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Abstract 

This thesis explores a method for multiple suppliers to coordinate resource scheduling of 

task requests from multiple consumers using decentralized planning. A time window is 

associated with each task and some tasks require simultaneous servicing from multiple resources 

of specified classes to fulfil a request. The suppliers create schedules for their resources that 

maximize the value of all tasks fulfilled, while minimizing travel cost, and respecting all time 

window constraints. This thesis presents Infeasibility Cooling Adaptive Allocation for Resource 

United Scheduling (ICAARUS), a novel Adaptive Large Neighborhood Search (ALNS) 

algorithm that is capable of synchronizing tasks across a variable number of resources. A 

supplier’s individual schedule and cost function is kept private from consumers. An e-commerce 

style of multi-round bidding is introduced to notify suppliers of resource request parameters and 

to allow consumers to synchronize resources from independent suppliers. A Mixed-Integer 

Linear Program (MILP) is used by the consumer to select the least costly bids that can be 

combined to fulfill a task’s requirements. 
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Chapter 1 

1 Introduction 

 Recent advancements in research and technology for robotics has created resources with 

the ability to operate in a variety of domains. Current operations are unable to take full advantage 

of disparate capabilities across all domains. Planning of modern day operations are becoming 

increasingly complex. Challenges ranging from stove piped mission commanders who are only 

aware of the few resources assigned to them, to rigid schedules that are too complicated to re-

plan.    

 The purpose of this thesis is to develop an algorithm that coordinates resources across 

multiple domains through decentralized bidding for multiple consumers. This algorithm 

addresses two main challenges to planning multi-domain operations as envisioned in the Army in 

Multi-Domain Operations 2028 [3]. First, to properly manage and fully realize the capabilities of 

so many decentralized resources, a bidding system is needed. This bidding structure should 

direct suppliers to service customers that most value resources and require the least cost 

expenditure. Second, an algorithm that solves the Supplier Scheduling Problem (SSP) must do so 

in an operationally feasible runtime. Computing solutions is complicated because of the 

synchronization requirements of a single task across multiple resources. 

 Thesis Overview 

 This thesis presents a method to coordinate and create schedules for multi-domain 

operations. The development of this method and the associated technical challenges are 

described in the following six chapters. An overview of the chapters follows: 

 Chapter 2 – Operational Concept. In this chapter, the concept of e-commerce is 

introduced as a solution to decentralized resource allocation. The time and spatial operational 

constraints in the Supplier Scheduling Problem are assumed fixed in this work. 

 Chapter 3 – Model Formulation and Development. In this chapter, a mathematical 

model is created for the scope of the SSP. It is shown that this problem can be modeled as a 

network problem while maintaining the constraints expressed in Chapter 2. Similar problems in 
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past literature are reviewed to lend insight into the development of an algorithm for the SSP. In 

particular, the Traveling Salesman Problem and extended variants are explored due to their 

similarity to the SSP. A Mixed-Integer Linear Program (MILP) is introduced for providing 

optimal solutions for the SSP. An analysis of this method is presented in Chapter 5.    

 Chapter 4 – Formulation of Algorithm. This chapter formulates the Infeasibility 

Cooling Adaptive Allocation for Resource United Scheduling (ICAARUS) Algorithm to solve 

the SSP. This chapter begins with the formulation of the Composite Operations Planning 

Algorithm (COPA) to solve the UAV Planner Problem. However, the Composite generation 

algorithm falls short of ensuring resource synchronization across a task. To accomplish this, 

Adaptive Large Neighborhood Search (ALNS) is studied in the Vehicle Routing Problem, which 

has synchronization across a single supplier’s resources as a constraint. ICAARUS explores a 

large region of the state space by allowing infeasible schedules to be created and culled through 

Simulated Annealing.   

 Chapter 5 – Tests and Analysis. This chapter covers the testing and analysis of the 

MILP and ICAARUS. It is shown that while the MILP provides an exact solution, ICAARUS is 

able to find a feasible schedule in much less time. It is shown that the MILP is unable to scale 

and solve beyond 20 task requests in a reasonable time manner. Meanwhile ICAARUS is able to 

produce a schedule for large cases including 40 task requests, in under 30 minutes.  

 Chapter 6 – Conclusions. This chapter provides a summary of the work and resulting 

contributions presented in this thesis. Proposals for modifications to our methods are presented, 

including the incorporation of robust planning into the resource allocation process.   

 Contributions 

 This research makes the following contributions: 

1. An e-commerce bidding structure to coordinate multiple consumers with multiple 

suppliers asynchronously in a decentralized manner.  

2. A MILP model for suppliers to solve the SSP with synchronization. 

3. A MILP model for consumers to select cheapest resource bids. 
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4. The development and implementation of ICAARUS, an algorithm to schedule multiple 

resources for tasks requiring time and spatial synchronization. 

5. Testing and analysis of the supplier MILP and ICAARUS. 

6. Recommendations for modifications to ICAARUS. 

 Motivation 

 In the summer of 2018 at Rim of the Pacific (RIMPAC), the world’s largest international 

maritime exercise, the USS Racine underwent a sinking exercise (SINKEX) with a range of 

military units working together to sink this one ship [1]. Originally the ship was targeted by a P-3 

Orion aircraft, but when its ability to communicate targeting information was jammed in the 

simulation, both a Gray Eagle Unmanned Aerial Vehicle (UAV) and Army AH64E Apache 

helicopter were able to respond and support targeting through new data-link backups. This re-

established communication provided for overwhelming firepower from multiple domains with 

Naval Strike Missiles and HIMARS artillery launched by the Army, and AGM-84 Harpoon 

missiles launched by a Navy P-8 aircraft. To finish the exercise, the submarine USS Olympia 

also launched a MK-48 torpedo to sink the USS Racine. While this SINKEX was carefully 

orchestrated to coordinate Army and Navy capabilities from the sea, air, and land, it showed the 

flexibility and capability of multi-domain operations. 

 This exercise reflects the US Navy’s A Design for Maintaining Maritime Superiority call 

for Distributed Maritime Operations (DMO), described as aiming to “deepen naval integration 

with other services to realize [strategy] in multi-domain, distributed operations” [2]. In this 

thesis, domain refers to the five warfighting areas of sea, land, air, cyber, and space. The US 

Army calls for Multi-Domain Operations (MDO) to converge all domain capabilities across time 

and space to inundate adversaries. This convergence is envisioned in Army in Multi-Domain 

Operations 2028:  (1) Create synergy across domains for overlapping redundancy, and (2) give 

commanders multiple forms of attack through options that are unforeseen by the enemy [3]. 

Historically the delivery of effects onto an adversary are referred to as “Kill-Chains” with each 

effect having siloed planning and execution path, this new level of complexity creates the idea of 

“Kill-Webs, complex representation of effect chains with multiple possible paths” [4]. However, 

this new capability presents a problem of scalability with “a factorial increase in possible inter-
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relationships that will test the limits of current analytic approaches” [4]. LCDR Will Spears also 

remarks that while MDO is the natural evolution of Joint Warfare, communication barriers of 

information classification levels and technical language discrepancies between disciplines will 

require a “level of agility that is beyond [current capabilities]” [5]. With this communication 

though, MG VeraLinn Jamieson describes a vision for the Air Force’s Intelligence, Surveillance, 

and Reconnaissance (ISR) as “Fusion Warfare,” which “integrates and synchronizes information 

from multiple sources and domains” to fly, fight, and win in any battlespace [6].  
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Chapter 2 

2 Operational Concept 

This chapter clarifies what is e-commerce and how it is used in the context of this thesis. 

Advancements in Information Technology in the 21st century have led to supplying services and 

commodities through telecommunication networks. Rarely does a student nowadays need to 

physically go to a bookstore, searching for the best deal on textbooks. Instead a student can 

virtually specify a book’s title and condition, and then select the cheapest option from a range of 

suppliers. This is electronic commerce, or e-commerce. The abundance and speed of access, that 

defines modern day corporations like Amazon or eBay, are characteristics necessary for MDO 

and thus e-commerce is an appealing tool to future military planners. 

Nanehkaran defines e-commerce through three main components: communication 

systems, data management systems and security [7]. This thesis assumes hardware capabilities 

for any communication and data management systems are possible, leaving that work to future 

researchers. This thesis, as mentioned in Chapter 1, focuses on presenting ICAARUS, an 

algorithm for scheduling resources from suppliers to consumers. This chapter will define the 

communications between consumers and suppliers, and what data is shared versus what is kept 

private in the interest of user security.    

The market proposed in this thesis makes several assumptions that depart from classical 

marketplace features. Firstly, consumers and suppliers do not exchange money for services. 

Consumers express their level of desirability for a task through assigning value. Consumers are 

assumed to be honest actors, meaning they do not assign high value to low priority tasks for the 

purpose of cheating resources from suppliers. Suppliers are also assumed to always be willing to 

service a task request if feasible in their schedule. However, some suppliers are busier than 

others and express this through costs associated with offered resources. 

 Consumer-Supplier Relationship 

This thesis will focus on how suppliers can more effectively allocate limited resources to 

consumers. This interaction begins by consumers, who have missions they are planning, creating 
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tasks which require resources. For the purpose of this thesis only consumers generate tasks, and 

only suppliers have resources, i.e. no supplier is trying to plan a mission and no consumer has 

resources. These tasks are defined by several parameters which are common questions a 

commander may need answered when planning a mission: 

Value: Assigned number, [1,100], that quantifies the importance of the task. 

Position: Two-dimensional location at which the task could be performed. 

Minimum Duration: The time it takes to completely service the task. 

Time Window: The start and end time in which the task must be serviced. If a resource 

arrives before the start of the window, it cannot begin servicing until the early 

edge of the time window. In addition, if the minimum duration is not fulfilled 

before the end time, it is too late and the task is not counted as completed.      

Resources: A task may require one or multiple resources. These resources are defined by 

types, so only resource of one type can fulfill that type requested.  

For a task to be serviced, all resources must be in the same position for an overlapping 

minimum duration within that task’s time period.    

2.1.1 One Consumer to One Supplier 

The simplest case of this scenario is one consumer assigned to one supplier. This 

stovepipe relationship is still prevalent today for the ability to 1) simplify scheduling and 2) keep 

planning details confidential. A consumer can only get resources from one source, so a task’s 

feasibility is straightforward to find through asking if the one supplier has the requested 

resources or is pre-occupied with servicing another task. As resources are only servicing one 

customer, the supplier’s schedule is known to only that consumer.     
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Figure 1: One Consumer to One Supllier 

 

The immediate drawbacks of task planning with this relationship is a consumer’s 

complete reliance on one supplier. Any task requiring a resource that the supplier does not have 

is instantly infeasible with no other options. Also this relationship can be observed by an 

adversary and become susceptible to attack. An adversary can predict operational actions by 

noting historical consumer-supplier relationships, even if dedicated supply chains are not 

published information. An adversary could be aware of a consumer’s immediate actions by 

observing the movements of its supplier’s resources, or even remove this one supplier to cripple 

the consumer completely. 

2.1.2 One Consumer to Multiple Suppliers 

As the internet opens up connections across the world, so does e-commerce aim to open 

up connections to suppliers. Through e-commerce comes the ability for a single consumer to 

expand its network of resource access from one supplier to multiple suppliers.  

Consumer Supplier 

Resource Request 

Resources 

Consumer Supplier 

Consumer Supplier 
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Figure 2: One Consumer to Multiple Suppliers 

 

This multitude of suppliers is a powerful tool for improving mission planning. Through 

more suppliers comes greater availability of resources, and thus increased probability of a 

consumer finding the resources they desire when they are needed. Another operational benefit of 

this network is unpredictability. Through an abundance of options for planning operations, 

consumers will naturally begin to vary their supplier choices. This will obscure intended actions 

to adversaries and remove supplier vulnerabilities through redundancy. 

With more nodes in a network comes more potential leaks of information in the system. 

Some operational scenarios could have mission commanders concerned about adversaries 

eavesdropping into communications and compromising security. That is why in this thesis, 

suppliers do not share schedules with each other or consumers. A supplier only responds to the 

consumer through a “bid” with the following information: 

Cost: This is a measure of how much travel time the supplier must expend for its 

resources to arrive at the task. Travel time is the expense that is analogous to fuel 

for resources that are expensive to exercise.  

Time Window: The arrival and departure time of resources to the task’s location. 

Resources: Which resources, type and quantity, are being allocated to the task. 

2.1.3 Multiple Consumers to Multiple Suppliers  

In theory, multiple suppliers collectively servicing only one consumer would be ideal, but 

in reality, this system requires multiple consumers. In a finite world, gaining the flexibility of 

numerous suppliers in a network also requires multiple consumers pooling their supply chains to 

Consumer Supplier 

Supplier 

Supplier 
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create this network. For e-commerce to be utilized in a practical setting, consumers will need to 

compete against each other for supplier resources. 

Figure 3: Multiple Consumer to Multiple Suppliers 

 

Consumers do not collaborate with other consumers for achieving a global maximum task 

fulfillment rate. A consumer is concerned with only completing its own tasks. These self-

interested actors will continue to request resources from all suppliers until the task is fulfilled or 

bidding is stopped. This means suppliers in this network will receive a larger volume of resource 

requests, compared to suppliers operating in a one consumer to one supplier relationship. For the 

desired option creation feature of e-commerce, comes inherent complexity for the system to 

manage. 

 E-Commerce Bidding Structure 

In this thesis, a consumer is responsible for stating what resource types are needed and 

time range that these resources are needed for a task. The challenge of calculating a path for how 

those resources will get to the task is removed from the consumer’s concern. Consumers interact 

with suppliers for resources through multiple bidding rounds. The procedure for each round is a 

three part handshake: 1) Resource requests are sent from the consumer with the task’s critical 

information to the supplier; 2) element bids are sent from the supplier to the consumer 

expressing resource availability; and 3) bid confirmations are sent from the consumer to the 

supplier to accept or reject the element bids. Figure 4 illustrates the flow of information in these 

resource bidding rounds:  

Consumer Supplier 

Supplier 

Supplier 

Consumer 

Consumer 
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Figure 4: Information Flow in One Bidding Round 

After resources are requested, the consumer will receive element bids from suppliers with 

three distinct outcomes for each task: 

1. Incomplete Fulfillment 

  For at least one resource the task requests, no bids were received. 

2. Complete Fulfillment 

From one or multiple suppliers all resources a task requested are fulfilled and 

have an overlapping service time of at least the minimum required duration.   

2. Unsynchronized Fulfillment 

From multiple suppliers a task receives bids on all resources requested, but the 

received bids have misaligned service times. 
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These three distinct outcomes require a protocol for handling, with the desired effect that 

this process would get all tasks to Complete Fulfillment before the end of bidding. MG Jamieson 

envisions “fusion warfare” of the future as continuously repeating OODA loops for mission 

planners of ISR operations. The OODA loop is a classic decision-making process distinguished 

by its four phases of Observe, Orient, Decide, Act. These four phases are the basis of the 

Consumer Decision Process for this Marketplace:  

Observe – Which element bids are received. 

Orient – Which fulfillment status does a task fall under. 

Decide – How to handle these fulfillment statuses. 

Act – Send Bid Confirmation/Rejection and begin the next round of Resource Requests. 

The Consumer Decision Process is outlined in Figure 5. 
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Figure 5: Consumer Decision Process 

 
*  See Section 2.2.2 for more information. 
⸆ See Section 2.2.3 for more information. 
2.2.1 Incomplete Fulfillment 

Element Bid outcome one is relatively straightforward to manage in an e-commerce 

network. For Incomplete Fulfillment, the consumer rebroadcasts the original task request. This 

request is made in the hopes that a previously busy supplier now has room in its schedule. 

Suppliers are constantly altering schedules through bidding rounds, as seen in Figure 6, as 

scheduled tasks receive bid rejections. 
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Figure 6: Supplier Schedule Decision Cycle 

 

2.2.2 Complete Fulfillment 

For element bid outcome two, Complete Fulfillment, the consumer will select which 

combination of bids they need at the cheapest cost. The consumer shall notify suppliers of 

unselected bids that their bid was rejected and should thus be dropped from that supplier’s 

schedule. As mentioned in the beginning of Chapter 2, consumers are assumed to be honest 

agents that do not hoard unnecessary resources. Consumers will only accept the bids they need to 

fulfill a task’s resource requirements. Should an allocated resource suddenly become 

unavailable, a consumer can always re-submit a resource request in the next bidding round.  

Of note in the Consumer Decision Process, Figure 5, is the route of “Selected Bids are 

from one supplier.” When a single supplier is providing all the resources for a task, they have 

control over the tasks start and end time, as long as it remains within the original time window. 

Even if a consumer accepts a bid (or bids) for a specific start time, the supplier can change that 

start time as they see fit. If this previously agreed upon start time were made rigid, the supplier 

may drop this commitment in favor of a new more valuable task request. The supplier’s 

flexibility to move start times, only if it is allocating all the resources needed, is advantageous to 

consumers as it lowers the risk of bids being withdrawn. This is also advantageous to the system 
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as suppliers have flexibility in their schedule to open up slots for tasks that may be denied from 

schedules made in earlier bidding rounds.  

When a consumer selects resources from multiple suppliers, the “Secure Time Window” 

stage is necessary. This simply alters the task to begin and end only at the time all element bids 

overlap. This is necessary as the original resource request specified a time window with a range 

of possible arrive and depart times for suppliers to offer resources in. Once a set of bids that 

completely fulfill the task are found, consumers do not want these resources’ time slots to be 

move around by suppliers, resulting in the task becoming unsynchronized. To prevent this, 

consumers secure the task’s time window to one start and end time that all element bids overlap. 

Suppliers are updated of this change to the task’s information through the bid confirmations sent.   

2.2.3 Unsynchronized Fulfillment 

Element bid outcome three, Unsynchronized Fulfillment, presents the greatest challenge 

for consumers. As suppliers are not communicating with each other, consumers rebroadcasting 

the same request leaves synchronization to chance. Progressing to complete fulfillment requires 

direction from the consumer to coordinate scheduling across suppliers. 

This “Decide” phase of the OODA loop in the Consumer Decision Process attempts to 

balance task feasibility with synchronization. The wider the range of the time window for the 

task, the greater the likelihood a resource request will be answered as suppliers have many 

options to fit servicing the task into their schedule. The drawback of these numerous options for 

suppliers is the decreased probability Element Bids will then be synchronized with other 

suppliers whose schedules are unknown. To push diverse suppliers towards coordination, a 

consumer updates the time window. 

The time window is updated by pushing the task’s early time window to the second 

earliest bid arrival time. This heuristic is based on ICAARUS pushing all tasks to be serviced as 

early as feasible. This means that when a bid is received, the consumer knows the resource 

cannot be moved any earlier without altering the schedule. However, the resource could be 

moved back and the schedule remains feasible with idle time in the later part of the resource 

path. An example of updating the time window is shown in Figure 7: 
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Figure 7: Update Time Window 

 

 Updating to only the second earliest bid arrival time is crucial to synchronizing suppliers 

without forcing schedules to sub-optimal solutions. As can be seen in Figure 7, even with the 

new shortened time window, all four Element Bids are not synchronized. While suppliers may 

push bids e1 and e2 to have the same arrival time as e3, e4’s arrival time may not be moved up. In 

that case the task will again reach Unsynchronized Fulfillment status and the time window will 

be shortened to e4’s arrival time, and then the task is expected to reach synchronization across all 

Element Bids.  

The task’s early time is not immediately updated to the latest arrival time, e4’s arrival 

time, as that may tighten the task’s time window to an infeasible time range. Suppose one 

supplier was providing bids e1 and e2, and it has a highly valuable task it is servicing right after 

task i that it cannot move. If the time window were drastically tightened then task i would lose 

two of its Element Bids. By gradually updating the time window through multiple bidding 

rounds, the following rounds could have the supplier of e4 move its arrival time up or new 

suppliers become able to service task i in place of e4’s supplier.   

If the updating time window process results in a supplier dropping its Element Bid for the 

task with no other supplier filling its bid, then the task would become an Incomplete Fulfillment 
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case. This would result in the consumer re-submitting its resource requests with the task’s 

original time window, giving maximum flexibility to suppliers again.  
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Chapter 3     

3 Model Formulation and Development  

 This chapter develops a mathematical representation that addresses the Supplier 

Scheduling Problem (SSP). The mathematical representation begins with a description of the 

input and output variables that define the problem. The mathematical structure of the SSP is 

visualized through multiple graphical representations to highlight the network nature of this 

problem.  

 The mathematical formulation allows us to identify similar problems in the literature. 

Research into the Traveling Salesman Problem and its Time Window variants help us understand 

the challenges of SSP and provide techniques for finding solutions through exact and heuristic 

methods. The Team Orienteering Problem is also a useful variant of the Traveling Salesman 

Problem for understanding and current methods used for organizing a team to maximize prize 

collection as the SSP organizes multiple resources for maximum mission completion.  

 At the end of the chapter, a Mixed Integer Programming (MIP) model of the SSP is 

presented. This MIP utilizes binary and continuous decision variables to build a schedule for a 

set of resources that satisfies the constraints of the SSP.  

 Supplier Scheduling Problem (SSP) 

 This section describes the SSP and defines the inputs and outputs of the problem. It 

presents assumptions that were made on the capabilities of the resources, and explains any other 

assumptions made to simplify operational constraints for the purpose of this mathematical 

model. 

3.1.1 Inputs to Supplier Solver 

3.1.1.1 Supplier Inputs 

 supplierID  Integer value identifying which supplier is making this schedule. 

 pos   Position of supplier’s base location. 
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resourceList Set of-which resources and what quantity of those resources a 

supplier has control over. 

schedule Assignments of  which task elements a supplier has committed 

particular resources too, and what time they are assigned to service 

these requests. 

unconfirmedTasks Set of which tasks the supplier has on its schedule that it bid to 

fulfill for a consumer, but has not received a status notification of 

yet. 

confirmedTasks Set of which tasks the supplier has on its schedule that it has bid on 

and an acceptance of selection has been received by a consumer. 

The supplierID, pos, and resourceList are unchanging for each supplier through all 

rounds of bidding. Initially the schedule, unconfirmedTasks, and confirmedTasks are empty until 

the supplier begins bidding on task requests.  

The resourceList can have duplicate entries to express a supplier’s capacity of multiple 

resources for that one type. For example: a resourceList of {A,B,C} means a supplier has one 

resource of type A, one resource of type B, and one resource of type C. Meanwhile a resourceList 

of {A,A,A} means a supplier has three resources of type A.  

3.1.1.2 Task Inputs 

 consumerID  Integer value identifying which consumer the task request is from. 

 taskID   Integer value a consumer gives to identify the task. 

 pos   Position of the task’s location. 

 value   Rated importance of the task from [1-100]. 

 early   Beginning of time window for the task. 

 late   End of time window for the task. 

 minDur  Minimum time duration the task needs to be serviced. 
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 resourceCount  Number of elements for which the task is requesting resources. 

 resourceReq  Set of resources the task is requesting. 

 A task request has two forms of identification, consumerID & taskID. From here onward 

a task may be referred to as simply task i or task j, but this i or j is not a task’s complete ID, it is 

merely a shorthand to index individual tasks. For example: task i could be referring to task (2,3), 

which is a task from consumer 2 and labeled as task 3 from that consumer.      

 The resourceReq can have duplicate entries to express the consumer needing multiple 

resources of that one type for a task. For example: a resourceReq of {A,B,C} means a task is 

requesting three elements with one resource of type A, one resource of type B, and one resource 

of type C. Meanwhile a resourceReq of {A,A,C} means a task is requesting three elements with 

two resources of type A, and one resource of type C.  

3.1.2 Outputs of Supplier Solver 

 As mentioned in the motivation for this research, the model is decentralized in nature for 

its bidding structure. So, the outputs from a supplier that a consumer would see are bids for task 

elements. However, the solution to the SSP is a schedule of supplier resources accommodating 

tasks, which remains visible only to that individual supplier. A supplier’s schedule is described 

as a list of composites: 

composite   A single resource and a path plan 

 The path of a composite has the following characteristics: 

1. Task Order: The order in which this resource will accommodate its assigned tasks. 

2. Arrival Times: The time at which the resource will be able to start each task assigned. 

3. Departure Times: The time at which the resource will need to end each task assigned. 

4. Travel Times: The time required to travel from the previous task to the subsequent task. 

Example 1 displays a supplier’s schedule with composites. 
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Example 1: This example describes a schedule with two composites, meaning two resources and 

two path plans. Here there is a set of five tasks, {t1,t2,t3,t4,t5}, to be completed by a set of two 

resources, {A,B}. The following is a table of a selection of the parameters for this set of tasks:  

Table 1: Example 1 Task Parameters 

Task Early Late Min. Duration Resource Req. 

t1 0.0 4.0 1.0 {A} 

t2 2.0 6.0 1.0 {B} 

t3 4.0 8.0 1.0 {A} 

t4 6.0 10.0 1.0 {A} 

t5 8.0 12.0 1.0 {A,B} 

 Only task t5 requires multiple resources and needs synchronization across resources. The 

following provides path plans for the composite example: 

Composite 1. Resource A departs the base station at time 0, and then performs the following 

tasks. The resource returns to the base station directly after completing t5: 

 Table 2: Example 1 Composite 1: Path Plan for Resource A 

Task Order Arrival Time Departure Time Travel Time 

t1 1 1.0 2.0 1.0 

t3 2 4.0 5.0 1.0 

t4 3 7.0 8.0 2.0 

t5 4 11.0 12.0 3.0 

 Note that the while resource A can begin t1 at time 0, it takes a travel time of 1 hour to get 

to that task (from starting base) so its arrive time is 1.0. Also, while resource A can leave t1 at 
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time 2.0, and it only requires a travel time of 1 hour to get to t3 at time 3.0, the resource cannot 

begin servicing the task till t3’s Arrive Time of time 4.0.    

Composite 2. Resource B only requires a travel time of 1 hour to get to t2 from the base station, 

so it does not depart till time 1.0, and then performs the following task. The resource returns to 

the base station directly after completing t5: 

Table 3: Example 1 Composite 2: Path Plan for Resource B 

Task Order Arrival Time Departure Time Travel Time 

t2 1 2.0 3.0 1.0 

t5 2 11.0 12.0 2.0 

 Note that while resource A can leave t2 at time 3.0, and it only requires a travel time of 2 

hours to get to t5 at time 5.0, the resource does not begin servicing the task till time 11.0 even 

though the time window for servicing the task is time 8.0. This is because t5 requires 

synchronization of both resources, so resource B must wait for resource A to arrive to begin 

servicing t5 together. 

 Network Representation 

 This section describes how to transform the physical real-world problem with complex 

parameters, into a graphical structure easier to visualize. This formulation of the problem into a 

graph will provide insight into methods to solve the problem. First introduced is a simplistic 

static graph of the problem, then a more complex time-space graph, and finally a placement-

space graph. 

3.2.1 Static Graph Representation 

 To begin applying analytical techniques to the SSP, the physical system should be 

mapped to the proper theoretical framework. Large-scale transportation problems, such as the 

Vehicle Routing Problem, are often represented using a directed graph, G(N,A), consisting of a 

set of nodes, N, and a set of arcs, A [15]. In this network the nodes represent task and base 

locations, and arcs represent the path to get from one node to another. A two-dimensional map 
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can be rearranged to a simpler network to visualize with weights on those arcs representing the 

distance between node pairs. A static graph representation for the operations of a single resource 

and three tasks is shown in Figure 8: 

Figure 8: Static Graph Representation  

   

3.2.2 Time-Space Graph Representation 

 The static graph representation presented in the previous section is unable to model the 

time dimension of resource scheduling. To model time and position, the time-space graphical 

representation can incorporate time by creating nodes that include the location of the resource 

and the time that the resource is at the task. Therefore, a node most be created for each task at 

every time period over the planning horizon. Task-time nodes cannot be limited to only be the 

time periods for which the task’s time window is active as the network needs to capture where 

the resource is if the resource is idly waiting between two time windows.  

 The time-space graph assists in scheduling resources, because it records the location of 

every resource at each point in time. Each node in the time-space graph is indexed by task and 

time period. For example, index (i,t) corresponds to task i at time t. However, now the arcs must 

become directed in the network as travelling back in time is prohibited in reality. below we show 

Figure 9 of a time-space graph with two tasks: 

Task 1 Base 

Task 3 Task 2 
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Figure 9: Time-Space Graph Representation 

 

 While this network enables visualizing a resources position in space and time, it creates 

many unnecessary nodes and arcs due to task nodes existing across the whole planning horizon. 

Another issue this graph representation encompasses is the need to discretize time. The drawback 

of high precision with shrinking time intervals comes at the cost of rapidly growing the number 

of nodes.  

3.2.3 Placement-Space Graph Representation 

 The time-space graph representation in the previous section suffers in the trade-off of 

precision of time vs. graph size. When a continuous variable such as time is binned into discrete 

segments, the ease of interpretation comes at the risk of suboptimal solutions. To keep time of 

arrivals and departures as continuous variables, the placement-space graphical representation 

incorporates order by creating nodes that include the location of the resource and the placement 

that the resource is in the service list. This requires a node to be created for each task at every 

index on the resource’s service list. This is expected to create a graphical representation with 

fewer nodes as the number of tasks to accommodate should be significantly smaller than the 

number of time periods in the planning horizon.  

 Each node in the placement-space graph is indexed by task and placement. For example, 

index (i,2) corresponds to task i being the second task the resource visits. The arcs must also be 

directed as the time-space graph, as traveling back in order is prohibited in reality. Below we 

show Figure 10 of a placement-space graph with two tasks: 

Base,t 

i,t+1 i,t+2 

j,t+2 j,t+1 

Base,t+1 Base,t+2 Base,t+3 

i,t+2 

j,t+2 
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Figure 10: Placement-Space Graph Representation 

 

 A path through this network reveals which tasks the resource will be able to service and 

in what order the tasks will be accommodated. However, like the time-space graph, the time 

window and synchronization constraints are not implicitly expressed and will require additional 

constraints on the network’s arcs. The placement-space graph does require less arcs and nodes 

than the time-space graph, while maintaining continuous time variables. 

 Problem Classification 

 Now that the parameters of the problem are defined and a visual representation can be 

created for the placement-space dimension of the problem, similar problems in literature are 

compared to lend more insight to solution formation. The Vehicle Routing Problem (VRP) has 

many similarities to a supplier attempting to find an optimal routing of its resources. After all a 

vehicle is just a specific type of resource. The VRP has been studied since 1959’s work by 

Dantzig and Ramser, and so many variations and formulations exist to draw inspiration from 

[16]. This section aims to classify previous research methods similar to the SSP’s goals of 

maximizing benefit received while handling elements of: 

 Time 

 Multi-resource Synchronization 

 Resource classes  

In addition to accomplishing these features, there is also the desired feature of quickly 

finding a solution for a large number of tasks. 

Base,0 

i,1 i,2 

j,2 j,1 

Base,1 Base,2 Base,3 
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3.3.1 Mathematical Programming Background 

 A proven field of research for solving the VRP is known as Linear Programming. Linear 

Programming makes use of abstract mathematical models to represent real-world problems. The 

name “linear” comes from the linear functions of the decision variables that form the objective 

and all constraints. By formulating the rewards and costs of a real-world problem into an 

objective function, linear programming can find an exact solution that maximizes or minimizes 

this value. It does this under a set of constraints that represent the real-world conditions that limit 

the problem [12]. 

 The classical linear programming problem necessitates all variables are continuous non-

negative real numbers. This is not the case for a problem such as resource scheduling that 

requires binary decision variables, and a “yes” or “no” answer to the question of allocation. This 

is because a resource, such as a vehicle, cannot be cut in half and used to service half of two 

requests. A resource must be sent in its integral entirety or not at all. Fortunately, this a well-

studied problem in the realm of Mixed Integer Programming (MIP), which is classified as a 

subset of mathematical programming using integer and binary variables. The unique types of 

problems faced in the SSP also fall under a more general class of problems known as the 

Traveling Salesman Problem (TSP) [17]. 

3.3.2 Travelling Salesman Problem 

 Dantzig  describes the Traveling Salesman Problem as “Find the shortest route for a 

salesman starting from a given city, visiting each of a specified group of cities, and then 

returning to the original point of departure” [18]. It is a mathematical conjecture that the 

complexity class of the TSP is Nondeterministic Polynomial-time Complete or NP-Complete 

[19]. This means that there is no known algorithm that can always give an optimal solution in a 

polynomial time variation. The best that can be done currently is finding a solution to an NP-

Complete problem that has solution times grow exponentially with the number of nodes [20]. 

3.3.2.1 Mixed Integer Programming Formulation for Traveling Salesman Problem 

 The TSP can be modeled as a MIP with binary variables that indicate the decision whether 

or not to traverse an arc in the network. The variable, xij, will take on the value of one if the arc 
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between node i and node j is traveled, and zero otherwise. The variable, dij, is the distance from 

node i to node j. Dantzig, Fulkerson, and Johnson give the following MIP model: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑑 , 𝑥 ,( , )∈  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑥 ,∈ = 2    ∀𝑗 ∈ 𝑁      

  ∑ 𝑥 ,, ∈ ≤ |𝑆| − 1   ∀𝑆 ⊂ 𝑁, 𝑆 ≠ ∅    

  𝑥 , ∈ {0,1}          

 The set N is the set of all nodes in the network, and S is a subset of N. The first constraint 

ensures that each node in the network is visited by forcing the traveler to travel into and out of 

each node. The second constraint is a sub-tour elimination constraint; it ensures that the solution 

is a single tour. The size of the problem increases exponentially with the addition of the sub-tour 

elimination constraint, adding 2N constraints. 

3.3.2.2 Exact Solution Methods 

 All known solution methods to TSP run in non-polynomial time, and in the worst case the 

entire solution space might have to be searched to confirm an optimal solution. However, there 

are methods that attempt to intelligently search the solution space and reduce the solve time for 

the model. Two of the most common methods are branch and bound and cutting planes. 

 The branch and bound method is a divide and conquer method to find an optimal 

solution. This method begins by solving the linear programming relaxation, which removes the 

constraints that ensure variables are integral and binary [19]. This means the xij variable can take 

on continuous values between zero and one and will provide a “lower bound” to the solution that 

may or may not be attainable. Next, this method solves sub-problems in an attempt to find 

integer solutions. The lower bound is used to discard certain subsets of the feasible set from 

consideration [20].   

 The cutting planes method begins similarly to branch and bound by first solving the 

linear programming relaxation. Next, sub-tour elimination constraints are added to force 

fractional solutions towards integer solutions, as well as to get rid of any sub-tours in the 
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relaxation solution [18]. In the right circumstances, only a few intelligently chosen constraints 

are needed to find an optimal solution to all constraints.    

3.3.2.3 Heuristic Solution Methods  

 When an exact solution method is relaxed to only need near-optimal solutions, but in a 

shorter search time, heuristic solution methods can be used to generate quick solutions. 

Heuristics do not search the entire set of solutions, but find the “best” solution in a reasonable 

amount of time. “Best” is defined as a threshold the designer creates for the acceptable gap from 

optimality.   

 Laporte categorizes heuristic methods into two classes: 1. Tour construction procedures 

to efficiently build feasible routes by adding nodes one at a time, and 2. Tour improvement 

procedures to improve an already existing route [21]. Most heuristic algorithms that solve the 

TSP incorporates both tour construction and tour improvement procedures in what is called a 

composite algorithm [21]. Note here the name “composite” refers to the algorithm being a 

combination of multiple procedures, and is not an algorithm of composites as defined in 

Section 3.1.2.  

 For example, Flood suggests the nearest neighbor algorithm is a straightforward tour 

construction procedure to find a solution to the TSP [22]. This algorithm begins at an arbitrary 

node, and proceeds to add the node that is closest to the present node. It repeats this nearest 

neighbor addition to the route until all nodes are included in the path. The last node is then 

connected to the origin to create a complete tour. 

 Another class of tour construction procedures, known as insertion algorithms, follow 

these basic steps [21]:  

 Step 1: Construct a simple tour with only two nodes 

 Step 2: Consider each node not in the tour. Insert the node that meets a specific criterion. 

 Common criteria that are used to measure which node is most appropriate to be added 

next to the network include: 1. Adding the node that is closest to the two nodes in the current 

selected tour, 2. Adding the node that is furthest from the two nodes in the current selected tour, 

and 3. Adding the node that produces the least increase in distance for the current path. While 
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these examples of criteria are not exhaustive, other criteria include combining multiple metrics 

with weights assigned to each method [23].  

 Tour improvement procedures already start with a route, built by a simple or complex 

construction procedure. These procedures then aim to improve this given route by some routine. 

Flood noticed that if a path crosses itself at any point during the tour, then the tour could be 

improved by switching the order of nodes so that the tour does not cross [22]. Croes proposed a 

similar idea, known as inversion¸ where the order of two nodes is switched in a tour to see if the 

resulting route is improved [24]. Lin and Kernigan expanded upon these methods to bound the 

scope of searching for tour improvements in the k-opt algorithm [25]. The algorithm goes 

through all subsets of k arcs and attempts to reconnect the tour with a set of k new arcs. If an 

improvement is found, the k old arcs are deleted in favor of the new better arcs, and the 

algorithm continues down the route to the next set. An example of a k-opt algorithm with k = 2 is 

shown in Figure 11:  

Figure 11: 2-Opt Algorithm 

 

 Another group of tour improvement procedures are metaheuristics. These methods 

include subroutines that select which scope of the solution set to explore. These heuristics 

Original Route: [1,2,5,3,4] 

1 

2 3 

4 5 

1. Arc (2,5) 
replaced with (2,3) 

2. Arc (3,4) 
replaced with (5,4) 

Improved Route: [1,2,3,5,4] 

1 

2 3 

4 5 
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include tabu search, which records which solutions have already been generated to avoid 

repeated searches, ant colony, which records which previous solutions led to improvements and 

should be explored more, and simulated annealing, selecting solutions with a probability based 

on a measured criterion of optimality [26]. Simulated annealing is used extensively in 

ICAARUS as detailed in Chapter 4. 

3.3.3 Traveling Salesman Problem with Time Windows 

 The TSP with Time Windows (TSPTW) is very similar to the basic TSP with extra 

constraints on when the salesman can visit a city. Each city has a time window in which the 

salesman can visit the city. Arriving in the city before or after that time window does not count 

as a visit for the salesman. The objective remains to visit N nodes at least once (within their time 

windows) at a minimum travel cost.   

In linear programming these time windows would be expressed as a constraint the 

Salesman must visit the city after the time window’s lower bound, li, and before the time 

window’s upper bound, ui. Baker proposed a model with decision variables, ti, that specified the 

time the Salesman visited city i. The shortest travel times between each node pair is already 

found and expressed by dij .The decision variable tn+1 specifies the time the salesman returns to 

the start node, and it is the difference between this time and the start time, t0, that is trying to be 

minimized [28]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑡 − 𝑡  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑡 − 𝑡 ≥ 𝑑      𝑖 = 2, … , 𝑛 

  |𝑡 − 𝑡 | ≥ 𝑑      𝑖 = 3, … , 𝑛       2 ≤ 𝑗 ≤ 𝑖 

  𝑡 − 𝑡 ≥ 𝑑     𝑖 = 2, … , 𝑛 

  𝑡 ≥ 0      𝑖 = 1, … , 𝑛 + 1 

  𝑙 ≤ 𝑡 ≤ 𝑢      𝑖 = 2, … , 𝑛 

 In scenarios with many cities for the salesman to visit, a large |N|, this solution scales 

poorly and can take a long time to solve. Another exact algorithm to solve the TSPTW was 
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introduced by Mingozzi et al. through use of precedence constraints [27]. Precedence constraints 

in a route ensure a node is visited no earlier than the proceeding node is visited. These 

constraints ensure that in tour construction, the next node added in the route is always in time 

order. A faster, but inexact, approach was proposed by Gendreau et al. that utilizes the nearest 

neighbor algorithm to construct tours [29]. This method requires at each iteration, that the time 

window bounds be checked for the added city to ensure the solution constructed is feasible.   

3.3.4 Team Orienteering Problem 

 The Orienteering Problem (OP), or generalized TSP, is described as: given n nodes, each 

node i has a non-zero score 𝑠 . The arc between node i and j has an associated cost of cij. In this 

problem the travel time between each node represents the cost and each node can be visited at 

most once. The objective of the OP is to maximize the score of a path that consists of a subset of 

nodes beginning at node 1 and ending at node n without violating the max cost (travel time) 

constraint T.  

 Golden et al. demonstrate this model for the sport of orienteering has useful application 

to the VRP and production scheduling [30]. They also proved that the OP is NP-hard, warning of 

the computational limitations of exact methods and encouraging a focus on heuristic procedures 

for problems of these classification. Golden et al. present a composite algorithm where the first 

stage constructs routes through a cost-benefit analysis and the second stage improves the initial 

route by 2-opt method similar to Lin-Kernigan and then a center-of-gravity method. Golden, 

Wang and Liu produced a more efficient algorithm where the algorithm learns the most effective 

route improvement methods and adapts through the course of improvements [34]. Tsiligrides 

approached the OP with a two stage heuristic, building initial routes through a Monte Carlo 

approach, and improving routes through a local search space heuristic method that performs 

route optimization similar to Lin-Kernigan’s 2-opt method [33]. Ramesh and Brown solve the 

OP by iterating through four phases [35]: 

1. Construct an initial route by a cost-to-benefit analysis to see which node is best to add 

next on the route. 

2. Use Lin-Kernighan 2-opt method to improve the route. 
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3. Select nodes to delete from route that can be replaced with more valuable nodes in their 

places.  

4. Repeat until the marginal improvement of a round falls below a specified threshold. 

The Team Orienteering Problem (TOP) extends the OP by creating multiple tours of the 

network for multiple Orienteers to maximize the score collected. In the sport or orienteering a 

team of Orienteers attempt to coordinate together to collect as many waypoints as possible in a 

given amount of time. This aspect of coordination adds a great deal of complexity to the 

problem. Tang and Miller-Hooks used the heuristic of tabu search to overcome these 

complexities in TOP [31]. Following their work, Archetti et al. compared tabu search with 

variable neighborhood search and found that Variable Neighborhood Search outperformed two 

tabu search heuristics [32]. Adaptive Large Neighborhood Search, an extension of Variable 

Neighborhood Search, is explored further in Chapter 4 as a solution to the SSP.   

 Mixed Integer Linear Programming Model 

 This section discusses a Mixed-Integer Linear Programming (MILP) formulation that can 

be readily formatted to optimization software. The mathematical model provides the ability to 

find an exact optimal solution. Although previous research has shown that exact methods might 

not be practical, the optimal solution will give insight to compare the quality of a solution 

generated through heuristic methods. In addition, the linear programming relaxation of this 

model, while inexact, will give a quick theoretical upper limit to the “best solution.” This upper 

limit can be useful to evaluate the gap between LP and heuristic methods in a time efficient 

manner.  

 This work draws heavily from Miller’s reformulation of the Team Orienteering Problem 

with Time Windows (TOPTW) to solve his Unmanned Surface Vessel Observation-Planning 

Problem (USVOPP) [12]. The MILP developed by Miller took advantage of integer decision 

variables to create of placement-space nodes in network which greatly inspired this particular 

model. Miller’s binary variable 𝑥 takes a value of 1 if node i is visited by USV k in the t-th 

placement on the route, encompassing multiple decisions in a single variable. Also instrumental 

to the development of this model was Negron’s work in creating a MILP model to make 

schedule sorties (schedules with multiple tasks on a route for a resource). Negron linearized 
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travel time constraints by introducing linearization variables that are calculated a priori, which is 

key to formulating this particular model [7]. 

3.4.1 Supplier MILP Model Formulation 

 This mathematical formulation is used by individual suppliers to find the optimal 

schedule for a supplier’s resources for all the task requests received. First the notations for sets, 

decision variables, and input variables are defined. Then the objective function and constraints 

are introduced. Finally variations of this model are introduced to improve synchronization of 

element bids for a particular task.  

3.4.1.1 Set Definitions 

 The following sets are used in the formulation: 

 T = set of all tasks 

 U = set of all resources  

 U(e) = Set of all resources of type e 

 P = set of all placements in a path 

 The set P is the set of placements of tasks in a path for a resource. A placement denotes 

the order of a task in the path. For example, if a task is in placement three, then the task is the 

third task that will be performed by the resource. The set of placements contain the placement for 

each task in the path. For Example: The set associated with a path of five tasks, T={t1,t2,t3,t4,t5}, 

will contain the first five natural numbers, P={1,2,3,4,5}.  

3.4.1.2 Decision Variables 

accommodatei,u,p A binary decision variable of 1 if task i is accommodated by 

resource u in placement p, 0 otherwise.  

traveli,j,u A binary decision variable of 1 if the arc from task i to task j is 

travelled by resource u, 0 otherwise. 

arrivei,u A continuous decision variable that assigns the time that resource u 

will arrive at task i.    
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departi,u A continuous decision variable that assigns the time that resource u 

will depart from task i.      

Note where Negron and Miller make use of a decision variable named perform, this work 

uses the decision variable accommodate. This is to reflect that even though a resource of a 

supplier may be assigned to a specific task, it is not guaranteed to perform that task by the 

consumer, thus it has only been allocated to “accommodate” a task at this stage.  

3.4.1.3 Input Variables 

 earlyi   Beginning of time window for task i. 

 latei   End of time window for task i. 

 minDuri  Required time to complete task i. 

 horizon  Planning horizon. 

travelTimei,j,u Length of time for resource u to travel from location of task i to 

location of task j. 

travelToBaseTimei,u Length of time for resource u to travel from location of task i to 

location of u’s supplier.  

resourceCounti,e The number of elements that task i requests for a resource type e.  

valuei The value to complete task i. 

3.4.1.4 Objective Function 

 The objective is to maximize the total value of all tasks completed. Each task has a 

varying number of resources request, some tasks may only request one resource, and others may 

request multiple resources. Thus, the value of a task is divided by the number of resources 

requested so that the full value can only be achieved if all the resources requested are 

accommodated. The objective function is: 

 𝑀𝑎𝑥      ∑ ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ , ∈∈  
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3.4.1.5 Constraints 

 The model has twelve constraints that are categorized as resource type constraints, 

network constraints, or time window constraints. The constraints ensure that the capacities of 

suppliers and capabilities of resources are not exceeded, so that the resulting schedule for 

resources is feasible for all suppliers to fulfil. The resource type constraints ensure that a 

resource of one type does not accommodate a task element request of a different type. The 

following is the resource type constraints: 

(1) Ensure a Task, i, cannot be accommodated by a resource, u, it does not request. 

𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , , = 0    ∀𝑖 ∈ 𝑇, 𝑒 ∈ 𝑖, 𝑢 ∉ 𝑈(𝑒), 𝑝 ∈ 𝑃 

The network constraints ensure that the resulting operations scheduling creates a feasible 

path for the resources’ schedule. The following are the network constraints:  

(2) Each Task, i, can only be assigned one placement per resource. 

∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≤ 1     ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(3) Each placement, p, can only be assigned one task per resource. 

∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≤ 1     ∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃 

(4) Ensure each Task, i, does not get more resources, u, per element type of its request. 

∑ ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,  ∈∈ ( ) ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡 ,   ∀𝑖 ∈ 𝑇, 𝑒 ∈ 𝑖 

(5) Ensure that the tasks are assigned in successive placements on the resource path. 

∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ −  ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≤ 0  ∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃 − 1 

(6) Force a travel arc to exist between two tasks performed successively. 

𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , , + 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , , − 2 ∗ 𝑡𝑟𝑎𝑣𝑒𝑙 , , ≤ 1  ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇,  

∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃 − 1 

 The time window constraints limit the resulting operations scheduling to performing 

tasks within the desired time window. The following are the time window constraints:   
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(7) Resource must arrive after the beginning of the time window if it is accommodating 

task i. 

𝑒𝑎𝑟𝑙𝑦 × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≤ 𝑎𝑟𝑟𝑖𝑣𝑒 ,    ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(8) Resource must exit before end of time window if it is accommodating task i. 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛 − (ℎ𝑜𝑟𝑖𝑧𝑜𝑛 −  𝑙𝑎𝑡𝑒 ) × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≥ 𝑑𝑒𝑝𝑎𝑟𝑡 ,   

∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(9) Resource can depart the task only after the minimum required duration of time. 

𝑎𝑟𝑟𝑖𝑣𝑒 , − 𝑚𝑖𝑛𝐷𝑢𝑟 × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≤ 𝑑𝑒𝑝𝑎𝑟𝑡 ,  ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(10) Resource must begin schedule at location of supplier’s base. 

         𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑜𝐵𝑎𝑠𝑒𝑇𝑖𝑚𝑒 , ≤ 𝑎𝑟𝑟𝑖𝑣𝑒 ,     ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(11) Resource must end schedule at location of supplier’s base. 

         𝑑𝑒𝑝𝑎𝑟𝑡 , ≤ ℎ𝑜𝑟𝑖𝑧𝑜𝑛 − 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑜𝐵𝑎𝑠𝑒𝑇𝑖𝑚𝑒 ,    ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(12) Ensure sufficient travel time between tasks. 𝑎 , , must be calculated a priori as 

explained in Subsection 3.4.1.6 

𝑑𝑒𝑝𝑎𝑟𝑡 , + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 , , − 𝑎 , , (1 − 𝑡𝑟𝑎𝑣𝑒𝑙 , , ) ≤ 𝑎𝑟𝑟𝑖𝑣𝑒 ,  

∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇, 𝑢 ∈ 𝑈 

3.4.1.6 Linearization of Constraint  

 The LP model needs to constrain the time that a resource arrives at a subsequent task to 

be greater than the time that it takes to arrive at that following task, which is the time it departs 

the previous task plus the travel time between the two tasks. The intuitive way to write this 

constraint would be: 

𝑑𝑒𝑝𝑎𝑟𝑡 , + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 , , × 𝑡𝑟𝑎𝑣𝑒𝑙 , , ≤ 𝑎𝑟𝑟𝑖𝑣𝑒 ,  
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 However, this constraint in not linear, because decision variables are being multiplied 

together. Therefore Ropke, Cordeau, and Laporte developed the following way to linearize the 

constraint ensuring sufficient travel time between two tasks [14]. The value, 𝑎 , ,  , which must 

be calculated before solving the model, is: 

𝑎 , , = max 0, 𝑙𝑎𝑡𝑒 + 𝑚𝑖𝑛𝐷𝑢𝑟 + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 , , − 𝑒𝑎𝑟𝑙𝑦   

 This constraint, (12), will now either be redundant with the non-negativity constraints (if 

the resource does not travel between the two tasks) or will constrain the departure time of the last 

task plus travel time to be less than the arrival time to the next task. 

 (12)=
𝑑𝑒𝑝𝑎𝑟𝑡 , − 𝑙𝑎𝑡𝑒 , + 𝑚𝑖𝑛𝐷𝑢𝑟 ≤ 𝑎𝑟𝑟𝑖𝑣𝑒 , − 𝑒𝑎𝑟𝑙𝑦 ,     , 𝑡𝑟𝑎𝑣𝑒𝑙 , , = 0

𝑑𝑒𝑝𝑎𝑟𝑡 , + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 , ,             ≤ 𝑎𝑟𝑟𝑖𝑣𝑒 ,                             , 𝑡𝑟𝑎𝑣𝑒𝑙 , , = 1
 

3.4.2 Maximum Time Window Model Formulation 

 This e-commerce structure relies on two decision stages in each round of bidding, 1. the 

supplier deciding which tasks to service with which resources and when to service them and 2. 

the consumer deciding which resource bids have time windows overlapping that the consumer 

can accept to synchronize all the elements of a task. In stage 1, the supplier is trying to maximize 

the number of task elements accommodated which can result in very tight arrive and depart time 

windows.  

As the supplier is trying to pack as many tasks into its sortie as possible to maximize the 

objective function, resources’ time windows usually only last for the required minimum duration 

even if they had idle time between that task and its following task. This becomes a problem in 

stage 2 when a consumer may have received bids for all its task elements, but they are all in 

different sections of the task’s initial time window. While these resources may be surrounded by 

idle time in which they could have stayed on the task longer and still had enough time to travel to 

their next task, this is not reported in the current MILP model. To address this inefficiency the 

concept of Maximum Time Window (MTW) is added to the model to increase the likelihood of 

task elements bids overlapping for consumer synchronization. 
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3.4.2.1 MTW Objective Function 

 The new objective function is very similar to the original model’s objective function of 

maximizing the total value of tasks completed, but it also aims to maximize the time window that 

the resource schedules for a task. The MTW objective function is:  

𝑀𝑎𝑥      
𝑣𝑎𝑙𝑢𝑒

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡
𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒 , ,

∈ , ∈∈

+ 𝑤 (𝑑𝑒𝑝𝑎𝑟𝑡 , − 𝑎𝑟𝑟𝑖𝑣𝑒 , ) 
∈ , ∈

 

 This objective function maximizes the time windows for bids by maximizing the 

difference between the depart and arrive time for a resource to a task. An important parameter is 

the weight for stretching the time windows, 𝑤 , as it controls the relationship of how 

valuable accommodating a task is to maximizing the time window for accommodated tasks. 

Reminder: accommodate is a binary decision variable so can be {0,1}, while depart and arrive 

are continuous decision variables that are constrained by [0,latei - earlyi] (which for the context 

of this thesis is [0,25]).  

 In the most aggressive case for a supplier filling its sorties with as many tasks as possible, 

it will want to always choose to accommodate a task rather than maximize the time window of 

another task. For the particular parameters of this thesis, the weight should be set to: 

𝑤 =
𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒

𝑣𝑎𝑙𝑢𝑒 × ∆𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
=

1

100 × 25
= 0.0004 

 In more conservative cases where a supplier may want to allocate larger time windows 

for high value tasks at the expense of not accommodating low value tasks,  𝑤 can be 

increased depending on the desired ratio of large time windows to number of tasks 

accommodated.  

3.4.2.2 Maximum Time Window Constraints 

 A constraint will need to be added to the original model as well to control the difference 

in depart and arrive times for non-accommodated tasks. Constraints (7) and (8) only restrict 

arrivei,u and departi,u when ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ = 1, so when inactive the difference in depart 
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and arrive can become as large as the horizon value. Thus, the difference between arrive and 

depart times needs to be pushed to zero when a task is not being accommodated by that resource. 

(13) Force the time windows of non-accommodated task elements to zero. 

𝑑𝑒𝑝𝑎𝑟𝑡 , − 𝑎𝑟𝑟𝑖𝑣𝑒 , ≤ ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈   ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

 Constraint (9) ensures 𝑎𝑟𝑟𝑖𝑣𝑒 , ≤ 𝑑𝑒𝑝𝑎𝑟𝑡 , , so no additional constraints are needed to 

prevent negative time windows from occurring.   

3.4.3 Supplier MILP w/ Synchronization Model Formulation 

 This section address adding decision variables and constraints to ensure that resources a 

supplier is bidding on for a task are synchronized to the same arrival times. While altering the 

original MILP model to a MTW model increases the chance of overlapping time windows, it 

does not guarantee that the resources will be synchronized to arrive on task at the same time. To 

ensure the supplier is coordinating its resources, overarching task arrival and departure variables 

are introduced with three new constraints. These additions are to the nominal MILP model, as 

incorporating both overarching time variables and the MTW objective function is redundant.  

Synchronization Decision Variables 

Arrivei A continuous decision variable that assigns the time that all 

resources requested will arrive at task i.   

Departi A continuous decision variable that assigns the time that all 

resources requested will depart from task i.    

3.4.3.1 Synchronization Constraints  

 These super arrival and departure variables safeguard that for all resources servicing task 

i that they must be scheduled to service i for an overlapping time window of at least the 

minimum duration. The resources can arrive before the synchronized task servicing, and can stay 

after the synchronized task servicing. These synchronization constraints are: 

(14)  Overarching variable Arrivei is the latest arrival time of any resource servicing 

task i. 
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𝑎𝑟𝑟𝑖𝑣𝑒 , − ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × 1 −  𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒 , ,
∈

≤ 𝐴𝑟𝑟𝑖𝑣𝑒  

        ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(15) Overarching variable Departi is the earliest departure time of any resource 

servicing task i.  

𝑑𝑒𝑝𝑎𝑟𝑡 , + ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × 1 − 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒 , ,
∈

≥ 𝐷𝑒𝑝𝑎𝑟𝑡  

         ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(16) Resources can depart the task only after the minimum required duration of time. 

𝐴𝑟𝑟𝑖𝑣𝑒 + 𝑚𝑖𝑛𝐷𝑢𝑟 ≤ 𝐷𝑒𝑝𝑎𝑟𝑡     ∀𝑖 ∈ 𝑇 

 With constraint (16) constraint (9) becomes redundant and can be removed from the 

model.  

 This model addition of synchronization as a constraint rather than a desired feature, as in 

MTW, does constrict scheduling to sub-optimal solutions. suppliers may be forced to drop 

accommodating a task, because one element cannot be synchronized with the remaining  

elements for that task. This is highlighted in Example 2. 

Example 2: A consumer is requesting three resources for a task, {A,B,C}. This resource request 

goes to two suppliers. 

Supplier 1 has three resources, {A,B,C}. But it is very busy and its resources are already 

committed to servicing other tasks.   

Supplier 2 has two resource {B,C}. It has a very open schedule as it is not servicing any 

other tasks.  

 Supplier 1 can synchronize its B and C resources, but due to its tight schedule this 

aligned service time for the resource request is not compatible for any of the windows A is 

available. Under MTW supplier 1 would still bid to service A,B, and C, and supplier 2 would bid 

for servicing the task’s B and C resources. After a few rounds of bidding supplier 1 and 2 could 

find a mutual arrival time and the Task could be fulfilled. However, with synchronization being 
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required as a constraint, supplier 1 will always choose to send a bid that synchronizes B and C’s 

arrival time, rather than a bid that can service only A. This will result in the consumer never 

getting a bid on A, and thus the task goes unaccommodated.  

Synchronization as a constraint in the first stage of the bidding ensures more matches that 

are desirable to the consumer, but there may be a decrease in total number of resource bids for 

the second stage. These dropped resource bids, while having a time window that did not align 

with other resources from the supplier, could have been aligned with the time window of bids 

from other suppliers. In summary, the synchronization constraints may lead to sub-optimal 

results for consumers, but allows for task requests to be filled and synchronized much faster. 

3.4.4 Consumer MILP Model Formulation 

 This mathematical formulation is used by individual consumers to find the optimal 

selection of Elements Bids for a consumer’s tasks. First the notations for sets, decision variables, 

and input variables are defined. Then the objective function and constraints are introduced.  

3.4.4.1 Set Definitions 

The following sets are used in the formulation: 

 T = set of all tasks 

 B = set of all element bids 

 B(i,e) = set of all bids for a specific task and specific resource type e 

3.4.4.2 Decision Variables 

bidSelectb A binary decision variable of 1 if element bid b is selected by the 

consumer, 0 otherwise.  

performi A binary decision variable of 1 if task i is to be performed, 0 

otherwise. 

Arrivei A continuous decision variable that assigns the time that bids will 

begin task i.    
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Departi A continuous decision variable that assigns the time that bids will 

end task i.   

3.4.4.3 Input Variables 

 earlyb   Earliest time bid b can begin servicing its task. 

 lateb   Latest time bid b can end servicing its task. 

 costb   Cost of the element bid b. 

 horizon  Planning horizon. 

 minDuri  Required time to complete task i. 

resourceCounti,e The number of elements that task i requests for a resource type e. 

3.4.4.4 Objective Function 

 The objective is to maximize the number of tasks completed with minimal cost. When a 

supplier has multiple bids for a single element, and thus has choices on which bid to accept, this 

model choses the bids that have the lowest total cost. Cost being defined by the supplier. The 

objective function is: 

 𝑀𝑎𝑥      ∑ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚∈ − ∑ 𝑐𝑜𝑠𝑡 × 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡  

3.4.4.5 Constraints 

 These constraints ensure resource type and temporal conditions are respected. All 

element bids selected must respect one overarching arrival and departure time that lasts the task’s 

minimum duration. 

(17) Ensure that each task, i, does not get more bids for a resources type, e, per 

element type of its request. 

∑ 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡 ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡 ,∈ ( , )     ∀𝑖 ∈ 𝑇, 𝑒 ∈ 𝑖  

(18) A task, i, can only be performed if it has all resources requested. 

𝑝𝑒𝑟𝑓𝑜𝑟𝑚 × ∑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡∈ ≤  ∑ 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡∈   ∀𝑖 ∈ 𝑇 
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(19) Overarching variable Arrivei is the latest arrival time of any bid, b, selected for 

task i. 

𝑒𝑎𝑟𝑙𝑦 × 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡 ≤ 𝐴𝑟𝑟𝑖𝑣𝑒     ∀𝑖 ∈ 𝑇, 𝑏 ∈ 𝐵(𝑖) 

(20) Overarching variable Departi is the earliest departure time of any resource 

servicing task i.  

𝑙𝑎𝑡𝑒 + ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × (1 − 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡 ) ≥ 𝐷𝑒𝑝𝑎𝑟𝑡   ∀𝑖 ∈ 𝑇, 𝑏 ∈ 𝐵(𝑖) 

(21) A task can only be performed if it can be serviced for the required minimum 

duration of time. 

𝐴𝑟𝑟𝑖𝑣𝑒 + 𝑚𝑖𝑛𝐷𝑢𝑟 × 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 ≤ 𝐷𝑒𝑝𝑎𝑟𝑡   ∀𝑖 ∈ 𝑇 

 The Consumer MILP is much simpler than the Supplier MILP as the consumer does not 

have to worry about network or travel time constraints. The consumer does not concern itself 

with routes or order of resources servicing its tasks. This results in the Consumer MILP for bid 

selection having much shorter runtimes when compared to the Supplier MILP for scheduling. 

 Implementation 

While a multitude of optimization software could be used to solve this MILP, this project 

used Gurobi Optimizer 9.0.2 with Julia programming language through the extension Julia for 

Mathematical Optimization (JuMP) 0.18.The results and performance of this implementation are 

discussed in detail in Section 5.2. 
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Chapter 4  

4 Formulation of Algorithm 

The Mixed Integer Linear Programs introduced at the end of Chapter 3 provides an exact 

solution to the SSP. However, due to the complexity of the MILP, with a small increase in the 

number of tasks comes an exponential increase in runtimes for suppliers to find solutions. This 

motivates the development of an algorithm that uses heuristics to schedule resources in a 

reasonable time, as was shown in the literature review of Chapter 3.  

  This chapter introduces the Infeasibility Cooling Adaptive Allocation for Resource United 

Scheduling (ICAARUS). ICAARUS is a composite algorithm that draws its name from its three 

major components. Initially a Simulated Annealing criterion is used to schedule tasks with 

resources that may violate the task’s time window. The allowed infeasibility is cooled as the 

algorithm progresses to force a solution to feasibility. In the improvement phases, multiple route 

improvement heuristics are applied to the schedule and the algorithm learns which methods are 

most effective, and then adapts its allocation method to the specific problem at hand. As this 

work focuses on tasks that require multiple resources, this algorithm handles synchronization 

across all of a supplier’s resources for united scheduling.       

Notation 

Symbol Description 
s  Schedule of tasks for a supplier’s resources  

v(s)  Value of all tasks in schedule s 

f(s)  Cost of all tasks in schedule s 

u(s)  Utility of schedule s, u(s) = v(s) – f(s) 

α,β  Schedule cost parameters 

φ  Weight adjustment parameters 

y  Percentage of task list to be removed in removal phase 

q  Count of tasks to be removed in removal phase 

ψ,ω  Related removal parameters 
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p  Randomness parameter in related and worst removal 

DL  List of dropped tasks 

Ω  Cross Synchronization Matrix 

λ  Lambda-insertion parameter for task insertion index search 

Γ1  Set of removal methods 

Γ2  Set of insertion methods 

wi  Weight of removal and insertion methods 

πi  Score of removal and insertion methods 

κ  Weight adjustment parameter  

 Confirmation Lists  

The bidding system outlined in Section 2.2 depends on a supplier remembering which 

tasks it has bid on servicing. This bookkeeping is done by each supplier storing two lists: 

1. Unconfirmed Task List – A list of all tasks that the supplier had in its previous 

schedule, and has not yet received a confirmation of acceptance or rejection of the 

element bid from the issuing consumer.   

2. Confirmed Task List – A list of all tasks for which the supplier has received an element 

bid acceptance, from its issuing consumer.   

 To improve the runtime of ICAARUS, these lists also contain which resource is supposed 

to service this task and at what time. This information is used in the construction phase of future 

schedules to intelligently insert old tasks into what was once the optimal resource path position. 

This “hot start” to scheduling allows the current round of bidding to utilize the progress made in 

previous bidding rounds. While a schedule will change when tasks are removed from a consumer 

rejecting a bid, the memory of this skeleton schedule greatly improves future bidding round 

runtimes as seen in Chapter 5. 

In the first round of bidding, these two lists are empty as no bids have been sent by the 

supplier. After the first round of bidding, suppliers must manage updates to their schedule and 

changes to the Confirmation Lists. After the supplier solver has found its new schedule, tasks in 

the schedule are compared to the two confirmation lists and three possible scenarios can occur:  
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1. If  the task is not on either confirmation list: 

The task is added to the Unconfirmed Task List and the consumer is sent a 

notification of the supplier’s bid. 

2. If the task is already on the Unconfirmed Task List: 

The task’s arrival and departure times are updated on the Unconfirmed Task List 

in case of changes in the new schedule. The consumer is sent a notification of the 

supplier’s bid again.  

3. If the task is already on the Confirmed Task List: 

The task stays on the Confirmed Task List, and no message is sent to the 

consumer, as they have already confirmed notification of the bid(s). 

 Construction Phase 

 In the construction phase, initial paths are created for the resources of the supplier. The 

first part to any composite algorithm is the construction of an initial route, the second being the 

improvement of those routes. These two phases are utilized by the construction phase making 

potentially flawed scheduling assumptions for the sake of speedy construction. This is tolerable 

as the improvement phase will later correct these errors. Specifically, ICAARUS tolerates time 

window violations initially, as a later phase will correct these infeasibility issues.  

The general challenge of the construction phase is striking a balance between 

construction speed vs. solution optimality. If the construction phase creates a schedule with only 

a few tasks in its task list, the improvement phase’s search space is decreased with less possible 

combinations for a schedule. This limited task list is only one neighborhood of the entire possible 

search space, and is not guaranteed to house the global optimal solution. Since it is hard to know 

which tasks will be in the optimal solution from the beginning, adding as many tasks as possible 

in the initial construction widens the scope of the search space. This increases the chances of 

finding the global optimal schedule, but at the cost of exponentially increasing the search 

runtime. 

First, the Construction Phases for Negron’s Composite Operations Planning Algorithm 

(COPA) and Herold’s Dual-Collections are analyzed for insight into striking a balance between 
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construction speed and solution optimality. Then ICAARUS’s construction phase is presented 

and how it uses Simulated Annealing to schedule resources in a united manner. 

4.2.1 COPA Construction Phase 

COPA’s construction phase takes input on UAV types, tasks, and task locations to select 

initial paths. The input notation is defined here: 

valuet   Value of task t 

obsTimet  Required time to complete task t 

idleTimet Length of time that the UAV will have to wait before starting task 

due to a time window constraint 

latet  End of time window for task t 

travelTime(t’),(t),u  Length of time for a UAV to travel from task t to t’ 

below in Equation 1 is the cost-benefit ratio that was used by Negron to find the best next 

task to be assigned to a UAV’s path [1]: 

Equation 1: Negron Cost-Benefit Ratio 

𝐶𝐵𝑅 =  
𝑣𝑎𝑙𝑢𝑒

𝑤 × 𝑜𝑏𝑠𝑇𝑖𝑚𝑒 + 𝑤 × 𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 + 𝑤 × 𝑙𝑎𝑡𝑒 + 𝑤 × 𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑇𝑖𝑚𝑒( ),( ),  
 

Parameters w1, w2,  w3, and w4 are the weights used in the cost-benefit ratio to manage each 

factor’s importance to scheduling. Tuning these parameters must be learned for the system 

beforehand.  

 The following steps describe COPA’s construction procedure. The procedure is repeated 

for each UAV type, and produces the set Pi,k, the set of ordered tasks for the path of UAV k of 

type i: 

(1) Obtain list of all tasks that can be serviced by UAV of type i. This is set Ti 

(2) Set currentTimek = 0; current task is starting at home base. 

(3) For each UAV of Type i: 

a. For each feasible tasks in Ti calculate CBRt 
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b. Find max{𝐶𝐵𝑅 } ∀𝑡 ∈ 𝑇 ; this is t* 

c. Add t* to Pi,k 

d. Remove task t* from Ti 

e. Update currentTimek. If currentTimek > horizon, start path for next UAV; 

𝑘 = 𝑘 + 1 

This procedure provides an initial path, in the form of an ordered set of tasks, for each 

UAV. As previously noted, the ordered set of locations for UAV k of type i is represented by Pi,k. 

Pi represents the set of paths for UAVs of type i (Pi = {Pi,1, Pi,2, ... }). P denotes the entire set of 

paths and corresponding resources, which is also the set of composites. However, by creating 

each path independently, COPA’s construction phase is unable to service tasks that require 

collaboration among resources. 

4.2.2 Dual-Collection Construction Phase 

Herold extends COPA’s construction procedure to handle dual-collection tasks by 

creating two separate task requests for each dual-collect [9]. Initially there is no method used to 

synchronize these two identical tasks, it is left for a later phase to correct. This keeps the runtime 

for the construction phase as reasonable as COPA’s as the set of Tasks increases linearly by the 

number of dual-collections, |𝑇 | = |𝑇| + |𝑇 |.  

 However a simple construction phase that lacks attention to synchronize resources can 

ultimately have expensive runtime costs in the long run. Herold’s method to align two initially 

separate tasks is computationally expensive in worst-case scenarios. There is also the potential 

error that only one of the dual tasks will be added to the set of paths. Herold’s work revealed that 

scheduling multiple versions of a task leads to few task pairs advancing in the solution after the 

construction phase. To overcome this handicap, tasks being scheduled in the construction phase 

have their cost-benefit ratio inflated by doubling the value of the task. This increases the 

likelihood of dual collections being possible, by increasing the request’s attractiveness to the 

route construction procedure.  

 Herold’s construction phase operates under the assumption that tasks only need to be 

synchronized across at most two resources, and only a few of the total tasks may require this 

difficult temporal alignment. Thus, these prior methods do not scale well for this thesis’s goal of 



53 
 
 

schedule creation where a majority of tasks require synchronization across a variable number of 

resources ({1,2,3, or 4 resources}). 

4.2.3 ICAARUS Construction Phase 

ICAARUS constructs initial paths for all resources simultaneously, uniting the resource 

scheduling specifically for handling task synchronization. This is done by adding tasks in their 

entirety to the schedule, with all elements of that task maintaining synchronization across 

resources. If a new task is added that requires one element of a task arriving delayed, all 

elements of that task are delayed. This synchronization is shown in Figure 12: 

Figure 12: Example of Resource United Scheduling 
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In the example of Figure 12 a supplier has three resources, {A,B,C}. Task 1 requests 

resource A & B, and Task 2 only requests resource 2. Task 1 is closer to the supplier’s home 

base then Task 2, so requires less travel time, thus Task 1 is scheduled earlier than Task 2.  

Task 3 request comes in asking for three resources, {A,B,C}. The earliest each resource 

could arrive at Task 3 is shown in the middle diagram. Servicing Task 3 at the earliest possible 

times for each resource would result in all three resources not being synchronized as resource C 

cannot service Task 3 until after resource A and B would service it. For resource united 

scheduling, Task 3 is pushed back in the schedule for Resource A and B to the time the earliest 

time that all requested resources can synchronize their services. This may result in inefficient 

idle time as A and B arrive at Task 3, but are inactive till the beginning of the synchronized 

service time for Task 3. 

Figure 12 shows the simplest case of a supplier only possessing one resource of each 

type, but when a supplier possesses multiple resources of the same type, a decision must be made 

which resource to allocate to the task. This is done with speed and fairness in mind through the 

following resource element selection procedure: 

(1) For each resource u requested by task t;  

a. rc is the number of elements needed of type u 

b. For each element e that the supplier has of u 

i. Find earliest arrival time for e to t; This is arriveTimee 

c. Sort all arriveTimee into arriveTimeList 

d. Assign first rc elements to service task t; arriveTimeList[1:rc]  

ICAARUS construction phase takes input on resource types, tasks, and the planning map 

to select initial paths. The input notation is defined below: 

valuet   Value of task t 

resourceCountt Number of resources requested by task t   

idleTimet Length of time that resource u will have to wait before starting task 

t due to a time window or synchronization constraint 
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minDurt Minimum time required for resources to service task t 

latet  End of time window for task t 

horizon  Planning horizon 

travelTime(t’),(t),u  Length of time for resource u to travel from task t to t’ 

mapDistance Time it would take to travel the longest distance possible of the 

planning map. 

below in Equation 2 marks the benefit-to-cost ratio, BtoC, that is used to find the best 

next task to be allocated resources in the schedule: 

Equation 2: Benefit-to-Cost Ratio 

𝐵𝑡𝑜𝐶 =
𝑣𝑎𝑙𝑢𝑒 ∗ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡

max
∈

𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒 ,

𝑚𝑖𝑛𝐷𝑢𝑟
+

𝑙𝑎𝑡𝑒
ℎ𝑜𝑟𝑖𝑧𝑜𝑛

+
max

∈
𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 , ,

𝑚𝑎𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 

The numerator is multiplied by resourceCountt to increase the likelihood of synchronization 

tasks being selected as used effectively by Herold dual-collection tasks [9]. The maximum 

idleTimet,u and travelTimet,t’,u reflects the fact that resources, selected for task t, may be coming 

from different tasks and have differing idle and travel times. The three variables in the 

denominator idleTimet, latet, and travelTime(t’),(t),u are normalized by minDurt, horizon, and 

mapDistance respectively to capture their relative weight for BtoC analysis. Such as idle time 

increasing by one minute should penalize a task more than travel time increasing by one minute 

as productive travel is acceptable in a large planning map, while unproductive idle time for a task 

of short duration is undesirable.  

 Negron’s COPA construction phase achieves its speed by advancing linearly through the 

planning horizon [7]. Once a task is added to a path, COPA does not look back to see if tasks can 

be inserted earlier in the spaces left by idle time. This is a problem for resource united scheduling 

as it is prone to create schedules with increased idle time. The reason being it pushes many 

elements back in a task’s time window to accommodate synchronizing across all resources. With 
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more idle time comes less available time to schedule a task within its allotted time window, 

running the risk of infeasibility. 

Simulated Annealing is utilized to manage infeasibility by scheduling tasks outside of 

their requested time windows. This is to maintain the speed of linear path planning, while 

becoming more accommodating of resource united scheduling’s idle drawbacks. The variable 

temp controls the threshold for accepting tasks in an infeasible time assignment. These infeasible 

task placements in the path are expected to be remedied in the improvement phase or dropped 

from the schedule all together.  

The following steps describe the ICAARUS construction procedure: 

(1) Collect requests into one task list. This is set T 

(2) Collect Unconfirmed and Confirmed Task List into one task list; This is set C 

(3) For each task t in T 

a. If a task requests a resource from the supplier, but the supplier does not have 

that resource, remove the element request from the task list. 

b. If a task’s element request list is made null, remove task from T. 

(4) While 𝑇 ≠ ∅: 

a. best_BtoC = -∞; best_t = ∅; best_pathList = ∅ 

b. For each task t in T: 

i. Resource element selection procedure finds best paths to add t on; 

pathListt 

ii. Find BtoC and departTime for t 

iii. If 𝑑𝑒𝑝𝑎𝑟𝑡𝑇𝑖𝑚𝑒 ≤ 𝑙𝑎𝑡𝑒   

or 𝑟𝑎𝑛𝑑() < 𝑒 ∗  

1. If best_BtoC < BtoC 

a. best_BtoC = BtoC; best_t = t; best_pathList = pathListt 

c. Quit if best_BtoC = -∞ 

d. Add best task to earliest available resources on the schedule; Add best_t to 

path(s) in best_pathList 

e. Calculate 𝑐𝑇𝑖𝑚𝑒 ∀𝑢 ∈ 𝑈; cTimeu = departTime of the last task on u’s path 
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f. scheduleUpdate = TRUE 

g. While scheduleUpdate: 

i. scheduleUpdate = FALSE 

ii. Find earliest task, te ,in C where 𝑎𝑟𝑟𝑖𝑣𝑒𝑇𝑖𝑚𝑒 ≤ 𝑐𝑇𝑖𝑚𝑒 ∀𝑢 ∈ 𝑈′; 

U’ being the subset of U that t is allocated 

1. Add te to the schedule 

2. Remove te from C 

3. Update altered paths cTimeu 

4. scheduleUpdate = TRUE 

(5) Add any tasks still in C to end of schedule 

The ICAARUS construction procedure relies heavily on the improvement phase to 

correct infeasibility in the schedule, as seen by tasks from set C only being added to the new 

schedule after their original scheduled time is violated surpassed. This method of adding sections 

of a previous schedule to a new schedule is to allow new task requests filling potential holes in 

the previous schedule. These potential holes are where resources have open windows of 

inactivity. This addition method aims to keep task placement patterns similar to what previous 

rounds of ICAARUS had found as the optimal order of tasks to service.  

 Improvement Phase 

The improvement phase of ICAARUS improves the paths created by the construction 

phase. This phase uses five removal methods to improve the paths: Related Removal, Worst 

Removal, Synchronized-Services Removal, Route Removal, and Random Removal with two 

insertion methods: Best Insertion and Regret Insertion. 

The improvement phase continuously repeats removing tasks and re-inserting them to 

create new improved paths. These methods are known as Large Neighborhood Search (LNS) for 

searching individual domains of the search space, known as neighborhoods [13]. The methods 

effect several tasks at a time, dealing with a larger scope of the search space than some methods 

that only tweak two task positions at a time. Hendel improved their LNS heuristic for MIP by a 

reward function to learn to distinguish between successful and unproductive methods calls, this 

is known as Adaptive LNS (ALNS) [13]. ICAARUS proposes a reward function for tracking if 
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these methods create improved or novel schedules, and adapts the likelihood of that method’s 

future use accordingly.  

In order to encourage searching new neighborhoods of the solution space, the current 

schedule for improvement is not always the best schedule found so far. While ICAARUS stores 

the best solution found so far, the improvement phase can alter the current iteration’s schedule 

into one of lesser value. This is done in order to prevent solutions becoming trapped in a local 

optimum.  

4.3.1 Infeasibility measurement 

The ICAARUS improvement phase takes schedules with tasks assigned arrival times 

outside of their time windows, and may reschedule them to arrival times that are still infeasible. 

This is necessary, as mentioned in Section 4.2.3, because resource united scheduling commonly 

results in large gaps of idle time. If a scheduler were to only assign tasks to resources that can 

arrive within their time window, then a greedy heuristic would create a schedule with very few 

tasks and make finding high value schedules impossible. A final solution can not have any 

infeasible task assignments, therefore a Simulated Annealing criteria is used to guide the 

improvement phase out of infeasibility.  

Initially, the temperature variable that controls the degree of acceptance of infeasibility is 

set high. This variable is then brought down through iterations to force the improvement methods 

to either create a feasible schedule or drop tasks from the schedule. This corresponds with 

schedules that are originally greedily created with many tasks to not rule out potential solutions 

too early. However, after iterations of the improvement phase the schedule should begin to 

approach an optimal solution and know which tasks cannot be included in a feasible solution. 
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What quantifies one schedule as more infeasible than another is measured through the 

cost of the schedule, f(s), defined below:  

𝑓(𝑠) = 𝑐(𝑠) +  𝛼𝑃 (𝑠) + 𝛽𝑃 (𝑠) 

c(s) = Travel Time costs of all resources on their paths 

 P1(s) = Sum of all differences between late and depart times 

 P2(s) = Sum of all differences between horizon and depart times 

If a solution is feasible, then P1(s) = P2(s) = 0. The variables of α and β adjust the penalty of 

violating these thresholds of feasibility. The values of these parameters are increased or 

decreased at the end of every improvement iteration. This helps facilitate exploration throughout 

the search space. The rules for adjusting are given below: 

𝛼 =
max 𝑎 ,

𝛼

1 + 𝜑
,           𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

min 𝛼 , 𝛼 × (1 + 𝜑 ) ,    𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒
 

𝛽 =
max 𝛽 ,

𝛽

1 + 𝜑
,                𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

min 𝛽 , 𝛽 × (1 + 𝜑 ) ,    𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑠 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

 

The bounds (αmin, αmax) and (βmin , βmax) serve to control the interval of the infeasibility 

measuring weights. A streak of infeasible or feasible solutions for too long may make these 

weights too massive or too insignificant to be corrected when a new feasible or infeasible 

solution, respectively, is found. Thus, these bounds constrain the weights to stay within effective 

ranges. 

4.3.2 Avoiding Cross Synchronization  

Due to some tasks the supplier is servicing requiring synchronization across resources, 

insertion methods (Section 4.3.4) must avoid cross-synchronization in the resulting schedule. 

Cross-synchronization is when two synchronization tasks become entangled, and makes 

synchronization impossible. Figure 13 illustrates this problem: 
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Figure 13: Example of Cross-Synchronization 

 

 In the example of Figure 13, there are two tasks, task 1 and task 2, that each require 

synchronization across resources. For resource A, the path services task 1 first then task 2. For 

resource B, the path services task 2 first then task 1. This entanglement makes synchronization of 

both tasks infeasible. Synchronizing either task puts the other task simultaneously both before 

and after the original task, making synchronization of the other task impossible. 

 Cross-synchronization is not a problem for tasks that request only a single service from 

the supplier. Thus, avoiding cross-synchronization only requires monitoring tasks requesting 

multiple resources from a supplier. Insertion methods are prevented from creating a cross-

synchronization scenario through use of a cross-synchronization matrix, Ω. 

4.3.2.1 Checking for Cross-Synchronization 

To prohibit cross-synchronization cases, the use of a 𝑁 × 𝑁  square matrix Ω 

records the visit sequence of each pair of synchronization tasks. Nsyn being the number of tasks in 

the schedule that require synchronization. An example of this matrix is shown in Figure 14: 

Figure 14: Example of Cross-Synchronization Matrix 
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 In the example of Figure 14, a schedule with 3 synchronization tasks, {1,2,3} are shown 

on the right with its corresponding cross-synchronization matrix on the right. There are no rows 

or columns in Ω for single service tasks. On resource B’s path, Task 1 comes before Task 2, so 

consequently Ω[1,2] equals 1. On resource C’s path, Task 2 comes before Task 3, so Ω[2,3] also 

equals 1.  

 Despite no resource path servicing both Task 1 and Task 3, they are linked together 

through Task 2. Servicing sequences can be transferred between various routes, so as a result 

Ω[1,3] equals 1. All other values in the matrix equal 0. 

 With a cross-synchronization matrix, ICAARUS can check if inserting a synchronization 

task into multiple routes simultaneously will result in the problem of cross-synchronization. To 

do this, the insertion method must find the closest synchronization tasks before and after the 

proposed insertion spot on the selected resource paths. This can be seen in Figure 15. Tasks 

immediately before or after the desired insertion spot are not necessarily synchronization tasks, 

they could be just single resource tasks. This requires ICAARUS to search sequentially outwards 

on the resource path until it finds the first synchronization tasks both before and after the desired 

task insertion spot. In addition, the proposed new task could be getting inserted into a spot that 

has no synchronization task before or after it. In that case there is one less task to check for 

cross-synchronization issues.  

Figure 15: Checking for Cross-Synchronization when inserting a Synchronized Task 
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addition, m is the first synchronization task on B’s path preceding the insertion spot of k, and n is 

the first synchronization task on B’s path following the insertion spot of k. To find if this 

insertion would cause a cross-synchronization, ICAARUS will check Ω[j,m] and Ω[n,i]. If both 

of them equal 0, then this is a valid insertion. However, if either one of them equals 1, then this 

insertion is removed from consideration as it would cause cross-synchronization.  

4.3.2.2 Constructing Cross-Synchronization Matrix 

At the beginning of every insertion method, the current schedule s will need a 

corresponding cross-synchronization matrix Ω. Initially Ω is an all zero 𝑁 × 𝑁  square 

matrix. Then Ω is constructed with Algorithm 1. In steps 2-5, task precedence in each route is 

addressed separately. In steps 6-15 the servicing sequence among each pair of synchronized tasks 

that depend on different paths is addressed, until all relationships disseminate throughout Ω.  

Algorithm 1: Construct Cross-Synchronization Matrix  
1 Create list of all synchronized tasks, T 
2 For k=0; k ≤ |Supplier Resource Count|; k++ 
3  Select each pair of synchronized tasks, (i,j), in path k 
4   If i is serviced before j Then Ω[i,j] = 1 
5 End For 
6 Do   
7 For i=0; i ≤ |T|; i++ 
8  For j = 0; j ≤ |T|; j++; i ≠ j 
9   If Ω[i,j] = 0 
10    For k = 0; k ≤ |T|; k++; k ≠ i; k ≠ j 
11     If Ω[i,k] = 1 and Ω[k,j] = 1 Then Ω[i,j] = 1 
12    End For 
13  End For 
14 End For        
15  Until Ω is not updated 

4.3.2.3 Updating Cross Synchronization Matrix 

After every synchronized task insertion, matrix Ω must be updated to reflect the updated 

schedule s. This update is done by Algorithm 1 steps 6-15, to disseminate the new servicing 

sequence pairs across paths.  

For example, from Figure 15, we update Ω as follows. First, because in A’s path the 

immediate synchronization task following task k is j, the tasks serviced after j must now be 

serviced after k. Thus, row k of Ω is updated, i.e., for each column x of Ω, if Ω[h, x] is 1 then set 
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Ω[k, x] equal to 1. This is repeated for every path the task is being inserted into. So for visit 

sequence in B’s path, for each column x of Ω, if Ω[n,x] is 1 then set the value of Ω[k, x] equal to 

1.  

Next, because in A’s path the immediate synchronization task preceding k is i, the tasks 

serviced before i must also be serviced before k. Thus, column k of Ω is updated, i.e., for each 

column x of Ω, if Ω[x, i] is 1, then set Ω[x,k] equal to 1. This is repeated for every path the task 

is being inserted into. Therefore, for visit sequence in B’s path, for each row x of Ω, if Ω[x,m] is 

1 then Ω[x,k] is also set equal to 1.  

When a removal operator has been selected and tasks are removed from the solution, the 

cross-synchronization matrix is updated using the construction procedure for Ω. Whether Ω is 

updated after each individual task or a set of tasks are removed is specified for each removal 

method. 

4.3.3 Removal Methods  

The improvement phase faces a trade-off of speed versus optimality when it comes to 

search size. If it removes a few tasks, then less time is required to re-insert them, and thus the 

improvement phase can have more iterations. However, more iterations are unhelpful as the 

solution becomes trapped in a local optimum of the search space. While removing numerous 

tasks increases the time to re-insert them, but it also increases the likelihood of re-inserting them 

in an order that improves the schedule’s utility. To balance this trade off, each iteration of the 

improvement phase calculates selects a random percentage, y, from a uniform distribution range 

of [0.15,0.30], which is then used to calculate q, the number of tasks to be removed: 

𝑞 = 𝑦 × |𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡| 

By varying the number of tasks to be removed, and consequently re-inserted, ICAARUS 

balances speed with search space depth.  

4.3.3.1 Related Removal 

The related removal is inspired from the “Shaw Removal” operator [10]. This removal 

method searches all tasks for pairs that are related to each other, because removing and later re-

inserting similar tasks has a higher probability they will be reshuffled into feasible and better 
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solutions. Two tasks i and j’s relatedness is evaluated based on their distance and arrive times 

and measured by a Relatedness Score: 

𝑅(𝑖, 𝑗)  = 𝜓 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , +  𝜔 ∗ |𝑎𝑟𝑟𝑖𝑣𝑒𝑇𝑖𝑚𝑒 − 𝑎𝑟𝑟𝑖𝑣𝑒𝑇𝑖𝑚𝑒 |  

Ψ and ω are weight parameters.  

Figure 16: Example of Related Removal 

 

 

 

 

 

 

 

 

 

In the example of Figure 16 there are two resources, A1 and A2. A1’s current schedule is 

servicing tasks {1,2,6} and A2’s current schedule is servicing tasks {4,5,3}. Task 3 and 6 is the 

closest pair to each other in both time and space, as seen in the left and right diagrams 

respectively. If Task 3 were removed, its most related task would be Task 6, and would be chosen 
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switch 3 and 6 assignments and create more efficient paths.  

Below is Algorithm 2 that utilizes this removal method:  
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Algorithm 2: Related Removal 
1 Create list L of all tasks in schedule s  
2 Randomly select a task i from L 
3 D = {i} 
4 Remove task i from L 
5 While |D| < q 
6  Randomly select a task j from D 
7  Sort L in decreasing order according to the relatedness to i => R(i,j) 
8  Choose y, a random number from uniform distribution in [0,1]. Set 𝐸 = 𝑦 × |𝐿| 
9  Select task L[E] from set L. Insert it into set D and remove from set L. 
10 End While 
11 Remove tasks in D from the current schedule s 
12 Synchronize(s)  

Parameter p, Line 8, introduces randomness in the selection of related customers. This is used in 

Line 9 for the effect of decreasing the likelihood that the same related pairs are constantly 

chosen, allowing for greater search of the solution space.  

Synchronization of the schedule after each removal iteration could make some tasks have 

similar relatedness scores when their original arrival times were actually quite different. To 

prevent this mistaken rating, synchronization only occurs after all tasks are removed. This saves 

time as only one synchronization check is needed to send an accurate schedule to the subsequent 

task insertion method. 

4.3.3.2 Worst Removal 

The worst removal removes the tasks that would result in the greatest savings for the 

schedule. The greatest savings are measured by what creates the greatest decrease in the schedule 

utility u(s), thus removing tasks that do not contribute much to v(s) and are costly in c(s), P1(s), 

or P2(s). Figure 17 presents a scenario that showcases worst removal:  
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Figure 17: Example of Worst Removal 

 

 In the example of Figure 17 the schedule has four tasks, {1,2,3,4}. In the top schedule 

resource A1 services Task 1 first, this results in Tasks 2 & 3 being serviced outside of their time 

windows. Thus, the top schedule is infeasible. The Worst Removal method would remove Task 1, 

which allows a schedule to be created with Task 2-4 in feasible time windows. A resulting 

insertion may assign Task 1 to resource A2 which has plenty of room in its schedule.   

Below is Algorithm 3 that utilizes this removal method: 
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Algorithm 3: Worst Removal 
1 Create list L of all tasks in schedule  
2 D = {} 
3 While |D| < q  
4  Sort L in decreasing order according to schedule utility u(s) if task i is removed 
5  Choose y, a random number from a uniform distribution in [0,1].   
6                      Set 𝐸 =  𝑦  × |𝐿| 
7  Select task L[E] from set L. Insert it into set D.  
8  Remove task L[E] from schedule s and set L. 
9  Synchronize(s) 
10 End While 

Parameter p for randomness in selection of worst customers is used in a similar manner as 

described in related removal for increased search of the solution space. Differing from related 

removal is the need for synchronization after each task removal. A task i may appear as “costly” 

because earlier task j forces it to be late, but after the troublemaker task j is removed then task j 

no longer significantly increases f(s). 

4.3.3.3 Synchronized-Services Removal 

This removal method targets tasks that have two or more resource requests. tasks 

requiring multiple resources to be synchronized can appear as very valuable, but become choke 

points for the whole schedule. These complicated tasks, when put in a sub-optimal position can 

force numerous following tasks to be outside of their feasible time windows. Meanwhile the task 

that is the source of the backup remains feasible and thus has an apparent “good” score.  

Which synchronized-services tasks to be removed are selected randomly. Because the 

synchronized tasks are selected randomly, not based off of schedule features, re-synchronization 

can be done just once. This re-synchronization adjustment of the schedule is done after the q 

tasks are removed.  

4.3.3.4 Route Removal 

This removal method randomly selects one resource of the supplier at a time, and 

removes all tasks on its path, clearing as many resource paths as required to remove q tasks from 

the schedule. This is done to see if groupings of tasks similar in distance can be better served by 

another resource that may be servicing other tasks in that geographic area. This is depicted in 

Figure 18: 
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Figure 18: Example of Route Removal 

 

 In the example of Figure 18 the schedule has four tasks, {1,2,3,4}. The initial schedule 

has resource A1 service Task 1 & 2, and resource A2 service Task 3& 4. In this map the four 

tasks are all close spatially, but far from the supplier that houses A1 and A2. The Route Removal 

method selects A2’s path to eliminate, and results in Task 3 & 4 being reinserted to A1’s path. 

Assuming this new path is feasible with all tasks time windows, this results in lower total cost as 

A1 has already traveled a long distance to service Task 1 & 2, it would be a waste to have A2 

travel that far as well. 

The re-synchronization adjustment of the schedule can be done just once, after the q tasks 

are removed. 

4.3.3.5 Random Removal 

To avoid becoming stuck in local optimum solutions, this method removes randomly 

selected tasks. This helps push ICAARUS to explore a wide breadth of the search space. Because 

the tasks are selected randomly, not based off of schedule features, re-synchronization can be 

done just once. This re-synchronization adjustment of the schedule is done after the q tasks are 

removed 

4.3.4 Insertion Methods 

Once q tasks have been removed from the schedule, those q tasks are added to a list of all 

tasks dropped in previous removal phases. This dropped list, DL, gives the system the memory to 

hold onto tasks through multiple improvement phase iterations. These insertion methods are not 

restricted to insert all tasks in the DL. An iteration may produce a schedule where certain tasks 

appear impossible to allocate resources, therefore for feasibility the tasks must be removed. 
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However, a later iteration could service those tasks to produce a new best schedule. ICAARUS 

inherently accepts that the schedule from the construction phase may contain tasks that make 

feasibility impossible. ICAARUS will continue to evaluate these dropped tasks for possible 

insertion in order to maximize schedule value.   

4.3.4.1 Best Insertion  

The best insertion inserts the tasks that would result in the greatest reward for the 

schedule. The greatest reward is measured by what creates the greatest increase in the schedule 

utility u(s), thus inserting tasks that contribute greatly to v(s) and are not costly in c(s), P1(s), or 

P2(s). Below is the algorithm that utilizes this removal method:   

Algorithm 3: Best Insertion 
1 scurr = s 
2 D = DL 
3 Ω = Cross Synchronization Matrix from current schedule s and DL 
4 While |D| > 0 
5  sbest = scurr 

6  uprev = u(scurr), ubest = -∞ 
7  taskbest = 0/   
8  For task i in D 
9   stmp,utmp = taskInsertSearch(scurr,i,Ω,λ) 
10   If utmp > ubest 
11    sbest = stmp, ubest = utmp, taskbest = i 
12  If ubest < 0 
13   Exit insertion, all possible tasks to insert only lower utility of schedule 
14  Else If ubest > uprev 
15   scurr = sbest 
16   update Cross Synchronization Matrix, Ω, for taskbest added to schedule 

17  Else If 𝑒 × ≥ 𝑟𝑎𝑛𝑑() 
18   scurr = sbest 
19   update Cross Synchronization Matrix, Ω, for taskbest added to schedule 
20  remove taskbest from D 

 The new schedule is accepted as an update to the current schedule when it has a greater 

utility than the previous schedule, as seen by Lines 14-16. However, when it is not an 

improvement, simulated annealing is used to encourage state space search. Line 17 shows the 

criteria for deciding if the lower scoring schedule should be accepted based on the magnitude of 

its utility difference from the previous schedule.   
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 For taskInsertSearch() in Line 9, a straightforward “simple algorithm” may try inserting 

task i’s resource requests in all indexes of the path of the current schedule, to find which 

insertion spot causes the least increase in the cost of the overall schedule. However, because the 

tasks are constrained by time windows, many infeasible insertion spots would be evaluated 

despite being far out of the tasks time window. Miller’s improvement phase makes uses of a λ 

parameter to represent a percentage of the route that the algorithm will search for insertion 

locations [12]. As can be seen in Figure 19 below, by finding the index of the task on the path 

that is the first task after task i’s early time. This reference index +/- λ% × |path length| create the 

range of indexes of the path where insertion is evaluated, saving a large amount of unnecessary 

calculation. 

Figure 19: Example of Lambda Insertion 

 

 In the example of Figure 19, Task i is trying to be inserted into a path of one resource 

that has four tasks. The beginning of Task i's time window is known to be time earlyi. Based off of 

the arrive times of the 2nd & 3rd tasks on this resources path, it is known earlyi occurs between 

these two tasks, so the 3rd task is the reference index for lambda insertion: 

𝑖𝑛𝑑𝑒𝑥 ± 𝜆 |𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ| 
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For this example indexreference = 3, and as the resource only has four tasks on its path, path 

length = 4. The resulting range of insertion indices for λ = 10% is  [3 + 0.10 × 4, 3 − 0.10 × 4] 

or [3,3], so index 3 is the only index Lambda Insertion will attempt to schedule task i. 

 The resulting range of insertion indices for λ = 25% is [3 + 0.25 × 4, 3 − 0.25 × 4] or [2,4], so 

there are three indexes for Lambda Insertion to attempt to schedule task i. 

4.3.4.2 Regret Insertion 

This insertion method selects a task for insertion that will be most regretted if it is not 

inserted immediately into its best insertion location in the schedule. The regret-k heuristic 

chooses the task i that maximizes: 

  𝑖 = max
 ∈

∑ (𝑓 − 𝑓 )  

𝑓  denotes the cost of inserting task i in the jth cheapest insertion position. This method 

sorts the DL according to their regret value, an adaption of the regret-k method [14]. In this 

thesis, the regret value is regret-2, which is the difference in cost of insertion for a task’s best 

insertion position (as measured in Section 4.3.4.1) and its second best position. While Ropke and 

Pisinger only considered one best insertion position in each path, this thesis measures multiple 

potential insertion positions in each path as selected by λ-insertion. After each synchronized 

service task is inserted, the cross-synchronization matrix is updated as in best insertion. 

4.3.5 Removal and Insertion Weights  

Each method i is associated with a score πi and a weight wi. Removal and Insertion methods 

performances are tracked, so that the more effective methods can be intelligently implemented. 

Each method deals with different challenges in scheduling, so no one pair of removal and 

insertion weights should be chosen and the rest removed from possibility. The probability of the 

ith removal method being chosen is 
∑ ∈

 where Γ1 is the set of removal methods. The insertion 

method is chosen in the same manner with Γ2.  

Scores record the methods performance in an iteration. If a new best overall solution is 

found, the score of that removal and insertion pair increases. However, even if the current 

iteration’s solution is not a new best solution, but an improvement from the previous iteration’s 
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value, the methods’ scores are increased. This is necessary as ICAARUS allows improvement 

iterations to alter schedules to lesser value, but the system still rewards heading in an improving 

direction. A minor score boost is also given if solutions are novel and do not match any of the 

previous solutions found, to encourage solutions from a wide swath of the search space. The 

exact calculation of score improvement is shown below: 

 𝜋 =  

𝜋 + 𝜑 ,     𝐼𝑓 𝑛𝑒𝑤 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑             
𝜋 + 𝜑 ,    𝐸𝑙𝑠𝑒𝐼𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑   
𝜋 + 𝜑 ,    𝐸𝑙𝑠𝑒𝐼𝑓 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑               

𝜋 ,    𝐸𝑙𝑠𝑒                                                       

 

Improvement phase iterations are sectioned into segments, with 50 improvement 

iterations per segment. Initially the weight of each method is set the same at 1.0. The weights 

remain unchanged throughout the segment, while the scores are recorded after each iteration.  At 

the end of a segment, the weights are updated with, ϕi , the number of times the method has been 

called during the last segment, and κ controlling the inertia of the weight adjustment: 

𝑤 = (1 − 𝜅)𝑤 +
𝜅 𝜋

𝜙
 

Keeping track of the number of times a method is used to find the average solution 

improvement made by that method. Otherwise a methods score can be inflated by being called 

numerous times, but only producing marginal solution improvements. To maintain methods 

performance across segments, weight adjustment is controlled by inertia value κ. This inertia 

value prevents a weight from dropping rapidly if it performs poorly in the current segment, but is 

historically helpful.  
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Chapter 5 

5 Tests and Analysis 

This chapter tests and analyzes two methods to solve the SSP: the Mixed Integer Linear 

Program (MILP) presented in Chapter 3 and the Infeasibility Cooling Adaptive Allocation for 

Resource United Scheduling (ICAARUS) presented in Chapter 4. While several MILP models 

were presented in Chapter 3, this chapter will only be testing the Supplier MILP with 

Synchronization model. The MILP method is an extension of previous work that guarantees 

solution optimality, while ICAARUS is a novel method to find near optimal solutions in shorter 

runtimes. 

This chapter begins with outlining how the test scenarios are created for evaluating 

performance. This section describes how each test set generates its unique map and task 

parameters. This section also includes summarizing the parameter settings for ICAARUS used in 

testing. 

This chapter then focuses on quantitative performance of ICAARUS. As the objective of 

this research is to find an efficient method to use for coordinating suppliers with consumers, the 

runtime and optimality is measured and compared.  The ability of ICAARUS to handle large-

scale cases of the Supplier Scheduling Problem is tested to determine if it is able to solve 

problems intractable to the MILP method. Also measured is the gap between ICAARUS’s 

solutions and theoretical “best” solutions. Finally, the fulfillment rates of different 

synchronization tasks are analyzed throughout the bidding rounds.   

 Test Datasets and Parameters 

Each test set requires a large amount of information to describe the input into the 

simulator. This section outlines how the data that specifies task input is generated for the test 

sets. While the positions of consumers on the planning map are irrelevant, the location of 

supplier’s bases and tasks has a crucial impact on which tasks are serviceable and those that are 

unreachable. 
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The exact parameters for ICAARUS, as covered in Chapter 4, are also explained. 

Altering these parameters can affect runtime and optimality of solutions found by ICAARUS, 

but the sensitivity of ICAARUS solutions to changes in these parameters is left for future 

research. 

5.1.1 Test Set Development 

To analyze MILP and ICAARUS, twenty pseudo-random test sets were created. The two 

methods for allocating resources to tasks are tested through five rounds of four test sets in each 

round. For tasks, the set of possible resource requirements is: {1,2,3,4}, where {1} is a single 

service task, and {4} is a task requiring synchronization across four resources. In each test set, 

the number of tasks requiring each level of synchronization are equal. In other words, if a test set 

has five single service tasks, there are also five dual collect tasks, and so on. The five testing 

rounds are distinguished by their consumer task counts. The set of task counts being: 4, 8, 12, 16, 

20.  

Most data for test sets is created by a random number generator within specified bounds. 

The planning map is confined to a two-dimensional size of 10 Kilometers x 10 Kilometers. Thus, 

the latitude and longitude of task positions are randomly generated pairs of numbers within the 

range [0,10]. The values of tasks are randomly selected from a uniform distribution of [1,100]. 

The planning horizon to complete all tasks is 100 minutes. All tasks have a required minimum 

duration of 5 minutes to complete servicing. The arrival times of tasks are selected from a 

uniform distribution of [0,75] minutes with all late times being 25 minutes after the selected 

arrival time.  

For each resource a task requests, its type is randomly selected from the set {A,B,C,D}. 

Therefore, a task requesting four resources could be given any combination of this set, such as 

{A,A,A,A} or {D,C,B,A}. All resources perform the same, i.e. travel distances at the same speed 

and have the same endurance. The differing characteristic is only a resource of type X can fulfill 

a resource request for type X. Each resource type is exclusive and non-mutable.  

Supplier base positions are randomly assigned longitudes and latitudes just as the task 

positions are assigned. All resources controlled by a supplier begin the planning horizon at the 

supplier base’s position, and must end the planning horizon at that same supplier base. Suppliers 
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are randomly assigned four resources from the resource type set, {A,B,C,D}. Thus supplier’s 

resources can range from {A,A,A,A} to {D,D,D,D} and all permutations in-between.  

5.1.2 Parameter Selection 

ICAARUS’s performance depends on the below set of correlated parameters. 

Symbol Description        Value 
α, αMin, αMax Initial, minimum, and maximum values of α    10,0.01,200  

β, βMin, βMax Initial, minimum, and maximum values of β    10,0.01,200 

φ1, φ2  Weight adjustment parameters for α & β    0.5,0.25 

φ3, φ4, φ5 Weight adjustment parameters for Removal and Insertion  35,10,15 

y  Percentage of task list to be removed in removal phase  [0.15,0.30] 

ψ,ω  Related removal parameters      1.0,1.0 

p  Randomness parameter in related and worst removal  5 

λ  Lambda-insertion percentage      0.10 

κ  Weight inertia parameter      0.4 

 The sensitivity of ICAARUS’s performance to alterations in these parameters is left to 

future research. 

 Evaluation Tests 

This section focuses on the performance of a Linear Programming method versus 

ICAARUS’s heuristic method. The consumer-supplier network explored in these tests is two 

suppliers to three consumers. Each consumer and each supplier has tasks and resources generated 

from the test dataset, explained in Section 5.1.1. To determine which method is better suited to 

schedule resources in an operational context, the methods are compared by analyzing two 

characteristics: 1) the runtime of the method and 2) the value of the best schedule solution.  

The software discussed in Section 3.5 is used in the analysis of ICAARUS. Gurobi 

optimization software is used through JuMP for the Supplier MILP with Synchronization Model 

(Section 3.4.3) and the Consumer MILP Model (Section 3.4.4). ICAARUS is implemented in 

Julia and was designed to have a much shorter runtime, while remaining close to MILP 

optimality. ICAARUS uses a heuristic method that can find a “best” optimal solution quicker 
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than an algorithm that evaluates the entire set of solutions. However, this also results in the 

“best” solution not being guaranteed to be a global optimum solution. Much of ICAARUS’s 

runtime is spent in the improvement phase taking suboptimal steps to search the solution space 

and avoid becoming trapped in a local optimal solution. 

The MILP analysis utilizes Gurobi 9.0.2 to solve the linear programs. In the worst case 

the MILP searches the entire solution space, which can scale exponentially in runtime for Mixed-

Integer Programs that rely on Branch and Bound methods. However, the Consumer MILP has 

LP-tight bounds on its solution space, removing the need for lengthy Branch and Bound steps. 

The Consumer MILP is used by consumers to select element bids, regardless of whether the 

suppliers generated bids by MILP or ICAARUS. The Consumer MILP requires less than a 

second to find solutions in these test trials. This offers little room for improving runtime 

compared to the greater runtime of the Suppliers. A heuristic based consumer solver is left for 

future research as it is not the focus of this thesis. 

5.2.1 MILP Comparison 

When testing the MILP, the Linear Programming (LP) relaxation is also tested to give a 

theoretical upper limit. The LP relaxation removes the binary constraints on the decision 

variables. This means the variables accomodatei,u,p and traveli,j,u can take any value on the 

interval [0,1], rather than only {0,1}. This relaxation does not guarantee a feasible schedule. The 

relaxation can produce solutions where resources are not servicing tasks for their full minimum 

duration or resources are unsynchronized when servicing a task. However, it does provide an 

upper bound for the MILP’s performance that can be useful for cases in which the MILP cannot 

find the optimal solution in a feasible runtime.   

 To accurately find the theoretical “best” upper limit of resource allocation to tasks, the 

supplier MILP is assumed to be an omniscient centralized planner. While ICAARUS has three 

suppliers that allocate four resources each in a decentralized manner to fulfill tasks, the supplier 

MILP will control all twelve resources together. Thus, there will only be one round of bidding 

for the MILP as the omniscient supplier has found its optimal resource allocation. This 

coordinated supplier will give a consumer’s task only one set of resources requested, so no bids 

will be rejected that might alter the schedule and create a need for follow on resource bidding 
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rounds. These results will show the performance gap of ICAARUS for coordinating across 

decentralized suppliers. 

5.2.2 Runtime Comparison 

The aim of this runtime comparison is to determine whether the MILP or ICAARUS 

method is able to generate a schedule that solves the Supplier Scheduling Problem in the smaller 

amount of time. To evaluate this aspect, the test rounds discussed in Section 5.1.1 were solved 

using each method: ICAARUS, MILP, and the LP-relaxation. Each test round has four test sets 

and the results across all twenty sets are presented in Table 4. 

It is expected for ICAARUS to be the faster method compared to MILP, as it does not 

search the entire solution space in worst case scenario as with MILP. While ICAARUS’s 

solution is not guaranteed to be optimal, its methods do push its scope to be wide ranging across 

the solution space. ICAARUS eventually cools to finding a local optimum in a neighborhood of 

the solution space, while MILP may search the entire solution space till a best schedule is 

selected.  
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Table 4: Runtime Comparison 

Number of Tasks  

per Consumer 

ICAARUS  

Runtime (s) 

MILP  

Runtime (s) 

LP-relaxation+  

Runtime (s) 

4 2.88 6.46 0.10 
4 10.83 10.70 0.15 
4 2.54 8.94 0.13 
4 5.45 10.35 0.10 
8 24.88 3174.74 1.14 
8 11.52 2520.81 1.20 
8 14.23 1539.23 1.19 
8 27.59 3276.85 1.32 

12 791.03 5479.36 29.02 
12 1412.87 4077.86 17.11 
12 1671.79 4192.52 21.65 
12 1713.51 * 28.31 
16 823.96 5785.59 969.25 
16 1053.25 * 1400.61 
16 1705.54 * 988.71 
16 837.74 * 1390.19 
20 1782.53 * * 
20 1587.44 * 3279.02 
20 1221.87 * 3321.86 
20 1366.05 * * 

* Runtime exceeds limit of 7200 s 
+ Solutions not guaranteed to be feasible 

 As expected, in Table 4, for all but one test set ICAARUS solves the test set in less time 

than the MILP. This outlier is due to the Gurobi solver pre-solving much of the MILP model to 

eliminate many redundant constraint columns that normally drive up runtime. Meanwhile 

ICAARUS unnecessarily explored many schedules that were not improvements, in order to 

ensure it was not becoming stuck on a local optimum solution.  

In general, as the size of test sets increases, the MILP method becomes unable to find the 

optimal solution in under two hours. Meanwhile ICAARUS was able to find solutions 

consistently within a reasonable time frame. Despite the MILP method not needing multiple 

bidding rounds like ICAARUS, the MILP method becomes intractable after eight tasks per 

consumer. Average runtimes for each round of testing is displayed in Table 5. In many of the 

sixteen and twenty task size sets, the MILP was unable to find a solution, so the average MILP 

runtimes are artificially low. In reality, these testing rounds have longer average runtimes. 
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Table 5: Average Runtime  

Number of Tasks 

per Consumer 

ICAARUS  

Avg. Runtime (s) 

MILP  

Avg. Runtime (s) 

LP-relaxation + 

Avg. Runtime (s) 

4 5.43 9.11 0.12 
8 19.56 2627.91 1.21 

12 1397.30 4583.25 24.02 
16 1105.12 5785.59 1187.19 
20 1489.47 * 3300.44 

* Runtime exceeds limit of 7200 s 
+ Solutions not guaranteed to be feasible 

 When runtimes are averaged across tests sets of each round, a clear runtime superiority of 

ICAARUS is seen over MILP. One outlier from expectations is the average runtime of sixteen 

tasks is less than the average runtime of twelve tasks. This might appear to suggest as the number 

of tasks increases the schedule is easier to find. However, this is most likely due to the specific 

test sets generated having different complexities in other factors, such as task position and time 

window parameters. Some twelve task test sets in this analysis are randomly more complicated 

than the four sets generated for sixteen tasks, despite the sixteen tasks having a greater task 

count.  

Of note is the runtime for ICAARUS in the last three testing rounds becoming capped at 

1800 seconds, while the MILP runtime becomes infeasible. For an operational commander, 

having a solution in a reasonable time frame of 30 minutes can be a very attractive feature. 

However, ICAARUS is not inhibited from taking longer than 30 minutes to find a solution. It 

very well may take more than half an hour if the number of tasks were increased.  

5.2.3 Optimality Comparison 

The aim of this optimality comparison is to determine how far the ICAARUS method’s 

generated schedule is from the optimal solution. The MILP method is guaranteed to find the 

optimal solution, even if it requires searching the entire solution space. However, when the 

MILP method requires an infeasible runtime, the LP relaxation can provide insight into the upper 

bound of solution value. 

To evaluate optimality, the same test sets evaluated in Section 5.2.2 were solved using 

each method: ICAARUS, MILP, and the LP-relaxation. The value of a solution is the addition of 
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all the values of tasks fulfilled minus the travel cost of the resources. The optimality performance 

of the different methods is compared in Table 6. 

Table 6 contains two new columns of information, optimality gap and integrality gap. 

Optimality gap shows the difference between the optimal solution, as found by the MILP 

method, and ICAARUS’s solution. However, as noted in the previous section, the MILP method 

is not always able to find the optimal solution in a feasible time frame. Thus, the LP-relaxation is 

used as an upper bound on performance. While this upper bound may not be feasible, its solution 

value still lends insight into ICAARUS’s performance. Integrality gap shows the difference 

between the LP-relaxation and the best-known solution, this is the MILP solution when one is 

found and the ICAARUS solution otherwise.   
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Table 6: Optimality Comparison 

Number of 
Tasks per 
Consumer 

ICAARUS  
Solution Value 

MILP  
Solution Value 

Optimality 
Gap 

LP-relaxation+ 

Solution Value 
Integrality 

Gap 

4 214 214 0 % 249 14.06 % 
4 172 172 0 % 208 17.31 % 
4 290 290 0 % 290 0.00 % 
4 249 249 0 % 249 0.00 % 
8 352 352 0 % 464 24.14 % 
8 455 455 0 % 480 5.21 % 
8 348 348 0 % 362 3.87 % 
8 315 315 0 % 432 27.08 % 

12 536 560 4 % 655 14.50 % 
12 627 627 0 % 815 23.07 % 
12 620 620 0 % 700 11.43 % 
12 624 * ** 954 34.59 % 
16 674 674 0 % 930 27.53 % 
16 766 * ** 1065 28.08 % 
16 757 * ** 1302 41.86 % 
16 948 * ** 1504 36.97 % 
20 905 * ** * ** 
20 788 * ** 1567 49.7 % 
20 996 * ** 1923 48.2 % 
20 732 * ** * ** 

* Runtime exceeds limit of 7200 s 
** Gap incalculable 

+ Solutions not guaranteed to be feasible 

The data in Table 6 shows that ICAARUS provides solutions with values that are close to 

the optimal solution. In the twelve cases that the MILP method could find an optimal solution in 

under two hours, in only one case was the ICAARUS method also unable to find the optimal 

solution. Furthermore, in that one case the optimality gap, the difference between optimal 

solution and ICAARUS solution; was only 4%.  

Despite the small optimality gap seen for ICAARUS, its performance for higher task 

count rounds may not be as promising as the lower task counts rounds suggest. To evaluate this 

difference the LP-relaxation is analyzed, understanding this may be an infeasible solution. The 

average integrality gap of the two smallest rounds is 11.46%, while for the two largest rounds it 

is 38.72%. This would suggest for later testing rounds, should the MILP have found the feasible 
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optimum solution, the ICAARUS solution may have a larger optimality gap than in the earlier 

rounds.  

 Synchronization Coordination  

An important characteristic for consumers entering a decentralized market is how long 

they will have to wait for task fulfillment. As this thesis aims to improve scheduling of tasks that 

require a variable number of resources, fulfillment rates differ on the level of coordination 

required. Figure 20 measures average task fulfillment rates for test sets requiring 20 tasks as they 

are the most complicated test sets that push suppliers to make the most tradeoffs. 

Fulfillment is measured after each round of bidding as that is when the Consumer will 

know if they have collected the necessary requested resources or need to continue bidding. It is 

expected that tasks requiring less resource coordination, tasks with {1} resource requested, will 

be the quickest to be fulfilled. This is expected because they require no synchronization across 

suppliers to be fulfilled. In contrast, it is expected the tasks that require the most resource 

coordination, tasks with {4} resources requested, will be the slowest to be fulfilled. Figure 20 

only shows the results of the first seven rounds of bidding despite there being ten rounds, this is 

for convenience sake as the last three rounds do not change any supplier schedules.   

Figure 20: Average Fulfillment Rate vs. Bid Round for 20 Tasks per Consumer 

 Resources 
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 As expected, the single resource tasks have the highest fulfillment rate in the earliest 

three rounds. Over half of the tasks are fulfilled after the first round of bidding, and all are 

completed by the fifth round of bidding. In the fourth round of bidding, the second simplest tasks 

to synchronize are the first to achieve 100% fulfilment rate. This most likely comes from the 

high likelihood of suppliers, all with four resources, having the resources to completely fulfill 

these dual synchronization tasks without coordinating with another supplier.  

 The most complicated tasks, those requiring four resources, undergo a large jump in 

fulfilment rate of 60% to 100% in the sixth round. This is likely from 97.5% of single and dual 

synchronization tasks being settled by round four, and two additional rounds are needed for a 

consumer to update the task time windows, as outlined in Section 2.2.3, to synchronize across 

suppliers. It also appears that the fulfillment rate of tasks requiring three resource 

synchronization is stuck at 95% fulfillment rate. This is most likely from the specific test sets 

generated having an infeasible task accommodation.  



84 
 
 

Chapter 6 

6 Conclusions 

This chapter summarizes the work presented throughout the previous five chapters. This 

summary begins with presenting the contributions made by this thesis, specifically the methods 

and implementation for consumer-supplier task fulfillment. The next section proposes future 

work to improve the methods presented in this thesis. These improvements were only briefly 

explored, but show great promise for follow-on research. The end of this chapter has concluding 

thoughts on the methods and results.  

 Summary of Contributions 

This section reviews the contributions made by this thesis, as stated in Chapter 1. The 

purpose of this research was to explore decentralized resource allocation between mission 

commanders and resource suppliers. In particular, this thesis focuses on the challenge of task 

synchronization in SSP. The contributions of this thesis are summarized in the following 

paragraphs.  

 An e-commerce bidding structure to coordinate multiple consumers with multiple 

suppliers asynchronously and decentralized. Chapter 2 outlined a system for 

coordinating multiple bidding rounds where task creators are consumers and resource 

providers are suppliers. This three way hand shake method was then tested in conjunction 

with ICAARUS and the performance results were presented in Chapter 5.  

 A MILP model to solve the SSP. Chapter 3 presented several candidate MILP 

formulations that can provide exact solution to the Supplier Scheduling Problem, with 

Section 3.4.3 outlining a model with synchronization constraints. This MILP was 

implemented using JuMP v0.18 and Gurobi 9.0.2 solver.  

 A MILP model to select cheapest resource bids. Chapter 3 presented a MILP 

formulation that can provide an exact solution to the Consumer Element Bid Selection 

Problem. This MILP was implemented using JuMP v0.18 and Gurobi 9.0.2 solver.  

 The development and implementation of ICAARUS, an algorithm to schedule 

multiple resources for tasks requiring time and spatial synchronization. Chapter 4 
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presented a novel Adaptive Large Neighborhood Search algorithm for solving the 

Supplier Scheduling Problem. ICAARUS is a composite algorithm with construction and 

improvement phases that maintain resource synchronization for tasks throughout the 

optimal schedule search. ICAARUS is implemented in Julia v1.0.5. It was shown that 

this implementation can develop a schedule for 3 decentralized suppliers and 40 tasks 

(with synchronization requirements ranging 1-4 resources) in less than 30 minutes.   

 Testing and analysis of the MILP and ICAARUS. Chapter 5 examined the advantages 

and shortcomings of both methods under varying test scenarios. The MILP method was 

able to find optimized schedules for suppliers, but at increasingly lengthy runtimes. Test 

sets with more than 32 tasks total were intractable for the MILP method. Meanwhile the 

heuristic method, ICAARUS, generated schedules in a significantly shorter runtime, with 

almost all single and dual synchronization tasks scheduled in the first four rounds of 

bidding. Furthermore, ICAARUS was able to generate solutions for every test, while the 

MILP was not. These faster solutions are valuable for the consumers and suppliers, but 

were not always the most valuable solution possible.  

 Future Work 

While this thesis implements two methods for solving the SSP as outlined in Chapter 2, 

numerous modifications could have been made to improve these methods. These areas of 

improvement include adapting ICAARUS’s improvement phase for faster runtimes and making 

the solutions robust to changes in the task parameters. 

6.2.1 Adaptive Drop List 

A majority of the runtime of ICAARUS is spent by the improvement phase’s insertion 

methods, discussed in Section 4.3.4. The insertion methods operate by testing the insertion of 

each task on the Drop List, DL, individually. If the DL were shorter, the runtime of ICAARUS 

could be improved. By attempting to insert fewer tasks, the cross-synchronization matrix – a 

time-expensive operation -- fewer times.  

To review, the DL is the set of tasks removed from the initial schedule made in the 

construction phase. These are the tasks removed in the most recent iteration’s removal method, 
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as well as tasks removed by earlier removal methods that did not get re-inserted. This means the 

insertion methods will continuously attempt to re-insert tasks from the DL, despite a task on the 

DL being repeatedly found infeasible by the insertion methods. 

Currently ICAARUS is purposely designed to be overly optimistic; for example, the 

construction phase accepts tasks that are known to be infeasible with the current schedule. This is 

done to give the improvement phase the ability to create a schedule with maximum value, by 

repeatedly removing and re-inserting tasks till an optimal schedule is found. ICAARUS is also 

designed to avoid becoming stuck in a local optimum by not always inserting the most valuable 

task in the insertion phase. Sometimes the nth best task is inserted, to allow ICAARUS to 

evaluate a variety of schedules. So, even when a task is removed and not re-inserted in the 

improvement iteration, that does not mean it should be permanently dropped from future 

consideration. ICAARUS presently stores a long DL to have the best chance as feasible at 

maximizing its schedule. However, while this lengthy task list helps improve solution optimality, 

it severely hampers runtime performance. 

A dropped task learning method could be implemented to intelligently shorten the DL, 

while maintaining limited infeasibility allowances. This could be done in a manner similar to 

adapting method selection, as discussed in Section 4.3.5. Features this learning method could 

find as important characteristics to score are:  

 Task Value. The learning method should penalize low value tasks, as they do not 

offer the total schedule as much utility as tasks with high values.  

 Insertion Rejection Rate. Tasks that are removed and continue through the 

improvement rounds staying on the DL, are tasks that are unlikely to be in a feasible 

solution. Rather than repeatedly test their insertion to find they would only again 

result in an infeasible schedule, an intelligent DL should drop them permanently from 

insertion consideration.  

This pruning of poor performing task from the DL at the end of every segment offers 

great runtime improvements at potentially little impact to optimality performance. The exact 

weights of task features and cut-off lines for when to drop the task would require future analysis 

to tune for optimal performance.        
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6.2.2 Robust Optimization for Duration Changes 

The setup of scenarios in this thesis tested resource request fulfillment for tasks that never 

change their required minimum durations. However, this is an unrealistic assumption for 

scheduling. Real-world missions often experience alterations in service time from original 

requests as situations change. The methods presented in this thesis, however, are oriented at 

maximizing value, and thus create exquisite, yet fragile, schedules. A task that overestimated 

service duration is typically harmless. That error would just result in more idle time as resources 

depart the task early. However, a task that has its service time extended can force resources to 

either abandon the task, and leave it as incomplete, or stay and cancel later tasks on their paths.  

The use of Robust Optimization (RO) could be applied to the MILP model. This would 

create plans that remain feasible even after a change in the duration of tasks. A naive method to 

create robust schedules would substitute all minimum durations with the maximum duration 

changes expected by the mission commander. However, this conventional solution would 

significantly lower the value of solutions, compared to the nominal solver. Schedules will 

conservatively allocate tasks substantially more service time than necessary, and thus limit the 

total number of tasks that a resource can service in its path. RO intelligently deals with 

uncertainty, under the assumption not every task will experience the maximum duration changes.  

The rest of this section presents a possible implementation of RO for dealing with 

uncertainty in task minimum duration, although it is certainly not the only implementation 

possible. Adapting the MILP model presented in Chapter 3 to robust optimization could be done 

with the introduction of uncertainty variables robustMinDuri and δi with the following 

constraints: 

(22) Substitute for constraint (9). Resource can depart the task only after the required 

duration of service time. 

𝑎𝑟𝑟𝑖𝑣𝑒 , − 𝑟𝑜𝑏𝑢𝑠𝑡𝑀𝑖𝑛𝐷𝑢𝑟 × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒 , ,∈ ≤ 𝑑𝑒𝑝𝑎𝑟𝑡 ,  ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈 

(23) Lower bound limit on robustMinDuri’s uncertainty 

𝑚𝑖𝑛𝐷𝑢𝑟 ≤ 𝑟𝑜𝑏𝑢𝑠𝑡𝑀𝑖𝑛𝐷𝑢𝑟       ∀𝑖 ∈ 𝑇 

(24) Upper bound limit on robustMinDuri’s uncertainty 
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𝑟𝑜𝑏𝑢𝑠𝑡𝑀𝑖𝑛𝐷𝑢𝑟 ≤ 𝑚𝑖𝑛𝐷𝑢𝑟 + 𝛿 × 𝑑𝑢𝑟𝐷𝑒𝑙𝑡𝑎    ∀𝑖 ∈ 𝑇 

(25) Upper bound limit on percentage of change added to minimum duration 

𝛿 ≤ 1         ∀𝑖 ∈ 𝑇 

(26) Upper bound limit on total duration change expected by mission commanders 

|𝛿 | ≤  𝛤         ∀𝑖 ∈ 𝑇 

 The mission commanders express their expected maximum duration change with the 

constant durDelta. The uncertainty variable δi controls the percentage of duration change for 

robustMinDuri, to be in the range of [minDuri, minDuri + durDelta]. The constant Γ controls 

how much uncertainty the mission commander expects across all the tasks. As mentioned in the 

previous paragraph, robust optimization intelligently manages uncertainty rather than scheduling 

all tasks to experience worst-case scenario. Γ is the limit on δi within the p-norm. Visual 

representations of the Manhattan norm (p=1), Euclidean norm (p=2), and Infinity norm (p=∞) 

are given in the figure below: 

Figure 21: p-norms 

     

 What is the correct durDelta if left for consumers to specify and what is the optimal Γ & 

p is left for future research based on specific scenarios. 

 The use of RO in this way also has the desirable outcome of increasing the likelihood of 

element bids overlapping their service time windows. Since tasks are being serviced in a time 

window that is greater than the minimum duration, consumers face the challenge of coordinating 

synchronization. The Maximum Time Window approach, presented in Section 3.4.2, aims to 
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extend element bid service times so suppliers increase the likelihood of their offered service time 

overlapping with other suppliers offered service times. This could remove synchronization 

constraints that increase runtime of the supplier-based MILP method, but may increase the 

number of bidding rounds to align task time windows.   

6.2.3 Robust Optimization for Value Changes  

RO can also be used to intelligently manage value changes in tasks. As mentioned in the 

previous section, current methods create exquisite yet fragile paths. A supplier may only service 

a low valued task because it is spatially and temporally close to another high value task. 

However, should the high value task have its value decreased, the exquisite schedule can suffer 

great drops in optimal schedule value.  

The rest of this section presents a possible implementation of RO for dealing with 

uncertainty in task value, although it is certainly not the only implementation possible. Adapting 

the MILP model presented in Chapter 3 to RO could be done by introducing the uncertainty 

variables robustValuei and δi. robustValuei replaces valuei in the objective function and requires 

the following constraints: 

(27) Lower bound limit on robustValuei’s uncertainty 

𝑣𝑎𝑙𝑢𝑒 − 𝛿 ×  𝜎 ≤ 𝑟𝑜𝑏𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒       ∀𝑖 ∈ 𝑇 

(28) Upper bound limit on robustValuei’s uncertainty 

𝑟𝑜𝑏𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒       ≤ 𝑣𝑎𝑙𝑢𝑒 + 𝛿 ×  𝜎       ∀𝑖 ∈ 𝑇 

(29) Upper bound limit on percentage of value change 

𝛿 ≤ 1          ∀𝑖 ∈ 𝑇 

(30) Upper bound limit on total value change expected by mission commanders 

|𝛿 | ≤  𝛤          ∀𝑖 ∈ 𝑇 

The uncertainty variable δi controls the percentage of value change for robustValuei 

within its specified variance, σi. Γ is the limit on δi within the p-norm. The optimal Γ & p is left 

for future research based on specific scenarios. 
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 Conclusions 

This thesis has addressed the challenge of coordinating resources in a decentralized and 

asynchronous environment. A three-part bidding phase was introduced to coordinate consumer 

needs across multiple suppliers in an e-commerce inspired bidding structure. An optimization 

model was presented that can be solved by a MILP to optimally schedule a supplier’s resources. 

A novel ALNS algorithm, ICAARUS, was presented to solve the SSP in an operationally-

feasible runtime. It uses a benefit-to-cost formula to select promising tasks and quickly generate 

a schedule in its construction phase. ICAARUS’s improvement phase then uses simulated 

annealing to cool the infeasibility in the schedule to a solution that is within time windows and 

synchronized. Five candidate removal, and two insertion, methods are presented for removing 

and inserting synchronized tasks in a schedule to improve its utility.    

It is concluded that ICAARUS is a viable algorithm for decentralized resource allocation. 

We have demonstrated the algorithm is capable of generating near-optimal schedules in a 

computationally tractable manner. While this work focused on a specific scheduling scenario, we 

believe that it presents a promising approach to schedule multiple-resource synchronization 

tasks, a problem that arises in many important applications.   

 

 

 



91 
 
 

References 

[1] Rogoway, Tyler. “USS Racine gets pummeled to death during RIMPAC 2018 sinking 

exercise.” The Warzone. July 2018 

[2] “A Design for Maintaining Maritime Superiority.” Version 2.0. December 2018 

[3] TRADOC Pamphlet 525-3-1. “The U.S. Army in Multi-Domain Operations 2028.” 06 

December 2018 

[4] BAA. “Secure Advanced Framework for Simulation and Modeling (SAFE-SiM).” DARPA 

Adaptive Capabilities Office. HR001120S0007. 16 January 2020   

[5] Spears W. “A Sailor’s take on Multi-Domain Operations.” War on the Rocks. 21 May 2019 

[6] Jamieson V., Calabrese M.. “An ISR Perspective on Fusion Warfare.” The Mitchell Forum. 

October 2015   

[7] Nanehkaran, Y.A..”An Introduction to Electronic Commerce.” International Journal of 

Scientific & Technology Research. Vol 2, Issue 4. April 2013. 

[8] Leake Negron, B.. “Operational Planning for Multiple Heterogeneous Unmanned Aerial 

Vehicles in Three Dimensions”. Master’s Thesis, Massachusetts Institute of Technology. 

2009. 

[9] Herold, T.. “Asynchronous, Distributed Optimization for the Coordinated Planning of Air 

and Space Assets”. Master’s Thesis, Massachusetts Institute of Technology. 2008. 

[10] Ropke, S. and Pisinger, D., 2006. “An Adaptive Large Neighborhood Search heuristic for 

the pickup and delivery problem with time windows”. Transp. Sci. 40, 455–472. 

[11] Liu R., Tao Y., Xie X., 2018. An adaptive large neighborhood search heuristic for the 

vehicle routing problem with time windows and synchronized visits. Computers & 

Operations Research Vol 101, 250-262. 

[12] J.V. Miller. “Large-Scale Dynamic Observations Planning for Unmanned Surface 

Vessels”. Master’s Thesis, Massachusetts Institute of Technology. 2007. 

[13] Hendel, G. “Adaptive Large Neighborhood Search for Mixed Integer Programming.” ZIB 

Report 18-60. 18 December 2018. 

[14] Ropke, S., Cordeau, J., and Laporte, G.. "Models and Branch-and-Cut Algorithms for 

Pickup and Delivery Problem with Time Windows," Networks 49(4), 258-272, 2007. 



92 
 
 

[15] Tzoreff, T., Granot, D., Granot, F., and Sosic, G.. “The vehicle routing problem with 

pickups and deliveries on some special graphs.” Discrete Applied Mathematics, Volume 116, 

Issue 3, 193-229. 

[16] Dantzig, G. and Ramser, J.. “The Truck Dispatching Problem.” Management Science. 6. 

80-91 

[17] Bodin, L., Golden, B., Assad, A., and Ball, M., “Routing and schedule of vehicles and 

crews: The state of the art.” Computational Operations Research, 62-212., 1983.  

[18] Dantzig, G., Fulkerson, R., and Johnson, S., "Solution of a Large-Scale Traveling 

Salesman Problem," Operations Research 2(4), 393-410, 1954. 

[19] Bertsimas, D. and Tsitsiklis, J. N., Introduction to Linear Optimization, Athena 

Scientific, Belmont, MA, 1997 

[20] Lawler, E., Lenstra, J., Rinnooy Kan, A., and Shmoys, D.. The Traveling Salesman 

Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons, Inc. New 

York. 1985. 

[21] Laporte, G.. "The Traveling Salesman Problem: Overview of Algorithms." European 

Journal of Operational Research 59(2). 231-247. 1992. 

[22] Flood, M., "The Traveling Salesman Problem," Operations Research 4(1), 61-75, 1956 

[23] Rosenkrantz, D., Stearns, R., and Lewis, P.. "An Analysis of Several Heuristics for the 

Traveling Salesman Problem." Society of Industrial and Applied Mathematics Journal of 

Computing 6(3). 563-581. 1977. 

[24] Croes, G.. "A Method for Solving Traveling-Salesman Problems." Operations Research 

6(6). 791-812. 1958. 

[25] Lin, S. and Kernighan, B.."An Effective Heuristic Algorithm for the Traveling-Salesman 

Problem." Operations Research. 21 (2). 498–516. 

[26] Hove, J..“An Integer Program Decomposition Approach to Combat Planning.” Doctoral 

Dissertation. Air Force Institute of Technology. September 1998. 

[27] Mingozzi, A., Bianco, L., and Ricciadelli, S.. “Dynamic Programming Strategies for the 

Traveling Salesman Problem with Time Window and Precedence Constraints.” Operations 

Research 45. 365-377. 1997. 



93 
 
 

[28] Baker, E. "An Exact Algorithm for the Time Constrained Traveling Salesman Problem." 

Operations Research 31(5). 938-945. 1983. 

[29] Gendreau, M., Hertz, A., Laporte, G., and Stan, M.. "A Generalized Insertion Heuristic 

for the Traveling Salesman Problem with Time Windows." Operations Research 46(3). 330-

335. 1998. 

[30] Golden, B., Levy, L. and Vohra, R.. “The Orienteering Problem.” Naval Research 

Logistics, Vol. 34, Issue 3, Pages 307-318. June 1987. 

[31] Tang, H. and Miller-Hooks, E.. “A TABU search heuristic for the team orienteering 

problem.” Computers & Operations Research 32, 1379-1407. 2005. 

[32] Archetti, C., Hertz, A., and Speranza, M.. “Metaheuristics for the team orienteering 

problem.” Journal of Heuristics 13(1), 49-76. 2007. 

[33] Tsiligrides, T. "Heuristic Methods Applied to Orienteering." Journal of the Operational 

Research Society 35, 797-809. 1984. 

[34] Golden, B., Wang, Q., Liu, L.. "A Multifaceted Heuristic for the Orienteering Problem." 

Naval Research Logistics 35 (3), 359-366. 1988. 

[35] Ramesh, R. and Brown, K.."An Efficient Four-Phase Heuristic for the Generalized 

Orienteering Problem." Computers and Operations Research 18, 151-165. 1991. 

[36] “Illustration of unit circles in different norms.” Norm, Wikipedia. 

https://en.wikipedia.org/wiki/Norm_(mathematics). 

 


