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ABSTRACT

One of the main reasons computer networks are a major
area of great attention and development today is their ca--
pability to provide the facilities for common use of data
bases and information files by all computers in the system.

When a file is used by several computers in the network,
it can be stored in the memory of at least one of them and
can be accessed by the other computers via the communication
channels. In ceneral the cost or querying is reduced as
we increase the number of copies in the system. On the
other hand, storage costs, limitations on the size of the
memories and the cost of updating (every copy must be updated)
will dictate decreasing of the number of copies. Further-
more if the parameters of the system are time-varying, or if
the exact pattern of the rates of demand is unknown or some
non negligible possibility of node or link failures is
expected, then some kind of dynamic approach must be used.

This thesis considers the problem of optimal dynamic
file allocation when more than one copy is allowed to exist
in the system at any given time. A general model to handle
this problem including updating traffic and the possibility
of node failures will be developed. The evolution of the
system is represented as a finite state Markov process and
Dynamic programming will be used for the solution of the
optimization problem.

The use of two types of control variables, one for
adding new copies to the system and the other for erasing
copies, gives the model certain properties that permit the
construction of an efficient algorithm to solve the optimi-
zation problem. Within the framework of the developed
model the addition of the updating traffic and the possibi-
lity of node failures present no important difficulties.
Furthermore the model can easily handle the problem of cons-
traints in the maximum or minimum number of copies. In the
last chapter the model and algorithms are applied to several
numerical examples.

Thesis Supervisor: Adrian Segall

Title: Assistant Professor of Electrical Engineering
and Computer Science
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CHAPTER I

INTRODUCTION

I-1 General Setting and Description of the Problem

"The time sharing industry dominated the sixties

and it appears that computer networks will play a similar

role in the seventies. The need has now arisen for many

of these time-shared systems to share each others! resources

by coupling them together over a communication network

thereby creating a computer network" (L. Kleinrock[l]).

We define a computer network to be an interconnected

group of independent computer systems communicating ,with

each other and .sharing resources such as programs, data,

hardware, and software.

The increasing interest in this area is the cause for

a continuously .growing number of articles, books and projects

related to computer networks [2.1 -[7], [24]. The reasons

why these types of networks are attractive are widely

exposed throughout the literature in this field.

a) sharing of data base, hardware resources, program

and load

b) remote data processing

c) accessto specialized resources

d) recovery of informationfrom a remote node in case

of node: failure

--------- ~- -------- ·-~I~~~"~·--·--------------·-·-- -·------- ·--·--·---- - --·· ·-- ·--- --------~·~~~~~~~;-'-- ~ T -~~l----
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e) decentralization of operations and need to trans-

fer information from one point to another etc.

One of the main reasons computer networks are a major

area of great attention and development today is their

capability to provide the facilities for common use of data

bases and information files by all computers in the system.

This work deals with the problem of the information alloca-

tion to be shared by the computers in the network. Such

a network is displayed in Fig. 1

When a file is used by several computers in the network,

it can be stored in the memory of (at least) one of them

and can be accessed by the other computers via the communi-

cation channels. In general, the cost of quefying is

reduced as we increase the number of copies in the system.

On the other hand, storage costs, limitations on the size

of the memories and the cost of updating (every copy

must be updated) will dictate decreasing of the number of

copies.

The problem of how many copies of the files are to be

kept and their allocation is the main subject of this Thesis.

Most of the previous work in the area of file alloca-

tion has been devoted to the analysis of the problem under

static approximations, that is, assuming that all parameters

of the system are known a priori and basing the design on

their average value over the period of operation of the

system. The location of the files is then considered fixed
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CO U\ -,COMPUTER T

MEMORY OOMPUTER3 ~c~ ~\ MEMORY

SMEMORY

FILES

LA I

How many copies of each file do
we need in the network?

At which computer do we have to
allocate each copy?

For how long must a certain alio-
cation distribution remain
unchangeable?

etc.

-Fig. I,:'. Ge-neral representation of a computer network
reflecting the problem of file allocation



for the whole operating period.

An early work in this field was a paper by Chu 18].

The criterion of optimality used in C81, is minimal overall

operating costs. The model considers storage and transmis-

sion costs, request and updating of the files and a limit

on the storage capacity of each computer. The model

searches for the minimum of a non-linear zero-one cost

equation which can be reduced to a linear zero-one program-

ming problem.

Another work is a paper by Casey L91. He considers a

mathematical model of an information network of n nodes, some

of which contain copies of a given data file. Using a

simple linear cost model for the network, several properties

of the optimal assignment of copies of the file are demons-

trated. One set of results expresses bounds on the number

of copies of the file that should be included in the net-

work, as a function of the relative volume of query and

update traffic. The paper also derives a test useful in

determining the optimum configuration.

Of very recent appearance is a paper by Mahmoud.and

Riordon [22] . In this paper the problems of file allocation

and capacity assignment in a fixed topology distributed

computer network are simultaneously examined. The objective,

in that analysis, is to allocate copies of information files

to network nodes and capacities to network links so that a

~~~~~~~~~ ~~~~~~~~~~~~~~~~- - - - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~----------
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minimum cost is achieved subject to network delay and file

availability constraints. The deterministic solution for a

medium size problem is intractable due to the large amount

of computation so that an heuristic algorithm is proposed.

A quite different analysis in which the important

quantity to be optimized is the service time, instead of the

operating cost, is done by Belokrinitskaya et all. [10].

The analysis results in a zero-one nonlinear programming

problem (that can be linearized), similar to the one in [8j.

In the above mentioned works, the-problem is considered

under static conditions and using average values of the

parameters.

If the parameters of the system are time-varying,

however, or if the exact pattern of the rates of demand is

unknown or some non negligible possibility of node or link

failures is expected, then some kind of dynamic approach

must be used.

It has been only recently that the first studies of

these problems, from the dynamic point of view, have begun

to appear. In a work by A. Segall 11] the problem of

finding optimal policies. for dynamical allocation of files

in a computer network that works under time-varying opera-

ting conditions is studied. The problem is considered

under the assumption that the system keeps one copy of each

file at any given time. The case when the rates of demand
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are not perfectly known in advance is also treated. Only

a prior distribution and a statistical behaviour are assumed,

and the rates have to be estimated on-line from the incoming

requests.

The problem of optimally allocating limited resources,

among competing processes, using a dynamic programming

approach is studied in 12]. A dynamic programming approach

is also suggested for the problem of minimizing the costs of

data storage and accesses in [25]. Here two different types

of accessing costs are considered. The accessing cost will

depend on whether a record is to be read or to be written

(migration). A different approach to the same problem is

taken in [2J . A two-node network with unknown access

probabilities is considered. The problem is to set up a

sequential test which determines the earliest moment at

which migration leads to a lower expected cost.

The present work considers the problem of optimal

dynamic file allocation when more than one copy are allowed

to exist in the system at any given time. A general

model to handle this problem including updating traffic

and the possibility of node failures will be developed.

The evolution of the system is represented as a finite-

state Markov process and dynamic programming will be used

for the solution of the optimization problem.
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1.2. Summary of Results

A model for the analysis of optimal dynamic file allo-

cation is introduced, The use of two types of 'control

variables, one for adding new copies to the system and the

other for erasing copies, gives to the model certain proper-

ties that permit the construction of an efficient and rela-

tively simple algorithm to solve the optimization problem.

Among others, the algorithm is efficient due to the fact that

it computes only the nonzero transition probabilities. A

detailed set of flow-charts and Fortran program listings

are given for all. the operations and calculations that take

place in the optimization process.

Within the same framework the incorporation of node

failures presents no important difficulties, except for

increasing the number of states. Some kind of constraints

in the state space, those that could be represented as

reductions in the set of admissible states, are also easily

handled by the model.

In the last chapter we apply the algorithms to several

numerical examples. For the case of constant rates of demand

with no failures in the computers the corresponding Markov

processes have a trapping state. For these processes it will

be shown that the general dynamic programming algorithm

need not be implemented, and a much quicker answer. to the

optimization process can be found.

For the more general case of constant parameters with

possibility of node failures included,. quick convergence to

_ _C---- _----r--- . - __--. ._ - ....... v ____--y_-_----· ----- __ C .. .................. _ _ . _ . . ____ ............ _----------_____.._ -..-.... . . . ...
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the steady state optimal dynamic decision policy was found

for all examples.

Finally it will be shown that having a completely

simmetric network (equal parameter values for all computers

and links) will allow a considerable reduction in the number

of states.

A more detailed exposure of results can also be found

in the chapter dedicated to "Conclusions and Open Questions".

I.3. Chapter Outline

In chapter II we begin with the description of the model.

We first state the general hypothesis and basic assumptions

to be considered throughout the study and continue with the

description of the operation procedure. We indicate the

objective function and define the control and allocation

variables. The chapter ends with the definition of the

state and the description of the dynamic equations of the

system.

In chapter III Stochastic dynamic programming is applied

to the model to determine the optimal allocation strategy.

First we will write the recursive equations for a simple net-

work with only two computers and then we will see how easily

these equations generalize to any number of computers. We

finish the chapter indicating how the model can handle the

problem of certain constraints in the state space.

In chapter IV we present the problem in its more general



16

framework with the inclusion of the updating traffic and the

possibility of node failures. As in chapter III, we first

write the recursive equations for a network with two computers

and then generalize them to any number of computers. At

this point we give a very detailed set of flow-charts, showing

how to compute the different matrices and vectors of the

recursive equations and how to carry out the whole optimi-

zation process.

Chapter V deals with numerical applications. Using

the insight gained from numerical answers some additional

analytical results are developed.

A few pages dedicated to general conclusions and further

work to be done in this area will follow this chapter.

Two appendices, A and B, expanding results of chapters

II and III will also be added. A third appendix contains

a set of Fortran program listings corresponding to the most

significant flow-charts of previous chapters, These programs

have been used to implement the numerical applications of

chapters V. Auxiliary subroutines are also listed.
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CHAPTER II

DESCRIPTION OF THE MODEL

II.1 Characteristics, Basic Assumptions and Operation

Procedure

We shall make here several simplifying assumptions,

that are still consistent however with the models appearing

in real networks. We shall assume that the files are reques-

ted by the computers according to mutually independent

processes (with statistics to be specified presently) and

also that the files are sufficiently short. Moreover the

communication lines are taken to have sufficient capacity

and the computers sufficient memory, so that the transmission

of the file takes a very short time and there is no res-

triction on how many files a computer can carry. Under

these assumptions, it is clear that in fact the files do

not interfere with each other, and we can therefore treat

each file separately.

The analysis will be done in discrete time, assuming

the existence of a central synchronizing clock. It will be

considered that with previous assumptions the time interval

between clock impulses is long enough to allow the execution

of all the necessary operations to take place in it (request

arrivals, "reading" of present state, implementation of

optimal decisions, etc.).



In this chapter the-possibility of node failures will

not be included in the model. This extension, together with.

the inclusion of the updating traffic, will be left-to

Chapter IV.

We' may .summarize the assumptions as follows:

1) No failures in'the network (relaxed in Chapter IV)

2) Channels with sufficient capacity (or sufficiently

short files)

3) Sufficiently large storage capacity at each computer

4) Requesting according to mutually independent processes

5) Files are treated separately (according to former

assumptions the files do not interfere with each

other)

6) The analysis is done in discrete time

The proposed:procedure is similar to that proposed in

reference [11], with the only difference being that we now

allow more than one copy at each instant of time (the way

the updating traffic is taken in consideration will be

described in Chapter IV).

The.procedure is illustrated in Fig. II.1 and can be

described as follows: Suppose a certain number of copies is

stored at time t in the memories of a set of computers,

say I. If at-time t the..file .is requested only-by computers

in the set I then no transmission cost ..is incurred and.a

decizsion has to::be made,whether to erase some of the copies

from I (with the specification of the particular copies to
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MEMORY i

/ I %Transmission
/ Requekt i(costless) from
from i Imemory i to computer 1\

I ' . \
Computelr i .

I ~ Transmission
to j

ILE E

VRequest from j

Computer j

Trransmission IRequest from k
on the file I

to k

MEMORY

Computer k

Decision: where to keep
copies of the +
file at time t

MEMORY

Fig. II.1. Illustration of the Operation Procedure
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be erased) or to keep the same number of copies. If, on

the other hand, the file is also requested by other computers

not in-I, then the file is transmitted for use to these

computers and a new collection of copies, say J, appears

in the system at time t+ . A similar decision now has to

be made but with the set J instead of the set I

The restriction of reallocating the file only in

conjunction with a regular transmission is reasonable for

this model, because if a change of location is decided upon,

one might as well wait until the file is requested for the

next time by the appropriate computer, otherwise it is

conceivable that the file might be transferred back and

forth, without anybody actually using it.

II.2 Data, Parameters and Variables

In this section part of the notation used in the study

will be introduced.

Consider a completely connected network of NC computers.

The requests of the file by the computer will be modeled

as mutually independent Bernoulli processes with rates

e (:t' ), i = 1,...NC, that is

Pr{ni(t) = l} = 1 - Pr {ni(t) 0 = 0 =ei(t) (2.1)

i = 1,..NC
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where ni(t) = 1 indicates that the file has been requested

by computer i at time t. The rates 8i(t) are assumed to be

known for 'all computers and instants of time.

We define the variables

1 if there is a copy stored at computer i at

Yi(t) = time t (2.2)

Otherwise

i = 1,..MC

The condition of having at least one copy of the file

in the system at any instant of time can be analytically

expressed as

NC

E Yi (t) > 1 VtC [OT (2.3)

i=1

where T is the whole period of operation.

The operation costs are

Ci = storage cost per unit time per copy at memory i

Cij = communication cost per transmission from computer

i to computer j

i, j = 1,... NC i ~ j

We will assume C.. = O Vi
11

It is assumed that these costs are time-invariant; the case

with time-varying costs can be handled by simply writing

Ci(t) and Cij(t) throughout the paper.
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II,. 3 O'bjiective .Funct.io-n

.Supposi£ng thatt the user access.es that copy of the file

that- minimizes his communication .cost ..and., denoting -si- 'i-

bol.ical'ly'.by I(t) the :set of nodes :having a copy at 'time t,

we 'can write t.he expression for the total expected cost over

the :period [O.,T] as

'T NC NC

C. =E Ci:yi(t)+ (-l-Yi (t))n.(t)min Ci (2.4)

t-'O i=l i=.l k-eI (t)

The first sum in the bracket represents the total storage

cost at time t and t-he second sum is the total transmission

cost. We can see that summands contributing to the trans-

mission cost are those with yi.(t) = 0 and ni(t) = 1 only, that

is, those coming 'from computers 'that do not have the- file

and have had a request.

The goal 'is to design a closed-loop control that.will

dynamically as:sign the loca'tion of the fil-e and .will .minimize

the defin-ed expected cost. We introduce the control 'variables

in -the -next section.

II.4 .Control Variables and Restatement of the -Objective

: Fun.c-t ion

We-will- define two types of control variables. One will'

.correspond .to the era.sure process and the other one to the

writing process. The separation of these -two operations in,
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in two types of control variables will simplify significantly

the amount of notation.

The variables are

1 f if the decision is to erase the copy from i
at time t assuming the copy was there at

Ci't3=l Sat time t (i.e. Yi(t) = 1) (2.5)

0 - otherwise

1 - if the decision is to keep a copy in i at

time t+ assuming that the copy was not there

ai(t )= ' (yi(t)=O) and there was a request from that

computer (ni(t) = 1) (2.6)

O - otherwise

i = 1,..NC

These definitions require the introduction of the con-

cept of active control variables. It will be said that the

variable ci(t) is active if Yi(t) = 1 and that ai(t) is

active if Yi(t) = 0. Due to these definitions ai(t) and

Ei(t) cannot be simultaneously active. From definitions

(2.5) and (2.6) the nonactive variables will always be

equal zero. Therefore only active variables will be con-

sidered throughout the analysis.

With the previous notations, the dynamic evolution

of the system is:



24

a) Yi(t+l)= y (t)t)[l-Ei ] + [1-Yi(t)ai(t)ii (t )

i = 1,L,..NC (2.10a)

NC

iff E (right hand side) / 0

i=l

b) yi(t+l) = yiTt) i = 1,2,..NC (2.10b)

NC

iff (right hand side of :(2.10a)) = 0

i=l

Equation i(2.10b) shows that if our decision variables

are such that all copies of the file will be erased, then

no decision variable is actually implemented, and there-

fore the system remains in the previous state. Otherwise,

the -system evolves according to equation (2.10a) namely

computer i will have a copy at time (t+l) if

i) it had a copy at time t (Yi(t) = 1) and the decision was

not to erase it (ci(t) = 0) or

-ii) it did'not have a copy at time t and therewa.s a reque.st

from-computer i (n.(t) = 1) and a decision to write the1.

file into memory i was taken (ai(t) = 1).

-The optimization problem could then be stated .as follows:

'Given the zdynamics (2.10), find the optimal control policies
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s~(t) I i = 1,1,..,NC

at(t) t 1,2,..T

and the initial locations Yi(O), Vi, so as to minimize the

expected cost (2.4).

Hence we have a dynamic system in which the inputs are

a sequence of decisions made at various stages of the evolu-

tion of the process, with the purpose of minimizing a cost.

These processes are sometimes called multi-stage decision

processes [151.

II.5 Definition of State and Dynamics of the System

Being at a certain instant of time, in the optimization

process, the only information needed, given the fact that

the request rates are perfectly known, is the identification

of the computers that have a copy of the - file at that time.

With only this information we can continue the optimization

process and the past is inmaterial as far as the future is

concerned. Therefore the location of the copies at any

instant of time summarizes the information needed at that

instant (together with the rates) and the problem then is to

find an optimal policy for the remaining stages in time.

The state of the system will be defined, at time t,

as the location of the copies of the file at that time and

it will be represented by a vector with NC binary components,
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having a zero in the places corresponding to computers that

do not have the file and a one in the places of computers

having a-copy. These vectors will be named by the decimal

number Whose binary representation is the NC- dimensional

vector and will be represented by a capital Y.

Therefore the Stat:e at time t Will be the column vector

YlW(t

Y(t) = y2(t) (2.11)
.Y2 2(t)

YNC(t) .

or alternatively the state of the system at time t is m(t)

where

m(tj = decimal 'number with binary representation given

by the sequence Yl(t) Y2(t)-
Y NC (t)

m 1,2, ... ,M

NC
M = 2 1

m = 0 will not be a valid state because it corresponds to

the case of having no copies in the system and this' situation

has to be avoided. Thus the previously stated condition

NC

L 'Yi(t)l> 1

i=l

is translated to this notation as m / 0
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The dynamics of the state are easily obtained from the

dynamics of the allocation variables: we only have to

substitute for each component of the vector defining the

state

Yl (t) 0 yl(t)

Y2(t+1) 1-E2(t) O y 2(t)

y c(t+l) O 0 0 0 . , fct)NC(t)

al (t )n l ( t ) O . O
02 2~ 01-Y 1 (t)

o a2 (t)n2 (t) * .* 1-y2 (t)

0 (t)n(tl (t) 

0 ( NC (t)nNC (t yNC(t)

(2.12a)

iff right hand side of (2.12a) O0 and

Y(t+l) = Y(t) iff right hand side of (2.12a) = 0 (2.12b)
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To clarify further these ideas let us write the ordered

sequence of events that take place at any time t

- at time t the optimal si(t) and x*(t)
1 1i

are computed

- at time t the requests arrive

- at time t+ the optimal decisions are activated

if in doing so the system does not go to state 0

(that is, if not all existing copies are erased).

Otherwise the system does not change state.

This sequence of events is illustrated in Fig. II-2.

Calculate the optimal Activate the optimal

·(t) and a*(t) given Requests decisions if in doing

present states and arrive that the system does

current value of the not go to state 0.

rates. Otherwise do not

change state.

t /--t .

.-2 Seq (t+l)-s (t+l)a tim 

0 tt t t +l T

Fig. II-2. Sequence of events at any time t
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II.6 Some Useful Properties of the Model

So far the main structure of the model has been des-

cribed. In this section, we describe some of the properties

of the model. First of all we will look at the transitions

among states.

Recall from section II.4 that the active variables are

defined as

Ci(t) is active if Yi(t) = 1

ai(t) is active if Yi(t) = 0

Hence these variables are uniquely determined by the state.

For instance, having a network with five computers (NC=5) and

being in state eleven (01011) the active variables are

State Y1 Y 2 Y3 Y4 Y5 active variables

Y= 11 - 0 1 0 1 1l a 2 3 a 4 £5

witha's corresponding to places where there is a 0 (no file

in the memory of that computer) and £'s to places where there

is a 1 (there is a copy at that computer). The non-active

variables will then bel1 , c2' £3 , 4 and a5 and we saw, also

in section II.4, that their value is equal zero no matter

which decision is taken, so we can omit them.

Suppose now that the optimal decision at a given time is:

- erase copies from computers 2 and 5

- keep a copy at computer 3

or in terms of the control variables
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u = ( c1 E2 C3 c4 C5) = (0 i 1 0 1)

Thus, if there is a request from computer 3, the system will

go to state

Yl Y2 Y3 Y4 Y5 _ state 6

-0- 0 1 1 0

and if'-there is no request from computer 3 the system will

go to

1 ..2 3 4 5 state 2

0' 0 0 1 O0

Because of the unique correspondence in the notation-we see

that it is equivalent to say that the decision is

u1= ( a a34 ( 1O1 £ 1)

or-

"go to state 6" 

For the sake of: simplicity these two' forms will? be

interchangeably used.

From the above analysis it can be seen that

(init:ial state) .· (decision vector) = (final desired'- state)

(decision vector) = (initial state-) * (final desired state)

wheere demeans "exclu"sive or". This is so because if a con-

trol variable: has a value 1 we: have to change thee value of

the allocation variable in the transition, while if the value

is 0 there .isno change in the transition. This kind of

operation is.exactly- the "exclusive or" addition.- In

e c usive or~~~~~~~~"addition--,-.- In ~ ~ --
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particular for the example above

11 --- 0 1 0 1 1
+

O 1 1 0 1
al 2 3 c4 5 -.

0. 0 1 1 0_ 6

This property will permit to easily write a tableau showing

the transitions among states assuming the requests arrive

from all computers.

The transition tableau for the case NC=2is shown in Fig. II-3

and forNC=3in Fig. II-4.

For simplicity, the place corresponding to non-active

variables are left empty.

Active .(t+1 )

Y(tsK variab~le 1=0. 1 2=1 0 3=1 1

-c 0 1 0

1=0 1 1 0 1 1

1 1 0 0

2=1 0 2 1 0 1

1 2 1 0 0 1 0 0

3=1 1

Fig. II-3. Transition tableau, for the case NC=2

(assuming deterministic transitions)



32

V-i 
ri ) 

·i 

,-4 -4 0 C l/4

H H ~0 0

r-li 
r-q C> C C O

"t-I~~i~~~~~~~ 
rC

,--I 
0 0... 0 ,..4

C) 
4J~~~~~~~~~~~~~~U

O 

r a

0-0 .'H ...
: OI ' 

O 
C) C.

' ~ ~
-. H 0 0 - 0 

O H .

q ll 3 ., . .. ------.--- - , 

C) rt~~~~~~~~~~~~~~~~~~~~~4~~~~=

0 . ,HIi~~~~~- H-- 00 0 , 0 --o 0 o ,-I 0 0 

4J

' -I -- 0 0 0 0 E nat~~~~~~~~~~~~~~~~~~~~t

,..4 o q/'o H 0 H 0 , 0o0" 0

H~~~~~~~II~~ (H H 0 0 

]. ,"' :" *'l' " ~

'. II 

r

~~~~~~~~~~~0 C))

C) 44~~~~~~~~~~~~~~~C

' .
v-I 0 0 H --

H 
i~~~~~~~~~,-4 0,--I

0~~~~~~~~~~~~~~~~'I(%J~T- 

a:r 

HO 001 
1 0 H 0 H 0

o~~ 
Hd

~~o 0 
0 H H .~.

,- UI

co co co oo oqc o

tiU~~~~~e oi e,, t', eqol 
.,-, l .

~~~.s ~ t w ~3 ~ w c0 

'l [

rl~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 
,.o 

I "i -I ). -.i

_ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~,, II -~1I " 

>.~~ ~ (Y ) U)



33

These tableaus will prove later to be of great utility

for the construction of the transition probabilities among

states. As we said before, we can write this tableau

mechanically and this is important in computer calculations.

Summarizing, for a network with NC computers, the steps

are the following:

1 - If the system is in state m, write m in base 2

with NC digits.

2 - Assign a control variable a to the places where

the digit is 0 and a variable £ to the places

where the digit is 1.

3 - To obtain the value of these control variables in

a transition from m to n, compute m @ n, where n

is also written in base 2 with NC digits, and

assign the values of the resulting digits to the

corresponding control variables.

4 - To obtain the mth row of the tableau repeat step 3

NC
for values of n from 1 to M (M = 2 -1)

5 - To obtain all the rows of the tableau repeat

from step 1 for values of m from 1 to M.

The flow-chart corresponding to these five steps is

shown in fig. II-5.



34

Repeat from m = 1 to M to obtain

all the rows of the tableau

Write m in base 2 with NC digits

and call the digits mi

if m. 0 the ith control variable

"is ti
if m. = 1 the ith control variable

is cE:
i

i = 1,..NC

Call u. to the ith variable (ai

or ci)

Repeat from n = 1 to M _

to obtain all the elements of row m4,

Transition to state n:

write n in base 2 with NC digits

Compute m e n = k, k i ith digit

u. = ki i = 1,..NC

Fig. II-5. Flow graph showing the steps to obtain the

transition tableau.
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CHFAPTER III

DYNAMIC PROGRAMMING AND BACKWARD EQUATIONS

III.1 Preliminary Remarks

It can be easily seen that the model described in chapter

II has all the properties needed for the application of

dynamic programming, [13] - [16]

In particular it is obvious that the separation property

holds for the cost function, eq. (2.4). The MTarkovian state

property is also satisfied, see section II.5. Hence the

problem is:

Given the dynamic equations (2.12), find the optimal

dynamic allocation strategy, using dynamic programming, to

minimize the cost (2.4).

We will separate the total expected cost (2.4) in two

parts

T-1

C = E {H [Y(T)]} + E E L[Y(T),T] (3.1)

f =0

where NC NC

L[Y(T),T] = Ciyi(T) + (1-y 1 (T))ni (T) min Cki (3.2)

keI(T)
i=l i=l

is the per unit time, or immediate, cost, and

H CY(T)h = L [Y(T),T- (3.c3)

is the terminal cost.



36

The cost to go at time t given that the system is in

state i will be defined as

T

Vi(t) = E E L[Y(T),r] 1Y(t) = i (3.I 4)

t=t

and the optimal cost-to-go

V*(t) = min V.(t) i = 1,2,..M (3.5)
1i u(t) 1

From the Markovian property, the following equalities

can be easily proved, see ref t11].

E {L [Y(T),T] IY(t), t =,1,..}-

E {L CY(),~Y()1T} = (3.6)

NC NC

CiY i (T- (T. E)-) i (T) min Cki (T
+ , E~~ kekI() (T

i=l.i=l

III.2 Backwards Recursive Equations

The backwards equations for this probabilistic system

can be written (see [11 pag 955)as

NC

V*(t)=min{E{L[Y(t),t] IY(t)=i} + Pij(t "u )V* (t+1) (3.7)

j=l

i = 1,2,..M

where Pij (t,u) is defined as the probability of being in

state j at time t+1 given control u and given that the system
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is in state i at time t, that is,

Pij(t,u) = Prob {Y(t+l) = j IY(t) = i,u(t)} (3.8)

From the expression (3.2) of the per unit time cost at

time t observe that the decision u(t) at time t affects

only the state Y(t+l) at (t+1) but not Y(t) and n(t) and

therefore the immediate L(t) cost is control independent.

If u* is the optimal control and V* the corresponding

cost to go, then:

NC

VI(g)=E {L [Y(t),t] 'Y(t) =i} + Pij(t,u)V(t+) (3.9)

j=l

i = 1,2,..M

or in vector form

V*(t) = A(t) + P(t,u*) V*(t+l) (3.10)

With this notation it is clear that the total minimum expec-

ted cost over the period [0O,T1 will be the smallest component

of the vector V*(0O) and, the state corresponding to this

component will be the optimal initial state.

To pursue further with the investigation of the actual

form of the vector A(t) and matrix P(t,u*) we will begin with

the cases NC=2 and NC=3, the generalization to a larger

number of computers will then become apparent.
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III.3 Recursive Equation for NC=2

For the case of two computers the expression of the

total expected cost over the period OPT] can be written as

T 2 2

C=E C iYi(t) E (1-Yi(t))ni(t)Ck t 

t=O i=l . .i=l k/i

= E [ ClyYl(t)+C2Y2(t)+(l-Yl(t) )1(t)C21+(1-Y2(t))82(t)C12]

t=O
twO - (3.11)

where we have applied (3.6) and the condition that yl(t)

+ Y 2(t) > 1. Therefore

L[Y(t), t] =ClYl(t)+C 2Y 2(t)+ (l-yl(t))l1 (t)C 2 1 +(l-y2 (+))e 2(t)C 12

(3.12)

From this expression we obtain immediately the components of

the vector A(t)

Xl(t)=E{L[Y(t) ,t] IY(t)=(O 1) =1} = C2 +C 21 l (t)

A2 (t)=E{L [Y (t) ,t] Y(t)=(1 0) =2} = C 1 +C 1 2 82(t) (3.13)

3(t)=E{L[Y (t) ,t] Y(t)=(1 1) =3} = C+C

To obtain the elements of the probability matrix it is

very important to follow carefully all the conditions, see

Fig. II-.2, imposed on the decision process. Following those

rules we have obtained in Appendix A the elements of the

transition matrix, as
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1-a(t)el(t) Ec(t) al (t)8l(t) (1-E (t))e~ (t)el(t)

P(t,u*) c*( (t)e(t)82(t) 1-c*(t)82 (t) (1-6*(t))ac(t)82(t) (3.14

M1(t), *M (1-6 (t)) C*(1-6()(t) (1-(t)) (1-C*(t))

It can be easily seen that in fact P(t,u*) can be obtained

directly from the. tableau of Fig. II-6 by the following cor-

respondence (see Fig. III.1):

a) If the value of the control variable ui in the tableau is

Ui = ° write a term equal to l-u1

u. = 1 write a term equal to ui

b) If u i i write i.ei instead of ( i

c) If the cell is on the diagonal add to the previous term

a correcting term obtained considering a new cell with

values given by the variables yl(t) and y 2(t) and applying

steps a) and b)

d) Repeat a), b) and c) for i=l and i=2. The transition

probability is the product of the two terms obtained in

this way. 1=0 1 2=1 0 3=1 1

-0 I 1 02 /0

1=0 -' .- 1 /

(.e£ ·(t)) (1-a (t)e l (t)) 6 (t)a*(t )el (t) (1-E (t)) a*(t)el(t)1 12 1 2 

E (t) (1-a (t)el(t))

rring term

Fig. III-1 How to obtain the first row of the matrix from
the first tableau row
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This is not a surprising result and it could be easily

expected from the way the tableau is constructed. Step C)

is a consequence of the condition imposed that if after the

arrival of the requests the optimal decision requires to erase

the last copy of the system we remain in the same state.

Therefore the probability of remaining in the same state

(diagonal terms) has to be corrected by a term equal to the

probability of requiring the erasure of the last copy. This

probability is exactly the probability of g oing to state .0

if this state were allowed,. The values of the control variables

needed to go to state 0 are obtained through the ".exclusive or"

addition of the binary representations of present state and -

state 0, but this suis sum is always equal to the present state

repre.senntation; therefore the valuues of ,the control variaDbl~es

.are equal to the vvalues -of the alloca-ti:on variabl:es of the

presen~t state.. In -this way we ensure that ithis mattr. ix

.accomplishes all the properti-es of a stochastic ;maktrix;, in

particular Ithe needed condi 'tion thvat all rows must add to one;

this is so because !the terms are obtained using all ,possible

combinations of O0's and l'Vs with two elements (NC elements

in general') and hence we always add terms like

A B+(l-A)B,+A(l-B+(l-A) (1-B) + ( A(3.15)) 

Another simplification can be obtained by observing

that in ·every row the combination of rcontrol values that will

take the system into the state Y-(t+l)=-0 is -not allowed. Fo-r

example in the first row of Fig. 11-3, l=x0 s2=-1 is forbidden
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and therefore in the first row of P(t,u) we have

(1-a1)E2 = O (3.16a)

Similarly in the second row of P(t,u)

(l-a2)E: = 0 (3.16b)

and in the third row

£1 £2 = 0 (3.16c)

This property will be useful sometime to simplify the

expression of the transition probabilities. We have made use

of this property in Appendix A.

Grouping all results together we obtain the following

backward matrix equation (NC = 2)

V*(t) C2 + C21il( t)

V*(t) = C + C122(t) +

V*(t) C 1 + C 2

1-a* (t Et)1 t(t)et M(t)1 V(t) (1-(t) (t)(t) V(t+)

c1 ( t) et ( t) 2 a* (t) (l-E (t)2(t)(1-(t) (t) 82(t) V(t+l)

£1*(t) £2 (t) 1-c* (t) -6(t) V (t+1)
1 2 1 2 3

(3.17)

where the optimal decisions for each row of the matrix

P(t,u*) are the values of the corresponding row in the tableau

that give minimum scalar product with the vector V*(t + 1)

In particular, if we define

A=V (t+1)

B= (1 -9(t))V*(t+1) +e (t)V* (t+l) (3.18)

---- -~----~I---- ~----~1 1 2-'~~



42

c= (1-e (t))V* (t+l)+8 1(t)V (t+1)

then if the system is in state i at time t

I c~(t) = 0if A < B and A < C(3.19a)

Ot tt) = 0

(c2(t) 1
{ if B < A and B< C (3.19b)

E£2(t) = i

{if C < A and C < B (3.19c)
£*(t) = 0

In the same way the optimal decisions being in state 2

and 3 can be obtained.

We will see some numerical applications of these equa-

tions in chapter V.

IIi-4. Recur~sive Equations for NC=3 and Generalization to

any NC -

For NC=3 the total expected cost over the period [0,T]

can be expressed as (remember C. = 0, Vi)
11

T 3 3 3

C = E E[Y' EC1Y.(t) E EY yi(t)yi(t)nk(t)minClk

t=l i=l j>i k/i ijt

T

- E L[Y (t),t] (3.20)

t=1=
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The components of the vector A(t) are obtained as

Al(t)=E {L[Y(t),t] Y(t)=(O 0 1) = 1} = C 3 +C 3 1l(t+C 3 2e 2 (t)

A 2 (t)=E {L [Y((t) t]IY(t)=(O 1 0) = 2} = C2+C 2 1 1 (t)C 2 (t)

x 3 (t)=E {L[Y(t),t]IY(t)=(O 1 1) = 3} = C 2+C 3+e8(t)miniC 2 1,C3 1t

t" " " " " - - etc. (3.21)

The whole vector is

C 3 + C 3 1 l1 (t ) + C 32 8 2(t)

C 2 + C21 81(t) + C 23 e 3(t)

A(t) = C 2 + C3 + 81(t) min (C2 1, C 31) (3.22)

C 1 + C12 e2(t) + C 13 3(t)

C1 + C3 + 8 2(t) min (C12, C 32 )

C 1 + C2 + 83(t) min (C13, C23)

C 1 + C 2 + C 3

The way to construct these components from the state

vector is simple.

The easy rules are sketched in the flow chart of Fig.

III-2.
Repeat from m=1 to M

State m
write m in base 2 with NC components
mi ith component i=l,..NC

Fig. III.2 Flow chart
to obtain the per J - set of indexes such that m.=0
unit time costvecunit time cost set of indexes such that mi=l

vec(t)o Cs+ uhmin {C.. .

m B r

~~__ ~ ~ ~ _._______ __~~__ ___~~ ___if



I 4

As far as the probability transition matrix is concerned,

we can calculate easily its components by making use of the

~ rules-stated for the case NC=2 and -the tableau of Fig.- II-7.

Some of the components are shown below (for brevity.we delete

the variable t).

(1-a 202) (1-el 21)e2e2)3 .

(1-e1F)2a383 (1-a8e1) (1-a33) . .
P(t,u) = (3.23)

1,1e) 2 (1- 3 ) (1-el ) (1-2£ 32 3

61 2 13

where we have applied a property similar to (3:.16) so that

for example in the 7th row of P given in (3.23) we have

l 2:£ 3 0. 

It can be seen now that the rules we developed in cons-

tructing the immediate cost vector and the transition pro-

bability matrix for NC=2 and NC=3, generalize easily for a

network of arbitrary size. These rules will allow for an

easy algorithm to be implemented on a computer. To make things

concrete, we illustrate this in the following example:

Example:

Suppose we have a network with five computers NC=5, and

being in state 3 at time t, we want to know the immediate

cost and the probability of being in state 17 at time t+1.

First of all we write the vector representation of state

3 and its control variables:

------ -------- --------- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~-----~---r-~ ~ ~~ll ~-~~- --~~-~
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Y(t) = 3 = (O 0 0 1 1) = (acla 2 ,C3 , 4 , 5) (3.24)

From this representation we can immediately write the

per unit time cost.

X (t) = C +C 5+e(t) min (C4 1, C51) + 82(t) min (C4 2 C 5 2)

+e 3 (t) min (C43 , C 53) (3.25)

To obtain P 3 1 7 (t) we also need the vector representation

of state 17

Y(t+l) = 17 = (1 0 0 0 1) (3.26)

the value of the control variables we need for this transi-

tion are:

(O 0 0 1 1) @ (1 0 0 0 1) = (1 0 0 1 0) (ala2a3E4£5) (3.27)

therefore
3 £1 a2 a3 E4 £5 17

(0 0 0 1 1) - 0 0 0 1 (3.28)
1 0 0 1 0

now we can write that the transition probability is

P3,1 7 =alel (1-a 2 2)(1- 3 3) (1-22) (3.29)

It can be useful to verify that in fact we will arrive

to the same expression if this probability is computed by a

straight forward calculation.

From the discussion in section II-6 and Fig. II-2 we

see that we can begin in state 3 and finish in state 17 in

four different ways:

1) We decide to go to (1 0 0 0 1) = 17 and there is a request

from computer 1
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decision

Prob { Pos. 1 a} = a(l - a2) (1-a3)c4 (1- 5 ) Prob {nl=l} =

-=el,( I- e2 )'(1-a3)-4(-:1-5D) 1 (3.30)

2) We decide to go to (1 1 0 0 1-)-25 and there is a request

from computer 1 but there is no request from computer 2

decision = (1 1 0)

Prob Pos. 2 } = 1a2(i-a3) 4(1- (- 5 )e 1(l-8 2) (3.31)

3) We decide to go to (1 0 1 0 1) = 21 and there is no request

from computer 3 but we have a request from computer 1:

decision = (1 0 1 1 0) (3.32)

Prob {Pos. 3 } =eal(1-a2)a3E4()1(13)

4)-We decide to go to (1 1 1 0 1) _= 29 but there is no request

from 2 and 3 and we have request from 1:

decision = (1 1. 1 1 0)

Prob{Pos.4} = la2 a3C4 (1-£5)8! 1 ( - e2) (1-83) (3.33)

As we can see these four possibilities are the results

of the following four decisions

1l 2- 3 4 5
(3.34)

1 0 1 0 with prob. e1

11 0 1 0· with prob. 1(l-e 2)

1 0 1 1 0 with prob. e1 (1-e 3 )

1 1 1 1 0 with prob. 91 (l-e2 ) (l-e3 ).-. -. --........ , ... 2- 1 2 -3
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Adding up those four probabilities we have

Prob{Pos.l}+ Prob{Pos. 2} + Prob{Pos. 3} + Prob{Pos. 4}

= (1-a2)(1-c 3) c4 (1-£5) 81 +

+ a1 2 ( (1-a5) 4 (1-E 1(l-'82) +

+ (l2) (1-a2) 3 5)8(1- 8l-3) +

+ al a2 a3 £4 (1-£5)@1(1-92) (1-93) =

=ael0 4(1l£5) [ (1-a2 ) (l-a3 ) + a2 (1-a 3 ) (1-e2) +

+(l-a 2) a3 (1-E3) + a2 a3 (l-82) (1-83)]

=ae 1 4 (1-5) (1-a2 2)(l-a 3 83 = 3,1 7) 3.35)

as was obtained in (3.29)

We could have written the remaining probabilities in

the transition matrix in the same way as we did for P 3 1 7

Therefore in order to analyze any network under the conditions

stated in chapters I and II we only have to build up the

recursive equations, using the rules described before and

move backward in time until we reach the steady state, or

arrive at t=O.

Nevertheless while implementing the dynamic programming

procedure we do not need to calculate all the probabilities

of the transition matrix. As it will be seen below the

reason is that after the control values are decided upon

many of the terms will be known to be zero. For instance,

consider the case of the above example, in which we were in

state 3 and the decision was "go to state 17". The only
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probabilities that will be different from 0 in the 3rd row of

the transition matrix are P and P where3,17 3,1

3 = (O 0 0 1 1)

u = (1 0 0 1.0) = (C'1 a2 E3 £4 5) (3.36)

17 = (1 0 0 0 1)

1 = '(0 0 :0 1)

The reason is that the only condition needed to accomplish

the decision is having a request from computer 1, the only

computer .in the decision vector with a control variable -equal

to 1. If this request does not come -the system will move to

state 1 :(we only excute £4 = 1) and there is .no possibility

-to go to .any other state with that decision :vector.

This rule can be easily generalized. Being in state n and

having made decision u(.t.), the only probabilities'-different

from .zero in .row n of P(t.,u). are the probabilities corres.-

ponding to destination states resulting from applying to

state vector n the decision vectors obtained from vector

u(t) making all possible substitutions of O's and '-s in

places where there 'are copying variables (a's) equal to 1 in

u(t).

For instance, if n=3 as before, but now u(t) = (1 1-0 1 0)

we will have

3 -:12O3c4s5 25
(0 . 0 :1 .1) . ..-- (1 1 0 0 1) (3.37)

1. 1 0 1'0
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Then, in order to implement this decision,requests from

computers 1 and 2 are needed, and therefore we have the

following possibilities

1 2 3 £4 £5

3
(O 0O11)-0.1 1 0 1 0 - (1 1 0 0 1) = 25

with Prob 8e1 2

1 0 0 1 - (1 0 0 0 1) = 17

with Prob 8 1(1-82)

---- (0 1 0 0 1) = 9

o i 0 1 0 with Prob (1-8 1 )e8

(0 0 0 0 1) = 1
with Prob (1-81 ) (1-e2 )

If £ would have had the value 1 instead of 0 the last

transition will go to state 3, the starting state, in order

to avoid the erasure of the last copy.

A schematic way showing how to compute the transition

probabilities using these rules is shown in Fig. II-3. A

flow-chart showing how to compute row n, of the probability

transition matrix, when the decision is "go to state m", is

shown in Fig. III.3 b). In the flow-chart we assume that

we have available a subroutine called BITS such that given

n, a number, and NC number of components it returns the base

2 representation of n with NC components. The calling

sequence will be



CALL BITS (n, NC, NB2)

Furthermore, we assume we also have available the

function

L = DECI(k, LBk, NC)

such that given a vector LBk with NC components it returns

the number L whose representation in base k is LBk.

These subroutines are given in Appendix C.

The simplifications explained so far can produce a

great saving- in computation because, for instance, in the

first case presented, only 2 of the 25-1 = 31 components-are

different from zero.s

The optimization procedure for each starting state will

consist then in the computation of the non null probabili-

ties for the initial state row for every possible transition;

taking scalar product of these non null probabilities by

the corresponding costs - to - go and choosing the smallest

result. The decision giving place to the smallest product is

the optimal dec-ision for that initial state and the product

added to the per unit t:ime cost for that state wi1 produce

the next (backward) cost - to - go.

The flow chart of fig. III-4 shows the set of operations

involved: in the: optimization process. In the next section

we will show how this model can be easily extended' to problems

with constra~ints- in the state space.
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Initial State = n
Decision "Go to state m"
Write n and m in base 2 with NCdigits

ni, m i are the iths digits respectively

Decision vector u(t) = n e m

Decision variables ui(t) ={i (t) if n. = 1
ci (t) if n=1

Call I to the set of subindeces such that
ui(t) - a(t) (i.e. ni = 0) and ai(t) = 1

NI = number of elements in I

Form the decision vectors u (t) where

v = 1,..2 N I according to

n. = 1 or
u Mn i n = n and ai = O
i (t) =

vth combinationof? O's and l's
in places where ni = 1 and ai = 0

1 = n 0 u (t) L ={1} , 2N I different l's
The non null probabilities in row n when
decision is "go to state m" are
m
nl (t) =N Oj (t) k (1 - Ok(t)) VlELnij k

where j I and aj = 1 in uV(t)

ke I and ak = 0 in u (t)

Fig. III-3 a) Flow-chart showing how to construct the
non-null probabilities of row n when decision
is "go to state m"

*The first combination is 00---0 and the last one is 111--1.
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State N
Decision "go to state m"

Call BITS (N,. NC, NB2)
Call BITS (m, NC, mB2)
NI = O
N1 =O

I DO I = 1, NC

N1 "- N1 + 1NB2 (I)= 1

NI Nb +- 1
'NAUX (NI) = I

YES ,L

YES

NJBIB 

2N I , 
_F 2. 
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(cont'd)

-=0, N0

A =1
Call BITS (J, NI, JB2)

K -1, NI

IA = NAU'X(k)
LB2(IA) = JB2(k)
A = A* (1-JB2(k)) (1 -OIA) + JB2(k)(3IA]

YES YES LEN
Fig. 11. bFoL=wh N

L = DECI(2, LB2, NC) -

PI(N,L) = A 

Fig. III.3 b) - -,'; Fortran Flow Chart of Fig. III.3 a.
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DATA: NC,T, Ci, Cij, 0i (t)

i, j = 1,..NC t = O.,1,..T

M = 2 NC-1

Compute Terminal Costs, V(T)
using Fl.ow-Chart Fig.. III-2

I I
Steps backward in time
Repeat from t = T-1 to 0

" "- Rows of transition matrix
' Row n corresponds to initial state n

Repeat from n = 1 to n = M

.ecisions: "go to state m I'

Repeat from m = 1 to m = M:

Compute non null 'probabitlit-ies of row n:.

-Pl(t) when decision is "go to state mi",

'using flow-chart of Fig. III-3.

Compute the scalar product

t) LP nl(t) V* (t+1)

Fig. III-4.
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Choose the smallest Rm (t) = R (t)n n
"go to state v" is the optimal decision

at time t from state n

Compute per unit time cost Xn(t)
using flow-chart of Fig. III-2.

- V*(t) = f(t) +c Rt(t) 4

Vector of costs to go at time tP

Fig. III.4. Flow chart of the Optimization Process.
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III-5. Constraints in the State Space

The problem formulation and the model described will

allow us to handle easily constraints in the state space.

These constraints may take the form of a maximum number of

copies allowed in the sysitem at any instant of time -or,

not allowing copies of 'the file simultaneously in two. or

.more given. computers.

* Far instance., if g.iven ,a network with three computers

(NC=3),;, three copies are not allowed in -the system simul-

:taneously then state 7 will be taken out of :the set of

admissible states; if on the other hand, the restriction is

that :there cannot be copies simultaneously in compupterQs 1

and 2, ;then state 6 is taken out of the state ..space.

One example of these types of constraints.was presented

before when state 0 was not allowed. Therefore, unallowed

states will be treated here in the slame way .state .0 ,was

treated before. To gain some insight we present.an example:

Consider-a network with .four computers (NC=4). If the

present state is .1 = (0 00 1) and the decission i·s

u(t) = (1 1 1 0), then the intended state is 15 = (1 1 1 1).

1 :l e2 a3 2 4 15
(-O 0 - 1) : ' (1 1 1 1)

1 1. 1 0

If there is a request from computers 1 and 3 but not

from-computer 2., the system will, go to state (1 0 1 1) = 11

and this event will occur.with probability. 81(1- 2 ):83.
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Suppose now that state 11 is not allowed, then another

decision has to be made. The situation is such that any

state of the form (a o b c) can be reached where a, b and c

can be 0 or 1 (but not all three equal to 0). Nevertheless,

considering so general a decision at this point will make

the problem very complicated, therefore a decision to remain

in the same state will be considered. This is a particular

case of the whole set of possible decisions. This kind

of decision will give to state 11 the same treatment as

to state O,as suggested, before.The probability of remaining

in one state will now be composed of the following terms:

Prob{remain in same state}= Prob{going to this state}+

+ Prob{going to state O} + Prob{going to not allowed states}

(3.39)

In the generat algorithm we will eliminate the rows

and columns corresponding to unallowed states and add their

probabilities to the diagonal terms. It should be noticed

that some extended simplification properties, similar to the

one obtained in (3.16), could be obtained from the new

unallowed states.

For instance, for the example above where state 1 was

the current state and state 11 was not allowed, we have that

a1(-a2)a3(1-c 4) = 0 (3.40)

if, moreover, state (1 0 0 1) = 9 were not allowed as well,

then

al(l-a2) (1-a3) (1-) = O (3.41)
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and from these two equalities

(1-Ca 2) (1-£4) = 0 (3.42)

An illustrative example where these facts are applied is

studied in Appendix B for the case of a network with two

computers (NC=2). It is shown there that if we restrict

the system to have only one copy at any instant of time the

backward equations simplify to the equations given by A.

Segall in El1], where the restriction was to operate with

only one copy.
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CHAPTER IV

UPDATING TRAFFIC AND NODE FAILURES

IV-1. Updating Traffic

The updating traffic consists of requests generated at

some nodes after a request of the file, with the only

purpose of modifying, partially or completely, the content

of the file, With this definition it is seen that the updat-

ing information generated at any node, should be sent to

all other nodes that possess a copy of the file.

It will be assumed, for the present study, that,

1) This kind of traffic is generated at any node as

a fraction, of the query traffic of this particular-

node. In general these fractions can be time depen-

dent variables. If we denote them by

Pl(t), P 2(t), - - PNC(t)

the rate of updating traffic generated from node

i at time t will be then

p i(t)Gi(t)

2) The updating traffic is implemented before the

decision has been activated but after the request

has taken place. The sequence of events is represen-

ted in fig. IV-1 as a generalization of fig. II-2.
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Computation Requests Implementation Activation of
of optimal- come of generated optimal decisions
controls' updating

traffic
t- t' t

Fig. IV-1. Sequence of events including updating traffic

With-probability pi(t) an updating of the file is

generated at any computer i that requested the

file and is sent to all computers that will keep a

copy at time t+l..

3) We will assume that there is no conflict between

the updating commands coming from different com-

puters. This'is sometimes a serious problem in a

practical case because it can force us to blockl

requests, while some updating is being,done in order

to avoid the processing of some old, and then use-

lesas or-even conflictive, information.

Under assumptions 1) and 2) we can say that updating

traffic is not a function of present state, but

only of present rates and subsequent states (as we

will see in sections IV-2 and IV-3, this property is

not true if we include the possibility. of node

failures). The only change to take place in the

recursive equations will be in vector V*.(t+l) that

will have some extra terms added-to its components.

The new costs-to-go vector at time t+1 will be now
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N-1

V (t+l) + Pk(t) 8m (t) CkN

k=l

N

V*(t+l) + Pk(t)k(t) CkN_ 1

k=l

k#N-1

. N

V (t+l) + Pk(t)Gk(t) E C =V* (t+l)+R(t)

k=l 1lI(j) (4.1)

lfk

. N N

MV k(t) k ( t ) k Ckl

k=l 1=1

1lk

Here I(j) is the computers containing a copy at

state j or in other words the set of subscripts

corresponding to l's in vector state j. We are

assuming here that the only charge involved in up-

dating a copy at computer i by computer j is the

transmission cost C...

The recursive equation will now be

V*(t) = A(t) + P(t,u*) [V*(t+l) +R(t)] (4.2)
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where R(t) is an M-componentscolumn vector. Several

examples investigating how the updating traffic affects

the dynamic control of the system will be studied in

Chapter V.

IV-2. Network with Node Failures

In this section the necessary changes in the model

to include the problem of node failures will be considered.

We shall assign to every computer a probability, PRf, of

failure and a probability, P,, of recovery according to the

following definitions

P A Prob. of failure per unit of time (4.3)

P = Prob. of recovery per unit of time given
that the computer is out of order

It is assumed that Pf and Pr are independent and the

same for all computers and instant of time, or in other

words that the failure and recovery processes are modeled

as two independent Bernoulli processes with rates Pf and

P respectively.

Under these circumstances, the new state has to carry

along information about two facts

1) the computer condition (working or not) and,

2) if the computer is on, whether or not the computer

has a copy of the file

·--- · · ·-- ~···--- · ----- --------------~-------------~~~ --~1``-x`~~-"lu-~-~~~II - -~~'~
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Therefore it can be concluded that each component of the

vector state has to bring information of one of three

possibilities

a) computer out of order

b) computer working and without a copy of the file

c) computer working and with a copy of the file

If we represent possibilities b) and c) with a 0 and

1 respectively, as before, and possibility a) with the

digit 2, the new state vector will be equivalent to a base

3 representation of some decimal number. Since this repre-

sentation is unique we see that we can name the states by

the decimal number whose base 3 representation is the NC-dimen-

sional vector. For example

Y(t) = (0 2 1 1)

will correspond to the state 1 + 3 + 2 x 32 = 22 of a network

with 4 computers, where computer 2 is out of work, computers

1, 3 and 4 are working and the last two have a copy of the

file in their memories.

Our model will now contain the following further assump-

tions:

a) When a computer is restored, it comes up with no copy

in itsmemory. This says that no computer can make

a transition from state 2 to state 1.

b) If there is at least one computer, say i, in working

condition but there are no copies in the system then

one copy is brought from outside (special memory)
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at a price C. If there are several computers in

working condition with no copy in their memories,

the system will bring a copy from outside.to the

computer with the smallest Col. Obviously

Coi >> Cij i,j = 1,2,..NC

and the quantities Coi will carry a measure of the

risk of losing all copies that we are willing to take.

c) The time between the points t and t+ of Fig. II-2

is very small compared to the unit interval (t, t+1).

For our purpose that means that the probability of

a failure in the interval (t, t+) is negligible.

With these assumptions the number of states in the state

space will be the number of different NC-dimensional vectors

that can be formed with 3 digits, that is, M=3N C

In the. present case state 0 is in the -state space,

because the system can go to this state after being at

state M-1, when all the computers are inope-rative, provided

that all computers become operative in.only one interval of

time. The decision variables will remain the same as before

except that there are no decision variables for inoperative

computers. That is, there are not decision variables for

the components of the state vector with value equal to 2.

In particular, when all computers are not operative, there

is no decision to be made. The only thing to do is to

wait until one or more computers recover and then bring a

copy into the system from outside.

------ --- -- - - .-
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Given the state at time t, the transition to time (t+l)

will be obtained as follows

a) Decide upon the value of the control variables
(if any)

b) Perform "exclusive or" of the control variables
with the actual requests and modify accordingly the
state variables (as in section II-6)

c) The failure or recovery of computers (if any) will
modify in turn the former transition.

The state at time (t+l) will then be the result of the

above three operations.

In following sections we apply these concepts to the

case NC=2, NC=3 and show how they generalize to any NC.

IV.3. Recursive Equations for NC=2 considering Node
Failures

The states per NC=2 are

Y(t)O 0=(0 0) Y(t)=5=(1 2).
1=(0 1) 6=(2 0)
2=(0 2) 7=(2 1)
3=(1 0) 8=(2 2) (44)
4=(1 1)

Let C01 be the costs of bringing copies from outside

to computers 1 and 2 respectively. Assuming C 0 1 < C0 2

the per-unit-time costs are

k0(t) = C 01 X(t = C 1

kl(t) = C2 + C2 1 e 1 (t) M 6(t) = C 0 2
A 2 (t) = C 01 X 7 (t) = C2 (4.5)

3( t) = C 1 + C 1 2 e 2(t) X 8(t) = 0

X4 (t) = C 1 + C 2
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It seems, from these values of the costs, that the optimi-

zation process will try to keep the system always-at state

8, because this state has the smallest cost, but.the decision

"go to state 8" is not among the set of admissible decisions,

since this will erase all copies from the system.

For the case NC=2 the only states that will generate

control variables are states 1, 3 and 4 and clearly these

control variables will give rise to transitions among

these states only

If we represent by:

-- the transitions ruled by control variables
(when no failures or recoveries are involved)

X - the transitions due to some failure or recovery
of some computer

* - the transitions due to a forced decision
(namely a copy has to be brought from outside)

The following tableau of possible transitions can be

sketched (remember C 0 1 < C02) S
t
a Comps

states
1 2

0 12 3'4 5 6 7 8 e

*0 xx X 0 00 
1 x x x x x 1 01

2 X * X X 2 0 2
States 3 0 X X X X X X X 3 1 0 (4.6)

4 0 X 0 0 X X X X 4 1 1
5 X *X X 5 1 2

Xx *Xx 6 20
7 XX *X 7 21
8X X X X 8 -2 2
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The empty entries in the tableau correspond to impos-

sible transitions; this is an important difference with

respect to the tableau with no failures where all transitions

are possible. These empty places will generate zeroes in

the transition matrix and this property will be useful later

to reduce the amount of computation in the optimization

process.

Let us calculate the probability transition for the

entries of the tableau:

row 0: initial state 0 - (O 0)

With the condition C01 < C02, there will be a tran-

sition from state 0 to state 3 if there are no failures.

That is,

P0 0(t) = (1-Pf)2 (4.7)

With only one failure the transition will be to states

5 or 6 depending on the failed computer and the pro-

babilities will be

P0 5 (t) = P0 6 (t) = Pf(l-Pf) (4.8)

If there are two failures

P0 8 (t) 
2 (4.9)

0 8 f

Except for the above, no other transitions are pos-

sible.

row 1: initial state 1 - (O 1)

The transitions to 1,3 and 4 are controled by the

decision variables defined in chapters II and III

and the condition that no failures occur. Denoting
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by Pi (t) the probability of going from state i to
ij

state j for the case of two computers and no failures,

the following transition probabilities can be written:

2 I 2
P (1f)(1 = (1-Pf) (1-lele)

P 1 3=(lpf) 2 II = (1-P )2 1 (4.10)
13 f 13 f 2 1 1

2 II 2
P 1 4=(l-Pf) l4 =(-P (1-pf)2 )a 8

The transition to state 2-(0 2) (or 6_(2 -O))could

only take place if the system decided to go to state

1-(O 1)(or 3-(1 0)) and there was a failure.

The reason is that there is already a 0 in the state

so the other element had to be a 1. Therefore

P 1 2 =P4 (1-Pf) = ll1P) (1-a) 4.11)

P 1 6 =Pf ( -Pf) P3 Pf(lPf) 2 1 1

The -transition to state 5 (-1 -2) or 7 (2 1)

can happen in two ways. Either the system decided

to go to state 3-(1 0) or 1_(0 1) respectively and

a failure brought computer 2 out of order or, the

system intended to go to state 4=(1 1) and the same

failure happened thus we have

II II
P1 5 =Pf(1-Pf) (P 13 + P14) = Pf(1-Pf)aO1

(4.12),
II + II

P 1 7 f(1-Pf) (P P 14) = Pf(1-Pf) (1-e2e 1 )

Finally the transition to state 8=(2 2-)' take place

when there are two failures, no matter what transition

was decided upon, hence
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Pl8Pf 2 (4.13)

row 2: initial state 2-(0 2)

From this state the automatic decision is

"bring a copy from outside to computer 1". If there

is no failure in computer 1 and computer 2 remains

out of order, then the system goes to state 5.

Therefore

P 2 5=(1-Pf)(1-Pr) (4.14)

If, on the other hand, computer 2 is restored

and computer 1 does not fail the system will be in

state 3 in the next instant of time and this event

will occur with probability

D2 3(1-Pf)P (4.15)

Considering now the case when computer 1 fails, dif-

ferent transitions appear

P2 6=PfPr

(4.16)

P2 8 =P f( l- P r )

row 3 and row 4 are obtained in the same way as row 1.

row 5: [initial state 5-(1 2)] has the same transition pro-

babilities as row 2, because as we said before, the

decision of going from 2 to 5 is automatic, and

then the possible transitions from 5 are only due to

failures or recoveries in the computers(remember the

sequence of events at the end of section IV-3 that
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decided a transition). Thus

P 5P2 S= (1 - P f )(1-P r )

P 5 3=P2 3 =(1-Pf
) Pr

P5 6 P2 6Pf Pr

P5 8P2 8 Pf(l-Pf)

row 6: [initial state 6=(2 0)] is obtained in the same way

as row 2 but interchanging the computers.

P6 1 (1-Pf)Pr

P6 2 PfPr (4.17)

P6 7=(1-P )(1-P r)

P =P( -P)
6 8 Pf r

row 7: [initial state 7-(2 1)] is identical to row 6 for

the same reason than row 5 was identical to row 2.

row 8: initial state 8_(2 2)

From this state there is no available decisions

and the only solution is to wait. The probabilities

are:

P8 =P 2

P 8 2 P8 6=r(1P r (4.18)

P8 8= (1-P )2

The vector dynamic equation is

Y (t+l) =P (t,u)Y (t)

where P(t,u) is the transition probability matrix.
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It can be checked that the transition probability

matrix obtained above, is a well defined stochastic matrix in

the sense that all rows add up to one. In the next section

we will see that these results easily generalize to any

value of NC and that the transition probabilities can be

obtained easily and efficiently. Then in the next chapter

these results will be applied to a numerical example.

To conclude this section we point out that in the case

of a network with failures, the terms due to updating

traffic are not only function of the state to go but also of

the present state . The reason is very simple: a computer

that is not working cannot generate updating traffic, further-

more if the state is such that no copies are present in the

system, ((O 2) for instance) no updating traffic can be

generated either. A flow-chart showing how to compute the

updating traffic for any network is presented in the next

section.

IV.4. Recursive Equations for NC=3 and a general NC
considering node Failures

In this section the results of section IV-3 will be

extended to any NC and general rules showing how to obtain the

per unit-time-costs, updating traffic costs, and transition

probabilities will be developed.

First the case NC=3 will be examined. The number of

states is M=33=27, and they are all ternary numbers from
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m=0 (0-(0 0 0)) to m=26 (26-(2 2 2)). Let us begin deriving

the per unit time and terminal costs. We have the follow-

ing cases:

a) the state is such that no copies are present and

at least one computer is working

xm=min{c0j} jfcset of working computerst

b) all computers are out of work

XAM 0 (4.20b)

c) general case

Am= Ci+ E ej(t) min {Ci} (4.20c)

iI j

where I is the set of working computers with a:copy, and

J is the set of working computers without a copy.

Some of these costs are obtained bellow as illustration

(it is assumed C01 < C02 < C03)

0= ('0 0 ) ' 0 (t) 
= C01

4=(0 1 1) A4(t) = C2+C3+emin(c21, 31 )

7=(0 2 1) A7 (t)=C3+E 1C 31

18;(2 0 0) A1 8 (t)=C0 2 (4.21)

24=(2 2 0) X2 4 (t)=C0 3

26_(2 2 2) X (t)=0

The terminal costs are obtained in the same way except

that as discussed before, there will be a zero in the place

where there was a C0i. A flow-chart showing how to obtain

terminal and per-unit time cost for any value NC is sketched

in Fig, IV-3,
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The way to compute the cost due to updating traffic for

all possible transitions in a network with NC computers is

shown in the flow-chart of Fig. IV.2. We call R(I,F) to the

(I,F)th element of the updating traffic matrix.

Data: NC, M, e(i), pi, Cij

I = 1,M

F = 1,M

Write I and F in base 3 with NC digits
Ii, F i iC{l,..NCI are the digits

F2 to the number of 2's in F(Final
State)

Let us call I1 to the number of l's in I (Initial
State

F1 to the number of l's in F(Final
State

and I(2) to set of indeces 3 I. = 2

F(1) to set of indeces D Fi = 1

YES FI2 N

R(I, F)= P k(t)Sk(t) E Ckl

k 0I(2) leF(1)
lk

Fig, IV-2, Flow-chart of updating traffic when failures in
the computer are considered
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DATA: NC,M, Ci, C Coi i(t)

i,j = 1,..NC t [0,TI

f Terminal costs A = 1
otherwise A =

LRepeat from state m=0 to m=M-2

Write m in base 3 with NC digits
mi 9 ith digit i = 1#..NC

Let us call
J = {j} s.t. m. 0

I = {i} s.t. mi = 1

NJ = number of elements in J M Coj
NI = number of elements in I 

YES Let j J s.t.

1Coj <Co WicJ ij

im = ~ Ci + . .(t) min {Cij|
iCI j -Ji j J

M-1

RVector A(t) if A = 1Return fVector V(T) if A =1
n[ector V(T) if A = 

Fig. IV-3. Flow-Chart showing how to obtain terminal
and per-unit-time costs
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In fig. IV-4 we find the tableau of possible transitions

for the case NC=3 with symbols as defined in section IV-3.

The basic rules for the formation of the tableau are the

same as for the case NC=2;

1) No transition from a state comnonent 2 to a state

component 1 is possible

2) If there are only O's and 2's in the state vector

the only possible transition is to bring a copy

to the computer with smallest C

Example of impossible transitions

from 0 2 2 to 0 20 

from 0 0 0 to 1 2 
(4.22)

from 0 2 2 to 0)2 O

from 1 2 2 to 020

where the elements causing trouble have been circled out.

To obtain the general rules for the transition proba-

bilities let us begin analyzing some examples.

We define, as before, P . as the transition probability
1)

from i to j in a network with L computers when no failures

are considered

- The transition due to failures or recoveries only

are obtained with the same basic rules as for the

case NC=2, for instance

0=(0 0 0) - 9=(1 0 O),PO 9 =(1-Pf
3

6=(0 2 0) - 17=(1 2 2),P 0 1 7=(1-Pf)(1-Pr)Pf (4.23)

25=(2 2 1) - 2=(0 0 2),P2 5 2=Prf
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Q) O n r0 H N 0 i N 0 1 i C O0 H N O H N O H Ci O 1 tN O i1 N 1 i CN

1 U NO O O H H - N N O O H H H N N N O o 00 H H N N N
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- The transitions from states with no inoperative

computers are also directed by the same basic rules

as the corresponding transitions for NC=2, see section

IV-3, thus from state 1=(0 0 1) to state 10=(1 0 1)

1 3 III
P1 10=(l-Pf3 P1 Ad (4.24)

from state 1=(0 0 1) to state 5=(0 1 2)

2 III III
P1 5= (l- Pf 2pf (p 3II 1 4

where 3 and 4 are the states obtained from 5 replac-

ing the 2 by 0 and 1, that is

5 = (O 1 2)

3 = (0 1 0)

4 = (0 1 1)

If the transition is to a state with two 2's then the

number of P j s contributing to the probability

is larger (3 or 4 depending on the case)

from state 1=(0 0 1) to 17 = (1 2 2)

P1 17= (1-Pf) 2 III III III III
P1 17-f Pf( 1 9 + P1 10 + P1 12 + 1 13 (4.25)

where as before 9, 10, 12 and 13 are the states

obtained from 17 replacing the 2's by all possible

combinations of O's and 1ts, that is

(1 0 0) = 9

from 17 = (1 2 2) we obtain (1 0 1) 10
(1 1 0) = 12
(I I 1% -- 113
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- If the transition is from state 1=(O 0 1) to state

24=(2 2 0) then

P1 24(1-)2P II III III III
' 2A 1 f Pf 1 3 + P 1 9 + 1 12

where now we only have three terms in the sum because

state 0=(0 0) was unallowed for the case of no

failures

- The probability transitions from states with only? two

computers in working condition will be formed.up

II
from terms Pi j The subscripts i and j will be

obtained from a modified 2-components states result-

ing from the previous one after the elimination of

the element/thatwas equal to 2 in the initial states

and applying previous rules. That is from state

7=.(Q 2 1) the modified initial state will be (O 1)= 1,

therefore atrans.it.ion from 7 to 11=(1 0 2) will have

the following probability

P7 11=(11-Pf)PrPf(Pl1 2 + P3 ) (4.27)

where 2 and 3 are obtained from 7 and 11 as follows

7= (c01)

'(1 0) 3 211=(12) - 1(1 1) - 3

The rest of transition probabilities can be obtained in

the same way.. It can be easily checked again that' the result-

ing transition matrix has all the properties needed by a

stochastic matrix. The dynamic equation for the state is,

as before,

Y(t+l) = P(t,u) Y(t)
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These results generalize to a network with any number

of computers. It .will nevertheless be convenient to sketch

in a flow-chart the ordered set of steps we have to take

to obtain the element of the transition matrix. To simplify

the flow chart, let us suppose that we have the following

subroutines available (see Appendix C)

Write N in base 3 with NC components
BASE 3 CNC,N,NB3,NO,N1,N2)+ NB3(I) is the Ith component

NNO = number of O's in NB3
(3N C > N) N1 = number of 1's in NB3

N2 = number of 2's in NB3

BITS(NNC,NB2) { Write N in base 2 with NC digitsNB2(I) is the Ith component

Obtain the vth row of the transition
ROWPRO (NC,v,A,eT,IND)-* probability of a network with NC

components and no failures, when
the rates are

8(i) i=l,NC and

the decision is "go to state " .
This result is obtained with the
flow-chart of Fig.TII-3.
U(J) is the Jth element of this
row
IND is an output index s.t.

IND 1 if somel[(J)=l (*)
O otherwise

we will now call

N - the row (or present state) being computed

(*) Notice that if this happens the only nonzero element
in the row is q(AX)=1
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M = the number of states M=3N

NC - the number of computers in the-network under consideration

M' = the.number of states for the auxiliar subsystem without
failures

R(J,I) - the updating traffic cost generated in a transition
from I to J and obtained with the flow-chart of Fig. IV-2

RN - the Nth column of the matrix R { R(J,I)}

For simplicity of representation and convenience of

computation the algebraic representation of the entries

will not be derived. Instead we present an algorithm to

calculate their numerical values after deciding upon the

control variables. Having the transition probabilities

the optimization process can be carried out directly by

moving the decision to all its possible values, performing

the product with the matrix (V + R) and choosing the decision

giving the smallest value. This is what is done in the flow-

chart. The variable A.will control the admissible decisions

and the variable L the corresponding element within the row.

The results after the computation will be

"Go to state LAMBOP" actual optimal decision
from state N

scost actual cost due to this transition resulting

from the product -* row N x (V + R7)

Looking carefully at the flow-chart it can be seen that

the first thing it does is an assignment of state N to one

of the three basic types of states it considers. In this

way the rest of the computation will take place in one of

the three main branches X, Y or Z.
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DATA: N, M, NC, 0i' Pf' Pr' R, V. Col

N2 = 0 a. (200)
NF = NC

Call Base 3 (NC, N, NB3, NO, N1, N2) I

NON 2=" N-O, NC N (210)

Q = 107 (initialization)

M' 2NC 1
v = DECI (2, NB3, NC)

X = 1, M'

BB() 0.(initialization)
Call ROWPRO (NC, v, A, 0, il, IND)
Call BITS ( k, NC, X2)

L = 1, (M-l)

L M-YES P (M-l) Pf N__

|Call Base 3 (NC, L, LB3, LO, L1, L2)

L2 = 0~----~ U = DECI (2, LB3, NC)_ .L - 0 -o luNC
P(L) = (1-Pf)N C (u)

NO

ES ~NB3(k) = X2(k) = 1
and LB3(k) = 0 for some k C{1,..NC

~ND =0WA2(k) = 0and
LB3(k) = 1 for NO

some k{1, NC,
YES

A=1

z - YES

L >

II 1(400) (89)

~~~~(9'~0) ' -(9)
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(400) (90) (40) (9) (89)

A = 0(initialization)

L2 
J=- II, 2 L2-1

Call BITS (J, L2, JB2)
k = 

I =1, NC

r B3(I) VB2 (:I)= (9B3 (I)
k k + 1
VB2B(I) = JB2 (k)

a, ., r (N .

V = DECI(2,s VB2, NCt )
A = A + Q (V)

RETN(9)

|P(L = Pf (1 - Pf) A

(89) 

.BB() = BB(X) + P(L) (V(L) + R(N, L)) 
YES J Q = BB(X)

Call BITS (op, NC, LAOP2) 

Decision: "go to state LAMBOP = DECI (3, LAOP2, NC)
scost = Q[ eTsUon:"oo t ,o--c,,,,o,,c]



(211)

Q - 10 (initialization) 
k= 0

M' = 2NF NE

I = 1 , NC

YES fNZ 3(I) -0

NO

NUVEC (k) = NB3(I)

v = DECI (2, NUVEC, NF)

X = 1, M'

BB(P) = 0 (initialization)
Call ROWPRO (NF, v, 2, 9, H)

L = 1, (M-l)

Call BASE3 (NC, L, LB3L, LO , L, 2)
NZ = # O's in LB3(k) : .NB3(k) = 2
ND = # 2's in LB3(k) 3 NB3(k) = 2
NW = L2 - ND

Y . *(tee note on page 85)
Y4 o NZ NF

-'O NO

u = DECIN (250,UVEC, NF)YES = P(L) pNZ (1 Pr) N D PfNF

(450) (290) 289
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*(see note on page 85)

(250) YES

( 572)- 1 II = 0 |

JJ = II, 2 -1

Call BITS (J, NW, JB2)
k = kk = O-(initialization)

I = 1, NC

YESCNB3(I) - L

NO

YES
(290) .

kk = kk + 1,
VB2(k) = JB 2 (kk)

.V = .ECI (2, VB2, NF) 

YES'

P(289) A

(1-P PfE28) B F + D NWV + N LP(L) =P r (1-Pr P f (lp )NF-NW A

BB BB =BB(X) + P (L) (V (L) _+ R(NL3 

. : 
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Call BITS (A op, NF, LAOP2)

LX = 0

JX = 1, NC

checkingscat this pnLNB3(JX) = 2 !

LX - LX + 1 /
LAOP3(JX) = LAOP2(LX)

Decision = "go to state LAMBOP = DECI(3, LAOP3, NC)"

scost = Q

R

See Fortran listing in Appendix C for further zero transition probability

checkings at this point.



86

Let J be s.t. MI 1=l

(200)- C <o C _ VK3J _- NF=NC
I O okk=l , N

N P = N C - 1 MI=2
J=NC+1 ....
NP=NC

(210) NC2> (NC-) NS=NC-_ LetJ be the only-(210k) i..
LB_- M _coimp nent st, NB3(J)-2

Let J be s. t,

NZ# - ' 0's. n LB3 (k) N P:Nc-

NS) o 2BA=s (initializat on

LF= 2N P

I=I,..LF- 1 -

lcall BITS(I, NP,IB2) 

Form the new vector W s.t.
0 if Ik=0

Wk = 2 if Ik=l

wI=MI,2 2

Form the vector LB3 s.t.
W(k) if k<J

LB3 (k) = MM if k=J
W(k-1) if K;J

NZ=# Of O's in LB3(k) NB3(k)=2
NS=# of 2's in LB3(k) NB3(k)y2 and k3J

[L=DECI (3,LB2,NC_
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NO P(L) PNZ(1PN2-NZ
P(L) P (-L) = r Cll-P

YES

c=pNZ ( lP r ) N2-NZ NS-

NO
NO= -JP(L)=CPf

YES

P(L) = C(1-Pf)

BA = BA + P(L) V(L)

NO DECISION
SCOST = BA

Fig. IV.5. Flow-chart showing how to obtain the transition

matrix and the optimal decision for a network

with failures.
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Branch X corresponds to states with no 2's amongtheir
components

Branch Y corresponds to states where no decision is
available

Branch Z to the rest of states, This branch has a sub-
division depending on the destination state
Z 1 if the destination state is such that

to reach it we have only one possibility
Z otherwise

In branches X and Z every possible transition (index

L) from N is tested and only the transitios that give a

nonzero probability are obtained. In branch Y, only the

nonzero probability transitions are generated. Functioning

in this way the algorithm is very efficient because only

the nonzero terms (430% of the total) are obtained.and there

is no waisted time performing zero computation. The algorithm

was programmed in Fortran, using Assembler for BITS Sub-

routine (see Appendix C)

Now that the transition matrix and optimal decisions

have been obtained the rest of the process is identical to

the case with no failures. (Fig. III-4). The whole process

is represented in Fig. IV-5 and the matrix recursive eq. will

be

V*(tl = A(t)+P(t,u*) V*(t+l)+P(t,u*)OR(t) (4.29)

where R(t) is now an M by M matrix and Z means that we make

the scalar product of the ith row of P(.,.) with the ith column

of R(;) to obtain the ith component of a column vector.

Let us briefly analyze how the actual dynamic behaviour

of a network, with present characteristics, will be, when the

I~-- x~`~~~I-~- ~ ~ ~ ~~T~~-~~'* -____rn_~a·~~~il---------i*i---rr i--l 11~--1-1~~1 I1I 111 i~~·--^-1~1-- -~~l~~__ i -1_~_~--~____1··-~l__l _~-__----------- ------- ~11__-
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Read Data

NC, T, Ci, Cji, ei(t), Pf , Pr' i(t)
ViCl,2,..NC}, jC{0O,1,..NC} tC1,2,..T}

Compute number of states

M= 3NC
Compute terminal costs (V(T))
(Flow-chart Fig. IV-3 with A=l)

Steps backward in time

t = T-1,1

Compute per unit time cost (A(t))
(Flow-chart Fig. IV-3 with A=0O

Rows of transition matrix

n = 1,M

Compute row n
Obtain optimal decision Keep
and minimum cost (S*(t+l)) ---- optimal
(Flow-chart Fig. IV-4 Decisions

Compute new costs-to-go
V*(t) = A(t) +S*(t+) l

Fig. IV-6. Optimization Process in Network with

Failures
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sequence of optimal decisions is applied. Let us suppose

that the probability of recovery for a computer that is not

working is not equal to 1, or in other words that the recovery

is not instantaneous. If we assume that the process begins

with all the computers working, the system will begin to make

transitions among states with no 2's among their components.

Once a'failure takes place the system will change its

"state space" to states that have a 2 in the position of the

failure; it will remain making transition in this new "state

space" until one of two possible events will take place:

either there is another failure (or more), or the failed

computer begins to work. The process will continue in this

way. We see therefore that the whole state space can be

divided into various subspaces such that the system will

remain most of its time making transitions in those subspaces

and eventually will move from one subspace to another. There-

will be as many subspaces as different vectors we can form

with NC components and two symbols (one for 2 and the

other for 1 or 0), All the vectors with same frame of 2

components (and at least one 1) will belong to the same sub-

space.

For NC=3 some of the subspaces will be:

0 01- 1

S1 0 1 1- 4 S 02 0 2 3 1 2 0 (430)
1 0 0 -9 1 1 2 1 2 1
1 0 1 - 10
1 1 0 - 12
1 1 1 - 13



This particular behavior and subspaces division can

also be illustrated if the transition tableau of Fig. IV-4

is written with a different state order as in Fig. IV-6

is shown. The system will be most of the time within the

marked regions of the tableau and eventually will move from

one region to another. The states with NC-1 elements equal

to 2 (as(O 2 2)= 8) may be thoughts as degenerated subspaces

or just subspaces with only one component.
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CHAPTER V

NUMERICAL APPLICATIONS AND OTHER ANALYTICAL RESULTS

V.1 Time varying rates,no failures, no updating traffic.

Let us analyze the case of a network with two computers

sharing a file according to time varying rates. We will

apply the model of chapter III and we want to know the dynamic

evolution of the states (i.e. allocation of the file) in

order to minimize the total expected cost. We also want

to study the evolution of the state dynamics and total cost

as the storage cost varies from 0 to the value of the trans-

mission cost. The transmission costs will all be taken to

be equal to 1. The problem will be solved for storage costs

equal to 0, 0.25, 0.5, 0.75, 1. The system will operate for

a period of 20 time units, [1,20] . The rates are represented

in Fig. V.1, and the results inTable V.1. In the columns

called "evolution of states" we write the optimal decision

("go to state,,,") for every possible initial state and every

instant of time.

Examining the table we can see that for the case of

storage cost equal to zero the optimal decision is to always

keep a copy of the file in each computer. The optimum initial

state is state 3 and the optimal decision being at state 3

is always "remain in 3". This is the logical result because

there is no payoff for keeping a copy in any computer. At

t=19 we will leave the system at state 2; this decision is

I~~_ __~~~~_ _____~
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RATES i j 1 Vi,j OPTIMAL DECISIONS
EVOLUTION OF STATES

TIME COMIPUTER STORAGE COST 0.0 .25 .50 .75 1.0.
1 2 PRESENT STATE 123 123 123 123

20 0.8 0.0
19 0.8 0.4 222 222 222 222 222
18 0.8 0.8 333 333 222 222 222
17 0.8 0.8 333 333 333 333 222
16 0.0 0.8 133 133 133 133 122
15 0.0 0.0 113 113 1 11 1111
14 0.2 0.0 31313 111 111 111
13 0.6 0.0 313 313 111 111 111
12 0.6 0.4 333 222 222 222 222
11 0.8 0.8 333 333 222 222 222
10 0.0 0.8 133 133 13133 122
9 0.0 0.2 133 133 111 111 111
8 0.0 0.2 133 133 111 111 111
7 0.0 0.2 133 111 111 111
6 0.8 0.6 333 111 111 111 111
5 0.8 0.6 333 333 333 333 111
4 0.8 0.6 333 333 333 222 222
3 0,.2 0.8 333 333 333 222 222
2 0.2 0.0: 313 313 11)1 11 11
1 0.0 0.0 113 113 111 11 111

OPTIMUM INITIAL
STATE 3 3 1 1 1

:KINITMW1 TOTAL
EXPECTED COST 0.0 9.3 I5. 21. 626.7

TABLE' V-,
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taken because we know that at t=20 there will be no request

coming from computer 1. Nevertheless we could, in any case,

remain in state 3 without increasing the cost, so both

decisions give the same cost.

As we increase the storage cost the number of optimal

decisions that are different from "go to state 3" is larger

and finally when the storage cost is equal to 1 the optimal

decision will always be go to states 1 and 2 only, that is,

keeping only one copy in the system at any time.

Looking now at the columns of Table V.1 we see that the

optimal cost increases in a nonlinear fashion as the storage

cost increases.

For comparison we also consider a static analysis with

the corresponding average rates:

20

9v (t) 20 e e i (t) = 0.41 Vt:C L, 2O0 (5.la)

t=l

20

av 1
e 2vCt) = 20 e2 (t) = 0.40 vtcC1,20] (5.2b)

t=1

We have

storage cost optimal allocation total cost per 1,T

0 two copies 0

0.25 two copies 10

0.50 one copy at comp. 1 18

0.75 one copy at comp. 1 23

1.0 one copy at comp. 1 28
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The-corresponding total costs are larger here, but not

significantly. This is because we are considering a very

short period of operation.

The curves describing the evolution of the total cost

as the storage cost.varies are represented in Fig, V.2 for the

state and dynamic cases. We also represent, in the same

figure, the two curves corresponding to the rates of Fig.

V,3 and the curves corresponding to a network with 3 compu-

ters (NC=3) with rates:

8e(t)=el(t)lcase 1

e 2 (t)=e2 (t)lcase 1 VtCl,2o0]

e 3(t)=E2(t)lcase 2

We can see that in all cases, they have a similar shape. In

particular case 1 and case 2 have the same static curve.

av> avThis is due to the fact that in both cases e 2 ,

eav (case 1) ev8 (case 2) and the optimal allocations are

the same for every value of the storage cost, as can be

easily checked.

V.2 Constant Rates., Updating Traffic, No Failures.

In a practical case it could be very difficult to specify

the rates as detailed as a time variant function, even with

piecewise constant shape. It seems more reasonable to model

the rates as constant functions over a period of time.
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An intermediate case will be to obtain the rates as piecewise

constant functions with long steps. In this case a quasi-

dynamic analysis applying the optimization procedure to every

long step separately can be considered. In any case it is

important to analyze carefully the behavior of the system

with constant rates of demand.

Let us suppose that we have a network with three com-

puters (NC=3), with demand rates

e 1 (t)=0.8 e 2(t)=0.6 83(t)=0.4 Vt 1,8

and an operating period equal to eight time units (T=8). As

before we consider the transmission cost equal to one for

every possible transmission

Cj= 1 Vi,je{1,2,3}

The storage costs and updating ratios are the same for

all computers

- s
ViC {1,2,3}

i P

and we want to analyze the system for the values

C s= 0, 0.25, 0.5, 0,75, 1

p = 0, 0.25, 0.5, 0.75, 1

The results for P = 0.25 and Cs = 0, 0.25, 0.50 are

shown in Tables V-2, We will represent later the evolution

of the total cost as the storage cost varies taking p as a

parameter. Again we will make linear interpolation between

exact points.
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e1=0.8 E 2 =0.6 e3=0 .41 2 3

C =0.0 p=0.2 5
s

Time Decision
1 2-3 4 5 6 1 2 3 4 5 6 7

8 1.40 1.20 0.80 1.00 0.60 0.40 0.00
7 7 7 7 7 7 7 7 2.53 2.24 1.81 2.05 1.62 1.33 0.90
6 7 7 7 7 7 7 7 3.50 3.18 2.73 3.02 2.57 2.25 1.80
5 7 7 7 7 7 7 7 4.42 4.10 i 3.64 3.95 3.49 3.16 2.70
4 7 7 7 7 7 7 7 _5.33 5.00__ 4.54 1 4.86 4.39 14.07 3.60
3 7 7 7 7 7 7 7 6.24 5.91 5.44 5.77 5.-30 4.97 4.50
2 7 7 7 7 7 7 7 7.14 6.81 6.34 6.67 6.20 5.87 5.40
1 _.7' 7 7 7 7 7 7 8,04 '7.71 7.24 7.57 7.10 6.,77 6.30

Cs=0.25 p=0.25

Time Decision
12 3 4 5 6 7 1 2 3 4 5 6 7

8 - 1.65 1.45 1.30 1.25 1.10 0.9'0 0.75
7 6 6 6 6 6 6 6 3.20 2.96 2.81 _2.72 2.57 1 2.35 2.20
6 6 6 6 6 6 6 6 4.67 4.42 4.27 4.18 4.03 3.80 3.65
5 6 6 6 6 6 6 6 6.12 5.87 5.72 5.63 5.48 5.25 5.10
4 6 6 6 6 6 6 6 7.57, 7.32 7.17 7.08 6.93 6.70 6.55
3 6 6 6 6 6 6 6 9.03 8.77 8.62 8.53 8.38 8.15 8.00
2 6 6 6 6 6 6 6 10.48 10.22 10.07 9.98 9.83 9.60 9.45
1 6 6 6 6 6 6 6 11.93 11.67 11.52 11.43 11.28 11.05 10.90

C =0.5 p=0.25

Rime Decision
1234567 1 2 3 4 5 6 7

8 1.,90 1.70 1.80 1.50 1.60 1.40 1.50
7 4 4 4 4 4 4 4 3.75 3.50 3.69 1 3.25 3.35 3.15 3.25
6 4 4 4 4 4 4 4 5.52 5.26 5.47 5.00 5.10 4.90 5.00
5 4 4 4 4 4 4 4 7.27 7.01 7.22 6.75 6.85 6.65 6.75
4 4 4 4 4 4 4 4 9.02 8.76 8.97 8.50 8.60 8.40 8.50
3 4 4 4 4 4 4 4 10.77 10.51 10.72 10.25 10.35 10.15 10.25
2 4 4 4 4 4 4 4 12.52 12.26 12.47 12.00 12.10 11.90 12.00
1 4 4 4 4 4 4 4 14.27 14.01 14.22 13.75 13.85 13.65 13.75

Table V.2.
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The first important characteristic that appears looking

at these tables is that there are no transients in the decisions.

This is not a general statement that can be applied to any

network and parameters but will motivate us for a deeper

analysis of the facts that are taking place in the optimi-

zation algorithm with the assumptions of this section. With

these assumptions we observe:

a) The vector A(t) is time invariant

A(t) = A vt C 1,T

b) The transition matrix P(tu*) corresponding to

optimal decision is also time invariant

P(t,u*) = P(u*)

c) The updating ratio vector (that had to be added to

cost-to-go vectors) is also constant. Let us call

this vector R

d) The terminal cost vector is equal to the vector A

V(T) = A(T) = A

Therefore we can write the recursive equation for the

first iteration

V(T-1) = A+P(u)- (A+R) (5.2)

We want to show first that with these conditions, the

system exhibits a trapping state.

Let us call A+R = Q' where Ql= ' w2 1 T

and let us suppose that E i is the smallest component of

vector 21

1 < { vj t i je{1,2,..M} (5.3)
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For the systemcan remain in the same state, if this is

the decision, with probability one, the ith row (correspond-

ing to state i) of P(ul) will be then

ith row -- (0 0 0 - - 0 1 0 - - 0) (5.4)

furthermore if we .represent by K the set of states having

the same 1 components as state i and at least one 1 com-

ponent more (we will call this set the optimum set) we have
i

kth row of P(u*) = (0 0 - - 0 1 0 - -0) VkrK (5.5)

if we call now

P(u)Rl =l'. where ~l-(Pl,~2, .. )T (5.6)

we have

1 1¢l = Vl. l EK or l=i
Writing now the second backward step in the recursive equation

we have

V(T-2) = A+P(u*) [V(T-1) + RJ =

= A+P(U) [ A+ ^'+ R] = A+ P(u+)Q2 (5.8)

where

n2 = A+0l + R =2 + ~l (5.9)

from (5.3) and (5.7) we have again

2wi <w V.j i jE{1,2,..M} (5.10)

and hence
i

kth row of P(u*) = (0 0 - - 0 1 0 - - 0) VkEK or k=i

(5.11)

i.e. the optimal decision from state i is again "remain in

state i"; and this decision can be implemented with probabi-
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lity one. From this result we obtain, as before

2 = i2 VlEk or 1 = i (5.12)
1 2

£ 2 > E2 Vm E{1,2,.M } m / 1 (5.13)
m 1

where

2 1 2 2 M2(u~) Q2= ~2= (~ 1,2 ,..M (5.14)

This characteristic or behavior will be repeated through the

remaining steps, Therefore state i will be an absorbing or

trapping state, according to the most frequent nomination

for these kinds of states in the literature (see refs.

[181 and [19]). This means that once the system visits i

it remains there forever. Furthermore if the process is

long enough we may expect that the optimal initial (at t1)

allocation will correspond to state i or any state keK and

thus the system will fall off in state i since the very

beginning.

The former property suggests a very efficient and

quasi-optimal procedure to analyze a system with the above

characteristics. We can describe this procedure as follows:

A quasi-optimal steady-state (Vt [l,T]) decision for a

system with constant parameters and no failures will be

to allocate the file according to the description of state i,

with i obtained from the condition

i < J Vj j i;j E{1,2,. M}
(5.15)

where

[wlw 2'1e*WM]= = A+ R
1w'w2' ' M1
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This quasi-optimal decision role can be considerably

far from the true optimum if the terminal costs were very

different in value from the vector A, and if the operating

period were too short as to be able to disguise the influence

of the terminal costs. We can see that this decision is in

fact the decision we had arrived to if the analysis had been

made under the so called static approximation.

Although the former decision could be enough for our

purposes, since the concept of trapping state is conclusive

in the performance of this kind of process, it does not clarify

completely the lack of transients in the iterations. An

intuitive and heuristic idea in this direction may come

thinking that the optimization process will be very much

biased by the states belonging to the set K defined above.

This bias will be in the sense that any state not in the set

K will try to move toward some of the states belonging to K

in order to reduce the cost. (In some sense this set K

could be interpretated as a "stopping set" using De Leve

terminology [21]). This behavior is represented graphically

in Fig. V.4.

In particular, for the case p=0.25, C =0.25 of the
s

example we are considering,Table V.2, the diagram of optimal

transitions is represented in Fig, V.5.



/ U
ul

/ \ 
I ~' " " '

· · ~~~~~~~~~0

m\ H W4-

=- CD 0' >ID4Ii ((D4

/O To501~-~~~~~~ ~ ~ ~c-
,I-- 1\ N 4 .)

'I
\ Q !~~~~~~~~~



106
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7 - 1 1 0{7 .11 2-010
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Let us go back to Table V.2 and look at the minimum

cost and optimal initial states . We'have worked out the

minimum total cost for every instant of time, and the optimal

initial states assuming that the process might begin at some

time, not necessarily at time 1. We can see several interest-

ing results looking at those marked numbers of the table,

namely: For a given parameter values:

a) The minimum total cost up to any instant of time

always corresponds to the same initial state.

b) Consequently the optimum initial state is always the

same for every time.

c) The increasing of the minimum total cost is linear

with time.

d) The optimum initial state does not necessarily

coincide with the omnipresent optimum decision.

Do these conclusions generalize to any system with constant

parameters? Let us investigate this question.

From previous discussions it is clear that the optimum

initial state will belong to the optimum set of states, the

setK. Remember that if the terminal costs were diff."rent from

the p.ut, costs we had to wait until the steady state were

reached in order to make this statement; otherwise the opti-

mum initial state does not need to be in the optimum set.

For the states belonging tQ the set K we can write the recur-

sive equation as follows:

V (t) = Ak + Vi(t+1) + r. VkeK (5.17)
i (trapping state)eK
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and for the next step

Vk(t-1) = Xk+Vi(t) + ri (5,18)

therefore

Vk(t- 1 ) -Vkt) V(t)-Vi (t+1) = i+r.i=i (5.19)

but

Vk(T) = Xk (5.20)

so we can write

Vk(t) = Xk + (T-t) wi VkE K (5.21)

This important result will answer many of our questions.

In fact

< Xk k, j K V () Vk(t) Vk(t) k,j E K
k~4j kfj

Vt E [1,T]

Hence the minimum total cost will always correspond to the

'same state.-no matter how long the operating period is.

'Obviously that state will be the optimum initial state for

any instant of time.

Furthermore, the minimum total cost increases linearly

with time as it was expected.

So far we have proved that facts a), b) and c) are

valid for any system with constant parameters. Concerning

fact d) it is clear that the state with minimum per unit

time cost among the optimum set need not be the trapping

state, but if the optimum set only has one element (as in

the case C=O., p=0.25) then it is clear that this element

has to be the trapping state.
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We can see that the problem with constant parameters and

terminal costs equal A falls in the section of problems where

the optimum decision is the decision that minimizes the

immediate cost.

Before leaving Table V.2 it can be useful to make a few

more comments. For instance we will not always find a

unique optimal decision, no matter which state or time we

are, as the one shown in that table; as an example the case

Cs=1, p=0.5, below shows a transition from 3 to 2 as inter--

mediate step to arrive to state 4.

Table V.3

e1 =o.80 e2=0.60 3=0.40 p=0.5 C =1
Time Decision

123 a 5 G 7 1 2 3 4 5 6 7
8 2.,40 2.20 2.80 2.00 2.60 2.40 3.90

7 4 4 2 4 4 4 4 5.02 4.76 5.60 4.50 5.10 4,90 5.50
6 4 4 2 4 4 4 4 7.54' 7.271 8.16 7.00 7.60 7,40 8.00
5 4 4 2 4 4 4 4 10.05 9.,77 10,67 9.50 10.10 9.90 10.50
4 4 4 2 4 4 4 4 12,55 12.27 13.17 12.00 12.60 12.40 13.00
3 4 4 2 4 4 4 4 15,05 14.77 15.67 14.50 15.10 14.90 15.50
2 4 4 2 4 4 4 4 17.55 17.27 18.17 17.00 17.60 17.40 13.00
1 4 4 2 4 4 4 4 20.05 19.77 20.67 19.501 20.10 19.90 20.50

This is due to the fact that a decision of moving

directly from 3(0 1 1) to 4(1 0 0) has some intrinsic risk

of remaining in 3 if no request is made from computer i.

It turns out that in this case a large price has to be paid

if tile system remains at 3. On the other hand a transition
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to state 2 can be done with probability one and carries with

it a smaller cost. It can be expected that in a more general

case with more computers and consequently a larger variety

of states this event will appear more frequently.

An important observation is to note that wi can be iden-

tified with the steady state gain of the process as defined

by Howard [203. Equation (5.21) for optimum cost-to-go will

justify our assertion if we can show that the gain is unique

even under optimal policies that make the Markov process

non ergodic.

The only type of policies that can make the system non

ergodic (in the sense defined by Howard) will be those con-

taining at least two persistent decision of the form "remain

in i." where now each i. will be a trapping state. We will
J J

show that if 1 and m are two of these trapping states then

l = m1 m.

To see that let us call K(1) and K(m) to the corres-

ponding optimal sets. Notice that

K(1) n K(m) / ~ (0= empty set)

because K(1) K(m) will contain at least the element

M=(1 ... 1). Therefore if

rE K(1) N K(m)

when

Vr (t) = r(t) + (T-t) e 1 =

Ar(t) + (T-t) w



and hence

= Wm1 m

We conclude that the gain is always unique, even in the

case that the policy would make the system non cryodic.

The discontinuous staircase line in Table V.2 represents

the beginning of a constant increase in costs for every

state of the process.

Let us analyze now the evolution of the total cost

versus storage cost taking the updating ratio as a parameter.

The curves are shown in Fig. V.6.

First of all we see that the shape of the curves is

similar to the one obtained in section V.1 for the time

varying case without updating traffic. The curves present

a larger curvature for small values of Cs and p and then the

behavior is almost linear. In Fig. V.7 we represent the

total minimum cost versus p taking now Cs as a parameter.

We can see that both sets of curves are quite close in shape

but the curves of total cost versus p have a deeper slope

and after the curvature section they are completely linear.

We could obtain a better understanding of this curve if we

divide the whole quadrant in three sections corresponding

each section to trapping states with the same number of

copies, In this case we will have a section for three

copies, other section for trapping state with two copies

and the third one for only one copy.
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At each of the points of the curves, corresponding to

the cases studied in the present example, we have encircled

the trapping state corresponding to the system with the par-

ticular parameter assigned to the point. We can see now

that linear (or almost linear) part of the curves corres.-

ponds to points with the same trapping state while the rounded

parts are due to changes in this state.

We could now ask the following question regarding the

trapping states. Why the trapping state, having two copies,

is always state 6(110), and why the trapping state having

one copy is always 4(100)? The reason is very simple.

Remember that our rates were such that

93 = 0.4 < 2 = 0.6 < l1 = 0.8 (5.26)

therefore, other parameters being equal, the system will

try to keep copies in the computer with higher request

rate and there is no reason why it should behave in a different

way. This fact is easily generalizable and we can say that

if we enumerate the computers according to the sequence of

decreasing values of the rates

9 > 2> > 3 > 94 eNC >0 > (5.27)
1 2 - 3 - 4NC

the trapping state will always have its "1" components con-

centrated in the left of its vector representation.

Let us now analyze for what values of C s and p will the

trapping state change. Concentrating first on the case p=0

we can see that the change from trapping state=7 to trapping

state=6 will be at some point in between C s 0.25 and C =0.5.
- a trs '

We claim that the frontier will be marked by the point at
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which the system, being in state 6, is indifferent to a

transition to state 7 to as opposed to remaining in state

6. A small perturbation from this equilibrium point will

require the system to go to 7 (if the perturbation is to

the left) or to remain in 6 (if the perturbation is to the

right).

The reason is again very simple. State 6 cannot be

a trapping state if being in this state, the system decides

to move to some other state. On the othet hand, once the

system decides to remain in 6, this state, considering

all the decisions above, becomes a trapping state.

Let us find this equilibrium point. Consider that the

system is at state 6 - (1 1 0) at time t-l, then we have:

Cost due to a transition from 6 to 6

'(6.6) = V6 (t) + r6 (5.28)

Cost due. to a transition from 6 to 7 - (1 1 1)

*(6.7) = e3jV 7 (t)+r 7 ] + (1-83) 6(t)+r 6 (5.29)

Equilibrium point (assuming 93 / 0)

4(6.6) = 0(6.7) - V 7(t) + r V6(t) + r (5 30)

but we know from (5.21) that

V7(t) = %7 + (T-t) w (5.31)

V6 (t) = A6 + (T-t) wi

therefore the equilibrium point will be at

%7 + r7 = 6 + r7 6 (5.32)

(notice that in fact A6 + r6 = A:7 r 7 = xi)
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7 = 3Cs r7=2p(i 1+e 2+e3
)

(5.33)

X6 = 2Cs+8 3 r 6=P ( 1+e2 +2E 3)

and this substitution yields

X7 + r7 = X 6 Cs (e P + + 2) = G 3 (5.34)

So we have obtained a linear relation between P and Cs

that describes the equilibrium point. For p=0 the equilibrium

is at

C s = e3 = 0.4 (5.35)

For P = 0.25 the equilibrium is at

Cs = 83 - 0,25 (e1 +82) = 0.4 - 0.35 = 0.05 (5.36)

The intersection of the equilibrium line with the horizon-

tal axis will correspond to the cost due to the equilibrium

point with Cs = 0

= 0 p = 0 3/+ 2 = 0.29 (5.37)

V(1) (8-l)i 7(X7+r7) = 7.20 (5.33)

C =0

P:-=0,29

We can see that for the given rates the equilibrium

above is possible. only if p < 0.29

With the same reasons as before we claim now that the

equilibrium between trapping state 6(110) and trapping state

4(100) will be defined by the points at which the system,

being in state 4, is indifferent to a miovement toward state

6 or staying in state 4.
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The new equilibrium line will be defined by

0(4,4) = ,(4,6) (5.39)

where

,(4,4) = V4(t) + r4 (5.40)

,(4,6) = e2 [V 6(t) + v 6] + (1- 2) [v4 (t) +r 4]

then

,(4,4) = (4,6) - V4 (t) + r 4 = V 6 (t) + r6 (5.41)

but

V4(t) = A4 + (T-t) i (5.42)

V 6 (t) = A6 + (T-t) wi

with

X e) + e) r =P(e2 + E) (5.43)
4 = Cs + 82 + 83 r4 = '(82 + 83)

A6 2C + e 3 r6 (81+2+283)
*6 12 3)

hence the equilibrium line is defined by

A4 + r4 = + r6 ~ C + P(81+E 3) = 82 (5.44)

therefore

0 = o0 --°-- = 2=0=.6

P = 0.25 -- C =0.3 (5.45)

p = 0.5 C = 0

Now after all these properties have been described we

are ready to provide more information about linearity and

curvature of the graphs of Fig. V.6 and V.7. But before doing

that let us generalize the results obtained above,
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We claim that in a network with constant parameters

and NC computers numbered in such a way that

l2 8> 6 3- - NC-i> > NC (5.46)
1 8t 2 > 83 NC-1 >NC

the equilibrium line separating the trapping state with NC

copies from the trapping state with NC-1 copies will be

defined by the relation

(1M-il, M-i) = (M-1,M) (5.47)

where

M=2NC- 1

Similarly the equilibrium line separating the trapping

state with NC-1 copies from the trapping state with NC-2

copies will be defined by the relation

~(H,) = 0(1, M-1) (5.48)

where p is described by the vector (1,1,1,. .,0,0)

NC

i.e. i = E 2 = M-1-2 = M-3 (5.49)

n=2

In general the equilibrium line separating trapping

states with n and n-1 number of copies will be described

by the relation

q(v,v) = q(v,v + 2)

where NC

v (1, 1, . 1, 0, .. 0) ie.v 2 (5,50)

n-1 NC-n+1 m=NC--n

We can arrive to an explicit relation of this equilibrium

line as a function of the parameter of the system if we
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replace , (.,.) by its expression in function of those para-

meters, In fact if we are in state v at time t-l we have

4 (V,V) = V (t) + r
(5.51)

f (v,v + 2) = e Vv+2 (t)+rv+2] + (1en)[V ( 9t) r]

therefore we will have equilibrium if and only if

V(t) + r = Vv+2 (t) + r+2 (5.52)

but remembering that

Vk (t) Ak + (T-t) i VkE K k / i (5.53)
ikK

we will have equilibrium if and only if

X rv =v + +2v+

but from (3.6) and (4.1) we know that

NC

A (n-1) C + E m (5.55)

m=n

n-l NC

r [(n-2) - em + (n-1) Em]=

m=1 m=n

(5.56)

NC NC

= p [(n-2) 8m + m]

m=l m=n

NC

v+2 = nCs + em (5.57)

m=n+1
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NC NC

r+2= (n-) e + e (5.58)

m=n m=n+l

therefore we will have equilibrium if and only if

NC NC NC

(n-1) Cs+ 8+ 0 [(n-2) em + em] =
s m F m

m=n m= 1 m= n

.lNC NC NC

nCs + + P (n-l) m + e (5.59)

m=n+1 m=l m=n+1

that is iff NC

e = C s + P C 3 (5m 6 0)n = 5 + P e) (5.60)

m=l
mfn

Let us now calculate the total minimum expected cost. Clearly

this cost will be given by

V.(1) = A + (T-1) w. j, iC k (5.61)

where

j < kk V k j kE K

i = v+2 or i = v in the equilibrium line because

t - A .+ r = +2 (5.62)i v v v+2

and i = v+2 to the left of this line whereas i=v to the

right. The minimum cost in the left side of tihe equilibrium

line (without trespassing the area where v+2 is the trapping

state) will be then

1 1 5.63)
V (1) = X .+ + r+ 2 je< (5.63)
j j v+2 v+2
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whereas in the right side and before crossing another

equilibrium line the cost will be

V r(1) = X. +A + r j Kr (5.64)j j V V

It is important to notice that j does not have to be

the same in both expressions because when we move the point

up and down on the curves, we are changing C s or p and j

will be a function of Cs. Furthermore the set K (remember

j K) will be increased by one element,the new trapping state,

every time we cross an equilibrium line.

Let us express these two costs in terms of the para-

meters of the system.

NC

V (1) = Tmin TC+ em + nC + A + PB (5.65)
n<T<NC

m=T+l

NC

Vr (1) = min TC + e +(n-l)C +F+PG (5.66)
(n-l) _<T<NC s m 

m= +l

where A and B are constant (in the region where v+2 is the

trapping state) with values

NC

A E em (5.67)

m=n+1

NC NC

B = (n-1) em + em (5,68)
m-l m + m

m=l m=n+l
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and F and G are also constant (in the region where v is

the trapping state) with values

NC

F= e8x =A + em (5.69)

m=n

NC NC NC

G =(n2) e+ E e B- o +e (5.79)
m m m n

m= 1 m=n m= 1

Now we have all the necessary elements to study the

exact shape of the curves of total cost versus storage cost

taking the updating rate as a parameter or otherwise total

cost versus updating ratio taking the storage cost as a

parameter.

For p=const.V*(1) is a picewise continuous linear

function of. Cs that will change its slope every time we

find a new minimum in the term in braces in (5,65) this

will happen every time C s em for n+l<m < NC)

For C const. (5.71)s NC

min TC + E e = constant for a fixed a
a< · NC m

m=T+1

i,e., is constant in the zone between equilibrium lines and

therefore V*(1) is a picewise continuous linear function

of p that will only change its slope every time it crosses

an equilibrium line.

.............................................. ' '' 
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With these properties we can now draw the exact cost

curves for the example of this section, without implement-

ing the dynamic program algorithm, The curves are in Fig.

V.8 a) and b). This figure closes the analysis of networks

with constant parameters and updating traffic and in the

next section the analysis.of the computer networks with

constant parameters, updating traffic and some nonzero

probability of node failures will be considered.

V.3. Nonzero Failure Probability

The dynamic analysis under consideration takes its

complete meaning when we include in the system the probability

of node failure,

The Markov process describing the evolution of the system

without failures under optimal decision rules has a trapping

state, a fact which gives rise to a number of specific

properties as described in section V.2, On the other hand,

if failures occur, the trapping state disappears, as seen

from the discussion in Chapter IV. In particular, if

failures can happen in all computers with nonzero probability,

then the steady state probability that the Markov process

will be. in a given state is strictly less than 1 for any

decision strategy.

Let us analyze a simple example. Consider a network

with two computers, NC=2, and the following parameters:
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el (t) = 81 = 0.5

82(t) = 82 - 0 4

C C CT -1
1,2 2,1

C = C = Cs 0,51 2 s

P = 0,25

C = 50 C = 51

P - 0.01 P = 0.1
f r

The terminal costs are given by (4.5) with C .=O Vi,
01

State number State vector Terminal costs

0 0 0. 0.0

1 0 1 1.0

2 02 0 .

3 1 0 0.9

4 1 1 1.0

5 :1 2 0.5

6 2 0 0.0

7 2 1 0.5

8 2 2 0.0

The results of the optimization process for the first itera-

tions are shown as follows:

.. ........ .--- I- --------------- -- ------------
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where under "cost" we write the values of the costs-to-

go ordered from state 0 in top to state 8 in bottom,

after every iteration. Under "go to" we list the opti-

mal decision, corresponding to every state. The stars

mean that for these states no decisions are needed.

Continuing the iterations we could see that the

decision "go to state 4" is in fact the steady state

optimal solution for states 1, 3 and 4. This fact can

also be confirmed by applying the Howard algorithm 20

to this problem.

Therefore, for this problem, with the specified

parameters, the optimal steady state decision is to keep

as many copies as possible, that is one copy at each

computer.

If keeping now the other parameters fixed we reduce

the probability of failure by a factor of 10, i.e. from

0.01 to 0.001, we will find that the optimal steady

state decision is "go to state 3", that is keeping only

one copy at computer one. The first iterations are

shown in table V.6.
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Therefore a reduction in the risk of node failures

is reflected in a reduction in the number of coDies. It

is obvious that further reductions in the probability of

failures will not have any influence at all in the optimum

policy because we cannot have less than one copy in the system.

We have seen how changes in the failure Probability

may change the minimum number of copies to be kept in a

system; but what will be the repercussion of changes in P

the probability of recovery? It can be easily seen that

changes in Pr will not have as much influence in the optimal

decision as changes in Pf for the case NC=2. The reason is

that, for NC=2, Pr only appears in transition probabilities

from states where no decisions are available. The influence

of these state costs on the decisions from other states is

reflected through smaller probabilities (assuming Pf relative-

ly small) and in a relatively simmetric form. Only if Pf

is near 1, the value Pr might have a certain importance.

An intuitive explanation of the fact that the value of

Pf will have much more influence than the value of Pr can

be given by observing that, no matter how fast the failed

computers have been restored, if the system looses all the

copies, then a high price has to be paid in order to bring a

copy from outside.

For cases with NC>2 the situation is not so simple

because then Pr may appear directly in transition probabi-

lities with several decisions available. Nevertheless, we
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can say that in those cases, the larger the number of work-

ing computers in a particular state the smaller the influence

of Pr for Pf <<1.

Therefore P, will affect more the decisions among statesr

with large number of failed computers. The reason can be

easily seen with one example. Consider a network with NC=5

computers. If we are in state 1 -- V- (O 0 0 0 1) then the next

important costs that will affect the optimum decision from

1 will be the costs of states with no failures in their

components, and therefore no Pr in their probability expres-

sions; all these costs are going to be multiplied by (1-Pf)5 ,

(remember Pf<<l). The next set of important states contribut-

ing to the decisions is the set of states with one failed

computer. These terms will have a factor of (1-Pf) 4Pf

Continuing in 'this wvay we can see that the states that will

reflect more the value of Pr, that is the states with a large

number of 2's in their components, will be multiplied by

very small weights; for instance a state with only one working

computer will be affected by the term Pf4 (1-Pf)- if Pf<<l.

On the other hand if the present state is for instance,

state (0 2 1 2 2), and we assume P >>Pf then the important

terms will be the terms affected by the weights (1f-PF)~)2 3

(1-Pf(2P (1-Pr)2 and (1-Pf)Pf(1-P)3 and therefore Pr will

increase its role in the optimal decision from these states

compared to the former one.

An intuitive explanation to this fact can be given as

follows:
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If Pr has a high value, close to 1, then there are high

probabilities of transitions from, say state (0 2 1 2 2) to

states like ( 0 0 0) or ( 2 0 0); suppose now that com-

puters 4 and 5 have high request rates and that transmis-

sion costs from computer 3 to computer 4 and 5 are much

higher than transmission costs from computer 1 to the same

computers, then a decision of writing a copy at computer 1

will probably be optimal. On the other hand, if Pr is close

to 0 then the transition probabilities to the statesabove

will be very small and other factors will influence the optimal

decision.

Of course if Pf is near 1 then Pr will increase its

role in all decisions. With the discussion above we have

only confirmed that the model in fact reflects the physical

intuition that as long as Pf remains very small, the proba-

bility of recovery is of no great importance in the system

(remember the intuitive explanations given above). It is

obvious that the previous discussion has been undertaken

considering a fixed, not too small,cost(comparing to trans-

mission costs) of bringing a copy from outside to the system,

in the case of loosing all the copies. It is clear that

these costs will play a similar but opposed role to the

failure probabilities, The reason is trivial.

Let us consider now an example with 3 computers NC=3.

The parameters of the network are the following:
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e l (t) = el . = 0,.8

8 2 (t) = 82 = 0.6

e3(t) = 93 = 0.4

C1 = C 2 = C 3 Cs 25

P = 0.25

C0 = 1000 C02 = 1001 C 0 3 1002

P = 0.1

Now we write the optimal decisions corresponding to

the first iteration for three values of Pf-

Pf = 0.01, 0.001, 0.0001

In all cases it can be checked that the decisions at

time T-5 (and T-4) constitute already the steady state optimal

policy.

In these three cases it can be very well seen how the

decrease of the failure probability decreases the number of

copies.

For Pf=0,01 the steady state policy is to keep always

as many copies as possible, that is, all working computers

will carry a copy, For Pf = 0,001 the optimal policy is to

keep as many copies as possible except for state 12 and 13

where two copies are enough (remember the discussion on Table

V.3). For Pf = 0,0001 the optimal policy says: if all com-

puters are working keep only two copies (in 1 and 2), other-

wise keep as many copies as possible,

The optimal decision from states 12 and 13 for the case
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Pf=0.001 might appear surprising considering that from all

other states the decision is to go to state 13, The reason

for this apparently anomalous fact can be seen by observing

that a direct movement to state 12 carries a greater risk of

ending up in a state with only one copy, than if we try to

move the system to state 13. Then the transition from 13 to

12 is automatic (see also the discussion on Table V.3).

Another fact that can be inferred from the table is that

the optimal decisions always try to keep copies in the com-

puters with highest request rate and smallest cost of bringing

a copy from outside. Remember that in the present example

e 1>e82 >3 3 and C 01 <C 02 <C 03

Looking at all the examples studied in this section we

can see as a common point that in all cases the steady state

optimal solution is reached after very few iterations. If we

began the iterations with a set of different terminal costs

this would not have been the case. This fact has been con-

firmed for several examples by evaluating eigenvalues and

eigenvectors of the transission matrix. We expanded dif-

ferent terminal cost vectors in the matrix eigenvector base

and observed that the vector A gives the quickest rate of

convergence. Nonetheless, this fact could not be proven

analytically. A good reason to believe that the chosen

terminal costs are a good set of values for a good speed of

convergence of the iterations is to think that with these

terminal costs we let the system finish in a"natural and

not forced" way because those terminal costs are similar to
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the immediate cost(except for certain corrections due to

the Coi costs that make, in general, the first decision

in the iterations different from the others). Nevertheless,

this fact will tell us that those terminal vectors are

better than others but not necessarily givingrise to a

quick convergence.

If this is indeed the case, we could say that because

we are mainly interested in the steady state policy the elec-

tion of the per unit time costs as terminal costs will reduce

considerably the amount of computation needed to find the

steady state optimal policy. Otherwise, we always have

available the algorithm developed by Howard £201 that has

been proven quite efficient for those kinds of problems.

In order to implement this algorithm we could take advantage

of the fixed zeroes position in the transition matrix to

solve the system of equations that this system generates.

Another point that can save certain amount of computation in

the solution of the system of equations is the fact that

all states with NC=1 "2"'s in the equivalent positions give

rise to identical transition probabilities and hence to

identical rows in the transition matrix. That is for NC=4.

798 (2221)
78=4(2220) row 79 of P(t,u) - row 78 of P(t,u) Vt,u

77 (.2212)
row 77 of P(t,u) row 74 of P(t,u) Vt,u

74= (2202)

etc.



136

There have also been suggested in the literature e.g. 23],

linear programming formulations to obtain an optimal policy

using the principles of the policy improvement procedure of

Howard's algorithm; these formulations solve the maximization

problem involved in the policy improvement iteration of

Howard's algorithm by means of linear programming calculations.

V.4 Completely Simmetric Network

In spite of the simplicity that the model provides to

the analysis of a general network with any number of compu-

ters, there is one argument against it, as in fact is the

case with many finite state formulations. The problem is

the exponential growth of the number of states with the number

of computers in the network grows, There is not much that

can be done in order.to avoid this growth but to try to find

suboptimal solutions. One way in which these suboptimal

schemes can be found is to assume that all transmission costs

are equal, all rates are equal, all storage costs are equal

etc. In such a situation we can see that all nodes in the

network have the same role and there is no need to specify

which node or nodes have a copy at a certain time but instead

the state vector will contain only the information of the

number of copies in the system at any particular time. Then

the general Markov process, for this network, is mergeable,

see 19 , in the sense that we can group together a certain

number of states into a superstate and work with this super-
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state as if it was a simple state for the modified Markov

process. In the case that for certain reasons, important

difference in computer request rates for instance, we were

interested in a further analysis, within some superstates,

this can be done after the merged process was.analyzed. Of

course the results are not going to be optimal any longer

but if we choose wisely the parameters good bounds to the

optimal situation could be obtained.

For the case NC=2 we know that the states are 0-8,

and can be grouped or merged as it is shown in (5.72)

0- 0 0- 

1-01

1 - 1

3 - 1 0

(5.72)
5 - 1 2--'C

6 -2

7 -2 

8 - 2 2---D

It can be seen that this grouping verifies all the pro-

perties needed for a right merging, that is

E Pim P. for.i,jE Sk (5.73)
j]m

mZGS1 maS1 where Sk, S 1 E {O,A,B,C,D}

because now the indeces in the control variables are meaning-

less and 8 = 2 = 8
1 2

The elements of the new transition matrix will be
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0 A B C D

00 (1-Pf) 2 0 2Pf(1-Pf) P

A 0 (1-Pf) 2 (1-CtE) (l-Pf)2c8 2Pf(1-.Pf p2
- f f f f~~~~2 2 2AB 0 (l-Pf) (lPe ) (1-pf 1- 2Pf (1-Pf) Pf2 2 2 ~~~~~~~~~~~ · 1~~~~~(5.'7:4

BIO (1-pf) 2 (1-c) 2Pf(1-pf) f

C 0 (1-Pf)P 0 (1-Pf) (1)+P fPr Pf (!-P

2 (-f2D' P 0 0 2 P (~1-Pr)( 2r r r r

where now ea represents the fact of adding one copy and e the

fact of.erasing a copy, no matter in which computer these

actions will take place.

2
As an example let us see-that if fact PAA = (1-Pf)(l-e).AA (l-Pf)L( 1a)

We can write from the properties of the merging process

P P i+P =l +P (5.75)
PA=P 1, 1,3P 3 3,1 3,3

where

P1 = (l-Pf) 2(1- le)1,1~~f 
2

P1 = (l'-Pf) 2 1e1-!3 c 2 (5.76)2P = (1-Pf) 1 ca2e3,1
2

P 3 . (l-Pf) (l-a 2 e)P3,.3 2

omitting the indeces, that we saw are now meaningless,

P = (1-Pf) 2l-(1e+CcE) (5.77)A,A =

but because the 'decision of going to state 0 is not an admis-

sible decision and,,.furthermore, we do not -want to allow

contradictory decisions (erasing and writing simultaneously)

we have

I=0
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and then

P (1-.Pf) 2 ((5. 78)
A,A = (l-Pf) (1-ae)

We can see that with this rearrangement we have reduced

a 9 state system to a 5 state system,

For NC=3 the reduction is even more drastic. The states

can be grouped as follows

New state Grouped state Representative of
the new state

0 0 (O 0 0)

A 1,3,9 (1 0 0)

B 4,10,12 (1 1 0) (5.79)

C 13 (1 1 1)

D 2.5,6,7,11,15,18,19,21 (0 0 2)and(1 0 2)

E 14,16,22 (1 1 2)

F 8,17,20,23,24,25 (0 2.2)and(1 2 2)

G 26 (2 2 2)

So we had a reduction from 27 to 8 in the number of

states. Now we had to define the new control variables.

a1 add a new copy

ax2 add two new copies
(5.80)

E erase one copy

2
cE erase two copies

The process can be easily generalized.
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CONCLUSIONS AND OPEN QUESTIONS

Throughout the chapters of this thesis we have developed

a new model to handle the'problem of optimal dynamic file

allocation. The model had to be general enough to allow the

study of problems such as: dynamic allocation with possible

computer failure and optimal allocation when we have res-

trictions in the state space. The restrictions iilay take

the form of a maximum number of copies allowed in the system

at any instant of time or not allowing copies of the file

simultaneously in two or more given computers. The use of

two types of control variables, one for adding new copies

to the system (a), and the other for erasing copies (c),

made easier the task.

First we stated the working hypothesis (sufficiently

high link capacities, sufficient memory sizes, stochastic

independence in the requesting process from different com-

puters etc.) that could allow us to work with each file

separately and to model the system as a Markov process.

Having characterized the evolution of the system under

a Markov process and being interested in finding the optimal

dynamic file allocation such that the total cost were minimized

we found in the stochastic dynamic programming an excellent

tool to solve the problem.

We defined the state of the system as a vector with

a number of components equal to the number of computers in

the network, In that way each component of the vector would
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characterize the particular situation of each computer. We

would have a 0 in the ith location if computer i were in

working condition but with no copy stored in its memory;

a 1 if computer i had a copy in its memory and a 2 if computer

i were out of work (if failures are included in the model).

With this representation we could think in the state of the

system as being a base 3 reproduction of a certain decimal

number (or base 2 reproduction when the probability of failure

is considered equal to zero). Therefore we could identify

the states with this number.

We showed that the states and control vectors exhibited

some properties that allowed us to write mechanically the

transition tableau. This transition tableau has proved of

great utility in writing the recursive equations generated

by the application of dynamic programming. In fact we

found some rules that made it possible to construct algorith-

mic flow-charts to compute the transition probabilities in

a very efficient way, Perhaps one of the next important

points related with this algorithm is itsproperty of being

totally general as far as the number of computers is concerned.

We have also seen that updating traffic generated at

some or all of the nodes can be easily incorporated in the

analysis, We have given flow-charts showing how all these

terms can be calculated in the same way as the per unit time

costs,

One of the reasons why the flow-charts were found to be

quite efficient is because they compute only the nonzero
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elements of every matrix and vector. This is an important

fact if we consider that, for instance, in the transition

matrix only approximately 30% of the components are nonzero.

A flow-chart for the whole optimization process was also

presented.

After the complete introduction of the model we applied

it to several examples. First we consider the case of time

varying rates with no failures and no updating traffic in

the network. We studied for this case how the state dyna-

mics changed as the storage cost was increased. The analysis

confirmed the intuitive point that the maximum number of

copies needed in the network decreased as the storage.cost

increased. We also compared, for this case, the dynamic

analysis with some static analysis. We plotted the curves

of total cost-versus storage cost for the static and dynamic

analyses for two examples with different rates but with the

same average rates over the period of operation. It was

found that the curves for the dynamic analysis were very

close. A third example with higher rates were also -plotted

showing higher costs.

Later on, the case of constant rates with updating traf-

fic and no failure was studied in great detail. It was

shown that for this case the Iairkov process fitted into the

special class of Markov chains with. a trapping state. This

fact was used to derive a certain number of properties. One

of the properties is that these processes with a terminal
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cost vector equal to the immediate cost vector do not present

any transient in their decision policy. Furthermore, the

minimum expected cost increases picewise linearly with time

to go. One important outcome of these two results was to

find some expressions relating the trapping state and the

optimal initial state with the storage cost and the updating

ratio. In that way we could study, without actually implement-

ing the dynamic programming algorithm, how the optimal

allocation changed as we vary either the storage cost or

the updating ratio or both. Curves were also given to show

the evolution of the total cost versus storage cost taking

the updating ratio as a parameter, and the total cost versus

updating ratio taking the storage cost as a parameter. It

was shown that due to above mentioned properties, those

curves could be drawn without actually using the dynamic

programming algorithm.

Finally the case of nonzero failure probability was studied.

It was shown how an increment in the failure probability may

increase the number of copies to be stored in the network at

any time. It was also shown how, in general, variations in

the probability of computer recovery do not have a signifi-

cant effecton the optimal decisions if the failure probability

is reasonably small. Perhaps one of the most important find-

ings for this case, that could not be proved analytically

though, was the fact that taking the per unit time cost as

the vector terminal costs the process converges very quickly
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:to the steady state decision. This is an.important fact

that could save a -lot of computation and would .avoi~c the

need to use the Howard,.-algorithm. .Otherwise Howard's algorithm

could be.'used efficiently while taking advantage of the fixed

zero positiion in.<'the- transition matrix and the fact that some

of its .rows .a're identical.

As it-was pointed out earlier, one of:the difficulties

that'the. 'fini.te-state- model.rises .is.the .fast increase in

the number of states:.when the.number:of computers increases.

To overtake this difficulty.a suboptimal method..based on a

completely.simmetric-network .which can be thought as..an

approximation to.the actual network was- suggested. This

approximation provides a reduced Markov chain,.whose, state

are collections of. the states of the original:process.

The reduction.in'the number of states for NC=3 was from 27 to:-8.

'Some points remain still to be studiedrelated to dynamic

file allocation, As mentioned before, we found some con-

vergence properties that could not be proved analytically.

Furthermore other-suboptimal models can be-of interest for

the case of large networks. For example, some a. priori

calculated bound in the maximum and. minimum number of copies

could reduce considerably the number of states. But per--

haps one of the most appealing topics to be pursued in this

area is including the situation when the rates of request are

not perfectly known in advance. The main goal: then would

be to try to.generalize Segall's results 11 for this problem

----- --------- · --------· · -~- 11^^1~1~~'~~-----·-·------ -··--·-- -- ·--- ·---- ·------- ---------- `'"~ ~ II -~ ~'~~"T~-"~ ~`"- r-~-- ~I--
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to a broader framework as the one presented here for the case

of deterministic rates, With this approach, one could also

investigate decentralized schemes for dynamic file allocation

where the decisions at every time, whether to write or

erase a copy, are done locally by each computer and all

computers work in a team to minimize the overall cost [28].
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APPEINDIX A

Transition Probabilities for NC=2

We defined

Pi j(t,u) = Prob{Y(++l) = j Y(t) = i}

In particular

Pl (t,u) - Prob{Y¥(t+l) = 1 Y(t) = 1} =

- Prob{Y(t+l)=l Y(t)=l,nl(t)=l}Prob{nl(tt)= Y(t)=l}

+ Prob{Y{t+l)=l Y(t)=l,nl(t)=O}Prob{n, (t)=O Y (t)=l}

but

Probfnl(t)=1|Y(t)=l}= Prob{n l(t)=l}= e l(t)

Probfn (t)=O|Y(t)=l}= l-8 l ( t )

Prob{Y (t+l)=1 Y (t) -=l, nl ( t ) =l 1 = ( 1 - al ( t ) ) 1- £ 2 ( t ) )

Prob{Y(t+l)=l1 IY_(t)=l, n (t)=O}= 1

there fore

Pll(tu)='(l-al(t)) (l-C2 (t)) l1(t) + l-8 l( t) =

=(1-%(t)E)81(t)-(l1-a lt ) ) c2 ( t ) 8 1( t) +l - 8 l( t )

but (l-al(t))£ 2(t) = 0 for any value of al(t)

and £2 (t) in the control space then

Pll(t,u) = l- l( t ) 8 l(t )

In the same way

P 1 2 (t,u)=Prob{Y(t+l)=2 Y (t)=l}=

=Prob{Y(t+l)=2jY(t)=l,n1(t)=l}Prob{n1(t)=l}+

+Prob{Y(t+1)=2I Y(t)=l,n (t)=0}Prob{n (t)=O}

but Prob{Y(t+l)=21Y(t)=l,nl(t)=O}= 0
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therefore

P 12 (t,u) = al(t) 2(t) e 1 (t)

with the same procedure

P13 (t,u)= l) (t) (1-2 ) (t)

P 2 1(t,u) = £1(t) 2 (t) e 2 (t)

P2 2 (t,u) = (1- 2(t) ) (1-E1 (t)) e 2 (t) + 1-e 2 (t)

= 1-c 2(t)02 (t) because El (t)(1-a2 (t)) = 0

P 23 (t,u) = a 2 (t) (1- l1(t)) 9 2 (t)

P3 1 (t,u) = E l1 (t) (1-e 2 (t)) = E l (t) because E l(t)E 2 (t) = O

P 3 2 (t,u) = c2 (t) (1-E l ( t ) ) = 2 (t)

P 3 3 (t,u) = (1- l (t)) (1-2 (t)) = 1- E l(t)- 62 (t)
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APPENDIX B

Backward Equations for a Network with Two Computers and the

Restriction of. Only- One. Copy in- the. System-.

We saw in section III-3 that the backward equations

for the· case NC=2without restrictions in the state space

were

vl(t) i C 2 +C 2 1ie ( t) 

V*.(t) C l+C2 , .2C 1C 2

!iV*'(t)'.j I+t 

E1J (t- (t).e* 2 (t)-l' ((t1 * ) (1--s (t) )-a(,.8 (t, )|v',t+

' 2 ....

If we restrict the system to have only one copy at

any instant of time then state-·3 is not allowed and we have

to do two changes according to section III-5.

1) we eliminate the last row of every matrix in the

equation

2) we add the probability of going to state 3 to the

probability of remaining in the previous state.

Doing that the transition state becomes
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1-e11 + ( 2le 11 =

c 1-t 1 82a + ( 1-c1 )a £1a 2 2 1-1282+( 1 )22

1E 2 2 1-E2L 2

Realizing now (looking at the tableau of section II-4)

that for any allowed transition al = £2 and s1 = a2 we

can write

E£ a a
c2~1 = "1

1 2 a= 2

and we arrive to the logical and expected result that we do

not need the erasure variables. With this simplification

the recursive equation is

V (t) C 2+c 2 l(t)1 + [l (t)el(t) (=t)E1 (t) 1V(t+

(V* 2 L~l+C1292(t) La2(t) (t) 1M2 (t)2 (tWe V*(t+l)J

that is the same equation of ref. 11 except for the switching

of subscripts due to different state definitions.
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APPENDIX C

FLOW-CHARTS AND SUBROUTINE FORtAiN LXISTINGS

_~~~~~~~-~~-'-~~1-`~--~---'~~~~'~~-~-` ~~ _1`.-~1"1~`-.. _ _. _.'."... ,~.~.. _.~ ~. I^; _ ~ _ .--~----------- ----- ----
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