ‖ denotes the Euclidean norm. 𝜎 is the "scale" that determines the

width or variance of the Gaussian kernel. In (2.10), d is the degree of the polynomial

kernel and t is its bias term. More generally, the value of d may be positive or

negative, it does not need to be an integer, but its value and that of the bias must

be such that the kernel (2.10) is positive definite [18].

Expression (2.7) provides an explicit nonlinear model for the dependent quantity.

The summation in (2.7) is over the number of samples N used to train the SVM

algorithm with the values of the sample features which appear in the second argument

of the kernel. The Lagrange multipliers are obtained from the solution of the linear

system (2.6) and are known in the SVM literature as the “support vectors”.

The regularization and kernel parameters are calibrated to optimal values during

the training and validation stages of the SVM nonlinear regression using a sufficiently

large number of samples. Then the nonlinear model (2.6)-(2.7) can be solved and used

either to generate time-series forecasts or to represent complex physical quantities

dependent on the selected set of features.

2.3 Optimization of hyperparameters

As expressed in (2.2), (2.6) and (2.8)-(2.10), to solve the LS-SVM regression problem,

one needs to determine the regularization parameter 𝛾 and the kernel parameters (e.g.

𝜎 for the Gaussian kernel, or (t,d) for the polynomial kernel), which are referred as

hyperparameters. The selections of hyperparameters would reflect the trade-off of the

flexibility of the model [34]. One can determine the hyperparameters a priori based
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on specific domain knowledge or statistical assumptions. However, the most common

way to optimize the hyperparameters is via cross-validation.

Cross-validation is a very common way for general model assessment and selection.

The basic idea is to test the model’s ability to predict new data that was not used in

estimating it and to give an insight on how the model will generalize to an independent

data set.

Ideally, if we had enough data, we would set aside a validation set and it to assess

the performance of the prediction model. However, in practice, this is usually not

possible. So the feasible way is to partition the data into complementary subsets,

perform the analysis on one subset (the training set) and validate the analysis on

the other subset (the validation set or testing set). Based on different ways of

partitioning and selecting the training and validation set, the cross-validation can

be categorized into different types, for example, leave-p-out cross-validation, K-fold

validation, holdout method, etc [15].

In this study, we have used K-fold cross validation for hyperparameter

optimization. The K-fold cross validation algorithm splits the data into K roughly

equal-sized parts. And for each of the 𝑘𝑡ℎ part, the model is fitted using the data

in all the other K-1 partitions and the prediction error of the fitted model is tested

using the 𝑘𝑡ℎ part of the data. This process is then repeated K times and the overall

performance is estimated by combining the K estimates of prediction error[33]. The

most common choice of K is 5 or 10.

In detail, the K-fold cross validation can be summarized as following. Let 𝜅 :

{1, ..., 𝑁} ↦→ {1, ..., 𝐾} be the function that split a data set with N samples into K

partitions which observation i is allocated by the randomization. Denote 𝑓−𝑘(𝑥) as

the fitted model using the data without the 𝑘𝑡ℎ partition. Then the cross-validation

estimate of the prediction error is:

𝐶𝑉 (𝑓) =
1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓
−𝜅(𝑖)(𝑥𝑖)) (2.11)

Take the hyperparameters that need to be optimized into consideration, let 𝑓(𝑥, 𝛼)
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refers to the a set of models with tuning parameters 𝛼. Then we can revise (2.11) to

represent the cross-validation estimate with regard to the hyperparameters:

𝐶𝑉 (𝑓, 𝛼) =
1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓
−𝜅(𝑖)(𝑥𝑖, 𝛼)) (2.12)

The function (2.12) provides an estimate of the test error, and the objective is to

tune the hyperparameters 𝛼 to get the optimal values 𝛼̂ that minimizes (2.12). After

having selected the optimal hyperparameters, the model 𝑓(𝑥, 𝛼̂) would be used to fit

all the data set (i.e., the overall K partitions).

As stated in (2.12), in order to solve for the optimal value of 𝛼, one has to solve

an optimization problem as:

𝛼̂ = arg min
𝛼
𝐶𝑉 (𝑓, 𝛼) =

1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑦𝑖, 𝑓
−𝜅(𝑖)(𝑥𝑖, 𝛼)) (2.13)

The objective function 𝐿(·) can take various forms depending on the specific problems.

The most commonly used cost functions include mean squared error (MSE) or mean

absolute error (MAE).

To solve the optimization problem (2.13), there exists various types of numerical

approaches, including different search algorithms, gradient-based optimization

methods, etc. In this study, to optimize the hyperparameters both robustly and

efficiently, a two step optimization approach is implemented [10]. The coupled

simulated annealing (CSA) [20] method is used to determine a suitable set of initial

parameter values. Then these initially optimized parameters are given to a second

optimization procedure to perform a fine-tuning step, which uses the simplex method

[61].

2.4 Further discussion on general kernel selection

The selection of the Gaussian kernel appears at first to be somewhat arbitrary.

Moreover its connection to the set of basis functions has not yet been made explicit.
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Assume that the physical quantity under study has a well-defined mean and that is

otherwise oscillatory around its mean, a common occurrence in ocean applications

dealing with signals that are deterministic or quasi-stationary and stochastic. In

such cases appropriate basis functions would be a set of orthonormal functions in a

multi-dimensional space with dimensions equal to the number of features.

The connection between the kernel and the basis functions in the SVM algorithm

is established by Mercer’s theorem [18] which states that for a positive definite kernel:∫︁∫︁
𝑋

𝑘(x, z)𝜑𝑗(z)𝑑(z) = 𝜇𝑗𝜑𝑗(x)

𝑘(x, z) =
∞∑︁
𝑗=1

𝜇𝑗𝜑𝑗(x)𝜑𝑗(z)
(2.14)

The solution of the first kind integral equation (2.14) is in principle not available in

closed form nor is the a priori selection of the kernel evident. A reasonable selection of

the basis functions capable to accurately describe the physical quantity under study

according to (2.1) would a reasonable starting point. For such a basis function set

the kernel would be the generating function as indicated by the second equation in

(2.14). This would also require knowledge of the eigenvalues. Moreover the robust

performance of the LS-SVM algorithm is a consequence of the positive definite kernel

which guarantees a unique solution of the optimization problem (2.2). Within the

LS-SVM algorithm the positive definitiveness of the kernel matrix in (2.6) makes

available robust algorithms for the inversion problems of large linear systems that

arise when a large number of training samples is necessary.

For the Gaussian kernel the solution of (2.14) is available in closed form in any

number of dimensions. The basis functions are the generalized Hermit functions which

are orthogonal over the entire real axis and are known to be a robust basis set for the

representation of the wide range of sufficiently smooth functions. This is the case for

the ocean applications considered in the present study.

Consider the multi-dimensional Gaussian kernel assuming K un-correlated

28



features. The explicit solution of (2.14) takes the form:

𝑘(x, z) = 𝑒𝑥𝑝[−𝜖21(𝑥1 − 𝑧1)
2 − 𝜖22(𝑥2 − 𝑧2)

2, ...,−𝜖2𝐾(𝑥𝐾 − 𝑧𝐾)2]

=
∑︁
𝑘∈𝑁𝐾

𝜇𝑘𝜑𝑘(x)𝜑𝑘(z)
(2.15)

Where, 𝜖2𝑘 = 1/𝜎2
𝑘 and 𝜎𝑘 refers to the constant determining the scale or variance of

the k-th feature of Gaussian kernel (as in (2.8)). The cross-correlation of the features

is assumed to vanish following a Principal Components Analysis or singular value

decomposition of the covariance matrix of input feature dataset.

The eigenvalues and eigenfunctions in (2.15) are available in closed form:

𝜇𝑘 =
𝐾∏︁
𝑗=1

𝜇𝑘𝑗 =
𝐾∏︁
𝑗=1

√︃
𝛼2
𝑗

𝛼2
𝑗 + 𝛿2𝑗 + 𝜖2𝑗

(
𝜖2𝑗

𝛼2
𝑗 + 𝛿2𝑗 + 𝜖2𝑗

)𝑘𝑗−1 (2.16)

𝜑𝑘(x) =
𝐾∏︁
𝑗=1

𝜑𝑘𝑗(𝑥𝑗) =
𝐾∏︁
𝑗=1

𝛾𝑘𝑗𝑒𝑥𝑝(−𝛿2𝑗𝑥2𝑗)𝐻𝑘𝑗−1(𝛼𝑗𝛽𝑗𝑥𝑗) (2.17)

Where, 𝐻𝑛(·) is the classical Hermite polynomial of degree n. 𝛼𝑗 are the integral

weights which are related to the global scale of the problem. 𝜖𝑗 are the scale

parameters which are related to the local scale of the problem. 𝛿𝑗, 𝛽𝑗, 𝛾𝑗 are auxiliary

parameters defined in terms of 𝛼𝑗, 𝜖𝑗. Refer to [27] for details on the derivation of

(2.16) & (2.17).

This formulation of (2.16) and (2.17) allows us to select different shape parameters

𝜖𝑗 and different integral weights 𝛼𝑗 for different space dimensions (i.e., K may be an

anisotropic kernel), or we may assume that they are all equal (i.e., K is spherically

isotropic).

The eigenvalues of the Gaussian kernel are seen in equation (2.16) to be positive

therefore the matrix of the linear system (2.6) is positive definite. The basis functions

𝜑𝑘(x) in (2.17) are the product of an exponential term and Hermite functions where

both are dependent on the auxiliary parameters 𝛼𝑘 which must be properly selected.

While these parameters do not appear explicitly in the definition of the kernel they

affect the condition number of the matrix in equation (2.6). They must be properly
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selected to determine the rank of the matrix and in order to develop a robust inversion

algorithm for the inversion of large linear systems (2.6) that may be ill-conditioned.

More details on the robust inversion of (2.6) are presented in [27].

The set of equations (2.15)-(2.17) underscore the popularity of the Gaussian kernel

in LS-SVM applications. The reason is that the orthonormal Hermite functions are

known to be a robust basis set for the approximation of a wide range functions on

the entire real axis. These properties of the Gaussian kernel have led to the use of

the LS-SVM algorithms in wide range of problems and underscore its popularity.

In a number of LS-SVM applications a polynomial kernel is used instead of the

Gaussian. In the context of the ocean applications this is equivalent to replacing the

Gaussian in the right-hand side of (2.7) by a polynomial of (x,xi) which may involve

linear, quadratic, cubic and higher order terms. On closer inspection of (2.15) this is

equivalent to expanding the Gaussian kernel into Taylor series for small values of the

inverse scales 𝜖2𝑘.

A polynomial representation of the physical quantity 𝑦(x) would for example be

justified when developing an LS-SVM model for a viscous load in terms of the ambient

flow kinematics, the Morison drag formula being an example. Another example

involves the representation of the hydrodynamic derivatives in the ship maneuvering

problem by a high-order polynomial of the ship kinematics. It follows from the Taylor

series expansion of (2.15) that the polynomial kernel with an integer power d is related

to the Gaussian kernel for small values of 𝜖2𝑘 for some or all of the K features. Therefore

the use of the polynomial kernel may be unnecessary and emphasis must instead be

placed upon the proper calibration of the parameters 𝜖2𝑘 for each of the K features

depending of the physics of the flows under study. In a number of applications the

same value of 𝜖2 for all features is selected simplifying the calibration process often

with very satisfactory results. In marine ocean applications the selection of small

values of 𝜖2𝑘 for some features may be appropriate but not for others, leading to a

kernel that is a mixture of polynomial like factors for some features and exponential

factors for others. These choices will be determined by the cross-validation procedure

during the training of the LS-SVM algorithm.
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Chapter 3

Short-term wave and wave force

prediction

3.1 Introduction

Offshore floating structures are exposed to continuous stochastic wave excitations,

which might be a source of energy that we want to harvest or a disturbance that

we want to mitigate the influence for better safety design. And whether we want

to mitigate the influence or to take advantage of the ocean waves, we have to gain

knowledge of it in priori. And this is especially true for the designing of control

strategies of offshore renewable energy systems. Different researchers from both the

offshore wind and wave energy industry have proved that model predictive control

can have better performance than the general feedback controllers if the disturbance

term can be predicted with good accuracy [64] [90]. And clearly, the wave excitations

are a dominating factor of the system dynamics, i.e. the targeted disturbance term

in the context of controller design.

The short-term wave prediction problem can be approached from different

methodology, exploring the characteristics of the wave elevation signal from different

aspects. From one perspective, ocean waves in deep water can be categorized as

a Gaussian random process in the stochastic process approach [62]. The auto-

correlation structure of the narrow-banded wave signal is well defined (see Figure
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3-1 as an example) and is the basis of forecasting future values based on the past

records via the concept of auto-regressive models. Instead of using the traditional

auto-regressive models which assumes a linear basis function, the dependence of the

future values on the past records would be determined through the kernel-based

methodology, i.e., the SVM regression method. In this way, a more generalized

nonlinear mapping relation is determined by training and validation which leads to

better accuracy and forecast capability.
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Figure 3-1: An example of the auto-correlation function of wave elevations

On the other hand, unidirectional ocean waves in deep water can be considered as

a superposition of linear sinusoidal waves with different amplitudes and phases [50]:

𝜂(𝑡) =
∞∑︁

𝑗=−∞

𝐴𝑗𝑒
𝑖𝜔𝑗𝑡+𝑖𝜑𝑗 + 𝑒𝑗 (3.1)

Where, 𝜂(𝑡) is the real-time wave elevations and 𝑒𝑗 is the noise. 𝜔𝑗 is the 𝑗𝑡ℎ wave

frequency, 𝐴𝑗 and 𝜑𝑗 are the corresponding amplitude and phase. If the measured

or simulated signal with noise can be represented by a finite number of frequency

components, the representation can be extended to derive forecast wave elevations in

future times. And this type of estimation problems of signal parameters is the primary

objective for many subspace-based methods of signal processing [30], among which
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the approximate Prony-type method is one of the most commonly used algorithms

[65].

Therefore, in this chapter, two different forecast algorithms have been proposed

and validated using measured wave elevations from a tank test, which are the

SVM regression method and approximate Prony method based on ESPRIT. The

performance of the two algorithms are compared and discussed in detail.

3.2 LS-SVM regression model

The general mathematical formulation of LS-SVM regression algorithm has been

described in the previous section (see Chapter 2). In the context of the prediction of

wave elevations or wave excitation forces, consider a one-step ahead prediction for a

time series using the autoregressive model first:

𝜂𝑡+1 = 𝑓(𝜂𝑡, 𝜂𝑡−1, ..., 𝜂𝑡−𝑑+1) (3.2)

Where, 𝜂𝑡 denotes the sampled time series. d is the order of autoregressive model.

In the context of the LS-SVM, the training data {xi, 𝑦𝑖}
𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

𝑖=1 would be formatted

as:
xi = [𝜂𝑡𝑖 , 𝜂𝑡𝑖−1, ..., 𝜂𝑡𝑖−𝑑+1]

𝑦𝑖 = 𝜂𝑡𝑖+1

(3.3)

Where, 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is the number of the data sets used in the training procedure.

After training, (2.6) is solved. Denote the current time as 𝑡𝑐, then for one-step

ahead prediction, the input and output in (2.7) is:

x = [𝜂𝑡𝑐 , 𝜂𝑡𝑐−1, ..., 𝜂𝑡𝑐−𝑑+1]

𝑦𝑓 = 𝜂𝑡𝑐+1

(3.4)

To achieve multi-step ahead prediction, one only needs to repeat the one-step

ahead prediction multiple times, substituting the output 𝑦𝑖 in (3.3) as 𝜂𝑡𝑘+𝑘 in the

training step and similarly 𝑦𝑓 in (3.4) as 𝜂𝑡𝑐+𝑘 in the forecast (k=1,2,. . . ,𝑁𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡).
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3.3 Approximate Prony Method based on ESPRIT

The approximate Prony method based on ESPRIT [67] is a method that identifies

signals composed of complex exponentials, which is essentially based on the Singular

Value Decomposition (SVD) of a specially constructed Hankel matrix. This signal

processing technique has been widely used in speech enhancement and recognition,

direction of arrival estimation of sensor arrays, time series analysis and forecasting,

etc.

In principle, the Prony-type method or polynomial methods identify the exponents

from the roots of a characteristic polynomial. The variants of this method differ in

the way the coefficients of the polynomial are defined, which would extend the Prony

method for extracting exponential signals from uniformly sampled time series data

when there is no noise to the case when the signal is embedded in noise. The algorithm

introduced in this study uses a truncated singular value decomposition of a Hankel

matrix defined by the noisy signal to solve for the polynomial coefficients, which

allows one to determine the number of representative exponential terms of the signal

that is appropriate for the noise level [65].

Consider a sampled signal ℎ𝑘 which can be expressed as:

ℎ𝑘 =
𝑀∑︁
𝑗=1

𝜌𝑗𝑧
𝑘
𝑗 , 𝑘 = 1, 2, ..., 𝑁 (3.5)

Where, N is the number of samples. M is the order of the exponentials, which is

unknown.

Based on the theory of Prony-like methods, 𝑧𝑗 are eigenvalues of the matrix pencil:

𝑧𝐻𝑁−𝐿,𝐿(0) −𝐻𝑁−𝐿,𝐿(1) (3.6)

Where, the Hankel matrix H is 𝐻𝑁−𝐿,𝐿(𝑠) := (ℎ(𝑠 + 𝑟 + 𝑚))𝑁−𝐿−1,𝐿−1
𝑚,𝑟=0 (𝑠 = 0, 1).

𝐿 ≥𝑀 is a parameter representing the upper bound of the exponential order M.

To solve the eigenvalue problem described in (3.6), the algorithm is formed as

follows:
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a. Form the rectangular Hankel matrix:

𝐻 := (ℎ𝑘+𝑙)
𝑁−𝐿−1,𝐿
𝑘,𝑙=0 (3.7)

b. Carry out a singular value decomposition of H:

𝐻 = 𝑈Σ𝑉 * (3.8)

c. Form the matrices:

𝑉1 := 𝑉 (1 : 𝐿, 1 : 𝐿) (3.9)

𝑉2 := 𝑉 (2 : 𝐿+ 1, 1 : 𝐿) (3.10)

𝐹 := 𝑉 +
1 𝑉2 (3.11)

Where, 𝑉 +
1 := (𝑉 *

1 𝑉1)
−1𝑉 *

1 is the Moore-Penrose pseudoinverse of 𝑉1.

d. Compute the eigenvalues 𝑧𝑗, j=1,2,. . . ,L, of the matrix F

e. Compute 𝜌𝐽 as the least squares solution of the overdetermined linear

Vandermonde-type system:

ℎ𝑘 =
𝐿∑︁
𝑗=1

𝜌𝑗𝑧
𝑘
𝑗 , 𝑘 = 1, 2, ..., 𝑁 (3.12)

f. Set a tolerance bound 𝜖, delete all the pairs (𝑧𝑗, 𝜌𝑗) with |𝜌𝑗| ≤ 𝜖 and denote

the remaining exponential set by {𝑧𝑗 : 𝑗 = 1, ...,𝑀} with M ≤ L.

g. Repeat step e and solve the new overdetermined linear Vandermonde-type

system with order M again:

ℎ𝑘 =
𝑀∑︁
𝑗=1

𝜌𝑗𝑧
𝑘
𝑗 , 𝑘 = 1, 2, ..., 𝑁 (3.13)

Output: 𝜌𝑗, 𝑧𝑗, 𝑗 = 1, ...,𝑀
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Clearly, the simulated or measured wave elevations expressed as (3.1) based on

linear wave theory, can be expressed in a form similar to (3.5) with a sampling rate

∆𝑡:

𝜂𝑙 =
𝑀∑︁
𝑗=1

𝜌𝑗𝑧
𝑘
𝑗 (3.14)

Where, 𝜂𝑘 is the sampled wave record, k=1,2. . . ,N.

The complex amplitudes 𝐴𝑗𝑒𝑖𝜑𝐽 in (3.1) are represented by 𝜌𝑗. The complex

exponentials 𝑒𝑖𝜔𝑗𝑡 are represented by 𝑧𝑘𝑗 by converting 𝑡 = 𝑘∆𝑡, 𝑧𝑗 = 𝑒𝑖𝜔𝑗Δ𝑡.

Using the algorithm described by (3.7)-(3.13), the wave records over a certain

length of time can be fitted by complex frequencies and amplitudes (𝜌𝑗, 𝑧𝑗) .

Correspondingly, the forecasted wave elevations can be expressed as:

𝜂𝑘 =
𝑀∑︁
𝑗=1

𝜌𝑗𝑧
𝑘
𝑗 , 𝑘 = 𝑁 + 1, ..., 𝑁 +𝑁𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (3.15)

Where, 𝑁𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 is the forecast horizon.

3.4 Validation and comparison of forecast

algorithms

As mentioned in the previous sections, the purpose of the short-term forecast of wave

elevations and wave excitation forces is to design better behaved control algorithms

for offshore floating wind turbines and wave energy converters. In the context of the

optimal controls, the physical quantity that needs to be evaluated and forecasted is

indeed the wave excitation force.

In real-time implementation, two approaches may be used to obtain the wave

excitation force. One is to use real-time wave elevation measurements such as on-

board wave probes or remote wave sensing techniques [55]. Then the wave loads can

be simulated by priori derived frequency domain transfer functions. Such transfer

functions can be computed using penal method codes based on linear and second-

order wave potential theory such as WAMIT [45]. Following this, the wave excitation
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force essentially can be expressed in the same form (3.16) with that of wave elevations

(3.1):

𝐹𝑒(𝑡) =
∞∑︁

𝑗=−∞

𝐻𝑗𝑒
𝑖Δ𝜑𝑗𝐴𝑗𝑒

𝑖𝜔𝑗𝑡+𝑖𝜑𝑗

=
∞∑︁

𝑗=−∞

𝐹𝑗𝑒
𝑖𝜔𝑗𝑡+𝑖𝜓𝑗 + 𝜖𝑗

(3.16)

Where, 𝐹𝑒(𝑡) is the real-time wave excitation force. 𝐻𝑗𝑒
𝑖Δ𝜑𝑗 is the transfer function

derived from panel method codes. 𝐹𝑗 and 𝜓𝑗 are the eventual corresponding

amplitudes and phases of the excitation force. 𝜖𝑗 is the noise contained in the

measurements or modeling.

Another approach is to use on-board measurements of motion and structural

responses to inversely evaluate the wave excitation forces based on pre-simulated

system dynamics. Either way, the derivation of wave excitation forces would contain

noise terms due to inaccurate measurements or modeling errors.

Ideally, due to the physical essence of wave excitation forces and platform motions,

the floating structure itself can be treated as a natural low-pass filter. Therefore,

the wave excitation forces contain lower frequency components and less noise than

ambient wave elevations. Taking account of the additional noise due to inaccurate

measurements or modeling errors, as stated in (3.1) and (3.16), the time series of wave

elevation records and wave excitation forces essentially have the same characteristics.

Therefore, to better validate the forecast algorithms under real-world noise, records

of wave elevations measured in tank tests are considered as a good representation of

real-time input signal for the evaluation of wave excitation forces. The two forecast

algorithms, approximate Prony method based on ESPRIT and LS-SVM regression

method, are implemented and compared.

For the approximate Prony method based on ESPRIT described in (3.6)-(3.13),

there are three parameters affecting the accuracy of the forecast. One parameter

is the number of the training samples N, one is the upper bound of the number of

the complex exponentials L and one is the bound 𝜖 to determine the actual number
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of complex exponentials eliminating the components regarded as noise. The choice

of these three parameters can be specified for each record since the noise level and

dominant frequency components can vary as time marches for different sea states.

In this study, we have done multiple sensitivity studies to get the most consistent

and robust results as time marching for one wave record as well as for multiple wave

records using fixed parameters. Based on these sensitivity studies, reasonable values

for 𝜖 are 10−10 ∼ 10−8 . The number of training samples N in time scale are in the

range of 3 ∼ 6 wave typical periods, and the upper bound of frequency terms L needs

to be set close to N (approximately N-10).

For the LS-SVM regression method, there are two parameters in the training

process that need to be specified based on the characteristics of the signal, namely

the order of the autoregressive model d in (3.2) and the number of training samples

𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 in (3.3). Besides, there are two hyperparameters of the model itself, the

regulation parameter 𝛾 in (2.2) and the kernel width parameter 𝜎 in (2.8), that needs

to be optimized. Similar to the approximate Prony method based on ESPRIT, the

order of the autoregressive model d and the number of training samples 𝑁𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 are

determined based on sensitivity studies to get the most consistent and robust results as

well. The order of the autoregressive model is around 1 ∼ 2 typical wave periods and

the number of training samples in time scale is about 50 ∼ 60 typical wave periods.

The two hyperparameters are tuned automatically using 10-fold cross-validation [22]

for each forecast (see section 2.3 for detailed reference).

Two different sea states are tested to validate and compare the two forecast

algorithms. One is a mild operational sea state with significant wave height (Hs)

1.7 meters and typical wave period (Tp) 8.7 seconds, while the other one is a more

severe sea state with Hs 4.5 meters and Tp 11.8 seconds.

The tank test was conducted in MARIN’s Offshore Basin. The measured wave

records are 2.5-hours long. The sampling rate of the original tank wave records

is 0.0707 seconds, and resampled with sampling rate 0.495 seconds. The forecast

horizon is 5 seconds. Three 300-second segments are tested here as examples to show

the performance of the algorithm, which are located at 6000s ∼ 6300s, 9000s ∼ 9300s
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and 11000s ∼ 11300s of the records.

The RMS error of the forecasted signal is defined as:

RMS error =

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑘=1

|𝜂𝑘 − 𝜂𝑘|2 (3.17)

Where, 𝜂𝑘 is the forecasted wave elevation. 𝜂𝑘 is the original wave elevation. To better

evaluate the forecast performance, the RMS error is normalized using the significant

wave height Hs.

The statistical results of the forecast error and algorithm parameters are listed

in Table 3.1 and Table 3.2. The overall RMS error of the entire forecasted signal

of the three segments is summarized. Besides, the maximum RMS error occurred of

each five-second forecast horizon is listed as a measure of worst-case performance.

The number of training samples used in the two methods as well as the order of

the autoregressive model for LS-SVM regression are listed here as a measure of the

computational cost. Comparisons of the original and forecasted wave elevations of

one segment are shown here to give a sketch of the forecast performance (Figure 3-2,

Figure 3-3, Figure 3-4, Figure 3-5).

Table 3.1: Sea state 1: Hs=1.7m, Tp=8.7s

Algorithms Overall RMS
Error/Hs (%)

Maximum 5-second
RMS Error/Hs(%) Training Intervals (s)

Approximate
Prony

method based
on ESPRIT

17.36 59.57 ∼ 6Tp=52s

LS-SVM
regression 13.16 32.33 AR model ∼ 2Tp=17s,

Training ∼ 60Tp=522s
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Table 3.2: Sea state 2: Hs=4.5m, Tp=11.8s

Algorithms Overall RMS
Error/Hs (%)

Maximum 5-second
RMS Error/Hs(%) Training Intervals (s)

Approximate
Prony

method based
on ESPRIT

14.74 36.63 ∼ 6Tp=71s

LS-SVM
regression 12.74 32 AR model ∼ 2Tp=24s,

Training ∼ 60Tp=708s

Figure 3-2: Sea state 1: Approximate Prony method based on ESPRIT, RMS error
= 18.47% Hs
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Figure 3-3: Sea state 1: LS-SVM regression method, RMS error = 12.8% Hs

Figure 3-4: Sea state 2: Approximate Prony method based on ESPRIT, RMS
error=12.73% Hs
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Figure 3-5: Sea state 2: LS-SVM regression method, RMS error=12% Hs

All the tested records above are the original measured wave records without

any filtering. As mentioned before, the real-time measured wave elevations

contain unknown noise. To forecast a time series, a challenge is to learn higher

frequency components of the signal itself and to cancel noise simultaneously. This

can be interpreted as a trade-off between underfitting and overfitting. If the

algorithm treats the noise as components of the signals, identifying noise would

lead to overfitting, whereas, forgetting higher frequency components would cause

underfitting. Furthermore, the real-time measured wave elevations or wave excitation

forces are actually non-stationary signals. The frequency components that a finite

length of wave elevation and wave force records contain are changing over time, so as

is the signal to noise ratio.

From the results shown in Table 3.1, Table 3.2 and Figure 3-2 ∼ Figure 3-5, the

LS-SVM regression method has an overall better performance, for both the overall

RMS error and worst-case RMS error, than the approximate Prony method based

on ESPRIT. Moreover, the LS-SVM regression methods performs significantly better

for the milder sea state (sea state 1). Figure 3-6 is a comparison of the normalized
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wave spectrum of the two sea states. From the spectra, sea state 1 contains relatively

more higher frequency components which makes it more difficult to forecast. LS-

SVM regression method inherently prohibits over-fitting the signal and thus is more

capable of distinguishing high frequency components from noise without causing too

much overfitting, while the approximate Prony method based on ESPRIT performs

better for signals with relatively lower frequency components and clean signals. In

terms of the computational cost, the approximate Prony method needs fewer training

samples than the LS-SVM regression leading to less computational time.

Figure 3-6: Comparison of the normalized wave spectrum of the two sea states

3.5 Conclusions and discussions

In this study, successful wave elevation and exciting force forecast algorithms have

been developed for further use in optimal control of offshore wind and wave energy

systems. Two forecast algorithms, the approximate Prony method based on ESPRIT

and the LS-SVM regression method, are developed and validated using real-time

measurements.
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The general predictability of a sea state is a difficult question to answer in principle

since real sea states are nonstationary and multi-directional. Therefore, we rely on

the performance of the forecast algorithms in our study and do not address the more

fundamental question of how forecastable real seastate elevations are. The error in

the forecasts generated by the algorithms consist of three components a) algorithm

bias b) algorithm variance c) noise. Alternative algorithms introduce different bias

vs variance tradeoffs, which is a topic that we do not address in this thesis as well.

Ambient noise is unforecastable by any algorithm. The relative magnitude of these

three sources of error is only possible after a systematic study among alternative

algorithms and parameters within each algorithm. This topic is beyond the scope of

the present thesis and will be addressed in the future work.

Therefore, considering the forecast algorithm itself, the performance would

degenerate significantly as the forecast horizon gets larger. The trade-off between

the forecast accuracy and required forecast horizon should be balanced depending on

specific problems and objectives. In the context of this thesis, the forecast accuracy

of the wave elevations up to a 5-second horizon is considered by the ESPRIT and

LS-SVM regression algorithm and found to be good. Meanwhile, this time scale is

also considered as sufficient for controller design purposes which would be described

in more detail in the following sections.
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Chapter 4

Model Predictive Control for Offshore

Floating Wind Turbines

4.1 Introduction

Due to the energy crisis and increasing concern on environmental issues, the study and

commercialization of renewable energy have been attracting more and more attention.

Among a variety of the potential resources of energy production, wind energy is

currently the fastest-growing sources of electricity in the world [42]. Figure 4-1 shows

the fast growing of the wind energy over the past decades. A recent trend of the

wind industry is to go further offshore to overcome limited land availability and avoid

visual and acoustic pollution. Besides, the ocean wind tends to blow more strongly

and consistently, allowing the utilization of larger wind turbines that enjoy better

economics per rated megawatt (MW). Meanwhile, using floating support structures

in offshore wind farms adds more complexity to the system and leads to more technical

and economic challenges [12].

The prototype used in this study is a tension-leg platform (TLP) supported

floating wind turbine. TLPs have been widely used in the oil and gas industry and

adapted for offshore floating wind turbines as well. TLPs are constrained with vertical

tethers which are balanced by an excessive buoyancy force. The advantage of TLPs

is that they usually have extremely small heave, pitch and roll motions compared to
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Figure 4-1: Growing trend of wind energy [4]

other floating platforms and the potential to offer significantly reduced fabrication

costs due to the reduced steel weight compared to fixed offshore wind turbines [63].

Meanwhile, they usually have large compliance to tranlational modes of motion.

Therefore, the offshore wind turbine is an integrated aero-hydro-elastic-servo

system, which is compliant to both external aerodynamic and hydrodynamic loads.

In the meantime, as modern turbine size increases and factors of weight/cost are

considered, the flexibility of turbine structures tends to increase. Thus it is critical to

consider coupling between different structural modes and mitigate the damaging loads

at the blade roots and the tower base [42]. And the means to address these issues

is to develop advanced control systems to achieve load mitigation while maintaining

the optimal power output.

For offshore floating wind turbines, the baseline controller usually operates in

two power generation zones, below rated wind speed and above rated speed. And

depending on the different operation region, the basic control strategy is either

optimizing the power capture by variational rotor speed or maintaining the rated

power by collective blade pitch control [35]. To address additional load mitigation

issues, optimal controls need to be designed and overlaid with these baseline

controllers.

Among the existing control algorithms developed to mitigate structural loads,

model predictive control is considered very promising. Most of the current

developments have been targeting wind induced loads which utilized recent
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improvements in LIDAR (Light Detection and Ranging) techniques [85]. However,

researches have shown that wave-excited loads are a significant source for structural

fatigue as well [19], and little work has done to accommodate wave-excited

disturbances. In the previous chapter, we have established that real-time

implementation of short-term predictions of wave elevations and wave excitation forces

is feasible and with good accuracy. On the basis of the wave forecast capability, similar

model predictive control approaches can be developed targeting wave-excited loads

as well.

To summarize, in this chapter, the proposed model predictive control is designed

for the above rated speed region and overlaid with the original baseline PI control,

which aims to mitigate the fore-aft tower base bending moment that is largely excited

by ocean waves. The controllers are integrated and validated against a TLP type

floating wind turbine.

4.2 Modeling of the TLP supported floating wind

turbine

4.2.1 Introduction of the prototype

The prototype studied in this thesis is Glosten’s PelaStar TLP coupled with the GE

Haliade turbine. The Glosten Pelastar platform is a five-arm tension leg platform

with synthetic tendons. A more detailed introduction of the prototype can be found

in the following references [83] [82]. A sketch of the coordinate system associated

with the floating wind turbine is shown in Figure 4-2.

The overall system dynamics of the floating turbine is simulated using FAST

(Fatigue, Aerodynamics, Structures, and Turbulence) code, which is a comprehensive

aero-hydro-servo-elastic simulator for wind turbines [37]. The linearized state space

model around an operation point for control design purpose is also generated using

FAST [36]. The hydrodynamic coefficients required in the simulations are calculated

using potential flow panel methods as WAMIT [45].
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Figure 4-2: A sketch of the coordinate system

4.2.2 Modeling and validation of the linear state space model

The focus of this study is to reduce structural loads when operating above rated

wind speed, which would be achieved by adjusting the blade pitch angle collectively.
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Therefore, to better design and validate the control system, the system dynamics of

the offshore floating wind turbines is firstly linearized around an operational point

above the rated speed.

Using FAST, the open-loop system dynamics above rated wind speed under calm

water condition can be linearized as:⎧⎪⎨⎪⎩∆𝑥̇ = 𝐴∆𝑥+𝐵∆𝛽 +𝐵𝑑∆𝑣

∆𝑦 = 𝐶∆𝑥+𝐷∆𝛽 +𝐷𝑑∆𝑣

(4.1)

Where, ∆𝑥 is the states deviating from steady values under the operation condition.

In this study, ∆𝑥 has totally 23 states describing the kinematic and structural

characteristics of the floating wind turbine system. The states of the linearized turbine

model (x) include:

𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Row 1 = Platform horizontal surge translation DOF

Row 2 = Platform horizontal sway translation DOF

Row 3 = Platform vertical heave translation DOF

Row 4 = Platform roll tilt rotation DOF

Row 5 = Platform pitch tilt rotation DOF

Row 6 = Platform yaw rotation DOF

Row 7 = 1st tower fore-aft bending mode DOF

Row 8 = 1st tower side-to-side bending mode DOF

Row 9 = 2nd tower fore-aft bending mode DOF

Row 10 = 2nd tower side-to-side bending mode DOF

Row 11 = Drivetrain rotational-flexibility DOF

Row 12 to 21 = First derivatives of row 1 to 10

Row 22 = First derivatives of Variable speed generator DOF

Row 23 = First derivatives of row 11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

∆𝑦 is the output variables deviating from the corresponding steady values, in this

study, ∆𝑦 includes two tower base bending moments (side-side and fore-aft). ∆𝛽 is
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the blade pitch angle apart from the operation point. ∆𝑣 is the incoming wind speed

apart from the operation point. A, B, 𝐵𝑑, C, D, 𝐷𝑑 are the corresponding state space

matrices representing aero-elastic behavior of the 6 MW offshore wind turbine.

Since this study aims to apply an optimal control for reducing structural loads

excited by wave excitation forces, the incoming wind is assumed to be known. In

practice, the optimal control would be overlaid with the baseline rotor speed regulator,

thus the linear model needs to be modified by adding a PI controller into the loop.

The design of this baseline controller has taken the instability issue due to “negative

damping” into consideration and a more detailed investigation is beyond the scope of

this study. Detailed information of the baseline controller can be found in reference

[28].

The baseline PI controller regulating the rotor speed is added to (4.1) to form a

revised linear model, with gains 𝑘𝑝 and 𝑘𝑖. Then, the linear model is modified to:

⎧⎪⎨⎪⎩∆𝑥̇ = 𝐴∆𝑥+𝐵∆𝛽𝑃𝐼 +𝐵𝑑∆𝑣

∆𝑦 = 𝐶∆𝑥+𝐷∆𝛽𝑃𝐼 +𝐷𝑑∆𝑣

(4.3)

Where,

𝛽𝑃𝐼(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖

∫︁ 𝑡

0

𝑒(𝜏)𝑑𝜏 (4.4)

𝑒(𝑡) = 𝑥22(𝑡) − 𝑟 = ∆𝑥22(𝑡) (4.5)

Where, 𝑥22(𝑡) is the actual rotor speed. r is the reference value. ∆𝑥22(𝑡) is the 22nd

state of ∆𝑥 in (4.3).

The PI controller (4.4)-(4.5) can be expressed in state space form by introducing

an additional state: ⎧⎪⎨⎪⎩ ∆𝑧̇ = 𝑒 = ∆𝑥22

𝛽𝑃𝐼 = 𝑘𝑖𝑧 + 𝑘𝑝𝑒 = 𝑘𝑖𝑧 + 𝑘𝑝∆𝑥22

(4.6)
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Plugging (4.6) into (4.3), the modified linear model becomes:

⎡⎣∆𝑥̇

𝑧̇

⎤⎦ =

⎡⎣ 𝐴+𝐵𝐾𝑝 𝑘𝑖𝐵

[0, 0, ..., 1, 0] 0

⎤⎦⎡⎣∆𝑥

𝑧

⎤⎦ +

⎡⎣𝐵𝑑

0

⎤⎦∆𝑣

∆𝑦 = [𝐶 +𝐷𝐾𝑝 𝑘𝑖𝐷]

⎡⎣∆𝑥

𝑧

⎤⎦ +𝐷𝑑∆𝑣

(4.7)

Where, 𝐾𝑝 = [0, 0, ..., 𝑘𝑝, 0].

To validate the linear model, (4.7) is solved numerically in the time domain. The

model is validated under the calm water condition. The same wind velocity is input

to the linear model as in FAST nonlinear simulations. The mean wind velocity is

16m/s and the turbulence intensity is about 0.0564, which is above rated-speed and

temporally coherent. Under the calm water condition, there is no incident wave

excitation force and the effects of wave radiation force have already been included

in the state space model. Therefore, under such wind-only conditions, model (4.7)

should ideally capture all the system dynamics. The comparisons of output variables

(fore-aft tower base bending moment TwrBsMy and side-side tower base bending

moment TwrBsMx), control variable (blade pitch angle) and concerned states (rotor

speed) between the linear model and the FAST nonlinear simulations are shown in

Figure 4-3 ∼ Figure 4-6.

All the concerned physical quantities in this section are normalized to [-1, 1] and

the non-dimensional results should not affect the discussions and conclusions drawn

from this study.
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Figure 4-3: Comparison of the linearized model and FAST nonlinear simulation under
calm water: tower bending moments in time domain
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Figure 4-4: Comparison of the linearized model and FAST nonlinear simulation under
calm water: tower bending moments in frequency domain
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Figure 4-5: Comparison of the linearized model and FAST nonlinear simulation under
calm water: blade pitch angle
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Figure 4-6: Comparison of the linearized model and FAST nonlinear simulation under
calm water: rotor speed

From Figure 4-3 ∼ Figure 4-6, it can be seen that the linear model (4.7) captures

most of the system dynamics affecting the fore-aft tower base moment under the calm

water condition, while it has a significant gap for the side-side tower base moment.

Figure 4-7 shows a frequency domain result of the tower bending moments under the

same wind condition but also with an irregular wave sea state (Hs=2.75m, Tp=8s) by

nonlinear FAST simulations. From Figure 4-7, it can be shown that the side-side tower

base bending moment (TwrBsMx) is mostly dominated by the first tower bending

mode (around 1.5 ∼ 2 rad/sec). In the other hand, the fore-aft bending moment

(TwrBsMy) has multiple peaks corresponding to platform surge resonance frequency

(around 0.25 rad/sec), wave excitation frequencies (around 0.5 ∼ 1.5 rad/sec) and

the first tower bending mode (around 1.5 ∼ 2 rad/sec). Clearly, wave excited loads

have a major impact on the fore-aft bending moment (TwrBsMy). Since the major
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objective of this study is to reduce the wave excited fore-aft tower base moment, the

linear model (4.7) is considered reasonable enough to proceed with the implementation

of optimal control.

Figure 4-7: Power spectrum of irregular wave (Hs=2.75m, Tp=8s) and corresponding
tower bending moments simulated by FAST

4.3 Optimal control formulation

The offshore floating wind turbines are compliant to both wind and wave induced

loads. As mentioned previously, the baseline controller of the wind turbine system at

above rated wind speed is mainly designed to regulate the rotor speed to reduce power

fluctuation using a PI control. In this study, the focus is to propose an overlaid optimal

control aiming to additionally mitigate the fore-aft tower base bending moment, which

is largely excited by ocean waves. To achieve such an objective, the wave excitation

forces are modelled as persistent external disturbances that need to be evaluated and
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forecasted.

Consider the general form first, the linearized system dynamics above the rated

wind speed with the wave excitations can be represented as a state space model:

𝑥̇(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑢(𝑡) + 𝑓𝑒(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡)
(4.8)

Where, 𝑓𝑒(𝑡) represents the external disturbance, i.e. wave induced loads in this

study. x(t), u(t), y(t) are the system states, input and output perturbations around

an operation point. A, B, C, D are the associated state, input and output matrices.

The objective is to find an optimal control law 𝑢𝑜𝑝𝑡 such that:

𝑢𝑜𝑝𝑡(𝑡) = arg min
𝑢
𝐽(𝑢) =

1

2

∫︁ 𝑡0+𝑇

𝑡0

(𝑥𝑇𝑄𝑥+𝑢𝑇𝑅𝑢+2𝑢𝑇𝑆𝑥)𝑑𝑡+
1

2
𝑥(𝑡0 +𝑇 )𝑇𝐺𝑥(𝑡0 +𝑇 )

(4.9)

Where, 𝑡0 is the present time. T is the optimization horizon. Q, R, S, G are the

weighting matrices penalizing the states, control efforts, cross term of states and

control efforts and the final time states, respectively.

Thus, the optimization problem is to find an optimal solution of (4.9) subject to

the linear constraints (4.8). The optimal control law 𝑢𝑜𝑝𝑡 under such a problem takes

a generalized state feedback form [88]:

𝑢𝑜𝑝𝑡 = −𝑅−1[(𝐵𝑇𝑃 (𝑡) + 𝑆)𝑥̄(𝑡) +𝐵𝑇𝜑(𝑡)], 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ] (4.10)

𝑃 (𝑡), 𝜑(𝑡), 𝑥̄(𝑡) are solutions of the following ordinary differential equations

(ODEs):⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑃̇ (𝑡) = 𝑃 (𝑡)𝐵𝑅−1𝐵𝑇𝑃 (𝑡) −𝑄+ 𝑆𝑇𝑅−1𝑆 − 𝑃 (𝑡)(𝐴−𝐵𝑅−1𝑆) − (𝐴−𝐵𝑅−1𝑆)𝑇𝑃 (𝑡),

𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ]

𝑃 (𝑡0 + 𝑇 ) = 𝐺

(4.11)
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⎧⎪⎨⎪⎩ 𝜑̇(𝑡) = [𝑃 (𝑡)𝐵𝑅−1𝐵𝑇 − (𝐴−𝐵𝑅−1𝑆)𝑇 ]𝜑(𝑡) − 𝑃 (𝑡)𝑓𝑒(𝑡), 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ]

𝜑(𝑡0 + 𝑇 ) = 0

(4.12)

⎧⎪⎨⎪⎩
˙̄𝑥(𝑡) = {𝐴−𝐵𝑅−1[𝐵𝑇𝑃 (𝑡) + 𝑆]}𝑥̄(𝑡) −𝐵𝑅−1𝐵𝑇𝜑(𝑡) + 𝑓𝑒(𝑡), 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇 ]

𝑥̄(𝑡0) = 𝑥(𝑡0)

(4.13)

The ODEs (4.11) and (4.12) have a known final value and thus need to be solved

backwards in time. Making a change of variable 𝑡′ = 𝑡0 + 𝑇 − 𝑡, (4.11)-(4.12) can be

transformed into initial value problems as:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑃̇ (𝑡′) = −𝑃 (𝑡0 + 𝑇 − 𝑡′)𝐵𝑅−1𝐵𝑇𝑃 (𝑡0 + 𝑇 − 𝑡′) +𝑄− 𝑆𝑇𝑅−1𝑆

+𝑃 (𝑡0 + 𝑇 − 𝑡′)(𝐴−𝐵𝑅−1𝑆) + (𝐴−𝐵𝑅−1𝑆)𝑇𝑃 (𝑡0 + 𝑇 − 𝑡′), 𝑡′ ∈ [0, 𝑇 ]

𝑃 (0) = 𝐺

(4.14)

⎧⎪⎨⎪⎩ 𝜑̇(𝑡) = [𝑃 (𝑡)𝐵𝑅−1𝐵𝑇 − (𝐴−𝐵𝑅−1𝑆)𝑇 ]𝜑(𝑡) − 𝑃 (𝑡)𝑓𝑒(𝑡) 𝑡′ ∈ [0, 𝑇 ]

𝜑(0) = 0

(4.15)

(4.13)-(4.15) are initial value ODE problems, which can be solved by numerical

methods such as ABM4 (Adams-Bashforth-Moulton 4th order predictor-corrector)

method. Once the optimal control law 𝑢𝑜𝑝𝑡 is solved, the system dynamics would be

updated as:
𝑥̇(𝑡) = 𝐴𝑥(𝑡) +𝐵𝑢𝑜𝑝𝑡(𝑡) + 𝑓𝑒(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢𝑜𝑝𝑡(𝑡)
(4.16)

Following the general formulation of the optimal controller described in (4.9)-

(4.16), the actual system dynamics described in (4.7) can be modified as follows to
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take account the irregular wave excitations:⎡⎣∆𝑥̇

𝑧̇

⎤⎦ =

⎡⎣ 𝐴+𝐵𝐾𝑝 𝑘𝑖𝐵

[0, 0, ..., 1, 0] 0

⎤⎦⎡⎣∆𝑥

𝑧

⎤⎦ +

⎡⎣𝐵𝑑

0

⎤⎦∆𝑣 + 𝑓𝑒

∆𝑦 = [𝐶 +𝐷𝐾𝑝 𝑘𝑖𝐷]

⎡⎣∆𝑥

𝑧

⎤⎦ +𝐷𝑑∆𝑣

(4.17)

Where, 𝑓𝑒 is the wave excitation force vector.

Evaluate 𝑓𝑒 as follows assuming knowledge of the system states:

𝑓𝑒 =

⎡⎣∆𝑥̇

𝑧̇

⎤⎦−

⎡⎣ 𝐴+𝐵𝐾𝑝 𝑘𝑖𝐵

[0, 0, ..., 1, 0] 0

⎤⎦⎡⎣∆𝑥

𝑧

⎤⎦−

⎡⎣𝐵𝑑

0

⎤⎦∆𝑣 (4.18)

Where, ∆𝑥, 𝑧,∆𝑣 are real-time measurements of the system states and wind speeds

when evaluating the force vector 𝑓𝑒.

If the linear model matches the system dynamics exactly, 𝑓𝑒 would be the incident

wave excitation force. However, from results shown in Figure 4-3 ∼ Figure 4-6, there

is a large gap for the side-side tower bending moment. This indicates that 𝑓𝑒 evaluated

from (4.18) would include components introduced by this modeling error. We consider

𝑓𝑒 derived from (4.18) as an equivalent forcing vector that can be measured online in

terms of the system states and predict it using the approximate Prony method based

ESPRIT or LS-SVM regression.

With the knowledge of predicted equivalent wave disturbance terms 𝑓𝑒, the finite-

horizon LQR problem (4.10)-(4.15) can be solved. And the system dynamics with

the optimal control effort 𝑢𝑜𝑝𝑡 can be derived in time domain (4.16).

4.4 Simulation results of the optimal control for load

reduction

To validate the finite-horizon LQR with the prediction of equivalent wave force vector,

three different scenarios are tested and compared with the baseline controller. The
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FAST simulations with baseline controller are 2000-second long. The finite-horizon

LQR problem subject to the modified linear state space model (4.17) is solved in the

time domain using FAST simulation data as initializations. The LQR controller is

turned on at t=200s.

The time step of the numerical solver for the optimization problem and system

dynamics are set to be 0.025 seconds based on convergence tests. The optimal

controller update rate is 1 second and the optimization horizon T in (4.9) is 1 second,

which is also the forecast horizon of the equivalent forcing vector 𝑓𝑒. The average value

of blade pitch angle solved from (4.10) is applied until the next controller update.

The controller with the predictor is tested under three different scenarios. The

mean value of wind velocity is 16 m/s as the linearization point. In addition, a

coherent turbulence model is used to generate the actual wind time series. Two

unidirectional wave conditions with different significant wave heights and typical wave

periods are tested in the simulations, which both have zero degree wave headings.

Furthermore, the controller and the predictor are also tested under spread sea

conditions. The main wave heading is zero degrees and a Cosine-2s spreading model

is used. The combination of wind and wave conditions for the three tested cases are

listed in Table 4.1.

Table 4.1: Wind and wave conditions for the three tested cases

Case No. Wind Wave
Hs Tp Heading

Case 1
Coherent turbulent wind,

mean speed 16 m/s,
turbulence intensity 0.0564

2.75 8 Zero degree

Case 2
Coherent turbulent wind,

mean speed 16 m/s,
turbulence intensity 0.0564

3.5 11 Zero degree

Case 3
Coherent turbulent wind,

mean speed 16 m/s,
turbulence intensity 0.0564

2.75 8 Spread sea, main wave
heading is zero degree

The performance of the overlaid optimal controller is measured by the percentage
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of changes for variables of concern:

𝑉 𝑎𝑟(𝑌𝑜𝑝𝑡𝑖𝑚𝑎𝑙) − 𝑉 𝑎𝑟(𝑌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑉 𝑎𝑟(𝑌𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)
% (4.19)

Where, Y could be the fore-aft tower bending moment TwrBsMy, side-side tower

bending moment TwrBsMx and rotor speed. 𝑉 𝑎𝑟(·) denotes the variance of the

concerning variables. The variance of tower bending moments is treated as an indirect

measure of fatigue loading.

Taking account of the actuator limits, the maximum blade pitch rate is normally

up to 7 degrees/second. The trade-off between the performance and control efforts

are adjusted through the penalty matrix Q and R in (4.9). The weighting matrices S

and G in (4.9) are set to be zero.

The performance of the finite-horizon LQR controller with the prediction of the

equivalent forcing vector is summarized in Table 4.2 and Figure 4-8 ∼ 4-10. From the

results, the finite-horizon LQR controller with prediction of the equivalent wave force

vector significantly reduces the fore-aft tower base bending moment. Meanwhile, the

side-side tower bending moment and rotor speed variation are slightly increased as a

cost, which is acceptable since the side-side tower bending moment is far lower than

that in the fore-aft direction thus not leading to increased structural requirements. In

addition, depending on different concerns of structural safety or power stabilization,

the effects of the optimal controller on different quantities can be adjusted via the

penalty matrix in the optimization process.

As for the optimal controller itself, the performance is influenced by the

optimization horizon, accuracy of the predictor, trade-off of the elements in LQR

weighting matrices, etc. Furthermore, the input wind and wave conditions and

accuracy of the linearization process would also have significant effects on the overall

performance for the load reduction. From the results, the proposed LQR controller as

well as the predictor is robust performing consistently under different wave conditions

and is capable of tolerating non-negligible modeling residues in the linearization

process.
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Table 4.2: Performance of the finite-horizon LQR with predictor

Case No. TwrBsMx
(side-side) (%)

TwrBsMy
(fore-aft) (%)

Rotor speed
variation (%)

Maximum blade
pitch (deg/sec)

Case 1 +19.87 -69.86 +28.94 6.8
Case 2 +17.65 -55.74 +14.32 6.84
Case 3 -0.58 -67.34 +17.80 6.76

(a) Tower bending moments in time domain
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(b) Tower bending moments in frequency domain
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(c) Control efforts: blade pitch angle and blade pitch velocity

(d) Rotor speed
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(e) Platform pitch motion

Figure 4-8: Case 1: Comparison of the optimal control and baseline controller
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(a) Tower bending moments in time domain
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(b) Tower bending moments in frequency domain
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(c) Control efforts: blade pitch angle and blade pitch velocity
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(d) Rotor speed
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(e) Platform pitch motion

Figure 4-9: Case 2: Comparison of the optimal control and baseline controller
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(a) Tower bending moments in time domain
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(b) Tower bending moments in frequency domain
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(c) Control efforts: blade pitch angle and blade pitch velocity

(d) Rotor speed
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(e) Platform pitch motion

Figure 4-10: Case 3: Comparison of the optimal control and baseline controller

4.5 Conclusions and discussions

On the basis of the ability to forecast the wave force over a finite horizon into the

future, a deterministic finite-horizon LQR controller is designed to reduce the fore-aft

tower base bending moment, especially the components excited by the wave force.

The performance of the optimal control is effective and robust for the aimed load

reduction comparing to the baseline speed regulator.

In future work, more detailed sensitivity studies will be conducted in terms of

the effects of the optimization horizon, controller update rate and predictor accuracy.

Furthermore, on-line linearization and optimization techniques would be considered

for better real-time implementations. The computational effort necessary to generate
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the forecasted signals needs to be addressed so that the on-line implementation can

be achieved efficiently for sequential controller updates.

The control algorithm developed in this chapter for a stiff TLP floating wind

turbine may be also implemented with minor modifications for “softer” floating wind

turbine concepts like Spars and Semisubmersibles. For example, the effectiveness of

blade-pitch controllers has been already demonstrated for the Hywind concept for

the mitigation of responses at frequencies well below the peak of the wave spectrum.

Meanwhile, this approach is also promising for different control targets combined with

the ability to forecast wind speed.
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Chapter 5

Model Predictive Control for Offshore

Wave Energy Converters

5.1 Introduction

Wave energy is another important resource of renewable energy that ocean provides

and be of great potential. In order to extract energy from waves and convert it to

mechanical and electrical energy that we can utilize, various types of wave energy

converters (WEC) have been proposed [60]. Examples of initiated commercial wave

energy converter projects with different buoy and power take-off concepts include

Oscillating-Water-Column (OWC) plants like the Pelamis WEC [3], overtopping

WEC types like the Wave Dragon [2] and point absorber approaches like the Wavestar

device [1].

Due to the stochastic nature of ocean waves, an optimal control design is critical for

harvesting energy and reducing cost. Many control strategies have been proposed and

validated throughout past decades, including resistive control, approximate complex-

conjugate control, latching control, etc. Falnes [25] pointed out that the maximum

useful absorbed energy for a body oscillating in one mode is achieved by providing

an optimum load impedance that is equal to the complex conjugate of instrinsic

impedance of the WEC. He also described two alternative strategies for achieving

this [24], which are complex conjugate control and phase and amplitude control.
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The complex conjugate control involves anticausal transfer functions from velocity to

machinery force, in which the optimal machinery force depends on future values of the

buoy velocity [32]. It is impossible to implement the ideal complex conjugate control

since future velocities would depend on the choice of machinary force, which leads to

different realizable and sub-optimal approximations of this approach [80]. The phase

and amplitude control expresses the optimal velocity in terms of the excitation force

to provide a reference signal, which is noncausal as well. People can overcome the

issue of non-causality by either predicting the wave excitation force or approximate

the transfer function into a causal one [60].

In recent years, model predictive controls are introduced into optimizing wave

energy conversion as well. Different from feedback type controllers that are optimized

off-line, model predictive control solves a constrained optimization problem on-line

based on the current state of the plant, which can better take account the state

changes and reject disturbances [90]. Hals et al. [32] has shown that the model

predictive control can yield power absorption close to optimum in irregular wave waves

with perfect prediction. In the same study, they also compared the performance of

MPC with a simple predictor and concluded that an accurate and robust forecast of

the wave excitation force is necessary.

Therefore, based on the forecast capability we have developed, in this chapter,

the model predictive control is developed and validated against a point obsorber

oscillating in the heave direction. The floater is a vertical cylinder with radius 5 m

and draft 8 m. The performance of the model predictive control is evaluated under

irregular wave sea states.

5.2 WEC Equation of motion

Assuming linear potential flow, the equation of motion of a single degree of freedom

WEC in heave in the time domain is governed by the Cummins equation:

(𝑚+ 𝐴∞)𝜉(𝑡) +

∫︁ 𝑡

−∞
𝐾𝑟(𝑡− 𝜏)𝜉(𝜏)𝑑𝜏 + 𝐶𝜉(𝑡) = 𝑓𝑒(𝑡) + 𝑓𝑚(𝑡) (5.1)
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Where, m is the mass of the structure, 𝐴∞ is the added mass at infinite frequency,

𝐾𝑟 is the impulse response function of the wave radiation force, C is the restoring

coefficient, 𝑓𝑒 is the incident wave excitation force and 𝑓𝑚 is the PTO machinery force

[24].

The radiation and diffraction impulse response functions are obtained from the

Fourier transform of the frequency domain transfer functions computed by WAMIT

[45]. For the purpose of implementing the control algorithm, the impulse response

functions are cast in state-space form. Nonlinear free surface and viscous effects may

affect the WEC hydrodynamic loads for large amplitude motions and may be learned

online by a machine learning algorithm analogous to that used to forecast the exciting

force.

The PTO force 𝑓𝑚(𝑡) is a signal regulated by the feedforward controller in order

to maximize the wave energy captured under constraints on the heave displacement,

force, active and reactive power of the PTO. The proper settings for these constraints

are PTO specific and can be adjusted accordingly. The PTO force is a function of the

current values of the system states, which include the WEC kinematics, the states of

the radiation impulse response functions and the exciting force.

Because of the non-causality of the diffraction impulse response function, the

ambient wave elevation or the exciting force need to be forecasted over a sufficiently

large time window into the future. These forecasts require knowledge of either the

ambient free-surface elevation which is often hard to measure or of the exciting force

which may be estimated by sensors on the WEC. The latter approach is adopted in

this note. Accurate forecasts of the exciting force are obtained by using the SVM

regression model developed in Chapter 3.

5.3 State space model of impulse response functions

The governing equation (5.1) includes a convolution integral
∫︀ 𝑡
−∞𝐾𝑟(𝑡 − 𝜏)𝜉(𝜏)𝑑𝜏 ,

which represents the wave radiation force. Denoting the convolution term as 𝐹𝑟(𝑡),
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it can be approximated by a state-space model [66]:

𝑥𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) +𝐵𝑟𝜉(𝑡)

𝐹𝑟(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) +𝐷𝑟𝜉(𝑡)
(5.2)

Where, 𝑥𝑟(𝑡) are the introduced states, 𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 𝐷𝑟 are obtained via the parametric

identification methodology [66].

Figure 5-1 shows a very good agreement of the original kernel function and its

state-space approximation.

Figure 5-1: Fitted radiation kernel function

The state space model of the dynamical system (5.1) is thus cast in the standard

form:
ẋ = 𝐴𝑠x +𝐵𝑠(𝑢+ 𝑤)

𝑦 = 𝐶𝑠x

𝑧 = 𝐶𝑧x

(5.3)
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Where, x = [𝜉, 𝜉,xr]
𝑇 , 𝑢 = 𝑓𝑚, 𝑤 = 𝑓𝑒, 𝑦 = 𝜉, 𝑧 = 𝜉.

𝐴𝑠 =

⎡⎢⎢⎢⎣
0 1 0

−𝐶/(𝑚+ 𝐴∞) −𝐷𝑟/(𝑚+ 𝐴∞) −𝐶𝑟/(𝑚+ 𝐴∞)

0 𝐵𝑟 𝐴𝑟

⎤⎥⎥⎥⎦
𝐵𝑠 = [0, 1/(𝑚+ 𝐴∞), 0]𝑇

𝐶𝑠 = [0, 1, 0]

𝐶𝑧 = [1, 0, 0]

(5.4)

5.4 Forecasts of the exciting force via LS-SVM

regression

From the governing equation (5.1) or (5.3), the wave excitation force 𝑓𝑒 is the driving

force of the system. To better optimize the wave energy capture by optimally

adjusting the PTO mechanical force 𝑓𝑚, the forecast of wave force 𝑓𝑒 is necessary.

In Chapter 3, we have developed and validated the LS-SVM regression method for

the forecast of wave elevations, in which we have also demonstrated that the forecast

of wave excitation force can be applied in the same way. Moreover, due to the fact

that the floating structure itself is a natural low-pass filter, the wave excitation forces

contain lower frequency components and less noise than ambient wave elevations if

the wave excitation force is provided with accurate measurement or estimation.

Figure 5-2 shows the performance of the LS-SVM regression model in predicting

the heave excitation force which is simulated by convolving the impulse response

function output by WAMIT with the wave elevations measured in a tank test. The

forecast horizon is 5 seconds and the root-mean-square(RMS) error of the signal is

9.6% of (4𝜎𝐹𝑒𝑥). 𝜎𝐹𝑒𝑥 is the standard deviation of the exciting force. Using 4𝜎𝐹𝑒𝑥 as

the non-dimensionalization factor is analogous to using the significant wave height

for the wave elevations since 𝐻𝑠 = 4𝜎𝜂.
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Figure 5-2: Comparison of the original and forecasted wave exciting force

5.5 Formulation of the model predictive control

The objective is to maximize the energy E extracted by the PTO system over a

predicted time horizon 𝑇ℎ:

𝐸 =

∫︁ 𝑇ℎ

0

𝑃 (𝑡)𝑑𝑡 =

∫︁ 𝑇ℎ

0

−𝑓𝑚(𝑡)𝜉(𝑡)𝑑𝑡 (5.5)

Therefore, the optimization problem will be foumulated as:

max𝐸 = min(−𝐸) = min

∫︁ 𝑇ℎ

0

𝑢(𝑡)𝑦(𝑡)𝑑𝑡 (5.6)

with constraints on both the heave motion and PTO machinery force:

|𝑧| < 𝜉𝑚𝑎𝑥 (5.7)

|𝑢| < 𝑓𝑚,𝑚𝑎𝑥 (5.8)

The objective function (5.6) subject to an equality constraint (the system
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dynamics (5.3)) and two inequality constraints (the heave motion and machinery force

constraints (5.7)-(5.8)) forms a non-convex quadratic programming (QP) problem

[46]. However, for non-convex QP problems, the global optimal solution cannot be

guaranteed. Different kinds of modifications of the objective function have been

proposed to take account the problem of convexity [46], [90], [32]. In this study, a

similar approach is used as [90] proposed:

min(−𝐸) = min

∫︁ 𝑇ℎ

0

𝑢(𝑡)𝑦(𝑡) + 𝑟(∆𝑢)2𝑑𝑡 (5.9)

Where, ∆𝑢 = 𝑢(𝑡) − 𝑢(𝑡 − 1) denotes the change rate of the control effort. r is the

penalty weight which can be adjusted.

To numerically solve the optimization problem defined by (5.9) subject to

constraints (5.3), (5.7), (5.8), the system dynamics (5.3) is discretized using zero-

order hold [32] with a sample time ∆𝑡:

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 +𝐵𝑑(𝑢𝑘 + 𝑤𝑘)

𝑦𝑘 = 𝐶𝑑𝑥𝑘

𝑧𝑘 = 𝐶𝑧𝑑𝑥𝑘

(5.10)

Where,
𝐴𝑑 = 𝑒𝐴𝑠Δ𝑡

𝐵𝑑 = 𝐴−1
𝑠 (𝐴𝑑 − 𝐼)𝐵𝑠

𝐶𝑑 = 𝐶𝑠

𝐶𝑧𝑑 = 𝐶𝑧

(5.11)

Correspondingly, the objective function and constraints would be expressed as:

𝐽 = ∆𝑡
𝑁−1∑︁
𝑘=0

𝑢𝑘𝑦𝑘 + 𝑟|∆𝑢𝑘|2 (5.12)

|𝑧𝑘| < 𝜉𝑚𝑎𝑥 (5.13)

|𝑢𝑘| < 𝑓𝑚,𝑚𝑎𝑥 (5.14)
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Where, ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1.

Denote the control effort (i.e., the PTO machinery force) and disturbance term

(i.e., the wave excitation term) during the optimized horizon as:

𝑈 := [𝑢0, 𝑢1, ..., 𝑢𝑁−1]

𝑊 := [𝑤0, 𝑤1, ..., 𝑤𝑁−1]
(5.15)

for which, U is the control actions that need to be optimized.

The state equation (5.10) can be propagated from the current state to the whole

optimization horizon to obtain:

𝑦(𝑘 + 𝑖|𝑘) = 𝐶𝐴𝑖𝑥𝑘 +
𝑖−1∑︁
𝑗=0

𝐶𝐴𝑖−𝑗−1𝐵(𝑢̂(𝑘 + 𝑗|𝑘) + 𝑤̂(𝑘 + 𝑗|𝑘)),

𝑖 = 0, 1, ..., 𝑁 − 1

(5.16)

Where, 𝑦(𝑘 + 𝑖|𝑘) denotes the state 𝑦𝑘+𝑖 estimated at time k, and the same holds

for 𝑢̂(𝑘 + 𝑗|𝑘) and 𝑤̂(𝑘 + 𝑗|𝑘). Clearly, 𝑢̂(𝑘 + 𝑗|𝑘) would be the optimized control

effort that need to be solved. And 𝑤̂(𝑘 + 𝑗|𝑘) is the predicted wave excitation force

described in Section 5.4, which is assumed known in the optimization process.

Denote 𝑌 = [𝑦(𝑘|𝑘), 𝑦(𝑘 + 1|𝑘), ..., 𝑦(𝑘 + 𝑁 − 1|𝑘)], we can express (5.16) in a

matrix form as:

𝑌 = 𝑆𝑥𝑥𝑘 + 𝑆𝑢(𝑈 +𝑊 ) (5.17)

where,

𝑆𝑥 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶

𝐶𝐴

𝐶𝐴2

...

𝐶𝐴𝑁−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝑆𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

𝐶𝐵 0

𝐶𝐴𝐵 𝐶𝐵
. . .

...
... . . . 0

𝐶𝐴𝑁−2𝐵 𝐶𝐴𝑁−3𝐵 . . . 𝐶𝐵 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.18)

Similarly, we can express the vector of states 𝑍 = [𝑧(𝑘|𝑘), 𝑧(𝑘+1|𝑘), ..., 𝑧(𝑘+𝑁 −

83



1|𝑘)] as:

𝑍 = 𝑆𝑥,𝑧𝑥𝑘 + 𝑆𝑢,𝑧(𝑈 +𝑊 ) (5.19)

where, 𝑆𝑥,𝑧, 𝑆𝑢,𝑧 can be derived by substituting 𝐶𝑧 for C in (5.18).

Also, rewrite the slope of control effort ∆𝑈 := [∆𝑢0,∆𝑢1, ...,∆𝑢𝑁−1] as:

∆𝑈 = 𝑇Δ𝑈 − 𝑔𝑢 (5.20)

where,

𝑇Δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1 1

−1
. . .
. . . 1

−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝑁×𝑁

, 𝑔𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑢−1

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎦
𝑁×1

(5.21)

where, 𝑢−1 is the control input applied to the system at current time and 𝑢−1=0 at

the intial point of simulation.

Then, the cost function J in (5.12) can be expressed as:

𝐽 = 𝑈𝑇𝑌 + (𝑇Δ𝑈 − 𝑔𝑢)
𝑇𝑅(𝑇Δ𝑈 − 𝑔𝑢) (5.22)

where, 𝑅 = 𝑟 × 𝐼𝑁−1.

Substituting (5.17) into (5.22), the objective function J can be expressed in

quadratic form:

𝐽 =
1

2
𝑈𝑇𝐻𝑈 + 𝑓𝑇𝑈 (5.23)

where,
𝐻 := 𝑆𝑢 + 𝑆𝑇𝑢 + 2𝑆𝑅

𝑓 := 𝑆𝑥𝑥𝑘 + 𝑆𝑢𝑊 − 2𝑆𝑔

(5.24)

with 𝑆𝑅 := 𝑇 𝑇Δ𝑅𝑇Δ, 𝑆𝑔 := 𝑇 𝑇Δ𝑅𝑔𝑢.

From (5.23)-(5.24), it can be seen that if the objective functions has not been

modified with the extra penalty term 𝑟∆𝑢2, the Hessian matrix would be 𝑆𝑢 + 𝑆𝑇𝑢
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instead. Since the diagonal elements of 𝑆𝑢 (see 5.18)) are zeros, the Hessian matrix

would be indefinite and hence leads to a non-convex problem. Correspondingly, by

adjusting the value of a positive r and checking the eigenvalues of H as expressed in

(5.24), we can gurantee the convexity of the problem.

The inequality constraints (5.13)-(5.14) can be rewritten as:

𝐴𝑢𝑈 ≤ 𝑏𝑢 (5.25)

where,

𝐴𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐼

−𝐼

𝑆𝑢,𝑧

−𝑆𝑢,𝑧

⎤⎥⎥⎥⎥⎥⎥⎦ , 𝑏𝑢 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑈𝑚𝑎𝑥

𝑈𝑚𝑎𝑥

𝑍𝑚𝑎𝑥 − 𝑆𝑥,𝑧𝑥𝑘 − 𝑆𝑢,𝑧𝑊

𝑍𝑚𝑎𝑥 + 𝑆𝑥,𝑧𝑥𝑘 − 𝑆𝑢,𝑧𝑊

⎤⎥⎥⎥⎥⎥⎥⎦ (5.26)

with 𝑈𝑚𝑎𝑥 = 𝑓𝑚,𝑚𝑎𝑥 × [1, ..., 1]𝑇 and 𝑍𝑚𝑎𝑥 = 𝜉𝑚𝑎𝑥 × [1, ..., 1]𝑇 .

Combine (5.23)-(5.26), we now have a standard convex QP problem as:

𝑈𝑜𝑝𝑡 = arg min
𝑈
𝐽 =

1

2
𝑈𝑇𝐻𝑈 + 𝑓𝑇𝑈

subject to 𝐴𝑢𝑈 ≤ 𝑏𝑢

(5.27)

which can be numerically solved by standard quadratic programming solvers [61].

5.6 Simulation results of the optimal control for

maximum energy capture

The performance of the model predictive control is tested for a heaving cylinder which

is neutrally buoyant with radius 5m and draft 8m. The performance of the WEC is

simulated under two different sea states (Hs=1.7m, Tp=8.7s; Hs=4.5m, Tp=11.8s)

with varying regularization factors r (1e-5, 1e-4, 1e-3) to illustrate its effect on the

generated power and corresponding control force and heave motion.

The optimization horizon for the MPC is 5 seconds and the wave force is forecasted
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by the LS-SVM regression shown in Section 5.4. Figure 5-3 shows the RAO of the

heave motion and the two seastate spectra.

Figure 5-3: Heave RAO and wave spectra

The constraints 𝜉𝑚𝑎𝑥, 𝑓𝑚,𝑚𝑎𝑥 are specified by the PTO machinery. Without

specifying the PTO design in this study, the heave constraint is set to 𝜉𝑚𝑎𝑥 = 𝐻𝑠

and the force constraint 𝑓𝑚,𝑚𝑎𝑥 is set to a large value.

The statistical results are shown in Table 5.1, where 𝑃 is the mean power over

the simulation, 𝜎(·) is the standard derivation of the physical quantity. Figure 5-4 ∼

5-5 shows the time records of cumulative power with different r under the two sea

states. Clearly, with smaller r, the constraint on control effort is less thus more power

is possible to achieve capturing.

To better illustrate the effects of the combined motion and machinery force

constraints and the penalty term, Figure 5-6 ∼ 5-7 show time records of the heave

displacement, heave velocity, wave force, control force and instantaneous power under

different values of r under sea state 2. When r is small, the system tends to behave

more resonantly with larger PTO machinery force and heave motion, which is the

scenario that their own constraints start to come into play. From Figure 5-6 ∼ 5-7,
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it also can be observed that under the model predictive control, the heave velocity

is driven to match the phase of the wave excitation force, which makes the model

predictive controller operated close to the theoretical optimal control law [60].

Table 5.1: Statistical results under different regularization factors r

Cases 𝑃 (𝐾𝑊 ) 𝜎𝑃 (𝐾𝑊 ) 𝜎𝑓𝑚(𝑁) 𝜎𝜉(𝑚)
Sea state 1,

r=1e-5 89.2 265.6 4.94e5 1.16

Sea state 1,
r=1e-4 61.7 212.7 3.5e5 0.96

Sea state 1,
r=1e-3 41.8 86.4 1.6e5 0.58

Sea state 2,
r=1e-5 720 2030 1.94e6 3.76

Sea state 2,
r=1e-4 590 1780 1.26e6 3.02

Sea state 2,
r=1e-3 280 615 5.1e5 1.52

Figure 5-4: Cumulative power under sea state 1: Hs=1.7m, Tp=8.7s
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Figure 5-5: Cumulative power under sea state 2: Hs=4.5m, Tp=11.8s

88



Figure 5-6: Time records of the WEC performance: sea state 2, r=1e-3
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Figure 5-7: Time records of the WEC performance: sea state 2, r=1e-5

5.7 Conclusions and discussions

On the basis of the ability to forecast the wave force over a finite horizon into the

future, a model predictive controller is designed to maximize the power capture with

certain mechanical constraints. The performance of the optimal control is effective

and robust for a heaving point absorber.

Similar to the model predictive control of the offshore floating wind turbines, there

is a trade-off of the forecast accuracy and forecast horizon. Zhong and Yeung [90] in

their study indicates that under regular wave conditions, increasing the optimization

90



horizon does not necessarily lead to a better performance of the MPC. Whether the

same conclusion holds for irregular wave conditions still needs to be verified.

This study takes a simple form of a heaving cylinder as an example to illustrate

the feasibility and effectiveness of such a model predictive controller with the ability

of forecasting the wave excitation force without going deep into the study of specific

PTO mechanisms. Future work could be done by applying the same principle of model

predictive control to various types of floater designs with different PTO systems.
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Chapter 6

Support Vector Regression Model of

the Nonlinear Viscous Ship Roll

Hydrodynamics

6.1 Introduction

Ships remain a primary means of modern transportation in the global economy. Thus

it is important to ensure the safety and operational performance of ships since they

would inevitably encounter harsh sea states during their lifetime. In the past decades,

different numerical theories and experiments have been developed to understand and

evaluate the global responses of ships. Among all the challenges remaining in the ship

design and assessment process, ship roll motion is of particular interest, since it is

highly nonlinear and subjected to significant viscous effects arising from eddies shed

from the hull, lift effect in case of a ship advancing with a forward speed and bilge

keel damping, etc. [26].

The most popular tool to evaluate the ship roll response is to combine semi-

empirical models with experiments or CFD simulations for further design purposes

and the prediction of motion responses [86] [38] [54] [53]. The existing semi-empirical

models are usually based on polynomial approximations that connect the nonlinear
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damping and restoring forces with the ship velocities and displacements.

However, as discussed by many researchers, the widely-used semi-empirical models

with constant coefficents and linear or quadratic damping terms cannot fully capture

the characteristics of ship roll hydrodynamics. Memory effects, the behavior under

a large roll amplitude, the stochastic nature of irregular wave conditions, etc., need

to be carefully taken into account. Towards this objective, Bassler [6] proposed a

piece-wise damping model to better predict large amplitude roll damping. However,

we still lack a more general model that takes into account all pertinent features of

this problem.

In this chapter, the SVM model of the ship roll hydrodynamics problem proceeds

along the following lines. A series of CFD simulations of a barge with bilge keels are

counducted and validated. The results from these simulations serve as a database and

are assumed to be an “exact” representation of the flow physics. An SVM regression

model is established using the ship roll kinematics and wave elevations over a certain

past time period as the features which account for memory effects as well as the

stochastic nature of the ambient ocean wave. This study also compares and discusses

the different feature and kernel selections used in the model.

6.2 CFD simulations

To establish the SVM regression model for the ship roll hydrodynamics problem,

a baseline dataset is needed for the training and validation process. Due to the

free surface nonlinearity and viscous flow separation physics that dominate the ship

roll problem, it cannot be accurately modelled by potential flow theory. Therefore,

besides model tests, numerical simulations of ship roll motion are conducted via a

computational fluid dynamics (CFD) solver. In this study, a barge in model scale is

modelled using the semi-2D CFD solver [14].

The prototype ship dimension in model scale has a width of 300 mm and depth of

200 mm with an overall length of 580 mm and a draft 120 mm, which was tested in a

flume in the Department of Ocean Engineering, IIT Madras [54] [53]. The scale ratio

93



was 1/100. A series of CFD simulations are conducted and considered as the database

used to train the SVM regression model. The inertia and hydrostatic properties of

the ship model and bilge keel dimensions are summarized in Table 6.1. Figure 6-1

shows a sketch of the model test setup and the ship model [53].

Table 6.1: Properties of the ship model and bilge keels

Dimensions Values

Draft 0.12m

Displacement 20.88 kg

Roll moment of inertia 0.2244 kg·𝑚2

Center of gravity (KG) 0.08 m

Bilge keel width 10 mm

Angle with horizontal 45 deg

(a) Experimental setup in glass flume
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(b) Sectional view of the ship model

Figure 6-1: Sketch of the model test setup and ship model [53]

The CFD hull model is a 2D section with beam equal to 1/20 of the ship length

where there is only one layer of mesh points in the longitudinal direction. Hexahedral

meshes of varying resolution are used and mesh refinement is carefully carried out

in the vicinity of the bilge keels as well as on the free surface. An Eulerian multi-

phase volume of fluid (VOF) model is used to simulate and capture the free surface

effects. The Reynolds stress is resolved using the 𝑘 − 𝜔 SST turbulence model. The

computational domain is modeled by the overset mesh technique. The sketch of the

simulation domain and mesh visualization is shown in Figure 6-2.

(a) Simulation domain
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(b) Mesh refinement around the bilge keels

Figure 6-2: Sketch of mesh visualization

To validate the CFD simulations and further establish the SVM regression model,

the single DOF ship roll motion is simulated under three different scenarios: free

decay test under calm water condition, free ship roll motion excited by regular waves

with different wave frequencies, and free ship roll motion under different irregular

wave sea states.

Figure shows the comparison of results between the current CFD simulations

and the experiments [54] [53] for the free decay test and the motion response under

different regular wave conditions. The initial angle of the free decay test was set to

20 degrees. Five regular wave cases that covered the major excitation frequencies

were simulated with the same wave height H=3cm in model scale. The five different

regular wave periods were 0.75s, 1s, 1.125s, 1.25s, 1.5s.

The well matched results from the free decay test and motion responses (Figure
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6-3) under regular wave conditions indicate that the refined mesh conditions around

the ship hull and especially the bilge keels is accurate enough to capture the viscous

flow physics.

(a) Free decay test

(b) Simulated ship roll response under regular wave with period 1.2s and wave height 3cm
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(c) Motion response under regular waves

Figure 6-3: Validation of the CFD simulations against wave tank tests

Furthermore, the single DOF ship roll motion was simulated under an irregular

wave sea state as well. For clearer description, the data in the following sections

would be converted to full scale with a scaling ratio 1/100. The JONSWAP spectrum

is used in this study to simulate the irregular wave. The simulated sea state has

siginificant wave height (Hs) 6m and modal wave period (Tp) 11.3s.

Although experimental results under irregular wave conditions are not available,

Figure 6-4 shows the simulation of irregular waves in the absence of the ship. The

simulated spectrum is well matched with the targeted one, which indicates that the

refined mesh conditions around the free surface and the time step set in the simulations

are sufficient to capture the free surface effects. Therefore, it is reasonable to assume

that with the matched results from the free decay and regular wave cases, as well as the

accurate modelling of the stochastic wave itself, the simulated ship roll hydrodynamics

under the irregular wave condition is accurate enough to provide a database for the

development of the SVM regression model. Figure 6-5 shows the simulated ship roll
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motion under the irregular wave condition. The overall physical simulation time is

3600s (1hour) so that the results are statistically reliable.

Figure 6-4: Validation of the irregular wave generation

Figure 6-5: Simulated ship roll response under the irregular wave condition: Hs=6m,
Tp=11.3s
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6.3 Ship roll hydrodynamics modeling via SVM

regression using free decay test data

For a free decay test, the 1DOF equation of the ship roll motion can be expressed as:

𝐼𝜉(𝑡) = 𝐹ℎ(𝜉(𝜏), 𝜉(𝜏), 𝜉(𝜏)) (6.1)

Where, I is the moment of inertia of the ship hull structure. 𝐹ℎ denotes the overall

hydrodynamic moment, which includes contributions from restoring, added mass and

damping forces. 𝜉(𝜏), 𝜉(𝜏), 𝜉(𝜏) are the past records of the ship roll displacement,

velocity and acceleration, respectively, taking into account the memory effect. 𝜏 is a

dummy variable representing the past time steps.

Conventionally, the overall hydrodynamic moment can be decomposed into several

components:

𝐹ℎ(𝑡) = −𝐴∞𝜉(𝑡) − 𝐶𝜉(𝑡) + 𝐹ℎ,𝑟(𝑡) (6.2)

Where, 𝐴∞ is the infinite frequency added mass and C is the linear hydrostatic

restoring coefficient. The components contributed by the fluid inertia terms, nonlinear

viscous damping and nonlinear restoring force are all included in the term 𝐹ℎ,𝑟(𝑡).

Since 𝐹ℎ,𝑟(𝑡) is the overall hydrodynamic moment derived from the integration

of the pressure and stress from the CFD solver, and since the infinite added mass

and hydrostatic restoring terms are easy to evaluate given the properties of ship hull,

𝐹ℎ,𝑟(𝑡) can be thus expressed as:

𝐹ℎ,𝑟(𝑡) = 𝐹ℎ(𝑡) + 𝐴∞𝜉(𝑡) + 𝐶𝜉(𝑡) (6.3)

The features that 𝐹ℎ,𝑟(𝑡) depends upon are the past records of ship kinematics,

which are output by the CFD simulations directly as well. Therefore, in the

context of the LS-SVM model described in Chapter 2, the training and test

data samples {xi, 𝑦𝑖} are formatted as xi = [𝜂𝑡𝑖 , 𝜂𝑡𝑖−1, ..., 𝜂𝑡𝑖−𝑑, 𝜉𝑡𝑖 , 𝜉𝑡𝑖−1, ..., 𝜉𝑡𝑖−𝑑,

𝜉𝑡𝑖 , 𝜉𝑡𝑖−1, ..., 𝜉𝑡𝑖−𝑑, 𝜉𝑡𝑖 , 𝜉𝑡𝑖−1, ..., 𝜉𝑡𝑖−𝑑], and 𝑦𝑖 = 𝐹ℎ,𝑟(𝑡𝑖). Where, d is the duration of
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the past record that takes into account the memory effect.

The original sampling timestep of the CFD simulations is 0.01 seconds in full scale.

The duration of the past record that takes into account the memory effect is set to

8 seconds. Therefore, to make the dimensions of the features reasonable, all of the

CFD simulated data are resampled at a timestep 0.5s. The total number of samples

generated in the free decay test is 1000 samples, and 500 random samples are used

for training and the other 500 samples are used for testing. The hyper-pamaraters

including the Gaussian kernel width and the regularization factor are optimized using

10-fold cross-validation during the SVM training process. The results of the training

and testing are shown in Figure 6-6.

(a) Training results using data from free decay test
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(b) Test results on free decay test

Figure 6-6: Training and test results of the SVM regression model using free decay
test data

From these results, the SVM regression model is able to capture the nonlinear

mapping between the ship roll kinematics and the corresponding hydrodynamic forces

in calm water conditions.

6.4 Ship roll hydrodynamics modeling via SVM

regression using irregular wave data

To better account for the stochastic effects of ship roll under irregular wave conditions,

the data from the irregular wave case are used to establish the SVM model. In this

case, the overall hydrodynamic moment in (6.1) would also include contributions

from the incident wave. Correspondingly, the total wave force can be decomposed as
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follows:

𝐹ℎ(𝑡) = −𝐴∞𝜉(𝑡) − 𝐶𝜉(𝑡) −
∫︁ 0

−∞
𝐾(𝑡− 𝜏)𝜉(𝜏)𝑑𝜏 + 𝐹𝑒𝑥,𝑙(𝑡) + 𝐹ℎ,𝑟(𝑡) (6.4)

Where, 𝐴∞ is the infinite frequency added mass, C is the hydrostatic restoring

coefficient, K(t) is the radiation impulse kernel and 𝐹𝑒𝑥,𝑙 is the linear incident wave

force. The radiation impulse kernel and linear incident wave force can be easily

derived from linear potential theory. Therefore, the residual nonlinear force can be

expressed as:

𝐹ℎ,𝑟(𝑡) = 𝐹ℎ(𝑡) + 𝐴∞𝜉(𝑡) + 𝐶𝜉(𝑡) +

∫︁ 0

−∞
𝐾(𝑡− 𝜏)𝜉(𝜏)𝑑𝜏 − 𝐹𝑒𝑥,𝑙(𝑡) (6.5)

The nonlinear residual force under stochastic wave conditions results from

nonlinear wave-structure interactions and viscous effects. The features used in the

model are records of wave elevations and ship roll velocities. Since the impulse

function of the incident wave force is non-causal, the records of both past and future

wave elevations are taken into account. In the context of the LS-SVM model described

by equations (2.2)-(2.7), the training and test data samples {xi, 𝑦𝑖} are formatted as

xi = [𝜂𝑡𝑖−𝑑, ..., 𝜂𝑡𝑖−1, 𝜂𝑡𝑖 , 𝜂𝑡𝑖+1, ..., 𝜂𝑡𝑖+𝑑, 𝜉𝑡𝑖 , 𝜉𝑡𝑖−1, ..., 𝜉𝑡𝑖−𝑑], and 𝑦𝑖 = 𝐹ℎ,𝑟(𝑡𝑖). Where, d

is the duration of the past and future record that takes into account the memory

effect. In this case, d is set to be 8 seconds as well.

The wave elevations, ship kinematics, total hydrodynamic force output by the

CFD simulation under the irregular wave condition as well as the linear potential

terms output by the potential flow panel methods are used to train the model. In

analogy to the previous section, part of the data is randomly selected as training

samples and the rest are used for testing. The hyperparameters are optimized via

cross-validation.

Two different kernels are considered in this section, the Gaussian kernel and

the linear kernel. As stated in the previous Section 2.4, the linear kernel can be

considered as the leading-order approximation of the more generalized Gaussian kernel

model. Moreover, the linear kernel can be converted into a frequency-domain transfer
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function, leading to a very efficient implementation in practice.

6.4.1 SVM regression model with linear kernel

Combining (6.1) and (6.4), the equation of motion under an irregular wave sea state

can be expressed as:

(𝐼 + 𝐴∞)𝜉(𝑡) + 𝐶𝜉(𝑡) +

∫︁ 0

−∞
𝐾(𝑡− 𝜏)𝜉(𝜏)𝑑𝜏 = 𝐹𝑒𝑥,𝑙(𝑡) + 𝐹ℎ,𝑟(𝑡) (6.6)

Where, 𝐹ℎ,𝑟(𝑡) are estimated by the SVM regression model, and will be referred as

𝐹𝑆𝑉𝑀,𝑙𝑖𝑛−𝑘𝑒𝑟𝑛𝑒𝑙 in what follows.

Since the linear kernel takes the form:

𝑘(x, zi) = x𝑇zi + 𝑏 (6.7)

the estimated hydrodynamic force becomes:

𝐹𝑆𝑉𝑀,𝑙𝑖𝑛−𝑘𝑒𝑟𝑛𝑒𝑙(𝑡) =
∑︁

𝜆𝑖x
𝑇zi + 𝑏 (6.8)

where, zi = [𝑧𝑖1, 𝑧𝑖2, ..., 𝑧𝑖𝑝]
𝑇 is the training sample with p features.

Expanding x𝑇zi =
∑︀
𝑥𝑗𝑧𝑖𝑗, and plugging in (6.8) and re-organizing the terms, the

SVM model with a linear kernel can be expressed in the form:

𝐹𝑆𝑉𝑀,𝑙𝑖𝑛−𝑘𝑒𝑟𝑛𝑒𝑙(𝑡) =

𝑝∑︁
𝑖=1

𝑐𝑖𝑥𝑖 + 𝑏 (6.9)

where, p is the number of features, 𝑥𝑖 is the corresponding wave elevation 𝜂(𝑡+𝜏), 𝜏 =

−𝑇𝑐, ..., 0, ...𝑇𝑐 or ship roll velocity 𝜉(𝑡− 𝜏), 𝜏 = 0, ..., 𝑇𝑐 defined as the features.

Converting (6.9) into the frequency domain via the Fourier transform, and

invoking the time-convolution property of the transform:

𝑥(𝑡) → 𝑋(𝜔)

𝑥(𝑡− 𝜏) → 𝑒−𝑖𝜔𝜏𝑋(𝜔)
(6.10)
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the estimated SVM force in the frequency domain becomes:

𝐹𝑆𝑉𝑀,𝑙𝑖𝑛−𝑘𝑒𝑟𝑛𝑒𝑙(𝜔) = 𝐹𝑆𝑉𝑀−𝜂(𝜔)𝐻(𝜔) + 𝑖𝜔𝐹𝑆𝑉𝑀−𝑣Ξ(𝜔) (6.11)

where, 𝐻(𝜔) is the Fourier transform of the wave elevation 𝜂(𝑡), and Ξ(𝜔) is the

Fourier transform of the ship roll displacement 𝜉(𝑡).

Converting (6.6) into the frequency domain and plugging in (6.11), the equation

of motion in frequency domain becomes:

(−𝜔2(𝐼 + 𝐴∞) + 𝑖𝜔𝐾(𝜔) + 𝐶)Ξ(𝜔)

= (𝐹𝑒𝑥,𝑙(𝜔) + 𝐹𝑆𝑉𝑀−𝜂(𝜔))𝐻(𝜔) + 𝑖𝜔𝐹𝑆𝑉𝑀−𝑣(𝜔)Ξ(𝜔)
(6.12)

Therefore, the transfer function of the roll displacement as a function of the

incident wave elevations becomes:

Ξ(𝜔) =
𝐹𝑒𝑥,𝑙(𝜔) + 𝐹𝑆𝑉𝑀−𝜂(𝜔)

−𝜔2(𝐼 + 𝐴∞) + 𝑖𝜔𝐾(𝜔) + 𝐶 − 𝑖𝜔𝐹𝑆𝑉𝑀−𝑣(𝜔)
(6.13)

It is seen from equation (6.13) that the residual hydrodynamic force modeled

by the linear SVM kernel induces an excitation residual force transfer function which

appears in the numerator and a damping coefficient which appear in the denominator.

These effects are additive to the corresponding contributions from conventional linear

theory. Moreover they both are driven by nonlinear free surface and viscous separated

flow physics contained in the CFD simulation record which is used to train the linear

kernel SVM machine learning model (6.6)-(6.13).

Figure 6-7 shows the training and testing results of the linear-kernel-SVM model.

Figure 6-8 shows the comparison of the transfer function derived using (6.13) and

using purely linear potential theory. The comparison shown in Figure 6-8 clearly

illustrates that the SVM force model introduces a significant damping effect.
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(a) Training results using data from irregular wave case

(b) Test results on the irregular wave condition

Figure 6-7: Training and test results with linear kernel under irregular wave conditions
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Figure 6-8: Comparison of the transfer function between linear potential theory and
that with the linear-kernel-SVM model

Furthermore, the irregular wave spectrum from the CFD simulation is used in

(6.13) to calculate the spectrum of the ship roll displacement. The frequency domain

result may be converted to time-domain records via the inverse Fourier transform.

Figure 6-9 illustrates the comparion of the ship roll displacement between the CFD

simulation and the linear-kernel-SVM model in both time-domain and frequency-

domain. The difference of the standard deviation of the ship roll displacement is

9.54%.
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Figure 6-9: Comparison of spectral density of the ship roll displacement between the
CFD simulation and the linear-kernel-SVM model

6.4.2 SVM regression model with Gaussian kernel

Having established the SVM model using a linear kernel, we further explored the

alternative of using Gaussian kernel with data from irregular wave records. The

feature selection and SVM training process are the same with that of the linear

kernel. The nonlinear residual force in (6.6) is estimated now by the SVM regression

model with a Gaussian kernel. In what follows, the estimated nonlinear residual force

in (6.6) is referred to as 𝐹𝑆𝑉𝑀,𝑛𝑙.

Since the Gaussian kernel (see (2.8)) is a nonlinear function of its arguments, the

equation of motion cannot be converted to the frequency domain. In order to validate

the feasibility of using the Gaussian-kernel-SVM model, (6.6) with the estimated

nonlinear force 𝐹𝑆𝑉𝑀,𝑛𝑙 is simulated directly in the time-domian.

Figure shows the training and testing results of the hydrodynamic force obtained

from the simulation of the Gaussian-kernel-SVM model. Figure shows the spectrum of
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the ship kinematics estimated using the Gaussian-kernel-SVM model. The difference

of the standard deviation of the ship roll displacement between the CFD simulations

and the Gaussian SVM model is 5.67%.

(a) Training results using data from irregular wave case
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(b) Test results on the irregular wave condition

Figure 6-10: Training and test results with Gaussian kernel under irregular wave
conditions
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Figure 6-11: Comparison of spectral density of ship roll displacement between CFD
simulation and the Gaussian-kernel-SVM model

It may be seen from Figure 6-9 and Figure 6-11 that the SVM model using the

nonlinear and more general Gaussian kernel leads an increased accuracy of the spectral

density of the roll motion and better agreement with the results obtained from the

CFD simulations which are assumed to correctly capture all flow physics. Yet the

performance of the SVM model using the linear kernel is satisfactory and readily

amenable to the efficient machinery of linear system theory.

6.5 Conclusions and discussions

A series of simulations have been conducted for a rectangular barge with bilge keels

using a 2D CFD solver. The CFD simulations are validated by comparing results of

free decay tests and regular wave cases with experiments.

On the basis of the data derived from validated CFD simulations, generalized

SVM regression models are developed in this chapter that establish the mapping

relation between the ship kinematics and wave elevation records and the nonlinear
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ship roll hydrodynamic loads. In essence, the kernel maps the association of the

features of the target samples to those of the training samples in the hyperspace,

and predicts the target value of the quantity being modeled as a function of the

kernel arguments which are the target and training features. Therefore, by randomly

selecting a set of training samples, the model achieves a very good generalization

capability to predict unseen targets through the training process combined with the

optimization scheme which determines the width parameter of the kernel and the

regularization parameter. In the context of ship roll hydrodynamics, this means that

if high-fidelity CFD simulation records of ship roll hydrodynamics and motions in

an irregular sea state are available, the SVM regression model established using the

methodology presented in this provides a very good estimate of the nonlinear ship

roll hydrodynamic loads.

Both the linear kernel and Gaussian kernels are selected and tested in this study.

The Gaussian kernel has better accuracy and generalization capability in fitting the

force signal. However the linear kernel enables the use of linear frequency domain

analysis and renders its use more efficient in design practice.

In a more general context, a stochastic SVM model may be developed which is

trained to estimate the probability density function of the quantity being modeled

conditional upon knowledge of the features. This extension will enable the modeling

of the statistical properties of the nonlinear responses of vessels in a stochastic sea

state when they are significantly affected by viscous and nonlinear free surface effects,

a topic that will be studied in future research.
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Chapter 7

Support Vector Regression Model of

the Nonlinear Hydrodynamics of

Fixed Cylinders

7.1 Introduction

The modeling of hydrodynamics loads has developed for decades to understand the

relevant physics and predict the wave-structure interaction. Linear frequency-domain

analysis derived from the panel methods based on potential flow theory is one of

the most popular tools because of its efficiency and reliability. However, in many

scenarios, the nonlinear effects are not negligible due to large-amplitude body motions,

nonlinear resonance etc. Having a better prediction of nonlinear wave loads are critical

to evaluate extreme statistics and structural fatigue analysis for offshore structures

[74] [56] [52]. Many researchers have published studies on the impact of nonlinear

wave loads to the design, safety and maintenance of offshore platforms [89] [31] [49].

In the past decades, a variety of numerical methods have developed to understand

and predict the nonlinear wave-structure interactions. The potential flow theory

remains the most popular used tools to predict global responses of offshore structures

extending the linear theory to nonlinear free surface and body boundary conditions
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[75]. The classical boundary element methods are formulated in two different ways

using either Rankine panel method or the transient free surface Green function

method [7] [57] [16]. Based upon the solution of wave-structure interaction, the

hydrodynamic load can be calculated either by integrating the pressure over the body

surface which is obtained by Bernoulli’s equation [59] or by the time rate of change of

the impulse of the velocity potential which is a new methodology recently proposed

by Sclavounos [75] as Fluid Impulse Theory. These methods require the discretization

of the body surface and some also require the discretization of the free surface, which

can be very demanding in both delicate numerical treatment and computational cost.

Meanwhile, depending on the surface and body boundary conditions imposed, the

numerical schemes can only take account contributions from certain nonlinear aspects

to a certain order. Therefore, establishing a direct generalized model for nonlinear

wave loads from a data-driven perspective could be very prospective in terms of

accuracy and efficiency, which could be further applied in various design and operation

practises.

In this chapter, a SVM regression model is trained and validated using experiment

and simulation data for a fixed cylinder in shallow water. Different feature and target

selections are compared and discussed in this work. Statistics of the nonlinear wave

loads by the SVM regression model are compared with the original measurements to

show the accuracy of the model, which is critical to further applications in structural

design and analysis.

7.2 Baseline data set

In this study, we are interested in establishing SVM regression models for the

prediction of the nonlinear wave loads on a fixed cylinder. To establish such a model,

experimental data from a model test were used as the baseline data set. Meanwhile,

the simulated nonlinear wave loads from fluid impulse theory [75] are also used in

the model development as well in order to explore the merits of different feature and

target selections.
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7.2.1 Wave tank experiment set-up

The experiment was carried out in the wave tank at the Marine Technology Center,

NTNU on a bottom fixed cylinder in finite depth water. The wave tank is 28 meters

long, 2.5 meters wide and with a depth of 19 meters. The scale ratio of the model is

1:48. The diameter of the cylinder is 6.912 m in full scale. The sketch of the model

test facility is shown in Figure 7-1. More details of the experiments can be found in

[5] [40].

Figure 7-1: Sketch of the model test facility

Three sets of irregular wave cases are used in this study. The irregular wave sea

states were generated using the standard Jonswap spectrum with a spectral parameter

𝛾. The parameters of the sea states are summarized in Table 7.1. For each sea

state, the experiments were repeated 20 times with independent random seeds. Each

realization of the irregular wave sea states was tested and measured for approximately

3.5 hours with a sampling rate 0.0346 s in full scale. During the experiments, the

total horizontal force 𝐹𝑥 and the mudline bending moment 𝑀𝑦 were measured, which

are the two physical quantities that this study targets to model. The sketch of the
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loading on the fixed cylinder is shown in Figure 7-2.

Table 7.1: Parameters of the irregular wave sea states

Case No. Tp (s) Hs (m) 𝛾

Sea state 1 10.0 6.15 3.04

Sea state 2 11.5 6.7 1.9

Sea state 3 13.2 6.8 1.0

Figure 7-2: Sketch of the loading on the fixed cylinder

7.2.2 Fluid impulse theory

The fluid impulse theory expresses the nonlinear forces and moments as time

derivatives of the fluid impulse which circumvents the time-consuming computation of

the temporal and spatial derivatives in Bernoulli’s equation. In a recent development

of the fluid impulse theory, Sclavounos et al. [78] derived an approximation of the

exciting force on a vertical cylinder for ambient waves assuming that the wavelength
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is large compared to the cylinder diameter and the amplitude is comparable to its

diameter. The detailed derivation of the fluid impulse theory is presented in [75] [78].

In this study, the nonlinear wave loads 𝐹𝑥 and 𝑀𝑦 (defined as in Figure 7-2) for the

fixed cylinder take into account the linear component, second-order contribution from

the convective terms in the fluid acceleration and a waterline quadratic contribution.

They take the form:

𝐹𝑥 = 2𝜋𝜌𝑅2

∫︁ 0

−𝐻
𝑢̇1𝑑𝑧

+ 2𝜋𝜌𝑅2

∫︁ 0

−𝐻
(𝑢1

𝜕𝑢1
𝜕𝑥

+ 𝑢3
𝜕𝑢1
𝜕𝑧

)𝑑𝑧

+ 2𝜋𝜌𝑅2𝑢̇1𝜉𝐼

(7.1)

𝑀𝑦 = 2𝜋𝜌𝑅2

∫︁ 0

−𝐻
𝑢̇1(𝐻 + 𝑧)𝑑𝑧

+ 2𝜋𝜌𝑅2

∫︁ 0

−𝐻
(𝑢1

𝜕𝑢1
𝜕𝑥

+ 𝑢3
𝜕𝑢1
𝜕𝑧

)(𝐻 + 𝑧)𝑑𝑧

+ 2𝜋𝜌𝑅2𝑢̇1𝜉𝐼𝐻

(7.2)

Where, 𝜌 is the fluid density, R is the radius of the cylinder, H is the draft, 𝑢1, 𝑢3

are the ambient wave velocities in the x, z directions, respectively, 𝜁𝐼 is the ambient

wave elevation and 𝑢̇1 is the ambient wave acceleration.

7.3 SVM regression model of the nonlinear wave

loads

In this study, we aim to establish a SVM regression model for the nonlinear wave

loads using the ambient wave elevations and its kinematics as features. As mentioned

in section 7.2.1, three different sea states with 20 random realizations for each sea

state were tested in the experiment (see Table 7.1).

To compare the results, the nonlinear wave loads in the same three sea states were

also simulated by fluid impulse theory. The ambient wave kinematics, velocity and

acceleration were calculated by linear wave theory using the shallow water dispersion

117



relation. Then the simulated nonlinear wave loads were derived through (3.1) and

(3.2).

In the following sections, 𝐹𝑥−𝑒𝑥𝑝, 𝐹𝑥−𝑓𝑖𝑡,𝑀𝑦−𝑒𝑥𝑝,𝑀𝑦−𝑓𝑖𝑡 refer to the horizontal force

and bending moment measured in the experiment and simulated by fluid impulse

theory, respectively. Three different combinations of features have been tested in

the study (see Table 7.2). In order to take into account memory effects and the

non-causality of the wave excitation forces, a time window of the wave kinematics of

finite duration, instead of an instantaneous value, is defined as a feature. The time

duration of each feature is [𝑡− 15𝑠, 𝑡 + 10𝑠], where t refers to the current time. The

sampling rate within the feature window is the same as that of the sampling rate in

the experiment, which is 0.0346 seconds in full scale. Therefore, the vector length of

each feature is 25/0.0346=722.

Table 7.2: Combinations of feature selections

Case No. Features

Features 1 Ambient wave elevations (𝜂)

Features 2 Ambient wave horizontal velocities (𝑢1) + accelerations (𝑢̇1)

Features 3
Ambient wave elevations (𝜂) + horizontal velocities (𝑢1) +

accelerations (𝑢̇1)

As is known, the standard deviation and kurtosis are two important statistics of

loads, and their magnitude is critical for fatigue analysis and the evaluation of the

extreme statistics. The kurtosis of a Gaussian signal is always 3, which is the case

for all linear loads and responses within linear wave-structure theory. Therefore the

kurtosis of the measured signal is considered to be a measure of nonlinearity in wave

/ wave-structure interaction problem. The kurtosis of the measured wave loads is

listed in Table 7.3 as a measure of the load nonlinearity.
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Table 7.3: Kurtosis of the measured wave loads

Force modes Sea state 1 Sea state 2 Sea state 3

𝐹𝑥 2.96 2.85 3.06

𝑀𝑦 3.12 3.29 3.39

Therefore, to evaluate the accuracy of the SVM regression model, the difference

of the standard deviation and kurtosis are compared between the measured and SVM

predicted signal. The metrics used to evaluate the model are defined as follows:

∆𝜎 =
|𝜎𝑦 − 𝜎𝑦|

𝜎𝑦
(7.3)

∆𝜅 =
|𝜅𝑦 − 𝜅𝑦|

𝜅
(7.4)

Where, 𝑦𝑖 is the true value of the signal, 𝑦𝑖 is the predicted value, 𝜎𝑦 is the standard

deviation of the signal, and 𝜅𝑦 is the kurtosis of the signal.

We first have trained the model using the measured wave loads directly as the

target. Data from realization 1 in sea state 1 are used as the training data set.

The number of training samples is 3000, each sample has a duration of 25 seconds

with a sampling rate 0.0346 seconds, and the samples used in the training process

have been selected randomly from a long time scale of a 3-hour sea state. The

sufficiently long time scale used for the selection of the features guarantees that the

samples used for the training of the algorithm have accounted for most of the inherent

physical information contained in the training seastate for the purpose of modeling

the nonlinear load on the cylinder.

The rest of 19 realizations of sea state 1 and all the 20 realizations of sea state 2

and state 3 are used as the test data set to validate the accuracy and robustness of the

model. For each seastate realization, a 3500-second long section is used for testing.

The large data set used for testing ensures that the performance of the model is

statistically robust and consistent. The results of the training and testing stages are

119



shown in Figure 7-3 ∼ Figure 7-6. For each test sea state, results from one of the

realizations with one of the feature selections are shown here as examples. The overall

error statistics are listed in Table 7.4 and Table 7.5.

Table 7.4: Error statistics of horizontal force 𝐹𝑥 by SVM model

Features Features 1 Features 2 Features 3

∆𝜎 for sea state 1 1.47% 1.59% 1.54%

∆𝜎 for sea state 2 1.82% 1.73% 1.75%

∆𝜎 for sea state 3 2.61% 1.80% 1.96%

∆𝜅 for sea state 1 2.70% 3.12% 2.99%

∆𝜅 for sea state 2 4.03% 3.87% 3.97%

∆𝜅 for in sea state 3 5.48% 4.51% 4.94%

Table 7.5: Error statistics of bending moment 𝑀𝑦 by SVM model

Features Features 1 Features 2 Features 3

∆𝜎 for sea state 1 2.41% 2.52% 2.51%

∆𝜎 for sea state 2 3.34% 3.02% 3.21%

∆𝜎 for sea state 3 4.58% 3.29% 3.71%

∆𝜅 for sea state 1 5.18% 5.52% 5.65%

∆𝜅 for sea state 2 6.72% 6.13% 6.53%

∆𝜅 for in sea state 3 8.23% 6.59% 7.33%
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(a) Training results using features 1
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(b) Training results using features 2
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(c) Training results using features 3

Figure 7-3: Comparison of the horizontal force between the measured signal and fitted
using SVM: training results
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(a) Test results using features 1 in sea state 1
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(b) Test results using features 2 in sea state 2
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(c) Test results using features 3 in sea state 3

Figure 7-4: Comparison of the horizontal force between the measured signal and fitted
using SVM: test results
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(a) Training results using features 1
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(b) Training results using features 2
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(c) Training results using features 3

Figure 7-5: Comparison of the bending moment between the measured signal and
fitted using SVM: training results

125



6000 6050 6100 6150 6200 6250 6300

Time (s)

-4

-3

-2

-1

0

1

2

3

4

5

6

B
e
n
d
in

g
 m

o
m

e
n
t 
(N

m
)

107

Original signal

Fitted signal-RBF Kernel

(a) Test results using features 1 in sea state 1
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(b) Test results using features 2 in sea state 2
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(c) Test results using features 3 in sea state 3

Figure 7-6: Comparison of the bending moment between the measured signal and
fitted using SVM: test results

From these results, it can be seen that the SVM regression model has successfully

captured the nonlinear physical relation between the features and the targets. The

trained model using data from one sea state performs very well in the two other

sea states which proves the robustness and generalization capability of the model.

Furthermore, the different selection of features among ambient wave elevations

or derived velocities and accelerations does not lead to a significant difference in

performance. This is expected given the fact that the ambient wave elevations and

derived wave kinematics are dependent via a convolution-type operation, intuitively

justified by linear wave propagation theory. From the practical perspective, the

ambient wave elevations are more accessible by direct measurements in experiments

or simulations. In this sense, the SVM regression model effectively establishes a

data-driven nonlinear transfer function between the ambient wave elevations and the

nonlinear wave loads, derived from experimental measurements.

To further illustrate the performance of this model, Table 7.6 shows the error

statistics between the simulated wave loads by fluid impulse theory (3.1) - (3.2)
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and the measured experimental data. A comparison of the results of the SVM

regression model with that of the FIT simulation in Table 7.4 ∼ Table 7.6, shows that

the SVM regression model has a much better performance in predicting the overall

statistics. The accurate prediction of the nonlinear wave load itself and its overall

statistics (standard derivation and kurtosis) suggests that the model is a valuable and

efficient tool for further use in design or simulation practice. For certain design or

simulation purposes, the SVM regression model can be trained using a custom single

representative sea state. Then a well trained SVM regression model can be applied

to more realizations of the same sea state or other sea states for structural design or

any other demanded analysis. The design of custom representative sea states for the

purpose of training SVM nonlinear transfer functions will be the subject of future

research.

Table 7.6: Error statistics of simulated wave loads by fluid impulse theory

Force modes 𝐹𝑥 𝑀𝑦

∆𝜎 for sea state 1 11.1% 13.04%

∆𝜎 for sea state 2 12.26% 11.48%

∆𝜎 for sea state 3 13.34% 10.16%

∆𝜅 for sea state 1 11.32% 51.34%

∆𝜅 for sea state 2 13.88% 55.87%

∆𝜅 for in sea state 3 18.39% 71.15%

To further explore a possible enhancement of the modeling accuracy of the SVM

regression model, we have trained the model against the nonlinear residual force

obtained as the difference of the experimental measurement and the simulated values

from the fluid impulse theory, defined as:

𝐹𝑥−𝑟𝑒𝑠 = 𝐹𝑥−𝑒𝑥𝑝 − 𝐹𝑥−𝐹𝐼𝑇 , 𝑀𝑦−𝑟𝑒𝑠 = 𝑀𝑦−𝑒𝑥𝑝 −𝑀𝑦−𝐹𝐼𝑇 (7.5)

The training and testing process is exactly the same as the one using measured
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experiment data directly as the target, so that we can compare the results. The same

error statistics are shown in Table 7.7 and Table 7.8, which are also the statistics

of the overall nonlinear wave loads by adding the subtracted fluid impulse theory

contributions back. Figure 7-7 ∼ Figure 7-10 show examples of the comparison

between the original measured signal and the signal with the SVM model of the

residual force.

Comparing the results in Table 7.7 ∼ Table 7.8 to Table 7.4 ∼ Table 7.5, it can

be seen that if the target is the residual component after the fluid impulse theory

prediction is subtracted, the performance of the SVM model in predicting the overall

statistics (both standard deviation and kurtosis) is better than the case when the

overall nonlinear hydrodynamics is directly modeled by the SVM algorithm, without

invoking the intermediate simulation by the fluid impulse theory. Since the load

components accounted for by the fluid impulse theory are the dominant linear and

the second-order contributions which have a clear physical origin, by subtracting these

components, the SVM regression model is able to learn more complex information

from the remaining load component which is dominated by strongly nonlinear free-

surface and separated flow physics. It is conjectured that this the reason why fitting

the residual components leads to a better predictive performance. The same process

may be followed when the SVM algorithm is used to model more complex flows around

marine structures. Well understood linear and second-order physics may be initially

used via simulation using potential flow methods and subtracted from the overall

measured nonlinear load or response being modeled. The residual load would then

be modeled by the SVM algorithm along the lines of the present section. This topic

will be the subject of a future study.
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Table 7.7: Error statistics of horizontal force 𝐹𝑥 by fitting the residual components

Features Features 1 Features 2 Features 3

∆𝜎 for sea state 1 1.18% 1.05% 1.01%

∆𝜎 for sea state 2 0.64% 0.48% 0.01%

∆𝜎 for sea state 3 0.39% 0.30% 0.90%

∆𝜅 for sea state 1 2.10% 2.36% 1.80%

∆𝜅 for sea state 2 2.61% 2.43% 1.98%

∆𝜅 for in sea state 3 1.96% 0.96% 1.13%

Table 7.8: Error statistics of bending moment 𝑀𝑦 by fitting the residual components

Features Features 1 Features 2 Features 3

∆𝜎 for sea state 1 2.12% 2.31% 2.31%

∆𝜎 for sea state 2 1.63% 1.76% 1.86%

∆𝜎 for sea state 3 1.17% 1.03% 1.25%

∆𝜅 for sea state 1 3.06% 3.94% 3.80%

∆𝜅 for sea state 2 3.32% 3.43% 3.51%

∆𝜅 for in sea state 3 3.26% 1.65% 1.96%
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(a) Training results using features 1
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(b) Training results using features 2
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(c) Training results using features 3

Figure 7-7: Comparison of the horizontal force between the measured signal and
fitting the residual components via SVM: training results
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(a) Test results using features 1 in sea state 1
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(b) Test results using features 2 in sea state 2
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(c) Test results using features 3 in sea state 3

Figure 7-8: Comparison of the horizontal force between the measured signal and
fitting the residual components via SVM: test results
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(a) Training results using features 1
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(b) Training results using features 2
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(c) Training results using features 3

Figure 7-9: Comparison of the bending moment between the measured signal and
fitting the residual components via SVM: training results
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(a) Test results using features 1 in sea state 1
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(b) Test results using features 2 in sea state 2
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(c) Test results using features 3 in sea state 3

Figure 7-10: Comparison of the bending moment between the measured signal and
fitting the residual components via SVM: test results
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7.4 Conclusions and discussions

This chapter takes the experimental data for a fixed cylinder in finite depth water

as the baseline dataset and considers the modeling of nonlinear wave loads by a

machine learning SVM regression algorithm. The SVM regression model successfully

establishes a deterministic nonlinear mapping function between the features (ambient

wave kinematics in this study) to targets (nonlinear wave loads).

In essence, the kernel maps the association of the features of the target samples to

those of the training samples in a hyperspace spanned by a set of basis functions which

are the eigenfunctions of a positive definite kernel. The SVM algorithm predicts the

target value of the quantity being modeled as a function of the kernel arguments which

are the target and the features used during the training of the algorithm. Therefore,

by randomly selecting a set of training samples from a representative sea state, the

model achieves a very good generalization capability to predict unseen targets through

the training process, combined with an optimization scheme which determines the

width parameter or variance of the kernel and the regularization parameter which

controls the magnitude of the SVM model error.

In this chapter, different combinations of features and targets are tested. The

selection of the features, either using ambient wave elevations or derived wave

velocities and accelerations or using all of them, does not affect the overall

performance significantly. From the practical point of view, ambient wave elevations

are a better choice as features since they are easy to measure or simulate in design

cases. Furthermore, if some components of the hydrodynamic force are available

through a reliable analytical or simulation model, fitting the residual force obtained

by subtracting from the experimental measurements the modeled or simulated

components, the SVM regression model was found to perform better in predicting

the load statistics. This methodology may be extended to the study of a wide range

of nonlinear wave-structure interaction problems where experimental measurements

are available and potential flow models are not sufficiently accurate. In such cases

residual loads may be derived and modeled by a SVM algorithm acting as a nonlinear
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transfer function for strongly nonlinear free-surface and separated flow effects. This

subject will be the topic of future research.

In this study, the representative sea states in the experiments were designed for

ultimate limit state (ULS) tests, and the SVM regression model was established on

the basis of available experiment data. However, this can be extended to more general

cases if other specific targets are of interest, and specific representative sea states are

carefully selected to provide samples to the SVM regression model. The design of the

most appropriate representative seastate for the purpose of training a SVM algorithm

for a particular application will be considered in a future study. It will enable the

use of the algorithm as a nonlinear transfer function over a wide range of test sea

states of interest in design practice, mitigating the need for and costs of systematic

experiments.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Support vector machines is a powerful tool to mapping nonlinear relations from

pertinent features to targets. The essence of SVM algorithms is to use kernels

instead of an explicit set of basis functions in order to establish a more compact and

generalized model based upon a set of explanatory variables or features. The selected

kernel with optimized hyperparameters encodes the covariance structure between the

features, which forms the basis of the learning algorithm that relates the quantity

being modeled to the features, from the perspective of statistical learning theory.

This thesis establishes a framework that how we can use data from real-time

measurements or data gathered from experiments and simulations to provide an

alternative SVM model for physical modeling and practical engineering solutions.

Specifically, two kinds of problems in ocean applications have been studied using

this data-driven approach: the short-term wave prediction based on real-time

measurements and its application to the advanced controls of renewable energy; the

modeling of nonlinear hydrodynamics for ships and offshore platforms.

The SVM regression model is developed for real-time short-term forecast of wave

elevations and wave excitation forces. The model is trained and validated using

measurements from a wave tank test, which is considered as a good representative

of the real ocean measurements. The SVM regression model is compared with a
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conventional subspace method ESPRIT and proved to have better generalization

capability and consistently better performance.

Following the successful prediction of the wave force over a finite horizon into the

future, two model predictive control algorithms are then designed for the offshore

floating turbines and wave energy converters separately since they target different

objectives and have different system characteristics.

For the offshore floating wind turbines, on the basis of the ability to forecast the

wave force over a finite horizon into the future, a deterministic finite-horizon LQR

controller is designed to reduce the fore-aft tower base bending moment, especially

the components excited by the wave force. The performance of the optimal control

is effective and robust for the aimed load reduction comparing to the baseline speed

regulator.

For the wave energy converters, the objective is to maximize the energy capture

under stochastic seas. The objective along with the system dynamics as constraints

have formed a convex quadratic programming problem that has been optimized. The

cumulative power of the wave energy converter under two different sea states are

shown increased significantly under this optimal control.

Furthermore, this thesis has provided an alternative approach using SVM

regression to model the nonlinear hydrodynamic loads of ships and offshore platforms.

A series of simulations have been conducted for a rectangular barge with bilge

keels using a 2D CFD solver. The CFD simulations are validated by comparing

results of free decay tests and regular wave cases with experiments. On the basis

of the data derived from validated CFD simulations, generalized SVM regression

models are developed in this thesis that establish the mapping relation between the

ship kinematics and wave elevation records and the nonlinear ship roll hydrodynamic

loads. In essence, the kernel maps the association of the features of the target samples

to those of the training samples in the hyperspace, and predicts the target value of

the quantity being modeled as a function of the kernel arguments which are the target

and training features. Therefore, by randomly selecting a set of training samples, the

model achieves a very good generalization capability to predict unseen targets through
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the training process combined with the optimization scheme which determines the

width parameter of the kernel and the regularization parameter. In the context of

ship roll hydrodynamics, this means that if high-fidelity CFD simulation records of

ship roll hydrodynamics and motions in an irregular sea state are available, the SVM

regression model established using the methodology presented in this provides a very

good estimate of the nonlinear ship roll hydrodynamic loads. Both the linear kernel

and Gaussian kernels are selected and tested in this study. The Gaussian kernel has

better accuracy and generalization capability in fitting the force signal. However the

linear kernel enables the use of linear frequency domain analysis and renders its use

more efficient in design practice.

Other than CFD simulations, experiment data is also a reliable source to build up

the data-driven model. A set of experiments for a shallow water bottom fixed cylinder

are studied in the thesis to develop the SVM regression model of the nonlinear wave

loads. The SVM regression model successfully establishes a deterministic nonlinear

mapping function between the features (ambient wave kinematics in this study) to

targets (nonlinear wave loads). Different combinations of features and targets are

also tested in the thesis. The selection of the features, either using ambient wave

elevations or derived wave velocities and accelerations or using all of them, does not

affect the overall performance significantly. From the practical point of view, ambient

wave elevations are a better choice as features since they are easy to measure or

simulate in design cases. Furthermore, if some components of the hydrodynamic force

are available through a reliable analytical or simulation model, fitting the residual

force obtained by subtracting from the experimental measurements the modeled or

simulated components, the SVM regression model was found to perform better in

predicting the load statistics.

8.2 Future work

Using data-driven approach to solve physical-related problems is a promising field

under development. It requires a good understanding of the physical problem as well
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as the learning theory. A lot of work can be done in the future both in general topics

of data-driven approaches or these specific topics that we have worked on.

For the short-term forecast of wave elevations and wave excitation forces, the

general predictability of a sea state is a difficult question to answer in principle since

real sea states are nonstationary and multi-directional. Therefore, we rely on the

performance of the forecast algorithms in our work and do not address the more

fundamental question of how forecastable real seastate elevations are. From the results

of the two different sea states tested in this thesis, SVM model has pretty consistent

performance with regard to different wave spectrum characteristics, but further study

can be conducted to systematically explore the forecastability of different sea states

under different data measurement qualities. The error in the forecasts generated by

the algorithms consist of three components a) algorithm bias b) algorithm variance c)

noise. Alternative algorithms introduce different bias vs variance tradeoffs, which is a

topic that we do not address in this thesis as well. Ambient noise is unforecastable by

any algorithm. The relative magnitude of these three sources of error is only possible

after a systematic study among alternative algorithms and parameters within each

algorithm. This topic is beyond the scope of the present thesis and will be addressed

in the future work.

For the model predictive controls, in future work, more detailed sensitivity

studies will be conducted in terms of the effects of the optimization horizon,

controller update rate and predictor accuracy. Furthermore, on-line linearization and

optimization techniques would be considered for better real-time implementations.

The computational effort necessary to generate the forecasted signals needs to be

addressed so that the on-line implementation can be achieved efficiently for sequential

controller updates.

The control algorithm developed in this thesis for a stiff TLP floating wind turbine

may be also implemented with minor modifications for “softer” floating wind turbine

concepts like Spars and Semisubmersibles. For example, the effectiveness of blade-

pitch controllers has been already demonstrated for the Hywind concept for the

mitigation of responses at frequencies well below the peak of the wave spectrum.
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Meanwhile, this approach is also promising for different control targets combined

with the ability to forecast wind speed.

Similarly, this thesis takes a simple form of a heaving cylinder as an example to

illustrate the feasibility and effectiveness of such a model predictive controller with the

ability of forecasting the wave excitation force without going deep into the study of

specific PTO mechanisms. Future work could be done by applying the same principle

of model predictive control to various types of floater designs with different PTO

systems.

For the modeling of nonlinear hydrodynamics for ships and offshore platforms, in

a more general context, a stochastic SVM model may be developed which is trained to

estimate the probability density function of the quantity being modeled conditional

upon knowledge of the features. This extension will enable the modeling of the

statistical properties of the nonlinear responses in a stochastic sea state when they

are significantly affected by viscous and nonlinear free surface effects.

This methodology may also be extended to the study of a wide range of nonlinear

wave-structure interaction problems where experimental measurements are available

and potential flow models are not sufficiently accurate. In such cases residual loads

may be derived and modeled by a SVM algorithm acting as a nonlinear transfer

function for strongly nonlinear free-surface and separated flow effects.

In this study, the SVM regression model was established on the basis of available

experiment or CFD data. However, this can be extended to more general cases

if other specific targets are of interest, and specific representative sea states are

carefully selected to provide samples to the SVM regression model. The design

of the most appropriate representative seastate for the purpose of training a SVM

algorithm for a particular application can be considered in the future. It will enable

the use of the algorithm as a nonlinear transfer function over a wide range of test sea

states of interest in design practice, mitigating the need for and costs of systematic

experiments.
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