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Abstract

Convex optimization is used to solve the simultaneous vehicle and mission design
problem. The objective of this work is to develop convex optimization architectures
that allow both the vehicle and mission to be designed together. They allow the
problem to be solved very quickly while maintaining similar fidelity to comparable
methods. Multiple architectures are formulated, and the architectures are imple-
mented and evaluated for a sounding rocket design problem and a hydrogen aircraft
design problem. The methodology proves successful in designing the sounding rocket
while taking into account the optimal trajectory and control strategy and extended to
a multi-mission design case. The hydrogen aircraft was successfully designed, allow-
ing for both the cryogenic tank design to be chosen in conjunction with the mission
profile. For the rocket design problem, the integrated vehicle and mission problem
can only be combined into alternating and integrated approach, and the integrated
architecture for convergence to solution in 50% computation time while reaching sim-
ilar solution. For the hydrogen aircraft case, a 50+% decrease in fuel burn was able to
be achieved compared to regular kerosene with an integrated optimization approach.
Future work includes studying the convergence properties as well as increasing the
robustness of the architectures.
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Chapter 1

Introduction

This chapter introduces the simultaneous vehicle and mission design problem, method-

ologies used to solve both sets of problems, and the goals and layout of this thesis.

1.1 Motivation

Current vehicle designs point towards the following trends:

• Complex vehicle(s): aerospace vehicles have become more complex. They are

not simply just the sum of the classical disciplines of aerodynamics, structures,

and propulsion. They include controls, software, complex mechanisms/moving

parts, mission systems, etc. Furthermore, vehicles are also asked to interact with

each other, and there are usually many vehicles flying simultaneously whether

cooperatively or not.

• Complex mission(s): missions are more complex. Rather than simply flying

from point A to point B, flight procedures and the squeezing of all possible per-

formance out of the vehicle is making the missions more complex. Furthermore,

vehicles are asked to fly multiple missions, sometimes at the same time. This

only increases the complexity of the missions.
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• Tightly coupled vehicle and mission performance: complexity of vehicle and mis-

sion drive each other. The vehicle dictates what mission can be accomplished,

and the mission that the operator wants to accomplish drives the requirements

of the vehicle. As both become more complex, they become more tightly coupled

in that one small change in either will significantly affect the other.

Two modern day examples include Urban Air Mobility (UAM) [18] and hyper-

sonics [12]. In UAM, the trajectory that the vehicle is designed to heavily influences

which configuration and battery the vehicle will look like, and Clarke defines the

mission envelope first before diving into configuration studies [18]. For hypersonics,

Bowcutt includes a trajectory optimization in the MDO loop to ensure that the ve-

hicle closes despite the fact that mission being flown is a relatively simple one: cruise

[12]. That inclusion is necessary for the vehicle design to close.

With these trends in mind, it is necessary to look at the design process to ensure

that these trends are captured. The typical aerospace vehicle design process can be

summarized through the following high level process as shown in Figure1-1 [3] given

in the NASA System Engineering Handbook. Starting from the left, a need or want

for a mission and associated vehicle is put into the process. The need or want is first

defined into a mission or a plan of operation. This definition usually defines how

the need or want is going to be fulfilled as well as the necessary components/vehicles.

The end product can be as simple as a mission/control profile or as complex as a

Concept of Operations (CONOPS). Specific details about specific operations are of-

ten scarce in these definitions, and mostly left until the detailed design phases to be

determined. Once the mission is defined, requirements for the vehicle are ”derived”,

and given to a vehicle design team who then produces a design that meets those re-

quirements. The vehicle design is then fed back into the mission to determine whether

the actual vehicle performance evaluated through a mission simulation actually sat-

isfies the need and want, If the need/want is satisfied, the process ends and detailed
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Figure 1-1: NASA Systems Engineering Handbook Design System Design Process [3]

design/manufacturing usually occurs. If it is not, then the process begins again with

the mission being redefined, taking into account the lessons learned from the previous

cycle. The mission development begins in the ”stakeholder expectations” box where

the CONOPS is developed. The recursive behavior of the process is apparent in both

figures. Further details about this normative process can be found in the NASA

Systems Engineering Handbook [3].

Traditionally, mission definition and operations analysis is usually carried out

independently of the vehicle design process, and often times not thought of as an

integral part of the conceptual design process. Figure 1-1 has no mention of the

mission and/or operation design in the design solution definition box: the only time

mission considerations are taken into account is in the stakeholder analysis or the

requirements definition. This often times results in a sub-optimal vehicle because the

stakeholder expectations has no input on feasibility of reaching those expectation as

well as other potential inputs from engineering. That may result in the system that

is not reaching its full potential or even worse, does not fulfill the needs and wants
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of the customer. A very challenging or nearly infeasible mission given the state of

technology at that time(e.g. heat-resistant materials) can be a major cost driver.

Conversely a mission profile that is not aggressive or challenging enough may leave

potential of a flight vehicle unexplored.

One way to remedy this separation and resulting sub-optimality is to design and/or

optimize the mission and the vehicle at the same time: the goal of this thesis is to find

a way such that both design spaces can be explored together, while ideally preserving

guarantees of global optimality. Rather than simply defining the mission early, we

will allow as much of the detailed mission to change in the vehicle design phase or in

other words, allow them to become design variables. For example, for a commercial

aircraft, rather than defining apriori that the vehicle must climb to 35000 ft and

cruise there, we allow the entire mission profile to be a knob that can be tuned in

attempting to find the best vehicle-mission combination. Developing methods and

tools that can do this will allow the focus to be spent on maximizing fulfillment of

the need/want rather than on unnecessary time spent iterating. This thesis focuses

on developing the methods and tools that allow for this type of design optimization.

1.2 Literature Review

Methodologies for designing either the vehicle and/or the mission are introduced

here specifically for aerospace vehicles. The sections are split between introducing

different vehicle and mission design methodologies and tools with differing levels of

fidelity and aggregation. A brief overview of current vehicle and mission design work

is also reviewed. The primary takeaways from the prior works found are summarized

at the end.
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1.2.1 Vehicle Design

Aerospace vehicles are complex systems, and therefore require processes and method-

ologies that account for that. However, as computational power has increased and

become cheaper, the design process has been adapted to account for increased design

space exploration. With the increase in computational power, the design process for

aerospace vehicles has adapted to incorporate the fact that the many sub-system de-

sign trades involve many different disciplines. Multidisciplinary Design Optimization

(MDO) is as defined by Martins and Lambe as ”a field of engineering that focuses on

the use of numerical optimization for the design of systems that involve a number of

disciplines or subsystems” [52][7] . MDO has had large successes in finding perfor-

mance through the synergy of different disciplines such that the overall performance

of the vehicle improves. MDO has found some success in the later portion of the

conceptual design stage as the focus during the conceptual design stage is on finding

”feasible” and preferably non-dominated designs rather than optimizing the perfor-

mance. Key physical takeaways can also be gleaned from the results of MDO due

to the inherent nature of large uncertainties that exist within the conceptual design

space exploration.

Regardless, literature does exist for conceptual design-level MDO work. Mull et.

al looked at using genetic algorithms to explore different vehicle configurations in

one single problem. [54]. Hoburg developed a convex optimization framework that

allows for fast optimization of aircraft designs through Geometric Programming [39];

however, because of the simple functional form required of these models severely limits

the utility of Geometric Programming.

Preliminary design is where MDO methodologies have shown greatest utility. A

great example of MDO improving vehicle design is with the design of the X-43 [12].

Bowcutt was able to use a multidisciplinary design framework to find a feasible and

mature hypersonic scramjet configuration that was eventually built and flown. The
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framework was the state of the art in that it was able to incorporate all major disci-

plines including a mission optimization in the form of trajectory optimization. How-

ever, the analysis was severely limited in both number of variables and the amount

of computational resources required was immense [12], not to mention that the tra-

jectory optimization was for a relatively simple mission phase: cruise.

MDO methodologies have improved since then. Martins et. al recognized the im-

portance of gradient based optimization and the importance of accuracy in the calcu-

lation of gradients, and has developed many methods such as complex step derivative

calculation and adjoint based methods to improve the use of gradient based MDO.

OpenMDAO was developed by NASA to incorporate Martin’s derivative framework

[51] into a software library that can allow the definition and passing of derivatives

between the different models [30]. They have had great success in converging on

large scale high fidelity aerospace design problems. Mavris et. al at Georgia Tech’s

Aerospace System Design Lab (ASDL) have used the development of tools that allow

seamless coupling of models as well as statistical tools such as JMP to examine very

complex systems [41][53].

Convex optimization has made its way into preliminary design though still in the

earlier stage of preliminary design. Hoburg et. al extended the work from Geometric

Programming to Signomial Programming which trades formulation restrictions with

global optimality, and demonstrated the power of Signomial Programming by con-

verting Drela’s TASOPT formulation into a convex optimization problem and solving

it much faster while producing somewhat similar solutions [42]. However, further

work and model development must be done to extend Signomial Programming to

other more complex, non-traditional problems. With these convex optimization ap-

proaches, the computational resources required to run these kinds of analysis shrinks

dramatically at the cost of the fidelity of the models utilized in the analysis. Neverthe-

less, they represent an interesting approach in examining the vehicle design problem.
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In summary, both conceptual design and preliminary design processes incorpo-

rate mission design to some extent. MDO has had success in solving the vehicle

and mission design problem; however, is still limited in the number of disciplines due

to immense computational resources required. Convex optimization is a new tech-

nique to solve the aircraft design problem and represents a potential area where new

methodologies may arise.

1.2.2 Mission Design

Mission design spans everything from defining a network of routes or behaviors to

simply defining the mission parameters that the vehicle would be flying. There are

many different methods and processes that go through; the following literature was

focused on methodologies for aerospace vehicles.

Taylor et al. demonstrated the benefits of jointly optimizing a cargo aircraft (or

a set of multiple such aircraft)and the network in which they operate. A 10 percent

improvement in cost was obtained over traditional network flow optimization [68].

Similar to vehicle design, mission design has different levels of fidelity in examining

performance of the vehicle. However, mission analysis is often not about the perfor-

mance of the vehicle, but also based on other metrics such as passengers delivered,

mission success rate, etc. Those require a certain degree of aggregation or clustering

of behavior to analyze complex systems or even systems of systems. Chapter 2 will

go much more into detail about the different levels of fidelity or aggregation and how

that relates to how the problem is formulated. Figure 1-2 from AFRL shows the

different types of models that are used for differing analyses. For example, if the

primary answers that are needed to be answered involve tactics, then mission/few-

on-few simulations which don’t have high fidelity physics modeling are needed and

would be used. If sub-system operations are being simulated, high fidelity physics

modeling is needed and any interaction between other systems may be sacrificed to
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Figure 1-2: AFRL Modeling and Simulation Pyramid [1]

maintain computational tractibility.

There has been much work in developing mission design methodologies, especially

from the operations research community. One that is most applicable to aircraft is

the development of network optimization algorithms for optimal routes allocation.

Network optimization is important in the context of airline fleet design as well as

where to place hubs. These decisions also drive which aircraft airlines should purchase

from the airframe manufacturers.In this case the aircraft are often assumed to have

already been designed and are optimally chosen from a catalogue. These type of

methodologies can span from evolutionary network optimization[64] to route design

through trajectory optimization[36].

Mission design can also go down to the details such as trajectory design and op-

timization. One of the daily trajectory optimizations that airlines perform are to

minimize fuel burn in the presence of winds at cruise altitude, particularly for long

distance flights ¿ 12 hours. Many tools exist that are also used in conjunction with

vehicle design processes. These bring in optimal control theory or control system

design into the conceptual design process. NASA developed Optimal Trajectories

by Implicit Simulations (OTIS)[31] and Program to Optimize Simulated Trajectories
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(POST)[4] to do trajectory optimization for different aerospace vehicles ranging from

aircraft to reentry vehicles to spacecraft. GPOPS is used for more general optimal

control problems [58]. QuickShot developed by SpaceWorks Enterprise takes advan-

tage of parallel computing and multi-threading to improve trajectory optimization

speed [5].

Recent developments in convex optimization have allowed it to be utilized in more

complex optimal control problems [47] besides the mission profile and multi-mission

optimization previously mentioned in [72]. This has allowed convex optimization to

become utilized in purposes of conceptual design as it allows designers and analysts

to design for trajectories of aerospace vehicles in earlier stages without significant

computational resources or time. For example Liu et. al was able to design optimal

hypersonic reentry trajectories [46]. This development makes convex optimization

potentially attractive for use as a mission design tool.

In summary, mission design tools exist and are vast in fidelity and aggregation.

They pull from different corners of engineering and mathematical sciences with opti-

mal control and operations research being the biggest two areas. Military simulations

are also used to examine CONOPS and differing concepts that can be used to ver-

ify actual vehicle design. New developments in convex optimization solving optimal

control problems signal the potential that convex optimization may be a way to solve

both the vehicle and mission design problem.

1.2.3 Integrated Vehicle/Mission Design

There are many attempts at solving this problem using MDO frameworks for different

mission types and operations. Below are some significant examples and the techniques

used to solve the problems.
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Trajectory Optimization

Trajectory optimization has been carried out using OpenMDAO through the develop-

ment of the Dymos module [25]. Jasa et. al used OpenMDAO to look at the design of

aero-thermal systems and aircraft trajectory[40]. Hendricks et. al used OpenMDAO

to look at [34] propulsion system design and aircraft climb trajectory. However, both

of these examples are limited to a couple of subsystems and the mission itself (in this

case the trajectory).

Others have attempted to solve this problem using a more custom framework

approach outside of OpenMDAO. Gates et. al was able look at propulsion system

design with solar aircraft trajectory [27] . Launch vehicle design is another area

where this type of problem has been solved [11]; however, the trajectory formulation

is limited and the vehicle models used simplistic. Drela developed TASOPT to look at

the design of next generation passenger airliners, and does include a mission profile

optimization coupled with a full aircraft + engine physics model []. Grant et. al

used indirect trajectory optimization methods and analytic hypersonic aerodynamic

methods to look at both aerodynamic and reentry trajectory optimization [29] [28].

All of these examples sacrifice either mission fidelity or multi-disciplinarity to achieve

some computational tractability.

Network Optimization

Integration of network optimization directly into the aircraft design process has been

met with mixed results at best. Taylor et. al was able to devise an embedded op-

timization algorithm that allows for integrated transportation design; however, the

vehicle design fidelity is at the conceptual design stage which retains the larger un-

certainties that exist with a conceptual design[68]. Nevertheless at least 10 percent

benefit of vehicle and mission co-design were shown, however, without global opti-

mality guarantees. Roy et. al took the opposite approach through a mixed-integer
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optimization approach in designing next generation passenger aircraft while taking

into account economic/market trends [63][62]; however, immense computational re-

sources were undoubtedly required to run such high fidelity analysis.

Military Operations

From the military side of things, there has been a strong push to develop further

this type of joint analysis. The most recent program is the EXPEDITE program

from AFRL [8][44]. This project utilized MDO principles to incorporate military

simulations to develop analysis that would be able to connect the mission effectiveness

to engineering design variables. The mission design tool used is AFSIM which is an

agent-based mission simulation software; other tools such as the radar cross section

model used are described in detail in Harper [33]. The ability to do this will allow

the mission trades to be more detailed as designers and analysts can directly point

to what part of the mission is influenced by a design decision more finely. However,

optimization was not carried out for this problem; a trade-study approach was used

to sweep the design space and then filter aposteriori as set of promising solutions.

Control System Design

More generally, MDO has been applied to what can be considered joint plant and con-

trol system design. From a bigger picture perspective, the vehicle could be considered

as a plant and the mission it is flying as a control system. Allison goes in depth on

what is described as Multidisciplinary Design Optimization of Dynamic Engineering

Systems [9]. Herber takes this further by demonstrating the benefits gained from such

a mind-set of designing both the plant and control at the same time for small sub-

systems [35]. Control system design during aircraft conceptual design is not new [59];

however, its use has not been widespread. Both Allison and Herber take a controls

approach in determining optimally, which can be guaranteed for simple systems such
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as mechanisms and control systems which could be of use for larger complex systems

like aircraft.

In summary, significant progress has been made in integrating both mission design

tools with vehicle design tools through MDO, especially in the military realm where

missions tend to be very demanding in several dimensions such as range, acceleration,

payload amongst others. The change of perspective of simultaneous plant and control

system design has lead to new developments and demonstration of the benefits of such

mindset. However, typical compromises involve fidelity of analysis in terms of both

level of detail and number of sub-systems optimized in both the mission and vehicle

definition are typically made as well as the necessity of high performance computing.

1.3 Integrated Vehicle/Mission Design using con-

vex optimization

Only one example of convex optimization being used to solve this joint vehicle-mission

design problem exists. York et. al were able to formulate the passenger aircraft

optimization problem into a simple mission profile optimization. However, that for-

mulation is very limited as GP/SP programs cannot accept negative variable values,

something that could be required for mission design. The use of convex optimization

has not been explored extensively, and severe limitations exist.

The primary contribution of this thesis is to develop other methodologies that

overcome these limitations to allow a full solution of the simultaneous vehicle and

mission design problem. The rise of convex optimization in both vehicle and mission

design begs the question: are there ways to take advantage of these developments to

gain deeper insight into this problem?

Specifically, this research investigates the following questions:

• How can convex optimization frameworks be leveraged optimally to solve the
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simultaneous vehicle and mission design problem.

• How can one demonstrate these frameworks on meaningful example problems

and determine the benefits and drawbacks of each framework

This thesis limits mission analysis to trajectory optimization as it is the problem

that relates to aerospace vehicles and mission analysis most directly.

1.4 Thesis Overview

This thesis develops a novel convex optimization methodology to solve the simultane-

ous vehicle and mission optimization problem for aerospace vehicles. The intent is to

develop a methodology that allows many different disciplines to be considered at the

same time while also optimizing the mission overall. Convergence speed, optimality,

computational resources required, and any guarantees of optimality will be considered

when examining these methodologies.

The objectives of this thesis are to demonstrate the following:

1. Convex optimization is a useful tool in solving the integrated vehicle and mission

design problem.

2. Integrated vehicle and mission design is important in designing next generation

vehicles

The thesis follows the following format:

Chapter 2 will introduce convex optimization and the different methodologies that

involve convex optimization in solving this problem.

Chapter 3 and Chapter 4 will focus on demonstrating these methodologies for the

design of a rocket and a hydrogen-powered aircraft respectively. These examples also

serve as arguments for incorporating mission design into vehicle design.
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Figure 1-3: Thesis Framework

Chapter 5 will review the primary contributions of the thesis and a discussion

about the benefits and drawbacks of this approach. The chapter will also offer future

directions of research and lessons learned. Figure 1-3 shows the structure and relations

between the chapters of the thesis.
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Chapter 2

Convex Optimization

Architectures for Integrated

Vehicle/Mission Design

In this chapter, convex optimization is formally introduced, and potential method-

ologies to solve the concurrent vehicle and mission design problem using convex op-

timization are introduced and developed.

2.1 Convex Optimization

Convex optimization problems are a class of problems that offer many guarantees

and solve quickly when the problem is formed correctly and if the problem is feasible.

However, the conditions that are necessary to classify an optimization problem as

a convex optimization problem are very restrictive. With that being said, convex

optimization is still useful and can solve nonconvex optimization problems through

many different techniques. In this section, convex optimization is introduced, and

various convex optimization formulations and examples that have been used to solve

aerospace problems are defined here. Techniques for using convex optimization prob-
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lems to solve nonconvex optimization problems are also introduced here.

2.1.1 Definition and Convex Programs

A convex optimization problem is defined in Boyd[14] in Problem 2.1.

minimize f0(x)

subject to fi(x) ≤ bi i = 1, . . . ,m

hi(x) = bi i = 1, . . . , n

(2.1)

where all functions f are convex, h are affine, and x ∈ Rn. Convex functions are

defined as functions that satisfy the following definition:

f(αx+ βy) ≤ αf(x) + βf(y) (2.2)

for all x, y ∈ Rn and all α, β ∈ Rn such that α+ β = 1, for α, β ≥ 0. In order for this

condition to be true over the entire design space the Hessian matrix of f0(x) has to

be semi-positive definite (SPD).

These forms are very restrictive. A non-exhaustive list of example convex functions

are listed below[14]:

• Linear functions

• Some quadratic functions

• Affine functions

• Powers xa for Rn
++ when a ≥ 1 or a ≤ 0

• Norms |x|n

• Logarithms log(x)

• Max function max(x)
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• Log-sum-exp log(ex1 + ...+ exn)

• Exponents ex

Not listed are some of the most commonly used expressions such as products of two

expressions, polynomials, as well as trigonometric functions which are all important

for optimization for general aerospace systems. However, if a problem can be put into

that form, many guarantees exist for those problems:

• Optimality: By definition, if there exists an optimum and if it is found, it is

also the globally optimal solution. The proof for this is given in Section 4.2.2

in Boyd [14]

• Efficient solves: We can utilize state-of-the-art interior point methods to solve

the problem quickly. It also scales very nicely and therefore can solve large scale

problems.

• Parameter sensitivities: They are by-products of the solving process. Generally,

calculating sensitivities requires additional work or utilization of gradient based

methods; however, convex optimization produces parameter sensitivities as they

are used to solve the problem. These are called dual solutions and can be used

for post-processing.

These guarantees are enticing compared to general nonlinear programming where

no guarantee of global optimality exists nor any efficient methods to solve without

large computational resources. However, many problems are not convex from the

outset; some conversion/transformation/tricks are needed. The following are exam-

ples of different forms of convex optimization problems that are useful particularly to

solving aerospace problems.
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Linear Programming

A linear program is an example of a convex optimization where both the objective and

the constraints are linear. However, for aerospace problems, they are not as useful

besides network optimization. A linear program can be described in the following

Problem 2.3 where x, d, h, b ∈ Rn and c,G,A ∈ Rm×n.

minimize cTx+ d

subject to Gx ≤ h

Ax = b

(2.3)

Quadratic and Second-Order Cone programs

Linear programs are too restrictive for many design applications, and therefore, other

less restrictive convex optimization problems are sought. If the objective function is

a quadratic and the constraint functions are affine, the program is called a quadratic

program as shown in Problem 2.4 where x, q, r, h, b ∈ Rn, G,A ∈ Rm×n, and P ∈ S+

Quadratics are convex, and therefore, quadratic programs are convex optimization

programs.

minimize
1

2
xTPx+ qTx+ r

subject to Gx ≤ h

Ax = b

(2.4)

A well known example of a quadratic program is the least squares regression

problem. An extension to quadratic programs and related problem is called the

Second-Order Cone Program or (SOCP) as shown in Problem 2.5 where f, x, b, g, d ∈

Rn and A,F ∈ Rm×n.. It is called a second order cone due to the second order norm

in the inequality constraint. Although this norm may seem like an arbitrary addition

or wrinkle to quadratic programs (especially with a linear objective function), they

surprisingly serve as a useful form, especially in solving aerospace-related problems
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because the norm allows thrust vectors to be modeled as a convex constraint.

minimize fTx

subject to ||Aix+ bi||2 ≤ cTi x+ di i = 1, . . . ,m

Fx = g

(2.5)

Geometric Programming

Geometric programs are a special kind of convex optimization problem that is not

convex at first glance; however, it can be transformed into a convex optimization

problem [13]. A Geometric program can be defined as the following:

minimize p0(x)

subject to pi(x) ≤ 1 i = 1, . . . ,m

mi(x) = 1 i = 1, . . . , p

(2.6)

where pi are posynomials and mi are monomials.

Monomials are defined in equation 2.7 where aj ∈ R, c ∈ R++, and uj ∈ R++.

In other words monomials are products of design variables raised to powers on the

real number scale and pre-multiplied by a strictly positive constant coefficient. An

example of a monomial is the lift equation: L = 1
2
ρV 2SCL.

m(u) = c
n∏

j=1

u
aj
j (2.7)

Posynomials build upon monomials; they are defined as functions that fit the form

of equation 2.8 where aj ∈ R, ck ∈ R++, and uj ∈ R++. An example of a posynomial

would be a sum of polynomials with positive coefficients: xy2 + xz3.

p(u) =
K∑
k=1

ck

n∏
j=1

u
aj
j (2.8)
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This formulation, however, is not in convex form. A variable change is required to

enforce convexity, and the variable change needed is given in the following equation:

xi = eyi (2.9)

This converts the monomials and posynomials into a log-sum-exp which as noted

above is a convex function. Therefore, the transformed geometric program is a convex

optimization problem. This allows all convex optimization properties to become true

for geometric problems.

There are however some key points about geometric programs that need to be

considered:

• All variable values must be positive. This is not a problem for many

engineering design problems as most parameters are positive or can be converted

into positive quantities (e.g. think about material properties such as density,

strength etc). This does become a problem when mission design is involved

because negative states do exist and are needed. And example would be positive

vertical speed to climb and negative vertical speed to descend.

• Posynomials are very restrictive. The constants out front must all be pos-

itive, which rules out any polynomials with a negative sign in the constant

pre-multiplied factor.

• Constraints must be in those specific forms. Notice on the right hand side that

both the inequality and equality constraints are 1, not 0 or some other constant

as is usually the case for most optimization problems. This is not as restrictive

of a constraint as the other two conditions, but requires some thought especially

since for all inequalities the monomial and posynomial constant multipliers in

front must be positive.
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Specialized modeling languages and solvers exist to solve each of these problems

very quickly. MOSEK[10] and CVXOPT[69] are some of the most common solvers

that can solve all the problems listed. Modeling languages which are programming

languages that allow constraints to simply be formulated rather than forcing the user

to form the problem into matrix form exist. Some of these are YALMIP [48], GPKit

[17] and CVXPY[20] are the most commonly used though GPKit is only used for

Geometric Programming, and all of the modeling languages are integrated with the

solvers mentioned before and more specialized solvers for specific problems such as

ECOS[22] for SOCPs.

2.1.2 Solving Nonconvex Optimization Problems using Con-

vex Optimization

The previous section focused on methods for solving problems that are convex to

begin with or that can be converted directly into a convex optimization problem such

as GPs. However, not all problems are convex optimization problems nor can they be

directly converted into such. Despite this, convex optimization can still be useful for

solving these types of problems. The most common approach is the following: Ap-

proximate the problem or parts of the problem as a convex optimization

problem and then solve it. Repeat until the solution stops changing. The

solution that results is the final solution.

This idea is a heuristic; however, because this involves convex optimization,

convergence and local optimality can be guaranteed under certain conditions. Unfor-

tunately, only local optimality can be guaranteed as the ”approximate the problem

as a convex optimization problem” step removes the global optimality: the approx-

imation is only a local one which means that the convex optimization problem is

only true for that local area where the approximation is made. The approximation
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does not cover the entire space, and therefore any optimal point found can only be

thought as a locally optimal. Despite this, in most cases, the use of convex optimiza-

tion in solving non-convex optimization problems is often very useful because the

approximate problem exhibits all of the benefits of a natively convex optimization

problem such as optimality guarantees, accurate sensitivities, and fast computation

time. The question then becomes how accurate is the convex approximation, and

there are several techniques to ensure an accurate approximation. This section will

introduce expansions of this idea.

Sequential Convex Optimization

Sequential convex optimization is a local optimization method that solves non-convex

problems over multiple sequential steps. It is a heuristic and therefore can fail to find

an optimal/feasible point and highly depends on the starting point used. Duchi’s

notes are briefly summarized, and the important parts relating to the problem we are

attempting to solve is reproduced here [24].

Suppose you have a non-convex problem in the following form:

minimize f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m

hi(x) = 0 i = 1, . . . , p

(2.10)

where f is possibly nonconvex and h is possibly non-affine.

The primary idea is the following:

1. Start with an initial solution x(k) that is feasible and form a convex trust region

T (k) around this solution

2. Form convex f̂ and affine ĥ approximations for the inequality and equality

constraints over the trust region T (k) , respectively
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3. Replace the original problem with the convex and affine approximations and

solve for x(k+1), the approximate convex problem. The convex approximation

problem becomes the following:

minimize f̂ 0(x)

subject to f̂ i(x) ≤ 0 i = 1, . . . ,m

ĥi(x) = 0 i = 1, . . . , p

x ∈ T (k)

(2.11)

4. Repeat until solution converges

The trust region T (k) is placed such that the optimizer doesn’t go beyond the

region of approximation. The trust region can shrink or expand depending on the

confidence of the approximation which is judged by how much the solution is changing

between each iteration as well as how the approximation is being made. For example,

if the original function was already convex, then the trust region can be as large as

possible for that function approximation. The trust region size is updated throughout

each iteration. A typical trust region can be described as the following where x is the

:

T (k) = {x||xi − xki |n ≤ ρi, i = 1, . . . , n} (2.12)

where ρi is the trust region parameter. The norm of the difference is dependent on

the choice of trust region shape.

There are many different ways to produce the convex and affine approximations. A

common method is to take the first or second order Taylor expansion of the function.

Another method is to take the quadratic trust region in combination with a full

second order Taylor expansion. Finally, rather than directly assuming the shape of

a function, one can use a particle method to sample the space and fit the data with

a convex or affine function. The fitting of the function can sometimes be a convex
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optimization problem in itself (such as the least squares problem described above),

so if that path is chosen, two convex optimization problems are solved sequentially in

each iteration. The reader should refer to Duchi’s notes for further details on these

approximation methods [24]. Further details such as updating the trust region and

dealing with infeasibility are covered in Duchi [24].

This formulation forms the basis for many sequential optimization programs such

as sequential linear programming and sequential quadratic programming (SQP). Se-

quential quadratic programming or SQP is the most popular and successful nonlinear

optimization method used in many engineering applications. It however takes it a

step further by defining the entire problem as a quadratic problem. Nocedal and

Wright note that this approximation can also be viewed as an application of New-

ton’s method with enforcement of the KKT optimality conditions, and describes the

derivation and practical implementation in Ch. 18 of [57]. Furthermore, local conver-

gence can also be guaranteed in some cases using first order approximations if specific

conditions are met [21]. A slightly related sequential convex technique is successive

convex approximation. This is a technique used for very large problems and only

the objective function is approximated. Readers should refer to Razaviyayn for more

details [61].

Signomial Programming

Signomial programming pertains to problems that are similar to Geometric Programs

(GPs) but are not GPs. Signomials generalize posynomials in Equation 2.8 such that

ck ∈ R, allowing even more expressivity. This relaxation of the constants allows

different types of constraints to be represented at the expense of global optimality

guarantees. SPs are less restrictive compared to GPs in both their objective and

constraint functions which allow for local optima to be found reliably. If any of the

constraints are signomials, the problem becomes an SP. Although solving an SP is
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not a convex problem itself, SPs can be represented as a local approximation of the

GP. Using these approximations, SPs can be solved through a difference-of-convex

optimization problem in the following form:

minimize f0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1, . . . ,m

(2.13)

This formulation is advantageous in that no trust regions or parameter tuning

is required for the sequential optimization to solve the signomial program. Readers

should refer to Kirschen[42] and Boyd[13] for additional details.

Multi-Convex Programming

Another similar idea is the following: What if the overall non-convex problem be-

comes convex if certain variables were held constant i.e. they became fixed parame-

ters? There is a class of convex optimization problems called multi-convex problems

which can potentially apply to multidisciplinary design optimization (MDO)in gen-

eral. Multi-convex problems are defined as convex optimization problems where if

certain variables are fixed (i.e. become constant), the problem becomes a convex

optimization problem. An example would be the following simplified problem:

minimize xz + ab

subject to az2 < 1 (2.14)

If z and b or the set of {z, b} were fixed, (i.e. z = C, b = K where K,C = arbitrary

constant), the problem becomes the following:
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minimize Cx+Ka

subject to aC2 < 1 (2.15)

which is a convex optimization problem. Other sets of variables include {a, x}

and {x, a, b}. These problems are interesting in that although a problem may seem

non-convex on the surface, convex optimization still can be used to solve the problem

by exposing the convex subsets of the overall problem.

Block Coordinate Descent

Generally, mult-convex programs are solved using coordinate descent. The important

parts from the primer by Shi et. al on Block Coordinate Descent (BCD) is briefly

summarized here [65]. BCD can be used for both convex and non-convex optimization

problems. Global optimality and convergence has been mathematically proven for

convex and some non-convex optimization problems that have certain mathematical

properties, but will not be described here.

The algorithm cycles through the different sets of variables that are fixed. At

each iteration , there is a overall solution xk where k is the iteration number. At

each iteration, one set of variables ik to be fixed is selected. The problem is solved

with xik fixed (i.e. using the previous/initial solution) while the variables that are

not fixed x 6=ik are used to minimize the objective function f . Once the problem is

solved, the overall solution xk is updated using the following logic: the variables in

xk which were not fixed take on the new solution while the variables that were fixed

still retain the previous solution xk−1.

There are many different ways in choosing which variables to fix or how to cycle

through them. Shi et. al gives a summary of the pros and cons of different ways to

select which variable set is fixed at each iteration [65]. This method has also found
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success in solving large scale problems and is also used in successive approximation

[61].

2.1.3 Applications to Aerospace Problems

Vehicle Design

Hoburg [39] and Kirschen [43] demonstrated the ability of Geometric Programming

and Signomial Programming in solving simple aircraft design problems. Kirschen et

al. showed that a commercial aircraft design problem could be formed and solved as

SPs through the above formulation [42]. This formulation allows a passenger airliner

design problem to be solved with similar fidelity in almost an order of magnitude

decrease in computational time [72].

Many techniques for formulating design problems into GPs and SPs exist. GP/SP

problems require all variables to be positive, which is not a problem for engineering

design problems, but can be problematic for mission simulations (ex. non-positive

states such as a dive and climb as mentioned earlier). Because both GPs and SPs

require posynomial-containing constraints to be expressed as inequalities, some care

is needed to determine the proper direction of the inequality sign. The concept of

”pressure” is where the designer attempts to predict (through intuition) where the

optimizer will send the design variable. Using this concept, equality constraints can

be formulated as inequality constraints which is overall a less restrictive constraint.

For example, drag can be defined as CD = CD0 + CDwave + CDi
. If the optimization

problem being solved is one where CD is minimized, the drag expression can be relaxed

into a compatible posynomial inequality CD ≥ CD0 +CDwave +CDi
because we know

the optimizer will continue to push the value of CD downwards. This formulation

forces the optimizer to minimize the components CD0 , CDwave , and CDi
because CD

cannot go further lower without the sum of the three components decreasing. In

the case of expressions that cannot be expressed as GP/SP-compatible constraints
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such as trigonometric and logarithmic functions, Taylor approximations and fitting

techniques [38] can be utilized over a defined range of design variables.

Mission Design

Optimal control problems where control inputs u(t) must be computed are nonlin-

ear programming problems due to a combination of nonlinear dynamics, objective

functions, and constraints. However, recently in a push to develop onboard real-time

guidance and control systems, convex optimization has been utilized to reach lower

computation times and convergence guarantees that online guidance and navigation

systems require. Liu et al. summarizes the development of convex optimization

techniques within the context of guidance, navigation, and control [47]. Successive

convex optimization (SCO) is used in all cases. SCO works by approximating the

trajectory optimization problem into a Second-Order Cone Program (SOCP) which

can be solved quickly. The successive part comes in once the approximate SOCP is

solved, the original problem is then re-approximated using the previous SOCP solu-

tion and solved again. This process repeats until a certain tolerance is met. Szmuk

and Açikmeşe used this formulation to solve a 6-DOF planetary landing problem

similar to the SpaceX rocket landings [67]. Liu et al. implemented a similar method

for hypersonic reentry vehicles, and compared it to standard trajectory optimization

tools such as GPOPS which uses the Gauss Pseudospectral method and in these

comparisons the SCO methodology was consistently faster[46].

The most common methodology to convert a trajectory optimization problem into

a convex problem is through the use of a successive convexification framework. Al-

gorithm 1 describes the generalized framework to approximate the original optimal

control problem into a Second Order Cone Program (SOCP), a convex optimiza-

tion problem represented as Ψ, through linearization and discretization. The SOCP

approximate problem is then solved, and the solution is used to linearize and dis-
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cretize the problem again to create a closer approximation to the original problem.

This iteration process is repeated until the SOCP problem solution reaches a user-

specified tolerance that is determined through comparison to its previous solution.

The superscript given to the approximate problem Ψ and its solution z in Algorithm

1 represents the iteration number. This process is advantageous in that nonlinear

dynamics as well as nonlinear and non-constant states are made into convex relations

or ”convexified”.

Algorithm 1 Successive Convexification General Process

Result: Optimal Trajectory and Control
Linearize and discretize problem
Generate initial trajectory z(0)

Form SOCP problem Ψ(0) using z(0)

k = 1
Solve Ψ(0) and produce z(k)

while max |z(k) − zk−1| ≥ ε do
Form SOCP problem Ψ(k) using z(k−1)

Solve Ψ(k) and produce z(k)

end

Furthermore, controls and non-convex constraints can be approximated utilizing

a similar concept such as ”pressure” that was used in vehicle design. In many cases,

proofs can be generated that certain equality constraints for controls can be relaxed

into inequality constraints as well as clever trigonometric relations relating to the

control term can be made into convex constraints. Liu et. al provides a comprehensive

overview of some of those techniques in [47].

Integrating the two problems

Despite there being convex optimization formulations of the vehicle and mission de-

sign problems separately, there is no obvious way of combining them simply under

convex optimization. Fundamentally, GP/SPs and SOCPs look different in different
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spaces. Sequential optimization is not possible since GP/SP and SOCPs cannot be

combined under a single convex optimization problem. Converting a mission opti-

mization problem into a GP/SP is possible, but many assumptions have to be baked

in and the fact that state information (such as velocity or acceleration) cannot go

negative severely limits the problems that can be solved. The idea of setting certain

variables constant to find a convex optimization problem may be potentially useful if

we consider the entire integrated problem as a single problem with the blocks being

the sub-problems; however multi-convex programming cannot be used directly since

the optimal control problem is not a convex problem itself. In the same vein, Block

Coordinate Descent cannot be used because the problem is not multi-convex. There-

fore, a new approach in combining these convex optimization problems is needed.

The ideas introduced in multi convex programming and sequential optimization can

be used to integrate the problems.

2.2 Convex Optimization Approaches for Integrated

Vehicle/Mission Design

Non-convex optimization problems can be solved using convex optimization; however,

our goal is to use some of the convex optimization formulations that were used to

solve the vehicle and mission design problems individually and somehow connect

them together. However, it is clear that multi-convex programming and sequential

convex optimization are not flexible enough to do so. Therefore, new methodologies

are developed to allow the connection of different sequential convex optimization

problems through the MDO architecture and block coordinate descent mindset.
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2.2.1 Sequential Convex Optimization Architectures

The previous section demonstrates that sub problems for the simultaneous vehicle

and mission problem can be solved using convex optimization. However, no one ex-

cept for York has looked at solving the simultaneous problem together using convex

optimization, and York’s implementation is very limited for simplified mission pro-

files. Therefore, the key question here becomes: can we utilize the above introduced

material to solve a more complex joint vehicle and mission problem? The problem is

unique in several ways:

• Each problem may use different convex forms. For example, the vehicle design

uses GP/SP, mission design may use SOCP.

• Each problem may use a different solver

• Direct coupling (i.e. using the same variables) is not always possible without

breaking convex optimization restrictions on constraints and objective functions

• Different subspaces are being looked at. For example, in combining an GP/SP

with an SOCP can be troublesome because an SOCP is Rn, while GP/SP is

Rn
++

Therefore, we seek a problem solving methodology that can overcome the short-

comings of sequential convex optimization and MCPs. We want to use the concepts

and ideas developed in the previous section and mix-and-match as we please to fit

our problem.

For clarity, the overall notation to describe the problem we are trying to solve is

introduced in Table 2.1. The superscripts in parentheses indicate which sub-problem

the variable, parameter, and/or function belong to.

Using the defined notation, the problem we are attempting to solved can be for-

mulated into the following:
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Notation Meaning

x(j) variables for sub-problem j
f (j) objective function for sub-problem j
g(j) inequality constraints for sub-problem j
h(j) equality constraints for sub-problem j
m Total number of inequality constraints for the overall problem
n Number of equality constraints in the overall problem
k Total number of sub-problems
m(j) Total number of inequality constraints for sub-problem j
n(j) Number of equality constraints for sub-problem j
J objective function for the overall problem

Table 2.1: Notation for convex coupled architectures

minimize J(f (j)(x)) j = 1, . . . , k

subject to g
(j)
i (x) ≤ 0 i = 1, . . . ,m(j) j = 1, . . . , k

h
(j)
i (x) = 0 i = 1, . . . , n(j) j = 1, . . . , k

(2.16)

To solve this problem, the concept of convex architectures is proposed as a method

to integrate the methodologies and solve the overall problem. Convex architectures

are the decomposition of the overall non-convex problem into smaller problems that

are either solvable through convex optimization or through approximations such as

sequential convex optimization or multi-convex programming. We refer to them as

architectures to highlight the very additive/modular nature of our attempts at using

convex optimization to solve this problem. This is bringing the MDO architecture

mindset of optimization into convex optimization. This is an original contribution of

this thesis.

These architectures are necessary for us to utilize convex optimization for these

types of problems because neither sequential convex optimization nor multi-convex

programming can be used to solve these kinds of problems. For example, if we were

to combine SP and SOCP problems, how would we do that? Sequential convex op-

timization has only been used to solve single convex optimization type problems.
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Multi-convex programming is not general enough to analyze sequential convex op-

timization problems. These mix-and-match architectures are hybrids of these two

different ideas and allow us to blend these concepts from both.

We propose three different competing architectures that allow us to combine those

different ideas. We refer to them as alternating, integrated, and combined architec-

tures. Each architecture has different levels of integration between the sub-problems.

The following subsections introduce the three architectures in detail.

2.2.2 Alternating

The alternating architecture is the simplest of them all: we solve each sub-problem

fully and then move to the other sub-problems. Algorithm 2 describes the architecture

generally where ∆ is the sub-problem tolerance, δ is the integrated problem tolerance,

and ε(j) is the required tolerance of sub-problem j. Figure 2-1 shows a two sub-

problem implementation of the alternating architecture.

Algorithm 2 Alternating Architecture
Set convergence criteria ε
Initialize J, Ji, δ
while δ ≥ ε do

for j = 0, j ≤ k do

Initialize ∆, f
(j)
prev

while ∆(j) ≥ ε(j) do
Transfer solution from other sub-problems into current sub-problem
Approximate sub-problem j as a convex optimization problem.
Solve sub-problem j for f (j)

∆ = f (j) − f (j)
prev

f
(j)
prev = f (j)

end

end
Calculate J
δ = J - Ji
Ji = J

end

51



Figure 2-1: Two sub-problem example of alternating architecture schematic

This trivial architecture however, does not take advantage of convex optimization.

In fact, one can replace each of the approximation-solve-convergence cycles with any

analysis/optimization routine. Despite this, this is still useful for problems where an

approximation is not necessary i.e. the sub-problems is a convex optimization. For

example, you can have a GP and a LP in the two sub-problem architectures, and it is

possible to get fast convergence and iterations because well-posed GPs and LPs can

be solved easily. This can also be viewed as a more general form of Block Coordinate

Descent, except it takes into account cases where a direct transformation to a convex

optimization problem is not possible.

2.2.3 Combined

The combined architecture attempts to model the entire overall problem into one

single convex optimization problem. At the core, each sub-problem is a set of con-

straints and objective functions, and combining them simply results in a larger set of

constraints. In this case, we are accounting for the case where the sub-problems can

be combined into one problem. This means for example that the overall design vec-

tor is stacked between the design and mission parts of the problem (with or without
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overlap). There are two conditions for when this can happen:

• Both use the same type of convex optimization problem and can be combined

without breaking the convex optimization rules

• The least restrictive convex optimization problem used to solve a sub-problem

can take the most restrictive convex optimization case.

The first condition is trivial; however, the second condition requires some thought.

This requires the user to think carefully about problem formulation: each problem has

specific conditions in the objective and constraints that can be taken. In addition,

variable subspaces should also be taken into account. For example, if we were to

attempt to combine a GP with an LP, we have to ensure that the LP is only looking

the R++ space, not just the R space. Algorithm 3 describes the general idea. Figure

2-2 shows a two sub-problem implementation of the combined architecture.

Algorithm 3 Combined Architecture
Set convergence criteria ε
Initialize J, Jprev, δ
while δ ≥ ε do

Approximate sub-problem j as a convex optimization problem.
Combine All sub-problems into one single problem.
Solve the overall problem for J
δ = J - Jprev
Jprev = J

end

This architecture is the hardest to formulate because of those two restrictions.

However, if possible, this formulation is the simplest as Algorithm 3 is really just

Sequential Convex Optimization with the additional step of combining the different

sub-problems together. Also, the combining and approximation steps can be inter-

changed as necessary. It is very similar to the All-At-Once (AAO) architecture as

described in Martins [51]; however, applied to convex optimization.
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Figure 2-2: Two sub-problem example of combined architecture schematic

2.2.4 Integrated

The previous two architectures are on opposite ends of the spectrum in their abil-

ity to combine two or more sub-problems to be solved using some form of convex

optimization-based methodology. Those two architectures are trivial and obvious es-

pecially looking at the problem from an MDO architecture perspective; however, we

want to incorporate some coupling between the sub-problems that use convex op-

timization. The Combined architecture is not always feasible, and the alternating

architecture does not offer much if any improvement.

The integrated architecture is a novel combination of sequential convex optimiza-

tion and multi-convex programming. The basic idea of the integrated architecture is

directly applying the sequential convex optimization problem to the entire problem

2.16 while incorporating the ”block” idea of multi-convex programming and block

coordinate descent. We take advantage of the fact that we know how to solve each

sub problem individually. Rather than wasting iterations on solving for informa-

tion we know will change, we use the approximate solution of one sub-problem to

solve the other approximate sub-problem and so on. We repeat this process until the

convergence criteria for each sub-problem are met. This is a different requirement
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Figure 2-3: Two sub-problem example of integrated architecture schematic

compared to the alternating architecture where the convergence criteria involved the

overall problem objective function. Here, we are assuming that once all the sub-

problems have converged, the solution for the overall problem is found.

In other words, we simultaneously (sequentially or in a specific order) solve each

sub-problem while solving the overall problem. Algorithm 6 gives the outline of the

framework. Figure 2-3 shows a two sub-problem example implementation of the in-

tegrated architecture.

Algorithm 4 Integrated Architecture

Set convergence criteria ε(j) for j = 1, ..., k
Initialize δ(j), f

(j)
prev

while Any δ(j) ≥ ε(j) do
for j = 0, j ≤ k do

Transfer solution from other sub-problems into current sub-problem
Approximate subproblem j as a convex optimization problem.
Solve subproblem j for f (j)

δ(j) = f (j) − f (j)
prev

f
(j)
prev = f (j)

end

end

The intention here is to save time and allow each sub-problem to get the most
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accurate approximation it can possibly get from the other sub-problems and not waste

time on information that can change. Although that introduces the possibility of

instability due to the constantly changing other sub-problem solutions, the algorithm

is not wasting time attempting to converge using approximate information. This will

allow the algorithm to converge quickly while ensuring that all the sub-problems are

being solved.

2.3 Discussion

2.3.1 Similar Work

These architectures (except for the alternating architecture) are different than stan-

dard MDO architectures as those architectures assume that each model/sub-problem

is a black box the approach developed in this thesis does not and allows the opti-

mization process to be integrated. However, with that being said, any MDO archi-

tecture that involves sub-problems to be optimized could replace those with convex

optimization or sequential optimization such as Collaborative Optimization [15] or

BLISS [66]. What separates these architectures from other MDO architectures is the

fact that these are specifically designed to allow for further integration of the convex

optimization solve processes. The goal is to ideally solve this problem all-at-once;

however, convex optimization formulations prevent that. Even partial integration

will allow the entire process to converge faster and not waste any time on converging

using wrong approximate solutions.

2.3.2 Intuition

The core of this idea is that block coordinate descent is combined with sequential

optimization. Rather than each ”block” being a convex optimization problem, each

block is a non-convex optimization that can be solved using convex optimization.
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Each block is therefore a sequential optimization problem that at best converges to

a local optimum.

Another way to think of this is the fact that there are two types of approximations

that can be utilized: approximation of the problem through the choosing of the blocks

and the approximation of the problem through the sequential optimization solving.

For the alternating and integrated architecture, both the multi-convex approxima-

tion and sequential optimization approximation are used: they differ in how mixed

the approximations are. The combined architecture is only using the sequential opti-

mization approximation. In our specific vehicle and mission case, our two blocks are

the vehicle(s) and mission(s) that are being optimized. There may be other ways to

determine whether other multi-convex blocks exist, but in this thesis, it is assumed

that only the vehicle and mission blocks are used.

A measurement of how close an approximation of the convex optimization prob-

lem is to the area of the design space being explored is the outer loop tolerance. For

the integrated architecture, it is the sub-problem tolerances. For the combined archi-

tecture, it is the overall tolerance between the different iteration solutions. For the

alternating architecture, it is the tolerance of the overall system objective function.

These tolerances are not measures of optimality, rather measures of how closely the

approximated problem is to the original problem.

2.3.3 Optimality

At best, only local optimality can be expected. This thesis does not propose any

mathematical proofs of optimality for the overall architecture; however, the fact that

we are solving a convex optimization problem means all is not lost as local optimality

can also be expected. Despite the fact that all convex optimization problems only

have one optimum if the problem is feasible, the convex optimization problem that is

being solved is a local approximation of the entire problem, so therefore, only local
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optimality can be expected. One could attempt to check the Karush-Kuhn-Tucker

(KKT) conditions; however, by design, all convex optimization solvers solve the KKT

conditions in some way or do not converge until the KKT conditions are met to

some set tolerance. Therefore, the KKT conditions will be automatically met for all

sub-problems individually.

2.3.4 Properties

Each architecture has strengths and weaknesses, as such problem formulation from

the convex optimization perspective should be done with care. Each architecture can

also theoretically take as many sub-problems as necessary.

Some key characteristics of each architecture are as follows:

• Convex Mixing: No assumption for what type of convex optimization problem

each sub-problem represents is made in any of the architectures. This means

that as long as the sub-problem can be approximated by a convex optimization,

these architectures could be used. Any convex optimization problem can be

added and used in the architecture.

• Transition: No assumption is made on the way the approximation is made.

Therefore, these architectures allow for some data reformatting/transition to

allow the sub-problem to be approximated in the most accurate way. This is very

advantageous, especially in the vehicle and mission design problem where both

the vehicle and mission optimizations are asking for different parameters that

each side can compute but did not necessarily do so during the optimization.

• Use of Trust Regions: For the sequential convex optimization portion, the use of

the trust region is optional and dependent on the convex optimization problem

being solved. The architecture is not reliant on any trust region being used
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and in all architectures, the trust region methodologies or lack of them is only

dependent on the sub-problem begin solved

• Flexibility in the architectures: These three architectures cover a wide spec-

trum of different combinations of convex optimization programs that can be

combined. Depending on the level of integration possible, these architectures

offer some flexibility.

2.3.5 Sensitivities

Parameter sensitivities are also very easy to calculate since each sub-problem pro-

duces the sensitivities as a by-product of the solve process. Some additional post

processing is needed as each sub-problem’s objective function is only a part of the

overall objective function; however, the bonus of having sensitivities in the form of

the dual solution is important.

However, variable sensitivities will require additional work to determine. Variable

sensitivities of the form df/dx are important especially in engineering design where

a designer may be interested in determining how much the objective function will

change if a design variable is slightly perturbed. Unfortunately, convex optimization

solvers do not produce that information as part of the solve processes, and unlike

traditional multidisciplinary models, constraints cannot be ”run through” to carry

out gradient calculation. Therefore, static multidisciplinary models must be created

to carry out gradient calculations.

2.3.6 Limitations

This methodology only works if both analysis and optimization processes can be for-

mulated as sequential convex optimization problems or convex optimization problems.

However, not all non-convex optimization problems can be approximated as such. It
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may be possible to develop other aerospace related analysis codes into convex opti-

mization, and if that occurs, sequential convex optimization similar to the process

developed in this thesis could be used to combine the different analyses. Combin-

ing the analysis whether through the different architectures may allow for a faster

convergence to a similar or more optimal design point. Other architectures may ex-

ist depending on how the individual analysis/optimization convex formulations are

created.

In addition, these architectures are very basic in that there is no mechanism for

checking whether the solution of a sub-problem will result in another a sub-problem

becoming infeasible. There are also no robustness measures or protections to prevent

that in case that does occur. However, these can potentially be mitigated by measures

such as adding slack terms to the sub-problems, similar to how Block Coordinate

Descent modifies the objective function as explained in the Future Work section.

2.3.7 Choosing the appropriate architecture

The choice of which architecture is best for the problem at hand primarily depends

on what the sub-problems forms are. Figure 2-4 shows qualitatively the level of inte-

gration between the different architectures. With the development of the integrated

architecture, most if not all convex optimization problems can use the integrated

architecture. If the problem can be combined into one single optimization problem,

then the combined architecture should be used.
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Figure 2-4: Level of integration

One thing to note is that the separation of the two problems must be thought

out carefully. By dividing the original problem into two or more sub-problems, the

objective function for each sub-problem must be aligned so that the sub-problem

optimizations are pushing the solution towards the same direction. Another potential

issue is that each sub-problem should ensure that the variables and parameters are

properly split; in other words, a variable in a sub-problem should not be a variable in

another sub-problem. This will ensure that there is consistency in the design variable

iterations when the outer loop iterations are occurring. As with all MDO problems,

problem formulation is key to having a successful MDO optimization, and it is no

different with convex optimization architectures.
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2.4 Example Problem

An example problem that we can try to solve by hand to demonstrate the architectures

in a more concrete way is the following:

minimize f = 100− x21x22 + 10x1 − 15x2

subject to x1 ≥ 1

x2 ≥ 1

x1 + x2 ≤ 5

(2.17)

This is a non-convex problem. The product between the squares of x1 and x2 as

well as the negative coefficient in front make this not a quadratic program. Therefore,

it is not possible to solve this problem directly using convex optimization. By inspec-

tion, it is obvious that the solution is (1,4) because the x2 term must be maximized

as much as possible due to the coefficients of the terms containing x2 both being

negative. Figure 2-5 shows the visualization of Problem 2.4.3.

This problem can be split into two sub-problems: Problem 2.18 and 2.19. Problem

2.18 is formed with x2 = c2, and Problem 2.19 is formed with x1 = c1: both c1, c2 are

constants. However, even with this approximation, the problem is not convex due to

the negative coefficient in the squared term of the objective function.

minimize f1(x1, c2) = 100− 15c2 − c22x21 + 10x1

subject to x1 ≥ 1

x1 + c2 ≤ 5

(2.18)

minimize f2(x2, c1) = 100 + 10c1 − c21x22 − 15x2

subject to x2 ≥ 1

c1 + x2 ≤ 5

(2.19)
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Figure 2-5: Example Problem Contour

Therefore, this problem is solved with the introduced architectures:

2.4.1 Alternating

For the alternating architecture, Problem 2.18 and 2.19 are each solved using sequen-

tial convex optimization through linearization. Once one sub-problem is solved, the

solution is passed to the other sub-problem (x
(k)
1 = c1, x

(k)
2 = c2 in each problem

where (k) denotes the previous iteration). Once each sub-problem is solved fully

once, the original problem 2.4.3 objective function f is calculated, and compared

with the previous iteration objective value f (k). This process repeats itself until the

original objective function has converged for some tolerance ε, in other words until

|f − f (k)| ≤ ε. Figure 2-6 shows the data and process flow.

The problem is linearized by approximating the non-convex objective function

with the convex part of the second order Taylor expansion or Equation 2.20.
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Figure 2-6: Example Problem: Alternating Architecture Information and Process
Flow

f̂(x) ≈ f(x(k)) + (∇f(x(k)))T (x− x(k))T +
1

2
(x− x(k))T [∇2f(x(k))]+(x− x(k)) (2.20)

Therefore, the objective function becomes the following Equation 2.21.

f̂(x) ≈ f(x(k)) + (Px(k) + q)T (x− x(k))T +
1

2
(x− x(k))TP+(x− x(k)) (2.21)

where P is the coefficient in front of the quadratic and q is the coefficient in front

of the variable. P+ the semi-definite part of P, and in this case, P+ = 0 since this is a

single variable problem. In multi-variable sub-problems, the spectral decomposition

of ∇2f(x(k)) = UΛUT will need to be carried out, and P+ = U [Λ]+U
T where the [Λ]+

denotes that all negative eigenvalues are set to zero.

A trust region is also needed because this approximation is only valid locally.

Therefore, a simple trust region constraint of Equation 2.22 is added.

x− x(k) ≤ ρ = 0.2 (2.22)
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With the added transformations, the sub-problems 2.18 and 2.19 become the

following Equation 2.23 and 2.24

minimize f̂1(x1, c
(k)
2 ) = f

(k)
1 (x

(k)
1 , c

(k)
2 ) + (−(c

(k)
2 )2x

(k)
1 + 10)T (x1 − x(k)1 )T

subject to x1 ≥ 1

x1 + c
(k)
2 ≤ 5

x1 − x(k)1 ≤ ρ

(2.23)

minimize f̂2(x2, c
(k)
1 ) = f2(x

(k)
2 , c

(k)
1 ) + (−(c

(k)
1 )2x

(k)
2 − 15)T (x2 − x(k)2 )T

subject to x2 ≥ 1

c
(k)
1 + x2 ≤ 5

x2 − x(k)2 ≤ ρ

(2.24)

2.4.2 Integrated

The integrated architecture follows essentially the exact same process as the alternat-

ing architecture with the exception that only one iteration of the sequential convex

optimization is carried out to approximately solve the problem. The approximate

problem is then passed to the other sub-problem: (x
(k)
1 = c1, x

(k)
2 = c2 in each prob-

lem where m denotes the overall iteration). The iteration ends when the tolerance

for both sub-problems is met. Figure 2-7 shows the data flow and a more problem

specific process flow. The integrated architecture requires information storage from

previous iterations to continue the SCO solve.
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Figure 2-7: Example Problem: Integrated Architecture Information and Process Flow

2.4.3 Combined

The combined architecture in this case is Problem being solved. This is possible

with Signomial Programming: we can reformulate the original problem into a Signo-

mial Program by creating a dummy variable z that pushes the Signomial-compatible

objective function into the constraint as shown in Problem 2.25.

minimize z

subject to x1 ≥ 1

x2 ≥ 1

x1 + x2 ≤ 5

100− x21x22 + 10x1 − 15x2 ≤ z

(2.25)

2.4.4 Numerical Example Solve and Comparison

The example problem is implemented in Python using CVXPY [20] as the quadratic

solver with the default OSQP quadratic solver for the alternating and integrated archi-

tectures. GPKit [17] was used to solve the combined architecture implementation. All

3 architectures converged; however, only the combined architecture converges to the

minimum with the other architectures converging close to the optimum but not quite.

Table 2.2 shows the solve statistics for the architectures. The combined architecture
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was the quickest, with the integrated architecture coming in next. Interestingly, the

integrated architecture had the most number of iterations; however, it was still faster

than the alternating architecture. This is due to the fact that each SCO solve is not

fully solving the problem, and therefore resulting in additional iterations.

Parameter Alternating Integrated Combined
Converged? Yes Yes Yes
Iterations 5 14 7

Final Solution (1.4, 3.6) (1.4, 3.6) (1,4)
Solve Time (s) 0.536 0.447 0.339

Objective Function 34.59 34.59 34
Required tolerance 1e-8 1e-8 (both) 1e-8

Table 2.2: Architecture Solve Statistics

Figure 2-9 shows the optimization path taken by each architecture. Both the

alternating and integrated architecture take the same paths in Figure 2-9a and 2-9b.

Both reach the correct x1 value before diverging to the incorrect location. This is

primarily due to the fact that our linearization heavily relies on the gradient (f), and

at that point, the gradient slightly points toward the inequality bound rather than the

actual optimum as shown in Figure 2-8. This leads to the approximation to wrongly

assume that the minimum is in that direction rather than towards the actual optimum.

This is expected as sequential convex optimization is after all a heuristic; and to avoid

this, other convex approximations are needed. For the combined architecture however,

it may seem that the combined architecture took no path at all as seen in Figure 2-9c;

this is not true. The GP approximation of the objective was so accurate that the

optimizer immediately went to a point extremely close to the actual optimum.

Figure 2-10 shows the specific values of the variables in each overall iteration for

each architecture. For the combined architecture, the architecture immediately jumps

very close to the optimum in Figure 2-10c, and the later iterations are only needed

to meet the tolerance. Both the alternating (Figure 2-10a) and integrated (Figure

2-10b) architecture head directly towards the expected optimal variable values until
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Figure 2-8: −∇f Field near optimum

reaching the region where the x2 component of the gradient begins to increase to the

point that causes the linearization to change direction away from the optimum.

Figure 2-11 shows the original problem’s objective function evolution for each

architecture, and Figure 2-12 shows the tolerance for the system level iterations as

the optimization progressed. Interestingly for both the alternating (Figure 2-11a and

2-12a) and the integrated architecture (Figure 2-11b and 2-12b), the convergence

rate varies until the optimizer is close to the actual optimum; after it reaches what

it thinks is the optimum, the tolerance decreases significantly and the optimization

stops The same does not occur for the combined architecture and in this case, the

SP. This is most likely due to the fact that the GP approximation is most likely still

evolving, as the objective function cost are orders of magnitude higher despite the

fact that the variables are already close to the optimum values.

One key takeaway from this example problem is that the accuracy of the convex
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approximation matters significantly, not just in the accuracy of the numerical values

but also the mathematical structure. This is highly apparent in the discrepancy

between the objective function values during the optimization for each architecture.

Despite the objective function cost being significantly higher, the GP approximation

in the combined architecture is much better because it immediately leads to the actual

optimum of the problem whereas the integrated and alternating, despite limited by

the trust region, heavily relies on the gradient and converges to possibly a point that

is close but not correct. The linearization was in this case not a great method to

use to approximate the objective function as the gradient signifcanlty influenced the

approximationand ultimately lead the optimizer astray. The trust region ρ in this

case can be expanded or shrunk; however, this risks in the optimizer ”wandering”

into regions where the approximation is not valid. SPs do not use trust regions

because the underlying structure is still maintained for this problem; and therefore,

the optimizer is not limited to only exploring a certain region. Using other convex

approximations methods to approximate non-convex parts of the problem may lead

to further improvement of the optimization.

From this example, it is clear that the combined architecture is best in terms

of optimality and speed. However, not all problems can be formulated into a com-

bined architecture problem; therefore, the integrated and alternating architectures are

needed. Despite not reaching the expected and correct optimum, there are different

methods such as other approximation strategies such as particle methods that may

allow for these architectures to improve and reach a solution close to the optimum.

2.5 Chapter Summary

Convex optimization and methodologies to solve non-convex problems using convex

optimization is introduced in this chapter. Sequential convex optimization architec-
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tures are introduced in the second section, and this is the primary contribution of the

thesis. Some preliminary discussion on expected behavior, benefits, and limitations

are discussed in the final section. Finally, an example problem is solved using each

architecture, and the numerical behavior and results are discussed. The benefits and

drawbacks of the different approaches are demonstrated.

This approach of thinking about each sub-problem and combining it together

through convex optimization is demonstrated with in the next two chapters through

the design of a rocket and the design of a hydrogen-powered aircraft.
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Figure 2-9: Example Problem Optimization Travel
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Figure 2-10: Example Problem Variable Change
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Figure 2-11: Example Problem Objective Function through Iterations
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Chapter 3

Rocket Design Case

3.1 Problem Formulation

3.1.1 Case Study Context

The example scenario analyzed in this chapter is the design of a solid-fueled sounding

rocket. The sounding rocket must reach a specified state within a specified time. A

simplified visualization is shown in Figure 3-1. The objective of the sounding rocket

problem is to design a vehicle that has the minimum initial mass to achieve its flight

mission in terms of specified end condition. The trajectory itself is also subject to

optimization. This design will require a compromise between the vehicle geometry,

propulsion, and the trajectory that is flown.

The problem is formulated as a 1D trajectory problem combined with a vehicle

design problem. This formulation is chosen due to the fact that both problems are

well studied and understood and previous work can be used to verify the solution. A

mathematical formulation of the problem is given in Problem (3.1). Geometry limits

are specified to ensure the feasibility and manufacturability of the rocket design.

The problem is formulated such that the vehicle design has influence only on Wdry

and Wfuel, the vehicle dry mass and fuel mass, respectively. The separate problems
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Figure 3-1: Sounding rocket design problem with prescribed final state at t = tf

which are given in Problem (3.3) and (3.19) will focus on minimizing their individual

contributions to Wtotal.

minimize Wtotal = Wdry +Wfuel

w.r.t. Vehicle Design

Trajectory Design

Control History

subject to Mission: Beginning and end states, time of flight

Geometry limits

(3.1)

For the vehicle design optimization, GPKit[17] is used to form the problem while

MOSEK is used as the solver. GPKit is an MIT-developed Python library that

allows GPs and SPs to be modeled. For the trajectory optimization, CVXPY[20]

is used to form the problem while ECOS [23] is used as the solver. The code [56]

used for trajectory optimization is an implementation of the SCvx algorithm [50].

This problem is a good example to test the different possible convex optimization

architectures as the mission part is non-intuitive in that there are different phases of
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flight inherently built into the optimal solution. Furthermore and most importantly,

solutions for both are well know and can be used to check the solution for each

sub-problem.

3.1.2 Convex Problem Architecture

We can formulate the problem into the mathematical notation denoted in Chapter

2 in Problem 3.2 using the formulation in Equation 3.1. The subsequent notation

is described in Table 3.1. With this problem formulation, the convex optimization

architectures can be used to solve the problem.

minimize J(f) = f (1)(x(1)) + f (2)(x(2))

subject to g
(j)
i (x) ≤ 0 i = 1, . . . ,m(j) j = 1, 2

h
(j)
i (x) = 0 i = 1, . . . , n(j) j = 1, 2

(3.2)

Notation Problem Variable/Parameter

x(1) vehicle design problem variables

f (1) Wdry

g(1) inequality constraints for vehicle design problem

h(1) equality constraints for vehicle design problem

x(2) trajectory design problem variables

f (2) Wfuel

g(2) inequality constraints for trajectory design problem

h(2) equality constraints for trajectory design problem

k = 2

J Wtotal

Table 3.1: Notation for convex architecture and the rocket design problem
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The convex solve processes for vehicle design and trajectory optimization are very

similar in structure. Figure 3-2 shows the general process outline for the vehicle

design (GP/SP) and the trajectory optimization (SCO) processes. Both processes

assume that the original problem is approximated as a convex design problem. Both

processes use an interior point solver and converge to a solution when the approximate

solution stays within a specified tolerance. There are differences between the two

processes such as the fact that the trajectory optimization may require the use of

trust regions as well as the addition of slack variables and constraint transformations

[47]; however, those changes are limited to the forming of the approximation itself,

not the general optimization process. Using these similarities, the two processes may

be combined in a more coupled manner utilizing the architectures mentioned in the

previous chapter rather than considering the two processes to be black boxes. Each

architecture implementation is described briefly in the following and shown in Figure

3-2.

Alternating Architecture

The alternating architecture is the implementation of the current approach of design-

ing a system when mission design (in this case, trajectory optimization) is needed

as shown in Figure 3-2b. Either the trajectory optimization or vehicle design starts,

and once one process finishes, it passes that solution to the other process and alter-

nates between the two processes. The alternating optimization process means that

the respective design variable (vehicle and trajectory) should stay constant during

the complementary optimization processes; in other words, the vehicle design process

uses a constant trajectory and vice versa. This means that all vehicle models and

trajectories will need to be passed between the two processes, and both processes

should be formulated such that each side can receive its input from the other side.

For this problem, this architecture is the simplest because it does not involve
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(a) Separated

(b) Alternating

(c) Integrated

(d) Combined

Figure 3-2: Conceptual summary of each architecture
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changing the respective processes. With the use of convex optimization, this combined

process could be much faster than past practices due to each individual optimization

processes being faster. This architecture is equivalent to sequential optimization, and

may not reach the true optimal solution due to the separated optimization process.

The alternating architecture will be used as a reference for the other two architectures.

Integrated Architecture

The integrated architecture takes advantage of the similarities between the two op-

timization processes by combining the two convergence loops into one large loop as

shown in Figure 3-2c. Rather than continue iterating within each optimization, the

integrated architecture uses the approximate solution produced by the solver as input

to the other portion of the problem. The overall optimization ends after both the

vehicle and trajectory solutions reach a certain tolerance between iterations.

By combining the convergence loops, the intent is to allow each optimization

process to have access to the most up-to-date information from the other process.

The primary hypothesis of the integrated architecture is that combining the separate

convergence loops into a single iteration loop will generate both an optimized vehicle

and trajectory. This approximation-based technique to couple the two processes is

similar to using the gradients to guide the optimizer towards the optimal solution.

The integrated architecture allows each side to take into account the other processes

direction of improvement as optimization unfolds.

Combined Architecture

The combined architecture brings the entire problem under a single successive convex-

ification problem as shown in Figure 3-2d. The architecture works by setting up both

problems under one unified convex optimization problem with disjointed variables

(i.e. separate variables for each optimization, but executed under a single optimiza-
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tion run). The objective function would be the only part where both optimization

processes interact outside of the approximation process as direct coupling (i.e. the

declaration of a parameter as a variable in both processes) is not possible within the

convex problem. Because both utilize the same structure of convergence, the idea

is to save the number of times that the solver is called while using the approximate

solution of either process to reach an optimal solution. Like the integrated architec-

ture, the convergence is achieved when both the vehicle and trajectory solutions reach

a certain tolerance between iterations. This architecture is a more computationally

efficient version of the integrated architecture.

The key disadvantage of the combined architecture is that a direct coupling of

the two problems into a single convex problem is challenging due to rules that the

problem formulation must follow to maintain the characteristics of a convex optimiza-

tion problem. The vehicle design problem is formulated in the log-space through the

change of variables and the trajectory optimization is not. Since the products of log

functions and other variables are not convex, the optimization processes cannot be

connected. Furthermore, the trajectory optimization cannot be formed into a geomet-

ric problem since the state variables in the trajectory optimization problem can be

negative and trigonometric functions/expressions are not GP-compatible. Therefore,

this architecture is not implemented because it is not possible to formulate a convex

approximation with current mathematical techniques.

3.1.3 Vehicle Design Formulation: Multidisciplinary Design

of Body and Nose Configuration

The vehicle design sub-problem is modeled as a multi-point analysis problem. The

optimization is set up to ensure that the vehicle can fly through the trajectory given by

the trajectory optimizer. The trajectory is discretized at a number of flight points,

which are called flight states. Each flight state contains flight information of the
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vehicle at a specific time such as velocity, altitudes, position, etc. The vehicle must

be able to fly through all flight states as well as survive the loads encountered at each

flight state. The vehicle optimization sub-problem is described in (3.3), where Wdry

is the dry mass of the vehicle.

minimize f (1) = Wdry

w.r.t. Geometry

Structural design

Motor design

subject to Trajectory

Aerodynamics

Structures

Thermal

Propulsion

Weights

Geometry limits

(3.3)

There are two types of variables that are set up in the GPkit model of the rocket:

static and dynamic. Static variables are used to describe the vehicle properties that

remain constant throughout the vehicle’s trajectory, such as geometry and material

thickness. Dynamic variables describe vehicle properties that vary during flight, such

as the mass of fuel onboard. Furthermore, both subsonic and supersonic characteris-

tics are being considered; therefore, the two aerodynamic models exist to account for

both flight regimes. Constraints connect the different components within the problem

as well as provide material and geometry limits across the different disciplines.

A conceptual vehicle configuration is shown in Figure 3-3. The primary body
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contains all components such as the payload and the solid rocket motor. Some of the

variables that are optimized such as body geometry and propellant sizing are shown

in Figure 3-3. In this very simple single stage model, the payload is located in the

front and modeled as a point mass.

Figure 3-3: Rocket vehicle configuration with major variables.

A summary of the disciplines considered in the vehicle optimization problem is

described in the following section. In the interest of compactness, not all details of the

GPkit model are given here. The model will be published online [6] for anyone to use.

Important details of the implementation of the different disciplines and conversion to

GP-compatible constraints are described here:

Aerodynamics:

For subsonic flow, slender body theory is considered for the body aerodynamics. For

supersonic flow, slender body and analytical Newtonian flow relations are used for

the body. Wave drag is accounted for through analytical relations found in Fleeman

[26]. The drag coefficients can be described through the following equation 3.4:

CD = CD0 = CD0f
+ CD0W

+ CD0B
(3.4)
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where CD0f
is the friction drag, CD0B

is the base drag, and CD0w
is the wave drag

which is the sum of the nose and body section wave drag. Since this is only a 1D

problem, only those drag terms need to be taken into account (no yaw and pitch

angle impact on drag). To convert this expression into a GP-compatible constraint,

the equality sign is converted into a ≥ sign. The friction drag term can be calculated

using the following expression in Equation 3.5 given in Fleeman and converted into

the GP-compatible constraints by simply keeping the equality operator. l
d

is the

finesse ratio of the body, l is the length of the body, q is the dynamic pressure and

M is the Mach number. Equation 3.5 is a monomial expression only one term exists

and are all powers.

CD0f
= 0.053

(
l

d

)(
M

ql

)0.2

(3.5)

For subsonic flow, the wave drag is set to a very small number (approximately

1e-8) due to its negligible effects. For supersonic flow, the wave drag consists of the

sum of two portions: one from the body and another from the nose shape which itself

is further decomposed into the sharp portion and the hemispherical portion. The

body wave is calculated through the following empirical equation from Fleeman [26]:

CD0W
=

(
1.59 +

1.83

M2

)(
tan−1

(
0.5
lN
d

))1.69

(3.6)

where lN/d is the finesse ratio of the nose. The inverse-tangent function is approxi-

mated using the GPfit library [37] which fits data to GP-compatible functions. The

approximation is substituted in to convert Eq. 3.6 to a GP-compatible expression.

The resulting GP-compatible constraint is the following:

CD0W
=

(
1.59 +

1.83

M2

)(
0.458064

(
lN
d

)−0.97058)1.69

(3.7)
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The nose portion of the wave drag is calculated by determining the wetted area of the

hemispherical/”tip” portion of the nose and the sharp/non-tip portion of the nose.

The sharp portion uses the same equation as Equation 3.6, however, the hemispherical

portion uses the following expression (3.8):

CD0Whemi
= 0.665

(
1.59 +

1.83

M2

)
(3.8)

Both portions are combined in a weighted fashion through the following expression

that relates the area of the nose tip with the Sref in Eq. (3.9).

CD0Wnose
= CD0Wsharp

(
Sref − Snose

Sref

)
+ CD0Whemi

(
Snose

Sref

)
(3.9)

Finally, the base drag is calculated differently for supersonic and subsonic flow.

For subsonic flow, the base drag is calculated using Eq. (3.10) while for supersonic

flow, the base drag is calculated using Eq. (3.11).

CD0B
=
(
0.12 + 0.13M2

)(
1− Ae

Sref

)
(3.10)

CD0B
=

(
0.25

M

)(
1− Ae

Sref

)
(3.11)

For Eq. 3.6 through 3.11, all of the expressions are either posynomial or signomial

expressions, so inequalities are required. The pressure is for decreasing the drag, so

all equal signs are converted to ≤ signs.

Structures:

The body structure is modeled as a thin-walled pressure vessel. The primary load

constraint is the axial load from the thrust of the motor. Fleeman [26] provides

many conditions that the thickness of the cylindrical vessel must meet. The following
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conditions are checked to ensure that the body thickness (t) chosen maintains integrity

during the flight: internal pressure from motor (pint), thrust force (Tmax), localized

buckling from axial pressure, localized buckling condition from bending, and minimum

gauge for manufacturability. σ is the maximum stress allowed for the material chosen,

E is the elastic modulus of the material chosen, r is the radius of the cylinder.

Equation 3.12 outlines the inequalities that must be true for the design. For each

flight state, these conditions must be met.

t ≥ Tmax

2πσr

t ≥ 0.06 inches

t ≥ 4.9r
σ

E

t ≥ 2.9r
σ

E

t ≥ pintr

σ

(3.12)

Thermal:

The nose and leading edge sections are the primary thermal constraints as they will

see the largest heating rates in the vehicle during ascent. The heating rates are

calculated using equations in Nicolai [55] that are a function of speed (V ). Eqs.

(3.13) and (3.14) provide estimates of the equilibrium wall temperatures (θwall) and

heat flux (q̇) [55]. ε is the emissivity of the surface (set at 0.8), v is the Boltzmann’s

constant, ρ is the air density, and rnose is the radius of the nose.

θwall =

(
q̇

εv

)0.25

(3.13)

q̇ = 15

(
ρ

rnose

)0.5(
V

1000

)3

(3.14)

Since both equations are in monomial form, the only conversion necessary to GP-

compatible constraints is changing the equal sign to an equality sign.
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Propulsion:

To size the motor properly and ensure that the design is also feasible, a modified

end-burning solid rocket model found in the GPKit library of models, gplibrary [6],

is used.

Weights:

Linear regressions and density calculations are used to calculate the total weight of

the vehicle. Although calculating the weight of the body and the motor grain is pretty

straightforward, the weight of the nose is slightly more complicated. The material

of the nose is highly dependent on the temperature that is observed on the nose.

Therefore, a linear correlation is used to model the relationship between density of

the thermal protection system (TPS) required and the temperature that the TPS

materials can take. A list of TPS materials and their allowable temperatures are

given in [55]. Thickness of the TPS is set to be 0.01 m for simplicity of optimization.

Therefore, the density of the nose is modeled using the following linear regression

equation:

ρnose = (6.0768θwall + 393.72) (3.15)

Atmosphere:

The 1976 standard atmosphere model is used. Atmospheric density, pressure, speed

of sound, and temperature are calculated outside of GPKit and are inputs to the

flight condition as will be discussed in Section 3.2.1.

Integration of Vehicle Design

To ensure that the vehicle can fly the trajectory given by the trajectory optimization

and that the motor is sized properly, a constraint is added such that the vehicle must
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be able to produce the equivalent or more acceleration at each flight state. The set

acceleration is set as an signomial inequality constraint is given by:

az ≤
T −D
Wwet

− g (3.16)

where az is the vertical acceleration at each flight state. This inequality allows the

thrust acceleration to be larger than what the trajectory optimization requests.

To track the total mass Wwet since GPKit is allowed to decrease or increase the

Wdry as it pleases, the following constraints are added to each flight state:

Wweti >= Wweti−1
where Wwet = Wdry +Wfuel (3.17)

where Wfuel is given by the trajectory optimization at each flight state. Additional

constraints that connect the models together to ensure they do not interfere with each

other (ex. motor length exceeding the body length) are added, but not outlined here.

Furthermore, to ensure that the drag does not increase significantly, the coefficient

of drag term for each flight state is added into the objective function such that the

drag is bounded with a small multiplier in front to make sure that the vehicle weight

Wdry is still prioritized by the optimizer.

Approximations

The wave drag expression contains an inverse-tangent term that is not GP-compatible,

see above. However, when we plot this function, the curvature of this function is GP-

compatible. Therefore, the expression is fitted using GPfit.

tan−1

(
0.5
lN
d

)
≈ 0.485775

(
lN
d

)−0.988596
(3.18)

The RMS of this fit is 0.0071538. Figure 3-4 shows the approximation. For
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the thermal protection material weight estimation, Figure 3-5 shows the data and

approximately fitted line. The quality of the fit is not great; however, it is good

enough for surrogate for estimating the TPS material required for the vehicle to fly

the trajectory.

Figure 3-4: Wave drag expression fit

Figure 3-5: Thermal protection data and fit
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3.1.4 Trajectory: Modified Goddard-ascent problem

For the full problem, the trajectory optimization problem is modeled similar to the

Goddard 1-D maximum ascent problem except the objective function is modified from

final altitude to be the mass of fuel used to reach the prescribed final state and the

time of flight is constrained. The control problem is posed as the following:

minimize f (2) = Wfuel

subject to ẋ = f(x(t),u(t), t)

Tmin ≤ u(t) ≤ Tmax

xmin ≤ x(t) ≤ xmax

x(t0) = x0

x(tf ) = xf

tf = tflight

(3.19)

x is the state, u(t) is the control action (thrust level), Tmin and Tmax are the

minimum and maximum thrust, and tflight is the time of flight.

The control can be described as:

u(t) = T (t) (3.20)

where T (t) is the thrust of the vehicle in the vertical z-direction at time t.

The dynamics are described as:

ṁ = − T

Ispg
(3.21)

ḣ = V (3.22)

V̇ =
T −D
m

− g (3.23)
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where Isp is the specific impulse of the vehicle’s propulsion system, m is the mass of

the vehicle, g is the gravitational acceleration, h is the height above sea level, V is

the velocity, and D is the drag.

Drag is calculated by using a simplified drag equation:

D =
1

2
ρV 2SCD (3.24)

The SCvx algorithm was chosen due to its ability in solving these fixed-time tra-

jectory optimization problems [50]. The SCvx algorithm follows the general process

for successive convex optimization; however, it adds trust regions as well as a vir-

tual control to prevent artificial infeasibility, which is when linearization determines

a specific trajectory as not feasible despite it being feasible. The implementation is

adapted from the open-source Python implementation of Szmuk and Açıkmeşe [56].

For the linearization process, analytical derivatives were used to calculate derivatives.

To account for the different drag coefficients at different Mach numbers, the drag co-

efficients were not explicitly interpolated; rather, the drag coefficients were treated

as parameters despite their dependency on the variables (V ). This strategy proved

effective for modeling the nonlinear nature of the drag rise.

This is the first known instance that the convex optimization method is used to

solve the Goddard problem, and GPOPS [60] is used to validate the convex formula-

tion of the Goddard problem. The figures show agreement between the two method-

ologies. Appendix A has a thorough investigation of using SCO/SCvx to solve the

Goddard problem.
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3.2 Single Mission Design

3.2.1 Integration and Implementation

The combined problem focuses on two objectives: the vehicle design problem mini-

mizes the overall weight by minimizing Wdry, and the trajectory optimization min-

imizes overall weight by minimizing Wfuel. The connections between each process

must be examined closely such that each individual optimization takes the other

side’s input into account.

Figure 3-6 shows a high level overview of the integrated data structure. The ve-

hicle design optimization passes the geometry and vehicle parameters to an analysis

program that contains the same models used for the vehicle design optimization. The

program is used to produce full performance tables, which in this case is the array

containing CL, CD, Mach number M , as well as any weights and motor performance

numbers that are input to the trajectory optimization. Providing the full perfor-

mance tables allows the trajectory optimization to use the full range of the vehicle

performance data if it needs to to come up with an optimal trajectory for the vehicle.

It will not be limited just by the flight conditions used to optimize the vehicle.

The trajectory optimization passes the discretized flight states to the vehicle design

side so that the vehicle design is optimized subject to the relevant flight states (FS).

These flight states are the bounding flight conditions that the vehicle must be able to

fly through. The flight states are incorporated into the vehicle design as constraints,

providing flexibility to the vehicle requirements as the trajectory changes. The 1976

atmosphere model parameters are also calculated at each FS and passed along here.

Initialization for the trajectory optimization begins with a linear trajectory that

starts from the initial to the final condition at equally spaced points. That same

initial trajectory is used initially to start the vehicle optimization, with an additional

constraint that the initial acceleration after ignition be 20 m/s2 as an initial guess
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Figure 3-6: Data flow between the two optimization processes.

(approximately 2g’s). To ensure the feasibility of the vehicle to fly the mission, an

additional constraint of thrust to weight ratio of 1.5 or higher was added. This ensures

that the vehicle has enough thrust to accelerate and lift off. Once the optimization

begins, the acceleration parameter is calculated during the transfer between the sub-

problems.

The algorithm flow of both the alternating and integrated architectures are given

in the Algorithm 5 and 6. The primary differences are the fact that each problem is

only solved with one iteration for Algorithm 6 and that intermediate solution is then

transferred to the other optimization problem. Because of the SCvx algorithm, each

trajectory optimization iteration in Algorithm 6 solves the problem twice to be able

to update the trust radius parameter.

3.2.2 Computational Results

The representative mission is a 1D ascent to an apogee of 3000 m with a set flight

time of 50 sec. The vehicle carries a 20 kg mass-invariant payload, which is modeled

as a point mass at the front of the vehicle. The mission parameters are shown in

Table 3.2. A maximum of 30 iterations are allowed. All computations were run

on a 2015 13-inch MacBook Pro with a 2.7 GHz Intel Core i5 and 8 GB of RAM.
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Algorithm 5 Alternating Architecture for Single Mission

Set convergence criteria ε
Initialize J, Ji, δ:
Initialize vehicle problem
Initialize trajectory problem
Generate initial trajectory
while δ ≥ ε do

Initialize ∆

// Vehicle Problem Solve

while ∆(1) ≥ ε(1) do
Transfer solution from other sub-problems into current sub-problem: Receive
flight states from trajectory and incorporate into problem as constraints

Approximate sub-problem 1 as a convex optimization problem.
Solve sub-problem 1 for f (1)

∆ = f (1) − f (1)
prev

f
(1)
prev = f (1)

end
// Trajectory Problem Solve

while ∆(2) ≥ ε(2) do
Transfer Take in vehicle model
Approximate sub-problem 2 as a convex optimization problem.
Solve sub-problem 2 for f (2)

∆ = f (2) − f (2)
prev

f
(2)
prev = f (2)

end

Calculate J = f (1) + f (2)

δ = J - Ji; Ji = J

end
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Algorithm 6 Integrated Architecture for Single Mission

Set convergence criteria ε(j) for j = 1, 2
Initialize δ(1), δ(1), f

(2)
prev, f

(2)
prev

while δ(1) ≥ ε(1) and δ(2) ≥ ε(2) do
// Vehicle Problem Solve

Transfer solution from other sub-problems into current sub-problem: Receive
flight states from trajectory and incorporate into problem as constraints
Approximate sub-problem 1 as a convex optimization problem.
Solve sub-problem 1 for f (1)

δ(1) = f (1) − f (1)
prev

f
(1)
prev = f (1)

// Trajectory Problem Solve

Transfer Take in vehicle model
Approximate sub-problem 2 as a convex optimization problem.
Solve sub-problem 2 for f (2)

δ(2) = f (2) − f (2)
prev

f
(2)
prev = f (2)

end

J = f (1) + f (2)
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The tolerance for the Alternating architecture is set at 1e-4 due to this model being a

conceptual design model which means that high detailed convergence is not necessary.

For the integrated architecture, the tolerance required is set by the specific SP/SCO

optimizations itself, which in this case are both 1e-5.

Parameter Value
hi 100 m
vi 0 m/s
hf 3000 m
vf 0 m/s
hmin 100 m
hmax 3000 m
vmin 0 m/s
vmax 1000 m/s
tflight 50 sec.

Payload mass 20 kg
Number of Flight States 50

Max iterations 30
Tolerance (Alternating) 1e-4

Tolerance (Integrated: SP) 1e-5
Tolerance (Integrated: SCO) 1e-5

Table 3.2: Mission and optimization parameters for the 1D rocket ascent problem

Both optimization processes converge and Fig. 3-7a and Fig. 3-7b show the con-

vergence plots, where change in objective function (kg) is shown as a function of

iteration number for the alternating and integrated architectures respectively. From

here on, SP will be referenced to indicate the vehicle design portion of the process

and will be used to indicate the trajectory optimization portion of the process. In the

integrated architecture, both SCO and SP reach their needed tolerances at approx-

imately the same time. The alternating architecture reached the required tolerance

in fewer iterations compared to the integrated architecture. Although the SP opti-

mization in the integrated architecture has a general downward trend, there are times

where the tolerances are not decreasing monotonically. A feature of this architecture

is that even though one optimization process may have converged, it will continue

optimizing until the other process has converged. This process does not have any
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adverse effects on the final solution in this case, though it is something to explore

further in Table 3.3.
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Figure 3-7: Iteration convergence history for 1D rocket problem

The expected trajectory and control is bang-singular-bang: where the control his-

tory starts with a full thrust, then a mid-level thrust when the singular arc occurs, and

finally a cut-off (in this case lowest thrust possible). This is similar to the trajectory

and control of the Goddard problem [60]. A singular arc occurs when Pontryagin’s

minimum principle cannot be applied to find the optimal control problem, and this

occurs when the Hamiltonian does not depend on the control[32]. This means that the

singular arc portion of the control requires additional work (such as another optimal-

ity condition) to find, and can be hard to find for optimization algorithms because
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the original optimality conditions do not help. This is the first known attempt at

using convex optimization to solve an optimal control problem with a singular arc.

Both the architectures should converge to the bang-singular-bang solution.

The final vehicle and trajectory solutions produced by the two convex optimiza-

tion architectures are slightly different yet follow the same general flight path. Figures

3-8-3-9 show the final trajectories and controls chosen by the different architectures.

The values shown are all in the Earth-Centered, Earth Fixed (ECEF) frame of ref-

erence. Both architectures show similar trajectories according to Figure 3-9, with

the optimizer struggling to find the appropriate control to maintain that singular arc

as seen in Fig. 3-9b. Both architectures converge to a similar altitude versus time

profile. Figure 3-8b indicates that the integrated altitude profile climbs slightly faster

by approximately 5 m/s before slowing down.

The vehicle design solutions from each architecture have slight differences. The

optimized vehicle design results from each architecture are indicated in Table 3.3.

The single iteration run where each optimization process is run once is also shown for

comparison. Both architectures decrease the needed mass by half of what is actually

needed as determiend by the trajectory optimization compared to the single iteration

design, with large decreases coming from the higher fidelity fuel estimation from the

trajectory optimization. From this comparison, it is clear that the vehicle weight is

decreased by almost 50% due to the more accurate fuel weight estimation from the

trajectory optimization process, which results in a lighter total vehicle. The added

body finesse ratio constraint that keeps the body fineness ratio above 5 is the only

limiting factor that prevents the vehicle from further reducing weight by only letting

the length of the vehicle be enough to cover both the payload and the motor grain.

One interesting note from the results in Table 3.3 is the fact that the optimization

processes did not improve the aerodynamic performance of the vehicle much if at all

for both architectures. For the integrated architecture, the aerodynamic performance
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Figure 3-8: Final trajectories for each architecture

was actually worse by examining the subsonic CD; yet, the motor sizing was decreased

a bit from the single iteration case. This result is somewhat expected since the

problem formulation makes drag only a second or even third order effect on the

overall design; however, it indicates that motor thrust/sizing and an accurate fuel

burn estimation will have a bigger impact on the design than improved aerodynamics

for this problem.

One of the primary goals of this work is to create a methodology that allows design-
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Figure 3-9: Final control for each architecture.

ers to look at both the vehicle and trajectory problems simultaneously and quickly.

Table 3.4 shows the computational resources and times used by each architecture

for a single iteration, as well as for the overall process. As one can see, the total

computation time for the different architectures varies quite significantly with the

integrated approach taking approximately half of the time to converge, but roughly

double the number of iterations. The alternating architecture spends significant time

ensuring convergence for the separate processes while the integrated architecture en-
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Vehicle Design Parameter Single Iteration Alternating Integrated
Wtotal (kg) 73.1 39.27 38.03
Wdry (kg) 30.1 28.9 28.02
Wfuel (kg) 43.0 10.37 10.01

Body weight (kg) 9.62 8.78 7.91
Body thickness (m) 0.003 0.003 0.003

Body length (m) 1.12 1.12 1.06
Sref (m2) 0.039 0.039 0.036

Body nose radius (m) 0.012 0.0058 0.0054
Motor thrust (N) 1430 1430 1290
Motor length (m) 0.64 0.15 0.16
CD at M = 0 0.141 0.136 0.154

Table 3.3: Summary of optimized major variables.

sures convergence for both processes simultaneously and more smoothly. Iterations

are not wasted on converging to the respective appropriate tolerances while using

approximate information from the respective sides.

Computation Parameters Single Iteration Alternating Integrated
Total computation time (seconds) 27.8 385.9 168.4

# of iterations 1 12 23

Table 3.4: Results Computation Summary for 1D Rocket Problem

Due to the singular arc, the SCO methodology for this process takes much longer

than pseudo-spectral methods and other SCO problem solves. SCO struggles to find

the accurate control by introducing oscillatory control behavior that averages out into

the correct singular arc. Typical SCO problem total solve times are in the seconds

[45] while for this implementation of the Goddard problem, the SCO takes at least

15+ iterations with each iteration being 1-3 seconds each for approximately minute

scale solve times. However, this is still almost twice as fast as GPOPS solve times

(see Appendix A for details). Therefore, a further speed-up in the SCO problem solve

(whether through faster solves or less iterations) will improve the time performance

significantly for these architectures.

This section examines the iteration behavior between the successive system-level
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iterations. We attempt to show that the hypothesis in section 2.2.4 is true. The previ-

ous section showed that the combined loops in the Integrated Architecture resulted in

a design that is lighter compared to the standard alternating loop; however, we want

to gain additional insight into the iteration process for further potential algorithm

improvement.

Figure 3-10 shows how several vehicle design variables evolve with system-level

iterations. All values are normalized by the final solution given by the optimizer. As

expected, the vehicle size (indicated by cross-sectional area) shows little change as

the optimization process continues. For both architectures, most of the effort spent

by the optimizer is on decreasing the total weight of the system. The initial guess for

Wfuel by GPKit over-designs for the mission, and the trajectory optimization gives a

more accurate estimation on how much fuel is needed.

As expected, the body geometry and related parameters such as the cross-sectional

area remain unchanged for both architectures. This result is due more to the problem

set-up rather than the optimization process itself, since there is no direct feedback

mechanism for the trajectory optimization to return the effect of the aerodynamics to

the vehicle design. For the alternating architecture, passive dynamics such as aero-

dynamics are not captured in the design cycle. In this problem set-up, the trajectory

optimization is able to directly influence Wtotal used by GPKit to size the vehicle be-

cause it is one of the primary outputs of both processes. There is a constant exchange

at each iteration of weight information. However, for the aerodynamics portion of

the vehicle, it is hard if not impossible for the trajectory optimization to ”signal” to

the vehicle optimization side to change because there is no variable/indicator that

tells the vehicle optimization side to either go more aerodynamic or less aerodynamic

despite aerodynamics having a non-negligible effect on fuel weight. Despite this, the

integrated architecture allows for some flexibility in change in the early iterations as

seen in Figure 3-10b. The strategy for the integrated architecture is thus slightly
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changed since the trajectory information influences the GPKit optimization process.

The optimization goes for a vehicle that is lighter while having a higher drag coeffi-

cient. This strategy does result in a vehicle that is 3% lighter than the alternating

architecture design and 52% lighter than the feasible single iteration design.
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Figure 3-10: Vehicle parameter change for each architecture, normalized by final
value.

Figure 3-11 shows how the mass history evolves with system-level iterations and

Figure 3-12 shows the different control histories evaluated by the optimizer. The mass

history varies quite significantly for both architectures due to the problem set-up. For
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the integrated architecture, only the trajectories for every third iteration is shown to

allow for less clutter. The optimizer has flexibility in deciding which control strategy is

best for the vehicle design at each iteration. The varying degrees of freedom are visible

by the comparison of a variety of control histories between the two architectures as

shown in Figure 3-12a and 3-12b. The integrated architecture shows different control

histories in Figure 3-12b and has many different switching times as well as different

strategies as it simultaneously attempts to find an optimal trajectory for the vehicle

as well as the overall mission whereas for the alternating architecture in Fig. 3-12a,

only the length and magnitude of the singular arc section in the middle is varied since

it is focused on optimizing the trajectory for the vehicle given. This is also apparent

in the mass history as Fig. 3-11b shows that the integrated architecture evaluated a

single trajectory where the mass did not change throughout the flight. This erroneous

mass time history shows that the trajectory optimization may not have been working

correctly as intended throughout the entire process, especially if a single trajectory

was shown as ”feasible” despite no mass decreasing. This is most likely due to the

fact that the optimizer found another way to satisfy the constraints. In the future,

another constraint such as ensuring the mass history should differ by some set amount

should be added to ensure that the optimization is robust. Another possibility is the

fact that the mission is infeasible for the vehicle. Regardless, the optimizer brought

the trajectory optimization back on track without manual intervention.
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Figure 3-11: Vehicle mass evolution during optimization process.
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Figure 3-12: Control evolution during optimization process.

Figures 3-13-3-14 show the evolution of height and velocity with system-level

iterations. Similar to the mass and control histories, the alternating architecture

shows a more predictable progress towards convergence since most of the iteration

results have very similar features in all state histories. The integrated architecture

shows many different trajectory structures such as multiple velocity peaks and dives as

well as ”waits” where the vehicle attempts to hold a constant velocity or location for

a length of time. However, the SCvx algorithm gradually decreases the trust radius,

forcing the trajectory to be become more compliant to the problem’s constraints.
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Figure 3-13: Height evolution during optimization process.
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Figure 3-14: Velocity evolution during optimization process.

3.3 Multi Mission Design

3.3.1 Problem Formulation

We can expand this framework by looking at another problem of multi-mission design.

Often times, vehicles are not designed for a single mission; rather, they are designed

for multiple alternative or sequential missions. The convex optimization architectures

are flexible enough to accommodate this type of problem. We test this statement by

implementing a two mission design problem.

The original problem is modified to the following Problem 3.25 with the notation

given in Table 3.5. The primary modification is the change of the overall system
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Notation Problem Variable/Parameter

x(1) vehicle design problem variables
f (1) Wdry

g(1) inequality constraints for vehicle design problem
h(1) equality constraints for vehicle design problem
x(2) trajectory design problem 1 variables
f (2) Wfuel1

g(2) inequality constraints for trajectory design problem
h(2) equality constraints for trajectory design problem
x(3) trajectory design problem 2 variables
f (3) Wfuel2

g(3) inequality constraints for trajectory design problem
h(3) equality constraints for trajectory design problem
k = 3
J Wtotal

Table 3.5: Notation for convex architectures

objective function J . Rather than just taking the fuel burned in a single mission,

we take the maximum of both missions since that is how much fuel that the rocket

must be able to carry. The two-mission design problem adds a third sub-problem to

accommodate the additional mission that will need to be analyzed.

minimize J(f) = f (1)(x(1)) +max(f (2)(x(2)), f (3)(x(3)))

subject to g
(j)
i (x) ≤ 0 i = 1, . . . ,m(j) j = 1, 2, 3

h
(j)
i (x) = 0 i = 1, . . . , n(j) j = 1, 2, 3

(3.25)

3.3.2 Implementation and Integration

The implementation and integration to accommodate the second mission is very

straightforward. To test this, we choose the following mission parameters shown

in Table 3.6. The problem is simplified by adding another mission that is similar to

the original mission: the vehicle must also be able to fly longer (80 sec) and higher
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than the previous mission.

Parameter Mission 1 Value Mission 2 Value
hi 100 m 100 m
vi 0 m/s 0 m/s
hf 3500 m 5500 m
vf 0 m/s 0 m/s
hmin 100 m 100 m
hmax 3500 m 5500 m
vmin 0 m/s 0 m/s
vmax 1000 m/s 1000 m/s
tflight 50 sec. 80 sec.

Payload mass 20 kg 20 kg
Number of Flight States 50 50

Max iterations 100
Tolerance (Alternating) 1e-4

Tolerance (Integrated: SP) 1e-5
Tolerance (Integrated: SCO) 1e-5

Table 3.6: Mission and optimization parameters for Multi-Mission Design

The algorithms for the multi-mission problem are shown in Algorithm 7 and Al-

gorithm 8 which describe the alternating and integrated mission respectively. The

only change that was added into the algorithm is the modified objective function

calculation as well as the additional trajectory optimization problem solve process.

Otherwise, the algorithms are unchanged.

The data flow is also very similar as shown in Figure 3-15. The only modification

is from the single mission case is the addition of the second trajectory optimization

process as well as the additional flight states that result from that. Because the

vehicle design process is formulated as a multi-point design problem, the additional

flights states does not require modifications to the problem.
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Algorithm 7 Alternating Architecture for Multi Mission

Set convergence criteria ε
Initialize J, Ji, δ:
Initialize vehicle problem
Initialize trajectory problem
Generate initial trajectory
while δ ≥ ε do

Initialize ∆

// Vehicle Problem Solve

while ∆(1) ≥ ε(1) do
Transfer solution from other sub-problems into current sub-problem: Receive
flight states from trajectory and incorporate into problem as constraints

Approximate sub-problem 1 as a convex optimization problem.
Solve sub-problem 1 for f (1)

∆ = f (1) − f (1)
prev

f
(1)
prev = f (1)

end
// Trajectory Problem Solve 1

while ∆(2) ≥ ε(2) do
Transfer Take in vehicle model
Approximate sub-problem 2 as a convex optimization problem.
Solve sub-problem 2 for f (2)

∆ = f (2) − f (2)
prev

f
(2)
prev = f (2)

end
// Trajectory Problem Solve 2

while ∆(3) ≥ ε(3) do
Transfer Take in vehicle model
Approximate sub-problem 3 as a convex optimization problem.
Solve sub-problem 3 for f (3)

∆ = f (3) − f (3)
prev

f
(3)
prev = f (3)

end

Calculate J = f (1) +max(f (2), f (3))
δ = J - Ji; Ji = J

end
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Algorithm 8 Integrated Architecture for Multi Mission

Set convergence criteria ε(j) for j = 1, 2, 3
Initialize δ(1), δ(2), δ(3), f

(1)
prev, f

(2)
prev, f

(3)
prev

while δ(1) ≥ ε(1), δ(2) ≥ ε(2) and δ(3) ≥ ε(3) do
// Vehicle Problem Solve

Transfer solution from other sub-problems into current sub-problem: Receive
flight states from trajectory and incorporate into problem as constraints
Approximate sub-problem 1 as a convex optimization problem.
Solve sub-problem 1 for f (1)

δ(1) = f (1) − f (1)
prev

f
(1)
prev = f (1)

// Trajectory Problem Solve 1

Transfer Take in vehicle model
Approximate sub-problem 2 as a convex optimization problem.
Solve sub-problem 2 for f (2)

δ(2) = f (2) − f (2)
prev

f
(2)
prev = f (2)

// Trajectory Problem Solve 2

Transfer Take in vehicle model
Approximate sub-problem 3 as a convex optimization problem.
Solve sub-problem 3 for f (3)

δ(3) = f (3) − f (3)
prev

f
(3)
prev = f (3)

end

J = f (1) +max(f (2), f (3))
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Figure 3-15: Integration Picture

A note on this formulation and implementation is the potential for parallelization

of the problem. The multi-mission problem can be easily parallelized across differ-

ent processors because once it receives the vehicle model, it does not need anything

from the other trajectory problem. This means that the multi-mission problem op-

timization time may be as fast as the the single mission design case if there is a

multiprocessor core or multiple processors available for each trajectory optimization

process. However, for this thesis, the implementation does not include any parallel

processing, and each sub-problem was done sequentially and is left for future work.

3.3.3 Computational Results

The multi-mission problem was implemented using the same equipment than on the

single mission problem. Table 3.7 shows the computational results from each archi-

tecture. The alternating architecture did not converge to the specified tolerance; it

settled into a cyclic behavior that is very close to the solution that the integrated

architecture settled on. The integrated architecture converged in approximately 10

min and within 31 iterations with both the vehicle and two trajectory optimization

problems reaching their needed tolerances together. The integrated architecture is

more than three times faster in each iteration; however, the alternating architecture

was not parallelized in this implementation and this would result in a speed-up that
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would bring the per-iteration speed to be on par with the integrated architecture.

Computation Parameters Alternating Integrated
Total computation time 4 hours 6 min 10 min 42 sec

# of iterations 200 33
Time per iterations 73.8 secs 20.7 secs

Converged? No Yes

Table 3.7: Results Computation Summary

Figure 3-16 shows the convergence plots for both architectures. The alternating

architecture in Figure 3-16a shows the cyclic behavior that occurs after approximately

iteration 80. This is similar to a limit-cycle where the solution switches back and

forth between two designs without converging. This behavior means that the solve

process is stuck and therefore unable to get out of the alternating pattern. The same

problem does not exist for the integrated architecture in Figure 3-16b though there

is a period during the convergence where the tolerance does not change and actually

increases for all three sub-problems. However, the integrated architecture reaches a

point where all three processes quickly begin to decrease in tolerance towards the

needed convergence tolerance. The reasoning behind this is explained through the

trajectory characteristics in the latter portion of the chapter.
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Figure 3-16: Overall convergence history

The specific dry weight and fuel weight evolution as iterations progress can be
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found in Figure 3-17 and Figure 3-18. Both architectures dip down in terms of to-

tal vehicle weight before correcting upwards towards the final vehicle weight around

iteration 25. It is interesting to see that both architectures reach approximately the

same settling point around the same number of iterations. This may be a possi-

ble indication that the approximate solution is adequate for iterations in the vehicle

weight evolution in Figures 3-17a and 3-17b. The same thing also occurs in the tra-

jectory optimization in Figure 3-18a and 3-18b. The trajectory optimization initially

undershoots for the less intensive mission (shown in blue); however, corrects in both

vehicle weight and fuel weight before settling for a higher fuel amount. This is most

likely due to the trajectory optimization and vehicle optimization accounting for the

extra fuel needed to be carried for the longer mission: it continuously iterates as both

weights increase before a settling point is reached. It should be clear here that in the

case of the lower mission to an altitude of only 3,000 meters that the sounding rocket

will still have unspent fuel onboard once the terminal condition is reached.
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Figure 3-17: Vehicle Mass Evolution History

The final vehicle properties for each architecture are shown in Table 3.7. The

final weight parameters are very similar with each architecture off by a fraction of

kilogram; however, the control strategy is completely different. The motor thrust,

length/duration of firing, and the drag of the vehicle is completely different. The
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Figure 3-18: Trajectory/Fuel Weight Final Evolution

integrated optimization chose a high drag design with higher thrust with a shorter

motor. Both architectures resulted in a similar fuel weight, which means that the

trajectory or control strategy must have been different in order for the result from

each architecture to be feasible.

Vehicle Design Parameter Alternating Integrated
Wtotal (kg) 47.1 47.5
Wdry (kg) 30.8 31.3
Wfuel (kg) 16.2 16.2

Body weight (kg) 10.6 11.2
Body thickness (m) 0.003 0.003

Body length (m) 1.00 1.02
Sref (m2) 0.048 0.051

Body nose radius (m) 0.0098 0.0100
Motor thrust (N) 3388.4 3567.8
Motor length (m) 0.191 0.111
CD at M = 0 0.134 0.242

Table 3.8: Summary of optimized major variables for multi-mission design

The velocity and height profiles and the evolution of each profile is shown in Figure

3-19 and 3-20. As expected, both architectures settled on different trajectories. The

alternating architecture settled on a short-mission trajectory that is faster than the

long-mission trajectory whereas the opposite is true for the integrated architecture.

Interestingly enough, the alternating architecture also settled for different trajectories
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(a) Alternating architecture (b) Integrated architecture

Figure 3-19: Trajectory Velocity Profile Final Evolution

between the two mission as shown in Figure 3-20a and 3-19a: the short-mission

trajectory has a simple cruise in the middle while the long mission speeds up in the

end to meet the prescribed end time at 5,500 meters. This was not an expected result

and likely is due to the smaller motor thrust that resulted from the vehicle design.

The integrated architecture settled for the same strategy though with different cruise

speeds as shown in Figure 3-20b and 3-19b. The evolution also varied significantly

more for the integrated architecture as expected, similar to the behavior already seen

in the single mission case.

(a) Alternating architecture (b) Integrated architecture

Figure 3-20: Trajectory Height Profile Final Evolution

The control and mass profiles tell a similar story as well in Figure 3-22 and 3-

21. Interestingly, the integrated architecture shows an oscillatory behavior that is
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(a) Alternating architecture (b) Integrated architecture

Figure 3-21: Trajectory Mass Profile Final Evolution

almost sinusoidal in Figure 3-22b and 3-21b that is not apparent in the alternating

architecture solution evolution in Figure 3-22a and 3-21a. This behavior is due to a

singular arc solution existing within the optimal trajectory. This is most likely due to

the fact that the first solution from the trajectory optimization was highly oscillatory

when the trust radius for the SCvx algorithm was so large that it still accepted

possibly infeasible solutions, and due to the architecture utilizing the solution from

a previous iteration, the oscillatory solution remained. However, as the tolerance

decreased and the trust region decreased, the oscillations decreased in amplitude.

This behavior can be mitigated through careful tuning of the trust radius at the start

of the optimization. Appendix A has a small investigation into the behaviors and

factors that affect the singular arcs.

Finally, the maximum velocity and maximum thrust for each iteration is observed

for each iteration in Figure 3-23 and 3-24. The max initial thrust increases steadily

for both architectures in Figure 3-24a and 3-24b. This can most likely be attributed

to the fact the vehicle design was making the vehicle’s initial boost phase more intense

such that the cruise period does not have to be at a higher velocity. This explanation

holds for the integrated architecture in Figure 3-23b but does not necessarily hold for

the alternating architecture in Figure 3-23a because the max velocity holds constant
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(a) Alternating architecture (b) Integrated architecture

Figure 3-22: Trajectory Control Profile Final Evolution
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Figure 3-23: Max Velocity Evolution

as the optimization progresses. Another possible explanation is that the max thrust is

increased to maintain the acceleration. As the vehicle weight increases to allow for the

increased thrust (due to structural constraints), the vehicle thrust must also increase,

which increases the weight and so on. This explanation holds when examining the

vehicle weight evolution in Figure 3-17.

3.4 Chapter Summary

A simple rocket design problem is implemented using the convex optimization ar-

chitecture for both a single and multi-mission design problem. Both the alternating
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Figure 3-24: Max Thrust Evolution

and integrated architectures successfully converge to a solution for the single-mission;

however, the alternating architecture reaches cyclical behavior despite the integrated

architecture reaching a solution. Future additional improvements could potentially be

gained through the parallelization of the process which in some cases could allow the

multi-mission design case to have similar run-times as the single-mission design case.

Scaling this approach to a more complex rocket design problem one would consider

the full 2D and 3D trajectory as well as additional missions, each representing the

corner points of the entire flight envelope.

This chapter demonstrated the utility of convex optimization architectures on an

integrated vehicle and mission design problem. The next chapter will apply this

mindset to a more realistic and complex problem of designing a hydrogen-powered

aircraft.
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Chapter 4

Hydrogen Aircraft Design Case

4.1 Case Study Context

4.1.1 Hydrogen in Civil Aviation

Hydrogen is an alternative fuel that could be used to replace kerosene for flight oper-

ations. Specifically, the use of liquid hydrogen is explored in this chapter. Although

fuel cells and gaseous hydrogen are promising for aviation use, they are more suited

for shorter range missions. The benefits and viability of liquid hydrogen as a fuel can

be summarized in the following table [71]. Liquid hydrogen or LH2 has three times

more energy than kerosene; however, liquid hydrogen has only 1/10th of the density

of kerosene and also needs to be stored at very cold temperatures unlike kerosene

which can be stored in most atmospheric states.

Property Liquid Hydrogen Kerosene

Heat of combustion (MJ/kg) 120 43

Volumetric Density (kg/m3) 70.9 810.53

Boiling Temperature (K) 20.369 439.8

Table 4.1: Hydrogen Properties compared to Kerosene
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Other critical design challenges that arise are briefly summarized below:

Cryogenics

Due to the low temperature of the fuel, cryogenics are needed to store the fuel. Unlike

kerosene, LH2 cannot be stored anywhere there is space. Cryogenics are needed to

1. maintain the low temperature and 2. maintain the liquid state of hydrogen. With

liquid hydrogen, boil-off occurs where the liquid changes state to a less-useful state

of gas; in other words, during operations, fuel is lost without useful work gained out

of it. The amount of boiloff losses depends on several factors such as the initial total

amount of fuel, the environmental temperature, the geometry of the LH2 tank(s) as

well as thermal insulation. The amount of boiloff can be reduced or eliminated by

so called zero-boiloff (ZBO) technologies such as cryo-coolers, but this comes at the

cost of additional mass and complexity.

Additional equipment and therefore weight is needed to contain liquid hydrogen

to minimize the boil-off. Furthermore, the tanks must ideally be a surface area min-

imizing shapes (i.e. spherical). Therefore, any shape conforming tanks will cause

major losses in fuel; and any ideal tank shapes may have large aerodynamic penal-

ties. The ideal design is somewhere in the middle. Colozza has previously devised a

simple sizing methodology [19], and Winnefeld [71] created a cryogenic tank design

methodology based off of Verstraete’s work in designing hydrogen aircraft [70].

Wing Weight

In passenger aircraft, most of the fuel is stored in the wings. This helps decrease

structural weight needed for the wing due to the fact that the fuel also provides load

alleviation during flight due to gravity which counteracts the lift and reduces the

wing root bending moment. However, cryogenics require the tanks to be stored in

the fuselage to minimize drag. Therefore, the wing structure will likely need to be

120



reinforced to compensate for the lack of load alleviation.

Cryogenic fuel effect on aircraft performance

Cryogenic fuel provides many benefits to engine performance, mostly due to reduced

thrust specific fuel consumption or TSFC. This is driven in large part by the higher

energy content of the fuel per unit mass. Also due to the cryogenic fuel, cooling

can be provided to the engine which results in higher performance. Furthermore,

due to the absence of carbon in the fuels, the by-products of the combustion are

simply water vapor and NOx.[16] Although this is definitely better than the exhaust

products of the combustion from hydrocarbons such as CO, CO2, water vapor is also

a green-house gas; and work to minimize NOx emissions and water vapor production

is focused on the combustor design [73].

Finally, aircraft integration also remain as a challenge. Due to the fuel not be-

ing stored within the wings and cryogenic tanks needing to be spherical shaped or

near-spherical, the L/D of the aircraft must also increase. Any storage outside will

further increase the drag due to increased wetted area. Another consideration is the

placement of the tank as loss from fuel-lines needs to be minimized as much as possi-

ble through close placement of the tanks. This limits the possible configurations that

can be used for hydrogen aircraft.

4.1.2 Operations/Missions Perspective

In past work, most hydrogen aircraft studies have focused on the aircraft design itself

fitted into current operations of a single flight mission profile. Brewer summarizes the

challenges and past work done in hydrogen aircraft design in the past [16]. In recent

work, Mancini explored 747-sized aircraft as a hydrogen aircraft, attempting to fit the

cryogenic tanks and determining the performance [49]. Verstraete created an entire

set of tools examining such configurations from cryogenic fuel tank design to aircraft
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Figure 4-1: Single Aircraft CONOPS for a Hydrogen-powered aircraft

design to hydrogen engine design. Cryoplane was a project by Airbus to explore

the feasibility of a liquid hydrogen fueled aircraft [2]. All of this work assumes a

single aircraft with the simple mission profile as shown in Figure 4-1, and rather than

optimization this work consisted of exploratory design studies that examined certain

scenarios, without claims of optimality. The mission profile adopted is a simple climb

and cruise with a cruise-climb incorporated to accommodate the change in fuel weight

as the mission goes on. However, the cruise climb is not an imposed constraint, rather

something that is potentially expected and shown in Figure 4-1.

However, here we adopt the flight profile optimization perspective: what if we

changed the trajectory or even the operations paradigm to accommodate the proper-

ties of cryogenic LH2? Cryogenics requires a different operations mindset, with the

trajectory the aircraft is flying affecting the boil-off rate of the aircraft. This requires

a concurrent vehicle and mission design perspective. However, a total optimization

has been computationally intractable in the past due to the complex modeling needed

to capture these coupled effects. This chapter tackles the joint vehicle and trajectory

design problem for a hydrogen aircraft with convex optimization.
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4.2 Problem Formulation

For this mission, there are two parts that need to be modeled: the aircraft and the

operations. The operations/mission profile is important because how the aircraft flies

determines the boil-off rate at each point and how much hydrogen fuel is consumed.

The environmental temperature has a big impact and depends on flight altitude.

Furthermore, decreasing the boil-off rate may result in a tank that is too large and too

heavy, negating any benefit from the higher energy density that is gained from using

hydrogen. Therefore, our model needs to be able to model and capture those physical

effects. We build off existing work to model these effects using convex optimization,

specifically Signomial programming.

The overall problem is the following as described in Problem 4.1. We want to

minimize the fuel burn of the aircraft such that the aircraft can still fulfill the missions

that it is asked to complete. The trajectory analyzed is a simple climb and cruise

segment with no descent profile modeled. The cumulative fuel burn is chosen as the

objective of the optimization problem because the primary rationale of converting to

liquid hydrogen as a fuel is because of the anticipated lower fuel burn required to

complete the mission. In choosing this as an objective we are implicitly accepting a

potential higher aircraft dry mass and gross takeoff weight (GTOW).

minimize Wburn

w.r.t. Vehicle Design

Trajectory Design

subject to Range required

Payload

(4.1)

The configuration chosen to analyze is a simple tube-and-wing configuration with
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engines below the wing. A single cryogenic tank is assumed to be at the wing longi-

tudinal location of the aircraft to minimize the amount of tubing needed to get the

liquid hydrogen to the wing to minimize fuel losses. This configuration however does

split the passenger cabin into two: a forward cabin and an aft cabin; however, solving

that problem is beyond the scope of this thesis.

4.2.1 Vehicle Design Formulation: Aircraft and Engine and

Cryogenics

The aircraft model utilized is a modified version of SPaircraft which is a Signomial

Programming model of TASOPT [72]. TASOPT utilizes low order physics model

to analyze the aircraft design model from the aerodynamic, structural, thermal, and

propulsion perspectives. This prior model is augmented with a cryogenics model that

was developed as part of this thesis. The engine model used is the turbofan model

found in the GPlibrary [6]. In this chapter we focus on direct combustion of hydrogen

in a turbofan engine, and not fuel cells.

Cryogenic Model

The cryogenic Signomial model developed in this thesis is based off a NASA fuel tank

sizing method outlined by Colozza [19]. Table 4.2 lists the parameters and variables

used in this model. This model ensures basic first order physical principles including

thermodynamics, states of gases, and mechanical properties are satisfied based off the

flight state of the tank. Each parameter in Table 4.2 is either a variable, parameter,

or a mission variable. A mission variable is a variable that is dependent on the

mission/trajectory chosen by the optimizer. Figure 4-2 shows a basic schematic of

the LH2 tank.

Symbol Parameter Parameter type

124



R tank radius variable

L tank length variable

A tank surface area variable

tw tank wall thickness variable

tins insulation wall thickness variable

Vt tank volume variable

mins mass of insulation variable

mt mass of tank structure variable

mtank mass of cryogenic tank variable

Mboil−off boil-off rate variable

hext external convective heat transfer coefficient variable

NuL Nusselt number variable

Pr Prandtl number variable

Re Reynold’s number variable

Ts tank surface temperature variable

Qin heat flux in variable

Qout heat flux out variable

ρCC tank wall density parameter

ρins insulation density parameter

ρLH2 LH2 density parameter

PLH2 LH2 pressure parameter

TLH2 LH2 temperautre parameter

Vi extra volume for gaseous hydrogen as percentage parameter

FoS Factor of safety parameter

σy Wall material stress limit parameter

Kins thermal conductivity of insulation material parameter
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Figure 4-2: Schematic of Cryogenic Tank

Kair thermal conductivity of air parameter

εair emissivity of air parameter

hfg heat of vaporization of LH2 parameter

σ Boltzmann’s Constant parameter

Cp specific heat at constant pressure parameter

µair dynamic viscosity of air mission variable

T∞ ambient temperature mission variable

V∞ flight velocity mission variable

ρ∞ flight velocity mission variable

WLH2 weight of LH2 contained mission variable

Table 4.2: Cryo Tank Model Variables and Parameters

A primary constraint for the cryogenic tank is to be able to contain the fuel it

contains. However, the tank also needs to be filled with gaseous hydrogen as temper-

ature fluctuations and pressure fluctuations will cause the hydrogen to fluctuate in

state as well. Therefore, to ensure that some hydrogen can be vented off in case pres-

sures and temperatures rise, some gaseous hydrogen is maintained within the tank.

To allow for that, a monomial constraint is defined to allow for that with Vi providing
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that safety margin in equation 4.2 where g is the graviational acceleration. To ensure

the geometric dimensions are also constrained properly, the Signomial constraint in

equation 4.3 is added to make sure the tank volume does not exceed the dimensions

specified by the optimizer.

Vt =
WLH2Vi
ρLH2g

(4.2)

Vt ≤
4πR3

3
+ πR2L (4.3)

The surface area of the cylindrical tank with hemispherical end caps can be con-

verted into a posynomial constraint as shown in equation 4.4:

A ≥ 4R2π + 2RπL (4.4)

To ensure that the tank walls are sized to be thick enough to be handle the tank

pressures, a hoop stress constraint is incorporated in equation 4.5.

tw ≥
PRFoS

2σy
(4.5)

The mass of the entire cryogenic system can be calculated using material densi-

ties. Although the more accurate estimate would be to calculate the actual material

thickness at each location including the curvature, to keep as many of the constraints

GP-compatible, surface areas are used to simplify the calculation as shown in equa-

tion 4.6, 4.7, 4.8. These can be made into posynomial constraints because we can

expect the optimizer to add additional pressure to the constraints.

mt ≥ ρCCAtw (4.6)
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mins ≥ (2πLR + 4πR2)tinsρins (4.7)

mtank ≥ mins +mt (4.8)

Now that the geometric, structural and weight property constraints have been

defined, the thermodynamic properties of the cryogenic tank need to be modeled. At

the core, the basic thermodynamic principle followed here is that the heat flux in has

to equal the heat flux going out while maintaining the cryogenic temperature inside

the tank:

Qin = Qout (4.9)

The heat fluxes can be calculated through accounting for convection, conduction

and radiation as seen in equation 4.10 and 4.11. This is a signomial equality con-

straint, and made such to ensure that proper thermodynamics are accounted for.

Qin + hextTs + σεT 4
s = hextT∞ + σεT

inf4 (4.10)

Qout +
TLH2Kins

tins
=
TsKins

tins
(4.11)

The hext can be calculated by determining the Nusselt number (NuL):

NuL =
hextR

kair
(4.12)

The Nusselt number can be estimated using correlation between the Prandtl num-

ber and the Reynolds number given in Verstraete [70] . This is converted into a

equality constraint:
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NuL = 0.03625(Pr0.43)(Re0.8) (4.13)

where the Prandtl number Pr and Reynolds number Re can be calculated in using

the flight state information:

Re =
ρinfV R

µair

(4.14)

Pr =
µairCp

kair
(4.15)

Finally, the hydrogen boil-off rate can be calculated using the following thermo-

dynamic relation and Signomial inequality constraint. The optimizer will attempt to

decrease the boil-off rate, so this we can use optimizer pressure to push the inequality

such that is an active constraint. An interesting question will be to see how much

boiloff - if any - the optimizer will allow. While in theory zero boiloff is possible the

added mass of equipment to achieve it may not be worth it.

Mboil +
KinsATLH2

tinshfg
≥ KinsATs

tinshfg
(4.16)

For this model, the default structural material for the tank wall that was cho-

sen is carbon composite. The default insulation material chosen is rigid closed cell

polymethacrylimide. The specific material properties are given in Colozza [19].

4.2.2 Mission: Flight Profile

The mission model utilized is the mission profile used in SPaircraft. However, to

accomodate the cryogenics, some modifications were required. The cryogenic tank has

a boil-off rate (Mboil). Therefore, in the fuel-burn calculation, the boil-off rate must

be taken into account in addition to the actual fuel burn in the engines. Following the
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Property Value
Heat of Combustion of Jet Fuel hf 120 MJ/kg

Cp Value for Fuel/Air Mix in Combustor Cpc 1506 J/K/kg
Specific Heat Capacity of the fuel Cpfuel 9780 J/K/kg

Table 4.3: LH2 Fuel Properties

convention used in the SPaircraft documentation, the constraint that was modified:

this was calculated in the fuel-burn calculation portion of the model as shown in

Equation 4.17.

Wburn ≥ neng(TSFC)(F )(t) + t ∗Mboiloffg (4.17)

4.2.3 Model Integration

The only other modifications made to the SPaircraft model was to accommodate the

geometry and ensure that it is integrated into the aircraft model. This means for

example that the cryogenic tank radius does not exceed the fuselage constraints, etc.

Furthermore, the only engine modifications made were to the fuel properties. This

was chosen because this allows determining what if liquid hydrogen were used in

current engines and currently no public data exists for hydrogen-specific turbofans.

The fuel properties used are listed in Table 4.3.

4.3 Vehicle and Flight Profile Design Optimization

The case of interest examined is to determine what the performance would be if we

were to simply retrofit a 737/777 style tube and wing aircraft into a hydrogen aircraft.

We also allow the mission profile to be optimized to allow for some operations change

to accommodate the properties of LH2; however, as a validation case, for these results,

we limit the operating bounds to be the same as the current trajectories flown by

current passenger aircraft.
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Two separate design missions are examined: a 737-type mission designated as

SR (short range) and a 777-type mission designated as LR (long range). Table 4.4

shows the mission optimization parameters. The default optimization parameters for

relative tolerance found in SPaircraft are used.

Parameter LR SR

Range [nmi] 6000 3000

Passengers 450 180

Cruise Segments 4 4

Climb Segments 4 4

Mmin 0.84 0.8

hmin [ft] 32000 32000

Tolerance 0.01 0.01

Table 4.4: Optimization and Mission Parameters

4.3.1 Convex Architecture

The convex architecture chosen here is the combined architecture. Both the vehicle

and the mission in this case have been formulated as a SP problem and implemented

as a combined architecture in SPaircraft [42]. Because the mission and the cryogenics

are simple and predictable, we can model the problem as a SP. The alternating and

integrated architectures could easily be implemented here. However, there is no need

to do so as Signomial programs are flexible enough to accommodate both the vehicle

and mission together.

4.3.2 Short Range Mission

Both optimizations converged within 7 GP iterations and approximately 30 seconds.

Each mission profile is divided into two phases: climb and cruise with 4 segments for
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climb and 4 segments for cruise. The results for the 737-style mission are presented

here.

Vehicle Design Results

The weight build up for both the 737 model and the LH2-SR aircraft are shown in

Figure 4-3 and 4-4. As one can see, the fuel fraction dramatically decreased with

the conversion to LH2 as a fuel though the mass penalty of the cryogenics did cut

into gains just slightly, accounting for approximately 15% of the fuel + tank weight.

Surprisingly, the wing weight did not increase as much as expected due to the lack

of load alleviation from the fuel during flight. Overall the hydrogen aircraft is about

18,000 lbs lighter at takeoff even though the fuselage is about 3 meters longer and

the wing reference area slightly larger. This is consistent with conventional wisdom

which says that hydrogen aircraft, for the same payload and range, will be somewhat

larger compared to kerosene-powered aircraft.

Figure 4-3: 737-Model Weight Build-up: 141,862 lbs
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Parameters 737-model LH2 SR
b [m] 35.8 37.92
AR 11.9 12.45
c [m] 5.21 5.30

Sref [m2] 107.3 115.5
Lfuse [m] 36.57 39.38
Rfuse [m] 1.85 1.85

Table 4.5: SR Aircraft Geometry

Figure 4-4: LH2-SR Weight Build-up: 123,603 lbs

Table 4.5 presents the geometric parameters of the LH2 short range aircraft com-

pared to the conventional 737-model. The geometry did not increase much; however,

the Sref surprisingly increased slightly. Interestingly, the optimizer decided to fit the

cryogenic tank within the 737 fuselage rather than expand the fuselage, a surpris-

ing design choice given that boil-off is an important consideration. As expected, the

fuselage length increased to accommodate the cryogenic tank in the center while also

accommodating the passengers at the front and back.

Table 4.6 presents the engine performance for the design that the optimizer settled

on. As expected, the TSFC for the LH2 aircraft was approximately 3 4 times lower

than the kerosene based aircraft. The max thrust for the LH2 engine also decreased

by almost 25 % which resulted in the inlet area able to decrease as well as the reference

area for the nacelle to decrease.

Finally for the vehicle design, Table 4.7 shows the cryogenic tank design. The

133



Parameters 737-model LH2 SR
TSFC (climb, avg.) [1/hr] .767 .225
TSFC (cruise, avg.) [1/hr] .607 .182

BPR (max) 4.86 4.13
F (max) [N] 46314 36831
OPR (max) 35 35
Ainlet [m2] 3.833 3.79
Snacelle [m2] 9.58 9.47

Table 4.6: SR Engine Performance

Parameters LH2 SR
tw (m) .0011
tins (m) .188
mw (kg) 123.2
mins (kg) 503.1
msys (kg) 627.0
L (m) 2.8
R (m) 1.85
Vt (m3) 56.97
A (m2) 75.86

WLH2 (lbf) 8655
Mboiloff (climb) (kg/s) .0020
Mboiloff (cruise) (kg/s) .00158

Table 4.7: SR Cryogenic Tank Properties

boil-off rate is pretty high as the aircraft loses approximately 1 kg of fuel per 10 min.

However, this is an acceptable loss for the optimizer, especially for this short of a

flight. The cryogenic weight in the end is dominated by the insulation weight which

is almost 20 cm thick.

Trajectory Design

The mission design results are interesting to examine. Figure 4-5a shows the altitude

profile for the entire mission. The hydrogen aircraft chooses a higher initial altitude

compared to the traditional B737. This makes physical sense as the higher the aircraft

goes, the colder it gets which minimizes the boil-off. The aircraft does not go higher

than 45000 ft as once it gets higher, the wing area must also increase which may
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result in a larger fuel-burn and diminishing returns.

The velocity profile and mass profile are presented in Figure 4-5b and 4-6. There

is nothing particularly different or unexpected here, as both of these plots make sense.

The LH2-SR chooses to go as slow as it can to decrease the Reynolds number which

increases the Nusselt number which increases the external convective heat transfer

coefficient which in turn increase the boil-off rate. Therefore, in our model, the slower

the vehicle goes, the less boil-off there is. The mass profile also makes sense since

the TSFC and the thrust of the aircraft is also much lower compared to the kerosene

counter part.
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Figure 4-6: SR Mass Profile

We can look at the some of the major sensitivities dWfuel/dx related to the mis-

sion and the cryogenic tank for the short range mission. Some notable parameter

sensitivities are listed in Table 4.8. As expected, the minimum cruise Mach number

is the most sensitive variable in terms of the mission, and increases in sensitivity when

hydrogen fuel is substituted for kerosene. For the cryogenics itself, the volume plays a
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Figure 4-5: Altitude and Velocity Profile for LR Mission
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large role in the cryogenic tank sizing, and therefore is most sensitive. The insulation

material is the next most sensitive parameter as expected as it drives the weight of

the tank itself.

Parameter 737 LH2 Description

Mmin +0.58 +0.7 Minimum cruise Mach

MinCruiseAlt +0.0059 +0.0052 Minimum Cruise altitude

MaxClimbTime -0.093 -0.017 Total time in Climb

Vi N/A +0.048 Extra volume fraction for GH2

ρLH2 N/A -0.048 Density of liquid hydrogen

hfg N/A -0.013 Heat of vaporization

Kins N/A +0.013 Thermal conductivity of insulation

ρins N/A +0.013 Density of insulation

FoS N/A +0.0033 Factor of safety

PLH2 N/A +0.0033 Pressure hydrogen is stored at

ρCC N/A +0.0033 Density of carbon composite

σy N/A -0.0033 Carbon composite stress limit

TLH2 N/A -0.0014 Temperature of LH2

Table 4.8: Notable Sensitivities for SR Mission

4.3.3 Long Range Mission

Both optimizations converged within 7 GP iterations and approximately 30 seconds.

Each mission profile is divided into two phases: climb and cruise with 4 segments for

climb and 4 segments for cruise. The results for the 777-style mission is presented

here.
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Vehicle Design Results

The weight built-up of both the 777 model and the LH2-LR is shown in Figure 4-7 and

4-8. Similar to the 737-style mission, fuel weight decrease for the hydrogen aircraft

is dramatic: the fuel weight decreases by almost 75% from 141,000 lbs to only 40,500

lbs. The cryogenic equipment does cut into that gain with approximately 4,000 lbs

of added weight. On balance, however, this appears to be a worthwhile tradeoff.

However despite this, the MTOW of the LH2 variant decreases by approximately

25%.

Figure 4-7: 777 model Weight Build-up

Figure 4-8: LH2-LR Weight Build-up

Table 4.9 shows the geometric parameters of the modified aircraft. The wing

design for the LH2 variant is surprisingly similar to the kerosene counterpart except
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for the wing span that is 1 m longer. Similar characteristics from the short range

variant are also apparent in the long range variant where the optimizer chose not to

increase the radius of the fuselage to accommodate a wider radius cryogenic tank.

Parameters 777-model LH2 LR

b (m) 55.7 58.3

AR 10.5 10.76

c (m) 9.2 9.4

Sref (m2) 295.8 315.3

Lfuse (m) 55.96 60.58

Rfuse (m) 3.1 3.1

Table 4.9: LR Aircraft Geometry

Table 4.10 shows the engine performance characteristics. The TSFC shows similar

decreases as the short range variant; interestingly, the BPR shows a dramatic decrease

despite similar thrust requirements. This may indicate that the optimizer decided to

go with a less efficient engine to ensure that the LH2 variant can continue to produce

enough thrust at lower than optimal engine efficiencies.

Parameters 777-model LH2 LR

TSFC (climb, avg.) (1/hr) .771 0.25

TSFC (cruise, avg.)(1/hr) .597 0.193

BPR (max) 5.6 4.16

F (max) (N) 121017 110000

OPR (max) 42 42

Ainlet (m2) 7.8 7.36

Snacelle (m2) 19.5 18.27

Table 4.10: LR Engine Performance: Kerosene versus LH2
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Parameters LH2 LR
tw (m) 0.00178
tins (m) 0.184
mw (kg) 576.7
mins (kg) 1373
msys (kg) 1951.2
L (m) 4.62
R (m) 3.11
Vt (m3) 266.2
A (m2) 211.7

WLH2 (lbf) 40490
Mboiloff (climb) (kg/s) .0053
Mboiloff (cruise) (kg/s) .0045

Table 4.11: LR Cryogenic Tank Properties

Finally for vehicle design, Table 4.11 shows the cryogenic tank dimensions. The

LR variant and the SR variant actually end up having similar dimensions in terms of

material thicknesses, with about 18 cm thick insulation. However, the LR tank is sig-

nificantly larger in terms of length and radius, which was expected. With this comes

a penalty, the boil-off rate does increase since the surface area increased; therefore,

a three-fold increase in boil-off rate is observed. However, it appears that because

the fuel weight is decreased so much compared to the kerosene baseline that this

amount of LH2 boiloff does not seem to matter much. The optimizer also chooses

to keep the cryogenic tank within the fuselage dimensions of the aircraft, and does

not increase the radius of the tank for a lower boil-off rate even with carrying the

same amount of payload and cargo. This is a curious decision as the LR variant has

a much longer flight; however, the optimizer may have decided that it was worth it to

accept this higher boil-off rate rather than carry a much larger cryogenic tank with

more insulation.
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Trajectory Design

The same trends can be seen for the mission profiles for the LR variant as we saw in

the SR variant. Figure 4-9a shows the altitude profile for both the 777-model and the

LH2-LR, and as expected, the LH2-LR goes for a much higher altitude earlier and

stays there. This makes sense as the higher altitude, the less boil-off the cryogenic

tank will have due to the colder ambient temperature.

Figure 4-9b and Figure 4-10 shows the velocity and the mass profiles respectively.

The velocity profile does not change much though the LH2-LR hugs the lower bound

of the velocity of the optimization while the 777 goes a bit faster initially. The weight

profile also shows the dramatic decrease in weight of the LH2-LR as expected due to

the lower TSFC and the lower thrust required.It is interesting to note that while the

LH2-LR aircraft is lighter than the kerosene-powered 777 for most of the mission, at

the very end of the flight the empty weight of the 777 is slightly less than the empty

LH2-LR. This is due to the fact that the LH2-LR is slightly larger structurally due

to a larger wing and longer fuselage and the extra mass of the cryogenics equipment.
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Figure 4-9: Altitude and Velocity Profile for LR Mission
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Parameter 777 LH2 LR Description
Mmin +0.45 +0.53 Minimum cruise Mach

MinCruiseAlt +0.0 0.0 Minimum Cruise altitude
MaxClimbTime -0.089 -0.043 Total time in Climb

Vi N/A +0.09 Extra volume fraction for GH2
ρLH2 N/A -0.09 Density of liquid hydrogen
hfg N/A -0.015 Heat of vaporization
Kins N/A +0.015 Thermal conductivity of insulation
ρins N/A +0.015 Density of insulation
FoS N/A +0.0061 Factor of safety
PLH2 N/A +0.0061 Pressure hydrogen is stored at
ρCC N/A +0.0061 Density of carbon composite
σy N/A -0.0061 Carbon composite stress limit
TLH2 N/A -0.0016 Temperature of LH2

Table 4.12: Notable Sensitivities for LR Mission

The notable parameter sensitivities comparison are shown in Table 4.12. The

most sensitive parameter within the mission space for the 777 is the minimum Mach

number, and that parameter also increases sensitivity as the LH2 is incorporated.

Surprisingly, the climb time sensitivity decreases when the hydrogen is incorporated,

because one could expect the vehicle to climb quickly to spend as much time in colder

atmospheric temperatures. For the cryogenics itself, the most sensitive parameters as

expected are related to the volume of the hydrogen tank. Furthermore, the material

selection of the insulation is the second most sensitive for the cryogenic model.

4.4 Cryogenic Technology Case Study

The previous section showed that a direct conversion to liquid hydrgen as a fuel has

enabled a significant decrease of TSFC which allows for a decrease of total fuel burn

by approximately 60%. Now that we have a Signomial model working for a hydrogen

aircraft, we can begin looking at ways to obtain even further reductions in fuel burn

while keeping the mission range and payload fixed. Because our model allows the

optimizer to change both the trajectory and the aircraft design at the same time. In
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this section, two changes are investigated: mission constraints and cryogenic material.

These two changes are selected due to the sensitivity analysis which showed that these

two have large effects on the overall design.

4.4.1 Modified Mission Limits

In the previous section, the current passenger aircraft mission profile is used for the

hydrogen aircraft. The general strategy for current passenger aircraft is to fly at

transonic speeds and as fast as possible without incurring a large wave drag penalty

(typically at about Mach 0.84). However, with the cryogenic fuel tank requiring a

minimum surface area, the cryogenic fuel tank design may push the fuel tank to

minimize surface area by increasing the radius of the tank, approximating as closely

as possible a spherical tank geometry. To determine that effect, we modify the mission

limits in the following in Table 4.13. The only modification is the cruise Mach number

which is set to 0.6, significantly slower than 0.84. The optimization was run again for

the LR and SR missions, and the results are shown in this section.

Parameter LR SR

Range [nmi] 6000 3000

Passengers 450 180

Cruise Segments 4 4

Climb Segments 4 4

Mmin 0.6 0.6

hmin [ft] 32000 32000

Tolerance 0.01 0.01

Table 4.13: Modified Mission Optimization and Mission Parameters

The mission changes that occurred are shown in Figure 4-11 to 4-14. Figure 4-11

shows the changed altitude profile that the optimization settled on. For the lower
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Mach number, the optimizer decided to fly at a lower altitude for both the SR mission

and the LR mission as shown in Figure 4-11a and Figure 4-11b. This is most likely due

to the optimizer choosing a lower speed, as evidenced by the time of flight difference.
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Figure 4-11: Mission Altitude Profile for Modified Mission Limits

Figure 4-12 shows the actual velocity profiles. As expected the both the LR
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mission and the SR missions did immediately go to a lower Mach number as shown

in Figure 4-12b and 4-12a. However, the effects of the modified mission profile on the

vehicle need to be explained.
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Figure 4-12: Mission Velocity Profile for Modified Mission Limits

The weight change profile for the both the LR and SR mission is shown in Figure
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4-13. Both missions show that the vehicle starts at a lighter vehicle weight and ends

at a lower vehicle weight. Furthermore, the slope of the cruise phase is less steep

for both the SR and LR missions, indicating that reduced fuel burn was achieved for

both variants.
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Figure 4-13: Mission Weight Profile for Modified Mission Limits

An examination into just the boil-off rate is shown in Figure 4-14. Interestingly,
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the lower Mach mission profile does decrease the total amount boil-off; however, with

a lower boil-off rate than the higher Mach mission counterpart. This is primarily due

to the longer mission time; if the lower Mach mission time was shorter, it would still

have a lower boil-off mass than the original mission profile.
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Figure 4-14: Boil-off Profile

Now that the mission changes have been explored, the resultant changes to the

aircraft design can be examined. The change in weight build-up is shown in Figure

4-15. As expected, the the total weight and the fuel weight decreased compared to the

higher cruise Mach number minimum. The fuel weight decrease is expected because

flying slower usually means less thrust is required (thrust goes with velocity squared,

power goes with velocity cubed). The engine weight also decreased significantly for

both missions, and this makes sense as a smaller engine is most likely chosen. Both

the LR mission and the SR mission also had increases in cryogenic weight, most likely

to keep the boil-off weight low given the longer mission duration.
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Figure 4-15: Weights Design Point for Modified Mission Limits

The aircraft geometry change from the modified mission shown in Figure 4-16. The

aircraft geometry has an increased wing area to compensate for the slower velocity.

Interestingly, even for the slower cruise altitude, both missions converged to no change

in fuselage radius. This means that the optimizer decided not to change the tank

radial geometry. In fact, the optimizer was able to take advantage of the decrease

fuel weight to decrease the length of the tank.
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Figure 4-16: Geometry Change for Modified Mission Limits

Figure 4-17 shows the engine design changes. Notably, the SR mission showed

an increase in TSFC in Figure 4-17a. This is most likely due to the decrease in the

bypass ratio, and is acceptable since the maximum thrust is decreased. Interestingly,

the LR mission shows the opposite trend where TSFC decreases even with the smaller

BPR. This is most likely due to the lower thrust the engine is producing.
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Figure 4-17: Engine Design Point for Modified Mission Limits

A closer examination of the cryogenic design point shows trends that are expected

in Figure 4-18. Because the insulation thickness was increased by 10+%, the boil-off

rate significantly changed. The structural mass also decreased due to the length and

the volume of the tank decreasing. Flying at a lower altitude and slower does decrease

the cryogenic equipment weight.
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Figure 4-18: Cryogenic Design Point for Modified Mission Limits

Overall, decreasing the flight velocity does result in a lighter aircraft as well as a

decreased fuel burn. This is expected as flying slower does mean a decrease in fuel

burn. This intuition holds true even for liquid hydrogen fueled aircraft. However,

the change to hydrogen fuel is already significant enough that the mission parameter

relaxation does not result in significant changes to cryogenic tank designs such as

increasing the radius of the tank for a significantly lower tank surface area. Never-

theless, changing the mission constraints does result in a lower fuel burn in exchange

for a somewhat longer flight time.
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Material Abbreviation Thermal
Conductivity
(W/m/K)

Density (kg/m3)

Rigid closed cell poly-
methacrylimide

R-CC-PMCL 0.0096 25.3

Rigid open cell
polyurethane

R-OC-PU 0.0112 32.1

Rigid closed cell polyv-
inalchloride

R-CC-PVC 0.0046 49.8

Rigid closed cell
polyurethane and chopped
glass fiber

R-CC-P+CGF 0.0064 64.2

Evacuated aluminum foil
separated with fluffy gass
mats

E-AF-FGM 0.00016 40

Evacuated aluminum foil
and glass paper laminate

E-AF-GPL 0.000017 120

Evacuated silica powder E-SP 0.00017 160

Table 4.14: Insulation Material Properties [19]

4.4.2 Different Cryogenic Tank Materials

Another consideration that can be examined using this model is the choice of cryogenic

tank materials. From the sensitivity analysis carried out in the Table 4.8 and 4.12,

the insulation material has the second highest parameter sensitivity for the cryogenic

tank design model that the designer can tune. Furthermore, a change in the tank

structural material is explored in this section as well.

The potential alternative insulation material and tank structural weight proper-

ties are shown in Table 4.14 and 4.15 and are taken from Colozza [19]. It is not

immediately clear which insulation material is best used. Figure 4-19 plots the differ-

ent materials listed with the properties. The ideal material is both light and has low

thermal conductivity (lower left corner); however, there is a tradeoff in terms of the

materials available. As for the structural tank material, the best material is the one

that has the highest strength per density, and it is clear that carbon composite is the

best (and potentially also the most expensive). However, because the optimization is
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so fast, we can afford to optimize for each permutation of insulation and structural

material. The original mission limits are kept. For this case, only the LR mission is

examined.
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Figure 4-19: Insulation Material Properties

Material Yield Strength (MPa) Density (kg/m3)

Steel 690 7860

Alumnium 410 2800

Titanium 825 4460

Carbon Composite 1900 1530

Table 4.15: Structural Material Material Properties [19]

The final total weight and the total fuel weight for the LR mission is plotted in

Figure 4-20. The structural material optimization run results are clustered together as

indicated by the different shapes of the markers on the graph. As expected, the carbon

composite tanks (shown as circles ’o’) offer the lightest mass as well as decreased the

total fuel weight. Interestingly, E-AF-GPL was the material that decreased the total
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Figure 4-20: Overall Weight Differences

weight and the fuel weight the most. The optimizer prioritized the decrease in thermal

conductivity over the increase in density.

Figure 4-21 and 4-22 shows the cryogenic properties. Here we define cryogenic

efficiency as the following:

ηC =
Wburn

Wcryo

(4.18)

Following the overall weight trends, carbon composite decreases the weight of the

tank, and E-AF-GPL showed the lowest boil-off rate. Interestingly, carbon fiber was

the most efficient; however, choosing E-AF-GPL also increased the efficiency as well.

The material selection for the cryogenic subsystem did result in expected trends

and did not result in any counter-intuitive insights. However, this study did convey

the idea that careful material selection for the insulation material and the structural

material is important. Future work can also include a cost model in the optimization

to consider both fuel burn and manufacturing cost at the same time.
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Figure 4-21: Overall Cryogenic Weight Differences
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Figure 4-22: Overall Cryogenic Efficiency Differences
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4.4.3 Combined Effects

The previous study into cryogenic tank material enforced the original mission limits.

As previous sections showed, relaxing the mission constraints also results in design

improvements. Therefore, optimization runs where mission parameters were relaxed

were produced. However, rather than decreasing the minimum Mach number to 0.6,

the minimum cruise Mach number was only decreased to 0.7 due to convergence issues

for some of the material combinations.
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Figure 4-23: Weight Difference between Materials and Mission Changes
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Figure 4-23 shows the change in total aircraft weight and the fuel weight. Figure

4-23a shows the specific materials selected with the lower Mach cruise number and

Figure 4-23b shows the difference between a changed mission limits and the original

mission limits. The material trends from the original mission optimization are very

similar to the current ones. However, one interesting conclusion can result from Figure

4-23b: decreasing the cruise Mach will decrease the fuel weight a similar amount as

if the tank material used is carbon composite. This is an interesting conclusion as

carbon composite is a much more expensive technology, and the same effects of the

higher technology can be achieved by adjusting the mission profile.
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Figure 4-24: Cryo Weight Difference between Materials and Mission Changes
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Figure 4-25: Cryo Efficiency Difference between Materials and Mission Changes

Figure 4-24 and Figure 4-25 shows the results from the relaxed mission constraints.

The relaxed mission constraints does not change the cryogenic tank design and its

performance much if at all. This is expected as the decreased fuel required from the

relaxed mission constraint negates the need for further improvement in cryogenic tank

performance.
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Figure 4-26: Mission Difference between Materials and Mission Changes

Figure 4-26 shows the final mission results. As expected, the optimizer still takes

advantage of the lower Mach number down to Mach 0.7 to decrease the fuel weight

regardless of the insulation and structural material.

Overall the model proves useful for answering questions about mission design and

cryogenic technology tradeoffs for future hydrogen-powered aircraft. Useful physical
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insights are gained from the results of the re-optimization of the model.

4.5 Chapter Summary

In this chapter, we use the combined signomial programming (SP) architecture to

examine the hydrogen aircraft design problem. We are able to obtain physical insights

into the problem when we integrate both the vehicle and mission design, resulting

in much of the This model assumed that hydrogen is burned directly in a turbofan

engine and did not look at the use of hydrogen fuel cells. However, this could be done

as part of future work.

A case study exploring relaxed mission constraints and different cryogenic technol-

ogy is explored. Physical insights are found through the optimization results. Most

importantly, the model shows that modifying the mission can yield the same effect

as improving the cryogenics technology. This finding shows that examining the oper-

ations is just as important as improving the technology and can sometimes yield the

needed results. The best results are obtained by co-optimizing both the vehicle and

mission profile at the same time.
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Chapter 5

Conclusions and Recommendations

5.1 Thesis Summary

In this thesis, the concept of convex optimization architectures for concurrent design

of vehicles and the missions they perform is introduced. The idea of approximating

non-convex optimization problems as a convex optimization problem is combined

with the idea that holding certain variables constant to create a convex optimization

problem. This allows large non-convex optimization problems to potentially be solved

using convex optimization.

This concept is demonstrated in two case studies: the design of a sounding rocket

and of a future hydrogen aircraft. Each problem is successfully solved, and physical

insights are gained from each. Both problems demonstrate the importance of incor-

porating mission design into the vehicle design process. In the rocket design problem,

the trajectory optimization influences the vehicle design significantly through the fuel

weight and max thrust requirement. For the hydrogen aircraft optimization problem,

the flight profile influenced the cryogenic tank design and the engine performance re-

quired. The integrated vehicle and mission design produces better designs (in terms

of total mass savings) than separating the two processes.
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In summary, this thesis achieved all the objectives listed in the introduction and

they are reproduced here:

1. Convex optimization is a useful tool in solving the integrated vehicle

and mission design problem. The thesis introduces the concept of convex

optimization architectures to solve non-convex optimization problems. The the-

sis demonstrates this concept on two problems and produces meaningful results.

2. Integrated vehicle and mission design is important in designing ve-

hicles Both demonstration problems produce results that show that mission

design is crucial and can sometime solve the problem at hand with convex op-

timization architectures. Physical insights such as reduced boil-off as well as

MTOW decreases of 25% and above were observed with a integrated vehicle

and mission analysis for the hydrogen aircraft case.

5.2 Future Directions

Future work can be categorized into two categories: one pertaining to the convex

optimization architectures and another pertaining to the vehicle and mission design

problem itself.

5.2.1 Convex Optimization Architectures

There are many tuning parameters that can be used to make these architectures per-

form better. The number of iterations per side (GP/SCO) could be an interesting

knob to turn and experiment with. One of the key features of the integrated archi-

tecture is the fact that the one iteration per side allows the optimizer to not spend

any extra time on using out-of-date information from the other side. However, with

convex optimization, each iteration costs a second or less in some cases. It would
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be an interesting experiment to see whether increasing the number of iterations per

side to say 2, 3 or even 4 would increase the robustness of the solution or make the

optimizations smoother. Another interesting idea that could be experimented with

would be the initialization. The first couple iterations are usually highly unstable

until they settle down. Optimization of the number of first iterations such that a

good enough initial guess can be given would be a great way to stabilize the process.

Another avenue of future work is in the exploration of different ways to approx-

imate the design space. In most cases, linearization and convexification was used

to approximate the design space; however, other techniques may exist that keep the

convexity while producing a better approximation.

Furthermore, on the problem formulation side, these architectures (especially the

alternating architecture) are very similar to BCD. There are many flavors of BCD:

some BCD variants modify the objective function to ensure both all the coordinate

direction optimization stays within the feasible areas of all coordinate descent direc-

tions searched. There are also many ways to cycle through the different sub-problems,

whether through a cyclic pattern or a set pattern as with BCD. That can be something

worth exploring as well. These are not covered in this thesis; however, these show

the number of extensions that are possible to this general framework for sequential

convex optimization.

Finally, these architectures can be implemented using parallel computing archi-

tectures. Combined with the fast solve times of each individual solve times, the

computational tractability and solve efficiency can be further improved. The inte-

grated architecture and the alternating architecture are two that can take advantage

of the parallel structure of computation to be mapped onto a parallel computation

system.
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5.2.2 Integrated Vehicle and Mission Design

In general, the robustness of the individual sub-problem convex optimization solves

can be improved. During the implementation of the trajectory optimization, the

robustness to different vehicle designs was a consistent problem. Furthermore, the

trajectory optimization needs a very good starting point, which is not a problem if

only the trajectory optimization problem is the only problem being solved; however,

with different vehicles being tested each time, this may become a problem.

Another direction is in the capturing of passive effects in the alternating/integrated

architecture. Passive effects are effects that indirectly affect the objective function.

For example, in the sounding rocket problem, aerodynamics is a passive effect as it

does not directly impact the fuel burn itself like the control strategy, but indirectly it

does so through the drag adjustment. It is not clear whether those effects are actually

being captured in the optimization architectures, so an investigation into that would

greatly improve the understanding of not just the problem itself but also the convex

optimization architectures.

Finally, a great step forward towards further application of this methodology

would be to modify the objective function into something value-based or mission

success based. Fuel burn and total system weights are great surrogate variables or

representative variables for the actual value that we are interested in (cost, profit,

mission success, etc.), and being able to directly represent that in the optimization

problem would greatly improve the utility of this formulation.

As aviation contemplates moving from kerosene to hydrogen as a primary fuel

source further applications to more advanced vehicle design and mission concepts can

be anticipated.
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Appendix A

Trajectory Optimization using

Convex Optimization: Goddard

Problem

As mentioned in the text, the Goddard problem has not been solved in the convex

optimization setting. Therefore, the feasibility of solving the problem using sequential

convex optimization is demonstrated here. Specifically, a closer look at the problem

solve characteristics are examined here.

A.1 Comparison with GPOPS

The implementation, dynamics and details of the problem can be found in Section

3.1.4. The Goddard problem as mentioned is unique in that there is a singular arc

section. The solve is compared with GPOPS [60], a MATLAB pseudospectral method.

The test problem parameters are shown in Table A.1.
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Parameter Value

mwet 56

mdry 10

h0 100

v0 0

hf 5500

vf 0

Tmax 3094

Tmin 50

CD 0.15

Sref .11

Isp 170

Table A.1: Test Problem Parameters

Both GPOPS and SCO results are compared and summarized in the rest of this

section. Table A.2 shows the solve times for the both processes. For this specific test

case, SCO converges to the same tolerance almost twice as fast despite many more

iterations.

Parameter GPOPS SCO

Time (s) 80.4 49.5

Tolerance 1e-6 1e-6

Iterations 10 20

Table A.2: Solve Properties

Figure A-1 shows the mass history and Figure A-2 shows the height profile of the

vehicle. The mass history shows that both SCO and GPOPS converged to the same

mass history. However, both SCO and GPOPS had different height trajectories, with
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the SCO choosing a slightly steeper/higher altitude trajectory compared to GPOPS.
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Figure A-3: Velocity Profile

Figure A-3 shows the velocity profile and Figure A-4 shows the thrust profile

of the vehicle. The control profile shows almost exactly the same control profile

for GPOPS and SCO; however, the velocity profile is very different. SCO goes for

higher maximum speed profile that is approximately 20 m/s faster than GPOPS, but

shallows down significantly. in the latter portion of the profile. This is particularly

interesting as both the control profile and mass histories are the same. However, if we

look closely, the SCO thrust proifle holds that high thrust for a couple seconds longer,

which most likely resulted in the higher velocity. The hypothesis is that this is due to

the collocation method used: this version of SCO used trapezoidal collocation which

is a first order collocation method whereas GPOPS uses a pseudospectral collocation

which is much more accurate. Also, the SCO is split into 50 points where as GPOPS

has thousands of points and mesh refinement for areas that are oscillatory. This is

an area for further investigation and future work.
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Figure A-4: Thrust Profile

A.2 Singular Arc

The previous results show varying results in the singular arc section. There are many

different factors that could affect the behavior of the singular arc. In particular, 4

parameters of interest are investigated: the number of points (K), mass of the vehicle,

drag of the vehicle, and the optimization tolerance. Three levels are chosen, and the

effects on the control history of the vehicle are examined. To further post process

the singular arc behavior, the root-mean-square (RMS) and the standard deviation is

calculated for each singular arc. The base configuration is K=50, Sref = 0.15, Mass

= 80, and tolerance = 1e-4.

Number of points K

Figure A-5 shows the optimal control profile of an optimization where the number

of points are 50, 100, and 200 points and Table A.3 shows the resulting RMS and
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K RMS Standard Deviation
50 730 256
100 721 280
200 716 268

Table A.3: Change in Number of Points
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Figure A-5: Changing the number of points K

standard deviation. From both the table and calcuated results, it is clear that the

number of points does not change the singular arc behavior.

Vehicle Mass

Figure A-6 shows the optimal control profile of an optimization where the wet mass

of the vehicle are 80, 65, and 50 kg and Table A.4 shows the resulting RMS and

Weight RMS Standard Deviation
80 730 256
65 585 211
50 449 161

Table A.4: Change in Weight of Vehicle
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Figure A-6: Changing the mass of the vehicle

Drag RMS Standard Deviation
0.15 730 256
0.015 658 163
0.0015 632 116

Table A.5: Change in Drag of Vehicle

standard deviation. As expected, the control profile of the optimal control profile

changed to account for the decreased length of the initial boost phase. Furthermore,

as expected the RMS also goes down as the optimal control profile changes to account

for the lower thrust needed to maintain the vehicle at cruise. However, the vehicle

mass has some effect on the standard deviation as it is almost halved as the vehicle

weight goes from 80 to 50. This is most likely due to the decrease in thrust magnitude

a the singular arc which results in less of a random sampling.
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Figure A-7: Changing the drag

Tolerance RMS Standard Deviation
1e-4 730 256
1e-5 708 158
1e-6 639 59

Table A.6: Change in Convergence Tolerance

Vehicle Aerodynamics

Figure A-7 shows the optimal control profile of an optimization where the Sref of

the vehicle are 0.15, 0.015, 0.0015 m2 and Table A.5 shows the resulting RMS and

standard deviation. Similar to the mass of the vehicle results, RMS decreases to

account for the drop in thrust needed and standard deviation also decreases. This is

again most likely due to the decrease in thrust magnitude a the singular arc which

results in less of a random sampling: the oscillations are most likely proportional to

the RMS of the singular arc.
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Figure A-8: Changing the convergence tolerance

Optimization Tolerance

Finally, figure A-8 shows the optimal control profile of an optimization where the

tolerances of the optimization are 1e-4, 1e-5, and 1e-6 and Table A.6 shows the

resulting RMS and standard deviation. This result shows a clear reason for the

significant oscillations during the singular arc: decreasing the tolerance by orders of

magnitudes decreases the standard deviation of the singular arc profile. This makes

sense because by decreasing the tolerance, the optimizer is forced to iterate more such

that the trust radius parameter is smaller, which decreases the amount the solution

between iterations can vary.
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