
Probing Electron-Electron and Electron-Phonon
Interactions in Twisted Bilayer Graphene

by

Isabelle Y. Phinney

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Physics

May 8, 2020

Certified by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Professor Pablo Jarillo-Herrero

Thesis Supervisor, Department of Physics

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Professor Nergis Mavalvala

Physics Associate Head, Department of Physics



2



Probing Electron-Electron and Electron-Phonon Interactions

in Twisted Bilayer Graphene

by

Isabelle Y. Phinney

Submitted to the Department of Physics
on May 8, 2020, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Physics

Abstract

Two-dimensional systems, and, most recently, moiré systems, have risen to the fore-
front of condensed matter physics with the advent of experimental techniques that
allow for controlled stacking of van der Waals heterostructures [17, 54]. For example,
it was recently discovered that when two pieces of atomically thin carbon (graphene)
are twisted at 1.1∘ with respect to one another, they display a variety of effects,
including superconducting behavior [10]. Experimental investigation of the behav-
ior of small-angle twisted bilayer graphene (SA-TBG) as a function of twist angle
is imperative to understanding the mechanisms that play into the many interest-
ing, strongly-interacting phenomena that the moiré system displays. In this thesis,
I present three experiments which explore electron-electron and electron-phonon in-
teractions in SA-TBG. I first consider SA-TBG as a host for a viscous electron fluid
and look for the onset of fluid behavior via electron transport. Then I investigate the
temperature dependence of resistivity in SA-TBG devices at a number of angles. The
final experiment examines magnetophonons in three devices above the magic angle
and compares the findings to theoretical results.

Thesis Supervisor: Professor Pablo Jarillo-Herrero
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√
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The purple indicates the region we select by hand to perform FFT on.

c) FFT of purple region in b) with a Blackman window applied. The

true 𝐵𝐹 is the dip between the two peaks indicated. The double peak

(black vertical lines) is a result of beating between SdHO and magne-
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b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
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Chapter 1

Introduction and Background

1.1 Thesis introduction and motivation

Since the isolation of graphene in 2004 [18], two-dimensional (2D) systems have grown

to become one of the primary research topics at the forefront of condensed matter

physics [17, 54]. In recent years, moiré systems in particular have garnered great

interest due to their experimental tunability and their ability to host a wide range of

fascinating physical phenomena, which provide nanoscale accessibility to concepts in

fundamental physics, astrophysics, quantum computing and more [9, 10, 53, 42]. The

goal of this thesis is to further our understanding of the graphene moiré system in

particular by considering the way electrons interact with each other and with other

quantized modes in the system. The experiments described are some of many needed

to understand, and later control, the many attractive moiré-induced phenomena found

in these types of systems.

The following work is rooted in two main themes: 1) electronic transport in

graphene, and 2) the twisted bilayer graphene moiré system. Graphene, one of the

most common materials used in low-dimensional science, is composed of atomically

thin layers of carbon and represents one of the best-known examples of a 2D layered

material [18]. 2D layered materials are characterized by having much stronger in-

plane bonds than out-of-plane, meaning that single layers can be physically removed

from the bulk [54]. Furthermore, these layers can be stacked on top of other types
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of layered materials in any number of combinations. Such stacks are called van der

Waals heterostructures, after the bonds that hold the layers together. The way in

which these layers interact with each other—not just the atoms making up layers

themselves—play a huge role in the physics of these structures. Twist angle can be

used to change the way in which layers interact by the generatation of a moiré pattern.

Moiré patterns are long wavelength interference patterns produced when two similar

but slightly offset periodic patterns are laid on top of each other. We can realize this

sort of pattern by stacking two identical layers of a crystal on top of one another with

a relative twist angle, or by stacking two types of crystal with similar structure but

slightly different lattice constant on top of one another. This thesis focuses on the

way in which electronic transport is affected in small-angle twisted bilayer graphene

(SA-TBG), a moiré system composed of two layers of graphene twisted relative to

one another.
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Figure 1-1: A visual summary of the experiments described in chapters 4-6. Chapter
4: Simulation of viscous flow in the graphene electron fluid. Adapted from [33].
Chapter 5: Data comparing resistivity versus temperature for monolayer, bilayer,
and small-angle twisted bilayer graphene. Chapter 6: Cartoon depiction of electrons
transitioning between Landau levels by emission of a phonon.

In chapter 1, I give an introduction to van der Waals heterostructures, graphene,

and SA-TBG in particular. In chapter 2, I discuss fabrication and measurement

methods. I emphasize the importance of high quality fabrication techniques by sum-

marizing two collaborative projects to which I contributed devices. I also describe
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device characterization methods relevant to the particular experiments performed. In

chapter 3, I give an introduction to hydrodynamics in graphene systems and present

data showing the onset of fluidity in SA-TBG devices. I discuss the observation of a

competing interaction, which leads into chapter 4, where I present resistivity versus

temperature measurements. In chapter 5, I describe experiments on magnetophonons

in SA-TBG and provide a possible explanation for the phenonema observed in chap-

ters 3 and 4. Finally, in chapter 6, I briefly review the topics discussed and provide

an outlook for future experiments.

1.2 Introduction to graphene

With the Nobel prize-winning isolation of graphene and demonstration of its unique

electrical properties in 2004 by Professors Andre Geim and Konstantin Novoselov [18],

a whole new two-dimensional world became readily available to physicists. Today,

condensed matter has expanded to explore other materials in the low-dimensional

limit, including 2D superconductors, topological insulators, and more, bringing ad-

vances to both physics and technology [54, 42, 43]. However, graphene continues to

be an invaluable platform to study strongly-interacting phenomena, most recently

with the demonstration of superconductivity in twisted bilayer graphene [10]. The

long-lived productivity of graphene physics can be attributed to two things: first,

graphene has many unusual features, including a gapless Dirac band structure, weak

electron-phonon coupling, and high electron mobility [18]. Moreover, it boasts the

experimental advantages of being cheap, easy to procure, and highly stable.

Graphene is composed of carbon arranged in a hexagonal “honeycomb” lattice.

Carbon has the electron configuration [He]2𝑠22𝑝2. The 𝑝𝑥, 𝑝𝑦, and 𝑠 orbitals mix

to form three hybridized 𝜎 bonds which are oriented in-plane and combine with

neighboring carbon atoms to form extremely strong covalent bonds, shown in Fig. 1-

2a. The 𝑝𝑧 orbital forms an out-of-plane 𝜋 bond that is responsible for the low energy

electronic states in graphene. As shown in Fig. 1-2b, the honeycomb lattice is in fact

composed of two inequivalent triangular sublattices, labelled A and B. In momentum
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Figure 1-2: Graphene real-space and electronic structure [24] [41]. a) Cartoon de-
piction of six carbon atoms arranged in a honeycomb lattice. The 𝑝𝑧 orbitals are
indicated in blue and hybridize with the carbon atoms above and below the layer
shown. The 𝑠𝑝2 orbitals, which form strong covalent bonds with neighboring carbon
atoms, are indicated in pink. b) The honeycomb lattice of graphene with the inequiv-
alent 𝐴 and 𝐵 sublattices labelled in purple and orange, respectively. A unit cell is
highlighted in red. The unit vectors are defined as 𝑎1 = 𝑎

2
(3,

√
3) and 𝑎2 = 3

2
(3,−

√
3),

where 𝑎 is the lattice constant of graphene. c) The first Brillouin zone of the reciprocal
lattice is indicated in black with the 𝐾 and 𝐾 ′ points labelled. The reciprocal lattice
unit vectors are defined as 𝑎𝑖 · 𝑏𝑗 = 2𝜋𝛿𝑖𝑗, giving 𝑏1 = 2𝜋

3𝑎
(1,

√
3) and 𝑏2 = 2𝜋

3𝑎
(1,−

√
3).

d) The low-energy band structure for graphene as calculated by a tight-binding ap-
proximation and plotted in Mathematica. The red circle shows a close-up of the Dirac
cones touching with a linear-in-energy dispersion. The conduction band (orange) and
valence band (blue) are labelled. At zero doping, the Fermi energy, 𝐸𝐹 , is located
between the two bands.
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space, the reciprocal lattice is also hexagonal, where we now label the inequivalent

points 𝐾 and 𝐾 ′ (Fig. 1-2b).

A simple tight-binding picture captures many of the important electronic features

of the system. The band structure shows that, at the corners of the Brillouin zone

(BZ), the conduction and valence band touch (Fig. 1-2d). The six high symmetry

points are typically called Dirac points, divided into two inequivalent sets labelled

𝐾 and 𝐾 ′. Expanding around the Dirac points as in Fig. 1-2d, we obtain a linear

energy dispersion, 𝐸(𝑘) = ±ℎ̄𝑣𝐹𝑘, where ℎ̄ is the reduced Planck’s constant, 𝑣𝐹 is the

Fermi velocity, approximately 106 m/s in monolayer graphene. Notably, the energies

of the Dirac points are degenerate, so we often simply assign the two degenerate

valleys a quantum number. Including spin as another good quantum number, we get

a four-fold degenerate Dirac cone.

The linear spectrum near the Dirac points results in a few interesting features.

The first is that the typical definition for effective mass, 𝑚* = ℎ̄2

𝜕2𝐸/𝜕𝑘2
breaks down

because of the linear, rather than parabolic, energy spectrum. Instead, we chose to

define the effective mass as the cyclotron effective mass in graphene. The cyclotron

effective mass is semiclassically defined by 𝜔𝑐 = 𝑒𝐵
𝑚𝑐𝑐

= ℎ̄2

2𝜋
𝜕𝐴
𝜕𝐸

, where 𝐴 is the area in

𝑘-space enclosed by the cyclotron orbit. In graphene, which has an isotropic energy

spectrum, we get

𝑚𝑐 =
ℎ̄2

2𝜋

𝜕𝐴

𝜕𝑘

𝜕𝑘

𝜕𝐸
=

ℎ̄𝑘

𝑣𝐹
(1.1)

Experimentally, we can obtain the value for 𝑚𝑐 by inspecting effects that depend

on cyclotron motion, such as cyclotron resonance or Shubnikov de Haas quantum

oscillations (see chapter 2).

Another handy feature of graphene is the ability to change the carrier density, 𝑛,

by electrostatic gating. Since the conduction and valence bands touch, graphene has

no band gap, meaning that charge can be added to the system with no energy cost.

We accomplish this using a capacitor-like setup with graphene separated from a gate

electrode by a dielectric (Fig. 1-3a). A voltage is applied between graphene and the

gate. We see the effects of the Dirac cones as we vary the voltage between the two:
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Figure 1-3: Gating and the density of states in graphene. a) Graphene is a semimetal,
meaning that charge can be added at no energy cost. Electrostatic gating is accom-
plished in a capacitor-like setup. In a typical device, the dielectric would be either
silicon oxide or hexagonal boron nitride, and the gate would be either silicon, graphite,
or palladium gold. b) The density of states in graphene, adapted from [41]. Note
𝜖 ∝ 𝑛, and that at zero doping (𝑛 = 0), the density of states goes to zero. c) Exam-
ple resistivity data as a function of carrier density. At negative carrier density, the
charge carriers can be thought of as positively charged holes. At 𝑛 = 0, the resistivity
exhibits a sharp peak—this can be thought of as a result of the zero DOS. For 𝑛 > 0,
the charge carriers are negatively charged electrons.

ungated, or charge neutral, graphene has the Fermi level at the touching point of the

conduction and valence bands. The density of states (DOS) at this point (called the

Dirac point or the charge neutrality point) is 0, so the conductivity of graphene is

suppressed. As the charge density is changed by gating, the conductivity increases.

1.3 Twisted bilayer graphene

Adding a twist between two layers of graphene opens a whole new realm of electronic

states. The real space moiré pattern (shown in Fig. 1-4a) translates to momentum

space, causing, for example, the Dirac cones to separate by ∆𝐾𝑚 ∝ sin(𝜃/2). This

separation means that the layers will be decoupled at low energies. Already from this

simple decoupling we notice that now, rather than a four-fold degenerate Dirac cone,

we have an eight-fold degeneracy. Moreover, as shown in Fig. 1-4c, for small twist

angles, the Dirac cones hybridize at their crossing point and a van Hove singularity

appears, as indicated by the black arrow in Fig. 1-4c and d. Van Hove singularities are

saddle points in momentum-space where the DOS diverges and is non-differentiable
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Figure 1-4: Basics of twisted bilayer graphene. a) A moiré pattern emerges as the
twist angle is increased from 0. The blue arrows indicate the moiré lengthscale, 𝜆 =
𝑎/2 sin(𝜃/2). b) A low-energy continuum model of a SA-TBG system indicates that
the Fermi velocity should be suppressed as the angle decreases, reaching 0 around 1.1∘.
Adapted from [5]. c) Overlapping Dirac cones in momentum space yield decoupling
of the layers at low energies and van Hove singularities where the cones overlap,
indicated by a black arrow. d) A line cut through the 𝐾 points of the two lattices
with a van Hove singularity indicated by a black arrow. Grey lines indicate the
individual layers’ Dirac cones before hybridization.
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[56]. Initial theoretical calculations suggested that at small angles the layers would

become more strongly coupled and the Dirac dispersion would flatten, resulting in a

corresponding decrease of the Fermi velocity. For certain “magic” angles, the Fermi

velocity was predicted to decrease to 0m/s when the lowest energy bands hybridize

to form flat bands, as shown in Fig. 1-4b [5]. On the other hand, at large twist angles,

the two Dirac cones are completely isolated in momentum space, and the two layers

are totally decoupled.

It is in the regime of small twist angle that many interesting states have been

observed over the past few years, including superconductivity, ferromagnetism, and

integer quantum Hall states [10, 53, 47, 45]. Despite intense theoretical and experi-

mental interest in the topic, the regime of small twist angles is not fully understood.

For this reason, we explore a number of physical properties previously explored in

mono- and bilayer graphene and study the effects of twist angle on those properties.
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Chapter 2

Experimental Techniques for

SA-TBG Devices

2.1 The importance of high-quality devices

One of the major developments in graphene device fabrication came with the realiza-

tion that the insulating crystal hexagonal boron nitride (hBN) can form an extremely

clean interface with graphene, allowing for in-plane electron mobilities in excess of

105 cm2V−1s−1 [14, 54]. hBN has the same honeycomb structure and a very similar

lattice constant to graphene, except the A and B sites are occupied by boron and

nitrogen atoms instead of carbon, breaking sublattice symmetry and making hBN an

insulator, with a large gap of 6 eV. Because hBN is a layered material like graphene,

it can also be exfoliated down to a discrete number of layers, making it an exception-

ally flat surface for graphene. Additionally, its large band gap means hBN does not

interfere with electronic transport measurements of graphene and can be used as a di-

electric through which to gate the graphene. Encapsulating graphene in hBN reduces

charge disorder and strain and has allowed for the observation of subtle phenomena

in the graphene two-dimensional electron gas (2DEG) [13, 22, 54].

However, the need for ultraclean devices did not stop simply at hBN. Although the

interface between hBN and graphene is significantly cleaner than between graphene

and SiO2, the substrate commonly used before hBN, it is not perfect. Hydrocar-
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bons are easily trapped between the layers, forming bubbles that strain the materials

and locally change the electronic properties in graphene. Because transport can be

thought of as a global probe, local disorder cannot be avoided, instead averaging into

the overall behavior and easily obscuring finer details. Big, clean devices can be ex-

tremely valuable both for revealing delicate physics that live in the bulk by reducing

the edge contributions, and for revealing in physics that requires large cyclotron or-

bits. Because of this, I pursued the development of “hot-ironing” and “hot-release”

techniques, outlined below, that help push bubbles out from the interfaces. As an

additional benefit, these techniques can also reduce twist-angle inhomogeneity [40].

I illustrate the importance of ultraclean devices by demonstrating how my devices

enabled new physical phenomena to be revealed in two projects I collaborated on.

2.1.1 Doppler effect in graphene plasmons

First, inspired by theoretical work [6], we investigated the Doppler effect in graphene

plasmons. In collaboration with Professor Dmitri Basov’s group at Columbia Univer-

sity, we used near-field infrared imaging techniques to measure the shift in plasmon

frequency as a function of applied current. Similar to the optical Fizeau effect, we

see that plasmons are “dragged” in the presence of a strong current flow and exhibit

a Doppler shift. The challenges in this project were twofold: in order to perform

near-field imaging, the top hBN must be very thin. Additionally, for plasmons to

propagate as far as possible, we want a clean, bubble-free interface with low disorder.

Using the “hot-release” technique previously mentioned, I was able to fabricate such

devices.

2.1.2 THz-induced resistance oscillations

Second, in collaboration with Professor Sergey Ganichev’s group at the Terahertz Cen-

ter, University of Regensburg, we observed resistance oscillations similar to microwave-

induced resistance oscillations previously observed in GaAs quantum wells. Graphene

provides an alternative 2D electron system in which to explore radiation-induced
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Caption to add: Steps in modified dry transfer method. a, hBN and graphene were exfoliated on a Si/SiO$_2$ substrate. b, 

A PC membrane stretched over a PDMS block was used to pick up a flake of hBN at 50-70\degree C. c, The hBN was 

brought into contact with one half of a flake of graphene at room temperature. Using the van der Waals forces between 

hBN and graphene, the graphene was torn in half. d, The remaining piece of graphene was rotated and then picked up. e, 

The stack was ``ironed’’ at room temperature by repeatedly pressing the stack against the substrate at an angle. f, The 

stack was released onto a clean hBN flake at high temperature. The PC membrane was later removed by chloroform.

PDMS

Figure 2-1: Steps of fabrication. a) A PC slide is mounted in a homemade transfer
system. The selected hBN crystal exfoliated on Si/SiO2 is placed in the transfer stage
and heated to 50-70∘ C. b) The PC slide is lowered at an angle of 2-3∘s and is used
to pick up the hBN. c) The temperature of the stage is lowered to room temperature,
and a large flake of monolayer graphene is placed on the stage. The flake may be pre-
cut by laser, or may be torn in half during the transfer process. The edge of the hBN
is used to define the tearing edge. d) The hBN and first piece of graphene on the PC
slide are raised slightly above the stage, and the stage is rotated to the target angle.
The PC slide is then lowered to pick up the second piece of graphene. e) We perform
room temperature ironing by repeatedly pressing the hBN-graphene-graphene stack
against the Si/SiO2 substrate immediately after picking up the second graphene. f)
The stack is released onto a prefabricated and cleaned hBN-graphite stack at 160-170∘
C. Ironing may be performed at high temperature during this step as well.

magnetotransport. In monolayer graphene and tBLG, we found a number of interest-

ing THz-assisted phenomena, including THz-radiation-induced magneto-oscillations.

Once again, having extremely large, clean devices was imperative because several cy-

clotron orbits must fit within a single device at relatively low fields (and thus large

radius). The “hot-ironing” technique mentioned above allowed for the fabrication of

such devices.

2.2 Device fabrication techniques

All of our devices consist of hBN-encapsulated twisted bilayer graphene, which we

fabricate using a modified version of the “twist–and–tear” technique [7]. We use
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Scotch tape to exfoliate monolayer graphene and 30-80 nm-thick hBN on a standard

Si/SiO2 substrate. By adhering crystals to the tape, pressing the crystals against the

substrate, and then using the tape to peel away the bulk, we are left with thin flakes

on the Si/SiO2 substrate. We found that heating the Si/SiO2 substrate to 180 ∘C prior

to graphene exfoliation increased the yield of large mono- and bilayers. Additionally,

we anneal the exfoliated hBN crystals 350 ∘C for 3 hours while flowing argon and

hydrogen in order to remove tape residues. We use optical microscopy to find large

graphene monolayers and thin (30-70 nm) hBN crystals. Dark field microscopy can

show cracks, thickness inhomogeneity, and residues that are not visible in bright field

microscopy.

Then, using a homemade transfer system with 𝜇m-accuracy and a polycarbonate

(PC) membrane stretched over a small (8mm×8mm×4mm) polydimethylsiloxane

(PDMS) polymer block on a glass slide, we assemble hBN and graphite stacks on a

Si/SiO2 wafer. To minimize strain on the hBN, we pick up at 50-70 ∘C, when the

membrane is just barely sticky enough to allow for a clean pickup. The graphite is

picked up at room temperature, and then the entire stack is “ironed” by repeatedly

pressing the hBN-graphite stack against the Si/SiO2 wafer and then released on a

clean Si/SiO2 wafer at high temperatures (160-170 ∘C [40]. We note that the ironing

may be performed twice: at low temperature on the Si/SiO2 onto which the graphite

was exfoliated, and at 160 ∘C on the clean Si/SiO2 wafer before release. After re-

moving the polymer membrane with chloroform, we anneal the hBN and graphite

stack at 350 ∘C for 3 hours while flowing argon and hydrogen in order to ensure the

removal of any residues. We then assemble the hBN and twisted bilayer graphene

stack using a modified version of the “tear-and-stack” method, shown in Fig. 2-1 [7].

We note that instead of tearing the graphene, we can cut the graphene in half before

the transfer process begins using a continuous-wave laser —a method that we found

both reduces potential issues associated with the graphene not tearing cleanly and

strain-induced bubbles from the tearing process. After every step of transfer in this

process, we perform low-temperature “ironing” to push out bubbles and reduce twist

inhomogeneity. The three-layer stack is then released onto the previously fabricated
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and cleaned bottom hBN and graphite gate at roughly 160 ∘C. After this point, we

avoid heating the stack above 180 ∘C to reduce the possibility twist angle relaxation.

An artistic rendering of the process is shown in fig 2-1.

We then perform atomic force microscopy (AFM) on the assembled structures

(Fig. 2-2c). We note that for top and bottom hBN with thickness > 20 nm that

dark field optical microscopy is typically sufficient to determine the location of most

bubbles (Fig. 2-2b). AFM, however, allows us to determine the location of bubbles

and other irregularities precisely down to 100 nm or less. We select a clean region to

serve as our device.

The encapsulated tBLG heterostructures are patterned into Hall bars using elec-

tron beam lithography (EBL). For EBL we use a double-layer polymer resist composed

of polymethyl methacrylate (PMMA). The bottom layer is 495,000 molecular weight

resin with 4% solids in anisole spun to 2000 Å and baked at 180∘ C for 7 minutes.

The top layer is 950,000 molecular weight resin with 2% solids in anisole spun to 750

Å and baked at 180∘ C for 3 minutes. The polymer resist is systematically patterned

by the electron beam. The double-layer creates an undercut during electron beam

lithography (EBL), allowing for better lift-off (see below).

We use an Elionix EBL system to perform EBL with resolution of a few nanome-

ters. For large features, we use a resolution of 10 nm and a dose of 2000𝜇C/cm2 at

20 nA beam current. For finer features, we use a resolution of 2.5 nm and a dose of

2600𝜇C/cm2 at 2 nA beam current. For the final etching in which we remove all

surrounding hBN and graphene except that between the contacts —also known as

the final mask— we use a resolution of 2.5 nm and a dose of 1200 𝜇C/cm2 to prevent

accidental overexposure of smaller features. We perform cold development using 1:3

isopropyl alcohol:water at 0 ∘C for 60 s, resulting in the pattern shown in Fig. 2-2d.

Etching of hBN and graphene is performed using reactive ion etching (RIE) on an

Inductively Coupled Plasma etching system (STS). We first perform a light O2 plasma

cleaning to remove PMMA residues that were not reduced during development. Then,

using plasma generated by a mixture of Ar, CHF3, and O2 gases, we selectively etch

away the hBN in the parts of the heterostructure unprotected by the lithographic
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mask (Fig. 2-2e). With this recipe, typical etching times for hBN are on the order of

5 nm per second. Graphene etches much more slowly, on the order of 20 seconds for

monolayer graphene.

Metal is evaporated into contacts via thermal evaporation using a Sharon Thermal

Evaporator at < 1e−6 Torr. For contacts, 3 nm chromium is deposited as a sticking

layer via thermal evaporation [52]. Then 50-70 nm of gold, depending on the thickness

of the hBN-graphene heterostructure, is deposited on top of chromium.

Liftoff —the removal of PMMA resist and any residual metal from thermal evaporation—

is performed by completely submerging the device in acetone at room temperature

for between 4-12 hours. While submerged, a plastic pipette can be used to flush the

device with acetone to accelerate liftoff. The final result is shown in Fig. 2-2f.

We repeat the same EBL and thermal evaporation procedures to define a metallic

top gate (3 nm chromium and 30-40 nm gold). Finally, we repeat the same EBL and

etching procedures to define the final Hall bar geometry, using for RIE, in this case,

a plasma generated by only O2 and CHF3 gases (Fig. 2-2g).

After the device is completed, we wire-bond the device onto a chip carrier specif-

ically selected for our measurement system, as shown in Fig. 2-2h.

2.3 Measurement methods

All of the data shown was taken in either a home-built He-4, 4K probe setup or in

a Janis He-3 system (Fig. 2-3a). We use a Lakeshore 340 Temperature Controller

to control the temperature between 300mK and room temperature. The magnet in

both systems is composed of superconducting copper wire and is controlled by a Cry-

omagnetics Helium Monitor and a Agilent Triple Output Power Supply. We perform

measurements using Stanford Research Systems (SRS) SR830 lock-in preamplifiers,

SR560 voltage preamplifiers, and Keithley 2400 Sourcemeters. In the 4K setup, a

single vacuum pump controls the sample chamber. In the He-3, two turbo pumps

control the sample chamber and the 1K pot separately.

All of our measurements are taken in devices with a Hall bar configuration. We
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Caption to add: Optical photographs and AFM image of fabrication steps. a, Encapsulated twisted bilayer 

graphene. Bottom hBN (blue), top hBN (black), and twisted bilayer (red) after PC removal on a high-

conductivity Si/SiO$_2$ substrate. Scale bar 30\,$\mu$m. b, Dark field image of heterostructure with region 

examined via atomic force microscopy (AFM) indicated in red. Scale bar 20\,$\mu$m. c, AFM image of regions 

used for Hall bar. Ripples are an artifact of the AFM and are not physical. White bar is 5\,$\mu$m. Area used 

for Hall bar indicated by dashed black rectangle. d, Protective PMMA mask. e, 1D contacts to graphene and 

graphite backgate. f, Hall bar after final etching. Scale bar 15\,$\mu$m for d-f.
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Figure 2-2: Images at various steps of fabrication for TBG-2.3∘. a) Encapsulated
twisted bilayer graphene. Bottom hBN (blue), top hBN (black), and twisted bilayer
(red) after PC removal on a high-conductivity Si/SiO2 substrate. Scale bar: 30𝜇m. b)
Dark field image of heterostructure with region examined via atomic force microscopy
(AFM) indicated in red. Scale bar: 20𝜇m. c) AFM image of regions used for Hall
bar. Ripples are an artifact of the AFM and are not physical. White bar is 5𝜇m. d)
Protective PMMA mask. Scale bar: 18𝜇m. e) Contact regions after plasma etching.
Si/SiO2 substrate appears brown. Scale bar: 20𝜇m. f) Contact regions after metal
deposition and lift-off. Scale bar: 20𝜇m. g) Hall bar after top gate is added and final
etching. Scale bar: 15𝜇m. h) Device bonded to ceramic chip carrier (gold-colored
region: 2cm×2cm).
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Figure 2-3: Measurement system. a) A Janis He-3 system with exchange gas. Our
fridge is an older version of the diagram shown. Diagram from Janis Research. b)
Four-terminal measurement configuration for determining the resistance of the chan-
nel. c) Hall effect measurement configuration. Magnetic field points out of plane.
d) Bend resistance measurement configuration for measuring ballistic transport. e)
Transverse magnetic focusing and vicinity resistance measurement configuration for
studying ballistic transport and viscous flow, respectively.
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show the device configurations referenced in the later sections in Fig. 2-3b-e.

2.3.1 Device characterization

Characterizing and understanding the device is a crucial part of the experimental

process. Here we describe the primary characterization measurement configurations

and explain their implications.

Longitudinal resistivity

As mentioned previously, graphene has linear energy dispersion that crosses through a

zero DOS point called the Dirac point. Charge inhomogeneity will cause a broadening

of this point with a width roughly corresponding to the size of the charge puddles. In

order to get a sense of the magnitude of this broadening, we drive an AC current, 𝐼,

through the sample between two contacts (source and drain) and measure the voltage

drop, 𝑉𝑥𝑥, between two others along the direction of current, while simultaneously

sweeping the gate, 𝑉𝐺, from negative to positive voltage, thereby changing the carrier

density and moving the Fermi level from the valence to the conduction band (Fig. 2-

3b). We calculate the sheet resistance as 𝜌𝑥𝑥 = (𝑉𝑥𝑥/𝐼)(𝐿/𝑊 )−1, where 𝐿 is the

distance between the contacts and 𝑊 is the width of the Hall bar. From the resistivity,

we can also calculate the mobility, 𝜇 = (𝜌𝑥𝑥𝑛𝑒)
−1, where 𝑛 is the carrier density.

Modeling the gate-hBN-graphene as a capacitor, the carrier density is proportional

the gate voltage, 𝑛 ∝ 𝑐𝑉 , where 𝑐 is the capacitance of hBN per area. When the

Fermi level is in the valence band, graphene behaves as a metal where the charge

carriers are holes, and the resistance is very small —typically a few Ω at 4K. As the

Fermi level reaches the Dirac point, the number of available states goes to 0, meaning

that the resistance spikes, typically to one or two kΩ. Moving the Fermi level into

the conduction band allows graphene to behave as a metal once again with electrons

as the charge carriers, therefore the resistance once again drops to a few Ω. We are

left with a characteristic curve of carrier density versus resistivity (Fig. 2-4a).
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(4 K)

e fd

2.2o

Figure 2-4: Standard characterization measurements for TBG-2.2∘. a) Comparison
between the Dirac peak of TBG-2.2∘ and of monolayer graphene. Both are similarly
narrow with a charge inhomogeniety on the order of 𝛿𝑛 = 1010cm−2. This is a
low charge inhomogeneity, likely due to the fact TBG-2.2∘ uses a graphite gate. b)
Conductivity versus carrier density for electrons, plotted on a log-log scale. Where the
red and blue lines intersect indicates 𝛿𝑛, which matches with the width of the Dirac
peak in a). c) Longitudinal (𝑅𝑥𝑥) resistance, plotted as a function of out-of-plane
magnetic field and temperature (black to red). The low temperature oscillations are
Shubnikov de Haas oscillations, which are suppressed as temperature is increased.
Lower frequency magnetophonon oscillations become clearly visible at these higher
temperatures. The Hall (𝑅𝑥𝑦) resistance at 4K is plotted in blue on top. At higher
magnetic fields, plateaus are visible in 𝑅𝑥𝑦, corresponding to the filling of Landau
levels. d) Mean free path for electrons, 𝑙𝑚𝑓𝑝, versus temperature 𝑇 , calculated at a
range of carrier densities, 𝑛, in TBG-2.2∘. 𝑙𝑚𝑓𝑝 is larger than or comparable to the
device width up to 20K for all carrier densities, demonstrating exceptional ballistic
transport. e) Landau fan with fits to various filling factors plotted in pink. The
Landau fan filling factor sequence for TBG will be (8N+4), double that of monolayer
graphene. As a side note, magic angle TBG will have (4N+4). f) Landau fan for
TBG-0.5∘. A beautiful Hofstadter butterly pattern is visible, where we have added
black lines to guide the eye. More experimental data is required to determine the
exact angle of this device.
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The Hall effect and the quantum Hall effect

The Hall effect also gives us a sense of the device’s behavior (Fig. 2-3c). Current is

driven in the channel and the voltage drop across the channel, transverse to current,

𝑉𝑥𝑦, is measured in the presence of an out-of-plane magnetic field. The classical Hall

effect tells us that a voltage difference will be produced transverse to the magnetic

field and current. In a 2DEG, the carrier density is related to the transverse, or Hall,

resistivity by 𝜌𝑥𝑦 = 𝐵/𝑛𝑒, thus we can use the Hall effect as one way of determining

the capacitance of the hBN dielectric by measuring 𝜌𝑥𝑦 as a function of gate voltage

at fixed magnetic field. Besides the Hall effect, we can also observe cyclotron motion,

characterized by the cyclotron frequency, 𝜔𝑐 = 𝑒𝐵/𝑚𝑐.

At strong enough electric fields, such that 𝜔𝑐𝜏 ∼ 1, where 𝜏 is the electron scatter-

ing time, the classical Hall effect picture fails. We see this as oscillations in 𝜌𝑥𝑥. This

behavior is fundamentally due to the DOS of the 2D electron gas (2DEG). Under the

application of a magnetic field, a general 2DEG DOS becomes a sequence of evenly

spaced peaks called Landau levels (LL) [19]:

𝑁(𝐸,𝐵) =
𝑔𝑒𝐵

ℎ

∑︁
𝛿 (𝐸 − 𝐸𝑛) (2.1)

where 𝑔 is the degeneracy of the 2DEG (𝑔 = 4 for monolayer graphene, 𝑔 = 8 for

TBG). For a simple harmonic oscillator, 𝐸𝑛 = ℎ̄𝜔𝑐(𝑛+1
2
) with 𝑛 = ...,−2,−1, 0, 1, 2, ...,

so we have evenly spaced LL. In the case of the graphene 2DEG, however, because of

the Dirac dispersion, the LL are not evenly spaced. Solving the Schrodinger equation

for a massless Dirac fermion, we get the relation:

𝐸𝑛 = sgn(𝑛)
√︁

2𝑒ℎ̄𝑣2𝐹 |𝑛|𝐵 (2.2)

We note that, in reality, the peaks in the DOS are broadened by disorder proportional

to 1/𝜏 . These peaks give rise to the oscillations in 𝜌𝑥𝑥 that we observe, typically

called Shubnikov de Haas oscillations (SdHO) [19]. Each LL has 𝑔𝑒𝐵/ℎ available

states, therefore the oscillations are periodic in 1/𝐵, corresponding to the filling of
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+

Figure 2-5: Data from ballistic characterization of SA-TBG devices. a) Transverse
magnetic focusing for TBG-2.2∘. Fits to equation 2.3 are plotted and show good
agreement with the eight-fold degeneracy of TBG. b) Bend resistance for TBG-2.2∘.

each LL. We can use these oscillations to determine the cyclotron mass, as explained

in the next section.

At high enough magnetic field, the oscillations in 𝜌𝑥𝑥 become peaks with vanishing

resistivity in between. 𝜌𝑥𝑦 becomes quantized in integer multiples of the universal

constant ℎ/𝑒2. This regime is called the quantum Hall regime. These effects can all

be observed using the measurement configuration in Fig. 2-3b.

Ballistic characterization

In order to make sure our devices are of high-quality, we want to observe long-distance

ballistic transport at low temperatures. We perform two main characterizations:

transverse magnetic focusing and bend resistance measurements.

Transverse magnetic focusing measures the drop in voltage at a specific distance

from an injection point as electrons are bent along cyclotron orbits as shown in

Fig. 2-3e [50]. The magnetic field required to bend an electron in a half orbit from

an injection point a distance 𝐿 to the measurement point is

𝐵 =
2ℎ̄𝑘𝐹
𝑒𝐿

(2.3)
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where in TBG, 𝑘𝐹 =
√︀

𝜋𝑛
2

, yielding 𝐵 ∝
√︀

𝑉gate. When Eq. 2.3 is satisfied, we see

a positive resonance in voltage versus magnetic field. We show an example of such

data in Fig. 2-5a.

Bend resistance provides a measure of the tendency of ballistic electrons to “over-

shoot”. As shown in Fig. 2-3d, a negative resistance measured directly across a Hall

bar channel from the drain indicates “overshooting” behavior and signifies ballistic

transport. An example of data is shown in Fig. 2-5b.

2.3.2 Determining twist angle

Although we aim for a particular angle during the fabrication process, the final device

is rarely at the targeted angle. The hot release technique as well as all other steps in

the fabrication process (including baking the PMMA resist) strain and heat the device

repeatedly, which can cause random relaxation of the angle. Therefore, it is extremely

important for us to determine the twist angle via transport measurements after the

device is completed and cooled. We outline three ways that we use to determine twist

angle but note that there are several other methods as well.

Cyclotron mass

a b c

Figure 2-6: Fitting cyclotron mass with the Lifshitz-Kosevich formula for TBG-2.2∘.
a) Quantum oscillations at various temperatures with polynomial background re-
moved. b) Normalized amplitudes versus temperature, fitted to Eq. 2.6 for three
different values of 𝐵. c) 𝑚𝑐 versus 𝑘𝐹 , fitted assuming Dirac spectrum to find the
Fermi velocity. Error bars are calculated as described in the main text.
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As previously mentioned, we expect the Fermi velocity to be suppressed in twisted

bilayer graphene, as in Fig. 1-4b. We can calculate the Fermi velocity and then use

theoretical predictions to determine the angle based on how much the Fermi velocity

has been suppressed. Assuming a Dirac spectrum, the Fermi velocity is given by

𝑣𝐹 =
𝑘𝐹
𝑚𝑐

=

√︀
𝜋𝑛/2

𝑚𝑐

(2.4)

where we obtain the right side of the equation from Eq. 2.2. Therefore, we just need

to determine 𝑚𝑐 at fixed 𝑛 to get 𝑣𝐹 . Note that because we assume a Dirac spectrum,

this method works for small 𝑛 only.

We determine the cyclotron mass 𝑚𝑐 versus carrier density 𝑛 by fitting SdHO as

a function of temperature using the Lifshitz-Kosevich formula [39]:

𝜌 = 𝑒−𝐷𝜆(𝑇 )/ sinh𝜆(𝑇 ) cos(2𝜋
𝐵𝐹

𝐵
+ 𝜋 + 𝜑) (2.5)

where 𝜆(𝑇 ) = 2𝜋2𝑘𝐵𝑇𝑚𝑐/ℎ̄𝑒𝐵, 𝐷 is the Dingle factor contribution, and 𝐵𝐹 is the

fundamental frequency. We work in a range of temperatures from 4K to 10 K where

we find the quantum oscillations are strongest. We first subtract off any background

oscillations by subtracting 𝜌𝑥𝑥(20 K) from 𝜌𝑥𝑥(𝑇 ). To further isolate the quantum

oscillations, we subtract off a second-order polynomial background, resulting in the

curves like those shown in Fig. 2-6a.

For a given carrier density, we extract the amplitude of 𝜌𝑥𝑥 as a function of tem-

perature and magnetic field. We then normalise to the amplitude at 4K in order to

remove the Dingle factor, allowing us to fit the normalized amplitude versus temper-

ature to the following simplified formula:

∆𝜌𝑥𝑥(𝑇 )/∆𝜌𝑥𝑥(𝑇0) = 𝜆(𝑇 ) sinh𝜆(𝑇0)/𝜆(𝑇0) sinh𝜆(𝑇 ) (2.6)

and extract 𝑚𝑐, which we plot in Fig. 2-6b. The error from the fit contributes an error

of 1 to 10% and the error in the fit at various 𝐵 contributes a standard deviation

error of about 10%. We then plot 𝑚𝑐 versus 𝑘𝐹 , and, assuming a linear dispersion,
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derive the Fermi velocity as in Fig. 2-6c.

Fitting in the presence of multiple types of QO

Special thanks to Clément Collignon for providing a great deal of guidance in this

section.

The method of analysis described above works well when the only oscillations

present are SdHO. However, if another type of oscillation is present under the same

conditions as SdHO, we will experience a beating of the two. Worse, if the second

oscillation has a different temperature or carrier density dependence, we will poten-

tially pick up this modulation in the fit, giving an inaccurate estimate of the effective

mass. Assuming that the second type of oscillation has a difference frequency, we

can use a fast Fourier Transform (FFT) to separate out the two oscillations and their

respective temperature dependences.

We first take the second derivative of 𝜌𝑥𝑥 with respect to 𝐵, which removes an

additive background of up to second order (Fig. 2-7b). We then perform FFT on

𝜕2𝜌𝑥𝑥/𝜕𝐵
2(1/𝐵) using a Blackman window centered on a hand-picked region with

the cleanest oscillations (Fig. 2-7c). An additional trick we may play in order to

improve the FFT sampling is to set 𝜌𝑥𝑥 to 0 outside the Blackman window for a

wide range of 1/𝐵. We then take a linecut through the maxima at the fundamental

frequency 𝐵𝐹 , and fit it to the Lifshitz-Kosevich formula in Fourier space following

Eq. 2.5 (noting the cosine term simply gives us the peak at 𝐵𝐹 ). We perform the

fitting with two variables, 𝑚 and 𝑒−𝐷, the latter of which we simply set to a fixed

amplitude, and we set 𝐵 to be the center of the Blackman window.

We then repeat this process for a few sets of Blackman windows with different

centers to make sure the fundamental frequency is independent of our choice of region

(Fig. 2-7d).

This method also allows us to access both the Dingle factor 𝐷 and the secondary

oscillation’s temperature dependence, which will appear as a second peak (which we

must be careful to differentiate from the harmonics of 𝐵𝐹 ).
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c d

Figure 2-7: Determining effective mass using FFT analysis for TBG-2.3∘ at −4 V
on the top gate. a) Raw resistivity data versus 1/B. b) Second derivative of data
in a) to remove up to second order polynomial background. The purple indicates
the region we select by hand to perform FFT on. c) FFT of purple region in b)
with a Blackman window applied. The true 𝐵𝐹 is the dip between the two peaks
indicated. The double peak (black vertical lines) is a result of beating between SdHO
and magnetophonons. d) We perform b) and c) four times, each time moving the
purple window slightly to the left and right to double check that the effective mass
and fundamental frequency do not shift with the choice of window. We fit the four
windows and average to find the effective mass, 1.91 × 10−32 kg.
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Filling of the lowest superlattice band

The previous method of determining twist angle by suppression of Fermi velocity relies

heavily on theoretical predictions for the functional dependence of Fermi velocity on

angle. Much still remains to be understood about twisted bilayer graphene, so we

cannot wholly trust these calculations. Therefore, a more accurate way to determine

the angle relies on determining the carrier density at which the superlattice gaps

appear, i.e. the density required to fill one band in the superlattice. This carrier

density is defined as

𝑛𝑠 =
4

𝐴
= 4 × 8 sin2(𝜃/2)√

3𝑎2
(2.7)

where 𝐴 is the area of the moiré unit cell and 𝑎 is the graphene lattice constant,

2.46Å. We can approximate the right side of 2.7 as ≈ 8𝜃2√
3𝑎2

.

The filling of one superlattice band, therefore reaching the superlattice gap, will

appear as a huge increase in resistance in transport. Additionally, at roughly 𝑛𝑠/2,

we will see the sign of the Hall resistance change at the van Hove singularities.

A few caveats for this method exist: for small twist angles, localized states make it

difficult to determine 𝑛𝑠 accurately. Additionally, for twist angles below ≈ 1∘, Ref. [9]

and others have experimentally observed that the resistance peaks in transport data

may correspond to 2𝑛𝑠 rather than 𝑛𝑠, giving an ambiguous factor of
√

2 in the angle.

Brown-Zak oscillations

The final and perhaps most accurate way to determine twist angle is through Brown-

Zak oscillations (BZO) [3]. BZO occur when there is a superlattice due to spatial

quantization on the length scale 𝐿 ≈ 𝑎𝑞, where 𝑞 is the number of units cells in the

miniband.

We can use the relation between angle and size of the superlattice unit cell area

to find the relation √
3𝑎2

2𝜃2
= ∆(

1

𝐵
)𝜑0 (2.8)

where ∆( 1
𝐵

) is the period of BZO versus 1/𝐵 and 𝜑0 is the magnetic flux quantum.

BZO do not appear in all our samples, and so, although this method is the most
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Figure 2-8: Alternate methods of determining twist angle. a) Longitudinal resistance
versus backgate voltage (directly proportional to carrier density). The Dirac peak
appears as a small peak on the right, and the superlattice gap appears as a tall peak
on the left. b) 1/𝑅𝑥𝑦 versus backgate voltage. The superlattice gap appears as a
change in sign of 1/𝑅𝑥𝑦. The slope of 1/𝑅𝑥𝑦 near the two neutrality points can be
used to determine the capacitance of the bottom hBN, as shown by the dashed lines.
c) Brown-zak oscillaions (BZO) versus 𝐵-field. Black arrows indicate the peaks. Note
the oscillations are periodic in 1/𝐵. d) Fit of the 1/𝐵 locations of the BZO peaks
versus peak number. The slope gives the fundamental frequency.

46



accurate, we have to rely on the two previous methods as well.

Now that we have the tools to first fabricate and then characterize devices, we

will move on to trying to observe some interesting phenomena.
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Chapter 3

Onset of Fluidity in TBG

Vicinity resistance has been shown, experimentally and theoretically, to be

a simple transport probe for viscous fluid behavior in graphene systems.

We show that SA-TBG devices above the magic angle display negative

vicinity resistance, indicating the onset of fluidity. Furthermore, we find

evidence of competition between momentum-conserving and momentum-

non-conserving interactions in the same device.

3.1 Introduction - the graphene electron fluid and

transport probes

Transport in many-particle systems where carrier-carrier collisions are the dominant

interaction —for example, in most liquids— has been studied for over two centuries

and can be accurately described by hydrodynamic theory [30]. Theoretical proposals

have postulated that the collective behavior of charge carriers in solids can also be

treated by the hydrodynamic approach, but experimental evidence of hydrodynamic

electron transport proved difficult to find [21, 12].

However, in recent years, graphene on hBN has been shown to provide a uniquely

suitable platform for the study of hydrodynamics [1, 23, 28, 49]. Advances in fabrica-

tion allow for ultraclean graphene samples with low disorder. Additionally, graphene
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———— ————

Ballistic flowa

b

c

Figure 3-1: Visualization of the three regimes of electronic transport in a vicinity
resistance measurement configuration. a) In the ballistic regime, vicinity resistance is
positive. b) Shear flow in the viscous electron fluid generates an electric field opposite
to the direction of the applied electric field, and vicinity resistance is negative. c)
Vicinity resistance is once again positive in the ohmic regime. b) and c) adapted
from [33]
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has weak electron-phonon coupling, meaning that the electron mean free path, 𝑙𝑚𝑓𝑝,

can be micrometers in length (larger than the system size), even up to room temper-

ature [50]. Moreover, in an idealized graphene device, the electron-electron scattering

length 𝑙𝑒𝑒 ≪ 𝑙𝑚𝑓𝑝 for a range of easily accessible temperatures, meaning that carrier-

carrier collisions are the dominant interaction.

So far, the behavior of electron fluids has primarily been theoretically discussed

deep in the hydrodynamic regime, where 𝑙𝑒𝑒, tunable by temperature and charge

density, is the shortest length-scale of the system [33, 51]. In contrast, in graphene,

experimental conditions are such that 𝑙𝑒𝑒 is comparable or at most a few times smaller

than the system dimensions, allowing investigation only close to the onset of fluid-

ity [2]. Therefore, there remains an important yet challenging task to push farther

into the hydrodynamic regime in graphene where a variety of interesting phenomena

remain to be explored.

It is here that twist angle provides us a third knob, other than temperature and

charge density, with which to control the onset of the hydrodynamic regime. Theoret-

ical proposals have suggested that TBG near the magic angle may exhibit enhanced

hydrodynamic behavior [58]. Following this suggestion, we proposed to study hydro-

dynamics in the regime of SA-TBG.

3.2 Background - regimes of electronic transport

Seeing hydrodynamics at play in the macroscopic world is not too hard: properties

like viscosity are tangible (watch honey slowly drip from a spoon), and physical

laws like Poiseuille flow can be visualized at home (squeeze some toothpaste out

of a tube). But when we pan down to the nanoscale, deciding if something can

be described by hydrodynamics becomes much harder. For example, under some

conditions, the electrons in graphene behave as a viscous electron fluid and therefore

should theoretically obey Poiseuille’s law, but visualizing this is difficult. Recently, a

group managed to do this with a scanning carbon nanotube single-electron transistor,

a great feat of engineering [49]. Other groups have used nitrogen-vacancy centers
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in diamond as quantum magnetometers to image the viscous flow of graphene and

the characteristic Poiseuille parabola [23, 28]. All these methods require extremely

complicated, expensive, and delicate equipment. If we could have a way quantify

hydrodynamic behavior in electron transport instead, this would be an attractive

alternative.

We will begin by a brief overview of the three main regimes of electron transport:

the ballistic regime, the diffusive regime, and the hydrodynamic regime. The first two

have been studied in solid state physics for the past 100 years or more, but the latter

has only relatively recently become accessible to experimentalists. Our discussion will

focus on these regimes specifically in graphene.

3.2.1 Diffusive regime and the Drude model

The diffusive regime considers electron transport on length scales much longer than

the electron mean free path —the average distance an electron travels before elasti-

cally scattering off impurities. The ideas of the Drude model, which describes elec-

trons in a metal bouncing off of heavier, immobile ions, can be applied here [24].

We can derive the conductivity by considering what happens in the presence of a

weak electric field [24]. Assume the average time between collisions is 𝜏 . The average

momentum of a given electron just before a collision is then ⟨p⟩ = 𝑒E𝜏 , where 𝑒 is

the electron charge and E is the applied field. We also have that ⟨p⟩ = 𝑚⟨v⟩ and

J = 𝑛𝑒⟨v⟩, where J is the current density and 𝑛 is the carrier density. Combining

these together, we get

J = 𝜎E =

(︂
𝑛𝑒2𝜏

𝑚

)︂
E (3.1)

From this, we can also write the mean free path 𝑙𝑚𝑓𝑝 = 𝑣𝐹 𝜏 , and using Eq. 3.1, can

find 𝑙𝑚𝑓𝑝 by measuring the conductivity (a simple quantity to measure in transport).

Similarly, we can write the mobility, 𝜇 = 𝜎
𝑛𝑒

. We note that at high temperatures,

𝜇 is limited by inelastic electron-phonon scattering. Such scattering process do not

conserve electron momentum.
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3.2.2 Ballistic regime

The ballistic regime, as its name implies, describes a regime in which electrons behave

like “billiard balls” (obeying Newton’s second law), with mean free path longer than

the size of the system. In this regime, momentum relaxation does not occur in the

bulk because scattering processes are rare, but rather occurs at the edges of the

system.

As described in chapter 2, in the ballistic regime, we can observe bend resistance

and magnetic focusing, both of which can be described using classical equations for

an electron in a magnetic field in this regime.

3.2.3 Viscous regime and vicinity resistance

The hydrodynamic regime, as mentioned in the introduction, requires that the electron-

electron scattering dominate over all other scattering processes [21, 33]. In this case,

we look at the dynamics of this system on length scales and timescales much larger

than the electron-electron interaction length and timescale, i.e. we consider macro-

scopic behavior at equilibrium rather than the behavior of individual electrons as

we did in the ballistic regime. Note that, unlike the electron-phonon scattering pro-

cess mentioned previously, these interactions are conserve electron momentum, a fact

which is important for the formulation of hydrodynamic theory.

We can use Fermi liquid theory, which describes interacting fermions, to derive a

few constants that we will later find useful. The electron-electron mean free path can

be written as

𝑙𝑒𝑒 = 𝑣𝐹 𝜏𝑒𝑒 (3.2)

where 𝑣𝐹 is the Fermi velocity and 1/𝜏𝑒𝑒 is the electron-electron scattering rate, with

𝜏𝑒𝑒 ≈
ℎ̄𝐸𝐹

(𝑘𝐵𝑇 )2
(3.3)

The physical implications of Eqs. 3.2 and 3.3 are the following: taking the limit as

𝑇 → 0, we see that the scattering rate 1/𝜏𝑒𝑒 ∝ 𝑇 2 goes to 0 to first approximation.
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After scattering, the quasiparticles go into unoccupied states, but the probability of

having such an available state goes to 0. This is because the width of the Fermi

surface smearing defines the probability of finding such a state, and this width is

proportional to temperature as well.

How do we use transport to quantify hydrodynamic behavior? In the graphene

2DEG in particular, we can think of hydrodynamic behavior as arising from mo-

mentum conservation. Momentum is rapidly exchanged via carrier collisions in a

viscous system, leading to collective behavior. Since momentum must be conserved,

this collective behavior may be summarized as hydrodynamic momentum transport

modes [33]. In the configuration shown in Fig. 3-1, where we drive current from

source to drain by applying an electric field, momentum diffuses transverse to the

direction of the applied field. This diffusion creates the shear flow and corresponding

backflow, leading to “pockets” of electric field acting in the opposite direction of the

applied field near the source and drain. We can also think of this as the injected

current dragging the fluid adjacent to the injection point, creating negative potential

regions. We can measure these “pockets” as negative nonlocal resistance, which we

call vicinity resistance. In the past few years, several papers have shown that neg-

ative vicinity resistance is a reliable way to study hydrodynamic behavior in mono-

and bilayer graphene devices [1, 2, 4, 26]. We will use vicinity resistance to quantify

hydrodynamic behavior in SA-TBG devices [33].

3.3 Results

We fabricated two multi-terminal Hall bars consisting of SA-TBG encapsulated in

relatively thick (> 40 nm) hBN crystals, following the methods detailed previously (p.

31). We label the devices TBG-2.2∘ and TBG-2.3∘, referencing the twist angle. TBG-

2.2∘ has a local graphite backgate and no topgate (Fig. 3-2a). TBG-2.3∘ is gated below

globally by the Si wafer through SiO2 and locally gated above by PdAu (Fig. 3-2d).

For TBG-2.3∘, we determined the twist angle by Brown-Zak oscillations. In TBG-

2.2∘, we did not observe either of these phenomena, and so used the suppression of
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Figure 3-2: Characterization of TBG-2.2∘ and TBG-2.3∘. Optical image of TBG-2.2∘.
b) Narrow Dirac peak for TBG-2.2∘, indicating low charge inhomogeneity. The peak
is narrower in carrier density than TBG-2.3∘, most likely due to the fact that TBG-
2.2∘ has a graphite backgate and TBG-2.3∘ has a PdAu topgate and Si bottom gate.
Graphite has been shown to have lower charge disorder than metals and silicon. c)
TMF for TBG-2.2∘, showing ballistic transport over long distances. d) Optical image
of TBG-2.3∘. e) Narrow Dirac peak for TBG-2.3∘. f) TMF for TBG-2.3∘, showing
ballistic transport over long distances.
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Figure 3-3: Vicinity resistance versus temperature in SA-TBG. a) Top: vicinity
resistance for monolayer graphene. Bottom: vicinity resistance for TBG-2.2∘. Note
that the regime of negative vicinity resistance in TBG-2.2∘ is much smaller in area,
extending to a smaller extent in both 𝑛 and 𝑇 . Monolayer data adapted from [1].
b) Line-cut at 𝑛 = 0.25(1012 cm−2) for monolayer (blue) and TBG-2.2∘ (red). c)
Longitudinal resistivity versus temperature for monolayer (blue), bilayer (green), and
SA-TBG (red and orange) devices. Note that the SA-TBG devices show a much
stronger increase in resistivity.

Fermi velocity to determine twist angle. For both devices, we also determine the

effective mass as a function of carrier density using the methods outlined previously.

We first characterized the two devices in the ballistic and diffusive regimes. As

shown in Fig. 3-2b and e, both devices display a narrow Dirac peak, indicating low

charge inhomogeneity. We then performed transverse magnetic focusing (TMF) and

bend resistance measurements to determine the ballistic behavior. Both devices, as

in Fig. 3-2c and f, showed clean TMF and negative bend resistance.

Having determined that at low temperatures, our devices were ballistic, we began

to increase the temperature and to see if we could observe hydrodynamic behavior.

Following previous experiments [1, 2, 4, 26] and theoretical work [51, 33, 37], we

measured vicinity resistance as shown in Fig. 2-3e. As shown in Fig. 3-3a, we see

negative vicinity resistance, a signature of the onset of fluidity. However, as shown in

Fig. 3-3b, in comparison to graphene, although the crossover regime in TBG sets in

at a lower temperature, it spans a much smaller range than in monolayer graphene.

As we measured 𝜌𝑥𝑥 with increasing temperature, we noticed something interest-

ing: in graphene 𝜌𝑥𝑥(𝑇 ) weakly increases with temperature, but in TBG, we see a
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rapid increase in resistivity up to kΩ at room temperature (Fig. 3-3c). Plotting the

temperature dependence alongside a linecut of the vicinity resistance as in Fig. 3-3b

and c, we see that this rapid increase in resistivity is what is damping the negative

vicinity resistance. In other words, we witness a competition between momentum-

conserving interactions (hydrodynamic) and momentum non-conserving interactions

(mechanisms causing the rapid increase in 𝜌𝑥𝑥) in overlapping regimes in the same

device. The fact that negative vicinity resistance appears at all in SA-TBG devices

is remarkable, particularly given the nearly 10-fold increase in resistivity at 100 K as

compared to monolayer. The exact nature of the viscous regime in SA-TBG devices

requires further exploration —in particular, it would be useful to measure the kine-

matic and Hall viscosities and compare these values to those previously obtained for

monolayer graphene [1, 4]. Experimentally, the Hall viscosity will require the ability

to apply magnetic field over the regime of negative vicinity resistance (up to 100K),

which is not possible in the Janis He-3 system we used.

3.4 Conclusion - competing interactions

We observe the onset of fluidity in SA-TBG devices via vicinity resistance transport

measurements. Additionally, a competition between momentum-conserving and mo-

mentum non-conserving scattering processes appears in the same device. This behav-

ior is markedly different from previous measurements in mono- and bilayer graphene.

Our observations opens avenues for interesting studies of the crossover between these

two regimes and raises the question: what are these momentum non-conserving in-

teractions? We address this question in the following chapters.
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Chapter 4

Enhanced resistivity in SA-TBG

Summary: For twist angles between 0 and 4∘, we measure 𝜌xx(𝑇 ) for tem-

peratures from 4 K to 300 K. We observe that 𝜌xx(𝑇 ) increases much more

strongly as a function of temperature than in mono- or bilayer graphene,

and moreover shows a strong dependence on twist angle in both magni-

tude and also functional dependence. Previous work at smaller angles

suggested a linear-in-temperature dependence due to phonon-scattering,

citing an electron-phonon coupling mechanism similar to that in metals.

We find evidence that this behavior does not persist at larger twist angles.

4.1 Introduction - temperature-dependent resistance

in TBG

It is generally known to experimentalists working with SA-TBG that, near the magic

angle, devices exhibit longitudinal resistivity with unusually strong temperature de-

pendences, reaching several kΩ by 20 K [39, 10]. As shown in chapter 3, we see a

strong increase in resistivity at larger angles as well. The mechanisms that cause this

strong increase in resistivity —and whether they are the same across all twist angles

or if they are an amalgamation of separate, competing mechanisms— is an interesting

topic because they have to do with how momentum is relaxed in SA-TBG. In par-
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ticular, they may be related to the superconductivity observed in SA-TBG devices

around the magic angle.

4.2 Background

The functional dependence of resistivity on temperature is an important question for

nearly all condensed matter systems. For example, efforts to understand momentum-

relaxation mechanisms in metals have been going on since well into the 1900’s. Al-

though the simple picture we are taught in elementary electricity and magnetism

claims that resistance is linear with temperature in a metal wire, reality proves very

different. As just one example of many, aluminium at low temperatures has been

shown to have a ∝ 𝑇 2 component in resistivity. The mechanism behind this was sub-

ject to several theoretical papers in the 1970’s and 1980’s [31, 35, 36]. At the risk of

giving away the rest of this chapter, we note that, surprisingly, these mechanisms may

be related to the observed quartic temperature dependence we observe in SA-TBG

at larger twist angles, although much experimental and theoretical work remains to

be done.

Previous work on the temperature dependence of resistivity in SA-TBG found a

linear-in-temperature dependence for angles near 1.1∘ [39, 8]. The mechanism that

Ref. [39] found fit their experimental results relies on quasielastic scattering of elec-

trons on acoustic phonons, somewhat similar to the mechanisms that describe the

temperature dependence in superconducting metals [34, 39]. The model they present

is the following:

𝜌 =
𝜋𝐹𝐷2

𝐴

𝑔𝑒2ℎ̄𝜌𝑚𝑣2𝐹𝑣
2
𝑝ℎ

𝑘𝐵𝑇 (4.1)

where 𝐷𝐴 is the deformation potential describing the strength of electron-phonon

coupling, ℎ̄ is the reduced planck’s constant, 𝑒 is the charge of an electron, 𝑘𝐵 is

Boltzmann’s constant, 𝑣𝐹 is the Fermi velocity, 𝑣𝑝ℎ is the speed of sound, 𝜌𝑚 is

the mass density, 𝑔 is the degeneracy in TBG (8), and 𝐹 is a form factor that is

approximately 0.5 for TBG. The model applies at low carrier densities, when the

Fermi surface is smaller than the Brillouin zone (BZ). Because of the 𝑣−2
𝐹 factor,

60



the authors find that the renormalization of the Fermi velocity near the magic angle

can account for the drastic increase in resistivity, assuming large enough electron-

phonon coupling. This explanation, which offers a single mechanism to account for

the behavior observed at a range of twist angles near 1.1∘, is in disagreement with

other theories [8], which posit that, rather than a metal-like relaxation mechanism,

magic-angle graphene displays strange metal-like behavior with quantum fluctuations

being the source of large linear-in-temperature resistivity.

With these differing explanations in mind, we now move on to exploring the

temperature dependence of resistivity ourselves.

4.3 Results

We measure 𝜌xx(𝑇 ) in four devices with twist angles above the magic angle and one

below. We use the same naming conventions as before for devices of twist angles

0.5∘, 1.65∘, 2.2∘, 2.3∘, and 4∘. All devices are characterized as described in chapter 2

and exhibit ballistic transport over long distances at low temperatures (Figs. 3-2 and

4-1). The angles of TBG-2.2∘ and TBG-2.3∘ were determined by the suppression of

Fermi velocity and Brown-Zak oscillations, respectively. In TBG-1.65∘, we were able

to reach full filling of the minibands to determine the angle. Two of the devices,

namely TBG-0.5∘ and TBG-4∘, have large uncertainties on the angle because we do

not have enough data at the present time to determine the angle accurately. However,

we have calculated bounds on the possible angles with the available data, and label

them by an esimate of the angle. For comparison, we also consider hBN-encapsulated

monolayer graphene (MLG) and bilayer graphene (BLG) devices. These devices were

fabricated following the same processes and also exhibit ballistic transport at low

temperatures.

Fig. 2-4a compares the low-temperature resistivity, 𝜌(𝑛, 𝑇 ), of large-angle TBG

and MLG. The two are nearly identical and show the same narrow Dirac peak, demon-

strating low charge inhomogeneity. In fact, at low temperatures away from the neu-

trality point, all five devices exhibit similar 𝜌(𝑛, 𝑇 ) values of 20-40 Ω. The low sheet
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Figure 4-1: Device characterization for TBG-1.65∘ and TBG-0.5∘. a) Optical image
of TBG-1.65∘. The Hall bar measured is the rightmost of the two shown. b) Narrow
Dirac peak for TBG-1.65∘. We do not currently know the origin of the small bumps
on either side of the Dirac peak, but find they do not have a functional dependence on
gating or magnetic field. c) TMF for TBG-1.65∘. The apparent difference in quality
between TMF for this smaller angle device in comparison to TBG-2.2∘ and TBG-
2.3∘ is likely due to trigonal warping of the Fermi surface, which will be enhanced
at smaller angles. The device also displays negative bend resistance, so we can be
fairly confident that the device is ballistic at low temperature. d) Optical image of
TBG-0.5∘. We do not currently have enough data to determine the exact twist angle
of the device. e) Narrow Dirac peak for TBG-0.5∘ as well as secondary peaks that
are suppressed by increasing temperature. The large offset from zero may be due to
a poor contact. f) Landau fan at 4K displaying a Hofstadter butterfly. Black lines
guide the eye. We do not yet have ballistic transport data for this device, but the
cleanliness of the Landau fan indicates the device is of high quality.
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Figure 4-2: Resistivity versus carrier density for a range of temperatures in five
devices. a) 𝜌𝑥𝑥(𝑇 ) vs. 𝑛 for 𝑇 = 96 to 𝑇 = 220 K in TBG-0.5∘. Note that at low
temperatures (Fig. 4-1), 𝜌𝑥𝑥 has several secondary peaks that are suppressed with
temperature. b) 𝜌𝑥𝑥(𝑇 ) vs. 𝑛 for TBG-1.65∘ from 4K to 280K. Note this device
reaches the highest values of resistivity and exaggerated thermal broadening. c)
𝜌𝑥𝑥(𝑇 ) vs. 𝑛 for TBG-2.2∘ from 4K to 290K. d) 𝜌𝑥𝑥(𝑇 ) vs. 𝑛 for TBG-2.3∘ from 4K
to 200K. e) 𝜌𝑥𝑥(𝑇 ) vs. 𝑛 for TBG-4∘ from 4K to 200K.

resistance coupled with the narrow Dirac peaks in Figs. 3-3, 3-2, and 4-1 are an in-

dicator of high-quality, clean 2DEGs. The high-temperature resistivity of the TBG

devices differs widely from that of monolayer: as shown in Fig. 3-3c, MLG and BLG

are linear in 𝑇 . However, in Fig. 4-2, we see that, for all angles, the TBG resistivity

is strongly enhanced and the Dirac peak is broadened, as expected, due to thermal

excitations. The linear 𝜌(𝑇 ) dependence in MLG and BLG is in agreement with

phonon-impeded transport [39, 34]. In contrast, we find that SA-TBG exhibits much

faster growth in 𝜌(𝑇 ) over a range of 𝑛 (Fig. 4-2 and 4-3). Note we restrict ourselves

to small fillings where the Fermi surface is small in comparison to the first BZ. There-

fore, this approximately ∝ 𝑇 2 dependence appears in a regime where conventional

Umklapp scattering —a known mechanism for 𝑇 2 behavior— cannot occur.
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Figure 4-3: Log-log plots of excess resistivity versus temperature for devices above
the magic angle at a range of carrier densities. a) ∆𝜌𝑥𝑥 vs. 𝑇 for TBG-1.65∘ at a
characteristic range of carrier densities for both electrons and holes. At lower temper-
atures, ∆𝜌𝑥𝑥 follows a 𝑇 2 dependence, but saturates to a linear-in-𝑇 dependence at
higher temperature, in agreement with [39]. b) ∆𝜌𝑥𝑥 vs. 𝑇 for TBG-2.2∘, displaying
a clear 𝑇 2 dependence for a wide range of carrier densities. c) ∆𝜌𝑥𝑥 vs. 𝑇 for TBG-
2.3∘, again displaying a strong 𝑇 2 dependence for a wide range of carrier densities.
d) ∆𝜌𝑥𝑥 vs. 𝑇 for TBG-4∘, displaying a 𝑇 2 dependence for smaller carrier densities
and a super-linear dependence (≈ 𝑇 4/3) for larger carrier densities.
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We consider the excess resistivity, ∆𝜌(𝑇 ) = 𝜌(𝑇 ) − 𝜌(4K), which captures the

temperature-dependent portion of 𝜌(𝑇 ) (Fig. 4-3). Focusing now on only twist angles

above the magic angle, a log-log plot clearly demonstrates that ∆𝜌(𝑇 ) closely follows

a 𝑇 2 dependence for a wide range of carrier densities for TBG-2.2∘ and TBG-2.3∘.

However, although TBG-1.65∘ initially follows a 𝑇 2 dependence at lower tempera-

tures, the dependence becomes linear at higher temperatures. Ref. [39] found similar

behavior, and our results are in agreement with devices of similar angle that they

measured (i.e. Fig. 3 of [39]). For TBG-4∘, the excess resistivity follows a 𝑇 2 depen-

dence for small carrier densities, but decreases to a superlinear, approximately 𝑇 4/3,

dependence for larger carrier densities. Additionally, it displays similar behavior to

TBG-1.65∘ in that at low temperatures, the excess resistivity at all carrier densities

displays stronger functional dependence on temperature than at higher temperatures.

We note an asymmetry in 𝜌𝑥𝑥 for electrons and holes in three of the devices, which

results in some slight difference in the temperature dependence of 𝜌𝑥𝑥 for similar |𝑛|.

Calculations of the band structure show an asymmetry in electron and hole bands,

which may play a role in the observed asymmetry, possibly through differences in

carrier-phonon coupling. Previous works have also noted discrepancies between the

electron and hole sides, and attribute this to asymmetric band structure [39].

Before moving on to the next section, we wish to give a quick look ahead to chap-

ter 5, where we will find evidence for a mechanism that could potentially serve as

an explanation for the observed 𝑇 2 behavior. In the next chapter, we will observe

the presence of magnetophonon oscillations in TBG-1.65∘, TBG-2.2∘, and TBG-2.3∘.

At high carrier densities, we can see their contribution even below 10K, where they

appear in conjunction with SdHO. From the acoustic phonon spectrum, we can esti-

mate the energy and momentum of the active phonons and will hypothesize a possible

mechanism for the observed resistivity. For now, however, we will consider other pos-

sible mechanisms.
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193d

Figure 4-4: Summary of excess resistivity versus electron density and angle at 𝑇 =
100𝐾. 𝑛 = 1.8 × 1012cm−2 (black), 𝑛 = 1.5 × 1012cm−2 (red), 𝑛 = 1.0 × 1012cm−2

(green), 𝑛 = 0.5 × 1012cm−2 (blue). Note that the excess resistivity increases around
the magic angle and decreases to either side, for larger and smaller angles.

66



4.4 Conclusion - explanations for 𝑇 2 behavior

We first wish to exclude the possibility of quasielastic electron-phonon scattering

as given in Ref. [39]: we note the simple renormalization of the Fermi velocity in

TBG cannot explain the 𝑇 2 behavior. In particular, considering Fig. 3-3c, the Fermi

velocity of bilayer graphene (green) is close to that of TBG-2.2∘ (red), but they clearly

exhibit greatly differing behavior. Assuming a deformation potential of 45 eV, and

following theoretical work, we may plot the sheet resistance contribution by phonon-

mediated relaxation, which we plot in the same figure as a red line [34, 39]. Even

a generous estimation for the deformation potential, such a model cannot reach the

rapid growth in 𝜌(𝑇 ) that we observe.

As previously shown in graphene-hBN superlattices [27], the superlattice potential

can have an extreme effect on resistivity, causing, for example, the nearly constant-

in-temperature resistivity of monolayer graphene to switch to a strong 𝑇 2 dependence

when aligned with hBN, an insulator with a similar lattice constant. Such an effect

is due to the creation of a mini-BZ around the Dirac points, with length scales de-

termined by 𝜆, the reciprocal superlattice vector. Since 𝜆 ≫ 𝑎 for small angles (less

than ≈ 15∘), the reciprocal superlattice vector is much smaller than the reciprocal

lattice vector of graphene, and thus Umklapp scattering processes can occur despite

the weak electron-phonon coupling of graphene.

Following this line of thought, we posit a simple picture that explains the observed

quadratic dependence as well as the crossover to a linear regime for high carrier

densities for holes. We consider a two-electron scattering process between the 𝐾 and

𝐾 ′ points of the mini-BZ. The two electrons can scatter from one side of the Fermi

surface around the 𝐾 point, for example, to the opposite side of the Fermi surface

around the 𝐾 ′ point, yielding a total change in momentum

∆𝑘 = 2𝑘𝐹 +
𝐺√

3
− (−2𝑘𝐹 ). (4.2)

If ∆𝑘 = 𝐺, such processes are allowed. This yields 𝑘𝐹 = 12𝐺
3
√
3−

√
3
≈ 0.1𝐺. For

TBG-2.2∘, we achieve such a condition at 𝑛 ≈ 0.6 × 1012 cm−2.

67



We note such a two-electron process may account for the 𝑇 2 dependence. As

carrier density is increased, however, we observe a linear trend for TBG-1.65∘ and

TBG-4∘. If we consider the same picture but instead for single electron-phonon

scattering processes, ∆𝑘 changes to

∆𝑘 = 𝑘𝐹 +
𝐺√

3
− (−𝑘𝐹 ) (4.3)

and thus our requirement on the Fermi momentum is now 𝑘𝐹 ≈ 0.2𝐺. This equates to

a carrier density of 𝑛 ≈ 2.4×1012 cm−2, in agreement with experimental observation.

However, the rate at which these electron-electron and electron-phonon scattering

processes occur may not be high enough to justify the 𝑇 2 behavior, so this scenario

requires additional thought.

Alternatively, we can explain the 𝑇 2 behavior as a result of moiré phonons in

twisted bilayer. As described in chapter 5, magnetophonons are present in all three

larger-angle devices and correspond well to transverse shear phonon branches. Be-

cause the moiré pattern results in mini-BZ that are much smaller than the graphene

BZ, we can achieve inter-layer scattering from phonons between the valleys of the

mini-BZ. We elaborate on this scenario in the next chapter.
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Chapter 5

Observation of Magnetophonon

Oscillations in TBG

Summary: We observe magnetophonon oscillations in TBG devices above

the magic angle. By studying the carrier density dependence, we are able

to identify potential shear phonon modes. Our observations allow us to

develop a potential explanation for the 𝑇 2 resistivity observed previously,

and also have implications for further studies on phonon-driven phenom-

ena in SA-TBG.

5.1 Introduction - magnetophonons in graphene

As mentioned previously, we noticed that the SdHO, while strong and cleanly periodic

in the TBG devices, seem to have a strange beating pattern that modifies the normal

𝜆 sinh(𝜆) envelope (visible in Fig. 2-7a). Increasing the sample temperature causes the

SdHO to be rapidly damped, decaying to 0 by 15 K or so. At around this temperature,

a new pattern emerges with a longer period than the SdHO and an entirely different

temperature dependence. It is this new, higher-temperature oscillation that we will

study in this chapter.
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5.2 Background

5.2.1 A brief introduction to phonons

Phonons are quantized vibrations of the crystal lattice. We can group them into

acoustic and optical modes: acoustic modes refer to coherent (in-phase) movement of

atoms, while optical modes are out-of-phase movement in crystals with a 2+ atom ba-

sis (such as graphene). Typically, the optical modes are much higher energy than the

acoustic modes. We can further break down the modes into branches with reference

to their direction of propagation and direction of oscillations: transverse (oscillation

⊥ propagation) and longitudinal (oscillation ‖ propagation). For a 2D system, we can

also have both in-plane and out-of-plane motion. And finally, for a bilayer system,

we can also have layer-symmetric and layer-antisymmetric modes. In our work, we

will consider only acoustic branches and use following naming conventions:

In-plane transverse acoustic TA

In-plane longitudinal acoustic LA

Out-of-plane acoustic ZA

Layer-symmetric subscript1

Layer-antisymmetric subscript2

5.2.2 Magnetophonon resonances in monolayer graphene

Previously, magnetophonon oscillations were observed in extra-large monolayer graphene

devices [29]. In monolayer graphene, the devices must be wider than 10𝜇m in order for

multiple orbits fit within a single device and for resonant scattering to occur. Recall

that in an applied magnetic field, 𝐵, charge carriers become localized in closed orbits,

and the electronic spectrum of charge carriers in graphene form quantized Landau

levels (LL) which are unequally spaced in energy. An electrical current can still flow,

however, because charge carriers can scatter from nearby orbits with assistance from

phonons to satisfy energy and momentum conservation, or move in skipping orbits

along the edge of the system. As shown in Fig. 5-1b, in a semi-classical picture, the

first scenario can be thought of as electrons jumping between two orbits that touch
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Figure 5-1: Mechanisms for magnetophonon resonances in MLG and TBG. a) An
electron scatters from a higher energy Landau level (LL) to a lower energy level by
emission of a phonon with energy equal to the difference in energies of the LL. b) The
same process but illustrated in real-space. An electron moving in a left-circularized cy-
clotron orbit jumps to a neighboring, right-circularized orbit by emission of a phonon
with momentum equal to the electron’s change in momentum. c) The mini Brillouin
zone of SA-TBG with various quantities in 𝑘-space labelled. The distance between
𝐾𝑚 and 𝐾 ′

𝑚 points of the mini BZ is 8𝜋
3𝑎

sin(𝜃/2), a quantity that will be important
to us later.

in real space, or, in quantum terms, where the wavefunctions just barely overlap at

the touching points. In reciprocal space, as shown in Fig. 5-1a, an electron jumps

between LL with the emission or absorption of a phonon of energy equal to the differ-

ence in LL spacing. Because the phonons involved in this process must have energy

equal to LL spacings, this forms a resonant condition, which we call magnetophonon

resonance, that is observed as resistance oscillations periodic in 𝐵−1.

The resonance condition is as follows: for a carrier scattering between cyclotron

orbits as in Fig. 5-1b, the phonon must have momentum 𝑞 ≈ 2𝑘𝐹 since the velocity

of the electron is reversed. Assuming a roughly linear acoustic phonon dispersion,

ℎ̄𝜔 = ℎ̄𝑣𝑠𝑞, where 𝑣𝑠 is the speed of sound, and recalling the LL energy spectrum, we

see that the energy of the phonon ℎ̄𝜔ph must be equal to the difference in LL energy,

ℎ̄𝜔ph = ℎ̄
𝑣𝑠
𝑙𝐵

(
√︀

2(𝑁 ± 𝑝) +
√

2𝑁) = ± ℎ̄𝑣𝐹
𝑙𝐵

(
√︀

2(𝑁 ± 𝑝) −
√

2𝑁) (5.1)

where 𝜔𝑐 = 𝑣𝑠
𝑙𝐵

, 𝑙𝐵 the quantum magnetic length,
√︀
ℎ̄/𝑒𝐵, and 𝑁 and 𝑝 label the

starting (𝑁 ± 𝑝)th LL and the final (𝑁)th LL.
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Expanding and taking the limit 𝑣𝐹 >> 𝑣𝑠, we get

𝑁 ≈ 𝑝𝑣𝐹
4𝑣𝑠

(5.2)

Then, noting that the LL index near the Fermi energy can be approximated as

𝑁 = ℎ𝑛/4𝑒𝐵, where 𝑛 is the carrier density, we find the full resonance condition:

𝐵𝑝 ≈
𝑛ℎ𝑣𝑠
𝑝𝑒𝑣𝐹

(5.3)

Off resonance, the current will only be due to skipping orbits along the edge of the

sample. On resonance, an additional dissipative current will appear as scattering

between neighboring cyclotron orbits is allowed. The conductivity will have the form

∆𝜌𝑥𝑥 ∝ 𝑒−𝛾/𝐵 cos(2𝜋𝑝𝐵𝑝/𝐵) (5.4)

where 𝛾 is a damping term related to temperature. We emphasize two features: the

resistivity has a 1/𝐵 periodicity, and the fundamental frequency 𝑝𝐵𝑝 is linear in 𝑛.

Turning to magnetophonons in TBG, noting 𝑘𝐹 =
√︀
𝜋𝑛/2 for an 8-fold degenerate

Fermi surface, we get the simplified resonance condition

𝐵𝐹 ≡ 𝑝𝐵𝑝 =
𝜔ph𝑚𝑐

𝑒
(5.5)

taking the phonon frequency 𝜔ph = 𝑣𝑠𝑞 = 2𝑣𝑠𝑘𝐹 and the cyclotron mass 𝑚𝑐 = ℎ̄𝑘𝐹/𝑣𝐹 .

5.3 Results

We measured three devices composed of SA-TBG encapuslated in hBN crystals, fab-

ricated using the tear-and-stack and hot-release methods described previously. We

label the devices by their angle as before: TBG-1.65∘, TBG-2.2∘, and TBG-2.3∘. As

shown in Fig. 3-2 and 4-1, we characterized the devices and demonstrate low charge

disorder and ballistic transport at 4K. The angles were determined as previously
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Figure 5-2: Magnetophonons versus Shubnikov de haas oscillations. a) 𝜕𝜌𝑥𝑥/𝜕𝐵 vs.
1/𝐵 as a function of temperature for 𝑛 = 2.77 × 1012 cm−2 for TBG-2.3∘. SdHO are
clear at low temperatures, appearing as sharp black and white vertical lines at the
bottom of the map. As temperature is increased, lower frequency magnetophonon
oscillations (MPO) appear. A linecut of 𝜕𝜌𝑥𝑥/𝜕𝐵 vs. 1/𝐵 at 𝑇 = 20𝐾 is shown in
black. b) The normalized magnitudes of SdHO and MPO, obtained by FFT analysis,
are plotted as a function of temperature. MPO occur over a much broader range of
temperatures, but notably occur at low temperatures as well, at the same time as
SdHO are present. c) 𝜕𝜌𝑥𝑥/𝜕𝐵 versus 𝐵 as a function of 𝐼𝐷𝐶 at 20 K. The phase of
MPO have been shown to be sensitive to an applied DC bias [59]. We see evidence
of the phase shift as a function of the applied bias 𝐼𝐷𝐶 in the checkerboard pattern
visible here.

described in section 4.3.

At 4K, all three devices show SdHO with fundamental frequency 𝐵𝐹 = 𝑛ℎ/8𝑒

as expected. The SdHO are suppressed with increasing temperature, vanishing by

15K or so. As mentioned, a new set of magneto-oscillations appears above 15K

with a larger period and sustains up to 50 K. These oscillations are identified as

magnetophonon oscillations (MPO). They are most apparent in TBG-2.3∘, which

also has the most accurate angle determination, so we focus primarily on this device

in the following analysis.

We first wish to definitively separate SdHO and the observed MPO and prove that

they are two entirely different oscillations. We note that the temperature dependence

of MPO and SdHO are very different (Fig. 5-2a). The MPO extend beyond 45K

and persist down to liquid helium temperatures, appearing at low temperatures as a

modulation on top of the higher frequency SdHO, as shown in Fig. 5-2b. Next, we

notice that, in the presence of a DC bias, the phase of the MPO can be switched
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as a function of the applied bias, as shown in Fig. 5-2c. The general dependence

of MPO phase on DC bias has been observed previously in other systems [59, 15].

SdHO, on the other hand, are immediately killed by the application of a DC bias

when we perform the same measurements at liquid-helium temperatures and only

MPO oscillations remain, again showing the same “checkerboard pattern” of phase

shift.

Having conclusively determined that the MPO and SdHO are two very different

types of oscillations, we investigate the behavior of the MPO more closely. Plotted

as a function of 1/𝐵 (Fig. 5-3b), we see the same 1/𝐵 periodicity as predicted in

Eq. 5.4. In order to find the fundamental frequency, we plot the peaks 1/𝐵𝑁 as

a function of extrema number 𝑁 , where the inverse slope gives us 𝐵𝐹 (Fig. 5-3c).

Moreover, a Fast Fourier Transform (FFT) investigation of the phonon spectra shows

us it is dominated by a single frequency (Fig. 5-3d), and thus, we can conclude a

single phonon mode. We use this FFT spectra for TBG-1.65∘ in order to separate

the SdHO and MPO because both coexist in the sample at similar temperatures.

We then consider the MPO dependence on carrier density. As shown in Fig. 5-

3b-d, as expected from Eq. 5.3, we see that the 𝐵𝐹 of MPO depends on the carrier

density 𝑛. The dependence diverges from linear-in-𝑛 due to the non-linear dependence

on 𝑛 of the renormalized 𝑣𝐹 . From the FFT, we also note that the magnitude of the

oscillations decrease with |𝑛|. In Fig. 5-3e, we compare 𝐵𝐹 (𝑛) as a function of carrier

density against 𝐵𝐹 (𝑛) for monolayer graphene, and note the significant difference

between the functional behavior between the two [29].

In order to compare the phonons measured in our TBG devices to theoretical

calculations [25, 11], we calculate the phonon energy

ℎ̄𝜔ph = ℎ̄𝑒𝐵𝐹 (𝑛)/𝑚𝑐(𝑛) (5.6)

applying Eq. 5.5 and taking 𝑚𝑐(𝑛) from our measurements of effective mass. The

result is plotted in Fig. 5-4a.

Now we wish to compare these phonon energies with the previously derived intra-
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Figure 5-3: Behavior of Magnetophonon resonances as a function of carrier density
and inverse magnetic field for TBG-2.3∘ unless otherwise noted. a) SdHO at liquid-
helium temperatures and MPO at 20K vs. 𝐵. The difference in period is very
apparent when plotted together. Black arrows indicate the peaks of MPO used to
determine the fundamental frequency. b) MPO vs. 1/𝐵 plotted for comparatively
high carrier densities, labelled on the right side of the graph. The resonant condition
and the amplitude both show dependence on 𝑛. c) Peaks of MPO vs. peak number
gives us the fundamental frequency 𝐵𝐹 . 𝑛 = −2.2 × 1012cm−2 (grey), 𝑛 = −2.8 ×
1012cm−2 (red), 𝑛 = −3.3 × 1012cm−2 (green). d) FFT spectra of MPO, showing a
decrease in amplitude as |𝑛| decreases. e) 𝐵𝐹 vs |𝑛| for all three devices. 𝐵𝐹 vs |𝑛| of
monolayer graphene, obtained from [29], plotted in grey. The difference in functional
behavior is apparent.
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valley scattering mechanism observed in monolayer graphene. Recall this intra-valley

scattering requires phonons of momentum 𝑞 = 2𝑘𝐹 . Assuming a Dirac dispersion

(ℎ̄𝜔𝑝ℎ = 𝑞𝑣𝑠) and taking 𝑣𝑠 = 14 m/s as in MLG (figure 4 of [29]), we plot the

expected ℎ̄𝜔ph in Fig. 5-4 (grey dashed line). We see that the expected values are

several standard deviations below the experimentally determined values. This implies

that the intra-valley scattering assumption 𝑞 = 2𝑘𝐹 from Eq. 5.6 and Eq. 5.3 is not

applicable. Instead, if we consider phonons with 𝑞 > 2𝑘𝐹 and a different scattering

mechanism, we can achieve a phonon energy matching our values. Such a situation

is impossible in monolayer graphene: recalling that the radius of the Fermi surface

is 𝑘𝐹 , we note that the BZ is too large: the phonon momenta ℎ̄𝑞 are not sufficient

to allow phonon-assisted scattering between Fermi surfaces. But in TBG, the mini-

BZ induced by the superlattice are much smaller (Fig. 5-1c). The six mini-valleys

are then much closer in momentum space, allowing for scattering between the Fermi

surfaces centered on these valleys. That is, the 𝐾𝑚 and 𝐾 ′
𝑚 points of the mini-BZ

(as labelled in Fig. 5-1) are separated by

∆𝐾𝑚 =
8𝜋

3𝑎
sin(𝜃/2) (5.7)

meaning that we require phonons with energy only ∆𝐾𝑚. The momentum of the

measured phonons, assuming a roughly linear dispersion, will be

ℎ̄𝑞 = ℎ̄𝜔ph/𝑣𝑠 (5.8)

For example, estimating 𝑣𝑠 = 14 km/s from monolayer graphene [29], for TBG-2.2∘,

ℎ̄∆𝐾𝑚 ≈ 7 × 10−26 Ns and ℎ̄𝑞 ≈ 9 × 10−26 Ns.

5.4 Conclusion - inter-valley scattering

Because the phonon dispersion has not been previously measured in TBG as far as

we are aware, we turn to two theoretical papers for support [25, 11]. The main results

are summarized in Fig. 5-4b and c. We primarily consider the low-energy dispersion
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b c

Figure 5-4: Phonon dispersions, both experimental and theoretically predicted. a)
Phonon energy ℎ̄𝜔𝑝ℎ vs. 𝑛, as measured. b) Low-energy phonon dispersion for layer-
antisymmetric modes of 2.2∘ TBG from Ref. [25]. The linecut for 𝑞 is taken between
the Γ and 𝐾𝑚 points. c) Phonon dispersion for bilayer graphene in the extended
zone scheme along Γ𝐾𝑚 from Ref. [11]. Note the energy and momentum scales are
different than in b).

of the acoustic modes near the center of the first mini-BZ. Ref. [25] calculates only the

in-plane layer anti-symmetric dispersion relations. We show the lowest two branches

between the center and 𝐾𝑚 point of the mini BZ (Fig. 5-4b). Ref. [11] calculates

the acoustic phonon dispersion relations for bilayer graphene, not twisted bilayer

(shown in the extended zone scheme in Fig. 5-4c). However, if we consider just layer-

symmetric modes, we can make the rough estimation that small-angle TBG will have

a similar dispersion relation to bilayer graphene, assuming that lattice vibrations will

be dominated by the mechanical motions rather than coupling to the modified band

structure, therefore we are justified in considering this dispersion as well.

We now want to figure out which phonon branch we observe. Comparing to the

low-energy dispersion in Fig. 5-4c, we see that our phonon energies agree within error

bars with the TA1 and TA2 branches for given wavevector 𝑞 as in Eq. 5.8. For example,

for TBG-2.2∘, ∆𝐾𝑚 ≈ 0.6 nm−1, which corresponds to 4.7meV in the TA2 branch

or 7meV on the LA2 branch. Ref. [25] gives 9meV and 10meV for the two branches

respectively. We experimentally measure the value to be approximately 7meV with

error bars. We claim the ZA1 and ZA2 branches can be disqualified from consideration

because the energy values are beyond error bars of our measured values. Additionally,

previous studies have found that the LA branches do not couple strongly to electron
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transport [20, 57, 46, 15, 16, 48]. This leaves us with the TA branch as the most

likely candidate.

We now consider inter-valley scattering within the mini BZ. As in Fig. 5-1c, the

condition for phonon momentum for inter-valley scattering is 𝑞 = ∆𝐾𝑚+2𝑘𝐹 . Taking

the dispersion relation previously, we can calculate the phonon energy ℎ̄𝜔𝑝ℎ for the

TA1 and LA1 branches, taking 𝑣𝑠 for the respective modes from MLG. Because of

higher group velocity of the LA mode, the LA1 branch has higher energies than those

measured (red dashed line in Fig. 5-4a). However, the energies calculated for the TA1

branch match very well with those measured, shown as solid lines in Fig. 5-4 with no

fitting parameters. The layer-symmetric and layer anti-symmetric branches have very

similar energies (with differences smaller than the error bars on our measurements)

at the 𝑞 we consider, but for the sake of clarity, we note that the dispersion relation

for the layer anti-symmetric branches should be 𝜔 =
√︀

𝜔2
0 + 𝑣2𝑠𝑞

2 [38]. Based on

experimental evidence alone, we are unable to differentiate the layer symmetric and

layer anti-symmetric modes. However, as in chapter 4, we observe a strong increase

with temperature of resistivity, in agreement with other studies [39, 8]. As shown

in Fig. 3-3c and explained in section 4.4, the resistivity contribution from the layer-

symmetric TA mode does not match that observed. The layer anti-symmetric modes,

however, may be able to capture the observed behavior.

The observations described in this chapter are relevant to understanding the

mechanisms behind the strong increase in resistivity found in SA-TBG devices. We

demonstrate that magnetophonon resonances provide a way to probe the superlattice-

induced interactions in SA-TBG, in a way that has the potential to be applied more

broadly, including near the magic angle. In particular, we untangle the phonon spec-

tra of SA-TBG and find that layer anti-symmetric TA modes are likely the primary

source of momentum-relaxation. As explained in chapter 4, understanding these

momentum-relaxing mechanisms may be important to figuring out the nature of su-

perconductivity in magic angle TBG.
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Chapter 6

Conclusion and Future Directions

In this thesis, we explored superlattice-induced interactions in SA-TBG. We first con-

sidered the graphene viscous electron fluid and found evidence for the onset of fluidity

in SA-TBG via negative vicinity resistance measurements. Strong interactions in SA-

TBG have been proposed to provide a way to probe deeper in the hydrodynamic

regime. However, we found the existence of a competing, momentum-non-conserving

mechanism in the same carrier density and temperature phase space as the observed

onset of fluidity. Exploring this mechanism further, we found that resistivity in SA-

TBG at angles above ≈ 1.7 displays a 𝑇 2 dependence, a behavior that cannot be

explained by previous linear-in-𝑇 theories. To explain this observation, we mea-

sured magnetophonon resonances in SA-TBG and found a potential 𝑇 2 mechanism

that relies on inter-valley scattering within the mini-BZ. We also reconstructed the

low-energy spectra for acoustic phonons and reasoned that layer anti-symmetric TA

phonons are likely the primary source of momentum-relaxation. All these observa-

tions are tied together by a common thread: they show the effect of a superlattice

on electron transport. When we measure the same quantities in mono- or bilayer

graphene, we observe entirely different behavior. Through this we see the broad

potential of moiré systems to realize many interesting phenomena.

One of the lingering questions from chapter 3 is whether or not there is a regime

of twist angle in which the momentum-conserving interactions can “beat out” the

momentum-non-conserving interactions so that we can see a strong negative vicinity
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resistance over a large phase space. One way to answer this would be to simply

make more devices at both smaller and larger angles, and measure them. We can

also study the nature of the viscous regime in TBG further: we have yet to measure

the kinematic and Hall viscosity, which would be valuable to have to compare to the

values found in MLG and BLG. However, we can also try to understand the nature

of these momentum-non-conserving interactions as a function of twist angle to make

predictions about whether such a regime exists. We attempt to do so in chapter 4

and chapter 5, but this question requires further study.

As mentioned in chapter 4, we still do not fully understand the origins of the

giant increase in resistivity observed in SA-TBG devices, particularly near the magic

angle. We provide one possible explanation in chapter 5, but this question needs to

be more carefully explored. Perhaps most importantly, we want to know whether

these electron-phonon interactions with shear phonons have anything to do with the

mechanisms causing superconductivity. Generally, we want to know more about how

electrons and phonons couple in SA-TBG devices.

Looking more broadly, recent proposals have suggested that the TBG could be

used to realize non-Abelian states for topological quantum computing. For example,

a recent proposal suggested TBG could be a host to a quantum spin Hall liquid [60].

Other proposals have suggested SA-TBG proximitized to a superconductor could be

a host to Majorana bound states because fractional quantum Hall and quantum spin

Hall states have been observed in the system [44, 55]. Following the observation of

the quantum anomalous Hall effect in TBG, fractional Chern insulator states are also

predicted to exist in TBG [45, 32]. In fact, in TBG-0.5∘, we see evidence of fractional

Chern insulators and are excited to pursue further study of this device. The list of

fascinating phenomena in moiré systems is a long one, and in the future, both finding

ways to access these phenomena and understand the mechanisms behind them will

be important to condensed matter physics.
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