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Abstract

Electricity provides the foundation for many of today’s technological advances. The
desire for energy security, a reduction in carbon dioxide emissions and a diversifica-
tion of resources are all motivations for changes in how electricity is generated and
transmitted. Recent alternatives to traditional centralized power-plants include tech-
nologies that are decentralized and intermittent, such as solar photovoltaic and wind
power. This trend poses considerable challenges in the hardware making up these sys-
tems, the software that control and monitor power networks and their mathematical
modelling.

This thesis presents a set of contributions that address some of the aforemen-
tioned challenges. Firstly, we examine the fundamental theories used in modelling
and controlling power systems. We expand previous work on reference-frame theory,
by providing an alternative interpretation and derivation of the commonly used Park
and Clarke transformations. We present a geometric interpretation that has applica-
tions in power quality. Secondly, we introduce a framework for producing regions of
stability for power systems using conditional generative adversarial neural networks.
This provides transmission and distribution operators with an accurate set of control
options even as the system changes significantly.
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Chapter 1

Introduction

Electricity provides the foundation for many of today’s technological advances. The

desire for energy security, a reduction in carbon dioxide emissions and a diversifica-

tion of resources are all motivations for changes in how electricity is generated and

transmitted. Recent alternatives to traditional centralized power-plants include tech-

nologies that are decentralized and intermittent, such as solar photovoltaic and wind

power. This trend poses considerable challenges in the hardware making up these sys-

tems, the software that control and monitor power networks and their mathematical

modelling.

Traditional centralized power systems consist of sources in the form of coal, gas,

nuclear and hydro power plants. The synchronous machine is at the heart of the

mechanical to electrical energy conversion process, for each of these centralized power

plants. As more renewables such as wind and solar penetrate the electricity grid,

the percentage of non-inertial generation on the system increases. Many of these

renewable technologies use DC to AC converters at their interface, meaning that the

synchronous machine may not dominate power systems in the same way as it has in

the past. Although the generation of electricity increasingly relies on a mix of tech-

nologies, these technologies use common mathematical tools (such as transformations)

that were derived with respect to a specific application. For example the Park trans-

formation was derived to help in the modelling of synchronous generators, yet this

transform finds uses in numerous other fields including inverter control. The 𝑑 and 𝑞
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axes have physical meaning when referring to a synchronous machine, yet three-phase

inverters often make use of the Park transformation. This motivates an alternative

interpretation of reference-frames which is agnostic to a specific application. This is

the first area of contributions in this thesis.

The second area of contributions focuses on the implications of decentralized power

systems on the system operator. Decentralization can cause increased variability in

the system, as the number of renewable energy sources connected to the grid increase.

System operators must maintain system stability in spite of system changes such as

faults, fluctuating supply and demand and alternate network topologies. In order to

make dynamic decisions to maintain stability, the system operator first needs to have

a better sense of the system health. This motivates a stability region generation tool

that operators can use to view how stability regions are changing in real-time. This

is the second area of contributions in this work.

1.1 Thesis Structure

This thesis outlines two solutions regarding the decentralization of power systems: Ge-

ometric Reference-Frame Theory and Stability Region Generation. As the technical

details of these solutions are quite distinct, they are separated into Part I (geomet-

ric reference-frame theory) and Part II (stability region determination). Despite this

distinct structure, Part I and Part II make up two solutions to a single application:

decentralized generation in power systems.

The author directs the reader to the beginning chapter of each section for a lit-

erature review for each of the problems, as well as a list of contributions made using

the proposed approaches.
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A Geometric Interpretation of
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17



18



Chapter 2

Reference-Frame Theory

This chapter provides an overview of Part I of this thesis. The objective of this

thesis is to address challenges associated with the decentralization of generation in

power systems. Traditional centralised power systems have been dominated by the

synchronous machine for the past 100 years. An increased proportion of renewables

often leads to a higher proportion of inverters interfacing with the electricity network.

This is because many renewable technologies such as solar photovoltaic and wind-

farms require DC to AC converters at their interface. As the number of inverters

increases, the synchronous machine may not dominate power system generation as it

has done in the past. Transformations such as the Clarke transformation were derived

with the intention to analyse specific problems such as unbalanced three-phase faults,

yet somehow find uses in numerous other applications including three-phase inverter

control. This motivates an alternative interpretation of reference-frames which is

agnostic to a specific application. This problem is the focus of Part I of this thesis,

which provides a solution in the form of a geometric interpretation of reference-frame

theory [1].

2.1 Overview and Motivation

A reader familiar with the commonly used Clarke and Park transformations may

wonder as to why one would want to investigate them further. One could argue

19



that the transformations already exist and therefore what benefit is there in addi-

tional research? The motivation to contribute to reference-frame theory stem from

two main observations: (i) the Clarke and Park transformations were derived with

respect to specific applications in mind, yet somehow both find uses in many appli-

cations beyond their original intention and (ii) signals with unbalance and harmonics

have interesting properties when observed in the 𝑑𝑞0 frame. Beyond this, the author

believes there is value in a more general framework to understand these transforma-

tions, as this can allow one to gain a deeper understanding and intuition. One could

also compare this to the analogy of music versus music theory. Music has existed

since the early days of humankind - long before music theory was developed. Yet, the

theoretical framework for music somehow makes it more rich and interesting for some

people. Similarly, the Clarke and Park transformations already exist, but perhaps

the geometric interpretation provided here adds depth to the field of reference-frame

theory.

Transformations between 𝑎𝑏𝑐 and 𝑑𝑞0 reference-frames were originally used to

assist in electrical machine analysis and modelling [2]. Currently, 𝑑𝑞0 based models

are used in a wide variety of applications including: modelling and control of electric

machines and drives [2, 3], multimachine modelling [4], multi-inverter modelling [5],

microgrid simulation [6–8], phase-locked loops (PLLs) [9] and active power filters

[10]. In many of these examples, the dq components no longer refer to the direct

and quadrature axes of a machine. This motivates an alternative interpretation of

reference-frames that is detached from any specific technology or application. This

thesis provides one such alternative perspective which is referred to as the “geometric

interpretation”.

2.2 Previous Work

Considering the wealth of literature available on the subject of reference frames,

it is essential that the contributions of this work are positioned in the context of

previous work. To this end, the history of these transformations must first be studied,

20



taking care to cite the most notable references. Krause’s arbitrary reference-frame

and how this perspective relates to each transformation is reviewed. Following this,

the geometric approach to deriving the Clarke and Park transformation matrices is

presented. The contributions of this thesis are distinguished from previous work, and

the advantages and disadvantages of the geometric approach are discussed.

2.2.1 Review of the Clarke and Park Transformations

Fig. 2-1 provides an overview of the transformations. The Clarke transformation con-

verts three-phase 𝑎𝑏𝑐 quantities to 𝛼𝛽0 (ie stationary 𝑑𝑞0). The Park transformation

converts 𝑎𝑏𝑐 quantities to 𝑑𝑞0 and can be thought of as applying the Clarke trans-

formation first, followed by the 𝛼𝛽0 to 𝑑𝑞0 transformation. Here the latter is simply

referred to as the “𝑑𝑞0 transformation” for simplicity of subscript notation. Later

it will be discussed how this corresponds to the “frame-to-frame-transformation” as

described in [2].

vαβ0

vabc vdq0

Park

Tp

Clarke

Tc

dq0

Tdq0

Figure 2-1: Relationships between the Park and Clarke transformations. Note that
the term “𝑑𝑞0 transform” as defined in this thesis refers to a transformation from 𝛼𝛽0
to 𝑑𝑞0 and is therefore not equivalent to the Park transformation.

Fig. 2-2 shows the affect of applying the standard Clarke and Park transformations

under three different conditions: (i) Balanced voltages result in equal magnitudes

for 𝑣𝛼 and 𝑣𝛽 and constant values of 𝑣𝑑 and 𝑣𝑞. (ii) Unbalanced voltages result in

unequal magnitudes for 𝑣𝛼 and 𝑣𝛽 and time-varying 𝑣𝑑 and 𝑣𝑞 at the 2nd harmonic.

𝑣0 is a zero-sequence component at the fundamental and is always identical in both

transformations.
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vβ

v0

vα
vβ

v0vαβ0
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0 10 20 30 40 50 60
−0.5

0

0.5

1 vd

vq

v0

vd

vq

v0

vd

vq

v0

time (ms)

vdq0
(p.u.)

(i) (ii) (iii)

Figure 2-2: Clarke and Park transformations applied to three-phase 50Hz voltages
under three conditions: (i) balanced fundamental frequency with a phase shift (ii)
unbalanced fundamental (iii) balanced with harmonics (1st, 5th, 7th).

Condition (iii) in Fig. 2-2 illustrates the affect of harmonics. Each phase voltage

includes fundamental, 5th and 7th harmonics, with balanced voltages at each har-

monic. These particular harmonics appear as a 6th harmonic in 𝑣𝑑 and 𝑣𝑞. There is

no zero-sequence component for these particular harmonics. The voltage 𝑣𝛼 is equiv-

alent to 𝑣𝑎; and 𝑣𝛽 has a different harmonic profile to 𝑣𝑏 due to a 180∘ phase-shift on

its positive sequence components. In Section 3.3, each of the conditions (i), (ii) and

(iii) in Fig. 2-2 are explained using the geometric interpretation.
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History of the Clarke Transformation

In 1912, Stokvis introduced the concept of decomposing unbalanced three-phase sig-

nals into positive and negative sequence [11]. His example in [11, 12] describes a

three-phase generator with a floating neutral node, and how unbalanced currents

in such a system can be decomposed into “synchronous” and “inverse” currents (ie

positive and negative sequence currents). Fortescue built on the work of Stokvis by

introducing zero-sequence and generalising the decomposition for 𝑁 phases in [13].

In the 1930s, Clarke made a series of modifications to symmetrical components [14,

15]. These modifications simplified the calculations for certain classes of unbalanced

three-phase problems [15, 16]. The 𝛼, 𝛽 and 0 components were one set of these

innovations [15], and were particularly useful as they did not require the 𝑎 operator

(1 120∘) or complex numbers. Although Clarke’s derivation in Fig. 2-3 requires both

the 𝑎 operator and a multiplication by 𝑗, the resulting transformation matrix does not

contain any complex numbers, unlike the symmetrical components transformation.

+ � 0

abc
+
+

+

�

va(t)

vb(t)

vc(t)

v↵(t)

v�(t)

v0(t)
V0

V�

Vc

Vb

Va V+

V�

V↵

V0

Time Domain to
Phasor Domain

Symmetrical

Components
Phasor Domain to
Time Domain

V ! v(t)v(t) ! V

�j

Figure 2-3: An illustration of the Clarke transformation as derived in [15].

Fig. 2-3 provides an illustration of the derivation developed by Clarke. The 𝛼

component is defined as the sum of the positive and negative sequence voltage phasors,

whereas the 𝛽 component is the difference between positive and negative sequence

phasors, times −𝑗. Clarke’s 0 component is equivalent to the zero sequence as defined

by symmetrical components. For a comprehensive discussion of Clarke’s derivation,

the author refers the reader to [15].
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c -phase axis

a -phase axis

b -phase axis

d -axis

q -axis

✓N

S

a

a0

b

b0

c

c0

!

Figure 2-4: Cross-section of a synchronous machine

History of the Park Transformation

In 1899, Blondel developed the two-reactance method to study the behaviour of syn-

chronous machines [17, 18]. This method resolves the armature fluxes in a salient

machine along the two axes of symmetry: the direct and quadrature axes. Fig. 2-4

shows the physical definitions of the direct and quadrature axes.

During the 1920s, Park generalised Blondel’s Two-Reaction Theory of Synchronous

Machines [17–20]. This method resolves the armature fluxes in a salient machine along

the two axes of symmetry: the direct and quadrature axes. Fig. 2-4 shows the phys-

ical definitions of the direct and quadrature axes. This thesis uses the convention

that the 𝑑-axis points in the direction of the rotor flux. Park’s derivation shown in

Fig. 2-5 actually defines the inverse transformation: 𝑑𝑞0 to 𝑎𝑏𝑐. The steps are as

follows: Firstly, assume that armature flux linkages can be resolved into two compo-

nents: directly in phase with the rotor (𝜆𝑑) and in quadrature with the rotor (𝜆𝑞).

Secondly, project the 𝑑 and 𝑞-axes flux linkages onto the three coplanar 𝑎𝑏𝑐 magnetic

axes. Finally, add a zero sequence component (𝜆0) to each phase. The reader is

referred to [19] for a more complete description of Park’s derivation.

2.2.2 Review of the Arbitrary Reference-Frame

A “reference-frame” refers to a set of 𝑑𝑞0 axes rotating at a particular speed 𝜔 (which

may be zero). In the 1920s Park chose to rotate his 𝑑𝑞0 axes as defined in [19] at
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Figure 2-5: An illustration of the Park transformation as derived in [19]

the rotor speed of a synchronous machine 𝜔𝑟 (because that speed eliminates time-

varying inductance in synchronous machine analysis). During the 1930s-1950s others

[21–23] used alternative reference speeds for their 𝑑𝑞0 axes, to assist in the analysis

of induction machines. Eliminating time-varying inductance in addition to achieving

a diagonalised inductance matrix were primary objectives [2].

In 1965, Krause described in [24] that all of the different reference-frames used in

[15, 19, 21–23] are specific applications of the “arbitrary reference-frame”. They all

refer to 𝑑𝑞0 axes that rotate at a specified 𝜔. A list of commonly used reference-frame

speeds are given below [2]:

∙ 𝜔. The 𝑑𝑞0 axes rotate at an arbitrary speed. [24].

∙ 𝜔 = 𝜔𝑟. The 𝑑𝑞0 axes rotate at the rotor speed [19].

∙ 𝜔 = 𝜔𝑒. The 𝑑𝑞0 axes rotate at the synchronous speed.

∙ 𝜔 = 0. The 𝑑𝑞0 axes are stationary (Clarke transformation).

All of the reference-frames listed can be described by Park’s transformation ma-

trix, except that each uses a different rotation speed 𝜔 for the 𝑑𝑞0 axes. The reader

is referred to [2] for an extensive discussion of the various reference-frames.

One of the goals of this work is to provide an alternative derivation of Park’s

transformation matrix, which describes all of the listed reference-frames (when the
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appropriate 𝜔 is inserted into this matrix). Therefore, a general approach is taken

here and an arbitrary reference speed 𝜔 is considered when referring to Park’s trans-

formation matrix. This matrix is still referred to as “Park’s transformation”, even

though the reference speed is not limited to be that of the rotor 𝜔𝑟. One is free to

choose any reference speed they wish.

2.3 Contributions to Reference-Frame Theory

The contributions of this thesis in the area of reference-frame theory are summarised

below. The remainder of this section elaborates on these points:

1. Previous approaches to deriving the matrices describing the Park and Clarke

transformations are grouped into two approaches. This work presents a third

approach to deriving the Clarke and Park transformation matrices: a geometric

approach.

2. The “locus diagram” of a three-phase quantity is introduced along with demon-

strations of how this locus changes in the presence of unbalance and harmonics.

The first contribution is to provide an alternative approach to derive the Park and

Clarke transformations. Previous work on deriving these transformation matrices

follows one of two approaches:

(i) The Clarke transformation matrix is derived from symmetrical components [15]

as shown in Fig. 2-3. The Park transformation matrix can be subsequently

derived using a rotation matrix such as Eq. (3.17).

(ii) The Park transformation matrix is derived trigonometrically by interpreting

the transformation as a rotation in the plane of the cross-section of a machine.

The 𝑎𝑏𝑐 axes are coplanar stationary axes that lie 120∘ apart and 𝑑𝑞 quantities

can be projected onto the 𝑎𝑏𝑐 axes in a manner shown in Fig. 2-5. A third

transformation variable is introduced to satisfy the change of variables. This

is chosen to be the zero component, which is added separately. Many authors

26



trigonometrically project in the opposite manner: from 𝑎𝑏𝑐 to 𝑑𝑞 and are thus

required to specify scaling factors 𝑘𝑑 and 𝑘𝑞, normally equal to either 2/3 or
√︀

2/3: see [25]. These projections describe the approach taken by the majority

of authors such as [2, 19, 21–28]. The Clarke transformation matrix can then

be derived trivially by setting 𝜔 = 0 in Park’s transformation matrix. One

should note that the coplanar 𝑎𝑏𝑐 axes are usually considered to have a physical

meaning relating to the magnetic axes in the cross-section of a machine as in

Fig. 2-4, but this physical interpretation of the 𝑎𝑏𝑐 axes is not necessary to

derive the matrix [2].

This thesis section presents a third approach to deriving the Clarke and Park

transformation matrices: a geometric interpretation. This geometric approach uses

the Cartesian representation: three-phase quantities are represented by vectors in

R3, where each orthogonal component of the vector corresponds to the instantaneous

value of one of the three phases. The first appearance of the Cartesian representa-

tion applied to three-phase quantities was given by Lipo in [29]. Other work that

uses this representation includes [30, 31]. More recently, Montanari and Gole use a

three-dimensional perspective to introduce a new transformation termed the “𝑚𝑛𝑜-

transform” [32]. The 𝑚𝑛𝑜-transformation assists in the calculation of instantaneous

real and reactive power for systems containing four-wire inverters. This enables the

mitigation of power oscillations that normally occur when such systems are unbal-

anced [32]. Although others have utilised the Cartesian representation in [29–32],

this work is unique as the representation is used to derive the matrices describing the

Clarke and Park transformations.

The geometric approach is explained step-by-step in Section 3.1 and Section 3.2.

A summary of the derivations provided by the geometric view is given by Fig. 2-6.

Each transformation is interpreted as a combination of vector rotation and scaling in

R3. The 𝑎𝑏𝑐 axes are orthogonal stationary axes that lie 90∘ apart and have basis

vectors that span R3. The linearity property of matrix transformations is exploited,

and each transformation matrix can be derived by observing how each transformation

affects the orthonormal basis vectors of the vector space.
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The geometric approach has many advantages when compared to the two tradi-

tional approaches listed previously. These include:

∙ When trigonometrically deriving the Park transformation such as in Fig. 2-5,

zero-sequence components are treated separately in the derivation. The 𝑑 and

𝑞 components are found from a projection operation whereas the 0 components

are added separately. The geometric approach finds all 𝑑𝑞0 components in a

unified manner via Eq. (2.5).

∙ The previous approaches interpret the Clarke transformation as either a manip-

ulation of symmetrical components as in Fig. 2-3, or as a specialised case of the

arbitrary reference-frame with stationary 𝑑𝑞0 axes [2]. The geometric approach

interprets the power-invariant Clarke transformation as a single rotation in R3,

which some readers may find to be a simpler explanation (see Fig. 3-1). The

standard (amplitude-invariant) Clarke transformation is shown in Fig. 3-3 to

be a combination of rotation and scaling in R3.

∙ Similarly, previous approaches interpret the Park transformation as either a

manipulation of symmetrical components [15] combined with a rotation matrix,

or as a projection onto coplanar 𝑎𝑏𝑐 axes [19]. The geometric approach inter-

prets the power-invariant Park transformation as two consecutive rotations in

R3, which some readers may find to be more intuitive (see Fig. 2-6). The stan-

dard Park transformation is interpreted as first applying the standard Clarke

transform (rotation and scaling) followed by a pure rotation in R3 given by

Fig. 3-5.

∙ The orthogonality (𝐴ᵀ = 𝐴−1) of the power-invariant forms of both transfor-

mations can be easily seen from all three approaches via matrix manipulation.

The geometric interpretation illustrates this orthogonal property: orthogonal

transformations preserve vector length and can thus be visualised as pure rota-

tions in R3 [33].

The disadvantages of the geometric interpretation, compared with the two traditional
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approaches include:

∙ The geometric derivation is more involved. This can be seen by comparing

Fig. 2-6 to the two traditional approaches illustrated by Fig. 2-3 and Fig. 2-5.

∙ The diagrams required to explain the geometric view are more complex to draw

as they are three-dimensional.

The second contribution involves the “locus diagram” of a three-phase quantity and

how this locus changes in the presence of unbalance and harmonics. This contribution

consists of the following:

∙ In Section 2.5.1 it is shown that for balanced systems, the locus corresponds to

a circle in R3. Eq. (2.13) is used to show that this circle has a radius of 𝑉
√︀

3/2

where 𝑉 is the voltage magnitude on each phase.

∙ In Section 3.3 the locus diagram is extended to cases of harmonics and unbal-

ance. Systems with purely positive and negative sequence will have a locus

that lies within the 𝛼𝛽-plane. The locus of a zero-sequence component is a line

segment perpendicular to the 𝛼𝛽-plane.

∙ It is shown that a single locus diagram can fully represent a three-phase quantity

containing harmonics in Fig. 3-11. This is not possible using a single phasor

diagram.

2.4 Review of Linear Transformations

Transformations are functions that operate on vectors. This section derives a basic

method to finding a unique matrix 𝐴 that fully describes a linear transformation

𝑇 : R𝑛 → R𝑚.

Any vector �⃗� ∈ R𝑛 can be written as a linear combination of the standard basis

unit vectors {ê1, ê2, . . . , ê𝑛}.

�⃗� = 𝑣1ê1 + 𝑣2ê2 + . . .+ 𝑣𝑛ê𝑛 (2.1)
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ê
2

ê
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To find 𝑇 (�⃗�) ∈ R𝑚 the linear transformation 𝑇 is applied to both sides of equation

2.1:

𝑇 (�⃗�) = 𝑇 (𝑣1ê1 + 𝑣2ê2 + . . .+ 𝑣𝑛ê𝑛) (2.2)

One can rewrite 𝑇 (�⃗�) by imposing the additivity and homogeneity constraints of

linearity:

𝑇 (�⃗�) = 𝑣1𝑇 (ê1) + 𝑣2𝑇 (ê2) + . . .+ 𝑣𝑛𝑇 (ê𝑛) (2.3)

𝑇 (�⃗�) in equation 2.3 is now expressed in terms of transformed standard basis

vectors scaled by the components of �⃗�. Such a linear combination of column vectors

can always be written as a matrix-vector product:

𝑇 (�⃗�) =

⎡
⎢⎢⎢⎣ 𝑇 (ê1) 𝑇 (ê2) . . . 𝑇 (ê𝑛)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑣1

𝑣2
...

𝑣𝑛

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑇 (�⃗�) = 𝐴�⃗� (2.4)

Eq. (2.4) says that any linear transformation 𝑇 : R𝑛 → R𝑚 can be expressed as a

matrix-vector product 𝐴�⃗�.

𝐴 =

⎡
⎢⎢⎢⎣ 𝑇 (ê1) 𝑇 (ê2) . . . 𝑇 (ê𝑛)

⎤
⎥⎥⎥⎦ (2.5)

Eq. (2.5) describes a technique to determine the𝑚 × 𝑛matrix 𝐴, that corresponds

to the linear transformation 𝑇 : R𝑛 → R𝑚. One can construct 𝐴 by applying the linear

transformation to each of the basis vectors of R𝑛. Eq. (2.5) is used in this thesis to

geometrically derive the Park and Clarke transformation matrices 𝐴𝑃 and 𝐴𝐶 .
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2.5 Cartesian Representation of Three-Phase Volt-

ages

Three-phase quantities such as voltages, currents and flux linkages are often expressed

using phasor notation. This section introduces the Cartesian representation and com-

pares it with phasor notation.

Phasor Representation

Eq. (2.6) is an example of a set of three-phase voltages with no harmonics. For

now these voltages may or may not be balanced, where “balanced” would require

𝜑𝑎 = 𝜑𝑏 = 𝜑𝑐 = 0 and 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐.

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

𝑣𝑎(𝑡) = 𝑉𝑎 cos (𝜔𝑡+ 𝜑𝑎)

𝑣𝑏(𝑡) = 𝑉𝑏 cos (𝜔𝑡− 2𝜋
3
+ 𝜑𝑏)

𝑣𝑐(𝑡) = 𝑉𝑐 cos (𝜔𝑡+
2𝜋
3
+ 𝜑𝑐)

(2.6)

Each of the three sinusoidal voltages in Eq. (2.6) can be represented by a unique

phasor. Phasor notation is the use of a single complex known as a phasor to store

the two parameters of magnitude 𝑉 and phase 𝜑. The magnitude of the phasor 𝑉𝑖

represents the RMS value of 𝑣𝑖(𝑡) and the phase 𝜑𝑖 corresponds to the angle of the

voltage 𝑣𝑖(𝑡).

Note that the expression for each sinusoidal voltage in Eq. (2.6) is actually defined

by three parameters: voltage magnitude 𝑉𝑖, phase 𝜑𝑖 and frequency 𝜔. A known

frequency must be assumed, which is one limitation of the phasor representation. In

addition, the phasor representation cannot be used to represent signals containing

more than one frequency component, such as signals with harmonics.

Eq. (2.7) expresses the voltages in Eq. (2.6) as three phasors 𝑉𝑎, 𝑉𝑏 and 𝑉𝑐. These

three phasors can be drawn on a single complex plane in a phasor diagram. Fig. 2-7a
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draws a balanced case. ⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

𝑉𝑎 =
1√
2
𝑉𝑎𝑒

𝑗𝜑𝑎

𝑉𝑏 =
1√
2
𝑉𝑏𝑒

𝑗(− 2𝜋
3
+𝜑𝑏)

𝑉𝑐 =
1√
2
𝑉𝑐𝑒

𝑗( 2𝜋
3
+𝜑𝑐)

(2.7)

Each voltage phasor in Eq. (2.7) can be converted back to a function of time using

Euler’s relation as shown in Eq. (2.8).

𝑣𝑖(𝑡) =
√
2 ℜ{𝑉𝑖𝑒𝑗𝜔𝑡} (2.8)

Cartesian Representation

The notation −→𝑣𝑎𝑏𝑐 is used to signify the Cartesian representation of a set of three-phase

voltages. Previous work that uses the Cartesian representation applied to three phase

quantities includes: [29–32]. −→𝑣𝑎𝑏𝑐 is a single vector in R3 and has three components

corresponding to three orthogonal 𝑎𝑏𝑐 axes:

−→𝑣𝑎𝑏𝑐 = 𝑣𝑎ê𝑎 + 𝑣𝑏ê𝑏 + 𝑣𝑐ê𝑐 (2.9)

The components of Eq. (2.9) vary with time. Thus −→𝑣𝑎𝑏𝑐 is a vector that moves in R3

over time as seen in Eq. (2.10):

−→𝑣𝑎𝑏𝑐(𝑡) =

⎡
⎢⎢⎢⎢⎣

𝑣𝑎(𝑡)

𝑣𝑏(𝑡)

𝑣𝑐(𝑡)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

𝑉𝑎 cos (𝜔𝑡+ 𝜑𝑎)

𝑉𝑏 cos (𝜔𝑡− 2𝜋
3
+ 𝜑𝑏)

𝑉𝑐 cos (𝜔𝑡+
2𝜋
3
+ 𝜑𝑐)

⎤
⎥⎥⎥⎥⎦

(2.10)

Fig. 2-7b plots −→𝑣𝑎𝑏𝑐(𝑡) at a particular instance in time 𝑡1. It will be seen later that

the locus traced out by −→𝑣𝑎𝑏𝑐(𝑡) over one period is of particular interest.

Fig. 2-7 compares the phasor and Cartesian representations for a three-phase

system.

∙ Phasor Representation:
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Figure 2-7: Three-phase voltage representations: (a) Phasor representation
(b) Cartesian representation at time 𝑡1.

– C vector space with two axes 𝑅𝑒 and 𝐼𝑚.

– Three complex numbers (phasors) 𝑉𝑎, 𝑉𝑏 and 𝑉𝑐 that do not vary with time.

∙ Cartesian Representation:

– R3 vector space with three orthogonal axes 𝑎, 𝑏, 𝑐.

– Single vector −→𝑣𝑎𝑏𝑐 that moves with time.

2.5.1 The Locus of Balanced Three-Phase Voltages

The locus diagram is a complete graphical representation of a three-phase quantity.

Whereas the phasor diagram of Fig. 2-7a cannot represent signals with more than one

frequency component; the locus diagram can represent both harmonics and unbalance

at each harmonic (See Section 3.3 for locus diagrams with harmonics and unbalance).

Fig. 2-8 is an example of a locus diagram. The voltages are defined by Eq. (2.10)

for the balanced case, with peak magnitudes 𝑉𝑎 = 𝑉𝑏 = 𝑉𝑐 = 𝑉 and 𝜑𝑎 = 𝜑𝑏 = 𝜑𝑐.

The vector −→𝑣𝑎𝑏𝑐 moves in R3 with time. This can be seen by examining how the

orthogonal components of −→𝑣𝑎𝑏𝑐 in Eq. (2.10) vary with time.

The locus is defined as the path in R3 that −→𝑣𝑎𝑏𝑐 traverses over one cycle of the

lowest frequency component. Fig. 2-8 shows that the locus of −→𝑣𝑎𝑏𝑐 traces out a circle in

R3 for a balanced set of three-phase voltages that contain no harmonics. −→𝑣𝑎𝑏𝑐 rotates

at a frequency of 𝜔 about this circle.
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Figure 2-8: Locus diagram of balanced three-phase voltages.

The circular nature of the locus of balanced voltages may not be obvious at first,

so this will be shown algebraically. If the length of the vector −→𝑣𝑎𝑏𝑐 is constant for all

of time, then the locus must trace out a circle. The euclidean distance in R3 is given

by:

‖−→𝑣𝑎𝑏𝑐(𝑡)‖ =

√︁
𝑣𝑎(𝑡)

2 + 𝑣𝑏(𝑡)
2 + 𝑣𝑐(𝑡)

2 (2.11)

Assuming balanced voltages with each phase having a peak magnitude of 𝑉 , and each

with a phase angle 𝜑 = 0, one can rewrite Eq. (2.11) using Eq. (2.10) to give:

‖−→𝑣𝑎𝑏𝑐(𝑡)‖ = 𝑉

[︂
cos2 (𝜔𝑡) + cos2

(︂
𝜔𝑡− 2𝜋

3

)︂
+ cos2

(︂
𝜔𝑡+

2𝜋

3

)︂]︂1/2
(2.12)

Eq. (2.12) can be rewritten using trigonometric identities to give:

‖−→𝑣𝑎𝑏𝑐(𝑡)‖ = 𝑉

√︂
3

2
sin2 (𝜔𝑡) +

3

2
cos2 (𝜔𝑡)

‖−→𝑣𝑎𝑏𝑐(𝑡)‖ = 𝑉

√︂
3

2
∀ 𝑡 (2.13)

Eq. (2.13) shows that the locus of −→𝑣𝑎𝑏𝑐 is a circle in R3 for a balanced set of three-phase

voltages, as the vector length is constant. This circle is shown in Fig. 2-8 and has a

radius of 𝑉
√︀

3/2 where 𝑉 is the voltage magnitude on each phase.

This exercise of finding the length of −→𝑣𝑎𝑏𝑐 also illustrates another important con-

cept: the length of −→𝑣𝑎𝑏𝑐 is not equivalent to the peak phase voltage, even when the
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voltages are balanced. It is scaled by
√︀
3/2. This geometric analysis explains why

the power-invariant Clarke and Park transformations have such scaling terms, as will

be discussed in sections 3.1 and 3.2.
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Chapter 3

Geometric Interpretations: dq0,

Park, Clarke & Power Quality

3.1 Geometric Derivation of the Clarke Transforma-

tion

There are two versions of the Clarke transformation: the standard (amplitude-invariant)

transformation and the power-invariant transformation. The derivation introduced

by Clarke as shown in Fig. 2-3 is the amplitude-invariant form, which is the most

commonly used version. It is convenient because the magnitude of 𝑣𝛼 is the same as

the magnitude of 𝑣𝑎 when the voltages are balanced. Previous approaches to deriving

the Clarke transformation either rely on a manipulation of symmetrical components

[15], or use the arbitrary reference-frame with stationary axes [2]. In this section, the

geometric approach is used to derive both the standard and power-invariant Clarke

transformations. The power-invariant version is derived first, as it is geometrically

simpler.

3.1.1 Power-Invariant Clarke Transformation Derivation

The power-invariant Clarke transformation is a pure rotation, such that the locus of

a balanced three-phase quantity lies in the 𝑎𝑏-plane (this 𝑎𝑏-plane is referred to as
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Figure 3-1: The power invariant Clarke transformation: (a) Axes transformation
perspective: rotate the 𝑎𝑏𝑐-axes such that the 𝑎-axis lines up with the vector 𝑣𝑎𝑏𝑐 at
𝜃 = 0, and the 𝑏-axis also lies in the rotated 𝑎𝑏-plane (𝛼𝛽-plane). The rotated 𝑎𝑏-axes
become the 𝛼𝛽-axes respectively. The rotated 𝑐-axis becomes the 0-axis. (b) Vector
transformation perspective: rotate the voltage vector 𝑣𝑎𝑏𝑐 such that its locus lies in
the 𝑎𝑏-plane.

the 𝛼𝛽-plane after the transformation is performed). Fig. 3-1 illustrates the locus

diagrams for the geometric power-invariant Clarke transformation.

All transformations can be visualised as either a coordinate (axes) transformation

or as a vector transformation. Fig. 3-1a is the axes transformation where the vector

is fixed and the 𝑎𝑏𝑐 axes are rotated such that the locus of a balanced system lies in

the rotated 𝑎𝑏-plane (ie the 𝛼𝛽-plane). Fig. 3-1b is the vector transformation, where

the axes are fixed and the vector rotates such that its locus lies in the 𝑎𝑏-plane.

Note that there are infinite transformations that can achieve a locus that lies in

the 𝑎𝑏-plane, but only one of these anchor the 𝛼-axis so that it is in line with the

balanced Cartesian voltage when the phase angle is zero (𝜃 = 𝜔𝑡+ 𝜑 = 0), as seen in

Fig. 3-1 . It will be shown later that this family of infinite transformations is given

by Park’s matrix where substituting a value of theta anchors the 𝛼-axis at a different

location in the plane.

Using the constraints of bringing the locus into the 𝑎𝑏-plane and anchoring the 𝛼-
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axis appropriately one can determine the matrix associated with the power-invariant

Clarke transformation. Eq. (2.5) (derived in Section 2.4) describes steps to find a

matrix (e.g. 𝐴𝑐) that represents a linear transformation (𝑇𝑐). These steps require

one to know how each orthonormal basis vector of a given space is affected by a

transformation.

The inverse Clarke transformation 𝑇−1
𝑐 is more convenient to derive geometrically

than 𝑇𝑐. One can visualise how 𝑇−1
𝑐 transforms vectors by reading Fig. 3-1 from right

to left. The inverse transformation rotates the unit vectors ê𝛼 and ê𝛽 such that they

lie in the plane of −→𝑣𝑎𝑏𝑐. Thus, these transformed unit vectors 𝑇−1
𝑐 (ê𝛼), 𝑇

−1
𝑐 (ê𝛽) have

a direction given by −→𝑣𝑎𝑏𝑐 at angles of 𝜃 = 0 and 𝜃 = 𝜋/2 respectively. Whereas 𝑇𝑐

rotates the 𝑎𝑏𝑐 unit vectors ê𝑎, ê𝑏, ê𝑐 to a location that is inconvenient to determine.

−→𝑣𝑎𝑏𝑐 = 𝑇−1
𝑐 (−−→𝑣𝛼𝛽0) = 𝐴−1

𝑐
−−→𝑣𝛼𝛽0 (3.1)

The matrix 𝐴−1
𝑐 in Eq. (3.1) can be rewritten using Eq. (2.5):

𝐴−1
𝑐 =

⎡
⎢⎢⎢⎢⎣
𝑇−1
𝑐 (ê𝛼) 𝑇−1

𝑐 (ê𝛽) 𝑇−1
𝑐 (ê0)

⎤
⎥⎥⎥⎥⎦

(3.2)

These three steps of Eq. (3.2) are shown graphically in Fig. 3-2. Each step involves a

rotation of a unit vector. The inverse power-invariant Clarke transformation 𝑇−1
𝑐 is

applied to each of the three 𝛼𝛽0 unit vectors {ê𝛼, ê𝛽, ê0}. Fig. 3-2a shows how ê𝛼 is

transformed under the inverse power-invariant Clarke transformation. Its transformed

direction is given by the Cartesian voltage when the angle is zero:

𝑇−1
𝑐 (ê𝛼) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=0

‖−→𝑣𝑎𝑏𝑐‖
(3.3)

It was shown in Section 2.5.1 that balanced three-phase systems have circular loci
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Figure 3-2: Geometric power-invariant inverse Clarke derivation: (a) rotate ê𝛼 to
align with the vector 𝑣𝑎𝑏𝑐 at 𝜃 = 0 (b) rotate ê𝛽 to align with the vector 𝑣𝑎𝑏𝑐 at
𝜃 = 𝜋/2 (c) rotate ê0 perpendicular to the plane. Note: This figure uses the vector
transformation perspective shown in Fig. 3-1b. This perspective highlights how the
unit vectors rotate, which allows us to evaluate Eq. (3.2)

with a radius given by Eq. (2.13). Substituting Eq. (2.13) into Eq. (3.3) gives:

𝑇−1
𝑐 (ê𝛼) =

1

𝑉

√︂
2

3
−→𝑣𝑎𝑏𝑐

⃒⃒
⃒⃒
𝜃=0

=

√︂
2

3

⎡
⎢⎢⎢⎢⎣

cos 𝜃

cos
(︀
𝜃 − 2𝜋

3

)︀

cos
(︀
𝜃 + 2𝜋

3

)︀

⎤
⎥⎥⎥⎥⎦

⃒⃒
⃒⃒
𝜃=0

(3.4)

−→𝑣𝑎𝑏𝑐 is evaluated when the angle is zero:

𝑇−1
𝑐 (ê𝛼) =

√︂
2

3

[︂
1 −1

2
−1

2

]︂ᵀ
(3.5)

Fig. 3-2b illustrates how the the unit vector ê𝛽 is rotated to align with the Cartesian

voltage when the angle is 𝜋/2.

𝑇−1
𝑐 (ê𝛽) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=𝜋

2

‖−→𝑣𝑎𝑏𝑐‖
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𝑇−1
𝑐 (ê𝛽) =

1

𝑉

√︂
2

3
−→𝑣𝑎𝑏𝑐

⃒⃒
⃒⃒
𝜃=𝜋

2

=

√︂
2

3

[︂
0

√
3
2

−
√
3
2

]︂ᵀ
(3.6)

In Fig. 3-2c it was seen how ê0 is rotated such that it is perpendicular to the plane of

a balanced locus. Mathematically, this can be thought of as pointing in the direction

of the cross product of ê𝛼 and ê𝛽, as given by the right-hand rule:

𝑇−1
𝑐 (ê0) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=0

×−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=𝜋

2

‖−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=0

×−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=𝜋

2

‖

𝑇−1
𝑐 (ê0) =

√︂
2

3

[︂
1√
2

1√
2

1√
2

]︂ᵀ
(3.7)

The three steps given by Eq. (3.5), Eq. (3.6) and Eq. (3.7) are combined with

Eq. (3.2) to find 𝐴−1
𝑐 .

𝐴−1
𝑐 =

√︂
2

3

⎡
⎢⎢⎢⎢⎣

1 0 1√
2

−1
2

√
3
2

1√
2

−1
2

−
√
3
2

1√
2

⎤
⎥⎥⎥⎥⎦

(3.8)

The matrix 𝐴−1
𝑐 is an orthogonal matrix because it is associated with a pure

rotation. This means its transpose is equal to its inverse, 𝐴𝑐 =
(︀
𝐴−1

𝑐

)︀ᵀ.

3.1.2 Standard Clarke Transformation Derivation

The standard (amplitude-invariant) Clarke transformation was originally derived by

Clarke in a manner shown in Fig. 2-3. This section geometrically derives the amplitude-

invariant Clarke transformation which has become the standard version.

The standard Clarke transformation is a rotation and scaling, such that the locus

of a balanced three-phase quantity lies in the 𝑎𝑏-plane with a radius equal to the phase

magnitude. It can be thought of as first applying the pure rotation described by the

power-invariant Clarke transformation followed by a scaling operation. Eq. (2.13)

41



αβ-plane

V
√

3/2
V

ab
c

α

β

0

ω ω

−−→vabc
∣∣∣∣
θ=0

−−→vαβ0
∣∣∣∣
θ=0

rotate and rescale axes

a

αβ
-p
lan

e

V
√

3/2 V

ab

c

α
β

0
−−→vabc

∣∣∣∣
θ=0 −−→vαβ0

∣∣∣∣
θ=0

ω

ω

rotate and scale vector

b

Figure 3-3: The standard (amplitude-invariant) Clarke transformation:(a) Axes trans-
formation perspective: rotate the 𝑎𝑏𝑐-axes such that the 𝑎-axis lines up with the vector
𝑣𝑎𝑏𝑐 at 𝜃 = 0, and the 𝑏-axis also lies in the plane. Stretch the rotated 𝑎𝑏-axes by√︀

3/2 such that the circle traced by 𝑣𝛼𝛽0 has a radius of 𝑉 , when referenced to the
𝛼𝛽-axes. The rotated and stretched 𝑎𝑏-axes become the 𝛼𝛽-axes respectively. The
rotated 𝑐-axis becomes the 0-axis, and is stretched by

√
3 in order to agree with the

definition of zero-sequence. (b) Vector transformation perspective: rotate the vector
𝑣𝑎𝑏𝑐 such that it lies in the 𝑎𝑏-plane. Scale the rotated 𝑣𝑎𝑏𝑐 by

√︀
2/3 such that it has

a length of 𝑉 when referenced to the 𝛼𝛽-plane. The 0-component of the vector 𝑣𝛼𝛽0
is scaled by 1/

√
3 in order to agree with the definition of zero-sequence.

shows that the locus of a balanced three-phase voltage is a circle of radius 𝑉
√︀

3/2.

The standard Clarke transformation scales this locus, such that the circle has a radius

of 𝑉 .

Fig. 3-3 illustrates the locus diagrams for the geometric amplitude-invariant Clarke

transformation. Fig. 3-3a is the axes transformation where the vector is fixed and the

𝑎𝑏𝑐 axes are rotated such that the locus of a balanced system lies in the 𝛼𝛽-plane.

The 𝛼 and 𝛽 axes are stretched by
√︀
3/2 such that the locus traced by a balanced

voltage has a radius equal to 𝑉 , the peak magnitude of the phase voltage. The 0-axis

is stretched by
√
3 making this equivalent to the symmetrical components definition

of zero-sequence. Whatever voltage exists on the 0-axis will appear with the same

magnitude on the 𝑎, 𝑏 and 𝑐 axes.
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Fig. 3-3b is the vector transformation, where the axes are fixed and the vector

rotates such that its locus lies in the 𝑎𝑏-plane. The vector’s 𝛼 and 𝛽 components are

scaled by
√︀

2/3, meaning the locus of a balanced Cartesian vector will appear as a

circle with a radius of 𝑉 when referenced to the 𝛼𝛽0 axes. The 0-axis is scaled by

1/
√
3 to match the symmetrical components definition of zero-sequence.

Just as with the power-invariant transformation, there are infinite transformations

that can achieve a locus that lies in the 𝑎𝑏-plane with the scaling described as above.

However, only one of these ensure that the 𝛼-axis is in line with the balanced Cartesian

voltage when the phase angle is zero (𝜃 = 𝜔𝑡+ 𝜑 = 0).

The same procedure is followed as the power-invariant derivation. Once again, the

matrix 𝐴−1
𝑐 associated with the inverse transformation 𝑇−1

𝑐 is found using Eq. (3.2).

Please refer to Section 3.1.1 for a discussion on why the inverse Clarke transformation

is derived.

The three steps described by Eq. (3.2) are shown graphically in Fig. 3-4. They

involve transforming each of the three unit vectors under 𝑇−1
𝑐 . Fig. 3-4a shows how

ê𝛼 is transformed under the inverse standard Clarke transformation. ê𝛼 is rotated

and stretched by
√︀

3/2, making it equivalent to the per-unit Cartesian voltage when

the angle is zero.

𝑇−1
𝑐 (ê𝛼) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝑉=1
𝜃=0

=

⎡
⎢⎢⎢⎢⎣

𝑉 cos 𝜃

𝑉 cos
(︀
𝜃 − 2𝜋

3

)︀

𝑉 cos
(︀
𝜃 + 2𝜋

3

)︀

⎤
⎥⎥⎥⎥⎦

⃒⃒
⃒
𝑉=1
𝜃=0

𝑇−1
𝑐 (ê𝛼) =

[︂
1 −1

2
−1

2

]︂ᵀ
(3.9)

Similarly, Fig. 3-4b shows that ê𝛽 is rotated and stretched by
√︀

3/2, making it equiv-

alent to the per-unit Cartesian voltage when the angle is 𝜋/2.

𝑇−1
𝑐 (ê𝛽) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒𝑉=1
𝜃=𝜋

2

=

[︂
0

√
3
2

−
√
3
2

]︂ᵀ
(3.10)
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Fig. 3-4c explains how ê0 is transformed. It points perpendicular to the plane in

which the locus of −→𝑣𝑎𝑏𝑐 lies, and is scaled by
√
3. The scaling is necessary so that the

0-component agrees with the 0-sequence as defined by symmetrical components.

𝑇−1
𝑐 (ê0) =

√
3

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=0

×−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=𝜋

2

‖−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=0

×−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝜃=𝜋

2

‖
=

⎡
⎢⎢⎢⎢⎣

1

1

1

⎤
⎥⎥⎥⎥⎦

(3.11)

The three transformed unit vectors given by Eq. (3.9), Eq. (3.10) and Eq. (3.11) are

combined with Eq. (3.2) to find 𝐴−1
𝑐 .

𝐴−1
𝑐 =

⎡
⎢⎢⎢⎢⎣

1 0 1

−1
2

√
3
2

1

−1
2

−
√
3
2

1

⎤
⎥⎥⎥⎥⎦

(3.12)

One can find 𝐴𝑐 by taking the inverse of the matrix 𝐴−1
𝑐 .

3.2 Geometric Derivation of the Park Transforma-

tion

There are two versions of the Park transformation: the standard (amplitude-invariant)

transformation and the power-invariant transformation. The derivation introduced

by Park in Fig. 2-5 is the amplitude-invariant form, which is the most commonly used

version. It is convenient because the magnitude of 𝑣𝑑 is the same as the magnitude

of 𝑣𝑎 if two conditions are met: the voltages are balanced and the reference signal is

in phase with phase 𝑎.

Previous approaches to deriving the Park transformation either use: trigonomet-

ric projection with coplanar 𝑎𝑏𝑐 axes [19] or modifying symmetrical components to

obtain Clarke’s matrix [15] and applying a rotation matrix. This section derives the

Park transformation matrix using the geometric approach. The relationship between
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c (êα)
√

3/2

a
αβ

0−−→vabc
∣∣∣∣V=1
θ=π

2
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Figure 3-4: Geometric standard (amplitude-invariant) inverse Clarke derivation:
(a) rotate ê𝛼 to align with the vector 𝑣𝑎𝑏𝑐 at 𝜃 = 0 and stretch by

√︀
3/2 (b) ro-

tate ê𝛽 to align with the vector 𝑣𝑎𝑏𝑐 at 𝜃 = 𝜋
2

and stretch by
√︀

3/2 (c) rotate ê0
perpendicular to the plane and stretch by

√
3. Note: This figure uses the vector

transformation perspective shown in Fig. 3-3b. This perspective highlights how the
unit vectors stretch and rotate, which allows us to evaluate Eq. (3.2)
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Figure 3-5: The 𝛼𝛽0 to 𝑑𝑞0 transformation: (a) Axes transformation perspective:
rotate axes CCW about 0-axis by 𝜃𝑟𝑒𝑓 . (b) Vector transformation perspective: rotate
vector CW about 0-axis by 𝜃𝑟𝑒𝑓 .
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the Park and Clarke transformations as shown in Fig. 2-1 is utilised. The Park

transformation can be decomposed into two consecutive transformations: the Clarke

transformation followed by the 𝛼𝛽0 to 𝑑𝑞0 transformation. Section 3.1 details the

geometric derivation of the Clarke transformation. This section completes the Park

transformation matrix derivation by first deriving the 𝛼𝛽0 to 𝑑𝑞0 transformation.

Then the Park transformation matrix is obtained by simple matrix multiplication.

The overall geometric interpretation of the Park transformation is summarised in

Fig. 2-6.

3.2.1 Transformation between Reference-Frames: 𝛼𝛽0 to 𝑑𝑞0

Transformation Derivation

The “transformation between reference-frames” or simply “frame-to-frame transfor-

mation” in [2] is used in multimachine [4] and multi-inverter modelling [5]. Each

device is modelled in its own 𝑑𝑞0 reference-frame, and each 𝑑𝑞0 frame may have a

different angle 𝜃 with respect to a common reference-frame. All devices can be trans-

lated to the common reference-frame using the transformation between two rotating

𝑑𝑞0 frames [5]. The matrix describing this transformation has the same form as

one that transforms from a stationary to a rotating 𝑑𝑞0 reference-frame. The trans-

formation between two rotating 𝑑𝑞0 frames is equivalent to this thesis’ 𝛼𝛽0 to 𝑑𝑞0

transformation. Eq. (2.5) is used to derive this transformation, whereas the “transfor-

mation between reference-frames” is derived in an alternative manner, using matrix

multiplication: see section 3.10 of [2].

The 𝛼𝛽0 to 𝑑𝑞0 transformation can be geometrically interpreted in R3 as a pure

rotation about the 0-axis by a specified angle 𝜃𝑟𝑒𝑓 . Fig. 3-5 illustrates the axes and

vector transformation locus diagrams for the 𝛼𝛽0 to 𝑑𝑞0 transformation.

Fig. 3-5a is the axes transformation where the 𝛼𝛽0 axes are rotated counterclock-

wise (CCW) about the 0-axis by an angle 𝜃𝑟𝑒𝑓 . It is helpful to visualise the motion of

the axes and vectors to understand the 𝛼𝛽0 to 𝑑𝑞0 transformation. Balanced systems

have a Cartesian vector −−→𝑣𝛼𝛽0 that lies in the 𝛼𝛽-plane and rotates CCW about the
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0-axis at speed 𝜔. Note that −−→𝑣𝛼𝛽0 has an arbitrary angle 𝜃0 with respect to the 𝛼-axis

(𝜃0 = 𝜔𝑡+ 𝜑0). The 𝛼𝛽0 axes are stationary and 𝜃0 increases with time.

The 𝑑𝑞0 axes of Fig. 3-5a are not stationary, unlike the 𝛼𝛽0 axes. These 𝑑𝑞0 axes

rotate CCW about the 0-axis at an angle 𝜃𝑟𝑒𝑓 = 𝜔𝑟𝑒𝑓 𝑡 + 𝜑𝑟𝑒𝑓 . −−→𝑣𝑑𝑞0 is the Cartesian

vector referenced to 𝑑𝑞0 coordinates. If 𝜔𝑟𝑒𝑓 = 𝜔 then −−→𝑣𝑑𝑞0 will have 𝑣𝑑 and 𝑣𝑞

components which appear constant as the 𝑑𝑞0 axes are rotating at the same speed as

the Cartesian vector −−→𝑣𝑑𝑞0. This case is illustrated by condition (i) of Fig. 2-2.

Fig. 3-5b is the vector transformation, where the axes are fixed and the Cartesian

vector −−→𝑣𝛼𝛽0 is rotated clockwise (CW) about the 0-axis by an angle 𝜃𝑟𝑒𝑓 . Thus, the

vector has a net CCW angle of 𝜃0 − 𝜃𝑟𝑒𝑓 relative to the 𝑑-axis. −−→𝑣𝛼𝛽0 is rotating CCW

at an angular velocity 𝜔 when referenced to the 𝛼𝛽0 axes. When referenced to the

𝑑𝑞0 axes, the vector −−→𝑣𝑑𝑞0 has a CCW angular velocity of 𝜔 − 𝜔𝑟𝑒𝑓 . If 𝜔𝑟𝑒𝑓 = 𝜔 then
−−→𝑣𝑑𝑞0 will appear stationary on the 𝑑𝑞0 axes.

−−→𝑣𝑑𝑞0 = 𝑇𝑑𝑞0 (
−−→𝑣𝛼𝛽0) = 𝐴𝑑𝑞0

−−→𝑣𝛼𝛽0 (3.13)

The matrix 𝐴𝑑𝑞0 in Eq. (3.13) is found using Eq. (2.5). 𝑇𝑑𝑞0 is applied to each basis

vector {ê𝛼, ê𝛽, ê0} as shown in Fig. 3-6. 𝑇𝑑𝑞0 rotates the vectors ê𝛼 and ê𝛽 CW about

the 0-axis by 𝜃𝑟𝑒𝑓 . The components of 𝑇𝑑𝑞0(ê𝛼) and 𝑇𝑑𝑞0(ê𝛽) can be found using

trigonometric relations.

𝑇𝑑𝑞0(ê𝛼) =
[︁
cos 𝜃 − sin 𝜃 0

]︁ᵀ
(3.14)

𝑇𝑑𝑞0(ê𝛽) =
[︁
sin 𝜃 cos 𝜃 0

]︁ᵀ
(3.15)

Fig. 3-6 shows how ê0 is preserved under 𝑇𝑑𝑞0.

𝑇𝑑𝑞0(ê0) =

[︂
0 0 1

]︂ᵀ
(3.16)

The three transformed unit vectors given by Eq. (3.14), Eq. (3.15) and Eq. (3.16)

are combined with Eq. (2.5) to find 𝐴𝑑𝑞0. The inverse transformation is found readily

47
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α
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θ

θ

êα

Tdq0(êα)

êβ
ê0= Tdq0(ê0)

Figure 3-6: Geometric 𝛼𝛽0 to 𝑑𝑞0 derivation : (i) rotate ê𝛼 CW about 0-axis by
𝜃𝑟𝑒𝑓 (ii) rotate ê𝛽 CW about 0-axis by 𝜃𝑟𝑒𝑓 (iii) preserve ê0 under 𝑇𝑑𝑞0. Note: This
figure uses the vector transformation perspective shown in Fig. 3-5b. This perspective
highlights that the unit vectors rotate CW. While the axis transformation perspective
in Fig. 3-5a has a CCW rotation of axes.

as the matrix is orthogonal (𝐴𝑑𝑞0
ᵀ = 𝐴−1

𝑑𝑞0).

𝐴𝑑𝑞0 =

⎡
⎢⎢⎢⎣

cos 𝜃 sin 𝜃 0

− sin 𝜃 cos 𝜃 0

0 0 1

⎤
⎥⎥⎥⎦ (3.17)

3.2.2 Power-Invariant Park Transformation Derivation

Park’s transformation is derived utilising the relationships between the transforma-

tions in Fig. 2-1. The Park transformation is decomposed into the Clarke and 𝛼𝛽0

to 𝑑𝑞0 transformations in Eq. (3.18).

−−→𝑣𝑑𝑞0 = 𝑇𝑑𝑞0 (𝑇𝑐 (
−→𝑣𝑎𝑏𝑐)) = 𝐴𝑑𝑞0𝐴𝑐

−→𝑣𝑎𝑏𝑐 = 𝐴𝑝
−→𝑣𝑎𝑏𝑐 (3.18)

The power-invariant Park transformation is constructed using the power-invariant

Clarke transformation of Eq. (3.8) and the 𝛼𝛽0 to 𝑑𝑞0 transformation in Eq. (3.17).

Please refer to Section 3.1.1 for a comprehensive derivation of the power-invariant

Clarke transformation.

𝐴𝑝 = 𝐴𝑑𝑞0𝐴𝑐 = 𝐴𝑑𝑞0

√︂
2

3

⎡
⎢⎢⎢⎢⎣

1 −1
2

−1
2

0
√
3
2

−
√
3
2

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎦
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𝐴𝑝 =

√︂
2

3

⎡
⎢⎢⎢⎢⎣

cos 𝜃 cos
(︀
𝜃 − 2𝜋

3

)︀
cos

(︀
𝜃 + 2𝜋

3

)︀

− sin 𝜃 − sin
(︀
𝜃 − 2𝜋

3

)︀
− sin

(︀
𝜃 + 2𝜋

3

)︀

1√
2

1√
2

1√
2

⎤
⎥⎥⎥⎥⎦

(3.19)

3.2.3 Standard Park Transformation Derivation

The standard Park transformation can be determined in the same way as the power-

invariant transformation using the relationships between the transformations (see

Fig. 2-1) and Eq. (3.18). The difference is that the standard Clarke transformation

of Eq. (3.12) is substituted for 𝐴𝑐. 𝐴𝑑𝑞0 is given by Eq. (3.17). Please refer to

Section 3.1.2 for a comprehensive derivation of the standard Clarke transformation.

𝐴𝑝 = 𝐴𝑑𝑞0𝐴𝑐 = 𝐴𝑑𝑞0
2

3

⎡
⎢⎢⎢⎢⎣

1 −1
2

−1
2

0
√
3
2

−
√
3
2

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎦

𝐴𝑝 =
2

3

⎡
⎢⎢⎢⎢⎣

cos 𝜃 cos
(︀
𝜃 − 2𝜋

3

)︀
cos

(︀
𝜃 + 2𝜋

3

)︀

− sin 𝜃 − sin
(︀
𝜃 − 2𝜋

3

)︀
− sin

(︀
𝜃 + 2𝜋

3

)︀

1
2

1
2

1
2

⎤
⎥⎥⎥⎥⎦

(3.20)

3.2.4 Standard Park Transformation Derivation: A Direct Ge-

ometric Approach

Previously in this thesis, the Park transformation was decoupled into two operations,

as shown in Fig. 2-6. Understanding the Park transformation as two consecutive

operations highlights the geometric relationship between the Clarke, Park and frame-

to-frame transformations.

Alternatively, one can use the geometric approach to directly derive the transfor-
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Figure 3-7: The standard (amplitude-invariant) Park transformation: (a) Axes trans-
formation perspective: rotate the 𝑎𝑏𝑐-axes such that the 𝑎-axis lines up with the
vector 𝑣𝑎𝑏𝑐 at 𝜃, and the 𝑏-axis also lies in the plane. Stretch the rotated 𝑎𝑏-axes
by

√︀
3/2 such that 𝑣𝑑𝑞0 has a length of 𝑉 , when referenced to the 𝑑𝑞-axes. The

rotated and stretched 𝑎𝑏-axes become the 𝑑𝑞-axes respectively. The rotated 𝑐-axis
becomes the 0-axis, and is stretched by

√
3 in order to agree with the definition of

zero-sequence. (b) Vector transformation perspective: rotate the vector 𝑣𝑎𝑏𝑐 such
that it lies in the 𝑎𝑏-plane, and it rotates CCW about the 0-axis at a speed 𝜔−𝜔𝑟𝑒𝑓 .
Scale the rotated 𝑣𝑎𝑏𝑐 by

√︀
2/3 such that it has a length of 𝑉 when referenced to

the 𝑑𝑞-plane. The 0-component of the vector 𝑣𝑑𝑞0 is scaled by 1/
√
3 in order to agree

with the definition of zero-sequence. Note: In both figures (a) and (b) the voltages
are balanced, meaning the locus of 𝑣𝑎𝑏𝑐 is a circle of radius 𝑉

√︀
3/2.

mation from 𝑎𝑏𝑐 to 𝑑𝑞0, without considering an intermediate 𝛼𝛽0 reference frame. In

this section, this direct derivation is shown for the standard Park transformation us-

ing the approach outlined in Section 2.4 and given by Eq. (2.5). The power-invariant

Park transformation can also be found directly using a similar approach.

Fig. 3-7 illustrates the standard 𝑎𝑏𝑐 to 𝑑𝑞0 transformation. This is plotted for

the case where the 𝑑-axis lines up with the vector −−→𝑣𝑑𝑞0. Refer to Fig. 3-5 for the case

where the 𝑑-axis may not be in line with −−→𝑣𝑑𝑞0. Fig. 3-7a shows the axis transformation,

where the axes can be seen rotating and stretching so that −−→𝑣𝑑𝑞0 traces out a circle of
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radius 𝑉 in the 𝑑𝑞-plane.

Fig. 3-7b shows the same standard Park transformation from a different perspec-

tive. Instead of rotating and stretching the axes, the opposite steps are undertaken.

The axes are fixed the vector is rotated and scaled so that −−→𝑣𝑑𝑞0 has a length of 𝑉

and moves CCW about the 0-axis at a net speed of 𝜔 − 𝜔𝑟𝑒𝑓 relative to the 𝑑𝑞-axes.
−−→𝑣𝑑𝑞0 will appear stationary relative to the 𝑑𝑞-axes, if Park’s matrix is applied using a

reference signal at the same frequency as the phase voltages (𝜔𝑟𝑒𝑓 = 𝜔).

The inverse Park transformation 𝑇−1
𝑝 is more convenient to derive geometrically

than 𝑇𝑝 (analogous to why 𝑇−1
𝑐 was derived in Section 3.1). One can visualise how 𝑇−1

𝑝

transforms vectors by reading Fig. 3-7 from right to left. The inverse transformation

rotates the unit vectors ê𝑑 and ê𝑞 such that they lie in the plane of −→𝑣𝑎𝑏𝑐. Thus, these

transformed unit vectors 𝑇−1
𝑝 (ê𝑑), 𝑇

−1
𝑝 (ê𝑞) have a direction given by −→𝑣𝑎𝑏𝑐 at angles of

𝜃 and 𝜃 + 𝜋/2 respectively. Whereas 𝑇𝑝 rotates the 𝑎𝑏𝑐 unit vectors ê𝑎, ê𝑏, ê𝑐 to a

location that is inconvenient to determine.

Park’s matrix is derived by applying Eq. (2.5), which requires finding all three

transformed unit vectors. These three steps are shown graphically by Fig. 3-8, where

each of the unit vectors ê𝑑, ê𝑞, ê0 are transformed under 𝑇−1
𝑝 . Fig. 3-8a shows how ê𝑑

is transformed under the inverse Park transformation. ê𝑑 is rotated such that it lines

up with −→𝑣𝑎𝑏𝑐 at angle 𝜃 and stretched by
√︀
3/2.

𝑇−1
𝑝 (ê𝑑) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒
𝑉=1
𝜃

=

⎡
⎢⎢⎢⎢⎣

𝑉 cos 𝜃

𝑉 cos
(︀
𝜃 − 2𝜋

3

)︀

𝑉 cos
(︀
𝜃 + 2𝜋

3

)︀

⎤
⎥⎥⎥⎥⎦

⃒⃒
⃒
𝑉=1
𝜃

𝑇−1
𝑝 (ê𝑑) =

[︁
cos 𝜃 cos

(︀
𝜃 − 2𝜋

3

)︀
cos

(︀
𝜃 + 2𝜋

3

)︀]︁ᵀ
(3.21)

Similarly, Fig. 3-8b shows that ê𝑞 is rotated and stretched by
√︀
3/2 such that it
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lines up with −→𝑣𝑎𝑏𝑐 at angle 𝜃 + 𝜋/2 .

𝑇−1
𝑝 (ê𝑞) =

−→𝑣𝑎𝑏𝑐
⃒⃒
⃒𝑉=1
𝜃+𝜋

2

=

[︂
cos

(︀
𝜃 + 𝜋

2

)︀
cos

(︀
𝜃 + 𝜋

2
− 2𝜋

3

)︀
cos

(︀
𝜃 + 𝜋

2
+ 2𝜋

3

)︀]︂ᵀ

=

[︂
− sin (𝜃) − sin

(︀
𝜃 − 2𝜋

3

)︀
− sin

(︀
𝜃 + 2𝜋

3

)︀]︂ᵀ

(3.22)

Fig. 3-8c explains how ê0 is transformed. It points perpendicular to the plane

of the locus and is scaled by
√
3, in order to correspond to the definition of zero-

sequence. Mathematically, 𝑇−1
𝑝 (ê0) = [1 1 1]ᵀ is found by taking the cross-product

of the other two transformed unit vectors, and scaled by
√
3, similar to Eq. (3.11).

All three transformed unit vectors are combined using Eq. (2.5) to give the stan-

dard inverse Park transformation matrix. One can take the inverse of Eq. (3.23) to

obtain the transformation from 𝑎𝑏𝑐 to 𝑑𝑞0, which will result in Eq. (3.20).

𝐴−1
𝑝 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos 𝜃 − sin 𝜃 1

cos
(︀
𝜃 − 2𝜋

3

)︀
− sin

(︀
𝜃 − 2𝜋

3

)︀
1

𝑐𝑜𝑠
(︀
𝜃 + 2𝜋

3

)︀
− sin

(︀
𝜃 + 2𝜋

3

)︀
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(3.23)

3.3 A Geometric Perspective on Power Quality

Power quality refers to harmonics and unbalance - both of which exist in all practical

systems to some degree. Symmetrical components and the phasor representation are

some of the tools used to analyse unbalanced systems. This section proposes an

alternative view on power quality: a geometric interpretation. The locus diagram

introduced in Section 2.5.1 is applied to three-phase quantities with harmonics or

unbalanced phases.
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p (êq) =

√
3/2

θ

b

d

q

T−1
p (ê0) =
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Figure 3-8: Geometric standard (amplitude-invariant) inverse Park derivation: (a)
rotate ê𝑑 to align with the vector 𝑣𝑎𝑏𝑐 at 𝜃 and stretch by

√︀
3/2 (b) rotate ê𝑞 to

align with the vector 𝑣𝑎𝑏𝑐 at 𝜃 + 𝜋
2

and stretch by
√︀
3/2 (c) rotate ê0 perpendicular

to the plane and stretch by
√
3. Note: This figure has stationary 𝑑𝑞0-axes, as it uses

the vector transformation perspective shown in Fig. 3-7b. This perspective highlights
how the unit vectors stretch and rotate, which allows us to evaluate Eq. (2.5).
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Figure 3-9: Symmetrical components applied to an unbalanced 3-phase system with
no harmonics. (a) phasor diagrams (b) locus diagrams in 𝑎𝑏𝑐 coordinates (c) locus
diagrams in rotating 𝑑𝑞0 coordinates.

3.3.1 Unbalance: A Geometric Perspective

Phasor diagrams are commonly used to represent unbalanced three-phase quantities.

Fig. 3-9a shows an example system that contains positive, negative and zero-sequence

components, similar to condition (ii) of Fig. 2-2.

The locus diagrams for the unbalanced system of Fig. 3-9a are presented in 𝑎𝑏𝑐

coordinates in Fig. 3-9b. −→𝑣𝑎𝑏𝑐 traces out an ellipse that lies outside the 𝛼𝛽-plane. This

vector −→𝑣𝑎𝑏𝑐 can be decomposed into three vectors corresponding to positive, negative

and zero-sequence as shown in Fig. 3-9b. The positive and negative sequence loci

lie in the 𝛼𝛽-plane, although their vectors rotate in opposite directions. The zero-

sequence locus is a line-segment perpendicular to the 𝛼𝛽-plane and is traced out by

a pulsating zero vector.

Fig. 3-9b provides insights on how symmetrical components appear on locus dia-

grams. The locus of systems with purely positive and negative sequence will always

lie in the 𝛼𝛽-plane. This can be shown by taking the span of the two vectors −−−→𝑣𝑑𝑞0+

and −−−→𝑣𝑑𝑞0− which is always equal to the 𝛼𝛽-plane (assuming an instant in time where

the vectors are not overlapping, in which case the span is a line). The locus of systems

that contain zero-sequence will not lie in the 𝛼𝛽-plane.

Fig. 3-9c shows the locus diagrams of the unbalanced system in 𝑑𝑞0 coordinates. In
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this example, it is assumed that the 𝑑𝑞0 axes are rotating at the same speed 𝜔 as the

signal. The positive sequence vector in 𝑑𝑞0 coordinates rotates in the same direction

as the 𝑑𝑞0 axes. Therefore, positive sequence 𝑑 and 𝑞-components will appear as

constant values. The negative sequence vector rotates in the opposite direction as the

𝑑𝑞 axes, and its 𝑑 and 𝑞-components will thus appear as a 2nd harmonic. Naturally,

the zero-sequence component lies on the 0-axis.

3.3.2 Harmonics: A Geometric Perspective

Harmonics generate positive, negative and zero sequence components in an interest-

ing pattern [34]. The positive sequence harmonics are 1st, 4th, 7th and so on. The

harmonics 2nd, 5th and 8th etc appear as negative sequence. Triplen harmonics (3rd,

6th, 9th etc.) appear as zero-sequence in the 𝑎𝑏𝑐 domain. The first three harmonics

are illustrated in Fig. 3-10a.

The locus diagrams of Fig. 3-10b provide an intuitive means to understand how

harmonics appear in 𝑑𝑞0. The relative velocity of a vector and the 𝑑𝑞0-axes deter-

mines the frequency of the harmonic in the 𝑑𝑞0 frame. Positive sequence components

rotate in the same direction as the 𝑑𝑞0 axes. Thus, −−→𝑣𝑑𝑞04 and −−→𝑣𝑑𝑞07 have 𝑑 and 𝑞-

components containing the 3rd and 6th harmonics respectively. Negative sequence

components appear faster relative to the 𝑑𝑞0 axes, such that −−→𝑣𝑑𝑞02 and −−→𝑣𝑑𝑞05 have 𝑑

and 𝑞-components with the 3rd and 6th harmonics respectively.

Finally, a single locus diagram can fully represent a signal containing harmonics.

This is not possible with a phasor diagram. Fig. 3-11 shows an example similar to

case (iii) of Fig. 2-2. The vector −→𝑣𝑎𝑏𝑐 contains fundamental, 5th and 7th harmonics.

Both harmonics appear as a 6th harmonic in 𝑑𝑞0 as given by the shape of the locus

of Fig. 3-11, which has 6 lobes.
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Figure 3-10: Locus diagrams of first three harmonics in: (a) 𝑎𝑏𝑐 coordinates
(b) 𝑑𝑞0 coordinates.
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Figure 3-11: Locus diagram of a 3-phase system with 1st, 5th and 7th harmonics.
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Stability Region Generation using
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Chapter 4

Conditional Generative Adversarial

Neural Networks applied to Stability

Region Generation

This chapter provides an overview of Part II of this thesis. Decentralized generation in

power systems is examined from the perspective of the system operator. System oper-

ators are faced with the challenge of maintaining stability despite significant changes

in the power system, such as those caused by decentralization. Faults, changinging

network topologies, power flows and fluctuating demand are changes which can ad-

versly affect the stability of the power system. Stability region generation is proposed

as a situational awareness tool that can assist the system operator in understanding

and responding to system changes. In particular, as faults and other unexpected

events occur this alters the set of stable control parameters (ie the stability region)

an operator can choose from. Knowledge of this stability region can help operators

understand the state of the system and suggest actions to take.

In this chapter, the need for situational awareness tools in power systems that are

becoming more decentralized is discussed. Conditional Generative Adversarial Net-

works (cGANs) are proposed as a means to generate stability regions and previous

work on using cGANs is explored. Following this, a framework for the application of

cGANs to stability region generation is outlined in a sequence of steps. The train-
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ing and hyperparameter tuning processes of cGANs can be challenging. To address

this the chapter is concluded with a guide on how one can tune cGANs for their

application.

4.1 Overview and Previous Work

Increasing the penetration of distributed generation leads to changing power flow

patterns in power grids whereby the network configuration is liable to change. The

ability of the system operators to respond to such real-time changes is essential for

the reliable operation of the electricity grid. Therefore, situational awareness tools

need to be developed in order for operators to make dynamic decisions.

Situational awareness is enabled as part of the centralized Supervisory Control and

Data Acquisition (SCADA) system, which collects and presents real-time information

to the system operator. As the system evolves over time, the operator responds by

effecting changes on the system in the form of control modifications (e.g., enabling

the PSS, operating circuit breakers, etc.). Using the SCADA system, the distributed

generators in the system can be exploited to improve the reliability and availability of

the grid. For example, a wind farm can be used to damp the rotor angle oscillations

in a nearby synchronous generator [35]. At the distribution level, inverter-based

generation can enable islanded operation in the event of grid failure. In either case,

the SCADA functionality can be augmented with additional tools to better realize the

potential of the distributed generation in improving the grid reliability. For instance,

in the transmission case updating the wind farm controller gains, and in microgrids,

changing the droop controller gains in response to network changes [36].

In most systems, larger values of controller gains (such as those of the wind-farm

and droop controllers) improve the speed of response, but also tend to decrease the

stability margin. The subset of the control parameter hyperspace where the system

remains stable is termed as the stability region. Control parameters selected close to

the stability region boundary yield an operating point with lower damping ratio, but

better dynamic response [37]. Clearly, knowledge of the stability region is valuable in
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resolving the trade-off between stability and dynamic performance.

Stability Region Generation (SRG) is the process of determining all control pa-

rameter sets that yields a stable system. There exist three approaches to SRG for a

power system: (1) small-signal analysis, (2) time-domain simulation and (3) histor-

ical data from the physical system. Firstly, small-signal analysis has several issues

when used to generate stability regions. Operators may not have a full analytical

model available for the power system. If a model is available, the process involves

the repeated computation of the eigenvalues of the system matrix for a wide range

of control choices, making the process unscalable to large systems [38]. Secondly,

time-domain simulations (based on numerical models of the system components) can

be used to classify each point in the control parameter hyperspace. This is typically

more time-intensive than the first case [39]. The third option is to select viable control

parameters from historic data. This approach however may be overly conservative

and moreover not adaptive to significant changes to the system configuration [40].

Model-free (numerical [41] as opposed to analytical) approaches using machine

learning are being increasingly explored for stability studies in power systems. Typ-

ically, these entail the use of machine learning tools such as decision trees, support

vector machines, etc. [40, 42–45] for online stability assessment, which seek to ad-

dress the issues of computational burden of conventional security analysis methods.

Deep learning techniques have also been recently proposed for power system stability

studies. For instance, in [46, 47], convolutional neural networks (CNNs) are used

to predict rotor angle instability by monitoring the voltage profiles. In [39], the re-

sults from existing time-domain simulations are leveraged by CNNs to infer stability

conclusions for the early termination of the real-time stability assessment.

While the above works have focused on transient stability assessment, this the-

sis work extends the use of machine learning to determine the entire range of stable

control parameters. Generative Adversarial Networks (GANs) are used as a stability

region generation tool that would directly enable the system operator to influence the

stability by adaptively tuning the control parameters in real-time. GANs are a ma-

chine learning tool that have primarily been applied to synthetic image generation. In
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the context of power systems, GANs have been used to generate synthetic time-series

data with the same probabilistic distribution as the training dataset. Some applica-

tions include probabilistic forecasting of sensory data [48], time-series data generation

for wind [49, 50] and solar power [51], load data modeling [52], among others. GANs

have also been used for generating missing data such as PMU measurements [53].

Some of these applications involve conditional GANs (cGANs), where a “conditional

input" can be used to restrict the generated data to a particular class, for instance,

weather data for December.

In this work, cGANs is used for stability region generation (SRG) by leveraging

the conditional input as a feedback mechanism for the real-time system configuration.

This framework has inherent stability assessment capability, and the stability region

thus obtained is used to carry out the adaptive tuning of the control parameters. This

enables the operator to maintain the system near the stability boundary, maximizing

the dynamic performance while maintaining a sufficient stability margin. The pro-

posed framework also allows the operator to flexibly impose limits on the stability

margin and damping ratio, which makes it practicable. Further, the offline-trained

GANs are shown to be scalable to power systems with a large number of control

parameters.

4.2 The General Framework for cGANs Applied to

Stability Region Generation (SRG)

This thesis uses a transmission case study that illustrates how the proposed cGANs-

based situational awareness framework can facilitate operators in making dynamic

decisions. The case study shows how a wind farm with energy storage can be exploited

as a stabilizing resource for synchronous generation. Real-time control capabilities are

required so as to effectively utilize this resource without compromising the stability.

From the context of this work, the function of the system operator is to update

the control parameters of the power controllers to maintain stability as the system
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Figure 4-1: The proposed cGANs-based SRG framework for a generic power system.

configuration changes in real-time (see Fig. 4-1). The “system configuration" refers

to the topology as well as loading, both of which are included in the power network

model. The control process involves two steps: first, the calculation of the stability

region, and second, the selection of suitable controller parameters from inside the

stability region. Inherent to the parameter selection process is resolving the trade-off

between the system damping (which is generally lower for higher controller gains)

and the dynamic performance (higher for higher controller gains) [54].

4.2.1 The cGANs framework for Stability Region Generation

GANs are used to learn the probability distribution of a dataset. In the present

context this corresponds to the probability distributions of the control parameters

that constitute the stability region. In this subsection, the cGANs framework is

formulated for the SRG application described in Fig. 4-1.

Fig. 4-2 illustrates the cGANs architecture during the training process. cGANs

consist of two neural networks, referred to as the generator and the discriminator.

Both networks use training data that is organised into categories, making up differ-

ent conditional inputs. For example, datasets of people’s faces could be conditioned
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on things like age or gender. In the proposed framework where stability regions are

generated for power systems, the conditional input 𝑢 represents the network infor-

mation. The system operator may already know stability regions for certian network

topologies (eg 𝑢1 . . . 𝑢𝑛 in Fig. 4-2), but not others. The set of known parameters for

particular topologies makes up the training dataset.

The discriminator is a binary classifier which classifies its input as being either

real or fake. The term real data in this application refers to data coming from an

analytical model, a numerical model or experimental data. This real data is that

which the system operator already has available and can use to train the cGANs.

Fake data refers to data coming from the generator. This is data that is not provided

by the sysem operator and is new data generated by the generator neural network.

Depending on the value of 𝑦, the discriminator is fed either real data 𝑥 or fake data

𝐺(𝑧|𝑢). Note that the discriminator has a second input 𝑢, which is the conditional

input (recall 𝑢 is the network information in the proposed framework). The number

of neurons per layer within a discriminator typically decreases between its input and

output. The last layer is normally a sigmoid activation function which outputs a

probability and is therefore a real number between 0 and 1. This probability is

compared with a threshold of 0.5 to give 𝑦, which is 1 if the discriminator classifies

the data as being real and 0 if it thinks the data is false.

The generator takes both a conditional input 𝑢 and an input vector 𝑧 (also termed

“noise vector” or “latent vector”) and outputs 𝐺(𝑧|𝑢) which is a fake sample for a

particular conditional input. Initially, the generator’s output will almost certainly not

look anything like a real sample. However, after training the generator, its output may

be indistinguishable from a real sample from the point of view of the discriminator.

The generator and discriminator have weights and biases denoted by 𝜃𝑔 and 𝜃𝑑

which are updated during the learning process. Learning is achieved via backpropaga-

tion where gradient descent is performed on the cost function and update the weights

based on the direction that maximizes the change in gradient. Normally, training is

completed for several cycles of the whole dataset where each single run through the

training data is referred to as an epoch. The number of epochs required to train a
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Figure 4-2: Conditional Generative Adversarial Neural Network

cGAN can vary significantly, but one typically stops training when the output of the

discriminator’s sigmoid is close to 0.5, meaning that it can no longer tell if a 𝐺(𝑧) is

real or fake.

The overall problem formulation of using cGANs for stability region generation

can be summarized into several steps. The remainder of this section elaborates on

these steps.

Identify the conditional variable 𝑢

This is a vector of parameters that the system operator does not have control over as

well as any constraints the operator wishes to impose. When changes occur in 𝑢, the

SRG is re-triggered. Examples include network topology, line impedance and loading.

Identify the controller gains 𝑥1, 𝑥2 . . . 𝑥𝑛

Controller gains include parameters influencing the stability that can be changed in

real-time. The notation 𝑋 ∈ R𝑛 in Fig. 4-2 denotes the continuous multivariate

random variable that represents the controller gains while 𝑥 = [𝑥1 𝑥2 . . . 𝑥𝑛]
ᵀ refers to

a particular sample of 𝑋 and corresponds to each of the 𝑛 control parameter taking

on a particular set of values.

65



Let 𝑝(𝑥|𝑢) = 𝑝(𝑥1, 𝑥2 . . . 𝑥𝑝|𝑢) represent the joint conditional probability distribu-

tion function (PDF) that the sample 𝑥 lies in the stability region. This is intuitive as

some choices of control parameters are more likely to appear in stable systems than

others. Instead of attempting to obtain a closed-form expression for 𝑝(𝑥|𝑢) which

is often intractable, cGANs are trained to generate an estimate 𝑝(𝑥|𝑢) from which

samples can be obtained. These samples are used to populate the estimated stability

region corresponding to that conditional input 𝑢.

Generate the training data (samples of 𝑋)

The stability region is the subset of R𝑛 which becomes the domain of 𝑋 after training.

Therefore, the samples 𝑥 in the training dataset should be distributed over the entire

theoretical stability region. This is done by sweeping each control parameter 𝑥𝑖,

and determining the stability for each sample using an analytic model or numerical

simulations. If stable, it is appended to the training dataset. This is repeated for

different values of the conditional variable 𝑢.

Training

Training involves a game between the generator and discriminator. Referring to

Fig. 4-2, when supplied with a noise variable 𝑧 and a condition 𝑢, the generator is

rewarded for producing samples �̂� = 𝐺(𝑧|𝑢) that have a similar distribution to the

training dataset. Whereas, the discriminator is rewarded for differentiating between

the real samples from the training dataset and the fake samples produced by the

generator. The discriminator outputs a binary variable 𝑦 = 𝐷(𝑥|𝑢) that indicates

its decision. The training is complete when the distribution of the generator output

𝑝(𝑥|𝑢) approaches that of the training dataset 𝑝(𝑥|𝑢), whereby the discriminator can

no longer distinguish between real and generated samples [55].

Stability Region Generation using cGANs

Given a real-time system configuration 𝑢, samples �̂� obtained from the trained gen-

erator correspond to the PDF 𝑝(𝑥|𝑢), i.e., they lie in the desired stability region.
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Table 4.1: cGANs Hyperparameters used in Case Study

Generator Discriminator Optimizer/
Learning
Rate

5 Hidden layers: 3 Hidden layers: Adam
∙ Leaky ReLU (𝛼 = 0.2) ∙ Leaky ReLU (𝛼 = 0.2) 5𝑒− 5

∙ Layer width=512 (all) ∙ Layer width=256, 128, 64
∙ Dropout rate=0.5 ∙ Dropout rate=0.4
∙ Batch size=32 Sigmoid output layer
Sigmoid output layer

Therefore, the stability region can be generated by running the generator function

several times, for randomly chosen latent vectors 𝑧.

4.2.2 cGANs hyperparameter selection

This section summarises the process of tuning the hyperparameters for the cGANs,

based on lessons learned from working with the case study. The cGANs hyperpa-

rameters include the architecture of the discriminator and generator networks, and

the factors influencing the training process including the optimizer and the batch

normalization parameters. Since cGANs is a system of two competing networks viz.

the generator and discriminator, the width and depth of each must be appropriately

selected failing which the combined system fails to learn [56]. Specifically, the dis-

criminator is made “weaker” than the generator by reducing its width or depth. Here,

the width of all the generator layers were kept the same whereas the discriminator has

decreasing nodes in higher layers as the eventual output is simply a binary output,

i.e., real or fake. To find an adequate architecture, the size of both the networks are

varied in tandem while maintaining similar relative sizing.

The first generator architecture tested was one with 4 hidden layers, with a width

of 1024 nodes each. The output of the generator is a vector that lies in the space

spanned by the stability region R𝑛 where 𝑛 is the number of control parameters.

Therefore, the output layer of the generator contains 𝑛 nodes. A sigmoid function is

used for each of the 𝑛 output nodes. Note that the output of a sigmoid is less than
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1, and therefore this output needs to be re-scaled by some factor. The scaling factor

used here is the same as the one used to normalize the training data. Each control

parameter in the training data was normalized by the maximum observed value, so

that the training data itself only contains values less than 1.

The discriminator was initially implemented with 3 hidden layers with respective

widths of 1024, 512 and 1 nodes. Alternative implementations of the discriminator

with wider layers were tested, and these wider layers in the discrmiinator were ac-

compnaied by wider layers in the generator. The discriminator depth was increased

if the width did not provide distinct improvement in the performance. At each stage,

the efficacy of the cGANs-based SRG was evaluated using the following metrics: (a)

the accuracy, defined by the fraction of the generated points that do lie in the theo-

retical stability region and (b) the coverage, defined by the spread of the generated

points over the theoretical one. The final architectures selected are listed in Table 4.1.

The training process depends on the selected optimizer and the learning rate. The

optimizer finds the weights in the hidden layers that minimize the cost function at

each step while the size of the step is defined by the learning rate. A large learning

rate can deter convergence while a small value will increase the computational burden.

Gradient descent is a popular optimizer for GANs, and is considered in this work.

For this case study a learning rate of 5𝑒 − 5 was sufficient; this also reduced the

computational burden.

Furthermore, the activation function determines the output of each node through

performing nonlinear transformation to the input such that the neural network can

learn the complex relationships in the data. Here, differentiable activation functions

were used along with the gradient descent optimizer, including Sigmoid, Tanh, ReLU

and Leaky ReLU. The ReLU or “rectified linear unit" is an activation function 𝑓(𝑥) =

𝑚𝑎𝑥(0, 𝑥). Leaky ReLU refers to the activation function:

𝑓(𝑥) =

⎧
⎪⎨
⎪⎩
𝑥 if 𝑥 > 0,

𝛼𝑥 otherwise.
(4.1)

From experimentation, Leaky ReLU is selected with 𝛼 = 0.02.
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Finally, batch normalization [57] is executed after the activation function to im-

prove the training process of GANs. The batch size is initially set to a small value to

minimize the training time, and is increased if the loss function has a high amount of

fluctuation. For the present application, a batch size of 32 was selected and the train-

ing process carried out for 50,000 epochs. In addition, dropout is included to reduce

the risk of overfitting [58]. Dropout refers to temporarily excluding some neurons

during the training process. A set of neurons are assigned a probability 𝑝 of being

used in each cycle of forward and back propagation. Through experiments, it was

found that conducting the normalization after the dropout help to reduce the dropout

rate. A dropout rate of 𝑝 = 0.4 for the discriminator and 0.5 for the generator was

found to be best.

69



70



Chapter 5

Case Study: Synchronous Machine

Damping via Wind Farm

This chapter builds on the framework outlined in the previous chapter, and applies

cGANs to a practical system involving a poorly damped synchronous machine and a

wind farm. The chapter begins with a detailed description of the case study. This

is followed by a demonstration of cGANs being used for stability region generation.

The results show the the proposed framework can indeed produce stability regions

with high accuracy.

5.1 Case study Overview

In this section, a transmission system is used to show the application of cGANs for

real-time control. The system (see Fig. 5-1(a)) consists of a power network fed by a

synchronous generator and is connected to a larger network modeled by an infinite

bus. A wind farm is interfaced to the system via a 5 km transmission line, which

offsets the load on the synchronous generator and damps its rotor angle oscillations.

The permanent magnet synchronous generator (PMSG) based wind farm contains

energy storage, which provides additional power required by the damping controller

during a rotor transient. The parameters of the system are listed in Appendix A.

The aim of the cGANs-based control is to tune the parameters of the wind farm
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Figure 5-1: Transmission case study: (a) Wind farm with energy storage connected
to network and a synchronous machine. (b) Control block diagram for mitigating
power oscillations of the synchronous machine.

power controller in order to maintain stable operation as the network changes in real-

time. Fig. 5-1(b) shows the controller for the wind farm, which enables the power

output 𝑝𝑤𝑖𝑛𝑑 to track the reference 𝑝𝑟𝑒𝑓 . It is assumed that the plant dynamics of the

power electronic interface are fast enough to be ignored - that is the 𝑝𝑤𝑖𝑛𝑑 commanded

is instantaneously outputted by the power converter. The reference is tracked through

the PI controller parameterized by the proportional and integral constants 𝑘𝑝 and 𝑘𝑖.

The total reference 𝑝𝑟𝑒𝑓 is made up of a DC reference 𝑝𝑤𝑖𝑛𝑑𝑀𝑃𝑃 superimposed with a

transient reference signal proportional to the oscillations of the synchronous machine.

Damping is achieved by passing the voltage phase difference across nodes 1 and 2 in

Fig. 5-1(a) through a high pass filter (HPF) with time constant 𝜏 , and amplified by

a feedback gain 𝛾.

The equations (5.1) to (5.4) describe the dynamics of the transmission case study.

A simple per-unit classical model is used for the synchronous machine, whose states

are per-unit frequency and rotor angle. The active damping control shown in Fig. 5-
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Table 5.1: Transmission System Configurations Used For Training and Testing. See
Appendix A for details on 𝑅/𝑋 ratio etc.

Training case |𝑍𝑒𝑞| (Ω) Test Case |𝑍𝑒𝑞| (Ω)
Case-1 40 Case-5 60
Case-2 80 Case-6 100
Case-3 195 Case-7 155
Case-4 390 Case-8 230

Case-9 290
Case-10 350

1(b) has two states 𝜓 (integrated total error) and 𝜑 (integrated transient error).

Δ�̇� =
1

2𝐻
(Δ𝑝𝑚 −Δ𝑝𝑒 −𝐷Δ𝜔) (5.1)

Δ𝛿1 = 𝜔𝐵Δ𝜔 (5.2)

Δ�̇� =
−𝑘𝐼
𝑘𝑃

Δ𝜓 +
1

𝑘𝑃
Δ𝑝𝑤𝑖𝑛𝑑 (5.3)

Δ�̇� =
1

𝜏
Δ𝜑+Δ𝛿12 (5.4)

Assuming small voltage deviations at transmission busses, the network algebraic

equations can be expressed as:

ΔP = −BΔ𝛿 (5.5)

The dynamic equations are coupled with algebraic equations that relate the power

flows and the angle at each bus. The reader is directed to Appendix A for details

on how to combine the differential and algebraic equations for this case study. The

system can now be written in linearized state-space form: Δ�̇� = 𝐴1Δ𝑥 + 𝐴2Δ𝑢,

where the state vector is Δ𝑥 = [Δ𝜔 Δ𝛿1 Δ𝜓 Δ𝜑]ᵀ and the input vector is Δ𝑢 =

[Δ𝑝𝑚 Δ𝑝𝑙𝑜𝑎𝑑]
ᵀ.
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(5.6)

5.2 cGANs-Based Stability Region Generation

The stability region for this system changes as the equivalent network impedance 𝑍𝑒𝑞

changes. Therefore, to maintain stable operation, the system operator must monitor

the stability region in real-time and ensure that the operating point remains stable

with a good margin. To this end, cGANs are now adopted using the guidelines in

Section 4.2.1. The stability region to be determined is a subset of the 4D hyperspace

with each point characterized by the coordinates (𝑘𝑝, 𝑘𝑖, 𝜏, 𝛾). The uncontrollable

parameter that changes in real-time is 𝑍𝑒𝑞, which is taken as the (scalar) conditional

input. The value of 𝑍𝑒𝑞 can be estimated using the SCADA power flow data.

The training dataset consists of 40,000 evenly distributed samples 𝑥 = [𝑘𝑝 𝑘𝑖 𝜏 𝛾]
ᵀ

among four system configurations, viz., Cases 1, 2, 3 and 4 the details of which can

be found in Table 5.1. Each “case” represents a particular system configuration, i.e.,

a value of the conditional input 𝑍𝑒𝑞.

Once trained, the performance of the cGANs is tested on Cases 5-10 from Ta-

ble 5.1. For each case, the stability region is estimated by collating 1000 samples

from the generator which is fed the appropriate conditional input (and random noise

vector). The accuracy of the estimated stability region is verified using the model

(Eq. (5.6)). The fraction of the generated points that are indeed stable is included

in Fig. 5-2 as a measure of the cGANs accuracy; this exceeds 0.94 for all test cases.
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Figure 5-2: Accuracy and coverage of the cGANs-generated stability regions for the
transmission case study. Accuracy refers to the proportion of points the generator
correctly predicted a being stable. Coverage is the ratio of the area of the predicted
stability region to the area of the theoretical region.

The coverage of the estimated stability region is defined as ratio of the volume of the

estimated stability region to that of the theoretical stability region. Ideally, both the

accuracy and coverage should be unity, indicating perfect accuracy. Note that the

stability assessment and volume calculations are conducted using the model-based

method in MATLAB. For the 2D stability regions shown, the area is used in lieu of

volume, where coverage shown in Fig. 5-2 is calculated using the areas defined by the

𝛾 - 𝑘𝑝 stability regions.

For verifying the shape of the estimated stability regions, they are plotted in

Fig. 5-3 and superimposed on the theoretical stability regions for a few test cases. It

is to be noted that while the actual stability region is a 4D hyperspace with a strong

interdependence between the four control parameters, only selected 2D hyperplanes

have been visualised. It can be observed that the cGANs is able to accurately estimate

the entire stability region with good accuracy. If improved coverage is desired, more

samples may be obtained from the generator. The stability region is also sensitive to

changes in the conditional input, which demonstrates the adaptivity of the cGANs-

based SRD.

Next, case study demonstrating the practical utility of the cGANs-based real-

time SRD is considered. The transmission system is assumed to vary in real-time

and sequentially go through the configurations Case- 7, 5, 10, 8 and 6. The cGANs is

used for real-time SRD, subsequent to which the controller gains are tuned with the

goal to maximize the dynamic performance while remaining in the stability region.
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Figure 5-3: Stability regions obtained from cGANs for the transmission system for
Cases 7, 8 and 9. Sample hyperplanes for the control parameters 𝑘𝑝, 𝑘𝑖, 𝜏 and 𝛾
are shown for different values of conditional input 𝑍𝑒𝑞, the effective impedance of
the network between nodes 2 and 3. The theoretical stability region in each case is
marked in black. The estimated stability region from cGANs is marked in blue. The
points used to estimate the stability region are classified into green or red, based on
whether or not they actually lie in the theoretical stability region.
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system configurations. The operating point from the cGANs-based SRD is indicated
by an ×. The selected operating points lie in the stability region with a robust
stability margin.
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Figure 5-5: Plots of the tuned control parameters over 5 time snapshots. The system
configuration for the snapshots in order are Case- 7, 5, 10, 8 and 6. For each case,
the damping ratio and the stability margin are also plotted.
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The theoretical stability regions for each case is shown in Fig. 5-4, along with the

operating point selected from the estimated stability region. The operating point is

selected as follows. The HPF parameter 𝜏 needs to be large enough to capture the

rotor angle dynamics, while also lying inside the stability region. A value of 0.1 s

was taken as it satisfied both criteria. Corresponding to this, 𝑘𝑖 = 𝛼 max[𝑘𝑖]|𝜏=0.1

are selected, where the parameter 𝛼 determines the distance of the selected operating

point from the estimated stability boundary. Referring to the right-hand stability

region in Fig. 5-4, the value of 𝑘𝑝 is fixed at 2, as this is the approximate value

at which the stability limit of 𝛾 is the highest. The maximization of the damping

feedback gain 𝛾 is prioritized due to the main control objective being active damping.

Then, depending on the conditional input, the stability limit is estimated and the

operating point is chosen using: 𝛾 = 𝛼 max[𝛾]|𝑘𝑝=2.

The operating points selected as above and the corresponding damping ratio (𝜁)

and stability margin for each time instance are shown in Fig. 5-5. The stability margin

is the distance between the selected operating point (along normalized axes) and the

nearest point on the stability boundary. The stability margin can be adjusted by

changing the value of 𝛼, which embodies the trade-off between the stability margin

and the damping ratio. It is observed that the damping ratio is positive for all system

configurations, indicating that the system remains stable in real-time.
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Chapter 6

Summary, Conclusions and Future

Work

6.1 Thesis Summary

The goal of this thesis is to address challenges associated with the decentralization of

generation in power systems. An increased proportion of renewable technologies in

the form of solar photovoltaic and wind conversion systems will mean a higher propor-

tion of inverters interfacing with the electricity network. As the number of inverters

increases, the synchronous machine may not dominate power system generation as it

has done in the past. Transformations such as the Park transformation were derived

with the intention to analyse synchronous machines, yet somehow find uses in nu-

merous other applications including three-phase inverter control. This motivates an

alternative interpretation of reference-frames which is agnostic to a specific applica-

tion. This problem is the focus of Part I of this thesis, which provides a solution in

the form of a geometric interpretation of reference-frame theory.

Another aspect of decentralization is the increased variability of the system. Part

II of this thesis examines the role of the system operator in maintaining stability,

in the face of increased uncertainty due to decentralization. As the power system

changes, the stable set of control parameters which make up the stability region also

changes. Knowledge of how this set of parameters changes can facilitate the system
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operator in making dynamic decisions. Generating these stability regions may be

slow, inconvenient or dangerous depending on the approach taken. This motivates

an alternative approach which can quickly generate an approximation of the stability

region as the system changes.

6.2 Conclusions

In Part I it is shown that although the Clarke and Park transformations were origi-

nally derived to address challenges in specific problems, they can be derived in a more

general manner. As each of these transformation are linear, one can exploit this lin-

earity property and derive the matrices corresponding to each of the transformations

by calculating how the transformation affects each of the standard basis unit vectors.

This approach is applied to both the power-variant and the standard forms for each of

the Clarke and Park transformations. The approach interprets each transformation

as a combination of rotations and scalings in R3, and allows one to derive both the

power-invariant and standard forms.

The geometric perspective is shown to have applications in power quality. Sym-

metrical components are found to be intimately related to the transformations. In-

sights regarding how unbalance and harmonics appear in the 𝑑𝑞0 domain are uncov-

ered using the geometric interpretation of reference-frame theory. Specifically, the

reason for 2nd harmonic appearing in the 𝑑𝑞0 signals of an unbalanced signal stems

from the fact that the 𝑑𝑞0 axes rotate in the opposite direction to the Cartesian

representation of the negative sequence component. Similar intuition explains why

negative sequence harmonics appear faster in the 𝑑𝑞0 domain. In addition, unlike

the phasor diagram, a single locus diagram can fully represent a three-phase quantity

with harmonics.

In Part II of this thesis, a novel framework for the real-time control of power

systems is developed. It is validated (via a case study) that if a system operator were

to know the underlying real-time stability region for a system, then they could make

decisions as the systems changes. cGANs are presented as an alternative means to
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generate stability regions. Through a simple case-study, the effectiveness of cGANs

is demonstrated and the results for several test scenarios all confirm an accuracy

exceeding 90 %. The coverage or spread of points in the generated stability region

is also found to be quite good, in that points near the boundary are predicted. This

coverage metric is calculated to be within 10% of the theoretical value.

6.3 Future Work

Part I of this thesis focuses on general results that apply to all three-phase systems.

Therefore, there is much opportunity to investigate how the framework can be used

to represent signals from physical experiments. One interesting problem would be to

examine how poor sensor calibration (eg. offset or bias present in a voltage sensor)

could affect the locus diagram corresponding to that measured signal. Beyond this,

the intuition gained from the geometric framework could lead to new designs in active-

power filtering and novel grid synchronization control (eg. phase-locked loops).

The main area of development for Part II would be to try to implement the

proposed stability region generation using actual physical system data. This would

require collaborating with system operators to find out what data is available, and

what specific stability regions they might find useful or interesting. In the long-term,

one could test the real-time stability region generation capabilities of the proposed

method, by introducing a pilot version of the product to be used in line with tradi-

tional SCADA.

A problem with using physical system data is that most power systems are oper-

ated in a conservative manner. Thus, obtaining data of control parameter selections

close to the stability boundary may be difficult. To address this, future work could

investigate how to obtain points close to the stability boundary in a way that does

not adversely affect the system. If this proves difficult, perhaps it is possible to aug-

ment the stability region data from the physical system with data from the numerical

model.

Reliability is another area to investigate in future work. To address this, one
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could try to embed some additional constraints on the stability region. For example,

enabling the generated stability region to be altered based on a desired minimum

damping-ratio.

Aside from numerical approaches, one could explore analytical approaches to sta-

bility region generation. Defining power system analytical models can be cumbersome

depending on how detailed one needs their model to be. Model-order reduction ap-

proaches could make it easier to generate stability regions for larger systems, by only

focusing on the most important control parameters.
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Appendix A

Transmission Case Study Parameters

A.1 Parameters of the cGANs Case Study

The synchronous machine parameters are as follows: 𝐻 = 0.5 s, 𝐷 = 0.5, 𝜔𝑟𝑎𝑡𝑒𝑑 =

2𝜋60 rad/s.

The transmission network parameters are as follows: The R/X ratio of the network

between nodes 2 and 3 is 0.0824 and the impedance of the line between nodes 2 and

4 is (0.032 + 𝑗0.3883)Ω/km.

A.2 Small-Signal Model for the cGANs Case Study

The substitutions used in the system matrix 𝐴1 and the input matrix 𝐴2 are as

follows:

𝛼1 =
−𝛾𝑘𝑃

𝜏𝐵44 (1 + 𝑘𝑃 )
(A.1)

𝛼2 =
𝛾𝑘𝑃

𝐵44 (1 + 𝑘𝑃 )
(A.2)

𝛼3 =
−𝐵42

𝐵44

− 𝛾𝑘𝑃
𝐵44 (1 + 𝑘𝑃 )

(A.3)

𝛼4 =
𝑘𝐼

𝐵44 (1 + 𝑘𝑃 )
(A.4)
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𝛽1 =
1

𝐵22 + 𝛼3𝐵24

(A.5)

𝛽2 = −𝐵21 + 𝛼2𝐵24

𝐵22 + 𝛼3𝐵24

(A.6)

𝛽3 = − 𝛼1𝐵24

𝐵22 + 𝛼3𝐵24

(A.7)

𝛽4 = − 𝛼4𝐵24

𝐵22 + 𝛼3𝐵24

(A.8)

𝑐1 =
𝛾𝑘𝑃 (1− 𝛽2)

1 + 𝑘𝑃
(A.9)

𝑐2 =
𝛾𝑘𝑃

1 + 𝑘𝑃

(︂
𝑘𝐼
𝛾𝑘𝑃

− 𝛽4

)︂
(A.10)

𝑐3 =
𝛾𝑘𝑃

1 + 𝑘𝑃

(︂
1

𝜏
+ 𝛽3

)︂
(A.11)

𝑐4 =
−𝛾𝑘𝑃𝛽1
1 + 𝑘𝑃

(A.12)

𝑚1 = −𝐵11 − 𝛽2𝐵12 (A.13)

𝑚2 = −𝛽4𝐵12 (A.14)

𝑚3 = −𝛽3𝐵12 (A.15)

𝑚4 = −𝛽1𝐵12 (A.16)

In the above equations, the terms 𝐵𝑖𝑖 represent the (𝑖, 𝑖) elements of the suscep-

tance matrix B.
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Appendix B

Summary of Transformations

Table B.1 summarises the standard and power-invariant forms of the Clarke and Park

transformations. Note that there are many conventions for the direction of the 𝑑 and

𝑞 axes, with some even having a 𝑞-axis lagging the 𝑑-axis. This thesis follows the 𝑑𝑞0

convention of Kundur and others in [25, 28] (see Table B.1). The angle 𝜃 is referenced

with respect to the 𝑑-axis as shown in Fig. 2-4. There exists an alternative convention

where the angle is referenced with respect to the 𝑞-axis. This convention (𝑞𝑑0) is used

by Krause and others [2, 4].

Table B.2 shows the instantaneous real and reactive power calculations in each

of the 𝛼𝛽0 and 𝑑𝑞0 domains. We use the definition of instantaneous reactive power

given by [59].
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Table B.1: Summary of Transformations
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Fig. 16. Symmetrical components applied to an unbalanced 3-phase system with no harmonics. (a) phasor diagrams (b) locus diagrams in abc coordinates
(c) locus diagrams in rotating dq0 coordinates.
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