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Abstract

The capability to rendezvous and dock with tumbling objects has become prominent
with increased interest in active debris removal, satellite servicing, and in-space as-
sembly. Guidance and control algorithms have been developed in the literature to
allow for a spacecraft to capture an uncooperative and tumbling object under several
constraints such as collision avoidance, speed bounds, and thruster saturation. How-
ever, current algorithms for this capability do not address plume impingement due to
thrusters, which can lead to damage to the target object, and can require the use of
nonlinear solvers that neither guarantee convergence of a solution nor be deployed in
real-time using current computational capabilities of spacecraft. This thesis presents
a quasi-analytical guidance algorithm that allows for a spacecraft to soft-dock with a
target, avoids plume impingement, and allows for real-time generation of trajectories
with low computational expense. Several test cases compare the solution from this
algorithm against a solution using pseudospectral methods and show similar perfor-
mance at less than 0.1% computational cost, and an example scenario for docking
with the the European Space Agency’s ENVISAT is presented. Additionally, a dis-
crete transport trajectory optimizer is presented for use as a first cut solution to
transporting several components to the same halo orbit for in-space assembly.

Thesis Supervisor: David W. Miller
Title: Professor, Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation and Background

The increase in orbital debris from low-Earth orbit (LEO) to geostationary orbit

(GEO) presents one of the biggest dangers to future space operations. Currently,

the European Space Agency estimates that over 900,000 objects1 greater than 1 cm

are orbiting the Earth [2], each of which could pose a threat to existing satellites by

colliding with them. As the population of objects in space increases, the chances of

collision increases, and subsequently the generation of more debris in what is known

as the Kessler syndrome [3]. Additionally, many of such debris are known to have

nonzero angular velocity [4] which presents challenges to current techniques used

to rendezvous and capture objects. Currently, there is great interest in mitigating

the amount of orbital debris by performing what is known as active debris removal

(ADR). Accomplishing successful ADR not only requires technological advancements

in robotics for capturing, but also advancements in algorithms for docking with a

target that might be spinning.

In addition to ADR, the need to dock with tumbling objects presents itself in situa-

tions such as satellite servicing as well as in-space robotic assembly. Satellite servicing

presents a promising future of reusing the resources already on orbit and will allow for

1This number is considerably higher than that the 300,000 reported by Tommei just 12 years ago
[1] and demonstrates the urgency of this issue
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Figure 1-1: Artist departure of Restore-L spacecraft approaching for grabbing
Landsat-7 as part of a mission servicing operation. Source: NASA [6]

extension of mission lifespan, reduction in overall mission cost, and a more environ-

mentally friendly space activities by reducing the number of debris. Satellite servicing

missions such Northrop Grumman’s MEV-1 [5] as well as the planned Restore-L [6]

(see Figure 1-1) demonstrate the compelling benefit of this new capability. Yet, both

missions required the target spacecraft to have some form of attitude control, or near

zero angular velocity which might restrict the type of satellites that could be serviced.

Additionally, due to launch volume constraints, large space structures such as space

telescopes will rely on autonomous robotic assembly [7]. However, due to cost and

complexity reduction not all components being assembled may have a full attitude

and position control system, and a situation might arise in which there is a need to

capture a tumbling component.

It is clear that the need for safe and autonomous docking or capturing of uncooper-

ative targets has never been more important that in today’s space environment. This

work seeks to contribute to research that addresses docking with tumbling objects.
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Figure 1-2: Depiction of the four stages of Docking. Source: Fig. 1, Terán Espinoza
et al [8]

1.2 Overview of Methodology for Relative Opera-

tions for Autonomous Maneuvers

The main stages for a general docking procedure are shown in Figure (1-2) which was

obtained from [8]. Phase 1 corresponds to angles-only rendezvous and is characterized

by the servicing or capturing spacecraft (henceforth known as Chaser) being too far

away from the target object (henceforth known as Target) for inspection. Phase

2 occurs once the Chaser reaches a range-capable zone in which either a LIDAR

or camera system can be used to inspect the Target in what is known as stand-

off inspection. After the Target is well characterized the next phase—trajectory

rendezvous and docking—begins with the objective of capturing the Target. Phase 4

begins when the Chaser either captures or docks with the Target; both detumbling

the Target and joint maneuvering occurs in this phase.

It should be noted that extensive research has been done in all the four stages of

the general docking procedure [9]. Techniques for angles-only navigation have been

researched and used in both manned and unmanned rendezvous and can include in-

space as well as on ground assets [10]. Phase 2 has also been a subject of previous

and ongoing research, particularly on the area of visual estimation of the Target’s
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relative dynamics [11, 12, 13]. Phase 3, which is of particular interest in this thesis,

has also been previously studied; the current methodology is the subject of Chapter

2. In regard to Phase 4, work has been done in how to optimally detumble the Target

once captured [14], as well as how to learn the mass properties of the Target [15]. For

full treatment on the current technologies available as well as research gaps for all the

phases, the reader is referred to Flores-Abad’s extensive review [16]. Additionally,

Terán Espinoza et al gives a high level overview of of the inputs and outputs required

for each phase for an end-to-end framework for proximity operations [8].

1.3 Research Objective

Due to the richness and complexity of the problem, only a small part of the problem

of docking with tumbling objects can be addressed in this thesis. Thus, a research

objective was developed to scope the problem and is summarized as follows:

• To develop guidance algorithms that allow for a Chaser spacecraft to capture

or soft dock with a tumbling Target

• By utilizing techniques from optimal control, as well as the knowledge gained

from exploring the natural dynamics of the system

• While minimizing the total fuel expenditure of the Chaser and ensuring conver-

gence of the algorithm in a manner that would allow for real-time computation

The general principle that guided this research is that either more fuel or compu-

tationally efficient solutions can be obtained by gaining insight from the dynamics of

the problem through analytical methods.

1.4 Thesis Organization

The thesis primarily focuses on the ability to generate guidance solutions for a Chaser

soft docking with a Target with both low computational resources and fast solution

speeds. Chapter 2 provides a background on current algorithms developed for tackling

20



Phase 3 and identifies the gap in research that the algorithm presented in this work

seeks to address. Chapter 3 is the main methodology chapter that gives analytical

solutions for specific docking scenarios as well as the overall docking algorithm to

tackle Phase 3 of the general docking procedure. Chapter 4 provides the validation

of the solution found in Chapter 3 as well as analysis of the results of the general

algorithm for docking in a simulation environment. Chapter 5 then summarizes the

contributions of the thesis as well as areas for future work. Additionally, Appendix

B provides an impulsive version of the solutions presented in Chapter 3. Appendix

A presents an algorithm for selecting launch trajectories that were developed to aid

a NASA study on the feasibility of in-space assembly of a space telescope.
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Chapter 2

Literature Review

This chapter focuses on literature review for docking with tumbling objects. Section

2.1 gives an overview of the history and classical methodologies for rendezvous and

docking, namely the current in-flight methodology for tackling Phase 3 of the general

docking procedure. Section 2.2 focuses on state-of-the-art algorithms for docking with

tumbling objects.

2.1 History of Rendezvous and Docking

Rendezvous and docking (RVD) has been a necessary capability for space activities

throughout history. The volume and mass constraint from launch vehicles translated

into the need for a capability that allowed for multiple spacecraft to either assemble or

combine in space, transfer fuel and equipment, or perform servicing functions. This

first occurred in 1966 when Neil Armstrong and Dave Scott, aboard a Gemini capsule,

manually rendezvoused and docked with an unmanned vehicle [17]. The U.S.S.R.

subsequently achieved the first automatic rendezvous and docking in October of 1967.

Since then, a myriad of rendezvous and docking maneuvers have been successfully

accomplished, such as in the Apollo missions, the assembly of the International Space

Station (ISS), the Hubble servicing missions, etc.

In general, safe trajectories used in rendezvous and docking procedures must sat-

isfy the following constraints [9]:
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Figure 2-1: High level overview of a typical cooperative docking procedure [9]

• Be collision free throughout entire trajectory

• Have the capability to monitor the relative state vector at all times

• Be able to detect any faults through either on board systems or by a human

operator

• Be capable of executing a collision avoidance trajectory at all times

It is therefore unsurprising that most of the RVD scenarios rely on both spacecraft

cooperating with either a manned or unmanned component providing the support.

For example, NASA’s Space Shuttle relied on both internal control algorithms such

as the Orbital Maneuvering System, and a human operator to perform the last steps

before berthing [9]. In contrast, the Soyuz and Progress spacecraft rely mostly on

closed loop systems between the Chaser and the Target to provide information of the

relative states. A diagram showing the functionalities as well as processes needed

for a typical rendezvous and docking procedure is shown in Figure (2-1): the Target

is controlled by a human operator who has full attitude control, which enables the

Chaser to perform the docking procedure without worry of the Target tumbling.
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Typically, RDV algorithms rely on the so called r-bar and v-bar approaches. R-bar

approaches are characterized by the Chaserapproaching the Target through the radial

orbital direction (or the axis from the center of mass of the Earth to the center of

mass of the Target). In contrast, during a v-bar approach, the Chaser approaches the

Target through the orbital velocity axis. The design of these trajectories are mostly

system specific. For example, Yamanaka et al. [18] explains how the choice between

using r-bar or v-bar approaches relies on either the need for a fast approach or one

that allows for the Chaser to hold position and extend the duration of the trajectory.

Other systems, however, require more intricate trajectories compared to typical

line r-bar or v-bar approaches. For example, the upcoming Restore-L spacecraft uses

a complex RVD trajectory design to satisfy all the missions constraints [19]. Since it

is a servicing mission, part of the trajectory requires the Restore-L (the Chaser) to

perform close range inspections–typical for Phase 2 of the general docking procedure–

before approaching Landsat-7 for capturing. This is required because Landsat-7 is not

considered a cooperative rendezvous—Landsat-7 will be commanded to orient at a

Sun-pointing attitude which is not conducive to an r-bar or v-bar approach. Despite

this, the trajectory designed for Restore-L accounts for Landsat-7 attitude control

system maintaining its own orientation which is not a valid assumption for orbital

debris removal or servicing missions in which the Target is tumbling.

2.2 State-of-the-Art Algorithms for Docking with Tum-

bling Objects

There has been an abundance of research in various methodologies for achieving ADR

of tumbling objects. The growing interest in this subject has been without a doubt

impacted by the rise of planned satellite mega-constellations by commercial entities

for the near future [20]. Various types of either direct or indirect methods have

been sought for solving the control or guidance component of the problem. Direct

methods usually rely on shooting methods in which the solver directly selects and
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changes the control variable until a minimum is found using a nonlinear program.

Indirect methods, on the other hand, operate on satisfying the optimality conditions

by either using calculus of variations or the maximum principle, which transforms the

optimal control problem into a boundary value problem [21].

This interest has not been limited to control and guidance techniques. For ex-

ample, Zagaris conducted a reachability analysis to demonstrate the ability for a

spacecraft to dock with a tumbling target within a certain period of time [22]. This

analysis considered the set of feasible initial conditions that would allow for a Chaser

to successfully complete a RVD maneuver. This analysis could prove as a starting

point for mission designers as well as aid in the selection of potential debris targets.

Pseudospectral Optimal Control Methods

The use of pseudospectral methods for optimizing a guidance trajectory has been

extensively studied. Pseudospectral optimal control methods rely on the use of ba-

sis functions to approximate the dynamics, solutions to differential equations, and

constraints to solve an optimal control problem [23]. In essence, it converts an in-

finite variable problem to a finite variable problem by enforcing the dynamics and

constraints at selected collocation points. Currently there exists various algorithms

for solving pseudospectral methods, including commercially available tools such the

gauss pseudospectral method [24]. This technique of solving optimization problems

has been extensively tested including in-flight testing such as TRACE’s reorientation

trajectory and ISS’s zero-propellent maneuver [23].

One of the main tools used in pseudospectral methods is the use of Pontrya-

gin’s Minimum Principle (PMP). The Pontryagin’s Minimum Principle (PMP) is a

powerful addition to the set of necessary conditions that an optimal trajectory must

satisfy [25] and is related to the Hamilton-Jacobi-Bellman equation. In essence, the

PMP converts the optimal control problem to a simple ODE equation with boundary

conditions (or a two point boundary value problem).
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For example, given a general optimization problem,

J∗ =min

󰀕
h(t,x) +

󰁝 tf

t0

g(t,u,x)dt

󰀖

Subject to ẋ = f (t,u,x)

(2.1)

where x is the state of the system, u is the control vector, h(t,x) and g(t,u,x) are

user defined scalar functions, and f(t,x,u) represents the dynamics of the system,

the typical necessary conditions for an optimal trajectory can be stated as follows,

H (tf ,x
∗(tf ),u

∗(tf )) +
d

dt
h(t,x) = 0

ẋ =
∂H(t,x,u,p)

∂p

ṗ = −∂H(t,x,u,p)

∂x

H(t,x,u,p) = const.

(2.2)

where H = h(t,x) + g(t,u,x) + pT f (t,u,x) is the Hamiltonian of the system, tf is

the final time of the trajectory, and p is the costate of the dynamics function with

dimension same as x. Pointryagin’s Minimum Principal then says that the choice of

the best control policy u∗ is one that minimizes the Hamiltonian for all time,

u∗ = argmin
u

(H(t,x,u,p)) (2.3)

This powerful statement is extremely useful in situations for which the actuation

is saturated. For example, when there exists a saturation, usat, the choice of value

for u depends on the value of the costate for simple double integrators [25] as shown

in Figure (2-2). When the corresponding costate has a magnitude less than one, the

best control policy is to turn off the control. This leads to controllers of the form

bang-off-bang for minimum fuel problems.

The use of pseudospectral methods as well as the exploitation of Pontryagin’s

Minimum Principal has been used to generate guidance solutions for the docking
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Figure 2-2: Notional example of Pontryagin’s Minimum Principal for a minimum fuel
problem. The function H̃, which corresponds to a simplified Hamiltonian for a double
integrator, has different behavior for different values of the costate p.

with tumbling objects problem. Boyarko [26] implemented a 6 degree of freedom

(DOF) optimization problem for docking with tumbling objects. The optimization

problem not only included the relative position vector, but also considered the at-

titude of the Chaser as part of the optimization program. Additionally, PMP was

utilized along with the classical necessary conditions for optimality given in Equation

(2.2) to verify the optimality of solutions used by other algorithms [27]. Nevertheless,

both approaches had to be performed offline due to their large computational cost,

which is not ideal for an autonomous spacecraft with the current processing capabil-

ities. Furthermore, the lack of an analytical form to the solution is also not desired

because it means that an interpolation must be made onboard which could lead to

a suboptimal result. Finally, Aghili proposed a methodology for capturing tumbling

objects that included the Target’s state estimation as well as the guidance generation;

Aghili’s method relied on the use of necessary conditions of calculus variation and

showed the ability to capture a Target with a robotic arm [28].

Inverse Dynamics in Virtual Domain

Another powerful method for solving trajectory optimization problems is the inverse

dynamics in virtual domain (IDVD) method. IDVD is a direct method in which the

time component is decoupled from the state of the trajectory and optimized using a
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nonlinear program (NLP) [29]. The general steps for this method, taken from [30],

are as follows

1. Generate a reference function in virtual domain that is independent of time

derivative constraints

2. Convert the reference trajectory back into time domain using speed factor

3. Employ inverse dynamics to calculate states and controls

4. Operate optimization routine considering boundary condition, constraints and

performance index.

The reference functions can be selected to be polynomials which have good properties

for NLP solvers.

Boyarko [26] utilizes this method to generate a 6DOF trajectory to capture a tum-

bling object, demonstrating an increase in computational speed compared to pseu-

dospectral methods. Furthermore, Ventura et al. demonstrated the use of IDVD for

real-time trajectory generation in a ground testbed [31]. This method is very promis-

ing for future ADR attempts as it shows the ability to generate a successful trajectory

under parameter uncertainties such as the Target’s inertia and angular velocity. The

IDVD method is also extremely flexible for additions of new constraints while keeping

the overall dimension of the variables small. The main drawbacks of IDVD are that

the solution for the IDVD can be suboptimal and highly dependent on the degree of

the solution used, and the need for a NLP solver which does not have a guaranteed

solve time.

Model Predictive Control

Another method for both control and trajectory optimization is model predictive

control (MPC). Model predictive control is a well-studied control method that got its

start in chemical process industries. The typical architecture for a MPC is shown in

Figure (2-3). Typically, the design of a MPC requires a plant model of the system, a

cost function, constraints, and an optimizer. The output of the optimizer is then the
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Figure 2-3: Basic structure for a model predictive controller (MPC). Source [32]

predicted input, which can be used as a limited time horizon controller. Since the

main bottleneck for the controller is the optimization operation, typical approaches

formulate the problem into a quadratic form; however, nonlinear optimization is also

available.

Li et al. presented a MPC which was robust to the full nonlinear dynamics as

well as relative position and velocity error [33]. The controller implemented velocity

constraints, thruster saturations, and a form of collision avoidance all while formu-

lating the problem as a quadratic program (QP) which ensured rapid solving time.

Furthermore, Buckner and Lampariello proposed a tube-based MPC that provided

robustness guarantees in the receding horizon framework. The controller provided

collision avoidance under uncertainty of the Target’s inertia and angular velocity.

Furthermore, due to the tube-based approach, the MPC also provided robustness to

unmodeled uncertainties with the level of robustness still left as a mission designer

choice or engineering best practices. Finally, Park et al. developed a real-time non-

linear model predictive controller (NMPC) which had a multi-phase RVD procedure

[34]. The NMPC was implemented in the Naval Postgraduate School POSEIDON

testbed and showed real-time capability with their hardware.

Outside of these methods, other approaches have been considered for approaching the

docking with tumbling objects problem. Sternberg developed an optimization frame-
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work to develop relative position trajectory [35]. Sternberg, then proceeded to find

methods for fitting the trajectories using a minimum set of parameters, and concluded

that two exponential terms represented an excellent fit to the solution. The resultant

fit of exponential function showed very small amount of error to the optimized tra-

jectory and could allow for a look up table (LUT) approach. Additionally, Hettrick

developed a method of forwards and backwards propagation of the Chaser’s relative

position that could be used for docking a tumbling Target [14]. The algorithm was

implemented on the MIT Space Systems Lab’s SPHERES simulation. Akhloumadi

and Ivanov proposed a different method of tackling the problem by avoiding trajectory

design; their approach involved solving a state-dependent Ricatti equation (SDRE)

[36]. This approach benefited from the inherent robustness of SDRE, and, by pro-

viding an analytical solution to the Ricatti equation, ensured that their solution was

real-time capable.
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Chapter 3

Trajectory Optimization for Docking

with Tumbling Objects

This chapter focuses on the proposed methodology and algorithm for tackling Phase

3 (Trajectory Rendezvous and Docking) of the general docking procedure shown in

Figure (1-2). This Phase encompasses the trajectory optimization that the Chaser

satellite must perform in order to ensure a soft docking with the Target. The proposed

algorithm is derived in this chapter with an emphasis on the methodology used to

derive the solution. First, a solution in which the target is spinning about a single

axis normal to the docking axis, or the direction axis connecting the Target’s center

of mass with the desired docking location, is derived fully analytically. Then, the

solution is extended to the case where the spin occurs about any axis but the Target

is constrained to have a spherical inertia tensor. Finally, a general algorithm is

presented for any combination of angular velocity and inertia tensor for the Target

satellite.

33



3.1 Description of Trajectory Rendezvous and Dock-

ing Phase

Phase 3 begins once the Chaser has finalized the stand-off inspection (Phase 2) of the

Target spacecraft. The goal for this phase is to initiate the final stages of the proximity

operations to achieve a soft docking with the Target spacecraft. Soft docking again is

defined as having zero relative velocity between the Target and Chaser when the two

spacecraft are separated at the desired docking distance (e.g. when the two docking

ports are touching). To fully formulate this problem, it is assumed that there exists

a cost function and constraints that guide the generation of this trajectory. In this

case, the cost function is assumed to be minimum fuel spent by the Chaser where

the fuel is defined by the integral of the 1-norm of the thrust vector,
󰁕
||u||1 dt.

Note that this trajectory only encompasses the translation aspect of the trajectory.

The attitude “guidance” is not considered; however, an approach for obtaining such

guidance solution will be presented.

Additionally, one of the main constraints that will be placed on the trajectory

will be that during the trajectory, the Target and Chaser must be aligned along

the “docking port axis,” which is the axis that is defined from the center of mass of

the Target to the centroid of the docking location, henceforth known as the x-axis.

The rationale behind this constraint is fourfold. First, by ensuring that Chaser is

always pointing and positioned along the x-axis, the need to have collision checking

from the rotating Target’s body is eliminated. For example, the Chaser does not

have to take into account an antenna or solar array that is rotating relative to the

Target body-fixed frame. Second, the equation of motion is simplified by forcing the

relative position vector to always be of the form r(t) = [x(t), 0, 0]T which reduces the

number of nonzero terms for the problem formulation. Third, the implementation

of the attitude guidance is reduced in complexity as the current desired quaternion

is simply the inverse quaternion that defines the direction of the x-axis. Forth, the

syncronicity always has the Target’s docking port in view of the Chaser for safety. It

is this assumption that enables the possibility of obtaining a fully analytical solution
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Figure 3-1: Representative example for Phase 3: trajectory rendezvous and docking.
Note, x, y represents the body-fixed Target frame

for several cases.

Figure (3-1) shows an example of Phase 3 at different points in time. The Chaser

begins at a radial offset from the Chaser and remains aligned along the docking port

(shown as the black segment in the figure) for the remainder of the trajectory. As the

trajectory continues, the Target and Chaser continue to move in the Target’s x-axis

direction reducing the distance between the two spacecraft. The phase ends when

the Target and Chaser achieve the soft docking condition. Note that achieving soft

docking condition indicates only that the relative velocity between the Target and

the Chaser is zero at a desired radial offset; it does not imply that the Chaser and

Target might have a docking attachment.

Once the final condition shown in right side of Figure (3-1) occurs two situations

may happen. The Chaser and Target might dock using a traditional docking port

which would then initiate Phase 4: joint maneuvering. Alternatively, the Chaser

might use a robotic arm to grapple the Target and begin Phase 4. This is an important

distinction as this allows for the trajectory optimization presented on this chapter to

be used when different docking mechanisms are used. Furthermore, the problem

35



of grappling a tumbling object using a robotic arm is greatly simplified if there is

no relative velocity between the two spacecraft–a situation created by the guidance

solution–as it reduces the number of degrees of freedom of the system.

3.1.1 Necessary Information for Initiating Phase 3

Several pieces of information must be gathered during Phase 2 in order for Phase 3

to be allowed to begin. Namely,

• Final docking destination such as a docking port, servicing ring, or handle

• Estimated relative position between the Chaser and Target

• Estimated relative velocity between the Chaser and Target

• Estimated angular velocity of the Target

• Estimated principal inertia ratios of the Target

It is assumed that the location for docking is along one of the Target’s principal

axes. The benefit of this constraint is that the dynamics of the problem statement

will be simplified substantially, namely the nonzero elements of the Newton-Euler

equation. This constraint yields a diagonal inertia tensor, therefore, the expression

for the rate of change of angular velocity is simplified considerably. Furthermore,

this allows for a possibility of easily aligning the angular momentum vector with the

angular velocity vector which will result in torque free motion once the Chaser and

the Target begin joint maneuvers.

The relative position and velocity between the Chaser and Target might be ob-

tained through visual sensors as part of the closed-loop controller for the Chaser.

This is consistent with the idea that the algorithm will develop an open loop guid-

ance trajectory that a closed loop controller will regulate. The estimate of the angular

velocity and the principal inertia ratios of the Target will be used to recompute the

guidance trajectory once a better estimate is obtained.
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Figure 3-2: Docking problem setup. Three frames are shown: an inertial frame, a
Target body fixed frame, and a Chaser body fixed frame.

3.1.2 Problem Formulation for Docking with Tumbling Ob-

jects

Figure (3-2) shows the overall system that will be discussed in this chapter. Three

frames are shown in the figure: an inertial frame {xI , yI , zI}, a Target body-fixed

frame {xTAR, yTAR, zTAR}, and a Chaser body-fixed frame {xCHA, yCHA, zCHA}. The

distance between the Target and Chaser is labeled as rCHA−TAR, and the angular

velocity of the Target is labeled as ωTAR, finally the control vector from the Chaser

is labeled as uTAR. Note that the superscripts for all three vectors represent the

coordinate system in which they are defined.

Given the constraints and assumptions stated in the previous section, the problem

statement–written as an optimal control problem–can then be formulated as follows,1

1For clarity in the equation, the superscripts and subscripts for the vectors will be removed. For
example, the equation will reference the force acted upon the Chaser as u instead of the more explicit
uTAR
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min
u

󰁝 tf

t0

||u||1dt Cost Function

s.t. u = r̈+ 2ω × ṙ+ ω̇ × r+ ω × (ω × r) Rel. Translational Dynamics

ω̇ = I−1 (−ω × (Iω)) Newton-Euler Dynamics

x(t0) = R0, ẋ(t0) = 0 Begin radially aligned

x(tf ) = Rf , ẋ(tf ) = 0 Soft dock conditions

y = z = 0, ẏ = ż = 0 ∀t ∈ [t0, tf ] Pointing along x-axis

0 ≤ u+
x ≤ umax, 0 ≤ u−

x ≤ umax Thruster saturation x

0 ≤ u+
y ≤ umax, 0 ≤ u−

y ≤ umax Thruster saturation in y

0 ≤ u+
z ≤ umax, 0 ≤ u−

z ≤ umax Thruster saturation in z

(3.1)

where u represents the thruster force acted on the Chaser in the Target body-fixed

frame. Also, r = [x, y, z]T , ṙ, and r̈ represent the position, velocity, and acceleration

of the Chaser relative to the Target in the Target body-fixed frame, respectively. The

angular velocity of the Target relative to the inertial frame and expressed on the

Target body-fixed frame is given by ω. Finally, I is the inertia tensor of the Target

expressed in the Target body-fixed frame.

The problem statement assumes that the Chaser begins radially aligned at time

t0 = 0. This states that at the end of Phase 2 the Chaser must perform a maneuver

to align itself along the docking location. The rationale behind not including this seg-

ment in the cost function or as part of the minimization problem is that during Phase

2 the Chaser will perform an active inspection maneuver. During this maneuver, the

Chaser will select a feasible docking location at which point the Chaser can “align"

itself so that Phase 3 may begin. Alternatively, the cost for aligning the Chaser from

an inertial frame to a body-fixed Target frame is simply ∆v = R0(ω
2
y+ω2

z). Finally, it

should be noted that thruster saturation is included as part of the problem statement.
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3.2 Characterization of Docking Problem

Solving Eq. (3.1) where all the terms in the constraint equations are non-zero re-

quires numerical methods as there does not exist a closed form solution for the gen-

eral Newton-Euler Equation [37]. Additionally, the relative Translational Dynamics–

which depend on the solution to the Newton-Euler Equation–is extremely nonlinear

and thus represents a system that cannot be integrated analytically. Therefore, to

better understand the dynamics as well as to obtain results for simple cases, the

overall solution to Eq. (3.1) was divided into different cases.

Although there are many ways to parameterize the different types of docking

situations, the approach taken here is the same as that provided by David Sternberg

in his thesis [35]: spin axis and inertia ratios of the Target. The reasoning behind

this is as follows, The Newton-Euler equations of motion are given by:

d

dt

󰀵

󰀹󰀹󰀹󰀷

ωx

ωy

ωz

󰀶

󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

Iy−Iz
Ix

ωyωz +
τx
Ix

Iz−Ix
Iy

ωzωx +
τy
Iy

Ix−Iy
Iz

ωxωy +
τz
Iz

󰀶

󰀺󰀺󰀺󰀸
(3.2)

where ω = [ωx,ωy,ωz]
T represents the angular velocity vector relative to the inertial

frame in the principal inertia frame. I = diag([I1, I2, I3]) represents the inertia tensor.

Finally, τ = [τx, τy, τz]
T = 0 are the external torques exerted on the Target also in the

principle inertia frame. There are many ways to simplify these equations based on the

geometry of the Target, however, the two distinctions that this work will employ are

those of a spherical and general inertia. If the Target has a spherical inertia (such

as perfect cube, sphere, or object with symmetry about any axes) then the Equation

shown in (3.2) simply states that the angular velocity is not changing, ω̇ = 0.

The second parameter is the angular velocity vector. Parametrizing the direction

of this vector can simplify the relative translational dynamics. For example, the most

general expression for the right hand side of the relative translational dynamics in a

rotating frame equation is
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󰀵

󰀹󰀹󰀹󰀷

ẍ

ÿ

z̈

󰀶

󰀺󰀺󰀺󰀸
+ 2

󰀵

󰀹󰀹󰀹󰀷

ωyż − ωzẏ

ωzẋ− ωxż

ωxẏ − ωyẋ

󰀶

󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀹󰀷

ω̇yz − ω̇zy

ω̇zx− ω̇xz

ω̇xy − ω̇yx

󰀶

󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀹󰀷

−
󰀃
ω2
y + ω2

z

󰀄
x+ ωxωyy + ωxωyz

ωxωyx− (ω2
x + ω2

z) y ++ωyωzz

ωxωzx+ ωzωyy −
󰀃
ω2
x + ω2

y

󰀄
z

󰀶

󰀺󰀺󰀺󰀸
(3.3)

The assumption that the Chaser is always approaching the Target along the x-axis

simplifies the above equation to

󰀵

󰀹󰀹󰀹󰀷

ux

uy

uz

󰀶

󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

ẍ

0

0

󰀶

󰀺󰀺󰀺󰀸
+ 2

󰀵

󰀹󰀹󰀹󰀷

0

ωzẋ

−ωyẋ

󰀶

󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀹󰀷

0

ω̇zx

−ω̇yx

󰀶

󰀺󰀺󰀺󰀸
+

󰀵

󰀹󰀹󰀹󰀷

−
󰀃
ω2
y + ω2

z

󰀄
x

ωxωyx

ωxωzx

󰀶

󰀺󰀺󰀺󰀸
(3.4)

Therefore, a way to distinguish between docking cases is whether the spin is a flat

spin (the angular velocity is a single axis either in y or z) or a general spin (which

corresponds to a spin about any direction).

Table 3.1: Characterization of Different Docking Situations

Spherical Inertia General Inertia
Flat Spin

General Spin

Complexity

With these simplifications it is possible to characterize any type of spin by any

combination of the two parameters as shown in Table 3.1. The upper left case rep-

resents the simplest case in which the Target is a sphere and rotating about an axis

normal to the docking. The lower right most case represents a docking scenario in

which the Target can have any inertia ratios that satisfies the triangle inequality as

well as any angular velocity vector, and it is the most complex case. The methodol-

ogy for solving the general problem (lower right case) was to follow the complexity

arrow shown in Table 3.1 by solving the simplest problem first and then utilize insight

gained from it to tackle the more general problem.

Furthermore, the solution form for each of the problems in Table 3.1 can be
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summarized in Table 3.2. The computational complexity of a fully analytical solution

is negligible. A Quasi-Analytical solution represents a situation in which whether the

solution will be either analytical or numerical depends on whether a certain condition

is met. Finally, an Analytical Guidance Algorithm (AGA) represents a full trajectory

that has to be computed on a receding horizon basis (similar to a Model Predictive

Controller); however, the solution to the AGA is analytical and the computational

complexity is significantly reduced as opposed to traditional problem formulations.

Table 3.2: Forms of Solution to Different Docking Situations

Spherical Inertia General Inertia
Flat Spin Fully Analytical Fully Analytical

General Spin Quasi-Analytical AGA

3.3 Analytical Solution for the Flat Spin Docking

Case

The first case that was solved for the general docking problem is that of a Target

with a flat spin and a spherical inertia.2 To begin, the simplified problem statement

is given as follows,

min

󰁝 tf

t0

󰀃
|ux|+ |2ωẋ|

󰀄
dt Cost Function

Subject to ẍ = ω2x+ ux

x(t0) = R0, ẋ(t0) = 0 Begin radially aligned

x(tf ) = Rf , ẋ(tf ) = 0 Soft dock

− usat ≤ ux ≤ usat Thruster saturation in x direction

tf free

(3.5)

2The spherical inertia specification is not necessary as the solution for the flat spin with general
inertia is the same as the solution with a spherical inertia tensor.
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where the cost function integrand |ux| + |2ωẋ| was modified so that the Coriolis

acceleration due to radial alignment at all times is included in the cost function

instead of defining a new thrust variable uy [m/s2]. This aids in simplifying the

dynamics by not including an equation for ÿ and having a path constraint where

y, ẏ = 0 ∀ t.

3.3.1 Necessary Conditions for Optimality

Noting that there are two states and, thus, the need for two costate variables the

Hamiltonian of the problem is written as follows:

H = |ux|+ |2ωẋ|+ p1ẋ+ p2
󰀃
ω2x+ ux

󰀄
(3.6)

Following the optimality conditions for a minimization problem shown in Kirk

[25], the equations of motion are written in state space form:

󰀵

󰀷ẋ

ẍ

󰀶

󰀸 =

󰀵

󰀷 0 1

ω2 0

󰀶

󰀸

󰀵

󰀷x

ẋ

󰀶

󰀸+

󰀵

󰀷0

1

󰀶

󰀸 ux (3.7)

The first optimal control necessary condition tells us the dynamics or equation

(3.7). The next condition related to the dynamics of the costate is

󰀵

󰀷ṗ1
ṗ2

󰀶

󰀸 =

󰀵

󰀷 0 −ω2

−1 0

󰀶

󰀸

󰀵

󰀷p1
p2

󰀶

󰀸±

󰀵

󰀷 0

2ω

󰀶

󰀸 (3.8)

where the ±2ω depends on whether 2ωẋ < 0 or 2ωẋ > 0, respectively. Since the

objective for docking is to go from a higher radius to a lower radius, and the dynamics

represent an unstable system that will push the Chaser naturally outwards, there is

an intuitive sense that the least expensive trajectory decreases monotonically. Thus,

the sign of ±2ωẋ simply depends on sign(ω). Assuming that ẋ < 0 for all time the

solution to the homogeneous solution to Eq. (3.8) is given as
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p1(t) = −c1ωe
ωt + c2ωe

−ωt

p2(t) = c1e
ωt + c2e

−ωt
(3.9)

To solve the non-homogeneous solution, the method of variation of parameters is

utilized by assuming that the coefficients in the homogeneous solution are a function

of time (i.e. c1(t) and c2(t)). Thus, plugging into the solution in Eq. (3.9) with the

assumption that c1 and c2 are functions of time into the costate equations in (3.8)

leads to

−ċ1ωe
ωt + ċ2ωe

−ωt − c1ω
2eωt − c2ω

2e−ωt = −c1ω
2eωt − c2ω

2e−ωt

ċ1e
ωt + ċ2e

−ωt + c1ωe
ωt − c2ωe

−ωt = c1ωe
ωt − c2ωe

−ωt + 2ω
(3.10)

The above equations can be manipulated to obtain equations for ċ1 and ċ2 which

leads to
ċ1 = ωeωt =⇒ c1(t) = −e−ωt + c̃1

ċ2 = ωe−ωt =⇒ c2(t) = eωt + c̃2

(3.11)

where the c̃# represents a constant value. Thus, the solution to the non-homogeneous

equation for the costate equations can be obtained by plugging Eq. (3.11) into (3.8),

obtaining the full costate equations for the case in which ẋ < 0 as follows:

p1(t) = sign(ω)2ω − c̃1ωe
ωt + c̃2ωe

−ωt

p2(t) = c̃1e
ωt + c̃2e

−ωt
(3.12)

Once the equations for the costate for the soft-docking problem are known, it is

possible to continue with the rest of the necessary conditions for an optimal trajectory.

In fact, knowledge of the structure of Equation (3.12) will allow us to eliminate several

candidate optimal solutions and reduce the search space for the optimal solution.

Continuing on, the next necessary condition for optimality according to Pontrya-

gin’s Minimum Principle (PMP) states that an optimal control policy is obtained by

minimizing the Hamiltonian in (3.6). To do this the partial of the Hamiltonian with

respect to u is computed, which yields
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∂H
∂u

= 0 = ±1 + p2 (3.13)

When the control variable is not present on the control policy condition as shown

above, the optimal control approach per PMP indicates that the policy must be as

follows:

u∗
x =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

−usat p2 ≥ 1

0 −1 < p2 < 1

usat p2 ≤ −1

(3.14)

Obtaining a general form for the costate equation as well as the control policy is

extremely useful. From here different approaches can be taken for obtaining a set of

trajectories that satisfy all the conditions. For example, Boyarko utilizes the costate

equation form to set up a two point boundary value problem (BVP) to obtain the

optimal trajectory [26]. However, it is possible to go beyond this and fully solve the

problem by using the transversality condition to obtain the terminal value for the

costate,

|ux(tf )|+ |2ωẋ(tf )|+ p1(tf )ẋ(tf ) + p2(tf )
󰀃
ω2x(tf ) + ux(tf )

󰀄
= 0 (3.15)

Given that the problem statement has a final radial velocity equal to zero, ẋ(tf ) =

0 the final value for the costate will be p2(tf ) =
−|ux(tf )|

ω2Rf+ux(tf )
.

Per Equation (3.14) only three possible scenarios for values of ux with the con-

straints on the range of p2 satisfy the necessary condition for PMP. Therefore, it is

possible to test each of these control values in order to determine what will be the

final value for the controller when docking is achieved.

Case: u∗
x(tf ) = −usat

The condition of ux(tf ) = −usat has the second costate at the final time equal to

p2(tf ) =
usat

usat − ω2Rf

> 1 (3.16)
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This value is admissible as it is in accordance with the conditions for PMP opti-

mality in (3.14); this means that having a final control value u = −usat is a possible

value for the second costate.

Case: u∗
x(tf ) = 0

Selecting the final control as zero would lead to a final costate of also zero.

p2(tf ) = 0 (3.17)

The case in which the costate, p2, is equal to zero is also admissible as it is within

the range of −1 < p2 < 1. In fact, it will turn out that this will be the true condition

for the actual optimal condition that assures the soft dock and will be expanded upon

later in this document.

Case: u∗
x(tf ) = usat

Finally, the last condition of selecting the final control value as the maximum allowable

control, usat yields the costate as

p2(tf ) =
−usat

usat + ω2Rf

∕< −1 (3.18)

This costate violates Equation (3.14) and is therefore not a possible final costate.

Therefore, the only allowable final costates are ux(tf ) = 0 or − usat.

It is possible to obtain an additional boundary point on the values for the costate

by noting that the Hamiltonian has to be constant for all time per the PMP conditions

and that at the final time the Hamiltonian has to be zero per the transversality

condition. This means that at the initial time, the Hamiltonian has to be equal to

zero,

|ux(t0)|+ |2ωẋ(t0)|+ p1(t0)ẋ(t0) + p2(t0)
󰀃
ω2x(t0) + ux(t0)

󰀄
= 0 (3.19)

The same approach as before can be applied to conclude that the only possible
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values for the initial control is ux(t0) = 0 or −usat with the costate values of p2(t0) =

0 or usat/(usat−ω2R0), respectively. In summary, this analysis has shown the various

possible values for the costate vector at the initial and final boundary conditions. This

is the power of the PMP condition: it modifies the problem from a general (infinite

dimension) optimal control problem to a finite dimension two point boundary problem.

3.3.2 Possible Solutions to Flat Spin Problem

The analysis on the previous section yielded the following information regarding the

optimal solution to the Flat Spin Problem, which again refers to the case in which

the angular velocity of the Target (either with spherical or general inertia) is perpen-

dicular to the docking axis:

• The general equations of motion:

󰀵

󰀷ẋ

ẍ

󰀶

󰀸 =

󰀵

󰀷 0 1

ω2 0

󰀶

󰀸

󰀵

󰀷x

ẋ

󰀶

󰀸+

󰀵

󰀷0

1

󰀶

󰀸 ux

• The general solution to the costate:

󰀵

󰀷p1(t)

p2(t)

󰀶

󰀸 =

󰀵

󰀷2ω − c̃1ωe
ωt + c̃2ωe

ωt

c̃1e
ωt + c̃2e

−ωt

󰀶

󰀸

• The functional form of the optimal control policy: u∗
x =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

−usat p > 1

0 −1 < p < 1

usat p < −1

• The value of the Hamiltonian for all time: H = |ux|+|2ωẋ|+p1ẋ+p2 (ω
2x+ ux) =

0 ∀ t ∈ [t0, tf ]

• The initial possible values for the costate and control: ux(t0) = −usat, p2(t0) =

usat

usat−ωR2
0

or ux(t0) = 0, p2(t0) = 0

• The final possible values for the costate and control: ux(tf ) = −usat, p2(tf ) =

usat

usat−ωR2
f

or ux(tf ) = 0, p2(tf ) = 0

where from now on, without loss of generality, t0 = 0 for simplicity.
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Table 3.3: Possible Behavior for p2

Case ID p2(t0) p2(tf )
Case 1 0 0
Case 2 0 usat/(usat − ω2Rf )
Case 3 usat/(usat − ω2R0) 0
Case 4 usat/(usat − ω2R0) usat/(usat − ω2Rf )

Based on the information from the last two bullet points, four possible cases exist

for the costate and are summarized in Table 3.3.

The possible boundary values for the costate as well as their closed form solution

in Equation (3.12) will force the trajectory for the costates to have the form shown

in Figure (3-3).

In Figure (3-3) the shaded region below p2 = 1 indicates the switching condition

for optimal control. It should be noted that despite choosing arbitrary values for

R0,ω, Rf and tf the overall shape of the costates will remain the same. In fact there

are only three possible types of controllers based on Fig. (3-3) either a controller

with no switches (Case 1), one switch (Case 2 and 3), or two switches (Case 4). Due

to this, an analysis must be conducted into the nature of each of the four cases to

determine which one corresponds to the optimal solution.

Case 1: p2(t0) = 0, p2(tf ) = 0, No Control Switch

The first case corresponds to a time history in which control is inactive for all time,

ux(t) = 0 ∀ t ∈ [t0, tf ]. This assumes that by not applying control the natural

dynamics will move the system from its initial point x(t0) = R0 and ẋ(t0) = 0 to the

final state x(tf ) = Rf and ẋ(tf ) = 0. This clearly cannot happen, as the resultant

dynamics would lead to

ẍ = ω2x

Given that ω2 ≥ 0, the equation corresponds to an unstable system in which the

time history of x will exponentially increase. Furthermore, at time zero, ẍ > 0 which

would indicate that ẋ(t0+󰂃) > 0. Since the optimal trajectory must be monotonically

decreasing—otherwise the amount of control effort to bring the radial position from a
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Figure 3-3: Possible forms for p2 with R0 = 15, Rf = 5, ω = 30◦/s, tf = 4 s,
usat = 10 m/s2
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higher radius will be significantly higher than from a lower radius—so Case 1 cannot

correspond to the optimal trajectory.

Case 2: p2(t0) = 0, p2(tf ) = usat/(usat − ω2Rf ), Single Control Switch

Case 2 corresponds to the case in which the thruster starts turned off and at some

later time it turns on until the end of the trajectory: u(t) = 0, ∀t ∈ [t0, t1], u(t) =

−usat ∀t ∈ [t1, tf ]. This corresponds to an off-bang controller which is a common form

for minimum fuel problems. The main issue with this controller with a costate time

history shown in Figure (3-3) is that at t = t0+ 󰂃 the rate of derivative of ẋ is greater

than zero. This case would see a trajectory go from an initial lower radial distance

to a higher radial distance which is not the case for the general docking problem.

Case 3: p2(t0) = usat/(usat − ω2R0), p2(tf ) = 0, Single Control Switch

Case 3 corresponds to a bang-off controller where the Chaser starts firing at full

control saturation ux = −usat for a specified time period until the costate p2 attains a

value of 1. At this point, the thruster will turn off and will coast until the final position

and velocity at which time soft dock is achieved. A quick check of the dynamics at

time t = t0 = 0 yields

ẍ = ω2R0 − usat < 0

where it is assumed that the Chaser has enough control authority such that ω2R0

is smaller than usat. This means that at t = t0 + 󰂃 the relative velocity between

the Chaser and Target will be less than zero which is consistent with our problem

statement. Exploring this case further, it is assumed that from time t0 to t1 the

controller operates at saturation level −usat. Then, from t1 to tf the thruster will be

turned off. Finally, t1 corresponds to the critical time at which the costate p2 equals

to one.

Continuing with this assumption, the equations of motion between these two seg-
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ments are given by

ẍ = ω2x− usat =⇒ x1(t) = c11e
ωt + c12e

−ωt +
usat

ω2
t ∈ [0, t1]

ẍ = ω2x =⇒ x2(t) = c21e
ωt + c22e

−ωt t ∈ [t1, tf ]

(3.20)

where c11, c12, c21 and c22 represent constant coefficients for the first and second

segment of the solution, respectively. To obtain the values for the coefficients, the

boundary conditions for the trajectory, namely that the Chaser begins radially aligned

and ends in the soft dock condition, were applied.

Applying the boundary conditions yields the two segments of the trajectory as

follows:

x1(t) =
R0 − usat

ω2

2

󰀃
eωt + e−ωt

󰀄
+

usat

ω2
t ∈ [0, t1]

x2(t) =
Rf

2

󰀃
eω(t−tf ) + e−ω(t−tf )

󰀄
t ∈ [t1, tf ]

(3.21)

where t1 and tf are the only unknowns. The next step is to check if this solution

is valid to set up the equations such that at the switch time, t1, both equations

are continuous and differentiable. The reason is that the discontinuity caused by

switching the controller from saturated to off happens on the acceleration term, so the

velocity and position term must be continuous. This yields the following relationship

R0 − usat

ω2

2

󰀃
eωt1 + e−ωt1

󰀄
+

usat

ω2
=

Rf

2

󰀃
eω(t1−tf ) + e−ω(t1−tf )

󰀄

R0 − usat

ω2

2

󰀃
ωeωt1 − ωe−ωt1

󰀄
=

Rf

2

󰀃
ωeω(t1−tf ) − ωe−ω(t1−tf )

󰀄 (3.22)

To obtain a solution for t1 and tf , let a =
R0−usat

ω2

2
, b = usat

ω2 , c =
Rf

2
. Also, have

Y = ewt1 , X = eω(t1−tf ). Thus, Eq. 3.22 has the form:

a

󰀕
Y +

1

Y

󰀖
+ b = c (X + 1/X)

a

󰀕
Y − 1

Y

󰀖
= c (X − 1/X)

The above expression admits two solutions:
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X1,2 =
−4a2 + b2 + 4c2

4bc
±

󰁶󰀕
−4a2 + b2 + 4c2

4bc

󰀖2

− 1

Y1,2 =
−4a2 − b2 + 4c2

4ab
±

󰁶󰀕
−4a2 + b2 + 4c2

4ab

󰀖2

− c2

a2

(3.23)

where in the ± symbol, the positive value corresponds to the first, and the negative

to the second solution. To differentiate between the two note that X = ew(t1−tf ) < 1

if ω > 0. Additionally, the form of the solution for X is X = A ±
√
A2 − 1. This

represents a right triangle with sides A, 1, and
√
A2 − 1. Thus, X = A−

√
A2 − 1 < 1

by the triangle inequality and X2, Y2 represents our solution. Note that the choice of

the solution depends on the sign of ω. However, this correction can be done by just

simply multiplying t1 by the sign of ω.

Therefore, the fully analytical expression for t1 and tf is:

t1 =
1

ω
log(Y )

tf = t1 −
1

ω
log(X)

(3.24)

where X, Y are the second solution pair in Eq. 3.23, and log represents the natural

logarithm.

Case 4: p2(t0) = usat/(usat − ω2R0), p2(tf ) = usat/(usat − ω2Rf ), Two Control

Switches

Case 4 corresponds to a bang-off-bang controller where the Chaser starts firing at full

control saturation ux = −usat for a specified time period until the costate p2 attains

a value of 1. At this point, the thruster will turn off and will coast until the costate

p2 reaches the value of -1 and a corresponding control saturation ux = usat until final

position and velocity at soft dock is achieved. A quick check of the dynamics at time

t = t0 = 0 yields

ẍ(0) = ω2R0 − usat < 0
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which show that the assumption of monotonically decreasing holds, and is thus a

possible solution. The dynamics for this case are given by

ẍ = ω2x− usat =⇒ x1(t) = c11e
ωt + c12e

−ωt +
usat

ω2
t ∈ [t0, t1]

ẍ = ω2x =⇒ x2(t) = c21e
ωt + c22e

−ωt t ∈ [t1, t2]

ẍ = ω2x− usat =⇒ x3(t) = c31e
ωt + c32e

−ωt +
usat

ω2
t ∈ [t2, tf ]

(3.25)

where the same procedure can be applied as in Case 3 by imposing the boundary

conditions given by the docking problem. Imposing these conditions result in

x1(t) =

󰀕
R0 − usat

ω2

2

󰀖󰀃
eωt + e−ωt

󰀄
+

usat

ω2
t ∈ [t0, t1]

x2(t) = c21e
ωt + c22e

−ωt t ∈ [t1, t2]

x3(t) =

󰀕
Rf − usat

ω2

2

󰀖󰀃
eω(t−tf ) + e−ω(t−tf)

󰀄
+

usat

ω2
t ∈ [t2, tf ]

(3.26)

Equation (3.26) contains five unknowns: t1, t2, tf , c21, and c22. The continuity

conditions at t1 and t2 only accounts for four equations. It is possible to bring an extra

equation to this unconstrained system by forcing either p2(t1) = 1 or p2(t2) = −1.

This set of five equations has no analytical solution and a numerical method must

be used. However, the only admissible solution that accepts either p2(t1) = 1 or

p2(t2) = −1 in addition to the continuity condition is t2 = tf . This results in the

same form as Case 3. The only situation in which Case 4 represents a viable solution

is the degenerate case in which ω = 0 at which point the solution is a simple bang-

off-bang controller with a linear trajectory.

3.3.3 Summary of Flat Spin Solution

This section presented a fully-analytical solution to the flat spin case. This solution

is also admissible to the case in which the docking problem has a general inertia.

Below, a summary of the trajectory, control history, costate, and cost is presented,

which corresponds to the solution of Case 3 from the previous section.

One of the benefits of having this analytical solution is to observe the trends as
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Table 3.4: Summary of Solution to the Flat Spin Docking Problem

Trajectory
x1(t) =

R0 − usat

ω2

2

󰀃
eωt + e−ωt

󰀄
+

usat

ω2
t ∈ [0, t1]

x2(t) =
Rf

2

󰀃
eω(t−tf ) + e−ω(t−tf )

󰀄
t ∈ [t1, tf ]

Switch Time t1 =
1
ω
log(Y ) with Y from Eq. (3.23)

Final Time tf = t1 − 1
ω
log(X) with X from Eq. (3.23)

Control ux =

󰀫
−usat

0
and uy =

󰀫
ω2sign(ω)

󰀃
R0 − usat

ω2

󰀄
(eωt − e−ωt) t ∈ [t0, t1]

ω2sign(ω)Rf

󰀃
eω(t−tf ) − e−ω(t−tf )ab

󰀄
t ∈ [t1, tf ]

Costate
󰀗
p1(t)
p2(t)

󰀘
=

󰀗
−2ω sign(2ωẋ)− c̃1ωe

ωt + c̃2ωe
ωt

c̃1e
ωt + c̃2e

−ωt

󰀘

Cost
|usatt1|+

󰀏󰀏󰀏ω
󰀓
R0 −

usat

ω2

󰀔 󰀃
eωt1 + e−ωt1 − 2

󰀄 󰀏󰀏󰀏

+
󰀏󰀏󰀏ωRf

󰀃
2− eω(t1−tf ) − e−ω(t1−tf )

󰀄 󰀏󰀏󰀏

either the angular velocity increases or the saturation limit increases. For example,

as the magnitude of the saturation increases, usat, the value for Y in Equation (3.23)

decreases, thus making the value for t1 smaller. Furthermore, as the angular velocity

decreases, the final time tf increases as expected. In the limit of ω → 0, tf goes

to infinity. This trend makes intuitive sense because having no angular velocity

would make the rotating reference frame become inertial. This will in turn cause the

dynamics to simplify to a simple double integrator, which has the optimal fuel policy

of a bang-off-bang controller that approaches the target at infinite time with almost

no fuel (i.e. t1 → 0) and becomes the solution to Case 4. Finally, The fuel cost as well

as final time increases when Rf → 0 or R0 → ∞. Additionally, the special case where

R0 = Rf yields that the critical time, final time, and cost go to zero as expected.

It should be noted that the solution given in Table 3.4 is fully analytical and

can be implemented in flight software with almost zero computational complexity as

compared to any other method. One benefit for having a flat spin solution is that

almost all objects in space will eventually rotate about the maximum moment of
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inertia axis due to the natural stability of Newton-Euler dynamics in the presence of

energy dissipating forces such as fuel slosh [37] or structural viscoelasticity. Therefore,

many of the space debris such as spent rocket bodies would be spinning about a single

principle axis for which the solution presented is applicable if the docking port is

aligned with the maximum moment of inertia.

Furthermore, it should be noted that a singularity occurs when the docking prob-

lem has flat spin about the docking axis. This solution presents a problem to this

formulation as the only feasible trajectory is a bang-off-bang controller (correspond-

ing to Case 4 in Figure (3-3)). For this case, the recommendation would be to instead

use the solution to the general spin problem given in Section 3.4. Nevertheless, there

exist situations in which the Target has a complex tumble such as satellite servicing

or space assembly (i.e. situations in which the uncontrollable tumble has not reached

stability due to energy dissipation). In terms of plume impingement, the solution

for the flat spin, with the exception for the degenerate case ω = 0, is a Bang-Off

controller which naturally eliminates the risk of plume impingement due to the lack

of firing towards the docking port.

3.4 Quasi-Analytical Solution to the General Spin

Docking Problem

The next case that was solved was that of a Target having a general spin about any

axis and a spherical inertia. This is a more complex scenario as now the angular

velocity vector (or angular momentum vector, since they are pointing along the same

direction) is not perpendicular to the docking axis. In the case of the flat spin, the

docking port axis, as seen in the inertial frame, traces a disk, whereas in the case

of general spin the docking axis traces a cone. The inner angle of that cone can be

computed as cos(θ) = (x̂ · ω)/||ω|| where x̂ is the axis of the docking port.

The approach to solve this case is similar to that of the flat spin case in that the

conditions for optimality along with Pontryagin’s Minimum Principle were used. To
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begin, the optimal control problem for the general spin and spherical inertia can be

stated as follows,

min
ux

󰁝 tf

t0

󰀓
|ux|+ |2ωzẋ+ ωyωxx|+ |− 2ωyẋ+ ωzωxx|

󰀔
dt

Subject to ẍ = (ω2
y + ω2

z)x+ ux

x(t0) = R0, ẋ(t0) = 0

x(tf ) = Rf , ẋ(tf ) = 0

− usat ≤ ux ≤ usat

tf free

(3.27)

Equation (3.27) has a cost function that also includes the effects of Coriolis and

Centripetal acceleration that the controllers uy and uz have to apply in order to always

remain aligned along x̂. Furthermore, the dynamics of the problem are updated to

include the effect of the angular velocity in both the y and z axes. The constraint

that the Chaser begins radially aligned and ends in soft dock remains the same.

3.4.1 Necessary Conditions for Optimality

As before, the Hamiltonian for this problem is given by,

H = |ux|+ |2ωzẋ+ωyωxx|+ |− 2ωyẋ+ωzωxx|+ p1(ẋ)+ p2
󰀃
(ω2

y + ω2
z)x+ ux

󰀄
(3.28)

The equation of the costates can be obtained by the second optimality condition

and yields

󰀵

󰀷ṗ1
ṗ2

󰀶

󰀸 =

󰀵

󰀷 0 −
󰀃
ω2
y + ω2

z

󰀄

−1 0

󰀶

󰀸

󰀵

󰀷p1
p2

󰀶

󰀸+

󰀵

󰀷−ωyωx −ωzωx

−2ωz 2ωy

󰀶

󰀸

󰀵

󰀷σ1

σ2

󰀶

󰀸 (3.29)

where σ1 = sign(2ωzẋ + ωyωxx) and σ2 = sign(−2ωyẋ + ωzωxx) and arises due to

the optimality condition ṗ = −∂H/∂x. Since the distance between the Chaser and

Target, x, will be a positive monotonically decreasing function and ẋ will be a negative

55



function that begins and ends at zero, then σ1 and σ2 will at most switch sign twice.

Due to this uncertainty of when the signs switch, one approach would be to numer-

ically integrate Equation (3.29). This will undoubtedly introduce numerical errors,

so to avoid that, a valid approach would be to analytically integrate Equation (3.29)

at time periods for which σ1 and σ2 are constant.

Assuming that there is no sign switch that would cause the value of σ1 and σ2

to not be constant, then the solution of the differential equations shown in Equation

(3.29) is

p1(t) = −c1

󰁴
ω2
y + ω2

ze
√

ω2
y+ω2

zt + c2

󰁴
ω2
y + ω2

ze
−
√

ω2
y+ω2

zt − 2σ1ωz + 2σ2ωy

p2(t) = c1e
√

ω2
y+ω2

zt + c2e
−
√

ω2
y+ω2

zt − σ1ωyωx + σ2ωzωx

ω2
y + ω2

z

(3.30)

At each step of the integration, c1 and c2 from Equation (3.30) must be chosen

such that there is continuity between p1 and p2. Integration would start at a point in

which both values p1(t) and p2(t) are known, that is at the first switch point in which

p2(t1) = 1 and p1(t1) can be obtained by solving the equation H(t1) = 0 for p1.

Additionally, the control policy for the problem is given by ∂H
∂u

= 0 = ±1 + p2 as

before,

u∗
x =

󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

−usat p2 > 1

0 −1 < p2 < 1

usat p2 < −1

(3.31)

The same procedure as the flat spin can be applied by using the transversality

condition which yields,

p2(tf ) =
−
󰀃
|ux(tf )|+ |Rfωyωx|+ |Rfωzωx|

󰀄

ux(tf ) +Rf

󰀃
ω2
y + ω2

z

󰀄

p2(t0) =
−
󰀃
|ux(t0)|+ |R0ωyωx|+ |R0ωzωx|

󰀄

ux(t0) +R0

󰀃
ω2
y + ω2

z

󰀄
(3.32)

Given Equations (3.31) and (3.32), the same approach can be taken as the flat

spin case in which a guess is made on as to the final control value. Then, if the value
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of the costate is consistent with the constraints due to the control policy, that value

represents a possible optimal trajectory. The result from this analysis indicates that

the condition for a Bang-Off controller or Bang-Off-Bang controller can be obtained

by defining

γ =
|ωyωx|+ |ωzωx|

ω2
y + ω2

z

(3.33)

If γ ≤ 1, then a Bang-Off controller ux = −usat ∀t ∈ [t0, t1], ux = 0 ∀t ∈ [t1, tf ] can

be used as the value for the costate p2 , which is consistent with the control policy by

Equation (3.31). Furthermore, if γ > 1, then a Bang-Off-Bang controller is needed:

ux = −usat ∀t ∈ [t0, t1], ux = 0 ∀t ∈ [t1, t2], and ux = usat ∀t ∈ [t2, tf ].3

It will turn out that there exists a fully analytical solution for the Bang-Off con-

troller; however, a numerical approach will have to be taken to solve for a Bang-Off-

Bang Controller. An analysis must then be made to determine whether the analytical

solution is needed instead of the numerical solution, as this will impact the compu-

tational complexity of the General Spin Spherical Inertia problem.

3.4.2 Differentiation Between Controllers Using γ Condition

Since γ is only dependent on the values of ω, a method of exploring the nature of

γ is to plot its value for each possible direction vector of ω. A mesh grid was used

to sample a unit sphere representing every possible angular velocity direction of the
3Proof: Due to PMP conditions, the control time history must be either 0, usat, or −usat at the

final time. If ux(tf ) = 0 then by the Transversality condition, p2(tf ) =
−
󰀃
|Rfωyωx|+|Rfωzωx|

󰀄

Rf(ω2
y+ω2

z)
. Since

||p2|| ≤ 1 has to be true for the optimal control policy to hold per Eq. (3.31), then (|ωyωx|+|ωzωx|) <󰀃
ω2
y + ω2

z

󰀄
must hold. Otherwise, the Transversality condition will not hold and H(tf ) > 0. Note

that ||p2|| ≤ 1 instead of ||p2|| < 1, this is valid as the problem does not contain a singular arc due
to the dynamics having poles on the RHS, so although p2(t) = 1 at some point, the dynamics will
push the costate such that p2(t+ 󰂃) ∕= 1.

Alternatively, if ux(tf ) = usat then p2(tf ) = −
󰀃
usat + |Rfωyωx| + |Rfωzωx|

󰀄
/
󰀃
usat +

Rf

󰀃
ω2
y + ω2

z

󰀄 󰀄
. Again, p2(tf ) < −1 in accordance with Eq. (3.31). This means that −

󰀃
usat +

|Rfωyωx| + |Rfωzωx|
󰀄
/
󰀃
usat + Rf

󰀃
ω2
y + ω2

z

󰀄 󰀄
< −1 or |ωyωx| + |ωzωx| > ω2

y + ω2
z . Therefore, γ

given in Eq. 3.33 indicates whether at the final time the controller will be at 0, or usat.
Furthermore, at the beginning the Chaser must fire inward, ux(t0) = −usat. Since for both cases

p2(t0) > p2(tf ) and the general form of p2(t) does not oscillate, then there can only be one switch
in the case where ux(tf ) = 0 or two switches when ux(tf ) = usat.

For completeness, the case where ux(tf ) = −usat was explored; however, the trajectory for x(t)
violated the PMP condition that p2 must equal 1 when a switch occur. Therefore, ux(tf ) = −usat

is not a valid value.
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Target. As before, the docking port is assumed to be aligned with the body x-axis

that is also one of the principal inertia axes. To differentiate between the controllers

two colors where used, blue for when γ ≤ 1 and red when γ > 1. Figure (3-4) shows

the resultant surface.

(a) 3D projection of γ condition (b) YZ projection of γ condition

Figure 3-4: γ condition for all possible ω direction. Blue area represents the analytical
Bang-Off controller. Red area represents the numerical Bang-Off-Bang controller.

Both Figure (3-4a) and (3-4b) show the unit vector axis representing the x, y and

z axis in the usual RGB colors. The blue region represents the Bang-Off controller

solution which can be be computed analytically. The red region represents the Bang-

Off-Bang controller in which a numerical approach is needed to obtain the solution.

Although the numerical solution will be significantly more computationally expensive

than an analytical solution, the solution obtained in the red region will be faster than

using a Gauss pseudospectral method or a model predictive controller. Furthermore,

the blue region represents approximately 76% of all possible spin directions and in-

cludes the Flat Spin problem (which represents the outer edge of the sphere seen in

Figure (3-4b)).

The shape of the Bang-Off-Bang region has to be symmetric about both the YX-

plane and ZX-plane due to the absolute value in the function gamma,

|ωyωx|+ |ωzωx| = |− ωyωx|+ |ωzωx| = |ωyωx|+ |− ωzωx|
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It is possible to obtain the minimum angle between the docking port (red axis or

center of Figure (3-4b)) and the angular velocity of the Target at which the analytical

solution is valid. This is equivalent to the location of the kinks in the sphere along

the axis ωy = 0 and ωz = 0 in Figure (3-4b). By assuming that the y-component of

the angular velocity is zero, the condition for the Bang-Off-Bang reduces to

|ωzωx|
ω2
z

≥ 1

Additionally, ω represents a direction of the angular vector, so ω2
x+ω2

y+ω2
z = 1. Given

that for this case ωy = 0, then based on the aforementioned condition the values for

the angular velocity represent ωcrit,low = [± 1√
2
, 0,± 1√

2
]T . The angle corresponds to

45◦.

The angle for the angular velocity direction that represents the maximum point

at which the analytical solution begins to be valid (or the peak of the petals in the

red area) can also be analytically computed. First, due to the absolute value in the

γ condition, it makes intuitive sense that there will not be destructive interference

and the maximum will occur when ωy = ωz. Letting ω = [
√
1− 2a2, a, a]T , the γ

condition for which the analytical solution is valid simplifies to

|a(1−
√
1− 2a2)|+ |a(1−

√
1− 2a2)|

2a2
≤ 1

Solving for the value of a yields the angular velocity vector as ωcrit,upp = [ 1√
3
, 1√

3
, 1√

3
]T .

The corresponding angle from the critical angular velocity vector with the docking

port is 54.73◦.

It should be noted that the shape of Figure (3-4) is a mathematical construct,

but does not reflect the physical nature of having a spherical inertial Target. Because

any axis in a spherical object is, by definition, a principal axis, it is possible to define

a rotation such that the petal shape is not observed. For example, if two different

principal axes y′ and z′ are selected to be a x axis rotation of the original y and z, then

the minimum angle location will also rotate. Thus, if the angle of the docking port

and the angular velocity vector is less than 54.73◦ and greater than 45◦, it is always
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possible to find a rotation matrix such that the solution is a Bang-Off controller. In

practicality, this would correspond to applying a rotation matrix transformation to

the current estimated angular velocity vector to a set of axis that allows the Bang-Off

solution, ω = ′Cω, and perform the control firing in the x, y′, and z′ axes.

Overall, by inspecting the expression for γ, it has been determined that in order

to use the analytical method the angle between the docking port axis (+x-axis) and

the angular velocity vector must be at least 45◦, or at most 54.73◦.This constraint

can be used in the choice of the docking location by the Chaser algorithms in Phase

2 as it will determine whether the analytical function can be used.

3.4.3 Analytical Solution to Bang-Off Controller

Assuming that the Target angular spin is such that γ ≤ 1 per Equation (3.33), the

trajectory will correspond to a Bang-Off controller,

ẍ1 = ω2
effx1 − usat =⇒

R0 − usat

ω2
eff

2

󰀃
eωeff t + e−ωeff t

󰀄
+

usat

ω2
eff

t ∈ [0, t1]

ẍ2 = ω2
effx2 =⇒ Rf

2

󰀃
eωeff (t−tf ) + e−ωeff (t−tf )

󰀄
t ∈ [t1, tf ]

(3.34)

where ωeff =
󰁳

ω2
y + ω2

z was used for simplicity. Two constraints were applied: the

first section of the trajectory must begin radially aligned with zero speed i.e. x(0) =

R0, ẋ(0) = 0, and the second section must end at soft docking conditions, i.e. x(tf ) =

Rf , ẋ(tf ) = 0. Equation (3.34) contains two unknowns: the switch time and final

time, t1 and tf respectively. The switch time and final time can be solved analytically

using the same procedure as in the Flat spin case, namely assuming that Y = eωeff t1

and X = eωeff (t1−tf ). The solution can then be solved as

X =

󰀕
−4a2 + b2 + 4c2

4bc

󰀖
−

󰁶󰀕
−4a2 + b2 + 4c2

4bc

󰀖2

− 1

Y =
c

a

󰀳

󰁃
󰀕
−4a2 − b2 + 4c2

4bc

󰀖
−

󰁶󰀕
−4a2 + b2 + 4c2

4bc

󰀖2

− 1

󰀴

󰁄
(3.35)
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where a = (R0 − usat

ω2
eff

)/2, b = usat/ω
2
eff , c = Rf/2. Note that Y ∕= c

a
X as there is a

negative sign in the first term of Y compared to X. With the analytical solution to X

and Y , the resultant value for the switch time and end time can be readily available

by evaluating

t1 =
1

ωeff

log(Y )

tf = t1 −
1

ωeff

log(X)
(3.36)

Sensitivity Analysis of Switch and Final Time

Due to the nature of Equation (3.35) and (3.36) it is difficult to obtain trends because

how the switch time and final time differ with a change in one of the parameters R0,

Rf , usat, or ω. However, one of the main benefits of obtaining an analytical solution is

the possibility to obtain a fast analysis by simply modifying a value and computing the

resultant switch and final time. To carry out this analysis, nominal values for R0, Rf ,

usat, or ω and respective times were arbitrarily chosen. These values are summarized

in Table 3.5. The choice of the value for the parameters does not represent an actual

system or case scenario in particular, yet the overall trend is similar with other choices

for the parameters. The only consideration was that usat was selected such that there

is enough control authority to enable the maneuver at all. Furthermore, out of ωx and

ωy, only ωy was modified; however, the trend would be similar if ωz changed instead.

Table 3.5: Nominal Values for Sensitivity Analysis of General Spin, Spherical Inertia
Analytical Solution

Rnom
0 Rnom

f unom
sat ωnom

y tnom1 tnomf

(m) (m) (m/s2) (◦/s) (s) (s)
10 5 10 20 0.49 2.93

The nominal parameters were modified by ±50% and a plot was produced by

keeping all but one parameter nominal. The respective switch time and final time

corresponding to the candidate optimal trajectory were recorded. The resultant plots

are shown in Figure (3-5).
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(a) Switch Time Sensitivity (b) Final Time Sensitivity

Figure 3-5: Sensitivity Analysis for Analytical Switch and Final Times

Figures (3-5a) and (3-5b) represent the normalized change in the switch time

and final time respectively, as a function of the change in a normalized parameter.

As expected, both t1 and tf increase as the initial radial distance from the Target

increases. This makes intuitive sense as the trajectory time as well as the time it takes

for the Chaser to achieve the correct radial speed should increase with an increased

initial distance. The opposite behavior is observed with the increase in the final offset

distance, Rf . As expected, t1 and tf will approach 0 when the final docking distance

is the same as the initial radial offset distance.

Both t1 and tf will decrease with an increase in the magnitude of the saturation

and vice versa. An interesting trend to note is that although the switch time will

approach zero with an increase in the value of usat, tf will not. The reasoning behind

this trend is as follows: as usat → ∞, t1 → 0 and the controller will become an

impulsive controller which will set the initial velocity ẋ(0) to a value such that, in the

radial direction, the Chaser will simply coast. For each radial distance offset, R0 there

exists a minimum fuel radial velocity ẋ(0) such that after tf seconds the trajectory

will reach Rf with ẋ = 0. Thus, the usat curve on Figure (3-5b) will asymptote to

the final time of the impulsive general spin, general inertia docking solution. The

impulsive version can be seen in Appendix B.

Finally, from Figure (3-5) the switch time, t1, increases while the final time, tf ,
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decreases as the angular velocity parameter in y, ωy, increases and vice versa. This is

somewhat unintuitive, but it is expected that the radial velocity needed to reach the

radial coasting speed (i.e. to begin the trajectory with control set to zero) will increase

as the angular velocity component normal to the docking port increases. However, as

the angular velocity increases, staying aligned along x-axis by continuously applying

the Coriolis and Centripetal acceleration becomes more expensive. Therefore, as the

Target spins faster, the Chaser should dock faster to spend less time being radially

aligned.

Overall, all the trends defined by the parameters needed to solve the switch and

final time are consistent with the expected behavior based on the system dynamics.

This is one of the most powerful results of having a fully analytical expression as it

allows the observation of trends where a full optimization routine will not allow (or

will be too computationally expensive to obtain).

3.4.4 Numerical Solution to Bang-Off-Bang Controller

The other case in which γ > 1 per Equation (3.33) corresponds to a Bang-Off-Bang

Controller,

ẍ1 = ω2
effx1 − usat =⇒

R0 − usat

ω2
eff

2

󰀃
eωeff t + e−ωeff t

󰀄
+

usat

ω2
eff

t ∈ [0, t1]

ẍ2 = ω2
effx2 =⇒ c21e

ωeff t + c22e
−ωeff t t ∈ [t1, t2]

ẍ3 = ω2
effx3 + usat =⇒

Rf +
usat

ω2
eff

2

󰀃
eωeff (t−tf ) + e−ωeff (t−tf )

󰀄
− usat

ω2
eff

t ∈ [t2, tf ]

(3.37)

where c21 and c22 represent unknown coefficients such that the three segments remain

continuous up to the first derivative. Additionally, in Equation (3.37) the first and

third segment of the trajectory already satisfy the boundary conditions set up by the

problem statement.

Because all three segments of the trajectory must be continuous up to the first

derivative there are four equations (x1(t1) = x2(t1), ẋ1(t1) = ẋ2(t1), x2(t2) = x3(t2),
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and ẋ2(t2) = ẋ3(t2)), but five unknowns (c21, c22, t1, t2, and tf ). Unfortunately, due to

the extra degree of freedom and complexity of the expressions no analytical solution

exists for the five unknowns. Thus, there is a need for a numerical procedure to be

used.

Several approaches were used for solving the five unknowns. The first approach

was to utilize Newton’s Method using Matlab’s fminunc.m. The issue with this ap-

proach as is common with Newton’s Method, is that there is no guarantee that the

solution to this problem represents the global minimum. In other words, there could

be several sets of c21, c22, t1, t2, and tf values that satisfy the continuity condition but

only represent a local minimum. Even adding another constraint such as p2(t1) = 1

using Equation (3.30) leads to other problem as fminunc is highly sensitive to the

initial condition. Due to this, the Newton’s Method approach is unreliable to finding

the true solution to the five unknowns in Equation (3.37). Two different approaches

were attempted: the use of a nonlinear program (NLP) and line search algorithm.

The approach and results from each are presented here.

Nonlinear Program For Solution to the Bang-Off-Bang Controller

The original problem formulation in Equation (3.27) can now be rewritten as follows,

min
c21,c22,t1,t2,tf

󰁝 tf

t0

󰀓
|ux|+ |2ωzẋ+ ωyωxx|+ |− 2ωyẋ+ ωzωxx|

󰀔
dt

Subject to x1(t1) = x2(t1)

ẋ1(t1) = ẋ2(t1)

x2(t2) = x3(t2)

ẋ2(t2) = ẋ3(t2)

p2(t1) = 1 or p2(t2) = −1

0 ≤ t1 ≤ t2 ≤ tf

(3.38)
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where the known structure of the trajectory given in Equation (3.37) was substituted

instead of having the original dynamics. The benefit of the problem formulation in

Equation (3.38) is that it is now a NLP with only 5 variables in contrast with the

infinite dimension problem given by Equation (3.27). The issue remains that an initial

guess must be made for the five variables; the choice of the guess can lead to situation

in which the NLP takes significant amount of iterations to converge which is not ideal

for situations in which a solution must be recomputed online.

Line Search Approach for Solution to the Bang-Off-Bang Controller

Since the result of using a Newton’s Method or NLP is very sensitive to the initial

guess, it can lead to situations in which the convergence to the solution takes too

many iterations or does not converge at all. Therefore, a different approach was used.

Instead of guessing a value for five variables, the algorithm only had to search through

one variable. Assuming a guess for the first switch time t1 the trajectory x2 can be

found by imposing the first two conditions of the constraints in the NLP program

and finding c21 and c22.

c21 =
ω2
effR0 + usat (e

−ωeff t1 − 1)

2ω2
eff

c22 =
ω2
effR0 + usat (e

ωeff t1 − 1)

2ω2
eff

(3.39)

With these variables, only two unknowns remain, namely t2 and tf , along with two

equations. The same approach of finding the root of a solution with exponentials as in

the Flat Spin case can be taken by imposing the continuity condition on x2(t2), ẋ2(t2)

and x3(t2), ẋ3(t2). Letting that ζ = eωeff t2 and ξ = eω(t2−tf ),

ζ =
1

4c21β

󰀕
−4c21c22 + 4α2 − β2 −

󰁴
−16c21c22β2 + (4c21c22 − 4α2 + β2)2

󰀖

ξ =
1

4αβ

󰀕
−4c21c22 + 4α2 + β2 −

󰁴
−16c21c22β2 + (4c21c22 − 4α2 + β2)2

󰀖 (3.40)

where α = (Rf + usat

ω2
eff

)/2 and β = usat/ω
2
eff . Finally, the last two variables can be
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found as,

t2 =
1

ωeff

log(ζ)

tf = t2 −
1

ωeff

log(ξ)
(3.41)

Having an analytical solution to all the unknown variables, it is possible to check

the validity of the solution for a given t1 by performing the logic check (tf > t2)&(t2 >

t1)&(isreal(t2)) where if any of the statements is false then the selected t1 is also

invalid. By reducing the problem to one dimension we can then perform a line search

approach

t∗1 = min(f(t1)) (3.42)

where

f(t1) =

󰁝 tf

t0

󰀓
|ux|+ |2ωzẋ+ ωyωxx|+ |− 2ωyẋ+ ωzωxx|

󰀔
dt (3.43)

At each iteration, a new t1 is selected and the values for c21, c22, t2, and tf are

computed by Equation (3.39) and (3.41), respectively. The expression for x and ẋ

can be obtained by Equation (3.37), and a numerical computation of the function

f(t1) can be performed using Matlab’s trapz.m function. The search ends when the

minimum value for f(t1) is found. Matlab’s fminsearch can be used to perform the

line search. Finally, a very good approximation is the t1 value obtained from the

Bang-Off solution given by Equation (3.36). In fact, this value will represent a lower

bound on the solution and tests show that the initial guess is around 1− 4% off from

the optimal t∗1.

3.4.5 Summary of Solution for the General Spin, Spherical

Inertia Docking Problem

This section provides a summary of the procedure to obtain a solution to the general

spin, spherical inertia problem.
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Determine which type of controller is needed by computing γ from Equation (3.33):

γ =
|ωyωx|+ |ωzωx|

ω2
y + ω2

z

if γ ≤ 1, use Table 3.6 for the analytical solution (excluding cost), else use Table

3.7 for the numerical solution.

Table 3.6: γ ≤ 1: Summary of Solution to the General Spin, General Inertia Problem

x(t)
x1(t) =

R0 − usat

ω2
eff

2

󰀃
eωeff t + e−ωeff t

󰀄
+

usat

ω2
eff

t ∈ [0, t1]

x2(t) =
Rf

2

󰀃
eωeff (t−tf ) + e−ωeff (t−tf )

󰀄
t ∈ [t1, tf ]

where ωeff =
󰁳

ω2
y + ω2

z

ẋ(t)

ẋ1(t) = ωeff

󰀣
R0 − usat

ω2
eff

2

󰀤
󰀃
eωeff t − e−ωeff t

󰀄
t ∈ [0, t1]

ẋ2(t) = ωeff

󰀕
Rf

2

󰀖󰀃
eωeff (t−t1) − e−ωeff (t−t1)

󰀄
t ∈ [t1, tf ]

Switch
Time

t1 =
1

ωeff
log(Y ) with Y from Eq. (3.35)

Final Time tf = t1 − 1
ωeff

log(X) with X from Eq. (3.35)

Control x ux =

󰀫
−usat t ∈ [0, t1]

0 t ∈ [t1, tf ]

uy =

󰀫
2ωzẋ1 + x1ωyωx

2ωzẋ2 + x2ωyωx

and uz =

󰀫
−2ωyẋ1 + x1ωzωx t ∈ [0, t1]

−2ωyẋ2 + x2ωzωx t ∈ [t1, tf ]

Costate Numerically integrating Equation (3.29)

Cost
󰁕 tf
t0

󰀓
|ux|+ |2ωzẋ+ ωy

󰀔
dt computed numerically

It should be noted that the Bang-Off-Bang solution, although fuel optimal, can

cause plume impingement due to the application of the control towards the Target

during the period [t2, tf ]. This is in contrast to the Bang-Off solution in which the
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Table 3.7: γ > 1: Summary of Solution to the General Spin, General Inertia Problem

x(t)

x1(t) =
R0 − usat

ω2
eff

2

󰀃
eωeff t + e−ωeff t

󰀄
+

usat

ω2
eff

t ∈ [0, t1]

x2(t) = c21e
ωeff t + c22e

−ωeff t t ∈ [t1, t2]

x3(t) =
Rf +

usat

ω2
eff

2

󰀃
eωeff (t−tf ) + e−ωeff (t−tf )

󰀄
− usat

ω2
eff

t ∈ [t2, tf ]

where ωeff =
󰁳

ω2
y + ω2

z

ẋ(t)

ẋ1(t) = ωeff

󰀣
R0 − usat

ω2
eff

2

󰀤
󰀃
eωeff t − e−ωeff t

󰀄
t ∈ [0, t1]

ẋ2(t) = ωeff

󰀃
c21e

ωeff t − c22e
−ωeff t

󰀄
t ∈ [t1, t2]

ẋ3(t) = ωeff

󰀣
Rf +

usat

ω2
eff

2

󰀤
󰀃
eωeff (t−tf ) − e−ωeff (t−tf )

󰀄
t ∈ [t2, tf ]

t1 Free variable subject to solution Eq. (3.42)

c21 and c22

c21 =
ω2
effR0 + usat

󰀃
e−ωeff t

∗
1 − 1

󰀄

2ω2
eff

c22 =
ω2
effR0 + usat

󰀃
eωeff t

∗
1 − 1

󰀄

2ω2
eff

t2 t2 =
1

ωeff
log(ζ) with ζ from Eq. (??)

tf tf = t2 − 1
ωeff

log(ξ) with ξ from Eq. (3.35)

Control x ux =

󰀫
−usat t ∈ [0, t1]

0 t ∈ [t1, tf ]

uy =

󰀫
2ωzẋ1 + x1ωyωx

2ωzẋ2 + x2ωyωx

and uz =

󰀫
−2ωyẋ1 + x1ωzωx t ∈ [0, t1]

−2ωyẋ2 + x2ωzωx t ∈ [t1, tf ]

Costate Eq. (3.30) with p2(0) =
usat+|ωyωxR0|+|ωzωxR0|

usat−(ω2
y+ω2

z)R0
, p2(tf ) = − |ωyωx|+|ωzωx|

(ω2
y+ω2

z)

Cost
󰁕 tf
t0

󰀓
|ux|+ |2ωzẋ+ ωyωxx|+ |− 2ωyẋ+ ωzωxx|

󰀔
dt computed numerically
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thrusters are always fired away from the target during [0, t1]. Due to this, it is

possible that the form of the Bang-Off solution is more adequate to situations that

deal with docking with objects. The next question is then to determine the level of

suboptimality that the Bang-Off solution yields compared to the Bang-Off-Bang case

when inside the region defined by γ > 1. This analysis is conducted in Appendix B.

3.5 Analytical Trajectory Optimizer for the General

Spin, General Inertia Docking Problem

Since the assumption of a spherical inertia is invalid for most satellites, a procedure is

required to solve the docking problem when the inertia of the system is more general,

or in other words, when the inertia can be written as

ITAR =

󰀵

󰀹󰀹󰀹󰀷

I1 0 0

0 I2 0

0 0 I3

󰀶

󰀺󰀺󰀺󰀸

where I1, I2 and I3 corresponds to the principal moments of inertia in the x, y and z

axes respectively.

This situation, as described in section 3.2, causes the angular velocity to change

with respect to time due to Newton-Euler’s equation.

Thus, the problem formulation for the general spin, general inertia docking prob-

lem is given by
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min
ux

󰁝 tf

t0

󰀓
|ux|+ |2ωzẋ+ ω̇zx+ ωyωxx|+ |− 2ωyẋ− ω̇yx+ ωzωxx|

󰀔
dt

Subject to ẍ = (ω2
y + ω2

z)x+ ux

ω̇x =
I2 − I3

I1
ωyωz

ω̇y =
I3 − I1

I2
ωzωx

ω̇z =
I1 − I2

I3
ωxωy

x(t0) = R0, ẋ(t0) = 0

x(tf ) = Rf , ẋ(tf ) = 0

− usat ≤ ux ≤ usat

tf free

(3.44)

Since no known analytical solutions exist to the Newton-Euler equations, the prob-

lem cannot be solved in a similar method as the flat spin or general spin. Instead, the

approach that was taken was to assume a constant angular velocity for the remainder

of the trajectory and recompute the solution every short period of time compared to

the period of the Target’s spin. This will, of course, lead to some sub-optimality in

the solution compared to solving the full optimal controller problem where ω̇ ∕= 0 as is

the case with a non-spherical inertia. The reason behind this sub-optimality is due to

the optimization problem which yields the solutions in Appendix B is different from

the general docking problem in Equation (3.44); namely, the cost function in Equa-

tion (3.44) includes the values of ω̇ where the cost functions in Appendix B does not.

Therefore, a better approximation would be to assume that the angular acceleration

is constant for a short period of time, and recompute the problem often. Assuming

a constant angular acceleration would improve the solution (akin to an increase in

the order of approximation of a function using higher order terms in a Taylor series);

however, this analysis was not included here, and is it not known if an analytical

solution exists for this case.
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3.5.1 Formulation of Limited Horizon Problem Under Con-

stant Angular Velocity Assumption

The availability of an impulsive solution for the general spin with spherical inertia

presented in Appendix B was utilized as a method of generating a trajectory for

the Chaser to follow for a small amount of time. The impulsive solutions give an

optimal trajectory depending on the value γ assuming a constant angular velocity for

all remaining time. After a certain time interval, ∆tguid, the solution is recomputed

with the new estimated angular velocity.

Target

!! !"

Chaser

Chaser

Chaser

!!#$

!!"#$ "#

!!"#$ "#%&

Figure 3-6: Qualitative description for solution to the General Spin General Inertia
docking problem

The high level overview of the algorithm is shown in Figure (3-6). At each time

step the trajectory recomputes the overall guidance trajectory xguid(t) using the im-

pulsive solution for the Bang-Off controller in Section B.2.1 or B.2.2 depending on

their γ value. However, because of the solution at time ti assumed a constant ve-

locity for all time, a new optimal trajectory must be regenerated at each controller

time step, noted by xguid(ti). To follow the guidance solution xguid(ti) a closed loop

controller with a set point of xdes = xguid = [xguid, 0, 0, ẋguid, 0, 0]
T is used.

Since the impulsive solutions in B.2.1 and B.2.2 assume that the trajectory starts
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at zero relative velocity, ẋ(ti) = 0, the impulsive solution will return a desired ẋguid(ti)

that the Chaser must achieve in order to “hop” to the current optimal trajectory

through a ∆vx(ti) = ẋguid(ti) − ẋ(ti). Thus, although the complete time history for

the guidance will be continuous on x, the derivatives will have a discontinuity.

Because the Bang-Off-Bang solution is obtained through a minimization problem

a measure of the ∆vx(ti) must be included by assuming that the trajectory does not

begin at ẋ(ti) = 0. This is done by modifying the cost function f(tf ) in Equation

(B.13) to include the current velocity,

f(tf ) =

󰁝 tf

t0

󰀓
|2ωzẋguid(t) + ωyωx|+ |− 2ωyẋguid(t) + ωzωx|

󰀔
dt

+ |ẋguid(ti)− ẋ(ti)|+ |ẋguid(tf )|
(3.45)

where in Equation (3.45) the cost function now accounts for the effective ∆vx(ti).

Note that since the Bang-Off solution is solved fully analytically without an extra

degree of freedom, there is no need to modify the solution presented in Equation

(B.8).

Plume Impingement Avoidance

TargetChaser

! = !!"

!
"

Figure 3-7: Chaser plume impingement on Target due to Bang-Off-Bang controller.
t−f indicates the instantaneous time before the end of the maneuver when the Chaser
is slowing down before achieving soft docking condition.

The nature of the Bang-Off-Bang solution dictates that the thruster pointing along

the −x̂ direction (which produce a positive thrust on the Chaser) must fire until final
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time. This means that the thrusters will fire until the Chaser arrives at the final

radius. For the impulsive solution, the result is the same: the Chaser must have

an impulsive change in velocity at t = tf . This behavior is shown in Figure (3-7)

where t−f is the instantaneous time before reaching the final time which decelerates

the Chaser to the soft docking condition.

To avoid the dangers of plunge impingement, a strategy can be developed in which

the Chaser switches from using the Bang-Off-Bang solution to the Bang-Off solution

regardless of the value of γ. This essentially creates a trade-off in which the fuel

optimality of the solution is weighted against the risk of plume impingement that

could lead to the structural damage or even disintegration of the Target.

TargetChaser

!!
!"

!#

! ≤ 1 $% ! > 1
allowed

-./0 1232425672$3 8$3/

! ≤ 1

90.4/ 9$7/:72$3
8$3/

Figure 3-8: Proposed approach for limiting plume impingement in Target. Rp indi-
cates minimum relative distance at which Bang-Off-Bang controller is allowed.

Figure (3-8) shows a proposed solution for limiting the plume impingement in the

Target4. For all distances between the initial offset R0, and a user defined distance Rp,

the Chaser will select between the Bang-Off and Bang-Off-Bang controller depending

on the value γ. However, once it reaches Rp the Chaser will use γ ≤ 1 and thus

the Bang-Off solution for completing the maneuver. This means that even if the

current value of ωTAR suggest to use the Bang-Off-Bang solution for minimum fuel,

the Chaser will use the safer Bang-Off solution. The choice of Rp is user- or system-

defined as various satellites will have different thruster configurations which might

increase or decrease the Rp distance.
4It should be noted that the definition of all the distances in Figure (3-8) are based on the distance

between the center of mass of the Target and the edge of the docking port of the Chaser. This is
not a requirement and is mostly done for simplicity of the diagram. It is preferred for the distances
to be measured between the center of masses of the two satellites.
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Choice of Guidance Refresh Time, ∆tguid

The choice of ∆tguid or the refresh time for the algorithm is a design variable that

has not been considered in detail. Typically having a fast refresh or update rate

for a model predictive controller or a global trajectory optimizer is desired. As the

dynamics change or errors grow, being able to recompute an optimal solution is

beneficial to continue on the fuel optimal path, but is not always feasible in terms of

computation time.

Fortunately the solution for the the impulsive docking problems are extremely fast

to obtain due to their analytical or quasi-analytical forms—the computational time

comparison is shown in Chapter 4. Therefore, it is possible to have a high refresh

rate for the guidance solution–fast defined as a small percentage (e.g. 5-10%) of the

period of the fastest angular velocity, or tfast ≤ min(2π./ω). Since there is no use

for obtaining a new guidance solution faster than the rate at which the Chaser can

actuate, a recommendation would be to have ∆tguid = n∆tctrl, where n is a number

greater or equal than 1. Thus, if the computational resources on-board allow for

the solving of a bisection method within each controller sample time, then setting

∆tguid = ∆tctrl would be desired.

3.5.2 Analytical Model Predictive Controller Algorithm (AGA)

The analytical guidance algorithm (AGA) for docking with a tumbling object with

a general spin and inertia is shown in Algorithm 1. The function SolveAG takes as

inputs the current time, tcur, the current position and velocity of the Chaser relative

to Target, x(tcur), ẋ(tcur), the current angular velocity and acceleration of the Target,

ω(tcur), ω̇(tcur), the plume protection radius, Rp, the final desired offset, Rf , and the

function tolerance.

For outputs, the function returns the change in relative velocity needed to join the

new trajectory, ∆vx, the expected feedforward terms for the controller in the normal

directions, ufwd
y and ufwd

z , and the predicted final time tf . All of these values are

relative to the Target’s body-fixed frame. The change in velocity ∆vx is then fed into
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a closed loop controller, and the values ufwd
y and ufwd

z can be used a feed forward

terms to maintain the Chaser aligned along the docking axis.

Algorithm 1 Analytical Guidance Algorithm (AGA)

1: [∆vx, u
fwd
y , ufwd

z , tf ] = SolveAG (tcur, x(tcur), ẋ(tcur),ω(tcur), ω̇(tcur), Rp, Rf , tol)
Require: |x(tcur)−Rf | ≥ tol
2: γ = (|ωyωx|+ |ωzωx|) /

󰀃
ω2
y + ω2

z

󰀄

3: if x(tcur)−Rp ≥ tol then
4: [∆vx, tf ] = SolveImpulsiveProb(tcur, x(tcur), ẋ(tcur),ω(tcur), Rf , γ)
5: else
6: γ = 0
7: [∆vx, tf ] = SolveImpulsiveProb(tcur, x(tcur), ẋ(tcur),ω(tcur), Rf , γ)
8: end if
9: ufwd

y = 2ωz (∆vx + ẋ(tcur)) + ω̇zx(tcur) + ωyωxx(tcur)
10: ufwd

z = −2ωy (∆vx + ẋ(tcur))− ω̇yx(tcur) + ωzωxx(tcur)

The value of γ is always computed to determine which type of controller to use.

If the current relative distance between the Chaser and the Target is larger than

the plume protection distance, then either the Bang-Off or Bang-Off-Bang controller

solutions are found using SolveImpulsiveProb. Otherwise, the Bang-Off solution is

used by setting γ = 0 (alternative, any value for γ such that γ < 1 works too).

Finally, on line 9 and 10 of Algorithm 1, the feed-forward control forces required

to maintain the Chaser radially aligned are computed. This ensures that if |x(tcur)−

Rf | ≤ tol the thrusters will still provide the correct force to be aligned radially in the

body frame. The value for the tolerance could be chosen to be equal to the controller

deadband.

Algorithm 2 Impulsive Docking Solution Algorithm
1: [∆vx, tf ] = SolveImpulsiveProb(tcur, x(tcur), ẋ(tcur),ω(tcur), Rf , γ)
2: γ = (|ωyωx|+ |ωzωx|) /

󰀃
ω2
y + ω2

z

󰀄

3: if γ ≤ 1 then
4: tf from Equation (B.7)
5: ẋguid(tcur) from Equation (B.8)
6: else
7: tf from solving min problem (B.12)
8: ẋguid(tcur) from Equation (B.14)
9: end if

10: ∆vx = ẋguid(tcur)− ẋ(tcur)
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The function SolveImpulsive Prob is shown in Algorithm 2. This function is essen-

tially a wrapper function for the impulsive solution to the Bang-Off or Bang-Off-Bang

problem presented in Section B.2.

In conclusion, this section presented the formulation of the algorithm for the gen-

eral spin, general inertia docking problem. This problem corresponds to the general

docking problem presented in Section 3.1.2 and given by Equation (3.1). The solution

represents a fully analytical or quasi-analytical solution to an optimization problem

that can be formulated as a classical Model Predictive Controller scheme. Further-

more, an additional constraint was placed to eliminate the issue of plume impingement

by limiting the form of the solution to one that minimizes firing the Chaser’s thruster

towards the Target. The values provided by the AGA must be used in conjunction

to a closed loop controller; for example, if using an LQR controller the state error is

given by xerr = [0,−ycur,−zcur,∆vx,−ẏcur,−żcur]
T where ycur, zcur, ẏcur and żcur are

the current position and velocity of the Chaser relative to the Target, and represent

the current misalignment from the docking axis.

76



Chapter 4

Results and Analysis for the

Analytical Guidance Algorithm

Chapter 4 focuses on analyzing the results and behavior from the trajectory opti-

mization through the AGA given in Chapter 3. Section 1 will focus on using GPOPS

as a method of verifying the analytical and quasi-analytical solutions. Section 2 will

focus on the simulation that was used to validate the results of the AGA controller.

Section 3 will then present and analyze the results of the ability to dock with tumbling

objects using the AGA algorithm.

4.1 Trajectory Verification through GPOPS-II

For each of the problem statements presented in Chapter 3 an equivalent prob-

lem statement was implemented in the commercial optimization software GPOPS-2.

GPOPS-2 is an optimization software that uses Legendre-Gauss-Radau quadrature

collocation method to solve the user’s problem [24]. The solution of the problem (if it

exists) satisfies the optimality conditions given in [25]; however, it does not guarantee

global optimality. Despite the lack of guarantee of global optimality, there would be

an increase in confidence in the solutions proposed in Chapter 3 if GPOPS arrived to
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the same solution.1

For all the cases, unless otherwise stated, the options for GPOPS setup are shown

in Table 4.1. The verification steps for each solution are all similar. For the flat spin

and general spin with spherical inertia, a nominal case will be shown overlaid with

the GPOPs solution. Furthermore, a series of of different examples with a variables

changed from that of the nominal case will be presented.

Table 4.1: GPOPS-2 Set up

Description Value

Mesh Method HP Petterson Rao
Mesh Tolerance 1e-5
Mesh Max Iterations 50
Max Collocation Points 200
NLP Solver IPOPT
NLP Tolerance 1e-7
Derivatives SparseCD

4.1.1 Flat Spin Solution

For the flat spin, a nominal example was generated to compare the analytical solution

to that of GPOPS. The parameters for that example are given in Table 4.2. These

values do not represent a real system and were only used for testing.

Table 4.2: Flat Spin Nominal Case

Parameter Value

R0 [m] 10
Rf [m] 1
ωz [◦/s] 10
usat [m/s2] 2

The results for the switch time, final time, and overall cost are shown in Table

4.3. The critical time t1, is computed analytically through the flat spin solution
1As with any optimization software GPOPS requires an initial feasible solution as a guess. For

all the tests, the guess was a straight line on x that connected the initial radius to the final desired
radius. This solution was chosen to not bias GPOPS to pick a solution similar to solutions in Chapter
3.
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Table 4.3: Flat Spin Nominal Case Result

Parameter Analytical GPOPS % Diff.

t1 [s] 0.9420 0.9482 -0.67
tf [s] 17.6403 17.6000 +0.23

Cost [m/s] 5.0256 5.0214 +0.08

given in Equation (3.24); however, for GPOPS this value is not given. Instead, the

value that was taken as the critical time is the point at which the controller in x, ux,

reaches usat/2. Thus, it is expected that the value with the largest percent difference

corresponds to t1.

The figure results for this nominal case are presented in Figure (4-1). The relative

position and velocity between the Chaser and Target are shown in Figures (4-1a) and

(4-1b), respectively. Additionally, the control, costate, and Hamiltonian time history

were plotted in Figures (4-1c) (4-1d) and (4-1e). For all these figures, the dashed line

represent the results from GPOPS optimization while the solid line represents the

solution obtained through the analytical method.

From Figure (4-1a) it is easy to observe that the overall behavior for the trajectory

follows that of an exponential curve as expected. The concavity of the solution

changes. The two sections of the solution can be seen more clearly in the relative

velocity figure. Interestingly, at time t1 ≈ 0.94 [s], the solution hits the peak of around

ẋ ≈ −1.6 [m/s]; this is the equivalent velocity that would be obtained if instead an

impulsive solution (given in Appendix B) was used for the current relative position

value at t1.

The control and costate vectors also follow the trend of having two different sec-

tions between [0, t1] and (t1, tf ]. As with many numerical methods, GPOPS struggles

with discontinuities as seen in Figure (4-1c). At switch time t1, the controller ac-

cording to PMP must switch from −usat to 0. Since using a collocation must mean

that the solution is always continuous and differentiable, as the basis functions are

continuous and differentiable, it is very difficult to truly obtain a bang-bang behav-

ior. Nevertheless, GPOPS approximates this by having more collocations around t1.

Thus having more collocation points as well as higher precision in the NLP solver
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(a) Relative Chaser-Target position (b) Relative Chaser-Target velocity

(c) Control time history (d) Costate time history

(e) Hamiltonian time history

Figure 4-1: Comparison between GPOPS and analytical solution to Flat Spin nominal
case
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will yield a better approximation. Finally, from Figure (4-1d), the analytical costate

p2 matches that of GPOPS in that the controller switches when p2 = 1 and the final

value for p2 is zero.

Lastly, the Hamiltonian was plotted in Figure (4-1e). Per optimality conditions,

the Hamiltonian for all time must be equal to zero (since the transversality condition

requires the Hamiltonian be zero at the final time). GPOPS confirms this condition

as it attempts to maintain the condition that the Hamiltonian - given in Equation

(3.6)—is equal to zero. An analysis must be carried out to determine whether the

instances in which the Hamiltonian given by GPOPS (the dashed line) do not equal

zero are due to numerical error. Nevertheless, since the analytical solution shows the

Hamiltonian is equal to zero for all time, there is a greater feeling of certainty that it

indeed represents the optimal solution.

Figure (4-2) shows this analysis in which the degree of accuracy for GPOPS was

increased to determine if the Hamiltonian approached zero for all time. GPOPS Error

is an error reported by the optimization software that gives a measure of the error

in the mesh grids. A higher error in the mesh grid will indicate a higher degree of

error in the solution given by GPOPS due to constraint violations. Nevertheless, as

the error decreases, the Hamiltonian approaches zero for all time. This again not

only confirms the optimality conditions are satisfied, but also the analytical solution

is accurate.

Table 4.4: Flat Spin Test Matrix

ID R0 [m] Rf [m] ωz [◦/s] usat [m/s2]

Case 1 15 1 10 2
Case 2 10 5 10 2
Case 3 10 1 5 2
Case 4 10 1 10 0.5

To confirm that the analytical solution is valid for any choice of R0, Rf , ωz, and

usat, four cases were conducted in which each value was changed from the nominal

example. The test matrix is shown in Table 4.4. Again, the values for the test

example were chosen randomly and do not represent any physical system. Although
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Figure 4-2: Resultant Hamiltonian for nominal Flat Spin Case. Lower GPOPS Error
leads to Hamiltonian approach zero for all time.

Table 4.5: Flat Spin Test Result Matrix

Total Cost [m/s] Computation Time [s]
ID t1 [m] tf [m] AFS GPOPS AFS GPOPS

Case 1 1.483 20.270 7.853 7.852 2.44e-04 4.921
Case 2 0.820 7.973 3.386 3.385 2.44e-04 0.705
Case 3 0.443 34.523 2.456 2.456 2.81e-04 5.072
Case 4 5.359 20.437 5.821 5.820 2.61e-04 3.964

a Monte Carlo approach could have been sought to validate the analytical solution,

there will be a great deal of confidence in the generalizability of the analytical solution

if GPOPS agrees with the tests in Table 4.4.

Figure (4-3) shows the different resultant trajectories for the cases given in Table

4.4. Figure (4-3a) shows the relative distance between the Chaser and Target obtained

by the analytical solution and GPOPS. For all cases, the trajectory produced by the

analytical solution and the GPOPS solution match closely. Figure (4-3b) shows the

differences between the two solutions. The jump in all the plots are at the critical

time in which the Chaser’s thruster in the radial direction shuts off.

The detailed results for the tests are shown in Table 4.5, noting that the results

for the nominal case are in Table 4.3. Also, note that AFS was a chosen abbreviation
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(a) Relative Chaser and Target distance (b) Difference in analytical and GPOPS

Figure 4-3: Comparison of analytical and GPOPS solution for different flat spin
scenarios

of the Analytical Flat Spin (AFS) solution. As expected, Case 1 lasts approximately

a third of the time longer than the nominal case due to the increase in initial distance

between the Chaser and Target. This case also follows an increase in cost, as expected.

Conversely, Case 2 lasts approximately half the time than that of the nominal case as

the final desired distance is increased from one meter to five. Case 3 has a decrease in

the critical time and increase in final time, as expected, as the Target moves slower;

this leads to a decrease in cost as well as the amount of effort required to maintained

the Chaser aligned with the Target as the rotating frame decreases. Finally, by

decreasing the saturation value for the Chaser’s thrusters, the fuel cost as well as

the time increases. This is expected as the fuel cost for an impulsive thruster (or

one that approaches the impulsive case) should decrease compared to one that has

limited saturation.

Additionally, on Table 4.5 the computation time is included as a measure of com-

putational complexity. Provided that both the analytical solution and the GPOPS

optimization are done on the same computer, the computation time reported can be

thought as a measure of number of operations. Nevertheless, no algorithmic analyses

were done for the flat spin solution. A trend that is clear is that although the analyt-

ical solution appears to solve each case in about the same amount of time, GPOPS

solution time is heavily dependent on the case. For example, cases in which there
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is a low angular velocity (relative to other cases) will spend an increased amount of

time computing the GPOPS solution. This shows a major benefit of the analytical

solution: the computational complexity is independent of the parameters as the same

operations are applied.

4.1.2 General Spin Spherical Inertia Solution, Bang-Off (γ ≤ 1)

The same procedure was done to test the general spin solution. Due to the two forms

of the solution depending on the value γ, the general spin spherical inertia case was

split. Nevertheless, the same problem formulation in Equation (3.27) was used for

both cases. The nominal example used for the Bang-Off controller case is given in

Table 4.6. The value for γ in this example is given by

γ =
|ωyωx|+ |ωxωx|

ω2
y + ω2

z

= 0.2 ≤ 1

which is consistent with a Bang-Off controller.

Table 4.6: General Spin Spherical Inertia, γ ≤ 1 Nominal Case

Parameter Value

R0 [m] 10
Rf [m] 1
ω [◦/s] [2, 10, 10]T

usat [m/s2] 2
ITAR [kg m2] diag([1, 1, 1])

Table 4.7: General Spin Spherical Inertia, γ ≤ 1 Nominal Case Result

Parameter Analytical GPOPS % Diff.

t1 [s] 1.4646 1.4644 +0.0106
tf [s] 12.9252 12.8224 +0.8024

Cost [m/s] 9.2202 9.1889 +0.3406
Comp. Time [s] 0.007 471.988 -99.999

Table 4.7 shows the results for the nominal case. Overall, the critical time t1,

final time tf , and cost match very closely. Their differences are most likely due to

numerical errors from GPOPS. However, the computation time for the analytical case
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is nearly 5 orders of magnitude less than GPOPS. This is consistent with the idea

that having an analytical solution not only gives more insight into the dynamics and

solution of the problem but is also more computationally efficient.

Figure (4-4) shows the result of comparing GPOPS solution for the general spin

spherical inertia to that of the analytical solution found in Section 3.4. As in the

case for the flat spin, the relative position, relative velocity, control, costate, and

Hamiltonian time history were plotted in Figures (4-4a-e), respectively. In a similar

manner with the flat spin case, the trajectory for the relative distance between the

Chaser and the Target changes concavity at the critical time t1. In the same way the

maximum relative velocity seen in Figure (4-4b) is equivalent to the impulsive solution

at the respective relative distance at t1. The costate vector behaves as expected in

that it turns off the thruster value when p2 hits 1. It can be seen in Figures (4-4c)

and (4-4e) that GPOPS has numerical issues at time equal zero as well as the critical

time. This can be improved by increasing the accuracy of GPOPS as seen in Figure

(4-2); however, that will come at the cost of higher computational time.

For this nominal problem, the periodicity of the motion of the docking port of

the Target is given by 2π/||ω|| = 25.205 [s]. In other words, on an inertial frame,

the docking port will face the same direction every 25.205 seconds. The final time

tf = 12.9252 [s] then corresponds to about half of this period. This makes intuitive

sense as the Chaser should be able to finish a trajectory within one period; otherwise

the Chaser will waste too much fuel following the Target on the rotating frame. This

result is consistent with the same claim made by Hettrick [14] and Sternberg [35] in

their theses.

4.1.3 General Spin Spherical Inertia Solution, Bang-Off-Bang

(γ > 1)

Lastly, the solution to the general spin, spherical inertia docking problem occurs when

γ > 1. To check this case, the tests described in Table 4.8 were used to compare

the solution with that of GPOPS. The angular velocity in the nominal case has a
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(a) Relative Chaser-Target position (b) Relative Chaser-Target velocity

(c) Control time history (d) Costate time history

(e) Hamiltonian time history

Figure 4-4: Comparison between GPOPS and analytical solution to General Spin
with Spherical Inertia γ ≤ 1
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corresponding value of γ = 2. The result for this case is shown in Table 4.9. Whereas

the flat spin and the case in which γ ≤ 1 have a single switch time, the case with

γ > 1 requires two switch times. Note that the difference in switch time t2, and

final time tf , is very small and can lead to numerical error due to their sensitivity.

Furthermore, despite the magnitude of the angular velocity being higher than the

case for γ ≤ 1, the overall cost is very similar to the other case. In fact if the solution

for the Bang-Off case were used in this problem (despite the value for γ indicating a

need to use the Bang-Off-Bang solution), the cost would be 12.3332 m/s which is a

38% increase penalty for using the less optimal solution for this case.

Table 4.8: General Spin Spherical Inertia, γ > 1 Nominal Case

Parameter Value

R0 [m] 10
Rf [m] 1
ω [◦/s] [20, 10, 10]T

usat [m/s2] 5
ITAR [kg m2] diag([1, 1, 1])

Table 4.9: General Spin Spherical Inertia, γ > 1 Nominal Case Result

Parameter Analytical GPOPS % Diff.

t1 [s] 0.5243 0.5267 -0.4568
t2 [s] 10.9109 10.9397 -0.2637
tf [s] 10.9325 10.9554 -0.2091

Cost [m/s] 9.2887 9.2700 +0.2017
Comp. Time [s] 0.008 41.7162 -99.9808

Figure (4-5) shows the same plots as in the case for γ ≤ 1. There are very

subtle differences between the plots in Figures (4-5) and (4-4). For example Figure

(4-5b) which shows that, relative, to the Target, the Chaser has a large jump in

the velocity near the final time. This is compared to Figure (4-4b) in which the

velocity plot gently approaches zero. This new behavior is consistent with the Bang-

Off-Bang response. Furthermore, the controller behavior shown in Figure (4-5c) is

as expected, with thrusting at saturation in the +x direction during the last few

seconds. Note that this would lead to thruster impingement onto the Target. The
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(a) Relative Chaser-Target position (b) Relative Chaser-Target velocity

(c) Control time history (d) Costate time history

(e) Hamiltonian time history

Figure 4-5: Comparison between GPOPS and analytical solution to General Spin
with Spherical Inertia γ > 1
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piecewise behavior of the costate shown in Figure (4-5d) arises because the σ1 and σ2

value given by Equation (3.30) have discontinuities. Finally, as with the other cases,

the Hamiltonian is always zero (within numerical precision) in the analytical solution

but not in the solution given by GPOPS.

Thus, this shows that the analytical solution for the flat spin as well as for the

general spin with spherical inertia are consistent with the results from GPOPS. This

gives a greater confidence in the validity of the solution presented in Chapter 3.

4.2 Simulation Environment for Analytical Guidance

Algorithm Testing

This section goes over the simulation environment that was used to test the trajectory

optimizer developed in Chapter 3. The overall assumptions, dynamics, controller, and

guidance algorithm are presented here, and the limitations of the simulation are also

addressed.

4.2.1 Assumptions for Simulation Environment

Since overall goal of the simulation is to test the viability of the analytical guidance

algorithm given in Algorithm 1, the simulation will have the following assumptions:

1. Only the translational dynamics will be considered

2. No measurement or process noise

3. Thrusters will be assumed to be ideal

4. No Keplerian dynamics

The first assumption essentially states that no attitude dynamics will be consid-

ered. Because the solution given in Chapter 3 only focuses on the relative vector

between the Chaser and Target, only those dynamics will be considered. Otherwise,

the simulation would be more complex, as the Chaser must compute the estimated
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quaternion and do a frame translation from its orientation to that of the Target. Fur-

thermore, a thruster mapping matrix would also need to be constructed, which adds

another level of complexity in the simulation. Since all of these steps from modeling

a 6 DOF spacecraft [38, 39, 26], quaternion error and attitude control [40, 41], as

well as optimal thruster mapping have been extensively studied [42], this simulation

will not focus on that, but it can be included in future work to demonstrate a higher

fidelity model of how a Chaser satellite would behave.

The lack of measurement of process noise as well as having ideal thrusters were

assumed. Because the simulation is only testing that the analytical guidance will give

a convergent solution that minimizes fuel, it is believed that adding other complexities

such as noise would detract from the performance of the algorithm. Nevertheless,

these are important parts of any simulation and should be included in future work.

Finally, since the time scales for the guidance solution are very small compared

to a period of a GEO orbit, the Keplerian dynamics are ignored. This assumption is

valid because the relative distance between the two spacecraft are in the order of tens

of meters, at which it is a reasonable assumption that the spacecraft are behaving

as simple double integrators on inertial space. In a real scenario the small relative

effects due to Keplerian dynamics would be removed by the controllers and treated

as disturbance forces.

4.2.2 High Level Simulation Overview

Figure (4-6) shows the highest level of the Simulink model for the analytical guidance

testing. Simulink was chosen as the simulation environment as it allows for a fast

modification of subsystems and a high level of flexibility in integration and signal

routing. The simulation consists of five main subsystems (three model related, and

two data processing related): Guidance, Control, Dynamics, Saving, and Plotting.

Although not explicitly shown, the signal with the state information coming out

of the integrator in the dynamics block gets sent back to the guidance and control

block using a Go To Simulink block. Thus, the model shown in Figure (4-6) is a

closed loop system.
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Figure 4-6: High level overview of Simulink model for testing AGA controller.
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4.2.3 Dynamics of Analytical Guidance Simulink Model

The dynamics of the simulation can be divided into two parts: dynamics of the

Target’s angular velocity and dynamics of position of the Chaser relative to the Target.

The angular velocity of the Target is obtained by the solution to Equation (3.2) with

the exclusion of external torques

d

dt

󰀵

󰀹󰀹󰀹󰀷

ωx

ωy

ωz

󰀶

󰀺󰀺󰀺󰀸
=

󰀵

󰀹󰀹󰀹󰀷

Iy−Iz
Ix

ωyωz

Iz−Ix
Iy

ωzωx

Ix−Iy
Iz

ωxωy

󰀶

󰀺󰀺󰀺󰀸
(4.1)

Equation (4.1) are simplified Newton-Euler equations for an object acting under

no disturbances nor external torques. The equations assume that the coordinate

system is aligned to the Target body-fixed reference frame, and it is assumed without

loss of generality that the Target body-fixed frame is also aligned with the Target’s

principal axes.

The position of the Chaser relative to the Target in the Target’s body frame is

given by

r̈ = u− 2ω × ṙ− ω̇ × r− ω × (ω × r) (4.2)

where r is the relative position in the Target’s body frame, ω is the Target’s angular

velocity, and u is the force per unit mass applied on the Chaser.

The full state vector integrated in the dynamics block is then x = [r,ω]T with the

equation of motion,

ẋ = f(x) (4.3)

where f(x) = [ṙ, ω̇]T from Equation (4.1) and (4.2).
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4.2.4 Guidance of AGA Simulink Model

The guidance subsystem of the Simulink model shown in Figure (4-6) is the algorithm

shown in Algorithm 1. The only difference is that once the relative position between

the Chaser and Target is below the tolerance level, the Chaser will be commanded

to stay in that position, xguid = [Rf , 0, 0, 0, 0, 0]
T . The guidance algorithm will send

a flag that the maneuver is achieved through a delay block (shown by the Simulink

Delay block) for 500 control cycles equivalent to five seconds. After this, the Simulink

model will terminate.

4.2.5 Control of Analytical Guidance Simulink Model

The controller subsystem of the Simulink model was chosen as a simple Linear

Quadratic Regulator (LQR) controller. This creates a couple of challenges as gener-

ating the K matrix that solves the Riccati equation needs a model of the dynamics.

Thus, this gives a freedom of choice of whether the LQR should be a time varying

LQR or not. Although the derivation for both controllers will be presented in this

section, the time invariant version will be used on the model.

Linear Time Invariant (LTI) LQR Controller

The LTI LQR controller is one of the simplest controllers that can be set up for a

Simulink Model. The objective of designing of the controller is to minimize a cost

function for all time, which is given by

J =

󰁝 tf

0

xTQx+ uTRu dt (4.4)

where Q,R are positive definite matrices that weight the state and control, respec-

tively. Additionally, the dynamics for the state are given by

ẋ = Ax+Bu (4.5)
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where A,B are matrices that define the dynamics of the problem. Since the dynamics

for the simulation given by Equation (4.2) are time invariant due to the possible time

change in ω, the best representation is that of a double integrator,

ẋ =

󰀵

󰀷03×3 I3×3

03×3 03×3

󰀶

󰀸x+

󰀵

󰀷03×3

I3×3

󰀶

󰀸u (4.6)

where I3×3,03×3 represent a 3 by 3 identity or zero matrix, respectively. This is the

most flexible state as having a wrong measure of the current angular velocity could

lead to a controller with wrong gains.

The minimization problem can be transformed into a solution of the Riccati equa-

tion given by

0 = ATP + PA+Q− PBR−1BTP (4.7)

where P is a symmetric and positive semi-definite matrix. Solving by matrix P can

then be used to obtain the Klqr gain matrix as

Klqr = R−1BTP (4.8)

For example, when Q = I6×6, R = I3×3, the resultant Klqr matrix yields

Klqr =

󰀵

󰀹󰀹󰀹󰀷

1 0 0 1.7321 0 0

0 1 0 0 1.7321 0

0 0 1 0 0 1.7321

󰀶

󰀺󰀺󰀺󰀸
(4.9)

where Klqr was optained using Matlab’s lqr.m function. This will be the matrix that

will be used for the AGA Simulink Model.

Linear Time Variant (LTV) LQR Controller

The linear time varying LQR controller accounts for the fact that the dynamcis in

Equation (4.2) are changing due to the change in ω. At each time step, the matrices

A(t) and B(t) as well as the corresponding gain matrix Klqr(t) must be recomputed.

This can be an extra computational burden by having to solve a Ricatti equation
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each time the controller must act, or by having a tabel lookup of various Klqr gain

matrix for each value of ω, ω̇.

At each iteration the matrix A is calculated by

A =

󰀵

󰀷 03×3 I3×3

−2[ω]# −[ω̇ + ω × ω]#

󰀶

󰀸 (4.10)

where ω, ω̇ are the current best estimates for the Target’s angular velocity and acceler-

ation, respectively. Furthermore, [a]# is a 3 by 3 skew symmetric matrix representing

a cross product and is given by

[a]# =

󰀵

󰀹󰀹󰀹󰀷

0 −a3 a2

a3 0 −a1

−a2 a1 0

󰀶

󰀺󰀺󰀺󰀸
(4.11)

The matrix B remains the same for all time. Thus, after computing A, the next

step is to solve the Riccati to obtain P and then Klqr. Due to the larger overburden

of computing the A matrix and the Klqr gain matrix, the Simulink model used the

simple double integrator LQR controller.

4.3 Results for Analytical Guidance Simulation

This section focuses on testing the analytical guidance with a controller in the Simulink

model. The objectives for this section are as follows

• The AGA solution leads to a convergent solution in which the final position of

the Chaser relative to the Target is Rf ± tol

• Under a Target with spherical inertia, the AGA controller reduces to the general

spin spherical inertia solution

• The inclusion of the plume protection zone, Rp, leads to a significant reduction

thrust being applied on the +x direction
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• The cost of the solution for the AGA controller is comparable to that given by

GPOPS

Five simulations were performed to check the first three objectives and the values

used for the simulation are shown in Table 4.10. Test 1 and Test 2 ensure that

depending on the value of γ the analytical guidance should return the same solution as

the general spin with spherical inertia. Test 3 will check that the algorithm converges

to a feasible solution when the inertia is not spherical. Finally, Tests 4 and 5 will

study how the inclusion of the plume protection zone affects the thrust in the +x

direction.

Table 4.10: AGA Simulation Testing Matrix

Value Test 1 Test 2 Test 3 Test 4 Test 5

R0 [m] 12 10 12 10 10
Rf [m] 0.5 1 0.5 1 1
Rp [m] 0 0 0 0 3
ω(t = 0) [◦/s] [−2, 5, 7]T [20, 10, 10]T [−2, 5, 7]T [9, 5, 3]T [9, 5, 3]T

[Ix, Iy, Iz]TAR [kg m2] [1, 1, 1] [1, 1, 1] [1, 2, 3] [1, 2, 3] [1, 2, 3]
tol [mm] 1 1 1 1 1
usat [m/s2] 2 5 2 2 2

Figure (4-7) shows the five tests on the surface that determines which type of

controller to use. This confirms that Tests 1 and 3 will test the impulsive Bang-Off

solution of the trajectory optimizer, while Test 2, 4 and 5 will test the impulsive

Bang-Off-Bang. Test 5 also tests the plume protection option for Test 5. Due to the

spherical inertias for Tests 1 and 2, the time history of the angular velocity is only a

single point.

Test 1: General Spin Spherical Inertia Solution from Analytical Guidance,

γ ≤ 1

The results for Test 1 are shown in Figure (4-8). The position and velocity of the

Chaser relative to the Target are shown in Figure (4-8a,b), respectively. The cor-

responding error of the simulation output versus the guidance are shown in Figure
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Figure 4-7: Visualization of AGA Tests’s angular velocity history vs. Bang-Off/Bang-
Off-Bang regions. Blue region corresponds to γ ≤ 1 or the impulsive Bang-Off con-
troller, red region corresponds to impulsive Bang-Off-Bang region.

(4-8c,d). Finally the control time history and the cumulative cost, which is the inte-

gral of the sum of the norms of control effort, is shown in Figure (4-8e,f).

For all the parts of Figure (4-8) the vertical grey line indicates when the guidance

solution by the AGA finished (or the current relative position of the Chaser is Rf+tol)

at which point the guidance solution switches to just maintain that relative position

for all time. In other words, the guidance command is [r, ṙ]T = [Rf , 0, 0, 0, 0, 0]
T .

The guidance solution of main importance is given in figure (4-8a,b) as they show the

solution given by the analytical guidance algorithm.

For the position and velocity error figures, the dominant term is on the x axis

as expected, as the Chaser begins radially aligned with y = z = 0, ẏ = ż = 0.

Throughout the trajectory given by the analytical guidance, the position error (Figure

(4-8c)) on x is zero by definition since at each control time step the guidance trajectory

is recomputed given the current position. As soon as the trajectory ends, the relative

position error on x increases, which is due to the guidance given to the controller

switch from a smooth trajectory to a steady command at zero speed. This behavior

can be improved by reducing the tolerance of the error as when x(t) = Rf + tol ẋ ∕= 0.

The relative velocity commanded at the time when the guidance switches to the hold
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(a) Relative Chaser-Target position, x (b) Relative Chaser-Target velocity. ẋ

(c) Guidance position error (d) Guidance velocity error

(e) Control time history (f) Cummulative cost time history

Figure 4-8: Test 1: Results for analytical guidance simulation for spherical inertia
with angular velocity such that γ ≤ 1. Vertical grey bar represents end of guidance
solution by AGA.
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value is around 4 [mm/s].

The relative velocity error begins with a large error on ẋ due to the Chaser begin-

ning at zero relative speed and the analytical guidance. The error approaches zero and

around time t = 4 [s], the difference between the guidance and sim output is [mm/s].

During the position hold, the error in the relative speed increases to 6 [mm/s] but

appears to converge as time goes on.

Figure (4-8e) shows the control time history. As expected due to the impulsive

relative velocity from the guidance, the controller saturates at 2 [m/s2] at time t = 0.

Once the relative velocity matches that of the guidance around four seconds the main

contributors become the force in y and z. Again, the control forces are mainly those

that are being fed forward by the AGA, and the LQR is used to reduced the error

between the guidance in x and maintaining y and z near zero. During the holding

section of the trajectory, the main controller present is on the x axis and is negative

which means that the plume is fired behind the Target. This behavior is shown in

Figure (4-9): as soon as the analytical guidance switches to hold there is a small firing

towards the Target to remove the 4 [mm/s] velocity, and then it proceeds to hold

the current position by firing in the negative direction. This is due to the natural

dynamics pushing the spacecraft away from the Target when in a rotating frame.

Finally, the cumulative cost shown in Figure (4-8f) appears to converge to a steady

state until the holding section, at which it begins to increase at a slower rate than

before. This is consistent with the rest of the figure, as holding at Rf is cheaper than

when x(t) > Rf .

Table 4.11: Test 1: Difference between AGA simulation and solution to general spin
spherical inertia problem

Value AGA Solution from
Section 3.4

% Diff

tf [m] 26.100 26.2823 -0.6936
Cost [m/s] 6.7095 6.6577 +0.7780

In order to check if the solution given by this simulation including the cost and final

time, matches that of the general spin spherical inertia solution from Section 3.4.3,
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Figure 4-9: Visualization of AGA Tests’s angular velocity history vs. Bang-Off/Bang-
Off-Bang regions. Blue region corresponds to γ ≤ 1 or the impulsive Bang-Off con-
troller, red region corresponds to impulsive Bang-Off-Bang region.

the same problem given in Test 1 was implemented on the general spin solution with

spherical inertia. The results are shown in Table 4.11. Given that the AGA simulation

ended when the difference in the relative distance was 1 mm from the desired Rf it

seems reasonable that the final time reported by AGA is smaller. Nevertheless, the

cost difference between the two solutions is negligible. Thus the solution of the general

spin with spherical inertia when γ ≤ 1 is recovered from the analytical guidance

algorithm as expected, confirming the first and part of the second objective of the

this section.

Test 2: General Spin Spherical Inertia Solution from Analytical Guidance

Algorithm, γ > 1

The second test for the Simulink model tested if the AGA solution return a solution

similar to the one observed in Section 3.4.4. The same plots as in Test 1 are shown

in Figure (4-10). The behavior of the Bang-Off-Bang controller can clearly be seen

by Figure (4-10e): before the start of the holding period a control effort of about

160 [mm/s2] is exerted, which might cause plume impingement (this compares to
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(a) Relative Chaser-Target position, x (b) Relative Chaser-Target velocity. ẋ

(c) Guidance position error (d) Guidance velocity error

(e) Control time history (f) Cummulative cost time history

Figure 4-10: Test 2: Results for analytical guidance simulation for spherical inertia
with angular velocity such that γ > 1. Vertical grey bar represents end of guidance
solution by AGA.
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about 4[mm/s2] in the Bang-Off case).

The other significant difference is that, unlike the Bang-Off case, at the instant at

which the relative distance between the two satellites are within tolerance the speed

is not zero, shown in Figure (4-10b). Nevertheless, after the settling the controller

appears to be firing in the negative direction to hold attitude, as seen in the last few

couple of seconds in Figure (4-10e). Note that the controller this time does not reach

saturation limit.

Table 4.12: Test 2: Difference between AGA simulation and solution to general spin
spherical inertia problem

Value AGA Solution from
Section 3.4

% Diff

tf [m] 11.5200 10.9325 +5.3739
Cost [m/s] 9.6212 9.2202 +4.3493

As with Test 1 the same problem was implemented using the Bang-Off-Bang

solution and the results for comparison are shown in Table 4.12. Although not exactly

the same, the solutions from the AGA closely resemble those in Figure (4-5). The

differences in the cost and final time can be due to a a couple of issues but mainly

the LQR controller. The choices of Q and R directly affect the behavior of the

controller. By weighing the matrix Q over matrix R the controller would behave

more aggressively and reach the saturation value, which will make the final time and

cost decrease. For example, changing the matrix Q to Q′ = 10Q causes the final

time to become t′ = 11.06 [s] and reduces the cost to 9.2335 [m/s2]. This is a very

powerful result as normally increasing the weight of Q leads to a controller that is

more aggressive and spends more fuel. However, since a more aggressive controller

would follow the optimal fuel trajectory better, increasing the value of the matrix

Q actually reduces the overall cost. Finally, it should be noted that this behavior is

partly due to the lack of noise on the system, and due to this reason, it is recommended

to have a balance between the Q and R matrix.

Test 1 and Test 2 showed that the analytical guidance returns the correct solution

to the general spin and spherical inertia. The next step is to evaluate the AGA when
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the inertia is that of a general object. This corresponds to Tests 3-5.

Test 3: General Spin General Inertia Solution from Analytical Guidance

Algorithm, γ ≤ 1

Test 3 tests the behavior of the AGA when the Target’s inertia is not spherical.

Because of the nonspherical inertia, the dynamics of the simulation do not match

exactly that of the optimization problem solved by the AGA. This causes the feed

forward control terms produced by the AGA to not exactly cancel the errors that

would keep the relative position error close to zero. This can be seen in Figure (4-

11c) as compared to Test 1 and Test 2 the relative position error on y and z are

larger.

Figure (4-11a) and (4-11b) show the relative position and velocity of the trajectory

output by the Sim as well as the relative velocity, respectively. Overall, the difference

between Test 3 and Test 1 in terms of the trajectory generated is not easy to observe:

the overall shape and time are similar with the solution for Test 3. The difference

between the two is observed in Figure (4-11e), which shows the control time history.

Unlike in Test 1, in Test 3 the control effort on z changes sign. This is due to the

change of the sign of the angular velocity as the trajectory progresses.

Table 4.13: Test 3: Final time and final cost from AGA simulation vs. GPOPS

Value AGA GPOPS % Diff

tf [m] 27.3200 26.9662 +1.3120
Cost [m/s] 6.3698 6.1101 +4.2503
Computation Time∗ [s] 1.2 2.0363e+03 −99.9945

The problem was implemented on GPOPs with the same parameters as defined by

Test 3 in Table 4.10. The reported final time and cost for both AGA and GPOPS are

included. The computation times are defined as the total time incurred by GPOPS

for solving the problem and the total time it took for Simulink to finish the simulation.

They are reported here just as a measure of complexity. The difference between the

final time and cost being less than 5% can be atributed to the error in optimizing a
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(a) Relative Chaser-Target position, x (b) Relative Chaser-Target velocity. ẋ

(c) Guidance position error (d) Guidance velocity error

(e) Control time history (f) Cummulative cost time history

Figure 4-11: Test 3: Results for analytical guidance simulation for general inertia
with angular velocity such that γ ≤ 1 for all time. Vertical grey bar represents end
of guidance solution by AGA.
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Figure 4-12: Test 3: Relative position difference between AGA trajectory and GPOPS
solution

problem in which the Target’s angular velocity is assumed to be constant. Neverthe-

less, the time it takes for solving the GPOPS problem is orders of magnitude higher

than the Simulink problem which speaks to the low computational resources needed

to solve the analytical guidance algorithm. The difference between the trajectory

produced by the AGA and GPOPS can be seen in Figure (4-12). On the right hand

side of this figure, the time history of the angular velocity is plotted. It can easily

be seen that the assumption of having a constant angular velocity is invalid. Finally,

note that in Figure (4-12) the trajectory is completed within a period of the angular

velocity.

Test 4 and 5: General Spin General Inertia Solution from Analytical Guid-

ance Algorithm, γ > 1. Comparison of Response With and Without Plume

Protection

Tests 4 and 5 compared the inclusion and omission of the plume protection to deter-

mine if a reduction in the thrust along the x direction was possible. Figures (4-13)

and (4-14) show the resultant trajectory for both cases. Figures (4-13a) and (4-14a),

show the relative position between the Chaser and the Target, with Figure (4-14a)
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(a) Relative Chaser-Target position, x (b) Relative Chaser-Target velocity. ẋ

(c) Control time history (d) Cummulative cost time history

Figure 4-13: Test 4: Results for analytical guidance simulation for general inertia
with angular velocity such that γ > 1 for all time. No plume impingement protection.
Vertical grey bar represents end of guidance solution by AGA.
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(a) Relative Chaser-Target position, x (b) Relative Chaser-Target velocity. ẋ

(c) Control time history (d) Cummulative cost time history

Figure 4-14: Test 5: Results for analytical guidance simulation for general inertia with
angular velocity such that γ > 1 for all time. With plume impingement protection,
Rp = 3 [m]. Vertical grey bar represents end of guidance solution by AGA.
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having a grey line representing the radius at which the plume protection began. At

that radius, the only allowable solution out of the AGA was the impulsive Bang-Off

controller. Subsequently, on all the other subfigures for Test 5 a dashed vertical line

indicates the time at which the trajectory reaches Rp.

The control figures for Tests 4 and 5 confirm that indeed having plume protection

leads to a decrease in thruster firing on the +x direction. Figure (4-13c) shows a large

spike at the end of the trajectory around time t = 24 [s]. This spike corresponds to

83 [mm/s2] acted on the positive x direction towards the Target. In contrast, Figure

(4-14c), which has the plume protection set to 3 [m], only shows a firing of less than

5 [mm/s2] in the positive x direction which corresponds to a 94.3% decrease in the

thruster magnitude. Instead, an impulsive firing on the −y axis is shown at the time

when the offset is 3 [m]; this corresponds to the change in the trajectory from a

Bang-Off-Bang controller to a Bang-Off controller. In terms of cost, the trajectory

without plume impingement protection is more fuel efficient than the trajectory with

plume impingement, as expected. The differences between the two is less than 1 %

as shown in Table 4.14.

Table 4.14: Test 4 and 5: Final time and final cost from AGA with and without
plume protection

Value AGA Rp = 0 AGA Rp = 3 % Diff

tf [m] 23.6000 27.1400 −13.0435
Cost [m/s] 3.9307 3.9664 −0.9001
ux(tf ) [m/s2] 83.8830 5.5062 +1, 4234

4.3.1 Effect of Inertia Ratios in AGA Solutions

An analysis was conducted to understand the effects of having non spherical inertia on

the quality of the solution by the AGA controller. For example, if the inertia tensor

of the Target in principle axes was ITAR = diag([a, 1, 1]) with a having the possible

values a ∈ (0, 2) to satisfy the triangle inequality, the period of the angular velocity

would increase as a → 0 or a → 2. To understand this behavior’s effect on the fuel

efficiency of the solution, a test case was made in which the value of a changed and
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the solution given by GPOPS followed by the LQR controller is compared to that of

AGA followed by the same LQR controller. Note that to have a fair comparison of the

algorithm, the plume impingement variable, Rp, was set to zero. Furthermore, the

GPOPS solution was computed beforehand and an interpolation function was used

to obtain the relative position needed to followed by the LQR controller at a given

time. Thus, GPOPS corresponds to following a trajectory generated offline whereas

AGA is to generate a trajectory online.

Table 4.15: Effects of inertia ratio on solution of AGA vs. GPOPS. Note for all cases
R0 = 10 [m], Rf = 1 [m], usat = 5 [m/s2], ω = [1,−5, 5] [◦/s]

ITAR [kgm2] Final Time [s] Fuel Cost [m/s]
Run [Ix, Iy, Iz] AGA GPOPS % Diff. AGA GPOPS % Diff.

1 [1,1,1] 24.02 24.2300 -0.8667 4.3620 4.5058 -2.5421
2 [0.01,1,1] 24.02 24.2300 -0.8667 4.3591 4.4730 -2.5456
3 [0.05,1,1] 24.02 24.2300 -0.8667 4.3620 4.4743 -2.5456
4 [0.1,1,1] 24.02 24.2300 -0.8667 4.3913 4.4760 -2.5456
5 [2,1,1] 24.02 24.2400 -0.9076 4.4223 4.5377 -2.5452
6 [1,0.01,1] 28.8900 29.2500 -1.2308 4.7409 4.5743 +3.6428
7 [1,0.05,1] 29.0500 29.5100 -1.5588 4.7390 4.5911 +3.2199
8 [1,0.1,1] 29.2200 29.8400 -2.0777 4.7303 4.6008 +2.8164
9 [1,2,1] 27.5500 29.6200 -6.9885 4.4106 4.3883 +2.8164
10 [1,1,0.01] 28.3700 24.2000 +17.2314 4.6942 4.6591 0.7519
11 [1,1,0.05] 28.3400 24.1400 +17.3985 4.6811 4.6509 0.6484
12 [1,1,0.1] 28.2300 24.2200 16.5566 4.6593 4.6422 0.3680
13 [1,1,2] 28.3800 29.2200 -2.8747 4.2986 4.1378 3.8859

Table 4.15 shows the runs that were done to compare the solutions obtained from

GPOPS and AGA. For each test, a single moment of inertia was changed by a value

ranging from [0.01, 2] and the subsequent final time and total cost from the LQR

were recorded. The first set of rows up to Run 5 corresponds to a change in Ix,

the next four to Iy, and the final four to Iz. Overall, the cost difference between

AGA and GPOPS is merely 5%. This shows that for the selected angular velocity

vector of ω = [1,−5, 5] [◦/s] the difference of the solution is very low and could

be used in a spacecraft since normally the fuel allowable for docking is enough for

several attempts. There is a difference, however, in the proposed final time between

the GPOPS solution and the AGA solution. Whereas the cost difference ranges
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(a) Final time difference for runs shown in Ta-
ble 4.15

(b) Final fuel cost difference for runs shown in
Table 4.15

Figure 4-15: Effect if inertia ratio on fuel cost for AGA vs. GPOPS. Solution were
obtain with R0 = 10 [m], Rf = 1 [m], usat = 5 [m/s2], ω = [1,−5, 5] [◦/s] as nominal
values

from (−3%, 4%), the difference between the time ranges from (−3%, 18%). This

demonstrates an interesting aspect of the solution: the difference in time does not

always correlate with difference in cost.

It should be noted that the cases in which the AGA solution leads to a lower cost

than GPOPS; this does not imply that the solution that GPOPS gives is wrong or

suboptimal. One of the issues with implementing an offline trajectory is the ability

to track it perfectly. Any type of controller would introduce a time lag of the actual

output versus the trajectory. This time lag will cause the trajectory to not be followed

perfectly and introduce extra fuel cost. For example, for Run 5 the cost reported

by GPOPS is 4.4172 [m/s] compared to the 4.5377 [m/s] that was obtained from

the simulation. This reported cost is less than the AGA, which indicates that the

solution given perfect tracking is more optimal. Lastly, the average computation time

for obtaining the offline GPOPS solution was 13.76 seconds, compared to an average

solve time of 22 milliseconds for the AGA solution. Depending on the computational

power of the spacecraft, the time for the solution to be obtained by GPOPS was more

than half of the time for performing the trajectory.

Figure (4-15) shows the plotted results of Table 4.15. The two plots clearly show
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Figure 4-16: Comparison between the AGA and GPOPS solution for Run 1 and Run
10.

that the difference in final time for this particular of angular velocity is affected

more by a change in Iz versus the other moments of inertia while the cost is affected

more by a change in Iy. Furthermore, the cost as shown in Figure (4-15b) confirms

the suspicion that the difference between GPOPS and AGA increases as the inertia

becomes less spherical. Thus, we should expect that the minimum of the absolute

difference is when the inertia is equal to one. For completeness, Run 1 and Run 3 were

plotted on Figure (4-16) where the dashed line represents GPOPS and the solid line

represents the AGA controller. It is clear that there is almost no difference between

the solution of GPOPS and AGA for Run 1 as it corresponds to the situation in

which the Target has a spherical inertia. However, Run 10 shows that the solutions

for AGA and GPOPS deviate, which is the cause for their difference not only in time

but also in cost as seen in Table 4.15.

4.3.2 Summary of Analysis of the Analytical Guidance Algo-

rithm

This section analyzed the results fo the behavior of the AGA on simulation. The AGA

was able to converge within a small percentage of error to the case when the Target’s
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inertia is that of the sphere. Furthermore, the addition of the plume impingement

protection was able to significantly reduce the thrust firing towards the Target by

an order of magnitude. The case in which the Target’s moment of inertia was not

of a sphere was also studied, and the results showed that the difference between the

cost associated to following GPOPS versus the AGA was within 5 % for the selected

angular velocity. Further tests must be done for different angular velocity directions

to bound the differences of the fuel cost between both solutions. Nevertheless, the

analytical guidance algorithm is a viable solution for a situation in which there must

be a re-computation of the guidance solution while ensuring convergence and real-

time capability.

4.4 ENVISAT Example Mission

In order to provide a realistic test case scenario for the AGA, the Environmental

Satellite 1 (ENVISAT) was used as a proposed orbital removal mission. The EN-

VISAT is a European Space Agency satellite that lost contact with ground on April

8th, 2012 after presumably a collision with an uncategorized orbital debris [43]. Due

to the orbital plane location, the ENVISAT has been a source of concern among

space situational awareness analysts due to the danger it poses if it were to collide

with active satellites or orbital debris. Thus, there has been interests in continuous

observation of the satellite as well as proposals for an ADR attempt [44].

ENVISAT is a large satellite with dimensions 26 m by 10 m by 5 m. The satellite

features a large canted solar array as shown in Figure (4-17). The satellites’ body

axes are labeled in the diagram. Additionally the satellites moment of inertia is given

by

IENV ISAT =

󰀵

󰀹󰀹󰀹󰀷

17023.3 397.1 −2171.4

397.1 124825.7 344.2

−2171.4 344.2 129112.2

󰀶

󰀺󰀺󰀺󰀸
[kgm2] (4.12)

The center of mass for the satellite is given by xCM = [−3.905 m,−0.009 m, 0.003 m]
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Figure 4-17: ENVISAT model, x, y, z represent the body axis. Source [44]

from the origin of the frame shown in Figure (4-17).

Various studies have been conducted on determining the attitude of ENVISAT.

Due to gravity gradient, solar radiation pressure, and drag torques there is a belief

that ENVISAT has an angular spin of at most 3.5◦/s about an axis as well as some

residual spin on the other axes. Therefore, guidance trajectories such as the one

employed for Restore-L or MEV-1 would not be permissible due to the tumbling

behavior of ENVISAT.

For this example mission the parameters shown in Table 4.16 were used. The Ini-

tial offset was a conservative value chosen so that the Chaser would be safe from being

hit by the solar panel during Phase 2 of the trajectory inspection. The final offset

is an assumption that the servicing ring was 4 meters away from the center of mass

on the −x direction. The servicing ring was chosen as the docking target to match

the Restore-L mission description. The initial angular velocity was arbitrarily chosen

such that the y-axis had the maximum angular velocity predicted by ENVISAT.

For the Chaser, an arbitrary maximum acceleration saturation of 30 cm/s2 was

chosen. Finally, the initial position was selected to not be exactly aligned with the x

axis. This adds more realism because, while it is expected that during Phase 2 the

satellite will aligned with the chosen docking axis, it might not be perfect. Therefore,

this example tests the robustness of AGA in two ways: the ENVISAT’s inertia is
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Table 4.16: ENVISAT Example Mission Parameters

Parameter Value
Initial Offset, R0 [m] 30
Final Offset, Rf [m] 4
Initial Ang. Velocity, ω(t0) [

◦/s] [−0.5, 3.5, 0.5]T

Target Inertia, [kgm2] IENV ISAT

Max Saturation, usat [m/s2] 0.3
Initial Position, [m] [−30, 0.5, 1]T

not in principal axes and thus has off-diagonal terms, and the initial position of the

Chaser is not perfectly aligned with the Target’s docking axis.

Figure (4-18) shows the result of the ENVISAT mission. The trajectory is able

to converge to the desired docking location as shown in Figure (4-18a). The y, z

errors in the relative position go towards zero and are negligible at time t = 12 [s].

Additionally, Figure (4-18b) shows that at time t = 8.5 [s] the sim trajectory converges

to the analytical guidance at which point the control effort on x becomes close zero.

This is encouraging as it shows that AGA solution resulted in low plume impingement

close to docking, ensuring ENVISAT’s safety.

The control time history appears different from the other cases, especially from

time t ∈ [0, 8.5) due to the initial offset in the normal axis. Finally, this behavior

is also present on the cumulative cost as shown in Figure (4-18d), as once the sim

output converges to the analytical guidance the resultant cost increases at a slower

rate.

Figure (4-19) shows the trajectory of the example mission in inertial space. The

XY and YZ projection are shown in Figures (4-19b) and (4-19b), respectively. Ad-

ditionally, the angular velocity time history is shown in figure (4-19d). From these

figures we can see that the attitude of ENVISAT changed dramatically and a typical

r-bar or v-bar approach would not have been able to dock. Furthermore, the trajec-

tory is completed within a full rotation period of the Target, which is consistent with

the idea that waiting too long would correspond to fuel wasted.

The results shown in this section demonstrate the ability for the AGA to yield an

efficient and convergent algorithm to be used in an actual mission. The trajectory
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(a) Relative Chaser-Target position (b) Relative Chaser-Target velocity

(c) Control time history (d) Cumulative cost time history

Figure 4-18: ENVISAT mission test results
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(a) Trajectory as seen in XY inertial plane (b) Trajectory as seen in XZ inertial plane

(c) Trajectory as seen in 3D view (d) Target’s angular velocity time history

Figure 4-19: AGA simulated docking trajectory for ENVISAT. Blue line corresponds
to the docking point, [4, 0, 0], and black line corresponds to the Chaser trajectory.
Figures shown in inertial frame.

116



shown in the ENVISAT example obeys the constraint on saturation and is able to

demonstrate low impingement risk once the Chaser approaches the satellite. Further

analysis must be done for this case by adding the frame conversion that would be

needed to follow the trajectory on the Chaser’s body frame. Furthermore, as stated

before, addition of noise and perturbations are needed to gain more confidence on the

viability of using this trajectory. Nevertheless, this example shows promising results

that are worth further studying.
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Chapter 5

Conclusion and Future Work

A guidance and control algorithm to allow for a spacecraft to capture a tumbling

object was presented in this thesis. The need for such algorithms was motivated

in Chapter 1 and includes situations in which the target object has not attitude

control or is uncooperative, such as active debris removal and satellite servicing or in-

space assembly. Furthermore, current state-of-the-art algorithms for accomplishing

soft docking of tumbling objects were described in Chapter 2. However, many of

these algorithms require nonlinear programs, which have neither a guaranteed feasible

solution nor a guaranteed solving time, that might not be suitable for current on-

orbit computational capabilities. Furthermore, the current algorithms do not directly

address the ability to perform a soft docking without thruster plume impingement

from the Chaser satellite.

The formulation of a quasi-analytical guidance algorithm for use in real-time tra-

jectory generation was presented in Chapter 3. The formulation entailed dividing the

general docking problem into subproblem depending on the Target angular velocity

and inertia ratio. In that chapter, a fully analytical expression for guidance was ob-

tained for a Target with a flat spin. Furthermore, it was shown that depending on

the angular velocity direction, the docking problem with a spherical inertia can either

be solved fully analytically or through a simple bisection method procedure. Finally,

an algorithm was developed for the general docking problem based on the impulsive

solution to the simpler spherical inertia problem. The analytical guidance algorithm
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was shown to be orders of magnitude faster than a pseudospectral method, and also

includes the ability to avoid plume impingement.

Chapter 4 presented the results for several cases for both the analytical guidance

algorithm as well as the solution to the subproblems when the Target’s inertia was

spherical. This chapter showed that the analytical and numerical version for the

situation in which the Target’s inertia was spherical exactly matched the solution

provided by the commercially available optimal control solver, GPOPS. Also, the

analytical guidance algorithm provided a solution with an increase in fuel cost within

5% from the solution given by GPOPS; however, the solution was obtained five orders

of magnitude faster. The chapter concluded with an example scenario for ENVISAT—

a European Space Agency weather satellite that is currently tumbling on orbit—and

showed that despite ENVISAT’s inertia in body frame not being in the assumed

principal axes and the initial position not being aligned with the body’s x-axis, the

algorithm was still able to converge and dock with effectively no plume impingement.

Additionally, Appendix A presents a discrete trajectory optimizer for transporting

components to halo orbit by exploiting dynamical system theory through stable man-

ifolds. The optimizer was implemented as part of a high level study on a cost-benefit

analysis for in-space assembly of telescopes. The results from the optimizer could

be used as a first-cut solution for launch ∆V needed to transport a component to a

halo orbit during a selected time window. Finally, Appendix B presents the impulsive

solution versions of those obtained in Chapter 3, and the equations are used as part

of the analytical guidance algorithm.

5.1 Thesis Contributions

• Developed a quasi-analytical guidance algorithm for docking with a tumbling

object with very low computational complexity for use in real-time spacecraft

proximity operations

• Demonstrated the ability to avoid plume impingement on Target by leveraging

the possible solution forms provided by Pontryagin’s Minimum Principle which
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lead to an easy-to-implement addition to the analytical guidance algorithm

• Showed the ability for the algorithm to converge and lead to a soft dock even

when the Target’s inertia was not in principal axes or with an initial misalign-

ment

• Developed a discrete transport trajectory optimizer for use in analyzing the ∆V

cost for in-space assembly

5.2 Recommendations for Future Work

• Analyze the limits of robustness of analytical guidance algorithm with initial

x-axis offset

• Develop procedure for obtaining reference attitude command for the Chaser

spacecraft during proximity operation in conjunction with the analytical guid-

ance algorithm

• Implementation of solution in a higher fidelity simulation which includes sensor

and process noise

• Hardware demonstration using NASA’s Astrobee platform for validation of al-

gorithm in on-orbit hardware

• Addition of nominal orbit destinations for discrete transport trajectory opti-

mizer

• Addition of phasing component to the discrete transport trajectory optimizer

to allow for rendezvous of multiple components for in-space assembly

5.3 Code Source and Repositories

The code for the algorithms developed in this thesis can be accessed at https://

github.mit.edu/cabrales/ROAM or by contacting the author at cabrales@mit.edu.
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Appendix A

Trajectory Generation for In-Space

Assembled Telescope

This chapter focuses in the trajectory design aspect of the in-Space assembled tele-

scope study. The study was conducted to analyze the design trade-space of the

benefits for assembling a telescope in-space versus traditional assembly on ground.

Section 1 covers an introduction to the overall study as well as the motivation for

fuel-efficient trajectories to the assembly destination. Section 2 covers the method-

ology of generating a stable manifold trajectory to the Earth-Moon system and the

Sun-Earth system. Section 3 gives an overview of the trajectory optimizer that was

designed for this study. Finally, Section 4 presents results for a notional test case.

A.1 Background and Motivation for an In-Space As-

sembled Telescope

Larger apertures for telescopes directly correlate to higher angular resolution as well

as a potential increase in signal-to-noise ratio [45]. Due to this, there is a natural

interest in maximizing the aperture diameter for a given telescope while satisfying

the constraints of the launch vehicle volume as well as cost associated with producing

the full mirror. For example, the James Webb Space Telescope has a 6.5 m diameter
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Figure A-1: Overview of optimization framework. Source [7]

and the planned Large UV Optical Infrared Surveyor (LUVOIR) is planned to have

a 15 meter diameter, which would be over 40 times more powerful than the Hubble

Telescope [46]. Unfortunately, current launch vehicles only fit a diameter of around

15 m [47]. Thus, as larger telescopes are required for advancements in the field of

astrophysics, the ability for in-space assembly will be required. The question remains,

however, of determining at which point assembling in-space is more cost efficient and

less complex than designing a folding mirror or launching a monolithic mirror. The

preliminary answer to this question is addressed in the ISAT study presented in [7].

Sanchez et al. presented a preliminary optimization framework for in-space as-

sembled telescopes. The analysis included the complexity associated with segmenting

the primary mirror, such as the overall mirror diameter, size of each segment, and the

choice of raft geometry (or the groups of mirror segments transported). Additionally,

Albee and Bart presented a new methodology of of performing launch manifesting

that included maximizing the volume and mass usage per launch as well as prioritiz-

ing the launch components [48]. The framework for the Pareto optimization is shown

in Figure (A-1). For each architecture, the Optical Telescope Assembly (OTA) was

deconstructed in terms of components that could be individually launched. The trans-

port trajectory was designed based on the launch manifesting optimization. Finally,

the “complexity cost” was calculated and used in the Pareto analysis.

Designing fuel efficient transport trajectories is necessary in order to determine
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a viable solution. Since a large percentage of the total budget for a mission is due

to launch costs, a strategy to minimize the fuel of the trajectory–and thus maximize

the amount of payload per launch–is required. For this study, it was assumed that

the entire spacecraft would be assembled at a single location. Two locations were

studied: Sun-Earth Lagrange point 2 (SEL2) and Earth- Moon Lagrange point 1

(EML1), namely because the former will be the location of future space telescopes

[49] [50] and the latter is the proposed destination for the NASA Lunar Gateway [51].

Assembling in LEO was not considered in this study as transporting a fully assembled

large telescope would require a specialized tug to provide a large enough ∆v to enter a

transfer trajectory to either SEL2 or EML1. Instead, it has been shown that transfer

∆v between the EML1 environment and SEL2 orbits can be on the order of cm/s

[52].

A.2 Stable Manifold Trajectories in EML1 and SEL2

System

The circular restricted three body problem (CR3BP) is a powerful simplification that

allows isight into natural systems. The typical (CR3BP) considers the effect of two

main bodies, for example Earth and Moon, on the motion of a smaller body (e.g.

a satellite). It is assumed that the mass of the smaller body is insignificant to the

other two bodies, M3 << M1,M2. Furthermore, the two main bodies are assumed to

be rotating in a circular orbit about the the center of mass of the combined M1,M2

system called the barycenter. This assumption is valid because even though the

Moon and Earth have elliptical orbits about their respective CM systems, it is useful

in simplifying the equations of motion. Finally, an assumption that comes out of the

circular trajectory assumption is that both M1 and M2 rotate with constant angular

velocity.

A diagram with reference frames for the three body problem is shown in Figure

(A-2). The primary body is indicated by the red circle, the secondary by the blue
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Figure A-2: Diagram of the CR3BP. Inertial and rotating frame for the CR3BP are
shown by {0, X̂, Ŷ , Ẑ} and {0, x̂, ŷ, ẑ}

circle, and the tertiary by the black dot. The frame {0, X̂, Ŷ , Ẑ} is an inertial frame

where it is assumed that the two bodies lie on the XY -plane. The rotating frame

{0, x̂, ŷ, ẑ} is defined with the primary and secondary body aligned along the x axis.

The y axis is normal to the x axis but in the XY plane. Finally the z axis is aligned

with the inertial frame z axis. Since the body fixed frame is rotating about the z axis,

it is possible to define an angle θ and a corresponding angular velocity ω to determine

the orientation at all times. Finally, for the sake of completeness, the vectors R and

r correspond to the position of the third body relative to the first and second body,

respectively.

It is well known that by defining the equations of motion of the CR3BP in a rotat-

ing frame five equilibrium points arise in which the centripetal acceleration match the

Coriolis acceleration [53, 54]. These points are unique to the three body problem and

would not be present on the classical Kepler’s two body problem. These points called

Lagrange or libration are located as shown qualitatively in Figure (A-3). Nonlinear

analysis informs that L1, L2, L3 are inherently unstable, while L4 and L5 are stable.

Nevertheless, it has been known that periodic or quasi-periodic orbits exists in L1
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Figure A-3: Qualitatively diagram of location of Libration points in the CR3BP

and L2 points [55]1.

A.2.1 Generation of Halo Orbits

Generating the periodic and quasi-periodic orbits has been known in literature for a

very long time. First order solutions to planar Lyapunov orbits (or periodic orbits

constrained in the xy plane) were known from the time of Lagrange [53], however,

analytical expressions for more complicated orbits such as Lyssajous or halo orbits

were developed much later. Farquhar on his Ph.D. thesis proposed the use of halo or-

bits for satellite relays and space stations due to their benefits of always having direct

view of Earth [56]. Furthermore, Farquhar and Kamel developed a third degree order

solution to both Lyssajous and halo orbits [55]. Richardson expanded this work by

developing an analytical expression for halo orbits and also providing a methodology

for producing numerical solutions [57]. The initial conditions from Richardson’s sem-

inal paper were used in this analysis for creating the halo orbit in both the Sun-Earth

L2 and Earth Moon L1 points.

Unfortunately, Richardson’s initial condition for a halo orbit is not enough to

1L3 also admits periodic and quasi-periodic orbits and for the Sun-Earth system is the allegedly
location of Planet X
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produce a full periodic orbit using numerical propagation. Due to this a differential

corrector (DC) is needed. The one used in this analysis was the one proposed by

Howell reproduced here [58].

Given the state vector in the rotating frame as [x, y, z, ẋ, ẏ, ż]T , the equations of

motion of the third body are given by

ẍ− 2ẏ =
∂U

∂x

ÿ + 2ẋ =
∂U

∂y

z̈ =
∂U

∂z

(A.1)

where the angular velocity of the rotating frame as well as the distance between P1

and P2 were normalized to one, and

U =
1

2
(x2 + y2) +

1− µ

((x+ µ)2 + y2 + z2)1/2
+

µ

((x− 1 + µ)2 + y2 + z2)1/2
(A.2)

where U represents the potential energy of the system and µ = m2

m1+m2
. Furthermore,

a state and time dependent state transition matrix can be defined as

d

dt
Φ(t, 0) = F (t)Φ(t, 0) (A.3)

where F (t) =

󰀵

󰀷03×3 I3×3

Uxx 2Ω

󰀶

󰀸 and Ω =

󰀵

󰀹󰀹󰀹󰀷

0 1 0

−1 0 0

0 0 0

󰀶

󰀺󰀺󰀺󰀸
and are shown in Equation (3) of

[58].

The equations of motion in Equation (A.1) as well as Equation (A.3) are integrated

starting at the initial condition given in Richardson’s paper (and with the form x(t0) =

[x0, 0, z0, 0, ẏ0, 0]
T ) until the trajectory crosses the xz-plane. Due to nonlinearities

and numerical error from integration, the solution will not be of the same form as the

initial condition and a DC will be needed to correct the value. Given a state-vector at

crossing be of the form x(T/2) = [x(T/2), 0, z(T/2), δẋ, ẏ(T/2), δż]T and the current
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integrated state transition matrix Φ(T/2, 0), it is possible to develop a DC as

ẋ′
0 = ẋ0 +∆ẋ

ż′0 = ż0 +∆ż
(A.4)

where 󰀵

󰀷∆ẋ

∆ż

󰀶

󰀸 =

󰀵

󰀷Φ41 − δẋ/ÿΦ21 Φ45 − δẋ/ÿΦ25

Φ61 − δż/ÿΦ21 Φ65 − δż/ÿΦ25

󰀶

󰀸
−1 󰀵

󰀷−δẋ

−δż

󰀶

󰀸 (A.5)

where ÿ represents the acceleration due to the equations of motion in Equation (A.1)

at time t = T/2. The process of modifying the initial x and z speed is repeated until

δẋ and δż are below a desired tolerance value or reach machine precision. Usually,

less than 5 iterations are needed in order to reach tolerances of 1e− 14.

(a) xy Plane View (b) xz Plane View

(c) yz Plane View

Figure A-4: Example of Sun-Earth L2 halo orbit with amplitude of 110,000 [km].
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Figure A-5: Example of un-Earth L2 halo orbit with amplitude of 110,000 [km].
Earth and Moon Orbit are shown for scale.

Once the DC converges, the initial condition can be used to propagate the full

equation of motion to a full orbit. To give a nominal example, a halo orbit with an

amplitude of 110,000 kilometers located at Sun-Earth L2 was propagated for a full

period (roughly 180 days). The results are shown in Figure (A-5). Additionally, the

full orbit with the location of the Earth as well as the orbit of the Moon are shown

in Figure (A-5).

A.2.2 Generation of Stable Manifold Trajectories

Since the third body problem is essence a chaotic system, dynamical system theory

can be used to investigate the state space. Manifolds represent a surface inside the

system state space that represents a set of all solutions in that local region [59].

For the three body problem, manifolds can be thought in reference to a surface of

trajectories in a halo orbit that are either stable or unstable, where stable means that

all trajectories approach the nominal halo orbit as t → ∞. For example, by selecting

an orbit and integrating the equations of motion as well as the state transition matrix,

we can obtain trajectories in either the stable or unstable manifolds. At any point in
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time the eigenvalues of the state transition matrix, λ(Φ(t, t0)), will have one of these

forms:

• |λi| < 1, which corresponds to the stable manifold (approach the orbit)

• |λi| = 1, which corresponds to the center manifold (stay on the orbit)

• |λi| > 1, which corresponds to the unstable manifold (leave the orbit)

Thus, by displacing the nominal halo orbit by a small distance along the corresponding

stable eigenvector, it is possible to enter the stable invariant manifold. This technique

was used to generate “free” trajectories from around the primary to the desired halo

orbit2. The steps for obtaining these trajectories are as follows:

1. Propagate the halo orbit for at least one period, while integrating the state

transition matrix, Φ(t, t0)

2. Obtain the eigenvector of Φ(t, t0), vs associated with the satable manifold at

several points along the orbit (see Figure A-6a)

3. Perturb the current state by a small distance along the eigenvector, x′(t) =

x(t) + dvs

4. Propagate the system backwards in time t = −τ (see Figure A-6b)

These processes can repeated at various points throughout the nominal halo orbit.

These will generate a subsample of the full stable manifold. Figure (A-7) shows 60

stable manifold trajectories that were obtained by sampling points around a nominal

halo orbit of amplitude of 110,00 [km] about SE-L2. Note that some orbits do not

approach the Earth, so an extra step must be taken to remove those orbits and only

look at orbits close to Earth.
2Free trajectory just means that once the state of the spacecraft reaches the manifold trajectory

and matches its state, the spacecraft’s trajectory will naturally evolve such that it reaches the halo
orbit. In reality, due to external perturbations such as solar radiation pressure and outer bodies
gravity, the spacecraft will have to perform mid course corrective maneuver to join the manifold
trajectory again
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(a) Nominal halo orbit with stable eigenvalue
direction shown

(b) Propagation of stable manifold trajectory.
Dark dot represents Earth.

Figure A-7: Selection of 60 stable manifold trajectories for nominal halo orbit of
110,000 km amplitude. Note some of the manifold trajectories do not go towards
Earth.
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A.3 Discrete Transport Trajectory Optimizer

The transport trajectory design was one of the main functions for the optimization

framework developed in the study. The goal of the optimizer was to find a low-fuel

trajectory for each of the components that were provided by the launch manifest

function. The corresponding inputs of the trajectory, set by the launch manifest

function, are shown in Table A.1.

Table A.1: Required inputs for the transport trajectory optimizer

Input Description
Target location Location of halo orbit (SE-L2 or EM-L1)
Launch location Location of departure from Earth (e.g. Cape

Canaveral, French Guiana, etc.)
Time of Launch Initial time of when launch can happen
Launch Window Range of days over which launch can occur

Although only halo orbits in SE-L2 or EM-L1 were considered, the optimization

routine is structured in a way that additional locations can be selected such as a

Near Rectilinear Halo Orbit (NRHO), the planned operating orbit for the NASA

Lunar Gateway [51]. Furthermore, with flexibility in mind, the launch location was

parametrized as a function the latitude and longitude.

The following assumptions were made in the trajectory generation formulation.

First, dynamics of the system remain that of the CR3BP and other celestial bodies

were ignored; this assumption is also made in [49, 50] in order to generate a first cut

solution. The effects of Solar radiation pressure, Earth’s oblateness, and other n-body

effects were ignored. These effects are known to change the location of the Lagrange

point and the period of the orbit [50, 60], as well as necessitate the performance

of mid-course correction maneuvers. However, for a first cut solution, these effects

on the total ∆v needed to reach the destination are not significant. Additionally,

the objective of the trajectory design process was only to provide transport of the

assembly components to a defined Halo orbit. The problem of phasing—i.e., ensuring

all satellite components arrive in close proximity to each other—was not addressed.

Finally, a drag penalty of 1.7 km/s was added to the results to account for the drag
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needed to combat the atmosphere when launching from Earth.

A.3.1 Frame Conversions

One of the challenges of designing a transport trajectory optimizer using dynamical

system theory is the need for frame conversions. The stable manifold trajectories

shown in Section A.2.2 represents solutions in the rotating frame. To ease the burden

of keeping track of the positions and velocities, several frames were generated to

simplify the conversion between the different frames and are shown in Table A.2.

Table A.2: Required inputs for the transport trajectory optimizer

Frame Name Description
LLA Longitude, Lati-

tude, Altitude
Geodetic polar frame (body-fixed) corresponding
to the latitude and longitude of a point at a given
altitude from Earth.

ECEF Earth Centered
Earth Fixed

Geographic cartesian coordinate frame (body-fixed
about Earth’s rotation). Origin defined as cen-
tered of mass of Earth.

ECI Earth-Centered
Inertial

Inertial Earth centered frame. Origin is at Earth’s
center of mass. X axis is aligned with the vernal
equinox. Z axis points 90◦ perpendicular to the
Equator towards the celestial North pole. Refer to
J2000.

BEI Barycenter
Ecliptic Inertial

Inertial frame centered around the CR3BP
barycenter (either in Sun-Earth system or Earth-
Moon system). X axis points towards the first
point of Aires, Z points towards the angular mo-
mentum of the system. Y completes the frame.

BER Barycenter
Ecliptic Rotat-
ing

Body-fixed frame centered around the CR3BP
barycenter (either in Sun-Earth system or Earth-
Moon system). X axis points towards the line that
produced by connecting the two main bodies. Z
axis points towards the angular momentum of the
system. Y completes the right hand frame.

Several of the frame conversions particularly those that go from a body-fixed

frame to inertial frame require time as one of the inputs. Due to this, the Julian date

was selected as the reference time, and the ECI’s J2000 was used 3. The conversion
3J2000 Frame Description
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between LLA to ECEF, and ECEF to ECI, and vice versa are well known in literature.

Thus, the only conversions that will be explained are those from BEI to BER and

BER to BEI as they are system dependent.

To generate the rotation matrix between a BEI and BER frame, the Matlab’s

planetEphemeris(JD, Primary, Secondary) function was used. The planetEphemeris.m

function returns the velocity and position of the secondary planet relative to the pri-

mary planer (or Sun) and are expressed on a frame that is aligned with the ECI

frame, rrel, vrel. To obtain the rotating matrix BEICBER we defined the unit vectors

as

î =
rrel

||rrel||

k̂ =
rrel × vrel

rrel × vrel

ĵ = k̂× î

(A.6)

The rotation matrix between the BER to BEI frame is then simply

BEICBER(t) =
󰁫
î, ĵ, k̂

󰁬
(A.7)

The rotating matrix described in Equation (A.7) gives the coordinate frame trans-

formation from the barycenter ecliptic rotating frame to the barycenter ecliptic iner-

tial coordinate system.

Conversion between BER to BEI frame

Given the matrix BEICBER(t), the current position and velocity described in the ro-

tating frame, rBER
rel and vBER

rel , and the angular velocity of the rotating frame, ωBER,it

is possible to change the frames as follows

rBEI
rel =BEI CBERrBER

rel

vBEI
rel =BEI CBER

󰀃
vBER
rel + ωBER × rBER

rel

󰀄 (A.8)

where the Transport Theorem was used to account for the rotating frame.
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Conversion between BEI to BER frame

Alternatively, it is possible to switch from the inertial BEI frame to the rotational

BER frame given BERCBEI(t), rBEI
rel , vBEI

rel and the angular velocity ωBEI . Note

that since BERCBEI(t) is a coordinate transform matrix the identity BERCBEI(t) =

BEICBER T (t) is valid.

rBER
rel =BER CBEIrBEI

rel

vBER
rel =BER CBEI

󰀃
vBEI
rel − ωBEI × rBEI

rel

󰀄 (A.9)

A.3.2 Trajectory Optimizer Algorithm

The algorithms wrapper used for the trajectory optimizer is shown in Algorithm 3.

The algorithm takes the following as inputs,

• tstart: the initial start time for when to begin looking for the minimum trajec-

tory. Value is a time vector in the form [Year, Month, Day].

• ∆t: the time discretization for the algorithm; units are in hours.

• tend: the final search time for when the launch of the particular component is

allowed to happen. Value is a time vector in the form [Year, Month, Day].

• Launch Loc: launch location in terms of latitude and longitude of Earth.

• Target Loc: desired target location. Currently only a halo orbit in SEL2 or

EML1 are allowed

The algorithm, depending on the desire launch location, loads the manifold tra-

jectories (as seen in line 8 or 12) from a MATLAB “.mat” data structure. These

manifolds would correspond to those found by means shown in Subsection A.2.2 and

seen in Figure (A-7). Each structure has the entire time history of each of the candi-

date stable manifold trajectories. Furthermore, despite only allowing SEL2 or EML1

as the possible launch locations, the algorithm is written to allow for new orbit des-

tinations. The user only has to compute a new manifold “.mat” structure and add a

new case to the if statement.
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Algorithm 3 Discrete Trajectory Optimizer Algorithm
1: [∆v, tlaunch, tdur] = traj_lookup(tstart,∆t, tend,Target Loc,Launch Loc)
2: ∆v = NaN
3: tlaunch = NaN
4: tdur = NaN
5: if Launch Loc = SEL2 then
6: primary = Sun
7: secondary = Earth
8: manifolds = SEL2 Manifolds
9: else if Launch Loc = EML! then

10: primary = Earth
11: secondary = Moon
12: manifolds = EML1 Manifolds
13: end if
14: for tcur = tstart : ∆t : tend do
15: rECI

launch, vECI
launch = ECEFtoECI (tcur, Launch Loc)

16: rBER
rel ,vBER

rel = planetEphemeris(tcur, primary, secondary)

17: BEICBER = gen_beiCber(rECI
launch, vECI

launch)
18: ∆vcur, tdur,cur = manifold_transfer_lookup(rECI

launch, v
ECI
launch,

BEI CBER,manifolds)

19: if ∆vcur < ∆v then
20: ∆v = ∆vcur
21: tlaunch = tcur
22: tdur = tdur,cur
23: end if
24: end for
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The trajectory algorithm performs a discrete optimization by looping through

each time value and finding the least expensive manifold trajectoryduring that time.

This is done during the for loop routine (line 14) of the algorithm. At each instant

of time, the launch pad velocity, relative to the ECI inertial frame, is computed

using MATLAB’s ECEFtoECI.m function. Additionally, the relative velocities of the

primary and secondary velocity are computed using MATLAB’s planetEphemeris.m

function. The relative velocity rBER
rel , vBER

rel are then used to generate the coordinate

transformation using the procedure shown in the previous section.

The function manifold_transfer_lookup.m performs the main step algorithm. This

function takes launch position and velocity, the coordinate transformation matrix, and

the manifolds to find the least expensive trajectory to reach the desired halo orbit.

The function returns the fuel cost in ∆vcur and the time it takes for reaching the halo

orbit, tdur,cur. Finally, the algorithm keeps track of the current minimum ∆v, launch

time, and travel duration as shown in line 19.

Algorithm 4 Manifold Transfer Look Up Algorithm
1: ∆v, tdur = manifold_transfer_lookup(rECI

launch, vECI
launch,

BEI CBER,manifolds)
2: ∆v = NaN
3: tdur = NaN
4: for i = 1 to N do
5: rBER

tar , vBER
tar , tdur,i = manifolds{i}

6: rBEI
tar , vBEI

tar = BER_to_BEI(rBER
tar ,vBER

tar )

7: rBEI
launch, vBEI

launch = ECI_to_BEI(rECI
launch, vECI

launch,
BEI CBER)

8: vlamb,1, vlamb,2, ttrans = lambert_min(rBEI
tar ,vBEI

tar , rBEI
launch, vBEI

launch)

9: ∆vcur = ||vBEI
tar − vlamb,2||+ ||vlamb,1 − vBEI

launch||
10: if ∆vcur < ∆v then
11: ∆v = ∆vcur
12: tdur = tdur,i + ttrans
13: end if
14: end for

The algorithm for the manifold_transfer_lookup.m function is shown in Algorithm

4. The objective of this algorithm is to find the minimum ∆v as well as the duration

of travel for a given position and velocity launch location. The algorithm takes the

manfiolds “.mat” structure in which is assume has N possible transfer trajectories.
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For each possible trajectory the launch position and velocity, rECI
launch, vECI

launch, are

converted from the ECI to the BEI frame.

For each manifold trajectory a target position, rBER
tar , and velocity, vBER

tar , are

obtained. These are again user defined. However, for this function the position is

defined as the closest point of approach for a manifold trajectory to Earth. The choice

of where along the manifold is it globally cheaper to enter is not addressed in this

study and is left for future work.

Finally, the transfer trajectory that takes the component from the launch pad to

the target location along the stable manifold trajectory is obtained by the solution to

Lambert’s problem as shown in line 8. Lambert’s problem is a classic astrodynamics

problem which seeks to determine a feasible orbit between two points [53]. The

typical problem takes two state vectors and finds the possible orbits that could exist

that transverse the two points. For this analysis the minimum energy version of the

Lambert’s problem was implemented. The implementation is exactly the one given

by Prussing and Conway in [53].

Algorithm 4 and 3 were implemented in MATLAB and used for the iSAT study.

The code for the analysis can be found at https://github.mit.edu/cabrales/

SSL-cabrales/ or https://github.com/acabralesh/isat-TrajDesign/

A.4 Test Cases and Result

Two test cases were conducted to verify that the algorithm reported the least ex-

pensive, in terms of ∆v, trajectory to either EML1 or SEL2. For both cases, the

parameters utilized are shown in Table A.3. The time window for searching was

limited to a single day in order to reduce the number of outputs launch. The dis-

cretization remained at 1 hour; however, further discretization is possible to determine

the best launch time. The launch location corresponds to Cape Canaveral. Finally,

an atmosphere drag cost of 1.5 km/s was added to the cost that accounts for the fuel

expenditure to overcome Earth’s atmosphere at launch.

139

https://github.mit.edu/cabrales/SSL-cabrales/
https://github.com/acabralesh/isat-TrajDesign/


Table A.3: Test set up for transport trajectory optimizer

Input Units Description
Initial time, t0 N/A 06/18/2021
Time discretization, ∆t Hours 1
Final time, tf N/A 06/19/2021
Launch latitude ◦ 28.39
Launch longitude ◦ 80.61
Atmosphere Drag Cost km/s 1.5

A.4.1 Earth-Moon L1

The first case corresponded to finding a trajectory that reaches a halo orbit around

EML1 with an amplitude of 32,000 km or around five Earth radii.

Table A.4: Test results for EML1 trajectory optimization

Parameter Value
Launch Window 7:00:00 18-Jul-2021
Total Transport ∆V [km/s] 13.71
Total Transfer Duration [Days] 28.02
Halo Arrival Time 7:30:43 18-Jul-2021

Table A.4 shows the overall results of the optimization for this test case. The

trajectory departure happens at 7 am on July 18th, 2021. The duration is approxi-

mately one moon period. Finally, the total transport ∆V is 13.71 km/s which is on

expected for these types of trajectories. Additionally, the iterations results produced

by the optimization algorithm are shown in Table A.5. Note that the results in the

iteration table does not include the atmospheric drag equivalent to 1.5 km/s.

The Instances in which the iteration produced not a number or infinite delta t

(iteration 18) corresponds to a situation in which the transfer trajectory produced

by the solution to the Lambert’s problem led to collision on earth. Finally, it can be

seen that the ∆V cost is not constant and the lower ∆v values corresponds to times

from 3 am to 1 pm. This is also expected as there will be an orientation of the Earth

relative to the side facing the Moon at which the least expensive trajectory is least

expensive.

Figure (A-8) shows the proposed minimum fuel trajectory to reach EML1 halo
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(a) XY -plane view (b) Xz-plane view

(c) 3D view

Figure A-8: EML1 transport trajectory example. Figure shows the proposed trajec-
tory from launch site to point of joining the selected halo orbit. Asterisk represents
point at which the lambert transfer trajectory joins the stable manifold trajectory.
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Table A.5: Iterations results for EML1 trajectory optimization

Iter. Date ∆V Duration Arrival Date
[km/s] [Days]

1 18-Jun-2021 00:00:00 12.66 25.22 13-Jul-2021 05:23:14
2 18-Jun-2021 00:59:59 12.73 25.22 13-Jul-2021 06:12:31
3 18-Jun-2021 02:00:00 12.81 25.21 13-Jul-2021 07:02:55
4 18-Jun-2021 03:00:00 12.76 28.42 16-Jul-2021 12:57:43
5 18-Jun-2021 03:59:59 12.41 29.31 17-Jul-2021 11:30:17
6 18-Jun-2021 05:00:00 12.26 29.31 17-Jul-2021 12:26:07
7 18-Jun-2021 06:00:00 12.24 28.03 16-Jul-2021 06:37:01
8 18-Jun-2021 06:59:59 12.21 28.02 16-Jul-2021 07:30:43
9 18-Jun-2021 08:00:00 12.24 28.02 16-Jul-2021 08:22:24
10 18-Jun-2021 09:00:00 12.29 28.01 16-Jul-2021 09:12:33
11 18-Jun-2021 09:59:59 12.36 28.00 16-Jul-2021 10:01:44
12 18-Jun-2021 11:00:00 12.45 27.99 16-Jul-2021 10:50:38
13 18-Jun-2021 12:00:00 12.55 27.99 16-Jul-2021 11:39:59
14 18-Jun-2021 12:59:59 12.66 27.98 16-Jul-2021 12:30:31
15 18-Jun-2021 14:00:00 12.78 27.97 16-Jul-2021 13:22:53
16 18-Jun-2021 15:00:00 12.90 27.97 16-Jul-2021 14:17:38
17 18-Jun-2021 15:59:59 13.03 27.97 16-Jul-2021 15:15:11
18 18-Jun-2021 17:00:00 Inf NaN NaT
19 18-Jun-2021 18:00:00 13.38 25.26 14-Jul-2021 00:12:33
20 18-Jun-2021 18:59:59 13.09 25.26 14-Jul-2021 01:10:57
21 18-Jun-2021 20:00:00 12.85 25.25 14-Jul-2021 02:06:52
22 18-Jun-2021 21:00:00 12.70 25.25 14-Jul-2021 03:00:31
23 18-Jun-2021 21:59:59 12.62 25.24 14-Jul-2021 03:52:15
24 18-Jun-2021 23:00:00 12.59 25.24 14-Jul-2021 04:42:31
25 19-Jun-2021 00:00:00 12.60 25.23 14-Jul-2021 05:31:52

orbit. The trajectory begins at Earth, at which a transfer trajectory obtained by a

solution to the Lambert’s problem connects the launch site with the stable manifold—

the beginning of which is shown by the asterisk at (11.87, 4.69, 1.44) [RE]. The stable

manifold trajectory then joins the halo orbit at (53.11, 4.23,−2.43) [RE].

A.4.2 Sun-Earth L2

The same initial time, time window, and final time were chosen for the SEL2 example.

The results are shown in Table A.6. The trajectory takes approximately 248 days

to complete the journey to join the halo orbit. Interestingly, the ∆v associated with
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joining a halo orbit in SEL2 is lower than EML1. This result of lower cost as well as

magnitude cost is consistent with results reported by [61].

Table A.6: Test results for SEL2 trajectory optimization

Parameter Value
Launch Window 23:00:00 18-Jul-2021
Total Transport ∆V [km/s] 13.35
Total Transfer Duration [Days] 248.44
Halo Arrival Time 09:31:02 22-FEB-2022

Table A.7 shows the individual iteration results for the SEL2 optimization. As

with EML1, the iterations at which the ∆V = Inf represents instances at which

the solution to Lambert’s problem is unable to trajectories that does not collide with

Earth or the Moon. However, this does not mean that there does not exist a stable

manifold trajectory capable of transporting the component at that time. Instead it

is just an artifact of the discrete optimization not using enough possible manifold

trajectories.

A.5 Discussion and Future Work for the Trajectory

Optimizer

This Appendix presented a discrete optimizer algorithm to find fuel efficient trajecto-

ries to a halo orbit in Earth-Moon Libration point 1 or Sun-Earth Libration point 2.

The algorithm presents a possible “first cut” to the problem of designing trajectories

of multiple components to the same orbit for in-space assembly. The algorithm has

flexibility in allowing for different types of orbits for inclusion of Near Rectilinear

Halo Orbits, or other types of orbits that are of interests for in-space assembly of

space telescopes. Finally, the magnitude and duration of the results are consistent

with those present in literature.

Future work for this algorithm includes adding different nominal orbit options

for a more complete analysis. Additionally, the issue of phasing, or the process in

which all the components around the nominal orbit converge to once another, is not
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Table A.7: Iterations results for SEL2 trajectory optimization

Iter. Date ∆V Duration Arrival Date
[km/s] [Days]

1 18-Jun-2021 00:00:00 11.87 248.42 21-Feb-2022 10:10:47
2 18-Jun-2021 00:59:59 11.90 248.41 21-Feb-2022 10:49:36
3 18-Jun-2021 02:00:00 11.94 248.40 21-Feb-2022 11:28:54
4 18-Jun-2021 03:00:00 12.00 248.38 21-Feb-2022 12:10:07
5 18-Jun-2021 03:59:59 12.06 248.37 21-Feb-2022 12:54:33
6 18-Jun-2021 05:00:00 12.12 248.36 21-Feb-2022 13:43:20
7 18-Jun-2021 06:00:00 12.19 248.36 21-Feb-2022 14:37:16
8 18-Jun-2021 06:59:59 12.85 232.43 05-Feb-2022 17:14:59
9 18-Jun-2021 08:00:00 12.96 232.42 05-Feb-2022 18:05:58
10 18-Jun-2021 09:00:00 13.07 232.42 05-Feb-2022 18:59:29
11 18-Jun-2021 09:59:59 13.19 232.41 05-Feb-2022 19:56:02
12 18-Jun-2021 11:00:00 Inf NaN NaT
13 18-Jun-2021 12:00:00 Inf NaN NaT
14 18-Jun-2021 12:59:59 Inf NaN NaT
15 18-Jun-2021 14:00:00 Inf NaN NaT
16 18-Jun-2021 15:00:00 Inf NaN NaT
17 18-Jun-2021 15:59:59 Inf NaN NaT
18 18-Jun-2021 17:00:00 Inf NaN NaT
19 18-Jun-2021 18:00:00 12.42 247.24 20-Feb-2022 23:43:55
20 18-Jun-2021 18:59:59 12.17 248.47 22-Feb-2022 06:18:04
21 18-Jun-2021 20:00:00 12.02 248.47 22-Feb-2022 07:13:11
22 18-Jun-2021 21:00:00 11.92 248.46 22-Feb-2022 08:03:15
23 18-Jun-2021 21:59:59 11.87 248.45 22-Feb-2022 08:48:53
24 18-Jun-2021 23:00:00 11.85 248.44 22-Feb-2022 09:31:00
25 19-Jun-2021 00:00:00 11.87 248.42 22-Feb-2022 10:10:48

addressed in this problem formulation. This must be addressed as part of a stage

needed for rendezvous and docking of all the components. Finally, an analysis should

be conducted in finding the point along the stable manifold trajectory for which

minimum fuel transfer occurs as currently the closest approach to Earth is being used

as the entry point of the manifold.
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Appendix B

Analytical and Quasi-Analytical

Solutions for Impulsive Docking

Problems

This appendix presets the impulsive versions for the solution to the flat spin and

general spin with spherical inertia. Having this situation is equivalent to solving

the docking problem with no control saturation on the Chaser translational control.

Finally, the results from this appendix provide the main functions used in the AMPC

algorithm for generating the docking trajectory.

B.1 Impulsive Solution to Flat Spin

The procedure for obtaining the impulsive solution for the Flat Spin is by letting

usat → ∞ which effectively makes t1 → 0 from Equation (3.23). Thus the trajectory

time history between the distance from the Chaser to Target given by Equation 3.21

simplifies to

x(t) = c1e
ω(t−tf ) + c2e

−ω(t−tf ) t ∈ [t0, tf ] (B.1)

where c1, c2, and tf are unknown. Furthermore, it is assumed that t0 is known and
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defined as the desired time for beginning of the trajectory. It is possible to enforce

the boundary conditions that x(t0) = R0 and x(tf ) = RF , which gives c1 and c2

c1 =
1

e−ω(t0−tf ) − eω(t0−tf )

󰀃
Rfe

−ω(t0−tf ) −R0

󰀄

c2 =
1

e−ω(t0−tf ) − eω(t0−tf )

󰀃
R0 −Rfe

ω(t0−tf )
󰀄 (B.2)

which reduces the unknowns of Eq. (B.1) to,

x(t) =

󰀃
Rfe

−ω(t0−tf ) −R0

󰀄
eω(t−tf ) +

󰀃
R0 −Rfe

ω(t0−tf )
󰀄
e−ω(t−tf )

e−ω(t0−tf ) − eω(t0−tf )
(B.3)

Finding the value of tf can be obtained by enforcing the boundary condition of

soft dock at the final time

tf = t0 −
sign(ω)

ω
log

󰀳

󰁃R0

Rf

−

󰁶󰀕
R0

Rf

󰀖2

− 1

󰀴

󰁄 (B.4)

Finally, given tf it is possible to compute the initial velocity of the trajectory in

order to achieve soft docking:

ẋ(t0) = −Rfsign(ω)ω

󰁶󰀕
R0

Rf

󰀖2

− 1 (B.5)

It is easy to see the trends for ẋ(t0) from Equation (B.5). As expected, ẋ(t0)

increases with an increase in Rf , which is consistent with the fact that if the Chaser

must transverse a longer distance it should spend more fuel to achieve a larger ẋ(t0).

The same can be said for an increase in ||ω||, as the dynamics will push the Chaser

away from the target, so a larger value of initial speed is needed to reach the Target

at tf .

If Equation (B.4) is substituted into Equation (B.3) the trajectory is simplified to

x(t) =
Rf

2

󰀃
eω(t−tf ) + e−ω(t−tf )

󰀄
(B.6)

The control time history on the normal direction can be computed by uy/z =

2ωẋ(t). Finally, the total cost can be computed by
󰁕
|2ωẋ(t)|dt+ |ẋ(t0)|.
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B.2 Impulsive Solution to General Spin with Spher-

ical Inertia

The same approach for obtaining the impulsive solution was taken for the thruster

saturated solutions presented in Section 3.4. As stated in Section 3.4, the difference

between the Bang-Off controller and Bang-Off-Bang controller corresponds to the

value of γ given in Equation (3.33):

γ =
|ωyωx|+ |ωzωx|

ω2
y + ω2

z

B.2.1 Impulsive Bang-Off Solution

When γ ≤ 1 the solution per PMP is that of a Bang-Off controller (see Section

3.4.2). Since the trajectory for the General Spin Spherical Inertia problem when

the controller is Bang-Off is very similar to that of the flat spin, the solution given

by Equations (B.4) and (B.5) can be adapted for the more complicated problem as

follows:

tf = t0 −
1

ωeff

log

󰀳

󰁃R0

Rf

−

󰁶󰀕
R0

Rf

󰀖2

− 1

󰀴

󰁄 (B.7)

ẋ(t0) = −Rfωeff

󰁶󰀕
R0

Rf

󰀖2

− 1 (B.8)

where ωeff =
󰁳

ω2
y + ω2

z . Also note that due to the nature of having ωeff in the

solution for the trajectory in Equation (3.34), there is no need for the sign(ω) function

that appeared in the Flat Spin case. For completeness, the optimal trajectory for the

impulsive spin will be given by

x(t) =
Rf

2

󰀃
eωeff (t−tf ) + e−ωeff (t−tf )

󰀄
(B.9)

The control time history can be computed as uy = 2ωzẋ + xωyωx and uz =

−2ωyẋ+xωzωx. The total cost is again
󰁕 tf
t0

(|2ωzẋ+ ωy) dt+ |ẋ(t0)| and can be solved
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either numerically or analytically.

B.2.2 Impulsive Bang-Off-Bang Solution

Whereas the case for the Bang-Off controller the solution for the impulsive case can

be solved analytically, the Bang-Off-Bang controller corresponding to the case where

γ > 1 cannot be solved with a closed form solution. Nevertheless, the same approach

can be taken for obtaining a single trajectory when usat → ∞. Thus, Equation (3.37)

will simplify to a single equation fo the form,

x(t) = c1e
ωeff (t−tf ) + c2e

−ωeff (t−tf ) t ∈ [t0, tf ] (B.10)

where in Equation (B.10) there are three unknowns, namely c1, c2 and tf , but there

are only two equations available, namely x(t0) = R0 and x(tf ) = Rf . The extra degree

of freedom comes from having the final velocity of the Chaser relative to the Target,

ẋ(tf ), free. In essence, this removes the soft docking condition in the trajectory

equation. Applying the boundary conditions removes the terms for c1 and c2 which

yields,

x(t) =

󰀃
Rfe

−ωeff (t0−tf ) −R0

󰀄
eωeff (t−tf ) +

󰀃
R0 −Rfe

ωeff (t0−tf )
󰀄
e−ωeff (t−tf )

e−ωeff (t0−tf ) − eωeff (t0−tf )
(B.11)

which is of the same form as Eq. (B.3. Having a form x(t) and its subsequent

derivative to obtain ẋ(t) is needed to formulate a minimization problem similar to

that in Section 3.4.4 to obtain the optimal value for tf .

Optimization Method for tf

The optimization problem for finding tf can be formulated as follows,

min
tf

f(tf )

Subject to tf ≥ 0

(B.12)
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where,

f(tf ) =

󰁝 tf

t0

󰀓
|2ωzẋ(t) + ωyωx|+ |− 2ωyẋ(t) + ωzωx|

󰀔
dt+ |ẋ(t0)|+ |ẋ(tf )| (B.13)

where x(t) is given by Equation (B.11) and |ẋ(t0)|, |ẋ(tf )| represents the impulsive

thrust that the Chaser must produce to join the trajectory and end the trajectory

at zero relative speed, respectively. Equation (B.12) can be solved by a simple mini-

mization method such as Matlab fminbnd.m1. Additionally, a lower bound or initial

guess for the minimization problem is given by Equation (B.7). In fact, a simple

bisection method can be formulated by setting the lower and upper bound of tf to

[t∗f,BO, 2t
∗
f,BO] where t∗f,BO is the final time for the Bang-Off controller.

Finally, for completeness, finding the final time that solves the optimization prob-

lem in (B.12), the initial velocity from the guidance is given by,

ẋ(0) =
ωeff

e−ωeff tf − eωeff tf

󰀅
R0

󰀃−ωeff tf + eωeff tf
󰀄
− 2Rf

󰀆
(B.14)

Analysis of ẋ(t0), ẋ(tf) vs tf

Since an analytical expression cannot be easily obtained for the optimization problem

in Euqation (B.12), an exploration of the trends for ẋ(t0) and ẋ(tf ) can be performed.

Without loss of generalization it is possible to choose t0 = 0 which yields a value for

ẋ(0) and ẋ(tf ) to be:

ẋ(0) =
ωeff

e−ωeff tf − eωeff tf

󰀅
R0

󰀃−ωeff tf + eωeff tf
󰀄
− 2Rf

󰀆

ẋ(tf ) =
ωeff

e−ωeff tf − eωeff tf

󰀅
2R0 −Rf

󰀃−ωeff tf + eωeff tf
󰀄󰀆 (B.15)

To analyze the trends of Equation (B.15), a plot was made in which the value

of the final time was changed. The parameters used for the study are in Table B.1.

Note that despite the choice of values, the overall shape of the plot will remain the
1It should be noted that although an optimization method was used for solving the Bang-Off-

Bang controller, an analytical equation can be sought after by carefully resolving the integral in
Equation (B.13)
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Table B.1: Nominal Values for Analysis of ẋ(t0), ẋ(tf ) vs. tf

Parameter Value
Initial Time tf (s) 0
Initial Radius R0 (m) 10
Final Radius Rf (m) 5
Angular Velocity ω (◦/s) [50, 20, 20]

same.

Figure (B-1) shows a plot of the initial and final velocity of the Chaser relative to

the Target as a function of final time. As expected, in order fo there to reach a lower

relative distance, the initial Chaser velocity must be less than zero. On the other

hand, depending on the desired value of tf , the final velocity will either be negative,

zero or positive.

Figure B-1: Behavior of ẋ(0), ẋ(tf ) as a function of tf for General Spin Spherical
Inertia Impulsive Solution

The trends in Figure (B-1) are as expected. For example, selecting a final time

close to zero causes both the initial and final velocities to approach infinity–the Chaser
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would require and infinite amount of velocity to move a finite distance amount. Two

points of interest are the values in which the sum of the initial and final velocity are

the least (noted by the grey vertical dash line), and the limits for both the initial and

final velocity.

Using L’Hôpital’s rule, the initial value becomes limtf→∞ ẋ(0) = −ωeffR0 and

limtf→∞ ẋ(tf ) = ωeffRf . The values for the two are equivalent to the norm of the

velocity, in inertial coordinates, of a point located at either x(0) and x(tf ). In other

words, limtf→∞ ẋ(#) = || [x(#), 0, 0]T × ω ||.

The location of the minimum sum of ẋ(0), ẋ(tf ) is equivalent as finding the

maximum of ẋ(0). This occurs at t∗f = 1
ωeff

log

󰀕
R0/Rf +

󰁴
(R0/Rf )

2 − 1

󰀖
with

ẋ(t0) = −Rfωeff

󰁳
(R0/Rf )2 − 1), ẋ(tf ) = 0. This is equivalent to the Impulsive

Bang-Off solution, as expected.
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