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Abstract
Contemporary scientific exploration most often takes place in highly remote and dan-
gerous environments, such as in the deep sea and on other planets. These environments
are very hostile to humans, which makes robotic exploration the first and often the
only option. However, they also impose restrictive limits on how much communication
is possible, creating challenges in implementing remote command and control.

We propose an approach to enable more efficient autonomous robot-based scientific
exploration of remote environments despite these limits on human-robot communica-
tion. We find this requires the robot to have a spatial observation model that can
predict where to find various phenomena, a reward model which can measure how
relevant these phenomena are to the scientific mission objectives, and an adaptive
path planner which can use this information to plan high scientific value paths. We
identified and addressed two main gaps: the lack of a general-purpose means for
spatial observation modelling, and the challenge in learning a reward model based on
images online given the limited bandwidth constraints.

Our first key contribution is enabling general-purpose spatial observation modelling
through spatio-temporal topic models, which are well suited for unsupervised scientific
exploration of novel environments. Our next key contribution is an active learning
criterion which enables learning an image-based reward model during an exploration
mission by communicating with the science team efficiently. We show that using these
together can result in a robotic explorer collecting up to 230% more scientifically
relevant observations in a single mission than when using lawnmower trajectories.
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Chapter 1

Introduction

“We shall not cease from exploration, and the end of all our exploring will be

to arrive where we started and know the place for the first time.”

– T.S. Eliot’s Little Gidding [28]

The works presented in this thesis are all motivated by a single question: how can

a team composed of humans and robots work together to explore new environments

as effectively as possible even when it is difficult for them to communicate with

each other? We are specifically interested in effective scientific exploration, where

the success of an expedition is measured by the accumulated scientific value of the

observations collected, rather than by the amount of area covered. Furthermore, we

focus on teams which are structured such that the human scientists are located far

away from where the actual exploration is being conducted by the robots. In fact, we

are foremost interested in the case where exploration is happening in such a remote

and inaccessible location that there are restrictive limits on how much the robots

can communicate with the humans, and even among each other. This matches the

structure and limitations of most modern scientific expeditions to the depths of Earth’s

oceans and to other planetoids in our solar system.

This chapter will provide some background in scientific exploration, leading into

the structure of a modern expedition. It will also describe some of the capabilities of

current robotic explorers as well as their relevant limitations.
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Chapter 1 - Introduction

1.1 A Brief Overview of Scientific Exploration

Scientific exploration is the pursuit of knowledge by travelling to observe the diversity

of nature and the physical, biological, and geological activities of the natural world.

In more concrete terms, it is about planning and making observations in places where

we have significant uncertainty about what will be observed. Contemporary examples

include probing Martian soil to look for hints of water [54], or searching for fish near

the seafloor of the Gulf of California (an environment thought to be too hypoxic for

fish to survive) [37]. These experiments were each accomplished using robots, and their

results had major impacts in the scientific community. Scientific exploration is integral

to the scientific method in many fields, such as (astro-)biology and (astro-)geology,

because discovering the presence or absence of certain natural phenomena in specific

environments can be key to supporting or discrediting scientific theories and models.

The prevalence of robots in modern scientific exploration is a consequence of

humanity’s boundless curiosity. Scientific exploration was born out of the transition

from the Age of Discovery (an era of exploration) to the Age of Enlightenment (an

era of science) which occurred in Europe at the turn of the 18th century. While

most previous exploration had been driven by individuals in pursuit of fame and

fortune, by the late 18th century many astronomers, physicists, biologists, ecologists

and geologists would set out on global expeditions to collect the scientific observations

necessary to prove new theories about everything from the shape of the Earth to

the origin of species [21, 102]. Over the centuries since, the scientific community has

collected detailed observations of most of the environments accessible to humans with

modern technology. The only environments remaining to be explored are very hostile

to humans, but our thirst for knowledge pushes us to reach beyond our grasp. Thus,

the last few decades have seen the creation and rapid development of robotic explorers

as our surrogates at the forefront of scientific exploration on Mars [31], in deep space

[38], the Earth’s oceans [4, 16, 36], and under Arctic ice sheets [105]. One commonality

between these environments is how extremely difficult it is to communicate with robots

operating within them; this presents some unique challenges we will address.

16



1.2 - Scientific Exploration in the Ocean

Figure 1-1: A depiction of the HMS Challenger (centre) at the Juan Fernández Islands,
located in the South Pacific Ocean, in November of 1875, about 3 years into the
eponymous Challenger Expedition [104].

1.2 Scientific Exploration in the Ocean

Oceanography is the study of the physical, chemical, and biological aspects of the

Ocean, the largest and yet one of the least studied environments on Earth. As such,

oceanographers are possibly the greatest modern examples of scientific explorers.

While ships have been used in exploration for thousands of years, one of the first

major attempts to study the Ocean itself was the Challenger Expedition of 1872-76.

The expedition resulted in the discovery of, among many other things, approximately

4700 new species of plants and animals [46]. Almost 150 years later, nearly 2000 new

species are discovered in the Ocean each year [51], even while humanity’s capability

to explore the oceans’ depths is still very limited.

A great deal of my research is conducted at the Woods Hole Oceanographic

17



Chapter 1 - Introduction

Figure 1-2: Photo by Mitch Elend showing the deployment of AUV Sentry from the
R/V Atlantis. © Woods Hole Oceanographic Institution, 2019 [27].

Institute (WHOI), based in Woods Hole, MA. WHOI is one of the few organizations

that owns vehicles capable of diving to depths more than 2000 metres. Most of these

are unmanned underwater vehicles (UUVs) which can be further classified as either

remotely operated vehicles (ROVs) or autonomous underwater vehicle (AUVs) [66,

107]. The paucity of manned deep sea submersibles is mainly due to the challenges and

costs of their construction, as well as their operators requiring years of training and

safety certification. Accordingly, UUVs (i.e, robots) are the main workforce in most

deep sea exploration pursuits. As seen in Figure 1-2, UUVs are typically deployed into

the Ocean from a research vessel by a team of scientists and engineers. The vehicle is

later recovered, usually by the same ship, and the data collected is then downloaded.

1.2.1 Communication Capabilities & Limitations

An ROV must remain tethered to its parent ship by a cable that provides data

transmission and power and enables remote control by a human pilot [66]. This tether

limits the vertical and lateral distance the vehicle can move from the parent ship,

and the complexity of tether management (i.e. preventing the tether from becoming

18



1.2 - Scientific Exploration in the Ocean

Table 1.1: The maximum theoretical communication bandwidth of the WHOI Micro-
modem for a variety of acoustic transmission modes [103].

Rate Frames Per
Packet

Frame Size
(Bytes)

Packet Size
(Bytes)

Packet Rate
(bps)

Time to Transmit
100 KB (s)

PSK-1 3 64 192 498 200.0
PSK-2 3 64 192 520 192.3
PSK-3 2 256 512 1223 81.8
PSK-4 2 256 512 1301 76.9
PSK-5 8 256 2048 5388 18.6
PSK-6 6 32 192 490 204.1

tangled) means that typically only one ROV may be deployed at a time. These factors

severely limit the productivity of ROV-based deep sea scientific exploration missions,

which can cost up to $45,000 USD per day [89].

The only tetherless means of long-range underwater communication is acoustic

communication, but acoustic data transmission rates are very low.1 Details on

the performance of the WHOI Micromodem are given in Table 1.1; other modern

commercial acoustic modems perform similarly [96]. In practice, deep sea vehicles

achieve a much lower effective data transmission rate than shown in the table due to

the packet loss associated with transmitting an acoustic signal over long distances

(kilometres). As the speed of sound in water is a little less than 1500 m/s [48], the

round-trip communications latency is on the order of tens of seconds. The high latency

and low rate of acoustic data transmission makes un-tethered remote control of deep

sea vehicles infeasible for scientific exploration.

Unlike ROVs, AUVs are equipped with onboard power supplies and autonomous

navigation systems, and can thereby explore without a tether or direct human guidance.

AUV missions can last anywhere from hours, in the case of actively actuated vehicles

such as Sentry (Figure 1-2), to weeks or months in the case of passively actuated

vehicles like gliders [98]. In order to monitor the status and location of these vehicles,

1Optical modems are tetherless and capable of high-speed data transfer, but they are limited to
ranges less than 200m [86].
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Chapter 1 - Introduction

they are typically equipped with some acoustic localization and communications

device. These devices may also be used to occasionally send images back to ship, at a

frequency dependent on the acoustic communication bandwidth and battery capacity

(since acoustic communication requires significant energy).

1.2.2 Path Planning

While deep sea AUVs are very complex modern machines, their high-level autonomous

behaviour is usually limited to moving through a sequence of pre-programmed way-

points. These waypoints are typically specified in coordinates of latitude, longitude,

and elevation relative to sea level (i.e. depth), and usually form a familiar lawnmower

pattern like the one in Figure A-1. This Boustrophedonic coverage is the most efficient

way for an AUV to exhaustively search a pre-specified area [14]. However, exhaustive

searches are highly inefficient when the goal is to collect observations of spatially

sparse phenomena, or non-stationary phenomena such as animals. These are often

the phenomena that are most scientifically valuable to observe.

1.2.3 State Estimation & Control

The ability of AUVs to track a trajectory is limited by the accuracy of their sensors

used for state estimation, which may include acoustic rangefinders, multibeam sonar,

Doppler Velocity Logs (DVLs), Inertial Measurement Units (IMUs), Fibre Optic

Gyroscopes (FOGs), and cameras for visual odometry [5, 88]. SLAM systems have

been developed using some of the sensors commonly found on deep sea AUVs [59].

The controllers used to execute the planned path, given the current state estimate,

are typically simple but well tuned and effective. The control bandwidth does not

need to be high since AUVs used in scientific exploration are usually slow-moving and

can see static obstacles from afar using sonar, while most dynamic obstacles, such as

fish, tend to avoid them.

20



1.3 - Scientific Exploration in Outer Space

1.2.4 Scientific Sensing

The sensor payload of an AUV is very dependant on the science goals of the mission.

Commonly, an AUV is equipped with a standard complement including a pressure

sensor (to measure depth), external thermometer, and conductivity sensor (to measure

salinity). For many modern missions, the most important sensors are cameras because

most geological and biological phenomena are best observed through vision. Further-

more, the deep sea is highly dynamic and poorly understood, so it is not unusual for

a deep sea AUV to capture unexpected images with high scientific value (e.g., [79]).

The deep sea is almost completely devoid of light, so AUV camera systems are

equipped with extremely bright lamps. Due to factors such as limited energy and

processing power, images are usually captured at a rate of around 0.1− 1 Hz. This is

still much greater than the rate at which the images can be streamed to the science

team. As captured images are typically at least 2 megapixels (6 MB uncompressed),

it can take a very long time to send one back to the ship via the acoustic modem.

Thus, scientists usually need to wait until the AUV has docked with the ship in order

to inspect its observations; by this point it may no longer be feasible to send the AUV

back to an area if they find it glanced at something of scientific value.

1.3 Scientific Exploration in Outer Space

Robots have been essential to space exploration since humanity’s first attempts to

explore a celestial body that started a little more than 60 years ago. In fact, robots

have visited far more planets and planetoids than humans have: they’ve landed on

Venus, Mars, and Titan, the asteroids Eros, Itokawa, and Ryugu, and the comet

67P/Churyumov-Gerasimenko. Likely the most famous of these robots are the Mars

exploration rovers: Pathfinder & Sojourner (1997), Spirit & Opportunity (2004), and

Curiosity (2012). Each of these missions had a variety of unique objectives, but they

all typically include scientific measurements pertaining to human habitability (e.g.,

the presence of liquid water), the detection of desirable resources, and searching for

hints about the planet’s history. Perhaps surprisingly, there is a great deal in common
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Chapter 1 - Introduction

Figure 1-3: The Curiosity Rover at Rock Hall, Mars on January 29, 2019. The image
was stitched together from selfies taken by a camera mounted at the end of rover’s arm.
Courtesy NASA/JPL-Caltech, retrieved from https://mars.nasa.gov/resources/
22273/curiositys-selfie-at-rock-hall/.

between extraterrestrial and oceanic exploration.

As it is one of the most modern and technologically advanced robots in outer space,

the following sections will focus on the capabilities and limitations of the Curiosity

rover, a part of NASA’s Mars Science Laboratory (MSL).

1.3.1 Communication Capabilities & Limitations

The Curiosity rover has two ways to send data back the scientists on Earth. The

preferred method is to use Ultra-High Frequency (UHF) radio waves to communicate

with one of the NASA’s Mars orbiters, which will store the data and re-transmit

it to Earth at the next available opportunity [63]. The orbiters are capable of

high transmission rates due to their large antennas and power supplies [63]. The

backup method is to transmit to Earth directly via its X-band radio, but due to

power constraints the X-band radio is typically only used to receive commands from

22
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1.3 - Scientific Exploration in Outer Space

Table 1.2: The return link (rover-to-Earth) data transmission rate of the Curiosity
rover via either its UHF radio to the orbiters around Mars, or via its X-band radio to
Earth directly [62, 63, 95].

Band Radio
Frequency Via Min. Data

Rate (bps)
Max. Data
Rate (bps)

Min. Time
to Transmit
100 KB (s)

UHF 0.3 - 3 GHz Odyssey Orbiter 128,000 128,000 0.39

UHF 0.3 - 3 GHz Mars Reconnai-
ssance Orbiter 500,000 2,000,000 0.07 - 0.2

X-Band 8 - 12 GHz Direct to Earth 500 32,000 3.12 - 200

Earth [63]. The data transmission rates of each method are presented in Table 1.2.

Where the actual data rate falls between the minimum and maximum values in the

table is mainly dependent on the current distance between Earth and Mars. However,

the table does not tell the full story; the rover can only communicate with the orbiters

over two 15 minutes periods per day, and the one-way communications latency between

Earth and Mars varies from 4 to 24 minutes depending on their positions along their

respective orbits [76]. Furthermore, no Mars-Earth communication is possible while

the rover and orbiters are on the far side of Mars from Earth which is up to 8 hours

per day [68].

In some ways, these communication capabilities mirrors AUVs; the X-band has

similar data transmission rates to an acoustic modem (c.f. Table 1.1), while the

UHF band offloads the latest batch of observations every several hours similarly to

how data is offloaded from an AUV whenever it is docked. It is possible that future

scientific exploration missions to Mars and other near planets could utilize more

power-efficient X-band radios with similar bandwidth capabilities, enabling them

to send back individual observations more frequently. Also, while communication

between Earth and Mars can be (by some metrics) much better than between a ship

and a deep sea AUV, exploration missions to the more distant planets and moons

beyond the asteroid belt will likely have much lower communications bandwidth.
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1.3.2 Path Planning

Curiosity does not choose its own destination; it only plans its own path to the

next waypoint specified by an operator back on Earth [97]. Due to the limited

communication windows, transmission bandwidth, and long communication latency,

this severely limits the rover’s productivity. Fortunately, the rover is capable of

performing some basic opportunistic science: this refers to pausing the rover’s present

task execution to perform an autonomous action, such as targeting and using a

particular sensor, after being triggered by a specific phenomena recognized by an

onboard algorithm [12, 13]. For example, the OASIS system looks for Martian rocks

with unusual characteristics, and whenever it finds them it preempts the robot’s other

activities to examine them in more detail [32]. Future missions will likely have more

autonomous path planning, as recent research has found significant benefits in enabling

autonomous science, wherein the vehicle is empowered to autonomously decide where

to explore and how to use its various sensors in order to maximize the number of

interesting scientific observations it collects [1].

Given a path, Curiosity is able to navigate with a configurable level of autonomy

ranging from no autonomy (“blind driving”, typically only used over short distances)

to fully autonomous navigation including traversability analysis, slip detection and

correction, and obstacle avoidance [60]. There has been a great deal of research into

further developing the autonomous navigation capabilities of planetary rovers [106].

1.3.3 State Estimation & Controls

Curiosity primarily relies on wheel odometry from wheel encoders and visual odometry

from its monochromatic stereo cameras for state estimation [60]. Curiosity also uses

an IMU to correct its odometry measurements and to measure tilt [70]. As the rover’s

top speed is only 3.75 cm/s and there are no dynamic obstacles, the state estimation

and controls problems can be adequately solved using only dead reckoning and PID

control [6].
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1.3.4 Scientific Sensing

Curiosity is equipped with a variety of scientific instruments, including a laser, several

cameras, and a spectrometer [71]. Among these, the “Mastcam” is a general-purpose

colour stereo camera capable of taking ~2 megapixel images or video at up to 10

frames per second [69]. This is similar in capability to a typical AUV camera, however

it can achieve much higher frame rates because it does not need to supply its own

illumination; all rover operations take place during Martian daytime, while the rover

draws solar power from the sun. The Mastcam is one of the most useful sensors on

the rover since it provides the first observation of every new phenomenon (usually an

odd-looking rock) before it is decided whether that phenomenon should be studied in

more detail using the other sensors.

1.4 A Taxonomy of Robotic Scientific Exploration

Technology roadmaps and taxonomies are useful for coordinating research efforts

by listing the technological capabilities necessary to reach the long-term goals of a

technology [67].2 They focus researchers and industry by setting specific milestones,

such as the SAE levels of driving automation [85]. In order to contextualize the

current state of co-robotic scientific exploration, we present in Table 1.3 a six-level

classification for the autonomous capabilities of robotic explorers. The table classifies

robotic explorers according to their ability to model the world, understand the scientific

mission objectives, and act to collect observations of scientific interest. For example,

the AUV Sentry described in Section 1.2 meets the requirements for Level 1, while

the Curiosity rover described in Section 1.3 would be classified as Level 2.

There have been designs for robotic explorers that can achieve Level 3 autonomy

with certain limitations. For example, Arora, Fitch, and Sukkarieh [1] presented a

robotic explorer that could autonomously explore a Martian-analogue environment

to find rocks of scientific interest, however the rigid modelling requires substantial

2Examples include the ERTRAC Autonomous Driving Roadmap [30], the CCC and AAAI
Roadmap for Artificial Intelligence Research [40], and the NASA Technology Taxonomy [72].

25



Chapter 1 - Introduction

Table 1.3: Proposed Levels of Autonomy in Co-Robotic Scientific Exploration.

Level Name Description

0 Remote
Control

The robotic explorer:
• Has no spatial model to locate phenomena of interest
• Has no understanding of mission objectives
• Cannot move autonomously

1 Autonomous
Navigation

• Has no spatial model to locate phenomena of interest
• Has no understanding of mission objectives
• Can navigate to a given waypoint without crashing

2 Opportunistic
Science

• Has no spatial model to locate phenomena of interest
• Knows the scientific value of some specific phenomena
• Can navigate to a given waypoint without crashing

3 Autonomous
Exploration

• Builds a spatial observation model of phenomena
• Knows the scientific value of some specific phenomena
• Can plan and execute high scientific value paths

4
Human-Robot
Cooperative
Exploration

• Builds a spatial observation model of phenomena
• Communicates with scientist to understand objectives
• Can plan and execute high scientific value paths

5
Multi-Robot

Federated
Exploration

In addition to the Level 4 description, multiple robots:
• Communicate among each other to disseminate

observations and mission objective understanding
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scientist input into the development of the system and made it inflexible to unexpected

observations or dynamic science mission objectives. Conversely, Hitz et al. [50]

demonstrated a robotic platform that can also autonomously explore and efficiently

achieve given science objectives, but their approach depends on the low-dimensional

nature of their observation space (plankton concentrations), and does not scale to

exploration based on images.

In other subfields of robotics, research is already exploring capabilities related to

Levels 4 and 5. In particular, the intent recognition subfield investigates techniques to

understand humans’ objectives by asking them questions or observing their actions [2].

Recent research in multi-agent reinforcement learning has explored how multiple

agents can teach each other task-relevant information and share observations with

each other [75, 99]. Unfortunately, these approaches generally rely on having a large

amount of training data and on frequent communication, neither of which are possible

in the scientific exploration of remote environments.

1.4.1 The Need for Human-Robot Cooperation

At this point, it is worth asking why there is need for to go beyond Level 0 in Table 1.3:

why should robotic explorers have any autonomy at all? The first reason is that

lower levels of autonomy require far more work by the scientist to plan paths and

guide the robot, when they could be working on other, more interesting tasks like

analyzing data or writing papers. Scientists would rather have the robot operate

mostly autonomously while still sharing relevant data with them in a timely manner,

and ask them for their “expert advice” only as needed.

The next reason is that vision-guided remote control over a strictly limited com-

munication channel is anywhere from highly challenging and inefficient to entirely

infeasible. As discussed in Section 1.1, most modern scientific exploration is happening

in places that are extremely remote and have very limited communication bandwidth.

In fact, communication constraints are perhaps the biggest bottleneck to exploration in

remote environments [10, 56]. Camera imagery is often the primary sensing modality,

but transmitting images from the robot platform to the scientists running the mission
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can be very expensive in terms of time and energy usage. As seen in Table 1.1 and

Table 1.2, it can take several minutes to transmit even a very small image (~100

to 1000 KB) from a robotic explorer to its human operator, and this comes with a

significant energy cost. Fortunately, robot state estimation, obstacle avoidance, and

controls technologies can all be incorporated into the design of robotic explorers with

relative ease, so most can navigate autonomously (i.e., are at least Level 1). However,

the lack of communication creates a problem:

Problem 1. Since scientists do not have timely access to the robot’s observations,

then by the time they realize the robot passed by something of scientific value then it

is often too late for the scientist to change the robot’s path to better observe it.

Problem 1 highlights the need for at least Level 2 autonomy, where the robot

can change its own path to better observe phenomena of interest. Level 3 is clear

improvement from 2, since the robot is then able to autonomously plan high scientific

value paths, making exploration much more efficient. But why is human-robot

cooperation necessary, as opposed to stopping here? This is likewise related to the

lack of communication making the following problem difficult to solve:

Problem 2. Planning a path with high scientific value requires having a “reward

model” that defines the value of all possible observations according to the science

objectives of the mission. However, it is impossible to fully specify the reward model

in advance of the mission. Why? We can not define the scientific value of all possible

visual observations a priori because there are an infinite variety of things the robot

could find in a remote and novel environment, and many could have very high scientific

value (e.g., a new species) or very low scientific value (e.g., plastic waste products).

As discussed in the previous sections, due to communication limits only the robotic

explorer has access to most of the observations collected during the mission until the

mission ends. On the other hand, only the scientist can make the final determination

as to whether a class of observations are scientifically valuable. Therefore, as new

phenomena are encountered during the mission the robot and the scientist must

communicate with each other in order to maximize the scientific return of the mission.
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It is also worth noting here that as more robotic agents are added into the system

the amount of communication required would increase linearly. This would quickly

become burdensome for both the scientist and the communication channel. This is

part of what drives the need to achieve Level 5 co-robotic scientific exploration, where

the robots help each other to take some of the burden off of the scientists. They can

do this by efficiently disseminating the information received from the scientists among

each other. It may also be possible for the robots to improve each other’s performance

by sharing other pieces of information that they collect.

1.5 Thesis Structure and Contributions

This thesis will primarily focus on developing the spatial observation models and human-

robot communication strategies necessary to achieve robotic exploration autonomy

Level 4: Human-Robot Cooperative Exploration. The next chapter will present the

current state of the art in spatial observation modelling and in planning high scientific-

value paths. In particular, it will explore what kind of reward model is necessary, and

how a reward model can be learned using human-robot communication. The main

contributions of this thesis are:

• Spatio-temporal Topic Models as Spatial Observation Models: In

Chapter 3, we explore the usage of “spatio-temporal topic models” in co-robotic

scientific exploration as a tool to mitigate Problem 1 by enabling online mission

summarization, and next as a spatial observation model that can be used for

autonomous exploration.

• Online Active Reward Learning for Efficient Mission Objective Un-

derstanding: In Chapter 4, we explore how a robotic explorer can successfully

learn a reward model online in limited bandwidth environments by efficiently

querying the scientist using a novel “regret”-based active reward learning ap-

proach to understand the mission objectives. We also provide some theoretical

motivation behind this new approach and suggest future work in this area.
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1.5.1 Statement of Originality

All of the work presented in this thesis was performed jointly with, and under the

supervision and guidance of, my advisors, Yogesh Girdhar and Jonathan P. How.

Chapter 3 mostly contains work performed jointly with Yogesh Girdhar, Levi Cai,

Nathan McGuire, and the rest of the WARPLab, and is published in [42]. However, the

discussion of spatio-temporal topic models as spatial observation models is based on my

work published in [53], and my work on hyperparameter tuning is unpublished. Next,

Chapter 4 mainly covers my own work performed jointly with my supervisors Yogesh

Girdhar and Jonathan P. How, and most of the material discussed was published

in [53]; the rest of the chapter is being prepared for inclusion in a new manuscript.

Finally, Chapter 5 will provide a summary of conclusions as well as directions for

future work. This future work includes taking the first steps towards Level 5: Multi-

Robot Federated Exploration through an investigation into multi-robot semantic label

association led by me but performed jointly with Kaveh Fathian and Kasra Khosoussi.
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Chapter 2

Background

As discussed in Section 1.4, the three main capabilities needed to enable higher levels

of autonomy in co-robotic scientific exploration are spatial observation modelling,

human-robot communication for mission objective understanding, and the ability to

plan high scientific value paths. Furthermore, the robot is required to apply these

techniques in a severely bandwidth limited environment. This chapter will explore

the state of the art in each of these areas and point out the gaps in the necessary

capabilities that later chapters will seek to address.

2.1 Spatial Observation Modelling

Spatial observation modelling refers to being able to connect what the robot has

observed to where the robot observed it. We can broadly describe systems for spatial

observation modelling based on the following two capabilities:

1. The capability to describe previous observations, producing outputs like “I

observed this species of fish near these coordinates...”

2. The capability to predict what may be observed in places not yet visited by

extrapolating from previous observations, producing outputs like “I think I will

find more corals near these coordinates...”

Planning high scientific value paths requires both of these capabilities: the first
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capability is essential to connect observations to the mission objectives, while the

second is essential to be able to compare the scientific value of different possible paths.

For example, if the robot knows that observations of a particular coral species are

scientifically valuable, it must know which observations contain that coral and where

to find more observations of it.

The most common spatial observation models are Gaussian Processes (GPs) [81],

which are very effective at modelling low-dimensional and continuous observations.

As such, autonomous science techniques have been successful for planning adaptive

robot trajectories when the observations are continuous scalar quantities, such as

temperatures or concentrations. In fact, for these types of observations spatial models

have been used in conjunction with informative path planning to enable efficient

underwater scientific exploration [22, 34, 50], including using the AUV Sentry described

in Section 1.2 [52]. Unfortunately, visual observations are very high dimensional, and

GPs are highly ineffective and inefficient at predicting images. However, recent work

has explored using modified GPs to spatially model the lower-dimensional semantic

representations of images instead of the image observations themselves [87].

Most spatial observation models that work for visual observations are hand-designed

by scientists for the specific phenomenon of interest. They often employ a machine

learning based model trained to recognize such a phenomenon, such as a neural

network based image classifier. While this is an effective technique, these models

cannot be easily adapted to new phenomena and do not handle novelty well, in the

sense that they will not recognize things they were not trained in advance to look

for. This limits their applicability to general-purpose scientific exploration. As such,

the remainder of this section will focus on ways to generate general-purpose semantic

image representations that can be spatially modelled using (e.g.) a Gaussian Process.

2.1.1 Semantic Image Representations

In vision based scientific exploration, semantic image representations have been ex-

plored for years as a useful and communication-efficient tool for mission summarization

(e.g., [35]). One class of representations are “semantic segmentations”, which are
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Figure 2-1: Left: A crop of the KAH_2016_3 photomosaic image from the 100
Islands Challenge [92], showing a coral reef near Kaho’olawe. Right: The photomosaic
annotations where each color represents an expert label [92]. The image on the right
is a semantic segmentation of the image on the left, where each species of coral is
represented with a single label (colour). Like most semantic representations, the
semantic image can be compressed much more efficiently than the original image; with
lossless PNG compression, the semantic map can be transmitted using less than 12%
of the bandwidth required to transmit the original.

images that use only a few distinct colours as labels for the semantically distinct

parts of the original image. These semantic labels are consistent between images, and

therefore provide a compact representation for describing one or more images. An

example of a semantic segmentation is presented in Figure 2-1. There are many ways

to generate semantic segmentations, including spatial topic models (e.g. [45, 101]) and

deep feature extractors (e.g. [9, 24, 83]). When multiple images are collected over the

course of the mission, their semantic representations can be combined to provide a

mission summary.

Semantic image representations are much easier to spatially model than images

because they tend to vary continuously. To be specific, while the pixels of two images

taken near each other may be very different, their semantic content is usually very

similar. For example, one may note that no two non-overlapping patches of the

left image in Figure 2-1 are identical, but most nearby patches do contain similar

species distributions (as seen in the right image). This is why it is much easier to
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develop a spatial observation model for predicting what semantic representations will

be observed in unvisited locations than one for predicting actual images.

Bayesian non-parametric (BNP) models are highly suitable for creating semantic

image representations in scientific exploration. These models are typically unsu-

pervised, meaning that they do not require training data, and they are capable of

characterizing very complex inputs, such as natural images. Most of this thesis will

use spatio-temporal topic models, a subclass of BNP models, to produce semantic

image representations. Topic models were first developed almost 20 years ago for

unsupervised understanding and organization of large text corpera.1 Later works

explored using spatial topic models for image understanding [11, 101]. However,

these algorithms were relatively slow and computationally expensive, making them

impractical to run on a robot. Over the last 6 years, efficient spatio-temporal topic

models have been developed which can be run in realtime on a robotic platform [44,

45]. These will be discussed in much greater detail in Chapter 3.

Aside: Online Mission Summarization

As discussed in Problem 1, a major inefficiency in modern scientific exploration is that

scientists do not have timely access to the robot’s observations and are therefore unable

to revise the robot’s plan in response to an unexpected observation. This is an issue

particularly when the primary sensing modality is vision because the communication

bandwidth limitations of remote environments make sending images very difficult.

One approach to this problem is to try to maximize the number of images which can

be sent with the available bandwidth through efficient image compression [19], or

through designing better communications technology. However, in many applications

including scientific exploration, the rate at which data is collected already exceeds the

capability of the owners of that data to analyze it. Thus, data compression or better

communications are not by themselves a complete solution.

Online mission summarization is instead about summarizing the observations

1The original paper by Blei, Ng, and Jordan [8] showed topics models summarizing articles in the
Associated Press news corpus as mixes of learned topics such as “Arts” and “Education”.
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collected during scientific exploration; online refers to creating and transmitting these

summaries back to the scientists multiple times over the course of the mission. More

abstract semantic representations require less bandwidth to transmit, and properly

tuned semantic image representations are often easier for the scientist to understand

and use. Figure A-2 presents a semantic timeline of a mission created using a spatio-

temporal topic model, like the ones which will be discussed in Chapter 3.

2.2 Reward Model Learning for Understanding Mis-

sion Objectives

For a robot, understanding the mission objective means having an accurate “reward

model”. Given an observation (or the semantic representation of one), a reward model

outputs the robot’s prediction of the scientific value of that observation. Combined

with a spatial observation model capable of predicting what will be observed in

unvisited locations, this enables the robot to compare different paths and choose the

one that it thinks will collect the most valuable observations. However, as discussed in

Problem 2, it is not feasible for the scientist to provide the robot with a fully specified

reward model in advance of the mission. Instead, the robot needs to learn parts of

the model online (i.e., during the mission).

It is impossible to hand-design a reward model based on natural images because

no meaningful scientific objective can be expressed as a simple function of the pixels

in an image. Therefore, reward models for images are usually complex models such

as deep neural networks, and trained on a dataset of examples using empirical risk

minimization. Due to the high-dimensionality of natural images and the number

of parameters in these models, it can take thousands or even millions of examples

to learn even a simple classifier of natural images [49]. It is not feasible to collect

this much training data for all of the phenomena that could be observed in scientific

exploration.2 It is especially not feasible to collect and label a large dataset online
2For example, a single coral reef explored by an AUV may be home to hundreds of unique species,

and most of these species are rare and not well understood [25].
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given the strict bandwidth limitations described in Chapter 1.

There are several techniques to train a machine learning model using a very small

dataset of examples. We will focus on active learning and the advantages of finding

low-dimensional semantic image representations, but also discuss potential techniques

from transfer learning.

2.2.1 Active Learning

Active learning algorithms train a machine learning model by interactively querying

an “oracle” to obtain the training labels most “helpful” for improving the model.

This means that the model can be trained with far fewer labelled examples than

would normally be required [3]. Active reward learning algorithms have efficiently

learned reward models representing human ratings or preferences for robot behaviours

by making on the order of 10-100 reward queries [20, 84]. However most of these

and most other active learning objectives (e.g., those in [108]), assume that a large

set of unlabelled training examples have already been collected, and the goal is to

select a small subset to label and use to train the model for future usage in the

same environment. This does not transfer well to scientific exploration because the

unlabelled examples are collected sequentially online, can only be labelled one at a

time, and the distribution of observations predicted to be collected along various

potential robot paths may be very different than distribution of observations collected

so far.

Doshi-Velez, Pineau, and Roy [26] explored using active learning online as a way for

an autonomous robot to request help from its human operator if it was unsure about

what to do next in order to maximize reward. They explored learning from policy

queries, which consist of the robot asking the oracle (i.e., the human operator) to tell

it the optimal action. This is a weaker oracle assumption than those made by previous

works trying to solve the same problem [39]. However, it is still not practical for

scientific exploration applications because while the scientist can accurately evaluate

their own interests, they do not have enough information about the robot’s previous

observations or the robot’s spatial model to be able to suggest the best next action.
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The regret-based active learning approach we will present in Chapter 4 is similar in

spirit to the approach used in [26], but focuses instead on identifying the information

the scientist can provide that is most helpful in determining the optimal action (i.e.,

the path with highest scientific value).

2.2.2 Low-Dimensional Semantic Representations

Even when using active learning, it can take hundreds of queries to learn a reward model

based on natural images [90]. This is partly due to the fact that the number of labelled

examples that a model must be trained on in order to generalize well is proportional

to the sample complexity of the model family [65], and for simple models the sample

complexity is typically linear in the number of input dimensions [73]. For images,

the number of input dimensions can be on the order of thousands to millions, but in

bandwidth limited environments such as those discussed in Chapter 1 sending even just

hundreds of examples for labelling during the span of a mission is typically not feasible.

This motivates applying dimensionality-reduction techniques to the input images in

order to reduce the number of input dimensions without discarding information key

to learning the reward model. Fortunately, semantic image representations like those

discussed in Subsection 2.1.1 are relatively low-dimensional, making them very helpful

for learning new classification tasks with relatively few examples [7]. Topic models are

particularly suitable for providing the lowest-dimensional semantic representation of

the visual environment [45]. In Chapter 4, we will observe that using a combination

of both active learning and topic model based low-dimensional image representations

will enable efficient interactive visual exploration over very low bandwidth.

2.2.3 Transfer Learning

Transfer learning explores how to adapt a machine learning model trained for one

task to a new task using fewer training examples than required for a new model to be

trained from scratch [58]. It has been successfully applied to reduce the amount of

training data required to train learned models for image classification [47] and other
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robotics tasks [94]. The simplest form of transfer learning would be to initialize the

robotic explorer with the reward model learned from the previous mission, assuming

that the science objectives of the new mission are somewhat similar, which could be

done in addition to using active learning and low-dimensional image representations.

Furthermore, some low-dimensional semantic representations are based on using

features from pretrained deep neural networks, which represents another form of

transfer learning [35, 100].

2.3 Path Planning for Autonomous Science

Robotic path planning is typically about finding the safest and shortest route to

a specified destination. In scientific exploration, however, the destination is often

irrelevant, and the challenge is to find the path which would result in the robot

collecting as many scientifically valuable observations as possible. For example,

AUVs often encounter huge amounts of sand and gravel at the bottom of the ocean,

observations of which are not usually of scientific value, whereas observations of a rare

marine species or unusual geological phenomena may be highly valuable.

One robotics technique that is very applicable to scientific exploration is Informative

Path Planning (IPP). Informative path planning studies how to design paths which

maximize the “utility” of some path defined with respect to the environment, often

subject to some constraints such as path length or avoiding obstacles [50, 64, 77]. In

scientific exploration, the utility of a path would be computed based on the spatial

observation’s models predictions of what would be observed along it, and the reward

models scores for how interesting those observations would be. Maximizing the sum

of these scores would lead the robot to visit as many locations predicted to have

scientifically interesting observations as possible. Modified utility functions could be

used to, for example, have the robot try to find and observe the most interesting

location, rather than all interesting locations [34].

Other, non-IPP based approaches to autonomous scientific exploration include

AEGIS [31] and OASIS [12]; these systems enabled robots to opportunistically recognize

38



2.3 - Path Planning for Autonomous Science

scientifically relevant image observations, given a predefined model, and schedule more

detailed observations with other sensors. However, these algorithms required domain-

specific feature engineering and lacked spatial observation models, so path planning

was limited to moving the robot closer to a target that had already been detected.

At the other extreme, “curious” robots use a generic unsupervised vision model and

autonomously move towards anything in their environment that is surprising or novel

to the model [43]; the lack of operator input makes it impossible to directly specify

particular scientific objectives using this approach.

Arora, Fitch, and Sukkarieh [1] presented a novel approach to autonomous scientific

exploration that had scientists model their domain knowledge with a pre-defined

Bayesian Network (BN) that was used by the robot to estimate the reward of potential

paths. They introduced a spatial observation model in their system, and enabled

informative path planning using Monte-Carlo Tree Search (MCTS) [17, 57] to explore

an action tree composed of movement and sensing actions [1]. Their approach requires

the operator to specify the domain-specific BN a priori. In their example of a Martian

exploration mission to find rocks which were once been part of a Martian riverbed, the

solution required developing systems to detect rocks in an image and inspect them for

certain visual features to feed into a specialized geological model [1]. Due to the high

degree of complexity involved, their system was not a general purpose exploration tool

that could be deployed in unfamiliar environments. However, it could be made into

one by replacing the Bayesian Network with a general purpose spatial observation and

reward model.

In Chapter 4 we will build upon the work of Arora, Fitch, and Sukkarieh [1] by using

learned semantic image representations and online active reward learning to create a

general-purpose approach to vision-based scientific exploration in bandwidth-limited

environments.
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Chapter 3

Spatial Observation Modelling

with Topic Models

“Joy in looking and comprehending is nature’s most beautiful gift.”

– Albert Einstein

In order to decide where to go next, a robotic explorer must predict what it will

observe along various candidate trajectories. Even in new and unfamiliar environments,

it should be possible to predict some of the things that the robot will observe because

the semantic contents of nearby natural images, such as terrain types and species

present, have strong spatial correlation [35, 82]. However, these correlations are hard

to model in the observation space (pixels), where even nearly identical images can

be made distant by effects like sensor noise and slight changes in illumination [109].

Further, due to the high dimensionality of the image space, there are no spatial models

with which it is computationally tractable to predict the image that would be observed

in an unvisited location.

To overcome these challenges, current approaches to spatial observation modelling

for images operate in a semantic space 𝒵. A natural image in the observation space

O is mapped to a location in the semantic space called its semantic representation.1

1For example, a textual description of an image is a semantic representation of that image in a
particular language. Another semantic representation is a vector of weights over classes describing
what the image contains, saying something like 50% of an image is sand and 50% is gravel.
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The robot trains a spatial observation model, denoted as 𝑍 (𝑥) : R3 ↦→ 𝒵, using its

previous observations and a semantic feature extractor 𝑧 (𝐼) : O ↦→ 𝒵. This approach

requires that the semantic representations of two images 𝑧 (𝐼1) , 𝑧 (𝐼2) are close, as

measured by Euclidean distance, if and only if the human-perceived similarity of 𝐼1 and

𝐼2 is high. Semantic representations derived from computer vision models developed

for unsupervised natural image clustering, such as deep feature extractors [83, 109]

and spatial topic models (STMs) [44, 101] have this property.

The Realtime Online Spatio-temporal Topic Modelling (ROST) [44] algorithm is

particularly suitable as a spatial observation model because it

• Does not require any training data,

• Excels at recognizing and representing “anomalies” (novel observations) [45],

• Creates very low dimensional semantic representations which can be stored and

communicated using very little bandwidth [53], and

• Defines a spatial prior function on these semantic representations which can be

used as the spatial observation model 𝑍(𝑥) [53, 87].

ROST has been successfully used by a robotic explorer to enable online mission

summarization [35] as well as unsupervised “curious” exploration [43].2

Chapter Summary: Section 3.1 will provide the mathematical background of

ROST, summarizing material published in [41, 43–45]. Section 3.2 will present the

novel extension of the ROST algorithm to fully three-dimensional semantic mapping;

most of this work was performed jointly with Levi Cai and is published in [42]. To

the best of our knowledge, no other unsupervised semantic mapping algorithm has

been tested on a robotic platform for the purpose of scientific exploration. Finally,

Section 3.3 will present strategies to ROST hyperparameter selection and tuning,

which are unpublished.
2Curious meaning that the robot is attracted towards anything that looks sufficiently different to

everything else that it has previously seen.
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3.1 - Spatio-Temporal Topic Modelling

3.1 Spatio-Temporal Topic Modelling

This section will describe, mathematically, the process by which ROST performs

semantic segmentation of the visual observations collected during scientific exploration.

We denote the 𝑚th image collected as 𝐼𝑚 ∈ [0, 1]𝑤×ℎ×𝑑 where 𝑤 and ℎ are the width

and height of the image in pixels, 𝑑 is the number of colour channels, and pixel

intensities are in the range [0, 1].

3.1.1 ROST Overview

ROST performs semantic segmentation by extracting “visual words” from each image,

grouping them into “cells”, and then assigning each word to a learned “topic”. Then,

an image segmentation is produced by treating labelling each cell with the distribution

of topics assigned to the words within it.

Each visual word 𝑤 comes from finite a “vocabulary” of image features of size 𝑉 ,

which is created in advance. For example, some of these words may correspond to

various SIFT feature descriptors [61]; when a SIFT keypoint is extracted from the

new image 𝐼𝑚, it is identified using the word in the vocabulary with the closest SIFT

feature descriptor (by some distance metric in the descriptor space). Convolutional

Neural Network (CNN) based feature extractors can also be produce suitable visual

words [35], and further examples of visual words are presented in Section 2.3 of [41].

ROST differs from previous spatial topic models by assigning each visual word a

three-dimensional location (𝑢, 𝑣, 𝑡) ∈ R3 composed of the (𝑢, 𝑣) pixel coordinates of

the feature centre concatenated with the time 𝑡 of the observation.

Next, ROST groups these visual words into identical non-overlapping three-

dimensional “cells” 𝐶𝑖𝑗𝜏 ⊂ R3, representing a spatio-temporal volume indexed by

(𝑖, 𝑗, 𝜏) ∈ Z3, such that

⋃︁
(𝑖,𝑗,𝑡)∈Z3

𝐶𝑖𝑗𝜏 = R3.

The dimensions of each cell are described by the tuple (𝑙𝑋 , 𝑙𝑌 , 𝑙𝑇 ) ∈ R3. This ensures
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𝑤𝑧𝜃𝑖𝑗𝜏𝛼
MultiMultiDir

𝜑𝑘𝛽
Dir

𝑁𝑖𝑗𝜏

𝑀

𝐾

Figure 3-1: The graphical model for Latent Dirichlet Allocation, the simplest type
of topic model. The terms “Dir” and “Multi” stand for Dirichlet Distribution and
Multinomial Distribution, respectively, while the variables are defined in Section 3.1.

that each word 𝑤 can be assigned to a unique cell 𝐶𝑖,𝑗,𝜏 with indices given by

𝑖 =
⌊︂

𝑢

𝑙𝑥

⌋︂
, 𝑗 =

⌊︃
𝑣

𝑙𝑦

⌋︃
, 𝜏 =

⌊︂
𝑡

𝑙𝑡

⌋︂
.

We note that no more than
⌈︁

𝑤
𝑙𝑥

⌉︁
×
⌈︁

ℎ
𝑙𝑦

⌉︁
cells are necessary to contain all of the words

extracted from a single image.

Finally, ROST assigns each word 𝑤 a topic label 𝑧 ∈ {1, . . . , 𝐾} according to the

probabilistic model described in the following subsection. A cell can thus be associated

with a vector of topic weights 𝑊𝑖𝑗𝜏 ∈ N𝐾 such that 𝑊𝑖𝑗𝜏 [𝑘] is the number of words in

𝐶𝑖𝑗𝜏 assigned to the 𝑘th topic. It is straightforward to create a semantic segmentation

of an image by choosing 𝐾 colours and colouring the pixels contained in cell 𝐶𝑖𝑗𝜏 with

the colour corresponding to 𝑘⋆
𝑖𝑗𝜏 = argmax𝑘 𝑊𝑖𝑗𝜏 [𝑘].

3.1.2 The ROST Probabilistic Model

ROST builds upon the probabilistic model used in Latent Dirichlet Allocation (LDA),

which is presented as a graphical model in Figure 3-1 and algorithmically in Algorithm

1. These models describe the process by which words are generated. The goal of LDA

is to infer the latent variables {𝜃𝑖𝑗𝜏 ∈ Δ𝐾}, the distributions of topics in each cell, as

well as {𝜑𝑘 ∈ Δ𝑉 }, the distributions of words associated with each topic. This can be

accomplished through any of a wide range of inference algorithms, such as variational
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Algorithm 1: LDA Generative Model
1 Given: 𝛼 ∈ R𝐾

++, 𝛽 ∈ R𝑉
++, 𝜁 ∈ R++

2 Input: Set of 𝑀 cells {𝐶𝑖𝑗𝜏}
3 for 𝑘 = 1, . . . , 𝐾:
4 Sample 𝜑𝑘 ∼ Dirichlet(𝛽1𝐾)
5 foreach 𝐶𝑖𝑗𝜏 :
6 Sample 𝜃𝑖𝑗𝜏 ∼ Dirichlet(𝛼1𝐾)
7 Sample 𝑁𝑖𝑗𝜏 ∼ Poisson(𝜁)
8 for 𝑛 = 1, . . . , 𝑁𝑖𝑗𝜏 :
9 Sample 𝑧 ∼ Multinomial(𝜃𝑖𝑗𝜏 )

10 Sample 𝑤 ∼ Multinomial(𝜑𝑧)
11 Add word 𝑤 to cell 𝐶𝑖𝑗𝜏

inference or Gibbs sampling.

LDA sets a symmetric Dirichlet distribution prior on the cell-topic distributions 𝜃𝑖𝑗𝜏

and the topic-word distributions 𝜑𝑘, parameterized by the concentration parameters

𝛼 and 𝛽, respectively. The prior on 𝜃𝑖𝑗𝜏 is weakest when 𝛼 = 1; as 𝛼→ 0+ the prior

strongly favours assigning all of the words in a cell to the same topic, whereas when

𝛼 → +∞ it strongly favours having each cell contain an equal mix of all 𝐾 topics.

Likewise, compared to 𝛽 = 1, moving 𝛽 → 0+ encourages LDA to associate each

topic with only a few unique words, whereas 𝛽 → +∞ strongly favours associating

each topic with many different words. These priors are discussed more thoroughly

by Girdhar [41] and later in Section 3.3.

The main difference between ROST and LDA is that ROST introduces a prior

on 𝜃𝑖𝑗𝜏 based on spatio-temporal correlation. In particular, line 6 of Algorithm 1 is

replaced with:

𝜃𝑖𝑗𝜏 ∼ Dirichlet
⎛⎝𝛼 +

∑︁
(𝑖′,𝑗′,𝜏 ′)∈𝐺(𝑖,𝑗,𝜏)∖{(𝑖,𝑗,𝜏)}

𝜃𝑖′𝑗′𝜏 ′

⎞⎠ (3.1)

where 𝐺(𝑖, 𝑗, 𝜏) ⊂ Z3 defines the “neighbourhood” of cell 𝐶𝑖,𝑗,𝜏 . For example, the L1

neighbourhood of size 𝑑 is defined as:

𝐺L1(𝑖, 𝑗, 𝜏 ; 𝑑) = {(𝑖′, 𝑗′, 𝜏 ′) ∈ Z3 : |𝑖− 𝑖′|+ |𝑗 − 𝑗′|+ |𝜏 − 𝜏 ′| ≤ 𝑑}
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This ensures that cells which are nearby in both space and time are correlated with

each other, in the sense that they will should have similar topic distributions. The

main advantage of introducing this prior is that, since nearby parts of an image and

frames of a video really do tend to be correlated, it is easier for the inference algorithm

to converge to a good 𝜃𝑖𝑗𝜏 in less time.

3.1.3 Bayesian Non-Parametric ROST (BNP-ROST)

One issue observed with the ROST algorithm is that it sometimes uses too many

different topics to describe early observations, and then struggles to use these topics

to represent different observations collected later on. This can happen because, if 𝐾

is set large enough to allow for enough topics to represent everything that could be

observed in a mission, then the sampling performed in Equation 3.1 will be biased

towards using several topics to describe each cell. This is more clear if we consider the

posterior topic distribution of a word 𝑤. Let 𝑛𝑣
𝑘 be the number of times we have have

previously assigned the 𝑣th word to the 𝑘th topic, and let 𝑊𝐺(𝑖,𝑗,𝜏)[𝑘] be the number of

words assigned to topic 𝑘 in the neighbourhood of cell 𝐶𝑖,𝑗,𝜏 . Then the likelihood that

we assign a word 𝑤 = 𝑣 to topic 𝑧 = 𝑘 is:

Pr(𝑧 = 𝑘 | 𝑤 = 𝑣, {𝑛𝑣
𝑘}, {𝑊𝑖𝑗𝜏}) = 𝑛𝑣

𝑘 + 𝛽∑︀𝑉
𝑣=1 (𝑛𝑣

𝑘 + 𝛽)
·

𝑊𝐺(𝑖,𝑗,𝜏)[𝑘] + 𝛼∑︀𝐾
𝑘=1

(︁
𝑊𝐺(𝑖,𝑗,𝜏)[𝑘] + 𝛼

)︁ . (3.2)

When few observations have been collected, then each 𝑛𝑣
𝑘 and 𝑊𝐺(𝑖,𝑗,𝜏)[𝑘] are small.

This makes the posterior distribution close to uniform over all 𝑘, and thus words are

assigned to many different topics even if the observations are all similar. Thus, the

topics are “used up” early in the mission, and it is difficult for ROST to label novel

phenomena.

BNP-ROST addresses this issue by introducing a Chinese Restaurant Process

(CRP) prior on the number of topics, which encourages using fewer topics at the

beginning of the mission but allows for a potentially unbounded number of topics as
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the mission progresses. It does so by once again redefining the prior for 𝜃𝑖𝑗𝜏 :

𝜃𝑖𝑗𝜏 ∼ CRP𝑖,𝑗,𝜏 (𝛾, 𝑊𝐺(𝑖,𝑗,𝜏) + 𝛼) (3.3)

As described in [42], in this model we assign a word 𝑤 to one of the 𝐾𝑡 occupied “tables”

in a Chinese restaurant at time 𝑡 with probability proportional to (𝑊𝐺(𝑖,𝑗,𝜏)[𝑘]+𝛼), 𝑘 ∈

{1, . . . , 𝐾𝑡}, where 𝑊𝐺(𝑖,𝑗,𝜏)[𝑘] corresponds to the number of customers sitting at the

𝑘th table in that restaurant and at corresponding tables in the neighbouring restaurants.

The word is assigned to a new table with probability proportional to 𝛾, in which case

we increment the number of topics in use for later timesteps: 𝐾𝑡+1 = 𝐾𝑡 + 1. The

advantage of using a CRP is that we do not need to explicitly specify the number

of topics a priori, as it grows automatically with the number and complexity of

observations. By varying 𝛼 and 𝛾, it is possible to influence the number of topics used

to describe each observation and the rate at which new topics are introduced. Ideally,

these parameters should be set such that the topics and semantic segmentations

created by ROST best match the way in which a scientist would segment the images.

3.2 Realtime Semantic Mapping with Sunshine

The main application we explored in [42] was semantic mapping, a form of mission

summarization. This work sought to address Problem 1 described in Section 1.4.1 by

giving scientists greater insight into the mission status and what the robot had found.

In particular, the Sunshine system is to provide a near-realtime semantic summary of

everything the robotic explorer has observed so that they can quickly recognize any

anomalies, ask the robot for additional details (i.e., actual images of the anomaly),

and decide whether to deviate from the initial exploration plan.

The main capability missing from BNP-ROST was handling 4-dimensional semantic

mapping using real-world coordinates and time (𝑥, 𝑦, 𝑧, 𝑡), instead of the previous

3-dimensional mapping in image-based coordinates and time (𝑢, 𝑣, 𝑡). While this does

not require changing the probabilistic model, it does require processing both RGB-D
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(colour and depth) image data as well as the robot’s pose estimates, whereas previous

versions of ROST had only been applied to 2D colour images and video and did not

model camera motion. To enable these new capabilities, we extended ROST and

interfaced it with ROS, the Robot Operating System [80], which provides a number of

software libraries for common robotics tasks. We call this new system “Sunshine”.

After running ROST’s visual word extraction, Sunshine projects each word into

real world coordinates using the camera calibration matrix 𝐾 ∈ R3×3 and the camera

extrinsic matrix 𝑇 =
[︂
𝑅 𝑡

]︂
composed of the camera rotation 𝑅 ∈ SO(3) and

translation 𝑡 ∈ R3 from the mission origin in the world frame. These were computed

by ROS using the robot’s current position estimate and the robot-camera transform.

Letting (𝑢, 𝑣) be the word’s location in image coordinates, and 𝑑 be the distance, in

metres, of the pixel (𝑢, 𝑣) as reported by the RGB-D camera, then the real world

coordinates (𝑥, 𝑦, 𝑧) of the word in the world frame are computed as:

[︂
𝑥 𝑦 𝑧 1

]︂⊤
= 𝑑𝑅𝐾−1

[︂
𝑢 𝑣 1

]︂⊤
+ 𝑡 (3.4)

The word is then assigned to the unique cell 𝐶𝑖𝑗𝜅𝜏 ⊂ R4 with dimensions (𝑙𝑋 , 𝑙𝑌 , 𝑙𝑍 , 𝑙𝑇 )

that contains the point (𝑥, 𝑦, 𝑧, 𝑡).3 Due to localization errors, there may be error in

the camera transformation matrix 𝑇 , however this should not have a significant effect

on the semantic mapping process for the following reasons:

• For errors on a much smaller scale than (𝑙𝑋 , 𝑙𝑌 , 𝑙𝑍 , 𝑙𝑇 ), the word will not be

placed into the wrong cell unless it was already very close to the edge of the cell

• Even if the word is placed into an adjacent cell by mistake, the spatial neighbour-

hood prior means that it will similarly influence the semantic labels of nearby

cells as though it had been correctly placed

• If the localization error is nearly constant between observations, then the semantic

map will still have the correct local structure because locally it will be as though

the true semantic map had undergone some transformation 𝑇err.
3Note that we have introduced 𝜅 ∈ Z to index cells along the 𝑍-axis.
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Figure 3-2: Progression of semantic maps generated as the robot explores the ar-
tificially created scene from Figure A-3. The top maps correspond to BNP-ROST
hyperparameters 𝛼 = 0.5, 𝛽 = 0.1, 𝛾 = 10−5, while the bottom maps correspond to
𝛼 = 5 × 10−5, 𝛽 = 10−4, 𝛾 = 10−4. The image on the right shows the stitched map
of the visual observations. The robot localization system used was built by Levi Cai
using AprilTags [74]. This figure appeared in [42].

Therefore, as long as the localization errors are small compared to the cell dimensions

or the state estimates are filtered so that the errors between successive observations

are similar, then the semantic map produced will be mostly unaffected.

3.2.1 Experimental Results

We performed several experiments to validate that Sunshine could be used for realtime

semantic mapping. In one experiment we tested the effects of different values of

the priors 𝛼, 𝛽, and 𝛾 when creating semantic maps of an artificial underwater

environment. Two of these maps are presented in Figure 3-2. The maps show that

different types of terrains are well characterized by the scene mode, and also that the

system performs well even though the robot localization accuracy is not perfect. We

demonstrated that by varying the priors, the semantic maps could be tuned according

to a scientist’s desired level of abstraction and the environment-specific bandwidth

constraints. In particular, we described maps where adjacent cells are often labelled
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𝛼0
Fewer topics per cell
Patchier Maps

∞
More topics per cell

Smoother maps
𝛽

0
Fewer word types per topic
More topics per cell
Patchier Maps

∞
More word types per topic

Fewer topics per cell
Smoother maps

𝛾
0

Fewer total topics
1

More total topics

Figure 3-3: Qualitative effects of different values of 𝛼, 𝛽, 𝛾 based on the BNP-ROST
probabilistic model and empirical observations of generated semantic maps.

differently as “patchier” than maps where they tend to be the same, and observed the

results summarized in Figure 3-3.

The patchiness of maps and the number of topics used in each cell and in the

entire map are meaningful metrics, making it easier to tune the values to produce

meaningful semantic segmentations. For example, if the cell dimensions are small

compared to the phenomena of interest, it is best to have only one or two topics per

cell so 𝛼 should be set very low. This is because for small cells it is likely that any

two words in the same cell are associated with the same phenomenon, and we would

generally prefer to use exactly one topic per unique phenomenon. The values of 𝛽

and 𝛾 can likewise be tuned to create semantic maps which best match the scientist’s

expectations. Due to the general nature of these priors, this tuning can be performed

using almost any dataset, even if it is not strictly representative of what the robot

will observe on its next mission.

In addition to optimizing the hyperparameter values for semantic meaning, we

also explored how they could affect the communication bandwidth required for mis-

sion summarization. The main effect is that smoother maps are more compressible,

because most lossless image compression algorithms (e.g., the PNG algorithm) rely

on compressing large contiguous patches of colour to save space. Thus, using larger

values of 𝛼 and 𝛽 and smaller values of 𝛾 are associated with lower communication

bandwidth usage when streaming the semantic maps.

50



3.2 - Realtime Semantic Mapping with Sunshine

Figure 3-4: Topic Maps produced using the HAW-2016-48 Coral Reef Dataset [92]. (a)
and (d) show scatter plots evaluating topic maps, like those in (b) and (e), generated
by varying the hyperparameters 𝛼, 𝛽 and 𝛾. The x-axis shows the size, in bytes, of the
topic map after PNG compression, while the y-axis shows the mutual information score
of the map with, for (a) the RGB dataset (c), and for (d) the scientist’s annotations
(f). Note that mutual information was computed over the filled in (i.e., non-black)
parts of each (c) and (f). The maps in (b) and (e) match the points in (a) and (d)
labelled with the same numbers. This figure also appeared in [42].

Finally, we explored the relationship between semantic meaning in the maps and

the size of the maps. The results are presented in Figure 3-4. The main takeaway

is that patchier maps tend to be closer to the raw visual map, whereas they are not

necessarily more semantically meaningful. This is deduced by noting that in subfigure

(a), the mutual information4 between the semantic map and visual map increases as

the map size (patchiness) increases. Conversely, in subfigure (d), there is a “sweet-spot”

that occurs for topic map #6, where the semantic map is quite well correlated with

the scientist’s segmentation of the map while also being very compressible.

In addition to demonstrating that these semantic maps could feasibly be streamed in

realtime to a scientist during a mission, these results showed that spatio-temporal topic

4Mutual information is a measure of correlation between two images. A mutual information score
of 1 means that one image could be entirely reconstructed from the other, whereas a score of 0 means
that one image provides no information about the other.
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models could be used as spatial observation models in low-bandwidth environments.

In particular, since the semantic maps tend to be smooth and low-dimensional, it is

fairly easy to predict the semantic labels which will be used in new locations near

where the robot has previously visited. This can be done using a Gaussian Process

based model [87], or by a simpler method of extrapolation based on nearby semantic

labels. In fact, the Sunshine (BNP-ROST) spatial neighbourhood prior can be trivially

adapted to be used as a spatial observation model. The last missing piece for a robotic

explorer to be able to autonomously plan high scientific value paths is a learned reward

model, which will be the topic of Chapter 4.

3.3 BNP-ROST Hyperparameter Tuning

While the BNP-ROST hyperparameters 𝛼, 𝛽, 𝛾 have clearly observable qualitative

effects on the resulting semantic maps (as seen in Figures 3-2, 3-3, and A-4) they can

still be challenging to tune because they can take on a wide range of values and it

can take several minutes to generate a complete semantic map from scratch. In a

broader sense, there are even more hyperparameters to consider and tune such as the

cell dimensions (𝑙𝑋 , 𝑙𝑌 , 𝑙𝑍 , 𝑙𝑇 ), the number of topics 𝐾, and the spatial neighbourhood

prior 𝐺.

In [42], the hyperparameters 𝛼, 𝛽, 𝛾 were selected after running a gridsearch over

125 sets of values, which took several hours. This was slow and inefficient, and there

were no guarantees that the 5 values tested per variable were close to the optimal

values. To address this issue, we now use Bayesian optimization, an information-

theoretic approach to function-maximization using a minimum number of function

evaluations [93]. In particular, we use the Limbo library [18] to quickly find the

hyperparameters that maximize the mutual information between the semantic maps

and human annotations, which was the same objective of the grid search.

Another issue is that it can be difficult to find good initial values for the 𝛼, 𝛽, and

𝛾 hyperparameters. In the previous section we noted that, when the cell dimensions

are set to be at or smaller than the dimensions of the phenomena of interest, 𝛼 should
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be set low to encourage the model to use only one or two topics in each cell. What

range of values of 𝛼 will accomplish this? One possible approach is to consider the

expected perplexity of the cell topic distribution 𝜃𝑖𝑗𝜅𝜏 prior as a function of 𝛼. Recall

that, in the absence of a spatial neighbourhood prior, the prior 𝜃𝑖𝑗𝜅𝜏 is a symmetric

𝐾-dimensional Dirichlet distribution

𝜃𝑖𝑗𝜅𝜏 ∼ Dirichlet(𝛼1𝐾). (3.5)

Girdhar [41] noted that the expected entropy of this prior is

E [H [𝜃𝑖𝑗𝜅𝜏 ] | 𝛼, 𝐾] = Ψ(𝐾𝛼 + 1)−Ψ(𝛼 + 1), (3.6)

where Ψ(𝑥) = 𝑑
𝑑𝑥

log Γ(𝑥) is the digamma function. The perplexity of a random

variable 𝑋 is defined as 𝑃𝑃 (𝑥) := expH[𝑋]. A relevant fact is that a perplexity value

of 𝑝 implies that the random variable has as much uncertainty as a fair 𝑝-sided die.

Thus, having a Dirichlet prior with expected perplexity 𝑝 encourages 𝜃𝑖𝑗𝜅𝜏 to distribute

its probability mass split evenly over 𝑝 topics. Therefore, the perplexity of the prior is

directly related to how many topics the prior will encourage per cell, so to encourage

no more than two topics per cell, 𝛼 should be set such that

E[𝑃𝑃 (𝜃𝑖𝑗𝜅𝜏 )] = E[expH[𝜃𝑖𝑗𝜅𝜏 ]] ≈ expE[H[𝜃𝑖𝑗𝜅𝜏 ]] = 𝑒Ψ(𝐾𝛼+1)−Ψ(𝛼+1) ≤ 2. (3.7)

Note that the approximate equality comes from the fact that the entropy of a discrete

distribution is sharply peaked around its expected value [41].

It is relatively easy to solve for an 𝛼 that satisfies Equation 3.7 despite it lacking a

closed form solution because expE[H[𝜃𝑖𝑗𝜅𝜏 ]] is bounded below by 1 as 𝛼→ 0+

lim
𝛼→0+

exp(Ψ(𝐾𝛼 + 1)−Ψ(𝛼 + 1)) = exp(Ψ(1)−Ψ(1)) = 1. (3.8)

Thus, by driving 𝛼 sufficiently close to 0, any desired expected perplexity bound

𝑃𝑃max ≥ 1 can always be achieved. To expedite this process, one can numerically
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approximate the derivatives of the digamma function by truncating their infinite series

representations5

𝑑𝑚

𝑑𝑥𝑚
Ψ(𝑥) = (−1)(𝑚+1)𝑚!

∞∑︁
𝑘=0

1
(𝑥 + 𝑘)𝑚+1 , 𝑚 > 0. (3.9)

These can be used to find the optimal 𝛼 using gradient descent or Newton’s method.

This approach can also be used to optimize 𝛽 for a fixed vocabulary size 𝑉 , if it is

known approximately how many visual words in the vocabulary should be associated

with each topic. With 𝛼 and 𝛽 set, it is much easier to experiment and quickly find a

good value for 𝛾. This heuristic initialization has been successfully used to provide a

good starting point for the Bayesian optimization procedure described previously.

5Note that the series representation for 𝑑
𝑑𝑥 Ψ(𝑥) =

∑︀∞
𝑘=0

1
(𝑥+𝑘)2 > 0 tells us that Ψ(𝑥) is continuous

and monotonically increasing ∀𝑥 > 0. Empirically, we find that the expected perplexity is also
monotonically increasing in 𝛼, but have not derived the proof.
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“We are trying to prove ourselves wrong as quickly as possible, because only

in that way can we find progress.”

– Richard P. Feynman

We proposed in Section 1.4 that the next level of autonomy in co-robotic scientific

exploration would require a robot to possess:

• A spatial observation model to predict where it can find specific phenomena,

• A reward model that captures the value of observing a phenomenon with respect

to the mission objectives, and

• A path planner that uses these to plan high scientific value trajectories.

We also discussed the need for human-robot communication during the mission to

learn the reward model online, using scientist feedback to deduce which types of

observations are most scientifically interesting. The particular approach that will be

the focus of this chapter is using the limited communication bandwidth available to

query the operator about the scientific value (i.e., reward) of past observations, and

use their responses to learn the reward model.

We present our novel approach to achieving Level 4 autonomy in co-robotic scientific

exploration, “Human-Robot Cooperative Exploration”, in Figure 4-1. In the figure,

the top map shows a visual map of the environment along with boxes representing
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Figure 4-1: An approach to co-robotic exploration that models the interest of the
operator over a low bandwidth communication channel and uses the learned reward
model to plan the most scientifically rewarding robot paths.

the robot’s past observations. The one below uses colour-coded topics to depict a

semantic segmentation of the environment, including parts of the map not yet visited,

created using a spatial observation model (e.g., Sunshine [Ch. 3]). The lower two maps

use brightness to represent the predicted scientific value of observations in various

locations, while the lowest map shows some candidate trajectories generated by a path

planner (e.g., MCTS [17, 57]), colour-coded from red to green by predicted scientific

value. The map to the right shows which observations were sent to and labelled by

the scientist, with green indicating scientific value, and red indicating no scientific

value. Importantly, only small percentage of observations are sent during the mission

due to communication bandwidth constraints like those discussed in Chapter 1.

Chapter Summary: Most of this chapter will appear as it was published in [53].

Section 4.1 will present a partially observable Markov decision process (POMDP)

formulation for vision-based scientific exploration and a solution that is generalizable

to many environments. The approach is suitable for deployment in completely

unknown environments, and can use (but does not require) prior knowledge about the

environment and the phenomena being observed. Section 4.2 will present an analysis of

active learning decision criteria that a robot could use for deciding which observations
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to send to the operator. This includes a novel regret-based active learning algorithm

designed for maximizing reward in the online setting. In Section 4.3, we compare these

active learning criteria using simulations of a scientific exploration task, based on both

real and artificial data. Finally, in Section 4.4, we present some new motivation for

why regret-based methods should outperform information theoretic ones in certain

online settings, especially under low communication bandwidth constraints.

4.1 The Co-Robotic Visual Exploration POMDP

We present the co-robotic visual exploration problem as a POMDP. The entire POMDP

is characterized by the tuple (𝒮,𝒜,O, 𝑇, 𝑂, 𝑅, 𝛾, 𝑏0), defined in Table 4.1. We model

the state of the robot at time 𝑡 as 𝑆𝑡 = (𝑋𝑡, 𝑌𝑡, 𝐿𝑡). 𝑋𝑡 = {(𝑥𝑖, 𝐼𝑖)}𝑡
𝑖=1 is the sequence

of locations the robot has visited, with corresponding image observations, where the

current location is 𝑥𝑡 ∈ R3 and the latest observation is the image 𝐼𝑡 ∈ O. Note we

explicitly constrained our focus to dealing with high-dimensional observation spaces,

such as images. 𝐿𝑡 is the set of indices of images sent to and labeled by the operator.

𝑌𝑡 contains the reward labels for all images, including those that have not been sent;

most of these are unknown, making the robot’s state partially observable. For now we

assume that these labels are binary, but in Section 4.4 we will explore relaxing this

assumption.

The partial observability is a consequence of the robot’s limited ability to query

the operator during a mission; in bandwidth constrained environments the robot

sends images at a much slower rate than it collects them, so it must decide which

labels to observe. We assume that only the operator can evaluate the unknown,

but deterministic, binary “interest” function ℐ (𝐼) such that (𝑌𝑡)𝑖 = ℐ (𝐼𝑖). Further,

it is assumed that the operator cannot express their interest function analytically

(otherwise it would be computed onboard the robot), and would instead train an

approximate model based on their labels for various example images. However, since

exploration typically occurs in remote and unstudied environments like the ones

discussed in Chapter 1, the operator does not have a representative dataset of what
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Table 4.1: The Scientific Exploration POMDP Specification.

Component Definition Our Assumptions
𝒮 State space of the robot 𝑆 = (𝑋, 𝑌, 𝐿)
𝒜 Discrete set of robot actions Motion primitives1

O Observation space Natural images
𝑇 Transition function Deterministic, 𝒮 ×𝒜 ↦→ 𝒮
𝑂 (Spatial) Observation model 𝒮 ×𝒜 ↦→ O
𝑅 Reward model O ↦→ R
𝛾 Discount factor 𝛾 ∈ [0, 1]
𝑏0 Initial belief state 𝒫(𝑌 )

the robot will observe, and is unable to provide the robot with a complete model of

ℐ (·) in advance of the mission.

At each timestep, the robot takes an action chosen from the set 𝒜. These actions

are often motion primitives, which represent a variety of the motions the robot is

capable of executing over some short period of time. There may be a negative reward

associated with actions depending on their energy usage. Using a sensor (e.g., a

camera) or querying the operator may also be modelled (e.g., in [26]) as additional

actions in 𝒜 with costs, such as energy usage, included in the reward model. For

simplicity, we assume these costs are negligible and that the robot takes an observation

at every timestep and can send queries at some maximum rate but at no cost and

concurrently with other actions.

The observation space O represents the space of images the robot could observe

with its camera. The transition model 𝑇 is either a deterministic or probabilistic

model of how the robot will behave when commanded to perform an action, and is

used to model things like wheel slip on certain types of terrains.

The belief state 𝑏𝑡 is a probability distribution over the labels 𝑌𝑡, based on all

available information (i.e., the known labels) at time 𝑡. This represents how scientifi-

cally valuable the robot believes each unlabelled observation to be. This belief state is

refined as the robot receives more labels and the reward model is updated. The belief

state will typically also contain a probability distribution over the robot location 𝑋,

since in a real-world environment there is always some localization uncertainty.
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There are three key decisions to fully specify the remaining components of the

co-robotic visual exploration POMDP. The first is defining a spatial observation model

over the space of natural images, which was already discussed in Chapter 3. The

second is choosing a reward model for estimating the reward of observations, which

will be discussed in Subsection 4.1.1. The third is choosing an effective active learning

strategy, which is the topic of Section 4.2.2

Given all of these specifications, the robot uses an online POMDP planner to

approximate an optimal policy 𝜋⋆ : 𝒮 ↦→ 𝒜 in real-time. Algorithm 2 presents

our approach to co-robotic exploration based on the assumptions listed above. The

algorithm describes the process through which the robot moves along its planned

trajectory while collecting observations and updating its spatial observation model

accordingly, as well as concurrently requesting and receiving labels. Algorithm 2

makes use of the PLAN_TRAJECTORY subroutine (Algorithm 3) to run Monte Carlo

Tree Search for some number of iterations in order to find the path with the highest

scientific value.

4.1.1 Learning a Reward Model Online over Low Bandwidth

We define the robot’s accumulated reward to be the total number of unique and

interesting observations it has collected

𝑅 (𝑋𝑡) =
𝑡∑︁

𝑖=1
ℐ (𝐼𝑖) =

𝑡∑︁
𝑖=1

(𝑌𝑡)𝑖 . (4.1)

This can only be computed after the operator sees all images (i.e., after the mission),

and thus it is not useful for planning. Instead, the planning algorithm (e.g., MCTS)

requires a reward function 𝑅(𝑥) specifying the expected reward of visiting any location

𝑥 ∈ R3. The spatial observation model achieves part of this by predicting what will

be observed at location 𝑥 in the semantic representation space 𝒵. The robot then

estimates the reward as a function of the semantic field 𝑍𝑡 (𝑥) by learning the model

2This could also be viewed as part of the reward model as an active learning strategy essentially
assigns some “reward” to each question that could be asked, and chooses the highest scoring question.
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Algorithm 2: Co-Robotic Exploration
1 Given: (𝒮,𝒜,O, 𝑇,𝒪, 𝑅, 𝛾, 𝑥0), 𝑡max
2 𝑋0 ← ∅ // Stores the path and observations
3 𝜏 ← {𝑥0} // The current trajectory plan
4 𝑞 ← null // Index of next observation to label
5 𝑡← 0 // The current timestep
6 while 𝑡 < 𝑡max:
7 𝑥𝑡 ← Next_Step(𝜏 )
8 𝐼𝑡 ← Observe(𝑥𝑡)
9 𝑋𝑡 ← 𝑋𝑡−1 ∪ {𝑥𝑡, 𝐼𝑡}

10 𝒪 ← Update_Observation_Model(𝒪, 𝑋𝑡)
11 if 𝑞 ̸=null and Label_Ready(𝐼𝑞)
12 𝑦𝑞 ← Query_Result(𝐼𝑞)
13 𝑌𝑡 ← 𝑌𝑡−1 ∪ {𝐼𝑞, 𝑦𝑞}
14 𝑅← Update_Reward_Model(𝑅, 𝑌𝑡)
15 𝑞 ← null
16 endif
17 𝜏 ← Plan_Trajectory(𝑋𝑡,𝒮,𝒜, 𝑇,𝒪, 𝑅, 𝛾) // See Algorithm 3
18 if 𝑞 = null
19 𝑞 ← Query_Selector(𝑋𝑡,𝒪, 𝑅)
20 Request_Label(𝐼𝑞)
21 endif
22 𝑡← 𝑡 + 1

Algorithm 3: Plan_Trajectory
1 Input: 𝑋𝑡,𝒮,𝒜, 𝑇,𝒪, 𝑅, 𝛾
2 Given: 𝑛 // Number of trajectories to test
3 𝒯 ← Generate_Trajectories(𝑋𝑡,𝒮,𝒜, 𝑇, 𝑛)
4 for 𝑖 = 1, . . . , 𝑛:
5 𝑠𝑖 ← Score_Trajectory(𝒯 (𝑖), 𝑂, 𝑅, 𝛾)
6 𝜏 ← 𝒯 (argmax𝑖 𝑠𝑖)
7 return 𝜏
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𝑔𝜃 : 𝒵 ↦→ [0, 1], where 𝜃 is a set of parameters for the model family. This means the

expected reward for an observation at 𝑥 is predicted as

𝑅 (𝑥) = 𝑔 (𝑍𝑡 (𝑥) ; 𝜃) , (4.2)

Recall that 𝐿𝑡 is the set of labeled image indices at time 𝑡, and let 𝐷𝑡 =

{(𝐼𝑖, (𝑌𝑡)𝑖)}𝑖∈𝐿𝑡 be the corresponding training set. We choose 𝜃 to minimize the

cross-entropy loss ℒ on 𝐷𝑡, resulting in the final reward model

𝑅 (𝑥; 𝐷𝑡) ≈ 𝑔
(︁
𝑍 (𝑥) ; 𝜃⋆

𝐷𝑡

)︁
(4.3)

𝜃⋆
𝐷𝑡

= argmin
𝜃

∑︁
(𝐼,𝑦)∈𝐷𝑡

ℒ (𝑦, 𝑔 (𝑧 (𝐼) ; 𝜃)) . (4.4)

As discussed in Subsection 2.2.2, for simple models the number of examples neces-

sary to learn a simple model is typically linear in the number of input dimensions [73].

Thus, it is desirable to jointly pick a semantic representation and a model 𝑔𝜃 such

that the total number of examples required to train 𝑔𝜃 is less than the number of

examples that can be labelled during the mission. This further motivates the use of

BNP-ROST [45] as the semantic feature extractor; due to its usage of the Chinese

Restaurant Process, the dimensionality of its semantic representation grows as log 𝑡,

logarithmic in the number of images 𝑡. Conversely, the number of labelled images

grows much faster (linearly) at 𝑡
𝑛
, where 𝑛 ≥ 1 is set by the bandwidth constraint.

Thus, when using BNP-ROST in combination with a simple reward model, then the

training process for 𝑔𝜃 is expected to quickly converge to good parameters 𝜃, even

with few training examples. In our experiments in Section 4.3, we will use logistic

regression as the reward model 𝑔𝜃, which has only dim(𝜃) = dim(𝒵) + 1 parameters.

4.2 Online Active Reward Learning for POMDPs

When the robot observes a novel phenomenon, it often needs to query the operator’s

interest in collecting more observations of that phenomenon. The only type of query
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that the robot can perform while exploring a remote environment is sending an image

to the scientist and receiving an interest label in return. However, the scientist cannot

determine the scientific value of an image from the image’s semantic representation

alone and does not have access to enough information to advise the robot on the

optimal policy. This presents a unique challenge for active learning.

Here we will consider active learning strategies to learn the parameters of a POMDP

reward model online. We denote the set of unlabelled image indices at time 𝑡 as 𝒰𝑡,

and the active learning metric as ℎ (𝑧), such that the next image to request a label

for is chosen as

𝑖⋆ = argmax
𝑖∈𝒰𝑡

ℎ (𝑧 (𝐼𝑖)) . (4.5)

4.2.1 Non-Adaptive Query Selection

The simplest approaches to selecting images to be labelled do not depend on 𝑧, and

thus are good baselines to consider. Random selection chooses unlabelled observations

uniformly at random. Uniform selection instead chooses every 𝑛th image, where 𝑛 is

bounded below by the bandwidth constraint.

4.2.2 Informative Query Selection

Informative query selection involves defining some uncertainty metric on the model,

and choosing to label the observation which results in the greatest reduction of

uncertainty. There are many query selection strategies that fall into this category and

are effective at learning a function in few examples [108]. A common uncertainty metric

for classification problems is entropy, where the highest entropy values occur when an

observation is on a decision boundary. A widely-used approach to informative query

selection is “uncertainty sampling”, which typically means picking the observation

with the maximum entropy [108]

ℎEntropy
(︁
𝑧; 𝜃⋆

𝐷𝑡

)︁
= H

[︁
𝑔
(︁
𝑧; 𝜃⋆

𝐷𝑡

)︁]︁
. (4.6)
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An issue with uncertainty sampling is that labeling the most uncertain observation

might not have much effect on the model parameters 𝜃 – if the model parameters do

not change, then the model performance does not increase. This suggests maximizing

“error reduction” [108] instead

ℎInfo (𝑧) = ℎEntropy
(︁
𝑧; 𝜃⋆

𝐷𝑡

)︁
− E𝐷′

𝑡|𝐷𝑡

[︁
ℎEntropy

(︁
𝑧; 𝜃⋆

𝐷′
𝑡

)︁]︁
(4.7)

𝐷′
𝑡 = 𝐷𝑡 ∪ (𝑧, 𝑦)

𝑝(𝐷′
𝑡 | 𝐷𝑡) ≈ 𝑔(𝑧; 𝜃⋆

𝐷𝑡
).

This Information Gain query selection method prioritizes labeling an observation by

how much a new label 𝑦 is expected to reduce the entropy of similar future observations.

This should maximize the rate at which entropy is reduced and thus the rate at which

the reward function is learned.

4.2.3 Regret Minimizing Query Selection

We now introduce a novel Regret minimizing query selector that focuses on identifying

the queries that help maximize the expected reward collected during the mission,

rather than information gained about the reward function. Regret is typically defined

for POMDPs as the difference in utility between the chosen action and the true optimal

action based on complete information. To our knowledge, this was the first work to

compare a regret-based heuristic against information-theoretic heuristics in online

active learning [53].

Suppose that the robot is considering a finite set of trajectories 𝒯 = {𝜏𝑖}𝑁𝜏
𝑖=1. It uses

it’s spatial observation model to predict what it will observe along each trajectory 𝜏 ,

predicts each trajectory’s reward, and finally chooses the one with the highest reward

(see Algorithm 3). However, given limited training data, the robot has significant

uncertainty in the predicted rewards and thus is unlikely to have chosen the true

optimal trajectory. This motivates a question for each unlabeled image: if this image

were labeled, would the robot have chosen a different trajectory? If the answer is yes,

then it must mean that, given this additional label, a different trajectory would be
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predicted to have greater reward and thus the robot would “regret” not knowing the

label. If it is no, then the robot would have no immediate regret for not knowing it,

so it is a question less worth asking. We formalize this in the following objective:

ℎRegret (𝑧) = E𝐷′
𝑡|𝐷𝑡

[︁
𝑅(𝜏 ⋆

𝐷′
𝑡
; 𝐷′

𝑡)−𝑅(𝜏 ⋆
𝐷𝑡

; 𝐷′
𝑡)
]︁

(4.8)

𝑅(𝜏 ; 𝐷𝑡) =
∑︁
𝑥∈𝜏

𝑔(𝑍(𝑥); 𝜃⋆
𝐷𝑡

) (4.9)

𝜏 ⋆
𝐷 = argmax

𝜏∈𝒯
𝑅(𝜏 ; 𝐷). (4.10)

An approach to computing ℎRegret is presented in Algorithms 4 and 5.

Equation 4.8 may be interpreted as the expected reward increase given the label

for 𝑧. Further interpretation and theoretical motivation for using this heuristic will

be presented in Section 4.4.

Algorithm 4: Regret-Based Query Selection
1 Given: 𝑋𝑡,𝒮,𝒜, 𝑇,𝒪, 𝑅, 𝛾
2 Input: 𝒰𝑡 // Set of unlabeled image indices
3 𝜏0 ← Plan_Trajectory(𝑋𝑡,𝒮,𝒜, 𝑇,𝒪, 𝑅, 𝛾)
4 foreach 𝑖 ∈ 𝒰𝑡:
5 𝑧 ← semantic_representation(𝐼𝑖) // Apply semantic feature

extractor
6 𝑦pred ← Predict_Reward(𝑧) // Apply reward model 𝑔𝜃

7 𝑟0 ← Compute_Regret(𝜏0, 𝑧, 0) // See Algorithm 5
8 𝑟1 ← Compute_Regret(𝜏0, 𝑧, 1)
9 regret𝑖 ← 𝑦pred𝑟1 + (1− 𝑦pred) 𝑟0

// Expected regret for Bernoulli distributed 𝑦

10 return argmax𝑖∈𝒰𝑡
regret𝑖

4.3 Experiments

We performed two experiments, each based on simulations of the co-robotic exploration

task with various bandwidth constraints to evaluate and compare the active learning

heuristics described in Section 4.2. The first experiment used only artificial data, while

the second one used data derived from a real coral reef dataset representative of what

could be observed in scientific exploration of the Ocean. These experiments involved
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Algorithm 5: Compute_Regret
1 Given: 𝑋𝑡,𝒮,𝒜, 𝑇,𝒪, 𝑅, 𝛾
2 Input: 𝜏0, 𝑧, 𝑦 /* Reference trajectory, observation to label, temporary

label */
3 Add_Temporary_Label(𝒪, 𝑧, 𝑦)
4 𝜏 ⋆ ← Plan_Trajectory(𝑋𝑡,𝒮,𝒜, 𝑇,𝒪, 𝑅, 𝛾)
5 𝑠⋆ ← Score_Trajectory(𝜏 ⋆,𝒪, 𝑅, 𝛾)
6 𝑠0 ← Score_Trajectory(𝜏0,𝒪, 𝑅, 𝛾)
7 Remove_Temporary_Label(𝒪, 𝑧)
8 return (𝑠⋆ − 𝑠0) // Regret given the temp label

repeated rollouts of Algorithm 2, including simulated human-robot communication,

and the robot was evaluated based on the amount of reward it was able to collect

during each mission (rollout). To simplify the comparison, we gave the robot direct

access to a pre-generated topic map in each rollout, rather than requiring it to use

its own spatial observation model and learned semantic representation. This lets the

comparison focus entirely on the active learning methods.

4.3.1 Experimental Methodology

The first experiment used 30 artificial “topic maps” (cf. [42]) created by randomly

generating Voronoi partitions of a 100×100 image, assigning each cell a topic label,

and then assigning each pixel’s topic distribution as a distance-weighted mean over cell

labels. This produced continuous topic maps with topics in varying concentrations,

and each one was associated with a unique interest map (see Figure 4-2). In the

second experiment, a single topic map was derived from the expert annotations of an

actual coral reef image, and 30 interest maps were generated for it (see Figure 4-3).

The procedure for both experiments was:

1. Generate a map of topic distributions 𝑧(𝑥) ∈Δ𝑑 which represent the observa-

tions at each location 𝑥

2. Generate an interest profile 𝑝 ∈ [0, 1]𝑑 so that 𝑝 = 𝑝𝑇 𝑧 is the probability that

the operator is interested in an observation with feature representation 𝑧
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Figure 4-2: Left: A topic map where each location is described by the semantic repre-
sentation 𝑧(𝑖,𝑗) ∈Δ8. The color of each pixel indicates the largest component of 𝑧(𝑖,𝑗).
Right: The reward at each location is randomly sampled as 𝑅(𝑖,𝑗) ∼ Bernoulli(𝑝𝑇 𝑧(𝑖,𝑗)),
where 𝑝 ∈ [0, 1]𝑘 represents how “interesting” each component of 𝑧 is. Here, the pink
and black topics are most interesting.

Figure 4-3: Left: A crop of the KAH_2016_3 photomosaic image from the 100 Islands
Challenge [92], showing a coral reef near Kaho’olawe. Center: The photomosaic
annotations where each color represents an expert label [92]. Right: One of 30 unique
interest maps generated (cf. Figure 4-2).
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3. Generate a binary “interest map” by sampling 𝑅(𝑥) ∼ Bernoulli(𝑝(𝑧(𝑥)) at

each location 𝑥 in the topic map

4. For each bandwidth limitation and each query selection algorithm: perform 36

rollouts of Algorithm 2 for a simulated robot making reward queries according

to the bandwidth limitation and query selector

Each rollout in step (4) had a duration of 300 timesteps; robot movement was

one pixel per timestep and bandwidth constraints were simulated by changing the

number of timesteps for a label to be received after being requested. State transitions

and observations were deterministic and noiseless. The robot started with no training

data and used logistic regression (from [78]) as its reward model. Trajectories were

generated by randomly sampling sequences of 5 motion primitives. The primitives

were 13 straight lines, each 5 units long and at angles spaced uniformly between -135∘

to 135∘ from the robot’s current direction. 50 trajectories were generated at each

timestep and scored using the sum of the predicted rewards along the trajectory, less

the scores of locations already visited. The highest scoring trajectory was followed.

4.3.2 Results and Discussion

We compared the Random, Uniform, Information Gain, and Regret query selectors

described in Section 4.2 over a total of 69120 simulations. Some examples of the robot

trajectories followed during these simulations are presented in Figure 4-4. The mean

reward collection rates and interest map prediction losses for each experiment are

presented in Figures 4-5 and 4-6. The Regret query selector matches, or outperforms,

every other selection criterion at collecting reward, at any bandwidth availability, in

these simulation configurations. The relative gains of non-random query selection are

smaller when the time between queries is short (high-bandwidth) and thus almost

every image is labeled, or when it is so long (low-bandwidth) that the robot barely

learns anything before the mission ends. The results also demonstrate the vast

improvement of autonomous exploration over preplanned trajectories: the adaptive

planners collected up to 29.7% more reward at very low bandwidth, and up to 230%
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Figure 4-4: Best viewed on a screen. Sample trajectories followed by robots starting
at the center of the map in Figure 4-2 with different query selectors. Along each
trajectory, red-orange pixels correspond to no reward, and blue pixels to reward. Bright
orange/blue pixels represent observations for which the query selector requested the
label. The greyscale background intensities represent 𝑔(𝑍(𝑥); 𝜃⋆

𝐷): reward estimates
of observations at each location, based on all labeled samples. Query Selectors: (top
row) Random, Uniform; (bottom row) Info Gain, Regret. Appeared in [53].
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Figure 4-5: A comparison of the query selector performance for different bandwidth
availability; the x-axis represents labeling period (time between making a call to
Request_Label and Label_Ready returning true in Algorithm 2), which is
inversely proportional to bandwidth. Each datapoint represents the mean of 1080
simulations (36 trials on 30 unique maps) and bars represent the 68% confidence bound
of the mean. Top: The mean amount of reward collected by each robot per unit time
(higher is better). Lawnmower is not a query selector, but rather represents the mean
reward collected by 8 preplanned boustrophedonic trajectories [15] that each start at
the center of the map and move towards a corner. Bottom: The mean cross-entropy
loss between the ground truth interest maps, as seen in the right side of Figure 4-2,
and the corresponding robots’ predictions of the reward at each location, as seen as
the backgrounds in Figure 4-4, at the end of each simulation (lower is better).
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Figure 4-6: The Regret query selector continues to outperform the other active learning
heuristics when the topic map is derived from a real image (see Figure 4-3).
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more reward at high bandwidth.

The regret-based method did not learn the reward function as well as the infor-

mation gain query selector, based on its higher map log-loss. This exemplifies the

difference in the design criteria: the information theoretic criterion focuses on useful

labels for learning a function, which is appropriate for active reward learning offline,

during training. The regret criterion instead optimizes for the robot’s reward, making

it better suited for online active reward learning, which describes our usage of queries

during a live mission.

4.4 Motivating Regret-Based Active Learning

As mentioned previously, regret is a term often used in robotics literature to denote

the difference between how much reward would be collected by a real robot, with

access to only limited information, versus how much would be collected by a robot

with access to all (relevant) information. Intuitively, an agent experiences regret when

it learns new information that causes it to realize its previous choice of action was not

optimal. The magnitude of this regret corresponds to how much additional reward a

different action would have resulted in. A regret-based active learning approach seeks

to anticipate regret and ask questions to avoid it.

These intuitions should be captured in our definition of regret. Consider a robot

which has at time 𝑡 a set of 𝑀 unlabelled examples 𝑄𝑡 = {𝑧𝑖}𝑀
𝑖=1, a dataset of labelled

examples 𝐷𝑡, and a reward model 𝑅 (𝜏 ; 𝐷𝑡).3 Let us define the augmented dataset

𝐷𝑌𝑚
𝑡 = 𝐷𝑡 ∪ {(𝑧𝑖, 𝑦𝑖) : 𝑧𝑖 ∈ 𝑄𝑡, 𝑦𝑖 ∈ 𝑌𝑡}𝑚

𝑖=1 for any 𝑚 ≤𝑀 . The regret of a trajectory

choice 𝜏 given all information (the augmented dataset 𝐷𝑌𝑀
𝑡 ) is called the true regret,

and is defined as

𝑟(𝜏 ; 𝐷𝑌𝑀
𝑡 ) := max

𝜏 ′
𝑅(𝜏 ′; 𝐷𝑌𝑀

𝑡 )−𝑅(𝜏 ; 𝐷𝑌𝑀
𝑡 ). (4.11)

Computing the true regret 𝑟(𝜏 ; 𝐷𝑌𝑀
𝑡 ) requires knowing all the unknown labels in 𝑌𝑡,

3We use the first 𝑀 indices of 𝑧 and 𝑦 as the unlabelled examples for notational convenience; one
could imagine that whenever an example is labelled we swap its index with the most recent example.
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which is infeasible when communications bandwidth is limited. We instead consider

the expected true regret of choosing 𝜏 given our current information 𝐷𝑡

𝑟(𝜏 ; 𝐷𝑡) = E𝑌𝑀 |𝐷𝑡

[︁
𝑟(𝜏 ; 𝐷𝑌𝑀

𝑡 )
]︁

. (4.12)

Referring back to Section 4.2, we can rewrite our original regret heuristic as:

ℎSingle Regret(𝑧𝑖) = E𝑦𝑖|𝐷𝑡

[︂
max

𝜏 ′
𝑅(𝜏 ′; 𝐷𝑖

𝑡)−𝑅(𝜏 ; 𝐷𝑖
𝑡)
]︂

(4.13)

= E𝑦𝑖|𝐷𝑡

[︁
𝑟(𝜏 ; 𝐷𝑖

𝑡)
]︁

. (4.14)

According to our new notation, 𝐷𝑖
𝑡 = 𝐷𝑡 ∪ (𝑧𝑖, 𝑦𝑖) = 𝐷′

𝑡, so the new definition is

equivalent to the original one. This definition is equivalent to expected true regret if

there is only a single unlabelled question (i.e., if 𝑀 = 1). In this section, we will argue

that the success of the choosing queries to maximize the regret-based heuristic in the

experiments of Section 4.3 is due to that being an effective approach to minimize

𝑟(𝜏 ; 𝐷𝑡), which is much harder to compute or work with directly.

4.4.1 Minimizing Regret and Maximizing Reward

In some ways, regret and reward are very similar; for example, the maximum expected

reward trajectory is the same as the minimum expected regret trajectory

𝜏 ⋆
max reward := argmax

𝜏
E𝑌𝑡|𝐷𝑡

[︁
𝑅(𝜏 ; 𝐷𝑌𝑡

𝑡 )
]︁

(4.15)

𝜏 *
min regret := argmin

𝜏
E𝑌𝑡|𝐷𝑡

[︂
max

𝜏 ′
𝑅(𝜏 ′; 𝐷𝑌𝑡

𝑡 )−𝑅(𝜏 ; 𝐷𝑌𝑡
𝑡 )
]︂

(4.16)

= argmin
𝜏

E𝑌𝑡|𝐷𝑡

[︁
−𝑅(𝜏 ; 𝐷𝑌𝑡

𝑡 )
]︁

= 𝜏 ⋆
max reward.

This is why we can simply refer to either trajectory as 𝜏 ⋆
𝐷𝑡

, denoting that it is the

optimal trajectory based on the available information 𝐷𝑡.

However, the intuitions behind the two ideas are very different. In particular, one

must consider that the true reward of each trajectory is fixed. This means that no

matter how many questions the robot asks, the reward associated with a particular
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trajectory choice 𝜏 will not change; the only quantities that are updated are the

robot’s noisy estimates of the trajectories respective reward values. Hopefully, as more

labels are received, these estimate converge towards the true reward of each trajectory.

Uncertainty reduction techniques seek to reduce the uncertainty in these estimates as

quickly as possible, but this is not always useful.

To see this, consider the fact that the robot does not need every label to know with

high confidence that it has chosen the highest value path, as shown by the following

propositions.

Definition 1. Let {𝜏𝑖}𝑁
𝑖=1 be candidate trajectories, and let 𝑌𝑀 = {𝑦𝑗}𝑀

𝑗=1 ⊆ 𝑌𝑡 be the

unknown labels corresponding to the unlabeled queries in 𝑄𝑡. As labels are received,

the expected reward of each trajectory is assumed to converge to 𝑅(𝜏𝑖; 𝐷𝑌𝑀
𝑡 ) regardless

of the order in which those labels are selected. Furthermore, 𝜏 is called an optimal

trajectory if and only if 𝑅(𝜏 ; 𝐷𝑌𝑀
𝑡 ) ≥ 𝑅(𝜏𝑖; 𝐷𝑌𝑀

𝑡 ) ∀𝑖.

Lemma 1. If 𝑟(𝜏 ; 𝐷𝑡) = 0, then 𝜏 is an optimal trajectory.

Proof. If 𝑟(𝜏 ; 𝐷𝑡) = 0 then, for any non-zero probability realization of the unknown

labels {𝑦𝑗}𝑀
𝑗=1, 𝑟(𝜏 ; 𝐷𝑌𝑀

𝑡 ) = 0 and thus

max
𝑖

𝑅(𝜏𝑖; 𝐷𝑌𝑀
𝑡 )−𝑅(𝜏 ; 𝐷𝑌𝑀

𝑡 ) = 0

=⇒ 𝑅(𝜏 ; 𝐷𝑌𝑀
𝑡 ) ≥ 𝑅(𝜏𝑖; 𝐷𝑌𝑀

𝑡 ) ∀𝑖.

Proposition 1. If ∃𝑚 ≤𝑀 such that, for some ordering of the first 𝑚 examples and

labels, 𝑟(𝜏 ; 𝐷𝑌𝑀
𝑡 ) = 0, then 𝜏 is an optimal trajectory.

Proof. Follows trivially from the proof of Lemma 1, where there is no regret for any

non-zero probability realization of the remaining unknown labels.

Proposition 2. Assume the error in each reward estimate is bounded by some 𝑓𝑖(𝑚)

that is monotonically decreasing and satisfies 𝑓𝑖(𝑀) = 0, such that

⃒⃒⃒
𝑅(𝜏𝑖; 𝐷𝑌𝑚

𝑡 )−𝑅(𝜏𝑖; 𝐷𝑌𝑀
𝑡 )

⃒⃒⃒
≤ 𝑓𝑖(𝑚). (4.17)
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If ∃𝑚 ≤𝑀 such that 𝑅(𝜏𝑖; 𝐷𝑌𝑚
𝑡 )− 𝑅(𝜏𝑗; 𝐷𝑌𝑚

𝑡 ) ≥ 𝑓𝑖(𝑚) + 𝑓𝑗(𝑚) for all 𝑗 ̸= 𝑖 then 𝜏𝑖

is an optimal trajectory.

Proof. Follows by simple substitution of the inequalities

𝑅(𝜏𝑖; 𝐷𝑌𝑚
𝑡 )−𝑅(𝜏𝑗; 𝐷𝑌𝑚

𝑡 ) ≥ 𝑓𝑖(𝑚) + 𝑓𝑗(𝑚) (4.18)

=⇒ 𝑅(𝜏𝑖; 𝐷𝑌𝑚
𝑡 )− 𝑓𝑖(𝑚) ≥ 𝑅(𝜏𝑗; 𝐷𝑌𝑚

𝑡 ) + 𝑓𝑗(𝑚) (4.19)

(4.17) =⇒ −𝑓𝑖(𝑚) ≤ 𝑅(𝜏𝑖; 𝐷𝑌𝑚
𝑡 )−𝑅(𝜏𝑖; 𝐷𝑌𝑀

𝑡 ) ≤ 𝑓𝑖(𝑚) (4.20)

𝑅(𝜏𝑖; 𝐷𝑌𝑚
𝑡 )− 𝑓𝑖(𝑚) ≤ 𝑅(𝜏𝑖; 𝐷𝑌𝑀

𝑡 ) (4.21)

(4.17) =⇒ −𝑓𝑗(𝑚) ≤ 𝑅(𝜏𝑗; 𝐷𝑌𝑚
𝑡 )−𝑅(𝜏𝑗; 𝐷𝑌𝑀

𝑡 ) ≤ 𝑓𝑗(𝑚) (4.22)

𝑅(𝜏𝑗; 𝐷𝑌𝑚
𝑡 ) + 𝑓𝑗(𝑚) ≥ 𝑅(𝜏𝑗; 𝐷𝑌𝑀

𝑡 ) (4.23)

Thus, using (4.19), (4.21), and (4.23)

𝑅(𝜏𝑖; 𝐷𝑌𝑀
𝑡 ) ≥ 𝑅(𝜏𝑖; 𝐷𝑌𝑚

𝑡 )− 𝑓𝑖(𝑚) ≥ 𝑅(𝜏𝑗; 𝐷𝑌𝑚
𝑡 ) + 𝑓𝑗(𝑚) ≥ 𝑅(𝜏𝑗; 𝐷𝑌𝑀

𝑡 )

∴ 𝑅(𝜏𝑖; 𝐷𝑌𝑀
𝑡 ) ≥ 𝑅(𝜏𝑗; 𝐷𝑌𝑀

𝑡 ) ∀𝑗 ̸= 𝑖.

So 𝜏𝑖 is an optimal trajectory as defined in Definition 1.

The importance of Propositions 1 and 2 is that, while the expected reward of

each trajectory converges to some arbitrary value, the expected regret of any optimal

trajectory converges to 0 once the robot has asked enough questions. Importantly,

this is true as long as the uncertainty bounds decrease after each question. Given a

probabilistic bound on 𝑅(𝜏𝑖; 𝐷𝑌𝑚
𝑡 ) instead of the strict bound 𝑓𝑖(𝑚), we would have

derived a probabilistic guarantees for Propositions 1 and 2.

The expected regret therefore represents the optimality gap: an estimate of how

much additional reward could be collected if the robot had the opportunity to ask

questions. Given this perspective, regret-based approaches are focused on asking

questions which help to guarantee that the robot knows which actions are optimal or

near-optimal.
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4.4.2 Other Regret-Based Heuristics

Based on the previous results, a regret-based heuristic should prioritize labeling the

queries that most quickly minimize the expected regret. A straightforward objective is

to (greedily) label the query that results in the largest expected decrease in expected

regret:

ℎexp-regret(𝑞) = 𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑡)− E𝑦|𝑞,𝐷𝑡

[︁
𝑟(𝜏 ⋆

𝐷𝑦
𝑡
; 𝐷𝑦

𝑡 )
]︁

(4.24)

𝐷𝑦
𝑡 = 𝐷𝑡 ∪ {(𝑞, 𝑦)} .

This computes the difference in expected regret between the optimal trajectory

at time 𝑡 without knowing (𝑞, 𝑦), which is 𝜏 ⋆
𝐷𝑡

, compared to the optimal trajectory

knowing (𝑞, 𝑦), which is 𝜏 ⋆
𝐷𝑞

𝑡
. Unfortunately, it is generally intractable to compute

expected regret 𝑟(𝜏 ; 𝐷𝑡) for any 𝜏 since it is an expectation over the potentially large

number of variables in 𝑌𝑡 with unknown distributions. In fact, the number of unknown

labels increases linearly over the course of the mission, so the complexity of the

expectation grows exponentially. Thus, instead of computing this heuristic directly,

we will begin with a very simple approximation and gradually build upon it. The

heuristics considered are presented together in Table 4.2.

Single-Query Regret for Binary Reward

As discussed earlier, the single-query heuristic ℎRegret discussed in Section 4.2 is

equivalent to expected regret if there is were a single unknown label. In the experiments

in Section 4.3, we assumed that 𝑦 was binary valued 𝑦 ∈ ℛ = {0, 1} and Bernoulli

distributed with estimated mean E[𝑦 | 𝑞, 𝐷𝑡] = 𝜇(𝑦; 𝑞, 𝐷𝑡) ∈ [0, 1]. The estimate of

the mean was computed using the reward model as 𝜇(𝑦; 𝑞, 𝐷𝑡) = 𝑅(𝑞; 𝐷𝑡). Thus, the

heuristic was computed as:

ℎbinary-regret(𝑞) = 𝑅(𝑞; 𝐷𝑡)𝑟
(︁
𝜏 ⋆

𝐷𝑡
; 𝐷𝑡 ∪ (𝑞, 1)

)︁
+ (1−𝑅(𝑞; 𝐷𝑡)) 𝑟

(︁
𝜏 ⋆

𝐷𝑡
; 𝐷𝑡 ∪ (𝑞, 0)

)︁
.

(4.25)
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Unfortunately, this approach cannot be easily adapted for non-binary rewards, and

especially not real-valued rewards.

Real-Valued Regret

There are many ways in which the single-query regret heuristic could be extended

to support real-valued rewards. However, in order to compute the expectation in

Equation 4.13 we must have some knowledge of the probability distribution. For

example, if we assume that the reward space ℛ = [𝑎, 𝑏] ⊂ R is bounded, we can

estimate the mean 𝜇𝑦 and variance 𝜎2
𝑦 of the reward label 𝑦 for any particular query 𝑞.

Nonetheless, we will not assume that the unknown labels are normally distributed; in

fact, we will not assume any distribution.

Cantelli’s inequalities provide probabilistic bounds on the value we will receive for

any particular label, based on only its predicted mean and variance:

Pr
⎛⎝𝑦 − 𝜇𝑦 ≤ 𝜎𝑦

√︃
1− 𝛿

𝛿

⎞⎠ ≥ 1− 𝛿 (4.26)

Pr
⎛⎝|𝑦 − 𝜇𝑦| ≤ 𝜎𝑦

√︃
1− 𝛿

𝛿

⎞⎠ ≥ 1− 2𝛿. (4.27)

One approach to handling real-valued regret is to consider the (1− 2𝛿)-probability

case by computing the regret for each of 𝑦 = 𝜇𝑦 ± 𝜎𝑦

√︁
(1− 𝛿)/𝛿, while ensuring that

𝑦 stays within the interval [𝑎, 𝑏]. This can be used to upper bound regret even for

real-valued reward and unknown distributions, as seen in the following subsection.

Minimizing Worst-Case Regret

A limitation of the single-query regret heuristic is that it underestimates the true

regret. In particular, the single-query regret may be zero even if the expected regret

is relatively high. This occurs because the single-query heuristic does not take into

account interactions between the answers of multiple queries, which are especially

significant between correlated queries. To best understand these interactions and their

impact on regret, we shift our analysis from focusing on queries and their unknown
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labels to focus instead on how multiple queries interact with the trajectories.

While the robot does not know most of the labels, it can use the labels it does have

to estimate the mean and variance of the rest. Then, with the following theorem it

can compute a probabilistic upper bound of the regret of its current trajectory choice.

Theorem 1. Let y𝑡 ∈ R𝑀 be the random variable representing the unknown labels

𝑌𝑀 , with known 𝜇𝑡 := E [y𝑡 | 𝐷𝑡] and 𝑆𝑡 := E
[︁
(y𝑡 − 𝜇𝑡)(y𝑡 − 𝜇𝑡)⊤ | 𝐷𝑡

]︁
. Suppose we

are given 𝜌𝜏𝑖
∈ R𝑀 such that Δ𝑅(𝜏𝑖; 𝐷𝑡) ≤ 𝜌⊤

𝜏𝑖
(y𝑡 − 𝜇𝑡),∀𝑖. Then, the regret of a

trajectory choice 𝜏 ⋆
𝐷𝑡

has the following probabilistic upper bound:

Pr
(︃

𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑌𝑡
𝑡 ) ≥ max

𝜏

√︃
1− 𝛿

𝛿
‖𝑚𝑡(𝜏)‖ − 𝑟(𝜏 ; 𝐷𝑡)

)︃
≤ 𝛿 (4.28)

𝑚𝑡(𝜏) = 𝑆0.5
𝑡

(︂
𝜌𝜏 − 𝜌𝜏⋆

𝐷𝑡

)︂
(4.29)

Proof. Let Δ𝑅(𝜏 ; 𝐷𝑡) := 𝑅(𝜏 ; 𝐷𝑌𝑀
𝑡 )−𝑅(𝜏 ; 𝐷𝑡) and rewrite (4.11) as

𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑌𝑀
𝑡 ) = max

𝜏
(𝑅(𝜏 ; 𝐷𝑡) + Δ𝑅(𝜏 ; 𝐷𝑡))−

(︁
𝑅(𝜏 ⋆

𝐷𝑡
; 𝐷𝑡) + Δ𝑅(𝜏 ⋆

𝐷𝑡
; 𝐷𝑡)

)︁
= max

𝜏

(︁
Δ𝑅(𝜏 ; 𝐷𝑡)−Δ𝑅(𝜏 ⋆

𝐷𝑡
; 𝐷𝑡)

)︁
− 𝑟(𝜏 ; 𝐷𝑡).

Use Cantelli’s inequality (4.26) to show that

Pr
⎛⎝Δ𝑅(𝜏 ; 𝐷𝑡) ≥

√︃
1− 𝛿

𝛿

⃦⃦⃦
𝑆0.5

𝑡 𝜌𝜏

⃦⃦⃦⎞⎠ ≤ 𝛿

Thus, even when it is intractable to compute the expected regret (due to the

unknown labels in 𝑌𝑡 with unknown distributions), by using Theorem 1 the robot can

upper bound the regret of any particular trajectory choice using only estimates of

each unknown label’s mean and variance. One heuristic to minimize this bound for

some probability threshold 𝛿 is, for 𝜏 ′ = argmax𝜏

√︁
1−𝛿

𝛿
‖𝑚𝑡(𝜏)‖ − 𝑟(𝜏 ; 𝐷𝑡):

ℎ(𝑞) =
⃒⃒⃒
[𝑚𝑡(𝜏 ′)]𝑞

⃒⃒⃒
. (4.30)
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Minimizing Maximum Expected Regret

Minimizing the worst-case regret requires setting the probability threshold 𝛿, which

can have a significant impact on determining the query to label next. In particular,

values of 𝛿 near 1 will give the trivial result that Pr(𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑌𝑡
𝑡 ) ≥ 0) ≤ 1 whereas

values near 0 will greatly overestimate the true regret. To set 𝛿, we use the following

corollary to find the value that minimizes the maximum expected regret.

Corollary 1. Suppose that the unknown reward labels are bounded as 0 ≤ 𝑦𝑖 ≤ 1 for

𝑖 = 1, . . . , |𝑌𝑡| and that the maximum trajectory length is 𝑁 . Then, it holds that:

𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑡) ≤ min
𝛿

max
𝜏

(𝛾𝜏 − 𝛿)
(︃√︃

1− 𝛿

𝛿
‖𝑚𝑡(𝜏)‖ − 𝑟(𝜏 ; 𝐷𝑡)

)︃
+ 𝛿𝑁 (4.31)

𝛾𝜏 = ‖𝑚𝑡(𝜏)‖2

‖𝑚𝑡(𝜏)‖2 + 𝑟(𝜏 ; 𝐷𝑡)2 (4.32)

Proof. By Theorem 1, then 𝛿 ≥ 𝛾𝜏 =⇒
√︁

1−𝛿
𝛿
‖𝑚𝑡(𝜏)‖ − 𝑟(𝜏 ; 𝐷𝑡) ≤ 0. It also holds

that 0 ≤ 𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑌𝑡
𝑡 ) ≤ 𝑁 due to the bounds on the reward labels. Since the bound in

Theorem 1 must hold for any 𝛿 ∈ [0, 1], then max𝜏 (𝛾𝜏−𝛿)
(︁√︁

1−𝛿
𝛿
‖𝑚𝑡(𝜏)‖ − 𝑟(𝜏 ; 𝐷𝑡)

)︁
+

𝛿𝑁 is an upper bound of 𝑟(𝜏 ⋆
𝐷𝑡

; 𝐷𝑡) for any 𝛿. By choosing 𝛿 to minimize this quantity

we find the tightest upper bound on expected regret.

The value of 𝛿 that minimizes (4.31) will represent a balance between regret bounds

that are too optimistic or too conservative. Note that once 𝛿 is fixed to this value,

choosing a query to minimize (4.31) is equivalent to choosing a query to minimize

(4.28); thus Corollary 1 does not provide a new approach to query selection.

4.4.3 Multi-Query Regret

One more issue with the heuristics presented thus far is that they only consider greedy

approaches to minimizing expected regret based on asking a single question. However,

we have not found any theoretical results to suggest that the optimal next query can

be identified without considering all possible combinations of queries. In fact, it is

likely that the fastest way for the robot to reduce its regret will require consideration
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of sets of questions that could be asked and the optimal order in which to ask the

questions in those sets. This is because, for many reward models (including logistic

regression) every unknown label is correlated to every other unknown label, and the

effect of a new label on the model will depend on all previous labels.

Fortunately, some of the heuristics considered here might be easily adapted to

consider combinations of queries. In particular, the vector 𝑚𝑡(𝜏) defined in Equa-

tion 4.29 is interesting in that the 𝑚th element represents, in a sense, the expected

impact of asking the 𝑚th label on trajectory 𝜏 . It is strongly related to uncertainty

in the reward of trajectory 𝜏 based on the relationship E[Δ𝑅(𝜏 ; 𝐷𝑡)2] = ‖𝑚𝑡(𝜏)‖2.

By concatenating these vectors into a matrix 𝑀𝑡 =
[︂
𝑚𝑡(𝜏1) . . . 𝑚𝑡(𝜏𝑁)

]︂
, it may

be possible to use the rows of this vector to understand the cumulative impact of a

query on the robot’s reward model, turning the multi-query selection problem into a

matrix row-selection problem. For certain objective functions, these problems are well

studied in the field of spectral graph theory.

4.4.4 Conclusions

Regret-based online active learning criteria are effective at maximizing the reward

collected because they explicitly model the impact of queries on the trajectory choices

available. In particular, they focus on acquiring the information that makes the robot

confident it has chosen the best trajectory, even if there is still uncertainty about

the exact reward value of each trajectory. In bandwidth-limited environments, this

is much more effective than simply reducing the largest uncertainties in the reward

model which may not always be relevant to identifying the highest scientific value

trajectories. This is why regret-based criteria can outperform information-theoretic

criteria in these contexts. While the regret-based criterion presented in Section 4.2

was quite simple, more sophisticated regret based criteria are being explored that can

better estimate the true change in expected regret associated with a query through

modelling the interactions between queries.
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Chapter 5

Conclusions and Future Work

This thesis began by asking how a team composed of humans and robots could work

together to explore new environments as effectively as possible, even if it were difficult

for them to communicate with each other. It turned out that there were few guiding

principles in the field of human-robot cooperative exploration, and fewer still general-

purpose approaches to scientific exploration. We presented three main axes along which

a robotic explorer’s capability for autonomous scientific exploration in bandwidth-

limited environments could be measured: the ability to model the spatial distribution

of relevant phenomena, the ability to learn and model the mission objectives, and the

ability to plan trajectories with high scientific value according to these models. We

labelled certain milestones along these axes in Table 1.3, and found that no current

scientific explorers have yet reached the higher levels of autonomy. However, we

have now successfully demonstrated in simulations the capability for autonomy at

the second highest level, human-robot cooperative exploration, without requiring

domain-specific modelling and with significant improvements in the effectiveness of

scientific exploration regardless of the bandwidth limitation.

In our review of previous works, we found that existing path planning algorithms

such as Monte Carlo Tree Search could be used to plan trajectories with high scientific

value, if given a spatial model of relevant scientific phenomena and a reward model

which estimated how relevant these phenomena were to the mission objectives. However,

there was little prior research into the design of general-purpose spatial models and
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online reward model learning over low bandwidth. This motivated our contributions

into these two areas, wherein we extended a previous solution for unsupervised

semantic mapping into a general-purpose approach to spatial observation modelling,

and presented an approach for learning complex reward models online with as few

examples as possible using a novel active learning strategy. These will be discussed

further in the following section.

5.1 Thesis Contributions

Here we will present a brief summary of each of the contributions made in the previous

chapters.

5.1.1 Topic-Model Based Spatial Observation Modelling

This thesis’ first major contribution was identifying the utility of spatio-temporal topic

models to aid in scientific exploration, and particularly their suitability as spatial

observation models. In Chapter 3, we presented extensions to BNP-ROST [45] which

made it more suitable for large-scale semantic mapping of 3D environments. This

new “Sunshine” system enabled online mission summarization, a valuable tool for

scientists. Sunshine was also revealed to be an effective spatial observation model,

as it is highly effective at novelty detection and its Bayesian prior for the semantic

labels of unexplored areas was exactly the low-dimensional semantic representation

we needed for spatial observation modelling. We concluded this chapter by presenting

techniques for tuning Sunshine in order for it to best model the environment to be

explored; in particular, we demonstrated how Sunshine could be tuned to capture the

spatial “patchiness” and complexity of natural environments.
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5.1.2 Online Active Reward Learning for Efficient Mission

Objective Understanding

This thesis’ next major contribution was the novel “regret”-based active learning

criterion presented in Chapter 4, which was much better suited than previous criteria

for guiding human-robot communication in bandwidth-limited environments. In

particular, Section 4.3 demonstrated how a regret-based criterion could outperform an

information theoretic active learning criterion in enabling a robotic explorer to collect

as much reward as possible during a mission. Perhaps counter-intuitively, this was

accomplished despite the information-theoretic approach enabling the robot to learn

the scientific objectives with less error by reducing the reward model uncertainty faster.

Section 4.4 presented intuitive justification for why it is not necessary to eliminate all

uncertainty in the reward model in order for the robot to plan high scientific value

trajectories; it found that prioritizing the reduction of some uncertainties more than

others could help the robot to more quickly reduce or eliminate the suboptimality of

its trajectory choice.

5.1.3 Other Contributions

This thesis laid new groundwork for understanding how autonomy can play a role in

efficient co-robotic scientific exploration. This began by presenting the taxonomy of

robotic scientific exploration in Section 1.4, with which previous robotic exploration

systems capable of varying degrees of autonomy could be organized. It continued

with the Co-Robotic Visual Exploration POMDP presented in Section 4.1, which is a

structured but flexible approach to managing human-robot collaboration and high-

dimensional observation spaces. This thesis provided general principles for choosing

the POMDP’s observation model, reward model, and active learning criterion. Finally,

the experiments in Section 4.3 revealed how communication bandwidth constraints

could impact the effectiveness of an autonomous exploration system, and how even

a small amount of communication can, with the right utilization, enable much more

efficient scientific exploration than traditional approaches.
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5.2 Future Work

This section will explore four avenues through which the effectiveness of co-robotic

scientific exploration could be improved further. Subsection 5.2.1 will explore potential

improvements to the spatial observation model presented in Chapter 3, while Subsec-

tion 5.2.2 will discuss one ongoing area of investigation into improving regret-based

active learning by considering multiple queries at a time. Subsection 5.2.3 will revisit

the idea of multi-robot federated exploration discussed in Section 1.4 and discuss

approaches to address the challenge of associating the semantic representations learned

by various robots’ spatial observation models. Finally, Subsection 5.2.4 will discuss the

importance of developing public datasets that could be used for comparing approaches

to co-robotic scientific exploration.

5.2.1 Hierarchical and Long-Range Spatial Observation Mod-

els

One area for improvement in the Sunshine system presented in Chapter 3 is its

vocabulary of visual words. Due to the vocabulary consisting of very low-level image

features, many types of words are often required to describe a single phenomena, thus

making the topic-word distributions quite complex and hard to learn. Previous work

has explored replacing this vocabulary with higher-level image features derived from a

Convolutional Neural Network [35]. This has the advantage of enabling the topic model

to learn good topics much faster by requiring fewer word types to characterize each

topic. Hierarchical topic models have shown remarkable flexibility for modelling highly

complex visual hierarchies (e.g., [91]), but these are usually limited by requirement

for heavy computational power not yet available on mobile robotic platforms. If the

topic model is trained on a vocabulary that requires fewer words to characterize each

topic, or if the available compute power on robotic platforms increases, learning these

hierarchies may become more computationally feasible. In this case, future robotic

explorers may be able to model the scientist’s interest in more abstract phenomena

like ecosystems, rather than simple visually distinct objects.
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Another opportunity to improve Sunshine as a spatial observation model is to

develop a more sophisticated spatial prior than the neighbourhood prior for making

predictions about the semantic content of nearby locations. The current prior predicts

that the phenomena at a new location will be a simple distance-weighted mixture

of the phenomena observed at nearby locations, but natural phenomena can have

much more complex spatial distributions and modelling these is an area of active

research [29, 79]. Recent work has explored extending spatio-temporal topic models

to capture more complex spatial distributions by combining them with Gaussian

Processes (GPs) [87]. Incorporating such an extension, or domain-specific extensions

for modelling what is known about specific phenomena of interest (e.g., marine fauna),

may lead to much more accurate spatial observation modelling and therefore increased

scientific return.

5.2.2 Multi-Query Regret-Based Active Learning Objectives

In Section 4.4, we demonstrated that the change in expected regret based on asking

a single question is an effective active learning criterion. We also discussed how any

active learning criterion which seeks to minimize the expected regret of the robots

actions as quickly as possible (thus maximizing the amount of reward collected during

the mission) must consider how the choice of query will affect future queries. This is a

multi-query online active learning problem, and we have ongoing study into this area.

5.2.3 Multi-Robot Federated Exploration

The highest level of autonomy in co-robotic scientific exploration presented in Table 1.3

is Multi-Robot Federated Exploration, and describes a multi-robot system in which

the robots communicate among each other to disseminate relevant information more

efficiently. For example, sharing observations of known locations enables each robot to

build a better spatial observation model, especially if the robots are far apart, while

sharing observation-label pairs enable each robot to learn the reward model quickly

without unnecessarily repeating queries to the scientist. If there is high communication
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bandwidth availability between robots, it may be feasible to share the raw image

observations between robots, making it easy to directly incorporate them in the new

robot’s models. However, in some environments such as the ocean (see Section 1.2),

communication between robots is very limited if they are more than just a couple

hundred metres apart from each other.

One approach to address this issue is for the robots to share their semantic repre-

sentations of images among each other, rather than the raw images. However, in the

case of topic-model based semantic image representations, one robot’s representation

is not easily interpretable to another robot because they learn these representations

online. Thus, the robots are likely to use a variety of distinct semantic labels to

represent the same phenomenon, especially if there are many different phonomena in

the environment. Some previous work which started to address this issue explored

sharing the topic-word distribution matrices between robots regularly, thus ensuring

that all robots would eventually converge towards shared semantic representations [23].

However, this approach has some key limitations: first, it requires each robot to send

and receive the entire topic model on each update, which may still be costly over a

limited communications channel. Second, it required that after every merge each robot

replaced its individual model with the new global model, which can cause problems if

the round-trip communication latency involved in a merge is high (and thus the new

global model becomes outdated). Finally, it fails to detect the case where two or more

topics learned by one robot correspond to a single topic learned by another, and these

failed merges cause the individual topic models to converge more slowly.

A new approach that we are exploring with Kaveh Fathian and Kasra Khosoussi

is to solve the association problem between each robots unique set of semantic labels.

This enables the robots to communicate labels and observations among each other,

and potentially still merge topic models if appropriate, with fewer drawbacks and less

communication required. Of particular interest is using the CLEAR algorithm [33],

which is capable of efficiently solving the multi-agent data association problem to find all

sets of equivalent semantic labels across all robots, to find much better correspondences

than the 1-to-1 correspondences solved using the Hungarian algorithm in [23].
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5.2.4 High Fidelity Robotic Exploration Datasets

It would be very beneficial to researchers in autonomous science and co-robotic

exploration to have access to a consistent set of datasets. In the experiments in

Section 4.3, the simulation environment was created from scratch, and while some of

the data used was derived from the map of a real coral reef there are no community-

recognized metrics by which to describe this dataset. For future works, it would be

preferable if the research community had a set of datasets of natural environments

representative of the spatial sparsity, concentration, and scale of various phenomena

of interest. Given this, future work in areas like spatial observation modelling and

online active reward learning could better support claims that they outperform

baselines at collecting observations of more/less spatially sparse phenomena, more/less

concentrated phenomena, larger/smaller scale phenomena, and so on.

5.3 Closing Remarks

Scientific exploration is an exciting endeavour that unifies humanity through our

endless curiosity to understand the strange and the unknown. Given the extraordinary

effort and expense that goes into robotic scientific exploration of environments like

the deep sea and other planets, it is essential to maximize the productivity of our

robotic explorers. Historically, however, this productivity has been strictly limited by

our ability to command and control these explorers in highly remote and bandwidth-

limited environments. In this thesis, we found that increasing the level of autonomy

of these explorers to the point of human-robot cooperative exploration resulted in

the mission producing several times as many scientifically interesting observations

when compared to traditional techniques. In particular, we have shown that our novel

approaches to spatial observation modelling and online active reward learning, which

explicitly consider bandwidth limitations, enable autonomous planning of high scientific

value trajectories with minimal communication. We hope that our contributions to

these areas have a significant long-term impact in the future of co-robotic scientific

exploration.
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Appendix A

Figures

Figure A-1: An example of a path followed by the deep sea AUV Sentry. The red
trackline resembles a lawnmower pattern, and is an example of Boustrophedonic
coverage of the target area [14]. The target area is usually chosen carefully based on
prior beliefs about something of interest existing in the general vicinity. Colour is
used to indicate ocean depth in metres. © WHOI, 2015 [55].
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Figure A-2: This figure, which was adapted from Figure 4 in [35], shows the mission
summary of an AUV deployment described in [79]. Each vertical slice of the timeline
shows the proportion of semantic labels (e.g., colours in Figure 2-1 right image)
observed at a particular moment during the mission. The timeline was produced by a
spatio-temporal topic model, while the words used to label the colours were added
manually. This timeline represents almost 2300 images (over 2.5 hours of mission
data) using less than 100 KB, making it compact enough to stream over even very
low communication bandwidth channels. Furthermore, since this representation uses
only a handful of unique labels, it is feasible for a scientist to request representative
examples of them; it only required inspecting around 5 images to be able to add words
to annotate the meaning of each colour.

Figure A-3: Here we show the WARPLab AUV “Red”, a modified BlueRobotics
BlueROV, exploring an artificially created underwater environment at WHOI. Ap-
peared in [42].
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Figure A-4: These maps were randomly generated by sampling from the BNP-ROST
prior described in Section 3.1 for different values of the hyperparameters 𝛼 and 𝛾. As
discussed in Section 3.2, the prior can be tuned to create maps with varying degrees
of “patchiness” and numbers of different semantic labels (topics). Appeared in [42].
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