
Decentralized Resource Allocation for Synchronized Tasks
through Adaptive Large Neighborhood Search (ALNS)

by

Christian D. Montgomery

B.S. Computer Engineering and Computer Science

United States Naval Academy, 2018

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN AERONAUTICS AND ASTRONAUTICS

AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

MAY 2020

©2020 Christian D. Montgomery. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of Author: __
Department of Aeronautics and Astronautics

May 19, 2020

Approved by: __
Mark Abramson

Principal Member of the Technical Staff
The Charles Stark Draper Laboratory, Inc

Technical Supervisor

Certified by: ___
Hamsa Balakrishnan

Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by: __
Sertac Karaman

Professor of Aeronautics and Astronautics
Chairman, Committee for Graduate Students

2

Decentralized Resource Allocation for Synchronized Tasks through Adaptive
Large Neighborhood Search (ALNS)

by

Christian D. Montgomery

Submitted to the Department of Aeronautics and Astronautics

 on May 19, 2020 in partial fulfillment of the

requirements for the degree of

Master of Science in Aeronautics and Astronautics

Abstract

This thesis explores a method for multiple suppliers to coordinate resource scheduling of

task requests from multiple consumers using decentralized planning. A time window is

associated with each task and some tasks require simultaneous servicing from multiple resources

of specified classes to fulfil a request. The suppliers create schedules for their resources that

maximize the value of all tasks fulfilled, while minimizing travel cost, and respecting all time

window constraints. This thesis presents Infeasibility Cooling Adaptive Allocation for Resource

United Scheduling (ICAARUS), a novel Adaptive Large Neighborhood Search (ALNS)

algorithm that is capable of synchronizing tasks across a variable number of resources. A

supplier’s individual schedule and cost function is kept private from consumers. An e-commerce

style of multi-round bidding is introduced to notify suppliers of resource request parameters and

to allow consumers to synchronize resources from independent suppliers. A Mixed-Integer

Linear Program (MILP) is used by the consumer to select the least costly bids that can be

combined to fulfill a task’s requirements.

3

TABLE OF CONTENTS

1 Introduction .. 6

1.1 Thesis Overview ... 6

1.2 Contributions... 7

1.3 Motivation ... 8

2 Operational Concept ...10

2.1 Consumer-Supplier Relationship .. 10

2.1.1 One Consumer to One Supplier .. 11

2.1.2 One Consumer to Multiple Suppliers .. 12

2.1.3 Multiple Consumer to Multiple Suppliers... 13

2.2 E-Commerce Bidding Structure .. 14

2.2.1 Incomplete Fulfillment .. 17

2.2.2 Complete Fulfillment .. 18

2.2.3 Unsynchronized Fulfillment ... 19

3 Model Formulation and Development ...22

3.1 Supplier Scheduling Problem (SSP) ... 22

3.1.1 Inputs to Supplier Solver ... 22

3.1.1.1 Supplier Inputs ... 22

3.1.1.2 Task Inputs .. 23

3.1.2 Outputs of Supplier Solver .. 24

3.2 Network Representation.. 26

3.2.1 Static Graph Representation .. 26

3.2.2 Time-Space Graph Representation ... 27

3.2.3 Placement-Space Graph Representation ... 28

3.3 Problem Classification .. 29

3.3.1 Mathematical Programming Background ... 30

3.3.2 Travelling Salesman Problem ... 30

3.3.2.1 Mixed Integer Programming Formulation for Traveling Salesman Problem .. 30

3.3.2.2 Exact Solution Methods... 31

3.3.2.3 Heuristic Solution Methods ... 32

3.3.3 Traveling Salesman Problem with Time Windows .. 34

3.3.4 Team Orienteering Problem .. 35

4

3.4 Mixed Integer Linear Programming Model .. 36

3.4.1 Supplier MILP Model Formulation .. 37

3.4.1.1 Set Definitions ... 37

3.4.1.2 Decision Variables ... 37

3.4.1.3 Input Variables .. 38

3.4.1.4 Objective Function .. 38

3.4.1.5 Constraints ... 39

3.4.1.6 Linearization of Constraint .. 40

3.4.2 Maximum Time Window Model Formulation .. 41

3.4.2.1 MTW Objective Function .. 42

3.4.2.2 Maximum Time Window Constraints ... 42

3.4.3 Supplier MILP w/ Synchronization Model Formulation .. 43

3.4.3.1 Synchronization Constraints .. 43

3.4.4 Consumer MILP Model Formulation.. 45

3.4.4.1 Set Definitions ... 45

3.4.4.2 Decision Variables ... 45

3.4.4.3 Input Variables .. 46

3.4.4.4 Objective Function .. 46

3.4.4.5 Constraints ... 46

3.5 Implementation ... 47

4 Formulation of Algorithm ...48

4.1 Confirmation Lists .. 49

4.2 Construction Phase.. 50

4.2.1 COPA Construction Phase .. 51

4.2.2 Dual-Collection Construction Phase ... 52

4.2.3 ICAARUS Construction Phase ... 53

4.3 Improvement Phase ... 57

4.3.1 Infeasibility measurement ... 58

4.3.2 Avoiding Cross Synchronization .. 59

4.3.2.1 Checking for Cross Synchronization ... 60

4.3.2.2 Constructing Cross Synchronization Matrix ... 62

4.3.2.3 Updating Cross Synchronization Matrix ... 62

5

4.3.3 Removal Methods ... 63

4.3.3.1 Related Removal.. 63

4.3.3.2 Worst Removal .. 65

4.3.3.3 Synchronized-Services Removal ... 67

4.3.3.4 Route Removal .. 67

4.3.3.5 Random Removal .. 68

4.3.4 Insertion Methods ... 68

4.3.4.1 Best Insertion ... 69

4.3.4.2 Regret Insertion ... 71

4.3.5 Removal and Insertion Weights .. 71

5 Tests and Analysis ..73

5.1 Test Datasets and Parameters.. 73

5.1.1 Test Set Development ... 74

5.1.2 Parameter Selection... 75

5.2 Evaluation Tests .. 75

5.2.1 MILP Comparison... 76

5.2.2 Runtime Comparison .. 77

5.2.3 Optimality Comparison ... 79

5.3 Synchronization Coordination .. 82

6 Conclusion ..84

6.1 Summary of Contributions .. 84

6.2 Future Work .. 85

6.2.1 Adaptive Drop List.. 85

6.2.2 Robust Optimization for Duration Changes .. 87

6.2.3 Robust Optimization for Value Changes .. 89

6.3 Conclusions ... 90

6

Chapter 1

1 Introduction

 Recent advancements in research and technology for robotics has created resources with

the ability to operate in a variety of domains. Current operations are unable to take full advantage

of disparate capabilities across all domains. Planning of modern day operations are becoming

increasingly complex. Challenges ranging from stove piped mission commanders who are only

aware of the few resources assigned to them, to rigid schedules that are too complicated to re-

plan.

 The purpose of this thesis is to develop an algorithm that coordinates resources across

multiple domains through decentralized bidding for multiple consumers. This algorithm

addresses two main challenges to planning multi-domain operations as envisioned in the Army in

Multi-Domain Operations 2028 [3]. First, to properly manage and fully realize the capabilities of

so many decentralized resources, a bidding system is needed. This bidding structure should

direct suppliers to service customers that most value resources and require the least cost

expenditure. Second, an algorithm that solves the Supplier Scheduling Problem (SSP) must do so

in an operationally feasible runtime. Computing solutions is complicated because of the

synchronization requirements of a single task across multiple resources.

 Thesis Overview

 This thesis presents a method to coordinate and create schedules for multi-domain

operations. The development of this method and the associated technical challenges are

described in the following six chapters. An overview of the chapters follows:

 Chapter 2 – Operational Concept. In this chapter, the concept of e-commerce is

introduced as a solution to decentralized resource allocation. The time and spatial operational

constraints in the Supplier Scheduling Problem are assumed fixed in this work.

 Chapter 3 – Model Formulation and Development. In this chapter, a mathematical

model is created for the scope of the SSP. It is shown that this problem can be modeled as a

network problem while maintaining the constraints expressed in Chapter 2. Similar problems in

7

past literature are reviewed to lend insight into the development of an algorithm for the SSP. In

particular, the Traveling Salesman Problem and extended variants are explored due to their

similarity to the SSP. A Mixed-Integer Linear Program (MILP) is introduced for providing

optimal solutions for the SSP. An analysis of this method is presented in Chapter 5.

 Chapter 4 – Formulation of Algorithm. This chapter formulates the Infeasibility

Cooling Adaptive Allocation for Resource United Scheduling (ICAARUS) Algorithm to solve

the SSP. This chapter begins with the formulation of the Composite Operations Planning

Algorithm (COPA) to solve the UAV Planner Problem. However, the Composite generation

algorithm falls short of ensuring resource synchronization across a task. To accomplish this,

Adaptive Large Neighborhood Search (ALNS) is studied in the Vehicle Routing Problem, which

has synchronization across a single supplier’s resources as a constraint. ICAARUS explores a

large region of the state space by allowing infeasible schedules to be created and culled through

Simulated Annealing.

 Chapter 5 – Tests and Analysis. This chapter covers the testing and analysis of the

MILP and ICAARUS. It is shown that while the MILP provides an exact solution, ICAARUS is

able to find a feasible schedule in much less time. It is shown that the MILP is unable to scale

and solve beyond 20 task requests in a reasonable time manner. Meanwhile ICAARUS is able to

produce a schedule for large cases including 40 task requests, in under 30 minutes.

 Chapter 6 – Conclusions. This chapter provides a summary of the work and resulting

contributions presented in this thesis. Proposals for modifications to our methods are presented,

including the incorporation of robust planning into the resource allocation process.

 Contributions

 This research makes the following contributions:

1. An e-commerce bidding structure to coordinate multiple consumers with multiple

suppliers asynchronously in a decentralized manner.

2. A MILP model for suppliers to solve the SSP with synchronization.

3. A MILP model for consumers to select cheapest resource bids.

8

4. The development and implementation of ICAARUS, an algorithm to schedule multiple

resources for tasks requiring time and spatial synchronization.

5. Testing and analysis of the supplier MILP and ICAARUS.

6. Recommendations for modifications to ICAARUS.

 Motivation

 In the summer of 2018 at Rim of the Pacific (RIMPAC), the world’s largest international

maritime exercise, the USS Racine underwent a sinking exercise (SINKEX) with a range of

military units working together to sink this one ship [1]. Originally the ship was targeted by a P-3

Orion aircraft, but when its ability to communicate targeting information was jammed in the

simulation, both a Gray Eagle Unmanned Aerial Vehicle (UAV) and Army AH64E Apache

helicopter were able to respond and support targeting through new data-link backups. This re-

established communication provided for overwhelming firepower from multiple domains with

Naval Strike Missiles and HIMARS artillery launched by the Army, and AGM-84 Harpoon

missiles launched by a Navy P-8 aircraft. To finish the exercise, the submarine USS Olympia

also launched a MK-48 torpedo to sink the USS Racine. While this SINKEX was carefully

orchestrated to coordinate Army and Navy capabilities from the sea, air, and land, it showed the

flexibility and capability of multi-domain operations.

 This exercise reflects the US Navy’s A Design for Maintaining Maritime Superiority call

for Distributed Maritime Operations (DMO), described as aiming to “deepen naval integration

with other services to realize [strategy] in multi-domain, distributed operations” [2]. In this

thesis, domain refers to the five warfighting areas of sea, land, air, cyber, and space. The US

Army calls for Multi-Domain Operations (MDO) to converge all domain capabilities across time

and space to inundate adversaries. This convergence is envisioned in Army in Multi-Domain

Operations 2028: (1) Create synergy across domains for overlapping redundancy, and (2) give

commanders multiple forms of attack through options that are unforeseen by the enemy [3].

Historically the delivery of effects onto an adversary are referred to as “Kill-Chains” with each

effect having siloed planning and execution path, this new level of complexity creates the idea of

“Kill-Webs, complex representation of effect chains with multiple possible paths” [4]. However,

this new capability presents a problem of scalability with “a factorial increase in possible inter-

9

relationships that will test the limits of current analytic approaches” [4]. LCDR Will Spears also

remarks that while MDO is the natural evolution of Joint Warfare, communication barriers of

information classification levels and technical language discrepancies between disciplines will

require a “level of agility that is beyond [current capabilities]” [5]. With this communication

though, MG VeraLinn Jamieson describes a vision for the Air Force’s Intelligence, Surveillance,

and Reconnaissance (ISR) as “Fusion Warfare,” which “integrates and synchronizes information

from multiple sources and domains” to fly, fight, and win in any battlespace [6].

10

Chapter 2

2 Operational Concept

This chapter clarifies what is e-commerce and how it is used in the context of this thesis.

Advancements in Information Technology in the 21st century have led to supplying services and

commodities through telecommunication networks. Rarely does a student nowadays need to

physically go to a bookstore, searching for the best deal on textbooks. Instead a student can

virtually specify a book’s title and condition, and then select the cheapest option from a range of

suppliers. This is electronic commerce, or e-commerce. The abundance and speed of access, that

defines modern day corporations like Amazon or eBay, are characteristics necessary for MDO

and thus e-commerce is an appealing tool to future military planners.

Nanehkaran defines e-commerce through three main components: communication

systems, data management systems and security [7]. This thesis assumes hardware capabilities

for any communication and data management systems are possible, leaving that work to future

researchers. This thesis, as mentioned in Chapter 1, focuses on presenting ICAARUS, an

algorithm for scheduling resources from suppliers to consumers. This chapter will define the

communications between consumers and suppliers, and what data is shared versus what is kept

private in the interest of user security.

The market proposed in this thesis makes several assumptions that depart from classical

marketplace features. Firstly, consumers and suppliers do not exchange money for services.

Consumers express their level of desirability for a task through assigning value. Consumers are

assumed to be honest actors, meaning they do not assign high value to low priority tasks for the

purpose of cheating resources from suppliers. Suppliers are also assumed to always be willing to

service a task request if feasible in their schedule. However, some suppliers are busier than

others and express this through costs associated with offered resources.

 Consumer-Supplier Relationship

This thesis will focus on how suppliers can more effectively allocate limited resources to

consumers. This interaction begins by consumers, who have missions they are planning, creating

11

tasks which require resources. For the purpose of this thesis only consumers generate tasks, and

only suppliers have resources, i.e. no supplier is trying to plan a mission and no consumer has

resources. These tasks are defined by several parameters which are common questions a

commander may need answered when planning a mission:

Value: Assigned number, [1,100], that quantifies the importance of the task.

Position: Two-dimensional location at which the task could be performed.

Minimum Duration: The time it takes to completely service the task.

Time Window: The start and end time in which the task must be serviced. If a resource

arrives before the start of the window, it cannot begin servicing until the early

edge of the time window. In addition, if the minimum duration is not fulfilled

before the end time, it is too late and the task is not counted as completed.

Resources: A task may require one or multiple resources. These resources are defined by

types, so only resource of one type can fulfill that type requested.

For a task to be serviced, all resources must be in the same position for an overlapping

minimum duration within that task’s time period.

2.1.1 One Consumer to One Supplier

The simplest case of this scenario is one consumer assigned to one supplier. This

stovepipe relationship is still prevalent today for the ability to 1) simplify scheduling and 2) keep

planning details confidential. A consumer can only get resources from one source, so a task’s

feasibility is straightforward to find through asking if the one supplier has the requested

resources or is pre-occupied with servicing another task. As resources are only servicing one

customer, the supplier’s schedule is known to only that consumer.

12

Figure 1: One Consumer to One Supllier

The immediate drawbacks of task planning with this relationship is a consumer’s

complete reliance on one supplier. Any task requiring a resource that the supplier does not have

is instantly infeasible with no other options. Also this relationship can be observed by an

adversary and become susceptible to attack. An adversary can predict operational actions by

noting historical consumer-supplier relationships, even if dedicated supply chains are not

published information. An adversary could be aware of a consumer’s immediate actions by

observing the movements of its supplier’s resources, or even remove this one supplier to cripple

the consumer completely.

2.1.2 One Consumer to Multiple Suppliers

As the internet opens up connections across the world, so does e-commerce aim to open

up connections to suppliers. Through e-commerce comes the ability for a single consumer to

expand its network of resource access from one supplier to multiple suppliers.

Consumer Supplier

Resource Request

Resources

Consumer Supplier

Consumer Supplier

13

Figure 2: One Consumer to Multiple Suppliers

This multitude of suppliers is a powerful tool for improving mission planning. Through

more suppliers comes greater availability of resources, and thus increased probability of a

consumer finding the resources they desire when they are needed. Another operational benefit of

this network is unpredictability. Through an abundance of options for planning operations,

consumers will naturally begin to vary their supplier choices. This will obscure intended actions

to adversaries and remove supplier vulnerabilities through redundancy.

With more nodes in a network comes more potential leaks of information in the system.

Some operational scenarios could have mission commanders concerned about adversaries

eavesdropping into communications and compromising security. That is why in this thesis,

suppliers do not share schedules with each other or consumers. A supplier only responds to the

consumer through a “bid” with the following information:

Cost: This is a measure of how much travel time the supplier must expend for its

resources to arrive at the task. Travel time is the expense that is analogous to fuel

for resources that are expensive to exercise.

Time Window: The arrival and departure time of resources to the task’s location.

Resources: Which resources, type and quantity, are being allocated to the task.

2.1.3 Multiple Consumers to Multiple Suppliers

In theory, multiple suppliers collectively servicing only one consumer would be ideal, but

in reality, this system requires multiple consumers. In a finite world, gaining the flexibility of

numerous suppliers in a network also requires multiple consumers pooling their supply chains to

Consumer Supplier

Supplier

Supplier

14

create this network. For e-commerce to be utilized in a practical setting, consumers will need to

compete against each other for supplier resources.

Figure 3: Multiple Consumer to Multiple Suppliers

Consumers do not collaborate with other consumers for achieving a global maximum task

fulfillment rate. A consumer is concerned with only completing its own tasks. These self-

interested actors will continue to request resources from all suppliers until the task is fulfilled or

bidding is stopped. This means suppliers in this network will receive a larger volume of resource

requests, compared to suppliers operating in a one consumer to one supplier relationship. For the

desired option creation feature of e-commerce, comes inherent complexity for the system to

manage.

 E-Commerce Bidding Structure

In this thesis, a consumer is responsible for stating what resource types are needed and

time range that these resources are needed for a task. The challenge of calculating a path for how

those resources will get to the task is removed from the consumer’s concern. Consumers interact

with suppliers for resources through multiple bidding rounds. The procedure for each round is a

three part handshake: 1) Resource requests are sent from the consumer with the task’s critical

information to the supplier; 2) element bids are sent from the supplier to the consumer

expressing resource availability; and 3) bid confirmations are sent from the consumer to the

supplier to accept or reject the element bids. Figure 4 illustrates the flow of information in these

resource bidding rounds:

Consumer Supplier

Supplier

Supplier

Consumer

Consumer

15

Figure 4: Information Flow in One Bidding Round

After resources are requested, the consumer will receive element bids from suppliers with

three distinct outcomes for each task:

1. Incomplete Fulfillment

 For at least one resource the task requests, no bids were received.

2. Complete Fulfillment

From one or multiple suppliers all resources a task requested are fulfilled and

have an overlapping service time of at least the minimum required duration.

2. Unsynchronized Fulfillment

From multiple suppliers a task receives bids on all resources requested, but the

received bids have misaligned service times.

Consumer 1

Consumer 2

Supplier 1

Supplier 2

Resource Request

Consumer 1

Consumer 2

Supplier 1

Supplier 2

Element Bid

Supplier
decides which
requests
to bid on

Consumer 1

Consumer 2

Supplier 1

Supplier 2

Bid Confirmation

Bid Rejection

Consumer
decides which
bids to
accept/reject

16

These three distinct outcomes require a protocol for handling, with the desired effect that

this process would get all tasks to Complete Fulfillment before the end of bidding. MG Jamieson

envisions “fusion warfare” of the future as continuously repeating OODA loops for mission

planners of ISR operations. The OODA loop is a classic decision-making process distinguished

by its four phases of Observe, Orient, Decide, Act. These four phases are the basis of the

Consumer Decision Process for this Marketplace:

Observe – Which element bids are received.

Orient – Which fulfillment status does a task fall under.

Decide – How to handle these fulfillment statuses.

Act – Send Bid Confirmation/Rejection and begin the next round of Resource Requests.

The Consumer Decision Process is outlined in Figure 5.

17

Figure 5: Consumer Decision Process

* See Section 2.2.2 for more information.
⸆ See Section 2.2.3 for more information.
2.2.1 Incomplete Fulfillment

Element Bid outcome one is relatively straightforward to manage in an e-commerce

network. For Incomplete Fulfillment, the consumer rebroadcasts the original task request. This

request is made in the hopes that a previously busy supplier now has room in its schedule.

Suppliers are constantly altering schedules through bidding rounds, as seen in Figure 6, as

scheduled tasks receive bid rejections.

Yes

Task Created

Are bidding
rounds over?

Task is abandoned

Resource Request sent
to Suppliers

Bids
received?

Complete Fulfillment Incomplete Fulfillment Unsynchronized Fulfillment

No

Selected Bids are
from one Supplier

Select cheapest Bids
Selected Bids are
from multiple
Suppliers

Secure Time Window* Send Bid Conf./Rej.

Execute Task

Update Time Window⸆

18

Figure 6: Supplier Schedule Decision Cycle

2.2.2 Complete Fulfillment

For element bid outcome two, Complete Fulfillment, the consumer will select which

combination of bids they need at the cheapest cost. The consumer shall notify suppliers of

unselected bids that their bid was rejected and should thus be dropped from that supplier’s

schedule. As mentioned in the beginning of Chapter 2, consumers are assumed to be honest

agents that do not hoard unnecessary resources. Consumers will only accept the bids they need to

fulfill a task’s resource requirements. Should an allocated resource suddenly become

unavailable, a consumer can always re-submit a resource request in the next bidding round.

Of note in the Consumer Decision Process, Figure 5, is the route of “Selected Bids are

from one supplier.” When a single supplier is providing all the resources for a task, they have

control over the tasks start and end time, as long as it remains within the original time window.

Even if a consumer accepts a bid (or bids) for a specific start time, the supplier can change that

start time as they see fit. If this previously agreed upon start time were made rigid, the supplier

may drop this commitment in favor of a new more valuable task request. The supplier’s

flexibility to move start times, only if it is allocating all the resources needed, is advantageous to

consumers as it lowers the risk of bids being withdrawn. This is also advantageous to the system

Receive Resource Requests

Supplier:

Create Schedule

Send Element Bids

Supplier:
Alter Schedule for

Confirmed or
Rejected Bids

Consumer

Consumer

Receive Bid
Confirmation/Rejection

Repeat

19

as suppliers have flexibility in their schedule to open up slots for tasks that may be denied from

schedules made in earlier bidding rounds.

When a consumer selects resources from multiple suppliers, the “Secure Time Window”

stage is necessary. This simply alters the task to begin and end only at the time all element bids

overlap. This is necessary as the original resource request specified a time window with a range

of possible arrive and depart times for suppliers to offer resources in. Once a set of bids that

completely fulfill the task are found, consumers do not want these resources’ time slots to be

move around by suppliers, resulting in the task becoming unsynchronized. To prevent this,

consumers secure the task’s time window to one start and end time that all element bids overlap.

Suppliers are updated of this change to the task’s information through the bid confirmations sent.

2.2.3 Unsynchronized Fulfillment

Element bid outcome three, Unsynchronized Fulfillment, presents the greatest challenge

for consumers. As suppliers are not communicating with each other, consumers rebroadcasting

the same request leaves synchronization to chance. Progressing to complete fulfillment requires

direction from the consumer to coordinate scheduling across suppliers.

This “Decide” phase of the OODA loop in the Consumer Decision Process attempts to

balance task feasibility with synchronization. The wider the range of the time window for the

task, the greater the likelihood a resource request will be answered as suppliers have many

options to fit servicing the task into their schedule. The drawback of these numerous options for

suppliers is the decreased probability Element Bids will then be synchronized with other

suppliers whose schedules are unknown. To push diverse suppliers towards coordination, a

consumer updates the time window.

The time window is updated by pushing the task’s early time window to the second

earliest bid arrival time. This heuristic is based on ICAARUS pushing all tasks to be serviced as

early as feasible. This means that when a bid is received, the consumer knows the resource

cannot be moved any earlier without altering the schedule. However, the resource could be

moved back and the schedule remains feasible with idle time in the later part of the resource

path. An example of updating the time window is shown in Figure 7:

20

Figure 7: Update Time Window

 Updating to only the second earliest bid arrival time is crucial to synchronizing suppliers

without forcing schedules to sub-optimal solutions. As can be seen in Figure 7, even with the

new shortened time window, all four Element Bids are not synchronized. While suppliers may

push bids e1 and e2 to have the same arrival time as e3, e4’s arrival time may not be moved up. In

that case the task will again reach Unsynchronized Fulfillment status and the time window will

be shortened to e4’s arrival time, and then the task is expected to reach synchronization across all

Element Bids.

The task’s early time is not immediately updated to the latest arrival time, e4’s arrival

time, as that may tighten the task’s time window to an infeasible time range. Suppose one

supplier was providing bids e1 and e2, and it has a highly valuable task it is servicing right after

task i that it cannot move. If the time window were drastically tightened then task i would lose

two of its Element Bids. By gradually updating the time window through multiple bidding

rounds, the following rounds could have the supplier of e4 move its arrival time up or new

suppliers become able to service task i in place of e4’s supplier.

If the updating time window process results in a supplier dropping its Element Bid for the

task with no other supplier filling its bid, then the task would become an Incomplete Fulfillment

 … …

 … …

… …

 … …

Task i
Time Window

Updated Task i
Time Window

e1

e2

e3

e4

21

case. This would result in the consumer re-submitting its resource requests with the task’s

original time window, giving maximum flexibility to suppliers again.

22

Chapter 3

3 Model Formulation and Development

 This chapter develops a mathematical representation that addresses the Supplier

Scheduling Problem (SSP). The mathematical representation begins with a description of the

input and output variables that define the problem. The mathematical structure of the SSP is

visualized through multiple graphical representations to highlight the network nature of this

problem.

 The mathematical formulation allows us to identify similar problems in the literature.

Research into the Traveling Salesman Problem and its Time Window variants help us understand

the challenges of SSP and provide techniques for finding solutions through exact and heuristic

methods. The Team Orienteering Problem is also a useful variant of the Traveling Salesman

Problem for understanding and current methods used for organizing a team to maximize prize

collection as the SSP organizes multiple resources for maximum mission completion.

 At the end of the chapter, a Mixed Integer Programming (MIP) model of the SSP is

presented. This MIP utilizes binary and continuous decision variables to build a schedule for a

set of resources that satisfies the constraints of the SSP.

 Supplier Scheduling Problem (SSP)

 This section describes the SSP and defines the inputs and outputs of the problem. It

presents assumptions that were made on the capabilities of the resources, and explains any other

assumptions made to simplify operational constraints for the purpose of this mathematical

model.

3.1.1 Inputs to Supplier Solver

3.1.1.1 Supplier Inputs

 supplierID Integer value identifying which supplier is making this schedule.

 pos Position of supplier’s base location.

23

resourceList Set of-which resources and what quantity of those resources a

supplier has control over.

schedule Assignments of which task elements a supplier has committed

particular resources too, and what time they are assigned to service

these requests.

unconfirmedTasks Set of which tasks the supplier has on its schedule that it bid to

fulfill for a consumer, but has not received a status notification of

yet.

confirmedTasks Set of which tasks the supplier has on its schedule that it has bid on

and an acceptance of selection has been received by a consumer.

The supplierID, pos, and resourceList are unchanging for each supplier through all

rounds of bidding. Initially the schedule, unconfirmedTasks, and confirmedTasks are empty until

the supplier begins bidding on task requests.

The resourceList can have duplicate entries to express a supplier’s capacity of multiple

resources for that one type. For example: a resourceList of {A,B,C} means a supplier has one

resource of type A, one resource of type B, and one resource of type C. Meanwhile a resourceList

of {A,A,A} means a supplier has three resources of type A.

3.1.1.2 Task Inputs

 consumerID Integer value identifying which consumer the task request is from.

 taskID Integer value a consumer gives to identify the task.

 pos Position of the task’s location.

 value Rated importance of the task from [1-100].

 early Beginning of time window for the task.

 late End of time window for the task.

 minDur Minimum time duration the task needs to be serviced.

24

 resourceCount Number of elements for which the task is requesting resources.

 resourceReq Set of resources the task is requesting.

 A task request has two forms of identification, consumerID & taskID. From here onward

a task may be referred to as simply task i or task j, but this i or j is not a task’s complete ID, it is

merely a shorthand to index individual tasks. For example: task i could be referring to task (2,3),

which is a task from consumer 2 and labeled as task 3 from that consumer.

 The resourceReq can have duplicate entries to express the consumer needing multiple

resources of that one type for a task. For example: a resourceReq of {A,B,C} means a task is

requesting three elements with one resource of type A, one resource of type B, and one resource

of type C. Meanwhile a resourceReq of {A,A,C} means a task is requesting three elements with

two resources of type A, and one resource of type C.

3.1.2 Outputs of Supplier Solver

 As mentioned in the motivation for this research, the model is decentralized in nature for

its bidding structure. So, the outputs from a supplier that a consumer would see are bids for task

elements. However, the solution to the SSP is a schedule of supplier resources accommodating

tasks, which remains visible only to that individual supplier. A supplier’s schedule is described

as a list of composites:

composite A single resource and a path plan

 The path of a composite has the following characteristics:

1. Task Order: The order in which this resource will accommodate its assigned tasks.

2. Arrival Times: The time at which the resource will be able to start each task assigned.

3. Departure Times: The time at which the resource will need to end each task assigned.

4. Travel Times: The time required to travel from the previous task to the subsequent task.

Example 1 displays a supplier’s schedule with composites.

25

Example 1: This example describes a schedule with two composites, meaning two resources and

two path plans. Here there is a set of five tasks, {t1,t2,t3,t4,t5}, to be completed by a set of two

resources, {A,B}. The following is a table of a selection of the parameters for this set of tasks:

Table 1: Example 1 Task Parameters

Task Early Late Min. Duration Resource Req.

t1 0.0 4.0 1.0 {A}

t2 2.0 6.0 1.0 {B}

t3 4.0 8.0 1.0 {A}

t4 6.0 10.0 1.0 {A}

t5 8.0 12.0 1.0 {A,B}

 Only task t5 requires multiple resources and needs synchronization across resources. The

following provides path plans for the composite example:

Composite 1. Resource A departs the base station at time 0, and then performs the following

tasks. The resource returns to the base station directly after completing t5:

 Table 2: Example 1 Composite 1: Path Plan for Resource A

Task Order Arrival Time Departure Time Travel Time

t1 1 1.0 2.0 1.0

t3 2 4.0 5.0 1.0

t4 3 7.0 8.0 2.0

t5 4 11.0 12.0 3.0

 Note that the while resource A can begin t1 at time 0, it takes a travel time of 1 hour to get

to that task (from starting base) so its arrive time is 1.0. Also, while resource A can leave t1 at

26

time 2.0, and it only requires a travel time of 1 hour to get to t3 at time 3.0, the resource cannot

begin servicing the task till t3’s Arrive Time of time 4.0.

Composite 2. Resource B only requires a travel time of 1 hour to get to t2 from the base station,

so it does not depart till time 1.0, and then performs the following task. The resource returns to

the base station directly after completing t5:

Table 3: Example 1 Composite 2: Path Plan for Resource B

Task Order Arrival Time Departure Time Travel Time

t2 1 2.0 3.0 1.0

t5 2 11.0 12.0 2.0

 Note that while resource A can leave t2 at time 3.0, and it only requires a travel time of 2

hours to get to t5 at time 5.0, the resource does not begin servicing the task till time 11.0 even

though the time window for servicing the task is time 8.0. This is because t5 requires

synchronization of both resources, so resource B must wait for resource A to arrive to begin

servicing t5 together.

 Network Representation

 This section describes how to transform the physical real-world problem with complex

parameters, into a graphical structure easier to visualize. This formulation of the problem into a

graph will provide insight into methods to solve the problem. First introduced is a simplistic

static graph of the problem, then a more complex time-space graph, and finally a placement-

space graph.

3.2.1 Static Graph Representation

 To begin applying analytical techniques to the SSP, the physical system should be

mapped to the proper theoretical framework. Large-scale transportation problems, such as the

Vehicle Routing Problem, are often represented using a directed graph, G(N,A), consisting of a

set of nodes, N, and a set of arcs, A [15]. In this network the nodes represent task and base

locations, and arcs represent the path to get from one node to another. A two-dimensional map

27

can be rearranged to a simpler network to visualize with weights on those arcs representing the

distance between node pairs. A static graph representation for the operations of a single resource

and three tasks is shown in Figure 8:

Figure 8: Static Graph Representation

3.2.2 Time-Space Graph Representation

 The static graph representation presented in the previous section is unable to model the

time dimension of resource scheduling. To model time and position, the time-space graphical

representation can incorporate time by creating nodes that include the location of the resource

and the time that the resource is at the task. Therefore, a node most be created for each task at

every time period over the planning horizon. Task-time nodes cannot be limited to only be the

time periods for which the task’s time window is active as the network needs to capture where

the resource is if the resource is idly waiting between two time windows.

 The time-space graph assists in scheduling resources, because it records the location of

every resource at each point in time. Each node in the time-space graph is indexed by task and

time period. For example, index (i,t) corresponds to task i at time t. However, now the arcs must

become directed in the network as travelling back in time is prohibited in reality. below we show

Figure 9 of a time-space graph with two tasks:

Task 1 Base

Task 3 Task 2

28

Figure 9: Time-Space Graph Representation

 While this network enables visualizing a resources position in space and time, it creates

many unnecessary nodes and arcs due to task nodes existing across the whole planning horizon.

Another issue this graph representation encompasses is the need to discretize time. The drawback

of high precision with shrinking time intervals comes at the cost of rapidly growing the number

of nodes.

3.2.3 Placement-Space Graph Representation

 The time-space graph representation in the previous section suffers in the trade-off of

precision of time vs. graph size. When a continuous variable such as time is binned into discrete

segments, the ease of interpretation comes at the risk of suboptimal solutions. To keep time of

arrivals and departures as continuous variables, the placement-space graphical representation

incorporates order by creating nodes that include the location of the resource and the placement

that the resource is in the service list. This requires a node to be created for each task at every

index on the resource’s service list. This is expected to create a graphical representation with

fewer nodes as the number of tasks to accommodate should be significantly smaller than the

number of time periods in the planning horizon.

 Each node in the placement-space graph is indexed by task and placement. For example,

index (i,2) corresponds to task i being the second task the resource visits. The arcs must also be

directed as the time-space graph, as traveling back in order is prohibited in reality. Below we

show Figure 10 of a placement-space graph with two tasks:

Base,t

i,t+1 i,t+2

j,t+2 j,t+1

Base,t+1 Base,t+2 Base,t+3

i,t+2

j,t+2

29

Figure 10: Placement-Space Graph Representation

 A path through this network reveals which tasks the resource will be able to service and

in what order the tasks will be accommodated. However, like the time-space graph, the time

window and synchronization constraints are not implicitly expressed and will require additional

constraints on the network’s arcs. The placement-space graph does require less arcs and nodes

than the time-space graph, while maintaining continuous time variables.

 Problem Classification

 Now that the parameters of the problem are defined and a visual representation can be

created for the placement-space dimension of the problem, similar problems in literature are

compared to lend more insight to solution formation. The Vehicle Routing Problem (VRP) has

many similarities to a supplier attempting to find an optimal routing of its resources. After all a

vehicle is just a specific type of resource. The VRP has been studied since 1959’s work by

Dantzig and Ramser, and so many variations and formulations exist to draw inspiration from

[16]. This section aims to classify previous research methods similar to the SSP’s goals of

maximizing benefit received while handling elements of:

 Time

 Multi-resource Synchronization

 Resource classes

In addition to accomplishing these features, there is also the desired feature of quickly

finding a solution for a large number of tasks.

Base,0

i,1 i,2

j,2 j,1

Base,1 Base,2 Base,3

30

3.3.1 Mathematical Programming Background

 A proven field of research for solving the VRP is known as Linear Programming. Linear

Programming makes use of abstract mathematical models to represent real-world problems. The

name “linear” comes from the linear functions of the decision variables that form the objective

and all constraints. By formulating the rewards and costs of a real-world problem into an

objective function, linear programming can find an exact solution that maximizes or minimizes

this value. It does this under a set of constraints that represent the real-world conditions that limit

the problem [12].

 The classical linear programming problem necessitates all variables are continuous non-

negative real numbers. This is not the case for a problem such as resource scheduling that

requires binary decision variables, and a “yes” or “no” answer to the question of allocation. This

is because a resource, such as a vehicle, cannot be cut in half and used to service half of two

requests. A resource must be sent in its integral entirety or not at all. Fortunately, this a well-

studied problem in the realm of Mixed Integer Programming (MIP), which is classified as a

subset of mathematical programming using integer and binary variables. The unique types of

problems faced in the SSP also fall under a more general class of problems known as the

Traveling Salesman Problem (TSP) [17].

3.3.2 Travelling Salesman Problem

 Dantzig describes the Traveling Salesman Problem as “Find the shortest route for a

salesman starting from a given city, visiting each of a specified group of cities, and then

returning to the original point of departure” [18]. It is a mathematical conjecture that the

complexity class of the TSP is Nondeterministic Polynomial-time Complete or NP-Complete

[19]. This means that there is no known algorithm that can always give an optimal solution in a

polynomial time variation. The best that can be done currently is finding a solution to an NP-

Complete problem that has solution times grow exponentially with the number of nodes [20].

3.3.2.1 Mixed Integer Programming Formulation for Traveling Salesman Problem

 The TSP can be modeled as a MIP with binary variables that indicate the decision whether

or not to traverse an arc in the network. The variable, xij, will take on the value of one if the arc

31

between node i and node j is traveled, and zero otherwise. The variable, dij, is the distance from

node i to node j. Dantzig, Fulkerson, and Johnson give the following MIP model:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑑௜,௝𝑥௜,௝(௜,௝)∈ே

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∑ 𝑥௜,௝௜∈ே = 2 ∀𝑗 ∈ 𝑁

 ∑ 𝑥௜,௝௜,௝∈ௌ ≤ |𝑆| − 1 ∀𝑆 ⊂ 𝑁, 𝑆 ≠ ∅

 𝑥௜,௝ ∈ {0,1}

 The set N is the set of all nodes in the network, and S is a subset of N. The first constraint

ensures that each node in the network is visited by forcing the traveler to travel into and out of

each node. The second constraint is a sub-tour elimination constraint; it ensures that the solution

is a single tour. The size of the problem increases exponentially with the addition of the sub-tour

elimination constraint, adding 2N constraints.

3.3.2.2 Exact Solution Methods

 All known solution methods to TSP run in non-polynomial time, and in the worst case the

entire solution space might have to be searched to confirm an optimal solution. However, there

are methods that attempt to intelligently search the solution space and reduce the solve time for

the model. Two of the most common methods are branch and bound and cutting planes.

 The branch and bound method is a divide and conquer method to find an optimal

solution. This method begins by solving the linear programming relaxation, which removes the

constraints that ensure variables are integral and binary [19]. This means the xij variable can take

on continuous values between zero and one and will provide a “lower bound” to the solution that

may or may not be attainable. Next, this method solves sub-problems in an attempt to find

integer solutions. The lower bound is used to discard certain subsets of the feasible set from

consideration [20].

 The cutting planes method begins similarly to branch and bound by first solving the

linear programming relaxation. Next, sub-tour elimination constraints are added to force

fractional solutions towards integer solutions, as well as to get rid of any sub-tours in the

32

relaxation solution [18]. In the right circumstances, only a few intelligently chosen constraints

are needed to find an optimal solution to all constraints.

3.3.2.3 Heuristic Solution Methods

 When an exact solution method is relaxed to only need near-optimal solutions, but in a

shorter search time, heuristic solution methods can be used to generate quick solutions.

Heuristics do not search the entire set of solutions, but find the “best” solution in a reasonable

amount of time. “Best” is defined as a threshold the designer creates for the acceptable gap from

optimality.

 Laporte categorizes heuristic methods into two classes: 1. Tour construction procedures

to efficiently build feasible routes by adding nodes one at a time, and 2. Tour improvement

procedures to improve an already existing route [21]. Most heuristic algorithms that solve the

TSP incorporates both tour construction and tour improvement procedures in what is called a

composite algorithm [21]. Note here the name “composite” refers to the algorithm being a

combination of multiple procedures, and is not an algorithm of composites as defined in

Section 3.1.2.

 For example, Flood suggests the nearest neighbor algorithm is a straightforward tour

construction procedure to find a solution to the TSP [22]. This algorithm begins at an arbitrary

node, and proceeds to add the node that is closest to the present node. It repeats this nearest

neighbor addition to the route until all nodes are included in the path. The last node is then

connected to the origin to create a complete tour.

 Another class of tour construction procedures, known as insertion algorithms, follow

these basic steps [21]:

 Step 1: Construct a simple tour with only two nodes

 Step 2: Consider each node not in the tour. Insert the node that meets a specific criterion.

 Common criteria that are used to measure which node is most appropriate to be added

next to the network include: 1. Adding the node that is closest to the two nodes in the current

selected tour, 2. Adding the node that is furthest from the two nodes in the current selected tour,

and 3. Adding the node that produces the least increase in distance for the current path. While

33

these examples of criteria are not exhaustive, other criteria include combining multiple metrics

with weights assigned to each method [23].

 Tour improvement procedures already start with a route, built by a simple or complex

construction procedure. These procedures then aim to improve this given route by some routine.

Flood noticed that if a path crosses itself at any point during the tour, then the tour could be

improved by switching the order of nodes so that the tour does not cross [22]. Croes proposed a

similar idea, known as inversion¸ where the order of two nodes is switched in a tour to see if the

resulting route is improved [24]. Lin and Kernigan expanded upon these methods to bound the

scope of searching for tour improvements in the k-opt algorithm [25]. The algorithm goes

through all subsets of k arcs and attempts to reconnect the tour with a set of k new arcs. If an

improvement is found, the k old arcs are deleted in favor of the new better arcs, and the

algorithm continues down the route to the next set. An example of a k-opt algorithm with k = 2 is

shown in Figure 11:

Figure 11: 2-Opt Algorithm

 Another group of tour improvement procedures are metaheuristics. These methods

include subroutines that select which scope of the solution set to explore. These heuristics

Original Route: [1,2,5,3,4]

1

2 3

4 5

1. Arc (2,5)
replaced with (2,3)

2. Arc (3,4)
replaced with (5,4)

Improved Route: [1,2,3,5,4]

1

2 3

4 5

34

include tabu search, which records which solutions have already been generated to avoid

repeated searches, ant colony, which records which previous solutions led to improvements and

should be explored more, and simulated annealing, selecting solutions with a probability based

on a measured criterion of optimality [26]. Simulated annealing is used extensively in

ICAARUS as detailed in Chapter 4.

3.3.3 Traveling Salesman Problem with Time Windows

 The TSP with Time Windows (TSPTW) is very similar to the basic TSP with extra

constraints on when the salesman can visit a city. Each city has a time window in which the

salesman can visit the city. Arriving in the city before or after that time window does not count

as a visit for the salesman. The objective remains to visit N nodes at least once (within their time

windows) at a minimum travel cost.

In linear programming these time windows would be expressed as a constraint the

Salesman must visit the city after the time window’s lower bound, li, and before the time

window’s upper bound, ui. Baker proposed a model with decision variables, ti, that specified the

time the Salesman visited city i. The shortest travel times between each node pair is already

found and expressed by dij .The decision variable tn+1 specifies the time the salesman returns to

the start node, and it is the difference between this time and the start time, t0, that is trying to be

minimized [28].

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡௡ାଵ − 𝑡଴

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑡௜ − 𝑡ଵ ≥ 𝑑௜ଵ 𝑖 = 2, … , 𝑛

 |𝑡௜ − 𝑡ଵ| ≥ 𝑑௜௝ 𝑖 = 3, … , 𝑛 2 ≤ 𝑗 ≤ 𝑖

 𝑡௡ାଵ − 𝑡௜ ≥ 𝑑௜ଵ 𝑖 = 2, … , 𝑛

 𝑡௜ ≥ 0 𝑖 = 1, … , 𝑛 + 1

 𝑙௜ ≤ 𝑡௜ ≤ 𝑢௜ 𝑖 = 2, … , 𝑛

 In scenarios with many cities for the salesman to visit, a large |N|, this solution scales

poorly and can take a long time to solve. Another exact algorithm to solve the TSPTW was

35

introduced by Mingozzi et al. through use of precedence constraints [27]. Precedence constraints

in a route ensure a node is visited no earlier than the proceeding node is visited. These

constraints ensure that in tour construction, the next node added in the route is always in time

order. A faster, but inexact, approach was proposed by Gendreau et al. that utilizes the nearest

neighbor algorithm to construct tours [29]. This method requires at each iteration, that the time

window bounds be checked for the added city to ensure the solution constructed is feasible.

3.3.4 Team Orienteering Problem

 The Orienteering Problem (OP), or generalized TSP, is described as: given n nodes, each

node i has a non-zero score 𝑠௜. The arc between node i and j has an associated cost of cij. In this

problem the travel time between each node represents the cost and each node can be visited at

most once. The objective of the OP is to maximize the score of a path that consists of a subset of

nodes beginning at node 1 and ending at node n without violating the max cost (travel time)

constraint T.

 Golden et al. demonstrate this model for the sport of orienteering has useful application

to the VRP and production scheduling [30]. They also proved that the OP is NP-hard, warning of

the computational limitations of exact methods and encouraging a focus on heuristic procedures

for problems of these classification. Golden et al. present a composite algorithm where the first

stage constructs routes through a cost-benefit analysis and the second stage improves the initial

route by 2-opt method similar to Lin-Kernigan and then a center-of-gravity method. Golden,

Wang and Liu produced a more efficient algorithm where the algorithm learns the most effective

route improvement methods and adapts through the course of improvements [34]. Tsiligrides

approached the OP with a two stage heuristic, building initial routes through a Monte Carlo

approach, and improving routes through a local search space heuristic method that performs

route optimization similar to Lin-Kernigan’s 2-opt method [33]. Ramesh and Brown solve the

OP by iterating through four phases [35]:

1. Construct an initial route by a cost-to-benefit analysis to see which node is best to add

next on the route.

2. Use Lin-Kernighan 2-opt method to improve the route.

36

3. Select nodes to delete from route that can be replaced with more valuable nodes in their

places.

4. Repeat until the marginal improvement of a round falls below a specified threshold.

The Team Orienteering Problem (TOP) extends the OP by creating multiple tours of the

network for multiple Orienteers to maximize the score collected. In the sport or orienteering a

team of Orienteers attempt to coordinate together to collect as many waypoints as possible in a

given amount of time. This aspect of coordination adds a great deal of complexity to the

problem. Tang and Miller-Hooks used the heuristic of tabu search to overcome these

complexities in TOP [31]. Following their work, Archetti et al. compared tabu search with

variable neighborhood search and found that Variable Neighborhood Search outperformed two

tabu search heuristics [32]. Adaptive Large Neighborhood Search, an extension of Variable

Neighborhood Search, is explored further in Chapter 4 as a solution to the SSP.

 Mixed Integer Linear Programming Model

 This section discusses a Mixed-Integer Linear Programming (MILP) formulation that can

be readily formatted to optimization software. The mathematical model provides the ability to

find an exact optimal solution. Although previous research has shown that exact methods might

not be practical, the optimal solution will give insight to compare the quality of a solution

generated through heuristic methods. In addition, the linear programming relaxation of this

model, while inexact, will give a quick theoretical upper limit to the “best solution.” This upper

limit can be useful to evaluate the gap between LP and heuristic methods in a time efficient

manner.

 This work draws heavily from Miller’s reformulation of the Team Orienteering Problem

with Time Windows (TOPTW) to solve his Unmanned Surface Vessel Observation-Planning

Problem (USVOPP) [12]. The MILP developed by Miller took advantage of integer decision

variables to create of placement-space nodes in network which greatly inspired this particular

model. Miller’s binary variable 𝑥௜௞௧takes a value of 1 if node i is visited by USV k in the t-th

placement on the route, encompassing multiple decisions in a single variable. Also instrumental

to the development of this model was Negron’s work in creating a MILP model to make

schedule sorties (schedules with multiple tasks on a route for a resource). Negron linearized

37

travel time constraints by introducing linearization variables that are calculated a priori, which is

key to formulating this particular model [7].

3.4.1 Supplier MILP Model Formulation

 This mathematical formulation is used by individual suppliers to find the optimal

schedule for a supplier’s resources for all the task requests received. First the notations for sets,

decision variables, and input variables are defined. Then the objective function and constraints

are introduced. Finally variations of this model are introduced to improve synchronization of

element bids for a particular task.

3.4.1.1 Set Definitions

 The following sets are used in the formulation:

 T = set of all tasks

 U = set of all resources

 U(e) = Set of all resources of type e

 P = set of all placements in a path

 The set P is the set of placements of tasks in a path for a resource. A placement denotes

the order of a task in the path. For example, if a task is in placement three, then the task is the

third task that will be performed by the resource. The set of placements contain the placement for

each task in the path. For Example: The set associated with a path of five tasks, T={t1,t2,t3,t4,t5},

will contain the first five natural numbers, P={1,2,3,4,5}.

3.4.1.2 Decision Variables

accommodatei,u,p A binary decision variable of 1 if task i is accommodated by

resource u in placement p, 0 otherwise.

traveli,j,u A binary decision variable of 1 if the arc from task i to task j is

travelled by resource u, 0 otherwise.

arrivei,u A continuous decision variable that assigns the time that resource u

will arrive at task i.

38

departi,u A continuous decision variable that assigns the time that resource u

will depart from task i.

Note where Negron and Miller make use of a decision variable named perform, this work

uses the decision variable accommodate. This is to reflect that even though a resource of a

supplier may be assigned to a specific task, it is not guaranteed to perform that task by the

consumer, thus it has only been allocated to “accommodate” a task at this stage.

3.4.1.3 Input Variables

 earlyi Beginning of time window for task i.

 latei End of time window for task i.

 minDuri Required time to complete task i.

 horizon Planning horizon.

travelTimei,j,u Length of time for resource u to travel from location of task i to

location of task j.

travelToBaseTimei,u Length of time for resource u to travel from location of task i to

location of u’s supplier.

resourceCounti,e The number of elements that task i requests for a resource type e.

valuei The value to complete task i.

3.4.1.4 Objective Function

 The objective is to maximize the total value of all tasks completed. Each task has a

varying number of resources request, some tasks may only request one resource, and others may

request multiple resources. Thus, the value of a task is divided by the number of resources

requested so that the full value can only be achieved if all the resources requested are

accommodated. The objective function is:

 𝑀𝑎𝑥 ∑
௩௔௟௨௘೔

௥௘௦௢௨௥௖௘஼௢௨௡௧೔
∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௨∈௎,௣∈௉௜∈்

39

3.4.1.5 Constraints

 The model has twelve constraints that are categorized as resource type constraints,

network constraints, or time window constraints. The constraints ensure that the capacities of

suppliers and capabilities of resources are not exceeded, so that the resulting schedule for

resources is feasible for all suppliers to fulfil. The resource type constraints ensure that a

resource of one type does not accommodate a task element request of a different type. The

following is the resource type constraints:

(1) Ensure a Task, i, cannot be accommodated by a resource, u, it does not request.

𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣ = 0 ∀𝑖 ∈ 𝑇, 𝑒 ∈ 𝑖, 𝑢 ∉ 𝑈(𝑒), 𝑝 ∈ 𝑃

The network constraints ensure that the resulting operations scheduling creates a feasible

path for the resources’ schedule. The following are the network constraints:

(2) Each Task, i, can only be assigned one placement per resource.

∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ ≤ 1 ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(3) Each placement, p, can only be assigned one task per resource.

∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௜∈் ≤ 1 ∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃

(4) Ensure each Task, i, does not get more resources, u, per element type of its request.

∑ ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣ ௣∈௉௨∈௎(௘) ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡௜,௘ ∀𝑖 ∈ 𝑇, 𝑒 ∈ 𝑖

(5) Ensure that the tasks are assigned in successive placements on the resource path.

∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣ାଵ௜∈் − ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௜∈் ≤ 0 ∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃 − 1

(6) Force a travel arc to exist between two tasks performed successively.

𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣ାଵ + 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௝,௨,௣ − 2 ∗ 𝑡𝑟𝑎𝑣𝑒𝑙௜,௝,௨ ≤ 1 ∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇,

∀𝑢 ∈ 𝑈, 𝑝 ∈ 𝑃 − 1

 The time window constraints limit the resulting operations scheduling to performing

tasks within the desired time window. The following are the time window constraints:

40

(7) Resource must arrive after the beginning of the time window if it is accommodating

task i.

𝑒𝑎𝑟𝑙𝑦௜ × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ ≤ 𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(8) Resource must exit before end of time window if it is accommodating task i.

ℎ𝑜𝑟𝑖𝑧𝑜𝑛 − (ℎ𝑜𝑟𝑖𝑧𝑜𝑛 − 𝑙𝑎𝑡𝑒௜) × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ ≥ 𝑑𝑒𝑝𝑎𝑟𝑡௜,௨

∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(9) Resource can depart the task only after the minimum required duration of time.

𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ − 𝑚𝑖𝑛𝐷𝑢𝑟௜ × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ ≤ 𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(10) Resource must begin schedule at location of supplier’s base.

 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑜𝐵𝑎𝑠𝑒𝑇𝑖𝑚𝑒௜,௨ ≤ 𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(11) Resource must end schedule at location of supplier’s base.

 𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ ≤ ℎ𝑜𝑟𝑖𝑧𝑜𝑛 − 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑜𝐵𝑎𝑠𝑒𝑇𝑖𝑚𝑒௜,௨ ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(12) Ensure sufficient travel time between tasks. 𝑎௜,௝,௨must be calculated a priori as

explained in Subsection 3.4.1.6

𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒௜,௝,௨ − 𝑎௜,௝,௨(1 − 𝑡𝑟𝑎𝑣𝑒𝑙௜,௝,௨) ≤ 𝑎𝑟𝑟𝑖𝑣𝑒௝,௨

∀𝑖 ∈ 𝑇, 𝑗 ∈ 𝑇, 𝑢 ∈ 𝑈

3.4.1.6 Linearization of Constraint

 The LP model needs to constrain the time that a resource arrives at a subsequent task to

be greater than the time that it takes to arrive at that following task, which is the time it departs

the previous task plus the travel time between the two tasks. The intuitive way to write this

constraint would be:

൫𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒௜,௝,௨൯ × 𝑡𝑟𝑎𝑣𝑒𝑙௜,௝,௨ ≤ 𝑎𝑟𝑟𝑖𝑣𝑒௝,௨

41

 However, this constraint in not linear, because decision variables are being multiplied

together. Therefore Ropke, Cordeau, and Laporte developed the following way to linearize the

constraint ensuring sufficient travel time between two tasks [14]. The value, 𝑎௜,௝,௨ , which must

be calculated before solving the model, is:

𝑎௜,௝,௨ = max൫0, 𝑙𝑎𝑡𝑒௜ + 𝑚𝑖𝑛𝐷𝑢𝑟௜ + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒௜,௝,௨ − 𝑒𝑎𝑟𝑙𝑦௝ ൯

 This constraint, (12), will now either be redundant with the non-negativity constraints (if

the resource does not travel between the two tasks) or will constrain the departure time of the last

task plus travel time to be less than the arrival time to the next task.

 (12)= ൝
ቀ𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ − ൫𝑙𝑎𝑡𝑒௜,௨ + 𝑚𝑖𝑛𝐷𝑢𝑟௜൯ቁ ≤ ൫𝑎𝑟𝑟𝑖𝑣𝑒௝,௨ − 𝑒𝑎𝑟𝑙𝑦௜,௨൯ , 𝑡𝑟𝑎𝑣𝑒𝑙௜,௝,௨ = 0

𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ + 𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒௜,௝,௨ ≤ 𝑎𝑟𝑟𝑖𝑣𝑒௝,௨ , 𝑡𝑟𝑎𝑣𝑒𝑙௜,௝,௨ = 1

3.4.2 Maximum Time Window Model Formulation

 This e-commerce structure relies on two decision stages in each round of bidding, 1. the

supplier deciding which tasks to service with which resources and when to service them and 2.

the consumer deciding which resource bids have time windows overlapping that the consumer

can accept to synchronize all the elements of a task. In stage 1, the supplier is trying to maximize

the number of task elements accommodated which can result in very tight arrive and depart time

windows.

As the supplier is trying to pack as many tasks into its sortie as possible to maximize the

objective function, resources’ time windows usually only last for the required minimum duration

even if they had idle time between that task and its following task. This becomes a problem in

stage 2 when a consumer may have received bids for all its task elements, but they are all in

different sections of the task’s initial time window. While these resources may be surrounded by

idle time in which they could have stayed on the task longer and still had enough time to travel to

their next task, this is not reported in the current MILP model. To address this inefficiency the

concept of Maximum Time Window (MTW) is added to the model to increase the likelihood of

task elements bids overlapping for consumer synchronization.

42

3.4.2.1 MTW Objective Function

 The new objective function is very similar to the original model’s objective function of

maximizing the total value of tasks completed, but it also aims to maximize the time window that

the resource schedules for a task. The MTW objective function is:

𝑀𝑎𝑥 ෍
𝑣𝑎𝑙𝑢𝑒௜

𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡௜
෍ 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣

௨∈௎,௣∈௉௜∈்

+ 𝑤௧௜௠௘ௐ௜௡ௗ௢௪ ෍ (𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ − 𝑎𝑟𝑟𝑖𝑣𝑒௜,௨)
௜∈்,௨∈௎

 This objective function maximizes the time windows for bids by maximizing the

difference between the depart and arrive time for a resource to a task. An important parameter is

the weight for stretching the time windows, 𝑤௧௜௠௘ௐ௜௡ௗ௢௪, as it controls the relationship of how

valuable accommodating a task is to maximizing the time window for accommodated tasks.

Reminder: accommodate is a binary decision variable so can be {0,1}, while depart and arrive

are continuous decision variables that are constrained by [0,latei - earlyi] (which for the context

of this thesis is [0,25]).

 In the most aggressive case for a supplier filling its sorties with as many tasks as possible,

it will want to always choose to accommodate a task rather than maximize the time window of

another task. For the particular parameters of this thesis, the weight should be set to:

𝑤௧௜௠௘ௐ௜௡ௗ௢௪ =
𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒ெ஺௑

𝑣𝑎𝑙𝑢𝑒ெ஺௑ × ∆𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤ெ஺௑
=

1

100 × 25
= 0.0004

 In more conservative cases where a supplier may want to allocate larger time windows

for high value tasks at the expense of not accommodating low value tasks, 𝑤௧௜௠௘ௐ௜௡ௗ௢௪can be

increased depending on the desired ratio of large time windows to number of tasks

accommodated.

3.4.2.2 Maximum Time Window Constraints

 A constraint will need to be added to the original model as well to control the difference

in depart and arrive times for non-accommodated tasks. Constraints (7) and (8) only restrict

arrivei,u and departi,u when ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ = 1, so when inactive the difference in depart

43

and arrive can become as large as the horizon value. Thus, the difference between arrive and

depart times needs to be pushed to zero when a task is not being accommodated by that resource.

(13) Force the time windows of non-accommodated task elements to zero.

𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ − 𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ ≤ ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

 Constraint (9) ensures 𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ ≤ 𝑑𝑒𝑝𝑎𝑟𝑡௜,௨, so no additional constraints are needed to

prevent negative time windows from occurring.

3.4.3 Supplier MILP w/ Synchronization Model Formulation

 This section address adding decision variables and constraints to ensure that resources a

supplier is bidding on for a task are synchronized to the same arrival times. While altering the

original MILP model to a MTW model increases the chance of overlapping time windows, it

does not guarantee that the resources will be synchronized to arrive on task at the same time. To

ensure the supplier is coordinating its resources, overarching task arrival and departure variables

are introduced with three new constraints. These additions are to the nominal MILP model, as

incorporating both overarching time variables and the MTW objective function is redundant.

Synchronization Decision Variables

Arrivei A continuous decision variable that assigns the time that all

resources requested will arrive at task i.

Departi A continuous decision variable that assigns the time that all

resources requested will depart from task i.

3.4.3.1 Synchronization Constraints

 These super arrival and departure variables safeguard that for all resources servicing task

i that they must be scheduled to service i for an overlapping time window of at least the

minimum duration. The resources can arrive before the synchronized task servicing, and can stay

after the synchronized task servicing. These synchronization constraints are:

(14) Overarching variable Arrivei is the latest arrival time of any resource servicing

task i.

44

𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ − ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × ቆ1 − ෍ 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣
௣∈௉

ቇ ≤ 𝐴𝑟𝑟𝑖𝑣𝑒௜

 ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(15) Overarching variable Departi is the earliest departure time of any resource

servicing task i.

𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ + ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × ቆ1 − ෍ 𝑎𝑐𝑐𝑜𝑚𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣
௣∈௉

ቇ ≥ 𝐷𝑒𝑝𝑎𝑟𝑡௜

 ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(16) Resources can depart the task only after the minimum required duration of time.

𝐴𝑟𝑟𝑖𝑣𝑒௜ + 𝑚𝑖𝑛𝐷𝑢𝑟௜ ≤ 𝐷𝑒𝑝𝑎𝑟𝑡௜ ∀𝑖 ∈ 𝑇

 With constraint (16) constraint (9) becomes redundant and can be removed from the

model.

 This model addition of synchronization as a constraint rather than a desired feature, as in

MTW, does constrict scheduling to sub-optimal solutions. suppliers may be forced to drop

accommodating a task, because one element cannot be synchronized with the remaining

elements for that task. This is highlighted in Example 2.

Example 2: A consumer is requesting three resources for a task, {A,B,C}. This resource request

goes to two suppliers.

Supplier 1 has three resources, {A,B,C}. But it is very busy and its resources are already

committed to servicing other tasks.

Supplier 2 has two resource {B,C}. It has a very open schedule as it is not servicing any

other tasks.

 Supplier 1 can synchronize its B and C resources, but due to its tight schedule this

aligned service time for the resource request is not compatible for any of the windows A is

available. Under MTW supplier 1 would still bid to service A,B, and C, and supplier 2 would bid

for servicing the task’s B and C resources. After a few rounds of bidding supplier 1 and 2 could

find a mutual arrival time and the Task could be fulfilled. However, with synchronization being

45

required as a constraint, supplier 1 will always choose to send a bid that synchronizes B and C’s

arrival time, rather than a bid that can service only A. This will result in the consumer never

getting a bid on A, and thus the task goes unaccommodated.

Synchronization as a constraint in the first stage of the bidding ensures more matches that

are desirable to the consumer, but there may be a decrease in total number of resource bids for

the second stage. These dropped resource bids, while having a time window that did not align

with other resources from the supplier, could have been aligned with the time window of bids

from other suppliers. In summary, the synchronization constraints may lead to sub-optimal

results for consumers, but allows for task requests to be filled and synchronized much faster.

3.4.4 Consumer MILP Model Formulation

 This mathematical formulation is used by individual consumers to find the optimal

selection of Elements Bids for a consumer’s tasks. First the notations for sets, decision variables,

and input variables are defined. Then the objective function and constraints are introduced.

3.4.4.1 Set Definitions

The following sets are used in the formulation:

 T = set of all tasks

 B = set of all element bids

 B(i,e) = set of all bids for a specific task and specific resource type e

3.4.4.2 Decision Variables

bidSelectb A binary decision variable of 1 if element bid b is selected by the

consumer, 0 otherwise.

performi A binary decision variable of 1 if task i is to be performed, 0

otherwise.

Arrivei A continuous decision variable that assigns the time that bids will

begin task i.

46

Departi A continuous decision variable that assigns the time that bids will

end task i.

3.4.4.3 Input Variables

 earlyb Earliest time bid b can begin servicing its task.

 lateb Latest time bid b can end servicing its task.

 costb Cost of the element bid b.

 horizon Planning horizon.

 minDuri Required time to complete task i.

resourceCounti,e The number of elements that task i requests for a resource type e.

3.4.4.4 Objective Function

 The objective is to maximize the number of tasks completed with minimal cost. When a

supplier has multiple bids for a single element, and thus has choices on which bid to accept, this

model choses the bids that have the lowest total cost. Cost being defined by the supplier. The

objective function is:

 𝑀𝑎𝑥 ∑ 𝑝𝑒𝑟𝑓𝑜𝑟𝑚௜௜∈் − ∑ 𝑐𝑜𝑠𝑡௕ × 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡௕௕ఢ஻

3.4.4.5 Constraints

 These constraints ensure resource type and temporal conditions are respected. All

element bids selected must respect one overarching arrival and departure time that lasts the task’s

minimum duration.

(17) Ensure that each task, i, does not get more bids for a resources type, e, per

element type of its request.

∑ 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡௕ ≤ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡௜,௘௕∈஻(௜,௘) ∀𝑖 ∈ 𝑇, 𝑒 ∈ 𝑖

(18) A task, i, can only be performed if it has all resources requested.

𝑝𝑒𝑟𝑓𝑜𝑟𝑚௜ × ∑ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡௘∈௜ ≤ ∑ 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡௕௕∈஻ ∀𝑖 ∈ 𝑇

47

(19) Overarching variable Arrivei is the latest arrival time of any bid, b, selected for

task i.

𝑒𝑎𝑟𝑙𝑦௕ × 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡௕ ≤ 𝐴𝑟𝑟𝑖𝑣𝑒௜ ∀𝑖 ∈ 𝑇, 𝑏 ∈ 𝐵(𝑖)

(20) Overarching variable Departi is the earliest departure time of any resource

servicing task i.

𝑙𝑎𝑡𝑒௕ + ℎ𝑜𝑟𝑖𝑧𝑜𝑛 × (1 − 𝑏𝑖𝑑𝑆𝑒𝑙𝑒𝑐𝑡௕) ≥ 𝐷𝑒𝑝𝑎𝑟𝑡௜ ∀𝑖 ∈ 𝑇, 𝑏 ∈ 𝐵(𝑖)

(21) A task can only be performed if it can be serviced for the required minimum

duration of time.

𝐴𝑟𝑟𝑖𝑣𝑒௜ + 𝑚𝑖𝑛𝐷𝑢𝑟௜ × 𝑝𝑒𝑟𝑓𝑜𝑟𝑚௜ ≤ 𝐷𝑒𝑝𝑎𝑟𝑡௜ ∀𝑖 ∈ 𝑇

 The Consumer MILP is much simpler than the Supplier MILP as the consumer does not

have to worry about network or travel time constraints. The consumer does not concern itself

with routes or order of resources servicing its tasks. This results in the Consumer MILP for bid

selection having much shorter runtimes when compared to the Supplier MILP for scheduling.

 Implementation

While a multitude of optimization software could be used to solve this MILP, this project

used Gurobi Optimizer 9.0.2 with Julia programming language through the extension Julia for

Mathematical Optimization (JuMP) 0.18.The results and performance of this implementation are

discussed in detail in Section 5.2.

48

Chapter 4

4 Formulation of Algorithm

The Mixed Integer Linear Programs introduced at the end of Chapter 3 provides an exact

solution to the SSP. However, due to the complexity of the MILP, with a small increase in the

number of tasks comes an exponential increase in runtimes for suppliers to find solutions. This

motivates the development of an algorithm that uses heuristics to schedule resources in a

reasonable time, as was shown in the literature review of Chapter 3.

 This chapter introduces the Infeasibility Cooling Adaptive Allocation for Resource United

Scheduling (ICAARUS). ICAARUS is a composite algorithm that draws its name from its three

major components. Initially a Simulated Annealing criterion is used to schedule tasks with

resources that may violate the task’s time window. The allowed infeasibility is cooled as the

algorithm progresses to force a solution to feasibility. In the improvement phases, multiple route

improvement heuristics are applied to the schedule and the algorithm learns which methods are

most effective, and then adapts its allocation method to the specific problem at hand. As this

work focuses on tasks that require multiple resources, this algorithm handles synchronization

across all of a supplier’s resources for united scheduling.

Notation

Symbol Description
s Schedule of tasks for a supplier’s resources

v(s) Value of all tasks in schedule s

f(s) Cost of all tasks in schedule s

u(s) Utility of schedule s, u(s) = v(s) – f(s)

α,β Schedule cost parameters

φ Weight adjustment parameters

y Percentage of task list to be removed in removal phase

q Count of tasks to be removed in removal phase

ψ,ω Related removal parameters

49

p Randomness parameter in related and worst removal

DL List of dropped tasks

Ω Cross Synchronization Matrix

λ Lambda-insertion parameter for task insertion index search

Γ1 Set of removal methods

Γ2 Set of insertion methods

wi Weight of removal and insertion methods

πi Score of removal and insertion methods

κ Weight adjustment parameter

 Confirmation Lists

The bidding system outlined in Section 2.2 depends on a supplier remembering which

tasks it has bid on servicing. This bookkeeping is done by each supplier storing two lists:

1. Unconfirmed Task List – A list of all tasks that the supplier had in its previous

schedule, and has not yet received a confirmation of acceptance or rejection of the

element bid from the issuing consumer.

2. Confirmed Task List – A list of all tasks for which the supplier has received an element

bid acceptance, from its issuing consumer.

 To improve the runtime of ICAARUS, these lists also contain which resource is supposed

to service this task and at what time. This information is used in the construction phase of future

schedules to intelligently insert old tasks into what was once the optimal resource path position.

This “hot start” to scheduling allows the current round of bidding to utilize the progress made in

previous bidding rounds. While a schedule will change when tasks are removed from a consumer

rejecting a bid, the memory of this skeleton schedule greatly improves future bidding round

runtimes as seen in Chapter 5.

In the first round of bidding, these two lists are empty as no bids have been sent by the

supplier. After the first round of bidding, suppliers must manage updates to their schedule and

changes to the Confirmation Lists. After the supplier solver has found its new schedule, tasks in

the schedule are compared to the two confirmation lists and three possible scenarios can occur:

50

1. If the task is not on either confirmation list:

The task is added to the Unconfirmed Task List and the consumer is sent a

notification of the supplier’s bid.

2. If the task is already on the Unconfirmed Task List:

The task’s arrival and departure times are updated on the Unconfirmed Task List

in case of changes in the new schedule. The consumer is sent a notification of the

supplier’s bid again.

3. If the task is already on the Confirmed Task List:

The task stays on the Confirmed Task List, and no message is sent to the

consumer, as they have already confirmed notification of the bid(s).

 Construction Phase

 In the construction phase, initial paths are created for the resources of the supplier. The

first part to any composite algorithm is the construction of an initial route, the second being the

improvement of those routes. These two phases are utilized by the construction phase making

potentially flawed scheduling assumptions for the sake of speedy construction. This is tolerable

as the improvement phase will later correct these errors. Specifically, ICAARUS tolerates time

window violations initially, as a later phase will correct these infeasibility issues.

The general challenge of the construction phase is striking a balance between

construction speed vs. solution optimality. If the construction phase creates a schedule with only

a few tasks in its task list, the improvement phase’s search space is decreased with less possible

combinations for a schedule. This limited task list is only one neighborhood of the entire possible

search space, and is not guaranteed to house the global optimal solution. Since it is hard to know

which tasks will be in the optimal solution from the beginning, adding as many tasks as possible

in the initial construction widens the scope of the search space. This increases the chances of

finding the global optimal schedule, but at the cost of exponentially increasing the search

runtime.

First, the Construction Phases for Negron’s Composite Operations Planning Algorithm

(COPA) and Herold’s Dual-Collections are analyzed for insight into striking a balance between

51

construction speed and solution optimality. Then ICAARUS’s construction phase is presented

and how it uses Simulated Annealing to schedule resources in a united manner.

4.2.1 COPA Construction Phase

COPA’s construction phase takes input on UAV types, tasks, and task locations to select

initial paths. The input notation is defined here:

valuet Value of task t

obsTimet Required time to complete task t

idleTimet Length of time that the UAV will have to wait before starting task

due to a time window constraint

latet End of time window for task t

travelTime(t’),(t),u Length of time for a UAV to travel from task t to t’

below in Equation 1 is the cost-benefit ratio that was used by Negron to find the best next

task to be assigned to a UAV’s path [1]:

Equation 1: Negron Cost-Benefit Ratio

𝐶𝐵𝑅௧ =
𝑣𝑎𝑙𝑢𝑒௧

𝑤ଵ × 𝑜𝑏𝑠𝑇𝑖𝑚𝑒௧ + 𝑤ଶ × 𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒௧ + 𝑤ଷ × 𝑙𝑎𝑡𝑒௧ + 𝑤ସ × 𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑇𝑖𝑚𝑒(௧ᇱ),(௧),௨

Parameters w1, w2, w3, and w4 are the weights used in the cost-benefit ratio to manage each

factor’s importance to scheduling. Tuning these parameters must be learned for the system

beforehand.

 The following steps describe COPA’s construction procedure. The procedure is repeated

for each UAV type, and produces the set Pi,k, the set of ordered tasks for the path of UAV k of

type i:

(1) Obtain list of all tasks that can be serviced by UAV of type i. This is set Ti

(2) Set currentTimek = 0; current task is starting at home base.

(3) For each UAV of Type i:

a. For each feasible tasks in Ti calculate CBRt

52

b. Find max{𝐶𝐵𝑅௧} ∀𝑡 ∈ 𝑇௜; this is t*

c. Add t* to Pi,k

d. Remove task t* from Ti

e. Update currentTimek. If currentTimek > horizon, start path for next UAV;

𝑘 = 𝑘 + 1

This procedure provides an initial path, in the form of an ordered set of tasks, for each

UAV. As previously noted, the ordered set of locations for UAV k of type i is represented by Pi,k.

Pi represents the set of paths for UAVs of type i (Pi = {Pi,1, Pi,2, ... }). P denotes the entire set of

paths and corresponding resources, which is also the set of composites. However, by creating

each path independently, COPA’s construction phase is unable to service tasks that require

collaboration among resources.

4.2.2 Dual-Collection Construction Phase

Herold extends COPA’s construction procedure to handle dual-collection tasks by

creating two separate task requests for each dual-collect [9]. Initially there is no method used to

synchronize these two identical tasks, it is left for a later phase to correct. This keeps the runtime

for the construction phase as reasonable as COPA’s as the set of Tasks increases linearly by the

number of dual-collections, |𝑇௧௢௧௔௟| = |𝑇| + |𝑇஽௨௔௟஼௢௟௟௘௖௧௜௢௡௦|.

 However a simple construction phase that lacks attention to synchronize resources can

ultimately have expensive runtime costs in the long run. Herold’s method to align two initially

separate tasks is computationally expensive in worst-case scenarios. There is also the potential

error that only one of the dual tasks will be added to the set of paths. Herold’s work revealed that

scheduling multiple versions of a task leads to few task pairs advancing in the solution after the

construction phase. To overcome this handicap, tasks being scheduled in the construction phase

have their cost-benefit ratio inflated by doubling the value of the task. This increases the

likelihood of dual collections being possible, by increasing the request’s attractiveness to the

route construction procedure.

 Herold’s construction phase operates under the assumption that tasks only need to be

synchronized across at most two resources, and only a few of the total tasks may require this

difficult temporal alignment. Thus, these prior methods do not scale well for this thesis’s goal of

53

schedule creation where a majority of tasks require synchronization across a variable number of

resources ({1,2,3, or 4 resources}).

4.2.3 ICAARUS Construction Phase

ICAARUS constructs initial paths for all resources simultaneously, uniting the resource

scheduling specifically for handling task synchronization. This is done by adding tasks in their

entirety to the schedule, with all elements of that task maintaining synchronization across

resources. If a new task is added that requires one element of a task arriving delayed, all

elements of that task are delayed. This synchronization is shown in Figure 12:

Figure 12: Example of Resource United Scheduling

A 1

1

2

B

C

A 1

1

2

B

C

3

3

3

A 1

1

2

B

C

3

3

3

54

In the example of Figure 12 a supplier has three resources, {A,B,C}. Task 1 requests

resource A & B, and Task 2 only requests resource 2. Task 1 is closer to the supplier’s home

base then Task 2, so requires less travel time, thus Task 1 is scheduled earlier than Task 2.

Task 3 request comes in asking for three resources, {A,B,C}. The earliest each resource

could arrive at Task 3 is shown in the middle diagram. Servicing Task 3 at the earliest possible

times for each resource would result in all three resources not being synchronized as resource C

cannot service Task 3 until after resource A and B would service it. For resource united

scheduling, Task 3 is pushed back in the schedule for Resource A and B to the time the earliest

time that all requested resources can synchronize their services. This may result in inefficient

idle time as A and B arrive at Task 3, but are inactive till the beginning of the synchronized

service time for Task 3.

Figure 12 shows the simplest case of a supplier only possessing one resource of each

type, but when a supplier possesses multiple resources of the same type, a decision must be made

which resource to allocate to the task. This is done with speed and fairness in mind through the

following resource element selection procedure:

(1) For each resource u requested by task t;

a. rc is the number of elements needed of type u

b. For each element e that the supplier has of u

i. Find earliest arrival time for e to t; This is arriveTimee

c. Sort all arriveTimee into arriveTimeList

d. Assign first rc elements to service task t; arriveTimeList[1:rc]

ICAARUS construction phase takes input on resource types, tasks, and the planning map

to select initial paths. The input notation is defined below:

valuet Value of task t

resourceCountt Number of resources requested by task t

idleTimet Length of time that resource u will have to wait before starting task

t due to a time window or synchronization constraint

55

minDurt Minimum time required for resources to service task t

latet End of time window for task t

horizon Planning horizon

travelTime(t’),(t),u Length of time for resource u to travel from task t to t’

mapDistance Time it would take to travel the longest distance possible of the

planning map.

below in Equation 2 marks the benefit-to-cost ratio, BtoC, that is used to find the best

next task to be allocated resources in the schedule:

Equation 2: Benefit-to-Cost Ratio

𝐵𝑡𝑜𝐶 =
𝑣𝑎𝑙𝑢𝑒௧ ∗ 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑜𝑢𝑛𝑡௧

max
௨∈௎

𝑖𝑑𝑙𝑒𝑇𝑖𝑚𝑒௧,௨

𝑚𝑖𝑛𝐷𝑢𝑟௧
+

𝑙𝑎𝑡𝑒௧

ℎ𝑜𝑟𝑖𝑧𝑜𝑛
+

max
௨∈௎

𝑡𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒௧ᇱ,௧,௨

𝑚𝑎𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

The numerator is multiplied by resourceCountt to increase the likelihood of synchronization

tasks being selected as used effectively by Herold dual-collection tasks [9]. The maximum

idleTimet,u and travelTimet,t’,u reflects the fact that resources, selected for task t, may be coming

from different tasks and have differing idle and travel times. The three variables in the

denominator idleTimet, latet, and travelTime(t’),(t),u are normalized by minDurt, horizon, and

mapDistance respectively to capture their relative weight for BtoC analysis. Such as idle time

increasing by one minute should penalize a task more than travel time increasing by one minute

as productive travel is acceptable in a large planning map, while unproductive idle time for a task

of short duration is undesirable.

 Negron’s COPA construction phase achieves its speed by advancing linearly through the

planning horizon [7]. Once a task is added to a path, COPA does not look back to see if tasks can

be inserted earlier in the spaces left by idle time. This is a problem for resource united scheduling

as it is prone to create schedules with increased idle time. The reason being it pushes many

elements back in a task’s time window to accommodate synchronizing across all resources. With

56

more idle time comes less available time to schedule a task within its allotted time window,

running the risk of infeasibility.

Simulated Annealing is utilized to manage infeasibility by scheduling tasks outside of

their requested time windows. This is to maintain the speed of linear path planning, while

becoming more accommodating of resource united scheduling’s idle drawbacks. The variable

temp controls the threshold for accepting tasks in an infeasible time assignment. These infeasible

task placements in the path are expected to be remedied in the improvement phase or dropped

from the schedule all together.

The following steps describe the ICAARUS construction procedure:

(1) Collect requests into one task list. This is set T

(2) Collect Unconfirmed and Confirmed Task List into one task list; This is set C

(3) For each task t in T

a. If a task requests a resource from the supplier, but the supplier does not have

that resource, remove the element request from the task list.

b. If a task’s element request list is made null, remove task from T.

(4) While 𝑇 ≠ ∅:

a. best_BtoC = -∞; best_t = ∅; best_pathList = ∅

b. For each task t in T:

i. Resource element selection procedure finds best paths to add t on;

pathListt

ii. Find BtoC and departTime for t

iii. If 𝑑𝑒𝑝𝑎𝑟𝑡𝑇𝑖𝑚𝑒௧ ≤ 𝑙𝑎𝑡𝑒௧

or 𝑟𝑎𝑛𝑑() < 𝑒
೏೐೛ೌೝ೟೅೔೘೐೟ష೗ೌ೟೐೟

೓೚ೝ೔೥೚೙∗೟೐೘೛

1. If best_BtoC < BtoC

a. best_BtoC = BtoC; best_t = t; best_pathList = pathListt

c. Quit if best_BtoC = -∞

d. Add best task to earliest available resources on the schedule; Add best_t to

path(s) in best_pathList

e. Calculate 𝑐𝑇𝑖𝑚𝑒
௨

∀𝑢 ∈ 𝑈; cTimeu = departTime of the last task on u’s path

57

f. scheduleUpdate = TRUE

g. While scheduleUpdate:

i. scheduleUpdate = FALSE

ii. Find earliest task, te ,in C where 𝑎𝑟𝑟𝑖𝑣𝑒𝑇𝑖𝑚𝑒 ≤ 𝑐𝑇𝑖𝑚𝑒௨∀𝑢 ∈ 𝑈′;

U’ being the subset of U that t is allocated

1. Add te to the schedule

2. Remove te from C

3. Update altered paths cTimeu

4. scheduleUpdate = TRUE

(5) Add any tasks still in C to end of schedule

The ICAARUS construction procedure relies heavily on the improvement phase to

correct infeasibility in the schedule, as seen by tasks from set C only being added to the new

schedule after their original scheduled time is violated surpassed. This method of adding sections

of a previous schedule to a new schedule is to allow new task requests filling potential holes in

the previous schedule. These potential holes are where resources have open windows of

inactivity. This addition method aims to keep task placement patterns similar to what previous

rounds of ICAARUS had found as the optimal order of tasks to service.

 Improvement Phase

The improvement phase of ICAARUS improves the paths created by the construction

phase. This phase uses five removal methods to improve the paths: Related Removal, Worst

Removal, Synchronized-Services Removal, Route Removal, and Random Removal with two

insertion methods: Best Insertion and Regret Insertion.

The improvement phase continuously repeats removing tasks and re-inserting them to

create new improved paths. These methods are known as Large Neighborhood Search (LNS) for

searching individual domains of the search space, known as neighborhoods [13]. The methods

effect several tasks at a time, dealing with a larger scope of the search space than some methods

that only tweak two task positions at a time. Hendel improved their LNS heuristic for MIP by a

reward function to learn to distinguish between successful and unproductive methods calls, this

is known as Adaptive LNS (ALNS) [13]. ICAARUS proposes a reward function for tracking if

58

these methods create improved or novel schedules, and adapts the likelihood of that method’s

future use accordingly.

In order to encourage searching new neighborhoods of the solution space, the current

schedule for improvement is not always the best schedule found so far. While ICAARUS stores

the best solution found so far, the improvement phase can alter the current iteration’s schedule

into one of lesser value. This is done in order to prevent solutions becoming trapped in a local

optimum.

4.3.1 Infeasibility measurement

The ICAARUS improvement phase takes schedules with tasks assigned arrival times

outside of their time windows, and may reschedule them to arrival times that are still infeasible.

This is necessary, as mentioned in Section 4.2.3, because resource united scheduling commonly

results in large gaps of idle time. If a scheduler were to only assign tasks to resources that can

arrive within their time window, then a greedy heuristic would create a schedule with very few

tasks and make finding high value schedules impossible. A final solution can not have any

infeasible task assignments, therefore a Simulated Annealing criteria is used to guide the

improvement phase out of infeasibility.

Initially, the temperature variable that controls the degree of acceptance of infeasibility is

set high. This variable is then brought down through iterations to force the improvement methods

to either create a feasible schedule or drop tasks from the schedule. This corresponds with

schedules that are originally greedily created with many tasks to not rule out potential solutions

too early. However, after iterations of the improvement phase the schedule should begin to

approach an optimal solution and know which tasks cannot be included in a feasible solution.

59

What quantifies one schedule as more infeasible than another is measured through the

cost of the schedule, f(s), defined below:

𝑓(𝑠) = 𝑐(𝑠) + 𝛼𝑃ଵ(𝑠) + 𝛽𝑃ଶ(𝑠)

c(s) = Travel Time costs of all resources on their paths

 P1(s) = Sum of all differences between late and depart times

 P2(s) = Sum of all differences between horizon and depart times

If a solution is feasible, then P1(s) = P2(s) = 0. The variables of α and β adjust the penalty of

violating these thresholds of feasibility. The values of these parameters are increased or

decreased at the end of every improvement iteration. This helps facilitate exploration throughout

the search space. The rules for adjusting are given below:

𝛼 = ቐ
max ൬𝑎ெ௜௡,

𝛼

1 + 𝜑ଵ
൰ , 𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

min൫𝛼ெ௔௫ , 𝛼 × (1 + 𝜑ଶ)൯ , 𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑖𝑛𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒

𝛽 = ቐ
max ൬𝛽ெ௜௡,

𝛽

1 + 𝜑ଵ
൰ , 𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

min൫𝛽ெ௔௫ , 𝛽 × (1 + 𝜑ଶ)൯ , 𝐼𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑣𝑖𝑜𝑙𝑎𝑡𝑒𝑠 𝑝𝑙𝑎𝑛𝑛𝑖𝑛𝑔 ℎ𝑜𝑟𝑖𝑧𝑜𝑛

The bounds (αmin, αmax) and (βmin , βmax) serve to control the interval of the infeasibility

measuring weights. A streak of infeasible or feasible solutions for too long may make these

weights too massive or too insignificant to be corrected when a new feasible or infeasible

solution, respectively, is found. Thus, these bounds constrain the weights to stay within effective

ranges.

4.3.2 Avoiding Cross Synchronization

Due to some tasks the supplier is servicing requiring synchronization across resources,

insertion methods (Section 4.3.4) must avoid cross-synchronization in the resulting schedule.

Cross-synchronization is when two synchronization tasks become entangled, and makes

synchronization impossible. Figure 13 illustrates this problem:

60

Figure 13: Example of Cross-Synchronization

 In the example of Figure 13, there are two tasks, task 1 and task 2, that each require

synchronization across resources. For resource A, the path services task 1 first then task 2. For

resource B, the path services task 2 first then task 1. This entanglement makes synchronization of

both tasks infeasible. Synchronizing either task puts the other task simultaneously both before

and after the original task, making synchronization of the other task impossible.

 Cross-synchronization is not a problem for tasks that request only a single service from

the supplier. Thus, avoiding cross-synchronization only requires monitoring tasks requesting

multiple resources from a supplier. Insertion methods are prevented from creating a cross-

synchronization scenario through use of a cross-synchronization matrix, Ω.

4.3.2.1 Checking for Cross-Synchronization

To prohibit cross-synchronization cases, the use of a ห𝑁௦௬௡ห × ห𝑁௦௬௡ห square matrix Ω

records the visit sequence of each pair of synchronization tasks. Nsyn being the number of tasks in

the schedule that require synchronization. An example of this matrix is shown in Figure 14:

Figure 14: Example of Cross-Synchronization Matrix

A

B

1

1 2

2 A

B

A

B

C

D

A

B

C

D

1

1 2

2 3

3

0 1 1

0
-

0 1

0 0 0

1 2 3

1

2

3

Ω

61

 In the example of Figure 14, a schedule with 3 synchronization tasks, {1,2,3} are shown

on the right with its corresponding cross-synchronization matrix on the right. There are no rows

or columns in Ω for single service tasks. On resource B’s path, Task 1 comes before Task 2, so

consequently Ω[1,2] equals 1. On resource C’s path, Task 2 comes before Task 3, so Ω[2,3] also

equals 1.

 Despite no resource path servicing both Task 1 and Task 3, they are linked together

through Task 2. Servicing sequences can be transferred between various routes, so as a result

Ω[1,3] equals 1. All other values in the matrix equal 0.

 With a cross-synchronization matrix, ICAARUS can check if inserting a synchronization

task into multiple routes simultaneously will result in the problem of cross-synchronization. To

do this, the insertion method must find the closest synchronization tasks before and after the

proposed insertion spot on the selected resource paths. This can be seen in Figure 15. Tasks

immediately before or after the desired insertion spot are not necessarily synchronization tasks,

they could be just single resource tasks. This requires ICAARUS to search sequentially outwards

on the resource path until it finds the first synchronization tasks both before and after the desired

task insertion spot. In addition, the proposed new task could be getting inserted into a spot that

has no synchronization task before or after it. In that case there is one less task to check for

cross-synchronization issues.

Figure 15: Checking for Cross-Synchronization when inserting a Synchronized Task

 In the above example, the synchronization task k is being considered for insertion into the

paths of resource A and B. i is the first synchronization task on A’s path preceding the insertion

spot of k, and j is the first synchronization task on A’s path following the insertion spot of k. In

A A

B B

i j

m n

k

62

addition, m is the first synchronization task on B’s path preceding the insertion spot of k, and n is

the first synchronization task on B’s path following the insertion spot of k. To find if this

insertion would cause a cross-synchronization, ICAARUS will check Ω[j,m] and Ω[n,i]. If both

of them equal 0, then this is a valid insertion. However, if either one of them equals 1, then this

insertion is removed from consideration as it would cause cross-synchronization.

4.3.2.2 Constructing Cross-Synchronization Matrix

At the beginning of every insertion method, the current schedule s will need a

corresponding cross-synchronization matrix Ω. Initially Ω is an all zero ห𝑁௦௬௡ห × ห𝑁௦௬௡ห square

matrix. Then Ω is constructed with Algorithm 1. In steps 2-5, task precedence in each route is

addressed separately. In steps 6-15 the servicing sequence among each pair of synchronized tasks

that depend on different paths is addressed, until all relationships disseminate throughout Ω.

Algorithm 1: Construct Cross-Synchronization Matrix
1 Create list of all synchronized tasks, T
2 For k=0; k ≤ |Supplier Resource Count|; k++
3 Select each pair of synchronized tasks, (i,j), in path k
4 If i is serviced before j Then Ω[i,j] = 1
5 End For
6 Do
7 For i=0; i ≤ |T|; i++
8 For j = 0; j ≤ |T|; j++; i ≠ j
9 If Ω[i,j] = 0
10 For k = 0; k ≤ |T|; k++; k ≠ i; k ≠ j
11 If Ω[i,k] = 1 and Ω[k,j] = 1 Then Ω[i,j] = 1
12 End For
13 End For
14 End For
15 Until Ω is not updated

4.3.2.3 Updating Cross Synchronization Matrix

After every synchronized task insertion, matrix Ω must be updated to reflect the updated

schedule s. This update is done by Algorithm 1 steps 6-15, to disseminate the new servicing

sequence pairs across paths.

For example, from Figure 15, we update Ω as follows. First, because in A’s path the

immediate synchronization task following task k is j, the tasks serviced after j must now be

serviced after k. Thus, row k of Ω is updated, i.e., for each column x of Ω, if Ω[h, x] is 1 then set

63

Ω[k, x] equal to 1. This is repeated for every path the task is being inserted into. So for visit

sequence in B’s path, for each column x of Ω, if Ω[n,x] is 1 then set the value of Ω[k, x] equal to

1.

Next, because in A’s path the immediate synchronization task preceding k is i, the tasks

serviced before i must also be serviced before k. Thus, column k of Ω is updated, i.e., for each

column x of Ω, if Ω[x, i] is 1, then set Ω[x,k] equal to 1. This is repeated for every path the task

is being inserted into. Therefore, for visit sequence in B’s path, for each row x of Ω, if Ω[x,m] is

1 then Ω[x,k] is also set equal to 1.

When a removal operator has been selected and tasks are removed from the solution, the

cross-synchronization matrix is updated using the construction procedure for Ω. Whether Ω is

updated after each individual task or a set of tasks are removed is specified for each removal

method.

4.3.3 Removal Methods

The improvement phase faces a trade-off of speed versus optimality when it comes to

search size. If it removes a few tasks, then less time is required to re-insert them, and thus the

improvement phase can have more iterations. However, more iterations are unhelpful as the

solution becomes trapped in a local optimum of the search space. While removing numerous

tasks increases the time to re-insert them, but it also increases the likelihood of re-inserting them

in an order that improves the schedule’s utility. To balance this trade off, each iteration of the

improvement phase calculates selects a random percentage, y, from a uniform distribution range

of [0.15,0.30], which is then used to calculate q, the number of tasks to be removed:

𝑞 = 𝑦 × |𝑡𝑎𝑠𝑘 𝑙𝑖𝑠𝑡|

By varying the number of tasks to be removed, and consequently re-inserted, ICAARUS

balances speed with search space depth.

4.3.3.1 Related Removal

The related removal is inspired from the “Shaw Removal” operator [10]. This removal

method searches all tasks for pairs that are related to each other, because removing and later re-

inserting similar tasks has a higher probability they will be reshuffled into feasible and better

64

A1,A2

1

2

6

4 5

3

Task 3 & 6 removed and
re-inserted

solutions. Two tasks i and j’s relatedness is evaluated based on their distance and arrive times

and measured by a Relatedness Score:

𝑅(𝑖, 𝑗) = 𝜓 ∗ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒௜,௝ + 𝜔 ∗ |𝑎𝑟𝑟𝑖𝑣𝑒𝑇𝑖𝑚𝑒௜ − 𝑎𝑟𝑟𝑖𝑣𝑒𝑇𝑖𝑚𝑒௝|

Ψ and ω are weight parameters.

Figure 16: Example of Related Removal

In the example of Figure 16 there are two resources, A1 and A2. A1’s current schedule is

servicing tasks {1,2,6} and A2’s current schedule is servicing tasks {4,5,3}. Task 3 and 6 is the

closest pair to each other in both time and space, as seen in the left and right diagrams

respectively. If Task 3 were removed, its most related task would be Task 6, and would be chosen

as the next task to be removed by the Related Removal method. An ideal re-insertion would

switch 3 and 6 assignments and create more efficient paths.

Below is Algorithm 2 that utilizes this removal method:

A1 1 2 6

A2

A1

A2 4 5 3

A1 1 2 3

A2

A1

A2 4 5 6

65

Algorithm 2: Related Removal
1 Create list L of all tasks in schedule s
2 Randomly select a task i from L
3 D = {i}
4 Remove task i from L
5 While |D| < q
6 Randomly select a task j from D
7 Sort L in decreasing order according to the relatedness to i => R(i,j)
8 Choose y, a random number from uniform distribution in [0,1]. Set 𝐸 = 𝑦௣ × |𝐿|
9 Select task L[E] from set L. Insert it into set D and remove from set L.
10 End While
11 Remove tasks in D from the current schedule s
12 Synchronize(s)

Parameter p, Line 8, introduces randomness in the selection of related customers. This is used in

Line 9 for the effect of decreasing the likelihood that the same related pairs are constantly

chosen, allowing for greater search of the solution space.

Synchronization of the schedule after each removal iteration could make some tasks have

similar relatedness scores when their original arrival times were actually quite different. To

prevent this mistaken rating, synchronization only occurs after all tasks are removed. This saves

time as only one synchronization check is needed to send an accurate schedule to the subsequent

task insertion method.

4.3.3.2 Worst Removal

The worst removal removes the tasks that would result in the greatest savings for the

schedule. The greatest savings are measured by what creates the greatest decrease in the schedule

utility u(s), thus removing tasks that do not contribute much to v(s) and are costly in c(s), P1(s),

or P2(s). Figure 17 presents a scenario that showcases worst removal:

66

Figure 17: Example of Worst Removal

 In the example of Figure 17 the schedule has four tasks, {1,2,3,4}. In the top schedule

resource A1 services Task 1 first, this results in Tasks 2 & 3 being serviced outside of their time

windows. Thus, the top schedule is infeasible. The Worst Removal method would remove Task 1,

which allows a schedule to be created with Task 2-4 in feasible time windows. A resulting

insertion may assign Task 1 to resource A2 which has plenty of room in its schedule.

Below is Algorithm 3 that utilizes this removal method:

Task Time Windows

1

A1

Schedule

1 2 3

2 3

4

Task

2

3

4

A2 4

A1

A2 1

Task 1 removed
& re-inserted

67

Algorithm 3: Worst Removal
1 Create list L of all tasks in schedule
2 D = {}
3 While |D| < q
4 Sort L in decreasing order according to schedule utility u(s) if task i is removed
5 Choose y, a random number from a uniform distribution in [0,1].
6 Set 𝐸 = 𝑦௣ × |𝐿|
7 Select task L[E] from set L. Insert it into set D.
8 Remove task L[E] from schedule s and set L.
9 Synchronize(s)
10 End While

Parameter p for randomness in selection of worst customers is used in a similar manner as

described in related removal for increased search of the solution space. Differing from related

removal is the need for synchronization after each task removal. A task i may appear as “costly”

because earlier task j forces it to be late, but after the troublemaker task j is removed then task j

no longer significantly increases f(s).

4.3.3.3 Synchronized-Services Removal

This removal method targets tasks that have two or more resource requests. tasks

requiring multiple resources to be synchronized can appear as very valuable, but become choke

points for the whole schedule. These complicated tasks, when put in a sub-optimal position can

force numerous following tasks to be outside of their feasible time windows. Meanwhile the task

that is the source of the backup remains feasible and thus has an apparent “good” score.

Which synchronized-services tasks to be removed are selected randomly. Because the

synchronized tasks are selected randomly, not based off of schedule features, re-synchronization

can be done just once. This re-synchronization adjustment of the schedule is done after the q

tasks are removed.

4.3.3.4 Route Removal

This removal method randomly selects one resource of the supplier at a time, and

removes all tasks on its path, clearing as many resource paths as required to remove q tasks from

the schedule. This is done to see if groupings of tasks similar in distance can be better served by

another resource that may be servicing other tasks in that geographic area. This is depicted in

Figure 18:

68

Figure 18: Example of Route Removal

 In the example of Figure 18 the schedule has four tasks, {1,2,3,4}. The initial schedule

has resource A1 service Task 1 & 2, and resource A2 service Task 3& 4. In this map the four

tasks are all close spatially, but far from the supplier that houses A1 and A2. The Route Removal

method selects A2’s path to eliminate, and results in Task 3 & 4 being reinserted to A1’s path.

Assuming this new path is feasible with all tasks time windows, this results in lower total cost as

A1 has already traveled a long distance to service Task 1 & 2, it would be a waste to have A2

travel that far as well.

The re-synchronization adjustment of the schedule can be done just once, after the q tasks

are removed.

4.3.3.5 Random Removal

To avoid becoming stuck in local optimum solutions, this method removes randomly

selected tasks. This helps push ICAARUS to explore a wide breadth of the search space. Because

the tasks are selected randomly, not based off of schedule features, re-synchronization can be

done just once. This re-synchronization adjustment of the schedule is done after the q tasks are

removed

4.3.4 Insertion Methods

Once q tasks have been removed from the schedule, those q tasks are added to a list of all

tasks dropped in previous removal phases. This dropped list, DL, gives the system the memory to

hold onto tasks through multiple improvement phase iterations. These insertion methods are not

restricted to insert all tasks in the DL. An iteration may produce a schedule where certain tasks

appear impossible to allocate resources, therefore for feasibility the tasks must be removed.

A1

1
2

4
3

A2 Task 3 & 4
removed and
re-inserted

A1

1
2

3
4

A2

69

However, a later iteration could service those tasks to produce a new best schedule. ICAARUS

inherently accepts that the schedule from the construction phase may contain tasks that make

feasibility impossible. ICAARUS will continue to evaluate these dropped tasks for possible

insertion in order to maximize schedule value.

4.3.4.1 Best Insertion

The best insertion inserts the tasks that would result in the greatest reward for the

schedule. The greatest reward is measured by what creates the greatest increase in the schedule

utility u(s), thus inserting tasks that contribute greatly to v(s) and are not costly in c(s), P1(s), or

P2(s). Below is the algorithm that utilizes this removal method:

Algorithm 3: Best Insertion
1 scurr = s
2 D = DL
3 Ω = Cross Synchronization Matrix from current schedule s and DL
4 While |D| > 0
5 sbest = scurr

6 uprev = u(scurr), ubest = -∞
7 taskbest = 0/
8 For task i in D
9 stmp,utmp = taskInsertSearch(scurr,i,Ω,λ)
10 If utmp > ubest
11 sbest = stmp, ubest = utmp, taskbest = i
12 If ubest < 0
13 Exit insertion, all possible tasks to insert only lower utility of schedule
14 Else If ubest > uprev
15 scurr = sbest
16 update Cross Synchronization Matrix, Ω, for taskbest added to schedule

17 Else If 𝑒
ೠ್೐ೞ೟షೠ೛ೝ೐ೡ

ೠ೛ೝ೐ೡ×೟೐೘೛ ≥ 𝑟𝑎𝑛𝑑()
18 scurr = sbest
19 update Cross Synchronization Matrix, Ω, for taskbest added to schedule
20 remove taskbest from D

 The new schedule is accepted as an update to the current schedule when it has a greater

utility than the previous schedule, as seen by Lines 14-16. However, when it is not an

improvement, simulated annealing is used to encourage state space search. Line 17 shows the

criteria for deciding if the lower scoring schedule should be accepted based on the magnitude of

its utility difference from the previous schedule.

70

 For taskInsertSearch() in Line 9, a straightforward “simple algorithm” may try inserting

task i’s resource requests in all indexes of the path of the current schedule, to find which

insertion spot causes the least increase in the cost of the overall schedule. However, because the

tasks are constrained by time windows, many infeasible insertion spots would be evaluated

despite being far out of the tasks time window. Miller’s improvement phase makes uses of a λ

parameter to represent a percentage of the route that the algorithm will search for insertion

locations [12]. As can be seen in Figure 19 below, by finding the index of the task on the path

that is the first task after task i’s early time. This reference index +/- λ% × |path length| create the

range of indexes of the path where insertion is evaluated, saving a large amount of unnecessary

calculation.

Figure 19: Example of Lambda Insertion

 In the example of Figure 19, Task i is trying to be inserted into a path of one resource

that has four tasks. The beginning of Task i's time window is known to be time earlyi. Based off of

the arrive times of the 2nd & 3rd tasks on this resources path, it is known earlyi occurs between

these two tasks, so the 3rd task is the reference index for lambda insertion:

𝑖𝑛𝑑𝑒𝑥௥௘௙௘௥௘௡௖௘ ± 𝜆 |𝑝𝑎𝑡ℎ 𝑙𝑒𝑛𝑔𝑡ℎ|

Resource
Path

1 2 4 3

Resource
Path

Resource
Path

1

1

2 3 4

2 3 4

Possible index for
insertion evaluation

λ = 10%

λ = 25%

earlyi

71

For this example indexreference = 3, and as the resource only has four tasks on its path, path

length = 4. The resulting range of insertion indices for λ = 10% is [3 + 0.10 × 4, 3 − 0.10 × 4]

or [3,3], so index 3 is the only index Lambda Insertion will attempt to schedule task i.

 The resulting range of insertion indices for λ = 25% is [3 + 0.25 × 4, 3 − 0.25 × 4] or [2,4], so

there are three indexes for Lambda Insertion to attempt to schedule task i.

4.3.4.2 Regret Insertion

This insertion method selects a task for insertion that will be most regretted if it is not

inserted immediately into its best insertion location in the schedule. The regret-k heuristic

chooses the task i that maximizes:

 𝑖 = max
௜ ∈஽௅

∑ (𝑓௜
௝

−௞
௝ୀଵ 𝑓௜

ଵ)

𝑓௜
௝ denotes the cost of inserting task i in the jth cheapest insertion position. This method

sorts the DL according to their regret value, an adaption of the regret-k method [14]. In this

thesis, the regret value is regret-2, which is the difference in cost of insertion for a task’s best

insertion position (as measured in Section 4.3.4.1) and its second best position. While Ropke and

Pisinger only considered one best insertion position in each path, this thesis measures multiple

potential insertion positions in each path as selected by λ-insertion. After each synchronized

service task is inserted, the cross-synchronization matrix is updated as in best insertion.

4.3.5 Removal and Insertion Weights

Each method i is associated with a score πi and a weight wi. Removal and Insertion methods

performances are tracked, so that the more effective methods can be intelligently implemented.

Each method deals with different challenges in scheduling, so no one pair of removal and

insertion weights should be chosen and the rest removed from possibility. The probability of the

ith removal method being chosen is
௪೔

∑ ௪೔೔∈೨భ

 where Γ1 is the set of removal methods. The insertion

method is chosen in the same manner with Γ2.

Scores record the methods performance in an iteration. If a new best overall solution is

found, the score of that removal and insertion pair increases. However, even if the current

iteration’s solution is not a new best solution, but an improvement from the previous iteration’s

72

value, the methods’ scores are increased. This is necessary as ICAARUS allows improvement

iterations to alter schedules to lesser value, but the system still rewards heading in an improving

direction. A minor score boost is also given if solutions are novel and do not match any of the

previous solutions found, to encourage solutions from a wide swath of the search space. The

exact calculation of score improvement is shown below:

 𝜋௜ = ൞

𝜋௜ + 𝜑ଷ, 𝐼𝑓 𝑛𝑒𝑤 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑
𝜋௜ + 𝜑ସ, 𝐸𝑙𝑠𝑒𝐼𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑
𝜋௜ + 𝜑ହ, 𝐸𝑙𝑠𝑒𝐼𝑓 𝑛𝑒𝑤 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑

𝜋௜ , 𝐸𝑙𝑠𝑒

Improvement phase iterations are sectioned into segments, with 50 improvement

iterations per segment. Initially the weight of each method is set the same at 1.0. The weights

remain unchanged throughout the segment, while the scores are recorded after each iteration. At

the end of a segment, the weights are updated with, ϕi , the number of times the method has been

called during the last segment, and κ controlling the inertia of the weight adjustment:

𝑤௜ = (1 − 𝜅)𝑤௜ +
𝜅 𝜋௜

𝜙௜

Keeping track of the number of times a method is used to find the average solution

improvement made by that method. Otherwise a methods score can be inflated by being called

numerous times, but only producing marginal solution improvements. To maintain methods

performance across segments, weight adjustment is controlled by inertia value κ. This inertia

value prevents a weight from dropping rapidly if it performs poorly in the current segment, but is

historically helpful.

73

Chapter 5

5 Tests and Analysis

This chapter tests and analyzes two methods to solve the SSP: the Mixed Integer Linear

Program (MILP) presented in Chapter 3 and the Infeasibility Cooling Adaptive Allocation for

Resource United Scheduling (ICAARUS) presented in Chapter 4. While several MILP models

were presented in Chapter 3, this chapter will only be testing the Supplier MILP with

Synchronization model. The MILP method is an extension of previous work that guarantees

solution optimality, while ICAARUS is a novel method to find near optimal solutions in shorter

runtimes.

This chapter begins with outlining how the test scenarios are created for evaluating

performance. This section describes how each test set generates its unique map and task

parameters. This section also includes summarizing the parameter settings for ICAARUS used in

testing.

This chapter then focuses on quantitative performance of ICAARUS. As the objective of

this research is to find an efficient method to use for coordinating suppliers with consumers, the

runtime and optimality is measured and compared. The ability of ICAARUS to handle large-

scale cases of the Supplier Scheduling Problem is tested to determine if it is able to solve

problems intractable to the MILP method. Also measured is the gap between ICAARUS’s

solutions and theoretical “best” solutions. Finally, the fulfillment rates of different

synchronization tasks are analyzed throughout the bidding rounds.

 Test Datasets and Parameters

Each test set requires a large amount of information to describe the input into the

simulator. This section outlines how the data that specifies task input is generated for the test

sets. While the positions of consumers on the planning map are irrelevant, the location of

supplier’s bases and tasks has a crucial impact on which tasks are serviceable and those that are

unreachable.

74

The exact parameters for ICAARUS, as covered in Chapter 4, are also explained.

Altering these parameters can affect runtime and optimality of solutions found by ICAARUS,

but the sensitivity of ICAARUS solutions to changes in these parameters is left for future

research.

5.1.1 Test Set Development

To analyze MILP and ICAARUS, twenty pseudo-random test sets were created. The two

methods for allocating resources to tasks are tested through five rounds of four test sets in each

round. For tasks, the set of possible resource requirements is: {1,2,3,4}, where {1} is a single

service task, and {4} is a task requiring synchronization across four resources. In each test set,

the number of tasks requiring each level of synchronization are equal. In other words, if a test set

has five single service tasks, there are also five dual collect tasks, and so on. The five testing

rounds are distinguished by their consumer task counts. The set of task counts being: 4, 8, 12, 16,

20.

Most data for test sets is created by a random number generator within specified bounds.

The planning map is confined to a two-dimensional size of 10 Kilometers x 10 Kilometers. Thus,

the latitude and longitude of task positions are randomly generated pairs of numbers within the

range [0,10]. The values of tasks are randomly selected from a uniform distribution of [1,100].

The planning horizon to complete all tasks is 100 minutes. All tasks have a required minimum

duration of 5 minutes to complete servicing. The arrival times of tasks are selected from a

uniform distribution of [0,75] minutes with all late times being 25 minutes after the selected

arrival time.

For each resource a task requests, its type is randomly selected from the set {A,B,C,D}.

Therefore, a task requesting four resources could be given any combination of this set, such as

{A,A,A,A} or {D,C,B,A}. All resources perform the same, i.e. travel distances at the same speed

and have the same endurance. The differing characteristic is only a resource of type X can fulfill

a resource request for type X. Each resource type is exclusive and non-mutable.

Supplier base positions are randomly assigned longitudes and latitudes just as the task

positions are assigned. All resources controlled by a supplier begin the planning horizon at the

supplier base’s position, and must end the planning horizon at that same supplier base. Suppliers

75

are randomly assigned four resources from the resource type set, {A,B,C,D}. Thus supplier’s

resources can range from {A,A,A,A} to {D,D,D,D} and all permutations in-between.

5.1.2 Parameter Selection

ICAARUS’s performance depends on the below set of correlated parameters.

Symbol Description Value
α, αMin, αMax Initial, minimum, and maximum values of α 10,0.01,200

β, βMin, βMax Initial, minimum, and maximum values of β 10,0.01,200

φ1, φ2 Weight adjustment parameters for α & β 0.5,0.25

φ3, φ4, φ5 Weight adjustment parameters for Removal and Insertion 35,10,15

y Percentage of task list to be removed in removal phase [0.15,0.30]

ψ,ω Related removal parameters 1.0,1.0

p Randomness parameter in related and worst removal 5

λ Lambda-insertion percentage 0.10

κ Weight inertia parameter 0.4

 The sensitivity of ICAARUS’s performance to alterations in these parameters is left to

future research.

 Evaluation Tests

This section focuses on the performance of a Linear Programming method versus

ICAARUS’s heuristic method. The consumer-supplier network explored in these tests is two

suppliers to three consumers. Each consumer and each supplier has tasks and resources generated

from the test dataset, explained in Section 5.1.1. To determine which method is better suited to

schedule resources in an operational context, the methods are compared by analyzing two

characteristics: 1) the runtime of the method and 2) the value of the best schedule solution.

The software discussed in Section 3.5 is used in the analysis of ICAARUS. Gurobi

optimization software is used through JuMP for the Supplier MILP with Synchronization Model

(Section 3.4.3) and the Consumer MILP Model (Section 3.4.4). ICAARUS is implemented in

Julia and was designed to have a much shorter runtime, while remaining close to MILP

optimality. ICAARUS uses a heuristic method that can find a “best” optimal solution quicker

76

than an algorithm that evaluates the entire set of solutions. However, this also results in the

“best” solution not being guaranteed to be a global optimum solution. Much of ICAARUS’s

runtime is spent in the improvement phase taking suboptimal steps to search the solution space

and avoid becoming trapped in a local optimal solution.

The MILP analysis utilizes Gurobi 9.0.2 to solve the linear programs. In the worst case

the MILP searches the entire solution space, which can scale exponentially in runtime for Mixed-

Integer Programs that rely on Branch and Bound methods. However, the Consumer MILP has

LP-tight bounds on its solution space, removing the need for lengthy Branch and Bound steps.

The Consumer MILP is used by consumers to select element bids, regardless of whether the

suppliers generated bids by MILP or ICAARUS. The Consumer MILP requires less than a

second to find solutions in these test trials. This offers little room for improving runtime

compared to the greater runtime of the Suppliers. A heuristic based consumer solver is left for

future research as it is not the focus of this thesis.

5.2.1 MILP Comparison

When testing the MILP, the Linear Programming (LP) relaxation is also tested to give a

theoretical upper limit. The LP relaxation removes the binary constraints on the decision

variables. This means the variables accomodatei,u,p and traveli,j,u can take any value on the

interval [0,1], rather than only {0,1}. This relaxation does not guarantee a feasible schedule. The

relaxation can produce solutions where resources are not servicing tasks for their full minimum

duration or resources are unsynchronized when servicing a task. However, it does provide an

upper bound for the MILP’s performance that can be useful for cases in which the MILP cannot

find the optimal solution in a feasible runtime.

 To accurately find the theoretical “best” upper limit of resource allocation to tasks, the

supplier MILP is assumed to be an omniscient centralized planner. While ICAARUS has three

suppliers that allocate four resources each in a decentralized manner to fulfill tasks, the supplier

MILP will control all twelve resources together. Thus, there will only be one round of bidding

for the MILP as the omniscient supplier has found its optimal resource allocation. This

coordinated supplier will give a consumer’s task only one set of resources requested, so no bids

will be rejected that might alter the schedule and create a need for follow on resource bidding

77

rounds. These results will show the performance gap of ICAARUS for coordinating across

decentralized suppliers.

5.2.2 Runtime Comparison

The aim of this runtime comparison is to determine whether the MILP or ICAARUS

method is able to generate a schedule that solves the Supplier Scheduling Problem in the smaller

amount of time. To evaluate this aspect, the test rounds discussed in Section 5.1.1 were solved

using each method: ICAARUS, MILP, and the LP-relaxation. Each test round has four test sets

and the results across all twenty sets are presented in Table 4.

It is expected for ICAARUS to be the faster method compared to MILP, as it does not

search the entire solution space in worst case scenario as with MILP. While ICAARUS’s

solution is not guaranteed to be optimal, its methods do push its scope to be wide ranging across

the solution space. ICAARUS eventually cools to finding a local optimum in a neighborhood of

the solution space, while MILP may search the entire solution space till a best schedule is

selected.

78

Table 4: Runtime Comparison

Number of Tasks

per Consumer

ICAARUS

Runtime (s)

MILP

Runtime (s)

LP-relaxation+

Runtime (s)

4 2.88 6.46 0.10
4 10.83 10.70 0.15
4 2.54 8.94 0.13
4 5.45 10.35 0.10
8 24.88 3174.74 1.14
8 11.52 2520.81 1.20
8 14.23 1539.23 1.19
8 27.59 3276.85 1.32

12 791.03 5479.36 29.02
12 1412.87 4077.86 17.11
12 1671.79 4192.52 21.65
12 1713.51 * 28.31
16 823.96 5785.59 969.25
16 1053.25 * 1400.61
16 1705.54 * 988.71
16 837.74 * 1390.19
20 1782.53 * *
20 1587.44 * 3279.02
20 1221.87 * 3321.86
20 1366.05 * *

* Runtime exceeds limit of 7200 s
+ Solutions not guaranteed to be feasible

 As expected, in Table 4, for all but one test set ICAARUS solves the test set in less time

than the MILP. This outlier is due to the Gurobi solver pre-solving much of the MILP model to

eliminate many redundant constraint columns that normally drive up runtime. Meanwhile

ICAARUS unnecessarily explored many schedules that were not improvements, in order to

ensure it was not becoming stuck on a local optimum solution.

In general, as the size of test sets increases, the MILP method becomes unable to find the

optimal solution in under two hours. Meanwhile ICAARUS was able to find solutions

consistently within a reasonable time frame. Despite the MILP method not needing multiple

bidding rounds like ICAARUS, the MILP method becomes intractable after eight tasks per

consumer. Average runtimes for each round of testing is displayed in Table 5. In many of the

sixteen and twenty task size sets, the MILP was unable to find a solution, so the average MILP

runtimes are artificially low. In reality, these testing rounds have longer average runtimes.

79

Table 5: Average Runtime

Number of Tasks

per Consumer

ICAARUS

Avg. Runtime (s)

MILP

Avg. Runtime (s)

LP-relaxation +

Avg. Runtime (s)

4 5.43 9.11 0.12
8 19.56 2627.91 1.21

12 1397.30 4583.25 24.02
16 1105.12 5785.59 1187.19
20 1489.47 * 3300.44

* Runtime exceeds limit of 7200 s
+ Solutions not guaranteed to be feasible

 When runtimes are averaged across tests sets of each round, a clear runtime superiority of

ICAARUS is seen over MILP. One outlier from expectations is the average runtime of sixteen

tasks is less than the average runtime of twelve tasks. This might appear to suggest as the number

of tasks increases the schedule is easier to find. However, this is most likely due to the specific

test sets generated having different complexities in other factors, such as task position and time

window parameters. Some twelve task test sets in this analysis are randomly more complicated

than the four sets generated for sixteen tasks, despite the sixteen tasks having a greater task

count.

Of note is the runtime for ICAARUS in the last three testing rounds becoming capped at

1800 seconds, while the MILP runtime becomes infeasible. For an operational commander,

having a solution in a reasonable time frame of 30 minutes can be a very attractive feature.

However, ICAARUS is not inhibited from taking longer than 30 minutes to find a solution. It

very well may take more than half an hour if the number of tasks were increased.

5.2.3 Optimality Comparison

The aim of this optimality comparison is to determine how far the ICAARUS method’s

generated schedule is from the optimal solution. The MILP method is guaranteed to find the

optimal solution, even if it requires searching the entire solution space. However, when the

MILP method requires an infeasible runtime, the LP relaxation can provide insight into the upper

bound of solution value.

To evaluate optimality, the same test sets evaluated in Section 5.2.2 were solved using

each method: ICAARUS, MILP, and the LP-relaxation. The value of a solution is the addition of

80

all the values of tasks fulfilled minus the travel cost of the resources. The optimality performance

of the different methods is compared in Table 6.

Table 6 contains two new columns of information, optimality gap and integrality gap.

Optimality gap shows the difference between the optimal solution, as found by the MILP

method, and ICAARUS’s solution. However, as noted in the previous section, the MILP method

is not always able to find the optimal solution in a feasible time frame. Thus, the LP-relaxation is

used as an upper bound on performance. While this upper bound may not be feasible, its solution

value still lends insight into ICAARUS’s performance. Integrality gap shows the difference

between the LP-relaxation and the best-known solution, this is the MILP solution when one is

found and the ICAARUS solution otherwise.

81

Table 6: Optimality Comparison

Number of
Tasks per
Consumer

ICAARUS
Solution Value

MILP
Solution Value

Optimality
Gap

LP-relaxation+

Solution Value
Integrality

Gap

4 214 214 0 % 249 14.06 %
4 172 172 0 % 208 17.31 %
4 290 290 0 % 290 0.00 %
4 249 249 0 % 249 0.00 %
8 352 352 0 % 464 24.14 %
8 455 455 0 % 480 5.21 %
8 348 348 0 % 362 3.87 %
8 315 315 0 % 432 27.08 %

12 536 560 4 % 655 14.50 %
12 627 627 0 % 815 23.07 %
12 620 620 0 % 700 11.43 %
12 624 * ** 954 34.59 %
16 674 674 0 % 930 27.53 %
16 766 * ** 1065 28.08 %
16 757 * ** 1302 41.86 %
16 948 * ** 1504 36.97 %
20 905 * ** * **
20 788 * ** 1567 49.7 %
20 996 * ** 1923 48.2 %
20 732 * ** * **

* Runtime exceeds limit of 7200 s
** Gap incalculable

+ Solutions not guaranteed to be feasible

The data in Table 6 shows that ICAARUS provides solutions with values that are close to

the optimal solution. In the twelve cases that the MILP method could find an optimal solution in

under two hours, in only one case was the ICAARUS method also unable to find the optimal

solution. Furthermore, in that one case the optimality gap, the difference between optimal

solution and ICAARUS solution; was only 4%.

Despite the small optimality gap seen for ICAARUS, its performance for higher task

count rounds may not be as promising as the lower task counts rounds suggest. To evaluate this

difference the LP-relaxation is analyzed, understanding this may be an infeasible solution. The

average integrality gap of the two smallest rounds is 11.46%, while for the two largest rounds it

is 38.72%. This would suggest for later testing rounds, should the MILP have found the feasible

82

optimum solution, the ICAARUS solution may have a larger optimality gap than in the earlier

rounds.

 Synchronization Coordination

An important characteristic for consumers entering a decentralized market is how long

they will have to wait for task fulfillment. As this thesis aims to improve scheduling of tasks that

require a variable number of resources, fulfillment rates differ on the level of coordination

required. Figure 20 measures average task fulfillment rates for test sets requiring 20 tasks as they

are the most complicated test sets that push suppliers to make the most tradeoffs.

Fulfillment is measured after each round of bidding as that is when the Consumer will

know if they have collected the necessary requested resources or need to continue bidding. It is

expected that tasks requiring less resource coordination, tasks with {1} resource requested, will

be the quickest to be fulfilled. This is expected because they require no synchronization across

suppliers to be fulfilled. In contrast, it is expected the tasks that require the most resource

coordination, tasks with {4} resources requested, will be the slowest to be fulfilled. Figure 20

only shows the results of the first seven rounds of bidding despite there being ten rounds, this is

for convenience sake as the last three rounds do not change any supplier schedules.

Figure 20: Average Fulfillment Rate vs. Bid Round for 20 Tasks per Consumer

 Resources

83

 As expected, the single resource tasks have the highest fulfillment rate in the earliest

three rounds. Over half of the tasks are fulfilled after the first round of bidding, and all are

completed by the fifth round of bidding. In the fourth round of bidding, the second simplest tasks

to synchronize are the first to achieve 100% fulfilment rate. This most likely comes from the

high likelihood of suppliers, all with four resources, having the resources to completely fulfill

these dual synchronization tasks without coordinating with another supplier.

 The most complicated tasks, those requiring four resources, undergo a large jump in

fulfilment rate of 60% to 100% in the sixth round. This is likely from 97.5% of single and dual

synchronization tasks being settled by round four, and two additional rounds are needed for a

consumer to update the task time windows, as outlined in Section 2.2.3, to synchronize across

suppliers. It also appears that the fulfillment rate of tasks requiring three resource

synchronization is stuck at 95% fulfillment rate. This is most likely from the specific test sets

generated having an infeasible task accommodation.

84

Chapter 6

6 Conclusions

This chapter summarizes the work presented throughout the previous five chapters. This

summary begins with presenting the contributions made by this thesis, specifically the methods

and implementation for consumer-supplier task fulfillment. The next section proposes future

work to improve the methods presented in this thesis. These improvements were only briefly

explored, but show great promise for follow-on research. The end of this chapter has concluding

thoughts on the methods and results.

 Summary of Contributions

This section reviews the contributions made by this thesis, as stated in Chapter 1. The

purpose of this research was to explore decentralized resource allocation between mission

commanders and resource suppliers. In particular, this thesis focuses on the challenge of task

synchronization in SSP. The contributions of this thesis are summarized in the following

paragraphs.

 An e-commerce bidding structure to coordinate multiple consumers with multiple

suppliers asynchronously and decentralized. Chapter 2 outlined a system for

coordinating multiple bidding rounds where task creators are consumers and resource

providers are suppliers. This three way hand shake method was then tested in conjunction

with ICAARUS and the performance results were presented in Chapter 5.

 A MILP model to solve the SSP. Chapter 3 presented several candidate MILP

formulations that can provide exact solution to the Supplier Scheduling Problem, with

Section 3.4.3 outlining a model with synchronization constraints. This MILP was

implemented using JuMP v0.18 and Gurobi 9.0.2 solver.

 A MILP model to select cheapest resource bids. Chapter 3 presented a MILP

formulation that can provide an exact solution to the Consumer Element Bid Selection

Problem. This MILP was implemented using JuMP v0.18 and Gurobi 9.0.2 solver.

 The development and implementation of ICAARUS, an algorithm to schedule

multiple resources for tasks requiring time and spatial synchronization. Chapter 4

85

presented a novel Adaptive Large Neighborhood Search algorithm for solving the

Supplier Scheduling Problem. ICAARUS is a composite algorithm with construction and

improvement phases that maintain resource synchronization for tasks throughout the

optimal schedule search. ICAARUS is implemented in Julia v1.0.5. It was shown that

this implementation can develop a schedule for 3 decentralized suppliers and 40 tasks

(with synchronization requirements ranging 1-4 resources) in less than 30 minutes.

 Testing and analysis of the MILP and ICAARUS. Chapter 5 examined the advantages

and shortcomings of both methods under varying test scenarios. The MILP method was

able to find optimized schedules for suppliers, but at increasingly lengthy runtimes. Test

sets with more than 32 tasks total were intractable for the MILP method. Meanwhile the

heuristic method, ICAARUS, generated schedules in a significantly shorter runtime, with

almost all single and dual synchronization tasks scheduled in the first four rounds of

bidding. Furthermore, ICAARUS was able to generate solutions for every test, while the

MILP was not. These faster solutions are valuable for the consumers and suppliers, but

were not always the most valuable solution possible.

 Future Work

While this thesis implements two methods for solving the SSP as outlined in Chapter 2,

numerous modifications could have been made to improve these methods. These areas of

improvement include adapting ICAARUS’s improvement phase for faster runtimes and making

the solutions robust to changes in the task parameters.

6.2.1 Adaptive Drop List

A majority of the runtime of ICAARUS is spent by the improvement phase’s insertion

methods, discussed in Section 4.3.4. The insertion methods operate by testing the insertion of

each task on the Drop List, DL, individually. If the DL were shorter, the runtime of ICAARUS

could be improved. By attempting to insert fewer tasks, the cross-synchronization matrix – a

time-expensive operation -- fewer times.

To review, the DL is the set of tasks removed from the initial schedule made in the

construction phase. These are the tasks removed in the most recent iteration’s removal method,

86

as well as tasks removed by earlier removal methods that did not get re-inserted. This means the

insertion methods will continuously attempt to re-insert tasks from the DL, despite a task on the

DL being repeatedly found infeasible by the insertion methods.

Currently ICAARUS is purposely designed to be overly optimistic; for example, the

construction phase accepts tasks that are known to be infeasible with the current schedule. This is

done to give the improvement phase the ability to create a schedule with maximum value, by

repeatedly removing and re-inserting tasks till an optimal schedule is found. ICAARUS is also

designed to avoid becoming stuck in a local optimum by not always inserting the most valuable

task in the insertion phase. Sometimes the nth best task is inserted, to allow ICAARUS to

evaluate a variety of schedules. So, even when a task is removed and not re-inserted in the

improvement iteration, that does not mean it should be permanently dropped from future

consideration. ICAARUS presently stores a long DL to have the best chance as feasible at

maximizing its schedule. However, while this lengthy task list helps improve solution optimality,

it severely hampers runtime performance.

A dropped task learning method could be implemented to intelligently shorten the DL,

while maintaining limited infeasibility allowances. This could be done in a manner similar to

adapting method selection, as discussed in Section 4.3.5. Features this learning method could

find as important characteristics to score are:

 Task Value. The learning method should penalize low value tasks, as they do not

offer the total schedule as much utility as tasks with high values.

 Insertion Rejection Rate. Tasks that are removed and continue through the

improvement rounds staying on the DL, are tasks that are unlikely to be in a feasible

solution. Rather than repeatedly test their insertion to find they would only again

result in an infeasible schedule, an intelligent DL should drop them permanently from

insertion consideration.

This pruning of poor performing task from the DL at the end of every segment offers

great runtime improvements at potentially little impact to optimality performance. The exact

weights of task features and cut-off lines for when to drop the task would require future analysis

to tune for optimal performance.

87

6.2.2 Robust Optimization for Duration Changes

The setup of scenarios in this thesis tested resource request fulfillment for tasks that never

change their required minimum durations. However, this is an unrealistic assumption for

scheduling. Real-world missions often experience alterations in service time from original

requests as situations change. The methods presented in this thesis, however, are oriented at

maximizing value, and thus create exquisite, yet fragile, schedules. A task that overestimated

service duration is typically harmless. That error would just result in more idle time as resources

depart the task early. However, a task that has its service time extended can force resources to

either abandon the task, and leave it as incomplete, or stay and cancel later tasks on their paths.

The use of Robust Optimization (RO) could be applied to the MILP model. This would

create plans that remain feasible even after a change in the duration of tasks. A naive method to

create robust schedules would substitute all minimum durations with the maximum duration

changes expected by the mission commander. However, this conventional solution would

significantly lower the value of solutions, compared to the nominal solver. Schedules will

conservatively allocate tasks substantially more service time than necessary, and thus limit the

total number of tasks that a resource can service in its path. RO intelligently deals with

uncertainty, under the assumption not every task will experience the maximum duration changes.

The rest of this section presents a possible implementation of RO for dealing with

uncertainty in task minimum duration, although it is certainly not the only implementation

possible. Adapting the MILP model presented in Chapter 3 to robust optimization could be done

with the introduction of uncertainty variables robustMinDuri and δi with the following

constraints:

(22) Substitute for constraint (9). Resource can depart the task only after the required

duration of service time.

𝑎𝑟𝑟𝑖𝑣𝑒௜,௨ − 𝑟𝑜𝑏𝑢𝑠𝑡𝑀𝑖𝑛𝐷𝑢𝑟௜ × ∑ 𝑎𝑐𝑐𝑜𝑚𝑜𝑑𝑎𝑡𝑒௜,௨,௣௣∈௉ ≤ 𝑑𝑒𝑝𝑎𝑟𝑡௜,௨ ∀𝑖 ∈ 𝑇, 𝑢 ∈ 𝑈

(23) Lower bound limit on robustMinDuri’s uncertainty

𝑚𝑖𝑛𝐷𝑢𝑟௜ ≤ 𝑟𝑜𝑏𝑢𝑠𝑡𝑀𝑖𝑛𝐷𝑢𝑟௜ ∀𝑖 ∈ 𝑇

(24) Upper bound limit on robustMinDuri’s uncertainty

88

𝑟𝑜𝑏𝑢𝑠𝑡𝑀𝑖𝑛𝐷𝑢𝑟௜ ≤ 𝑚𝑖𝑛𝐷𝑢𝑟௜ + 𝛿௜ × 𝑑𝑢𝑟𝐷𝑒𝑙𝑡𝑎 ∀𝑖 ∈ 𝑇

(25) Upper bound limit on percentage of change added to minimum duration

𝛿௜ ≤ 1 ∀𝑖 ∈ 𝑇

(26) Upper bound limit on total duration change expected by mission commanders

ห|𝛿௜|ห௣
≤ 𝛤 ∀𝑖 ∈ 𝑇

 The mission commanders express their expected maximum duration change with the

constant durDelta. The uncertainty variable δi controls the percentage of duration change for

robustMinDuri, to be in the range of [minDuri, minDuri + durDelta]. The constant Γ controls

how much uncertainty the mission commander expects across all the tasks. As mentioned in the

previous paragraph, robust optimization intelligently manages uncertainty rather than scheduling

all tasks to experience worst-case scenario. Γ is the limit on δi within the p-norm. Visual

representations of the Manhattan norm (p=1), Euclidean norm (p=2), and Infinity norm (p=∞)

are given in the figure below:

Figure 21: p-norms

 What is the correct durDelta if left for consumers to specify and what is the optimal Γ &

p is left for future research based on specific scenarios.

 The use of RO in this way also has the desirable outcome of increasing the likelihood of

element bids overlapping their service time windows. Since tasks are being serviced in a time

window that is greater than the minimum duration, consumers face the challenge of coordinating

synchronization. The Maximum Time Window approach, presented in Section 3.4.2, aims to

89

extend element bid service times so suppliers increase the likelihood of their offered service time

overlapping with other suppliers offered service times. This could remove synchronization

constraints that increase runtime of the supplier-based MILP method, but may increase the

number of bidding rounds to align task time windows.

6.2.3 Robust Optimization for Value Changes

RO can also be used to intelligently manage value changes in tasks. As mentioned in the

previous section, current methods create exquisite yet fragile paths. A supplier may only service

a low valued task because it is spatially and temporally close to another high value task.

However, should the high value task have its value decreased, the exquisite schedule can suffer

great drops in optimal schedule value.

The rest of this section presents a possible implementation of RO for dealing with

uncertainty in task value, although it is certainly not the only implementation possible. Adapting

the MILP model presented in Chapter 3 to RO could be done by introducing the uncertainty

variables robustValuei and δi. robustValuei replaces valuei in the objective function and requires

the following constraints:

(27) Lower bound limit on robustValuei’s uncertainty

𝑣𝑎𝑙𝑢𝑒௜ − 𝛿௜ × 𝜎௜ ≤ 𝑟𝑜𝑏𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒௜ ∀𝑖 ∈ 𝑇

(28) Upper bound limit on robustValuei’s uncertainty

𝑟𝑜𝑏𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒௜ ≤ 𝑣𝑎𝑙𝑢𝑒௜ + 𝛿௜ × 𝜎௜ ∀𝑖 ∈ 𝑇

(29) Upper bound limit on percentage of value change

𝛿௜ ≤ 1 ∀𝑖 ∈ 𝑇

(30) Upper bound limit on total value change expected by mission commanders

ห|𝛿௜|ห௣
≤ 𝛤 ∀𝑖 ∈ 𝑇

The uncertainty variable δi controls the percentage of value change for robustValuei

within its specified variance, σi. Γ is the limit on δi within the p-norm. The optimal Γ & p is left

for future research based on specific scenarios.

90

 Conclusions

This thesis has addressed the challenge of coordinating resources in a decentralized and

asynchronous environment. A three-part bidding phase was introduced to coordinate consumer

needs across multiple suppliers in an e-commerce inspired bidding structure. An optimization

model was presented that can be solved by a MILP to optimally schedule a supplier’s resources.

A novel ALNS algorithm, ICAARUS, was presented to solve the SSP in an operationally-

feasible runtime. It uses a benefit-to-cost formula to select promising tasks and quickly generate

a schedule in its construction phase. ICAARUS’s improvement phase then uses simulated

annealing to cool the infeasibility in the schedule to a solution that is within time windows and

synchronized. Five candidate removal, and two insertion, methods are presented for removing

and inserting synchronized tasks in a schedule to improve its utility.

It is concluded that ICAARUS is a viable algorithm for decentralized resource allocation.

We have demonstrated the algorithm is capable of generating near-optimal schedules in a

computationally tractable manner. While this work focused on a specific scheduling scenario, we

believe that it presents a promising approach to schedule multiple-resource synchronization

tasks, a problem that arises in many important applications.

91

References

[1] Rogoway, Tyler. “USS Racine gets pummeled to death during RIMPAC 2018 sinking

exercise.” The Warzone. July 2018

[2] “A Design for Maintaining Maritime Superiority.” Version 2.0. December 2018

[3] TRADOC Pamphlet 525-3-1. “The U.S. Army in Multi-Domain Operations 2028.” 06

December 2018

[4] BAA. “Secure Advanced Framework for Simulation and Modeling (SAFE-SiM).” DARPA

Adaptive Capabilities Office. HR001120S0007. 16 January 2020

[5] Spears W. “A Sailor’s take on Multi-Domain Operations.” War on the Rocks. 21 May 2019

[6] Jamieson V., Calabrese M.. “An ISR Perspective on Fusion Warfare.” The Mitchell Forum.

October 2015

[7] Nanehkaran, Y.A..”An Introduction to Electronic Commerce.” International Journal of

Scientific & Technology Research. Vol 2, Issue 4. April 2013.

[8] Leake Negron, B.. “Operational Planning for Multiple Heterogeneous Unmanned Aerial

Vehicles in Three Dimensions”. Master’s Thesis, Massachusetts Institute of Technology.

2009.

[9] Herold, T.. “Asynchronous, Distributed Optimization for the Coordinated Planning of Air

and Space Assets”. Master’s Thesis, Massachusetts Institute of Technology. 2008.

[10] Ropke, S. and Pisinger, D., 2006. “An Adaptive Large Neighborhood Search heuristic for

the pickup and delivery problem with time windows”. Transp. Sci. 40, 455–472.

[11] Liu R., Tao Y., Xie X., 2018. An adaptive large neighborhood search heuristic for the

vehicle routing problem with time windows and synchronized visits. Computers &

Operations Research Vol 101, 250-262.

[12] J.V. Miller. “Large-Scale Dynamic Observations Planning for Unmanned Surface

Vessels”. Master’s Thesis, Massachusetts Institute of Technology. 2007.

[13] Hendel, G. “Adaptive Large Neighborhood Search for Mixed Integer Programming.” ZIB

Report 18-60. 18 December 2018.

[14] Ropke, S., Cordeau, J., and Laporte, G.. "Models and Branch-and-Cut Algorithms for

Pickup and Delivery Problem with Time Windows," Networks 49(4), 258-272, 2007.

92

[15] Tzoreff, T., Granot, D., Granot, F., and Sosic, G.. “The vehicle routing problem with

pickups and deliveries on some special graphs.” Discrete Applied Mathematics, Volume 116,

Issue 3, 193-229.

[16] Dantzig, G. and Ramser, J.. “The Truck Dispatching Problem.” Management Science. 6.

80-91

[17] Bodin, L., Golden, B., Assad, A., and Ball, M., “Routing and schedule of vehicles and

crews: The state of the art.” Computational Operations Research, 62-212., 1983.

[18] Dantzig, G., Fulkerson, R., and Johnson, S., "Solution of a Large-Scale Traveling

Salesman Problem," Operations Research 2(4), 393-410, 1954.

[19] Bertsimas, D. and Tsitsiklis, J. N., Introduction to Linear Optimization, Athena

Scientific, Belmont, MA, 1997

[20] Lawler, E., Lenstra, J., Rinnooy Kan, A., and Shmoys, D.. The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization. John Wiley and Sons, Inc. New

York. 1985.

[21] Laporte, G.. "The Traveling Salesman Problem: Overview of Algorithms." European

Journal of Operational Research 59(2). 231-247. 1992.

[22] Flood, M., "The Traveling Salesman Problem," Operations Research 4(1), 61-75, 1956

[23] Rosenkrantz, D., Stearns, R., and Lewis, P.. "An Analysis of Several Heuristics for the

Traveling Salesman Problem." Society of Industrial and Applied Mathematics Journal of

Computing 6(3). 563-581. 1977.

[24] Croes, G.. "A Method for Solving Traveling-Salesman Problems." Operations Research

6(6). 791-812. 1958.

[25] Lin, S. and Kernighan, B.."An Effective Heuristic Algorithm for the Traveling-Salesman

Problem." Operations Research. 21 (2). 498–516.

[26] Hove, J..“An Integer Program Decomposition Approach to Combat Planning.” Doctoral

Dissertation. Air Force Institute of Technology. September 1998.

[27] Mingozzi, A., Bianco, L., and Ricciadelli, S.. “Dynamic Programming Strategies for the

Traveling Salesman Problem with Time Window and Precedence Constraints.” Operations

Research 45. 365-377. 1997.

93

[28] Baker, E. "An Exact Algorithm for the Time Constrained Traveling Salesman Problem."

Operations Research 31(5). 938-945. 1983.

[29] Gendreau, M., Hertz, A., Laporte, G., and Stan, M.. "A Generalized Insertion Heuristic

for the Traveling Salesman Problem with Time Windows." Operations Research 46(3). 330-

335. 1998.

[30] Golden, B., Levy, L. and Vohra, R.. “The Orienteering Problem.” Naval Research

Logistics, Vol. 34, Issue 3, Pages 307-318. June 1987.

[31] Tang, H. and Miller-Hooks, E.. “A TABU search heuristic for the team orienteering

problem.” Computers & Operations Research 32, 1379-1407. 2005.

[32] Archetti, C., Hertz, A., and Speranza, M.. “Metaheuristics for the team orienteering

problem.” Journal of Heuristics 13(1), 49-76. 2007.

[33] Tsiligrides, T. "Heuristic Methods Applied to Orienteering." Journal of the Operational

Research Society 35, 797-809. 1984.

[34] Golden, B., Wang, Q., Liu, L.. "A Multifaceted Heuristic for the Orienteering Problem."

Naval Research Logistics 35 (3), 359-366. 1988.

[35] Ramesh, R. and Brown, K.."An Efficient Four-Phase Heuristic for the Generalized

Orienteering Problem." Computers and Operations Research 18, 151-165. 1991.

[36] “Illustration of unit circles in different norms.” Norm, Wikipedia.

https://en.wikipedia.org/wiki/Norm_(mathematics).

