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ABSTRACT 
 
Information sharing is one of the established approaches to improve demand forecasting 
and reduce the bullwhip effect, but it is infeasible to do so effectively in a long supply 
chain. Using the polystyrene industry as a case study, this thesis explores the usage of 
modern natural language processing (NLP) techniques in a deep learning model, known 
as NEMO, to forecast the demand of a commodity — without requiring downstream 
companies to share information. In addition, this thesis compares the effectiveness of 
such an approach with other non-deep learning approaches, specifically an ARIMA model 
and a gradient boosting model, XGBoost, to demand forecasting. All three models 
returned large forecast errors. However, NEMO tracked the volatility of actual data better 
than the ARIMA model. NEMO also had better success in predicting demand than the 
XGBoost model, returning approximately 20% better Root Mean Square Error (RMSE) 
and Mean Absolute Error (MAE) scores. This result suggests that NEMO can be improved 
with better data, but other issues, such as legality of text mining, need to be considered 
and addressed before NEMO can be used in day-to-day operations. In its current form, 
NEMO can be used alongside other forecasting models and provide invaluable 
information about upcoming demand volatility.   
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1. Introduction 

1.1. Introduction 

Demand forecasting is a challenging process but given the benefits of having an accurate 

forecast, companies are always looking to improve their forecasting process. One of the 

more promising methods that has emerged recently is sentiment analysis, which uses 

natural language processing (NLP) techniques to obtain useful information from text. 

Business-to-consumer (B2C) companies use this method to gather opinions and 

sentiments about their products from social media and e-commerce websites. However, 

business-to-business (B2B) companies have been slow to adopt sentiment analysis as B2B 

products are less likely to be discussed on social media and have reviews posted on e-

commerce websites. However, other textual sources also contain valuable information 

about the end consumer. This thesis proposes a new NLP-based forecasting model, known 

as NEMO, that uses alternative textual sources of information with a modern NLP 

approach to B2B sales forecasting, and the practicalities and limitations of doing so. 

1.2. Motivation 

Demand forecasting is especially challenging for B2B companies selling commodities, and 

even more so if they are situated near the beginning of a long supply chain. Giunipero and 

Aly Eltantawy (2004) define a long supply chain as one where “there are three or more 

supplier tiers and/or when the products are globally bought, processed, and/or 

transported (p. 706).” The length of a supply chain directly impacts the lead time between 

companies; and consequently, the amount of safety stock needed and quantity of 

information required to forecast demand accurately (F. Chen, Drezner, Ryan, & Simchi-

Levi, 2000). Inaccurate demand forecasts can cost companies millions of dollars in 

unsold inventories or unmet demand.  
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The field of NLP has seen rapid advancements since 2017, which allowed for more 

accurate downstream tasks such as sentiment analysis or text classification. This thesis 

investigates how can modern NLP techniques be used in the context of a B2B company 

selling commodities in a long supply chain. It is believed that such B2B companies, 

located far upstream in a supply chain, can improve their demand forecasting by 

employing modern NLP techniques to extract information from news articles.  

Another area of interest for this thesis is comparing the performance of such an NLP-

based forecasting technique to other forecasting techniques. The expectation is that by 

using these modern NLP techniques, B2B companies should be able to obtain up-to-date 

information about their end consumers and incorporate these information into their 

demand forecasts, making NLP-based forecasts more up-to-date and more accurate than 

forecasts derived from other techniques.  

The above research topics will be formalized as research questions and hypotheses in 

Section 3.1. 

1.3. Summary of Approach 

This thesis conducts exploratory research using a petrochemical company as a case study.  

The petrochemical company produces and ships polystyrene pellets worldwide. As a B2B 

commodity, polystyrene has a wide range of application, from food packaging to 

household appliances. As seen in Figure 1, it also has a long supply chain, as polystyrene 

has to be processed, molded, repacked and distributed by various companies; before 

reaching the end consumer as plastic components in various consumer products, such as 

automobiles or televisions. 
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Figure 1. The Supply Chain of Polystyrene, a B2B Commodity 

Five years of textual data are gathered because it takes a significant amount of manual 

effort to gather and process the textual data. Shynkevich, McGinnity, Coleman, and 

Belatreche (2015) found that using relevant news articles on targeted stocks, classified 

using the Global Industry Classification Standard (GICS), improved the prediction 

performance of their financial forecasting models. A similar approach is used in the 

selection of textual sources for NLP processing. At the same time, five years of empirical 

data, consisting of both polystyrene sales data and its related price indices, are obtained 

from the sponsor company. Sales quantity is used as a proxy for demand data because 

proper records of demand data were unavailable. For the purposes of this thesis, terms 

“sales” and “demand” will be used interchangeably except in situations where a clear 

distinction between the two is required.  

The data are then processed and split into textual data and tabular data. Feature 

engineering is also carried out on the tabular data to generate additional variables that 

better represent the underlying data. The tabular data are then used as input into a neural 



 
 

12 
 

network, where categorical variables are converted into embeddings to capture the 

relationships between categories.  

The textual data are then processed using modern NLP techniques. Since the introduction 

of transfer learning to NLP in 2017 (Vaswani et al., 2017), there has been a profusion of 

pre-trained language models, such as Google’s Bidirectional Encoder Representations 

from Transformers (BERT) (Devlin, Chang, Lee, & Toutanova, 2018), which attained 

state-of-the-art results in a number of NLP tasks. NEMO uses one of these recently 

developed pre-trained language models to enhance the representation of textual data as 

numerical vectors. 

After vectorization of the textual data, the vectors are combined with the output of the 

previous neural network and passed into another neural network, which predicts the 

demand quantity. The sales quantity and tabular data are also used to develop an 

autoregressive integrated moving average (ARIMA) model and a gradient boosting model 

respectively, and their results will be used to compare against NEMO’s. All models are 

trained and evaluated using walk-forward cross-validation using the appropriate error 

measures. 

The results from the above approach are then analyzed and evaluated against the research 

questions and hypotheses. 

1.4. Gap in Existing Research 

While NLP techniques have been used in forecasting, they mostly forecast stock prices or 

demand for end consumer goods. The most common NLP technique used to do so is 

sentiment analysis. However, existing research on using sentiment analysis to forecast 

demand in a supply chain context is extremely limited as sentiment analysis itself is a 

relatively new field. Wood, Reiners, and Srivastava (2013, 2014, 2015, 2016) have done 
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the most research in using sentiment analysis in such a context. In their latest paper, they 

developed a framework, shown in Figure 2, for the adoption of sentiment analysis in a 

firm, drawing on dual-process theory to conceptualize how information should be used in 

making decisions and how reflecting on the decision outcomes can be used to improve 

supply chain performance in a virtuous cycle. However, they also highlighted several 

limitations and challenges with such an approach (Wood et al., 2016). 

 

Figure 2. A framework for the adoption of sentiment analysis in a firm (Wood et al., 
2016). 

One noteworthy limitation they acknowledged is that sentiment analysis is “unlikely to be 

useful in B2B markets or with B2B products” as consumers are unlikely to express their 

opinions about such products on social media (Wood et al., 2016). They also stopped short 

of applying sentiment analysis to forecast demand in an actual case study. Furthermore, 

their papers predated the usage of transfer learning in NLP and hence did not take into 

account the impact of recently developed pre-trained language models and other modern 
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NLP techniques has on performance. While the approach proposed by this thesis does not 

use sentiment analysis directly, the NLP techniques used are similar and can be easily 

adapted to handle sentiment analysis too. 

Another area that is unexplored by existing research is the derivation of useful 

information for forecasting from long formal text. Most of the existing research that used 

NLP techniques in forecasting focused only on relatively short length of text, such as 

Tweets or news headlines. These short pieces of text are relatively easy to interpret and 

incorporate into forecasting models. A long text document such as a news article may have 

multiple points of view and is therefore much harder to use in forecasting.  

These gaps will be addressed in this thesis. 
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2. Literature Review 

This chapter will review the existing literature on how NLP-based techniques can be used 

to forecast the demand of B2B companies selling commodities, especially chemical 

commodities; and the accuracy of different approaches in demand forecasting.  

This literature review is broken down into three main sections: demand forecasting, NLP 

and industry. As this review will cover a broad spectrum of disciplines, only the most 

relevant and important areas in each field will be discussed. In the first section, the 

importance of demand forecasting and a conceptual framework to discuss supply chain 

forecasting will be introduced; followed by a survey of different methods used in 

forecasting and some challenges ahead for the field of forecasting. In the NLP section, a 

brief overview and recent developments in the field will be covered, before focusing on 

the usage of NLP techniques in forecasting and in supply chain management. Finally, 

relevant topics in the B2B, commodities and chemical commodities industries will be 

discussed in the last section to give context to the specific scope of this thesis. 

2.1. Literature Review in Demand Forecasting 

Demand forecasting is important to businesses and supply chains because it is the input 

to many important business decisions, such as the number of people to hire or the number 

of warehouses to build. Chase (2013) suggests that demand forecasting is important 

because operational processes takes time; and businesses “can no longer simply wait for 

demand to occur” and must instead “sense demand signals and shape future demand in 

anticipation of customer behavior (p. 31).” 

Given the complexities of demand forecasting, it is useful to have a framework to organize 

the different aspects of a supply chain to consider in forecasting. One such framework is 
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proposed by Syntetos, Babai, Boylan, Kolassa, and Nikolopoulos (2016), as seen in Figure 

3 and further elaborated in the sections below. 

 

Figure 3.  Theoretical framework of a supply chain structure informed by 
requirements of forecasting (Syntetos et al., 2016) 

● Length 

The length of a supply chain is captured by the echelon dimension in the framework 

proposed by Syntetos et al. and characterizes the flows of materials and information along 

the length of a supply chain. It becomes progressively harder to coordinate these flows 

the longer supply chains become (Syntetos et al., 2016), which is one of the main issues 

that this thesis addresses. Another issue is the “bullwhip effect,” which is the amplification 

of demand variance along a supply chain as one moves further upstream. 

● Depth 

The depth of a supply chain is captured by both the location and product dimensions in 

Syntetos et al.’s framework. As forecasting “is a hierarchical process informing various 
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levels of decision making,” different hierarchical elements, such as whether to aggregate 

SKUs or locations, are considered when capturing depth. 

● Time  

The time dimension is important for any forecasting problem and includes elements such 

as time buckets and forecast horizons (Syntetos et al., 2016). 

2.1.1. Classifying Demand Forecasting Methods 

Demand forecasting has many approaches, which can be classified in several ways. The 

approaches can broadly be divided into subjective and objective methods; and can be 

further broken down into judgmental and experimental approaches for the former and 

time series and causal approaches for the latter (Caplice & Sheffi, 2006a). Green and 

Armstrong (2012), in his review of demand forecasting methodologies, divided 

forecasting methods into judgmental and statistical approaches, as shown in Figure 4, the 

distinction being the availability of data. 

2.1.1.1 Judgmental Methods 

Judgmental methods rely on human judgment to forecast future trends. Judgmental 

forecasting is inevitable in many cases, such as a new product launch or no historical 

precedent (Hyndman & Athanasopoulos, 2018, p. 83). Green and Armstrong (2012) 

argues that the key to judgmental forecasting is to impose structure on judgments, using 

techniques like surveys and simulated interactions and to abstain from methods which 

have not been proven to be efficient, such as unaided judgments and focus groups.  

2.1.1.2. Quantitative Methods 

Quantitative forecasting uses data to forecast future trends, usually through statistical 

methods such as time series models or causal models, as described in the sections below. 
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 Figure 4. A flowchart classifying different forecasting methodologies. (Green & 
Armstrong, 2010) 

2.1.1.2.1. Time Series Methods 

Time series methods can be considered “traditional” methods as they have been around 

since the 1920s, when the statisticians Slutsky and Yule classified time series into 

autoregressive (AR), moving average (MA) or a combined autoregressive moving average 

(ARMA) processes (Nerlove & Diebold, 1990). In the 1970s, fellow statisticians Box and 

Jerkins further developed methods to estimate maximum likelihood and apply them to 

forecasting. Hence, ARIMA models are also known as Box-Jenkins models (Harvey, 1990).  

ARIMA models are heavily used in forecasting research. For example, issues 

underpinning the length and depth aspects of Syntetos et al.’s framework assume that 

“the underlying demand structure may be represented by an ARIMA form” (Syntetos et 
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al., 2016). Variations of the ARIMA model, such as MA or simple exponential smoothing 

(SES), form the bulk of forecasting methods used in practice today (Weller & Crone, 2012).  

For further reference, refer to the appendices in Syntetos et al. (2016)’s paper for a list of 

literature on the different types of statistical-based methods used in demand forecasting. 

2.1.1.2.2. Causal Methods 

Causal methods identify external explanatory variables that are highly correlated with 

demand and try to predict future demand using them (Caplice & Sheffi, 2006b). A 

common method to do so is through the usage of regression models; however existing 

knowledge and conceptual understanding rather than statistical fit are used in the 

selection of variables (Green & Armstrong, 2012).  

Syntetos et al. (2016) did not cover causal methods in their paper but acknowledged that 

with the current popularity of Big Data, practitioners are trying to incorporate causal 

effects such as weather and social media in their forecasts. They pointed out that little 

research has been carried out to determine the extent to which explanatory variables 

forecast future trends in the field of supply chain management, although parallel 

developments in other disciplines such as marketing analytics exist; and that integration 

of ideas between disciplines will go towards bridging the gap between forecasting theory 

and practice.  

2.1.1.2.3. Machine Learning Methods 

Apart from traditional methods, newer artificial intelligence (AI) and machine learning 

forecasting methods, such as neural networks and support vector machines (SVMs), have 

gained popularity in recent years with the advent of increased processing power and Big 

Data. These techniques differ from statistical techniques as they can learn from the data 
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without any explicit rules. For example, neural networks are able to learn and model the 

non-linear patterns of intermittent demand (Mitrea, Lee, & Wu, 2009).  

Several studies compared the performance of such techniques against traditional 

forecasting methods, but existing research indicated that is still premature to form a 

conclusion about which is a better approach. For example, Mitrea et al. (2009) compared 

the performance of neural networks against MA and ARIMA techniques in forecasting the 

demand for refrigeration compressors and concluded that neural networks performed 

better than traditional techniques. Carbonneau, Laframboise, and Vahidov (2008) 

compared the performance of several machine learning techniques, including neural 

networks and support vector machines, to traditional forecasting techniques, such as 

ARIMA variants and linear regression, in forecasting the demand of an extended supply 

chain. They found out that, although machine learning techniques had better accuracy, 

they did not offer a large improvement in accuracy over linear regression. They also 

pointed out that the marginal gain in accuracy of machine learning techniques must be 

weighed against the lower cost of adopting the simpler linear regression model.  

In the more general field of forecasting, the popular Makridakis Competitions or M-

Competitions are regularly held to evaluate the accuracy of different forecasting methods 

using a wide variety of time series data across various domains. An offshoot competition 

of the third edition of the M-Competitions, NN3, specifically assessed the forecasting 

accuracy of neural networks and other computational intelligence (CI) methods, such as 

K-nearest-neighbors or support vector regression, against other statistical methods. The 

results indicated that the non-statistical methods are comparable but still unable to 

outperform statistical methods (Crone, Hibon, & Nikolopoulos, 2011). The latest edition 

of the M-Competitions, M4, in 2018 was extended to all forecasting methods, including 
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machine learning methods, and involved the prediction of over 100,000 time series. Here, 

again the results indicated that submissions using purely machine learning methods 

underperformed other forecasting methods and 12 of the 17 most accurate methods 

comprised of combinations of mostly statistical methods (Makridakis, Spiliotis, & 

Assimakopoulos, 2018).  

2.1.2. Combining Forecasting Methods 

In practice, different types of forecasting methods are often combined. Reasons for 

combining forecasts include to increase overall forecasting accuracy and to eliminate bias 

(Chase, 2013). For example, the best forecasting method in the M4 competition was a 

hybrid of both statistical and machine learning methods (Makridakis et al., 2018).   

Another reason is that different types of forecasts have their ideal use cases and a 

combination of forecasts is necessary in mixed cases. For example, in terms of the time 

dimension in Syntetos et al.’s framework, as seen in Figure 5, statistical forecasting 

methods are preferable for applications that have a short forecast horizon and long 

demand histories. The exact opposite is required for applications that require judgmental 

forecasting, such as a new product launch. The middle case is where judgmental forecasts 

are combined with statistical forecasting, which is also known as judgmental adjustments. 

Although commonly practiced in industry, very little academic research, mostly limited 

to empirical case studies, analyzed the effectiveness of such forecasts; as it is difficult to 

incorporate judgmental information into theoretical models (Syntetos et al., 2016). 

However, the few existing studies suggest that combining judgmental and quantitative 

forecasts are effective, especially if the judgmental adjustment were carried out in a 

systematic manner (Green & Armstrong, 2012).  
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Figure 5. Link between judgmental forecasting and statistical forecasting (Syntetos et 
al., 2016) 

2.1.3. Current Gaps and Challenges 

In an editorial on the current state of supply chain forecasting, Boone, Boylan, Fildes, 

Ganeshan, and Sanders (2019) suggested to the forecasting community that, rather than 

trying to improve on existing time series models, they should expand their research 

agenda to explore the usage of Big Data and machine learning techniques; as “the role of 

artificial intelligence and machine learning methods in supply chain forecasting remains 

under-explored: the benefits and pitfalls of AI are not understood well in this context.” 

Syntetos et al. (2016) also opined a similar view and highlighted “How to make effective 

use of information contained in social media?” is an important issue for further research. 

2.2. Literature Review in Natural Language Processing 

NLP is a collection of techniques that enables computers to interpret human language 

(Eisenstein, 2019, p. 1). It draws from many fields, most notably linguistics and computer 

science. A important subfield is sentiment analysis, which refers to the uncovering, 

extraction and classification of opinions, feelings and beliefs found in unstructured data 
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(Liu & Zhang, 2012). It can be useful in a variety of applications, from market intelligence 

to brand monitoring (Ravi & Ravi, 2015). It is still a relatively new field and only came 

into practical application recently with advancements in computing power and Big Data 

(Wood et al., 2014).  

It is important to study the developments in the field of NLP because it touches upon 

issues and challenges in making sense of textual data, such as: “How to break down the 

text into a size suitable for processing?” Or “How to capture and represent the context 

found in sentences and paragraphs?” While an in-depth discussion of the history of NLP 

techniques is beyond the scope of this review, recent developments and their implications 

will be discussed in the following sections. 

2.2.1. Traditional Approaches 

Traditionally, parsing of text was done through a rule-based approach, first put forward 

by Chomsky (1957) in 1957. In the 1990s, statistical approaches became popular. It 

involved preprocessing and tokenizing textual data using statistical methods like term 

frequency-inverse document frequency (TF-IDF) or bag-of-words, before applying the 

tokenized vectors to the various NLP applications such as text classification or topic 

modeling (Bengfort, Bilbro, & Ojeda, 2018).  

Some limitations of the above deterministic approaches to word vectors are that they do 

not differentiate between ordering of words and are unable to capture idiomatic context 

(Mikolov, Sutskever, Chen, Corrado, & Dean, 2013), which makes them not ideal for 

sentiment analysis purposes.   

2.2.2. Deep Learning Approaches 

Since the 2010s, there have been rapid advancements made in the field of NLP brought 

about by the resurgence of neural networks’ popularity with researchers with the increase 
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in accessibility to computing power. Different variations of neural networks, such as long 

short-term memory (LSTM) networks, gated recurrent unit (GRUs), as well as new 

architectures of neural networks, such as the encoder-decoder architecture, attention 

mechanism or transformers, were introduced in rapid succession in the last few years 

(Lane, Hapke, & Howard, 2019). The most important and relevant developments are 

discussed in the sections below: 

2.2.2.1. Word Embeddings 

Instead of modeling words in a deterministic manner, word embeddings, such as 

word2vec developed by Google researchers (Mikolov et al., 2013) and GloVe developed by 

Stanford University researchers (Pennington, Socher, & Manning, 2014), are probabilistic 

approaches that can model context. This represented a huge leap forward in the field of 

NLP as subtle problems like semantic queries and word analogies are now possible (Lane 

et al., 2019). The classic example of a word analogy is “King - Man + Woman = Queen,” 

where the underlying gender relationship is captured by word embeddings (MIT 

Technological Review, 2015). This had huge implications for NLP as it is now possible to 

capture and compare the semantic information encoded in different passages of text.  

2.2.2.2. Transfer Learning 

Alongside the development of word embeddings, another important development is that 

of transfer learning. Transfer learning refers to the situation where previous learning 

done in a context can be used to improve generalization in another context (Goodfellow, 

Bengio, & Courville, 2016, p. 526). It has been used in many other fields, most notably in 

computer vision; where Oquab, Bottou, Laptev, and Sivic (2014) managed to apply image 

representations trained on the ImageNet dataset to other visual recognition applications 

with minimal retraining.   
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Many different types of transfer learning in NLP exist, among which sequential transfer 

learning has contributed to the biggest gain in accuracy of sentiment classification to date. 

The general idea is to pretrain on a large corpus of text, such as Wikipedia, before 

adapting the pre-trained model to another supervised task (Ruder, 2019). There have 

been a number of pre-trained language models, each having different architectures, 

released in the last few years; such as Bidirectional Encoder Representations from 

Transformers (BERT) by Google (Devlin et al., 2018), Universal Language Model Fine-

Tuning (ULMFiT) by fastai (Howard & Ruder, 2018) and XLNet by Google (Yang et al., 

2019).  

Table 1. A comparison of different pre-trained models’ accuracy in sentiment analysis 
on the IMDb dataset 

Model Accuracy Paper 
XLNet (Yang et al., 2019) 96.21% XLNet: Generalized Autoregressive 

Pretraining for Language 
Understanding 

BERT-large with In-Task 
Pre-Training (Sun, Qiu, 
Xu, & Huang, 2019) 

95.79% How to Fine-Tune BERT for Text 
Classification? 

BERT-base with In-Task 
Pre- Training (Sun et al., 
2019) 

95.63% How to Fine-Tune BERT for Text 
Classification? 

ULMFiT (Howard & 
Ruder, 2018) 

95.4% Universal Language Model Fine-
tuning for Text Classification 

As seen from Table 1, pre-trained language models are very accurate in sentiment analysis 

and have been increasing in accuracy.  

2.2.3. Usage of NLP techniques in Forecasting 

While rapid advancements have been made in the field of NLP, most of the existing 

research on the usage of NLP techniques for forecasting is limited to traditional 

approaches and has not incorporated probabilistic word embeddings or transfer learning 
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in their methodologies. They are also mostly limited to either price forecasts or consumer 

products.  

Table 2. A survey of existing literature on NLP techniques used in forecasting 

Paper NLP Techniques  Forecast 
Target 

Product Sales Forecasting Using Online Reviews 
and Historical Sales Data: A Method Combining the 
Bass Model and Sentiment Analysis (Fan, Che, & 
Chen, 2017) 

Word frequency, 
Naive Bayes 
classifier 

Car sales 

Stock Trend Prediction Using News Sentiment 
Analysis (Kalyani, Bharathi, & Jyothi, 2016) 

Bag-of-words, 
polarity dictionary 

Stock prices 

Increasing the Explanatory Power of Investor 
Sentiment Analysis for Commodities in Online 
Media (Klein, Riekert, Kirilov, & Leukel, 2018) 

Unigrams, SVM 
classifier 

Commodity 
futures prices 

Predicting Vehicle Sales by Sentiment Analysis of 
Twitter Data and Stock Market Values (Pai & Liu, 
2018) 

Polarity scoring Car sales  

Parallel Aspect-Oriented Sentiment Analysis for 
Sales Forecasting with Big Data (Lau, Zhang, & Xu, 
2018) 

Polarity scoring Consumer 
products 

Stock Price Prediction Based on Stock-Specific and 
Sub-Industry-Specific News Articles (Shynkevich et 
al., 2015) 

Bag-of-words, 
polarity scoring 

Stock prices 

Text-Based Crude Oil Price Forecasting: A Deep 
Learning Approach (X. Li, Shang, & Wang, 2018) 

Bag-of-words, 
polarity scoring 

Crude oil 
prices 

As seen from Table 2, existing research has not adopted the latest developments in the 

field of NLP. Given the high accuracy of using word embeddings and transfer learning in 

NLP, it would be worthwhile to explore the usage of such methods applied to forecasting. 

Another interesting observation is that the prediction of stock or commodity prices is 

usually done through textual analysis of news articles while the demand of consumer 

products is predicted using sentiment analysis of social media. To date, no study has been 

carried out on demand forecasting of commodities using NLP techniques, or whether this 

is achievable through the textual analysis of social media or news articles. 
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2.2.4. Usage of NLP techniques in Supply Chain Management 

As mentioned in an earlier section, existing research on using NLP techniques in the field 

of supply chain management is extremely limited. The possibility of doing this kind of 

analysis, specifically through sentiment analysis, was proposed by both Wood et al. (2013) 

and Swain and Cao (2013) concurrently. Preliminary investigations by Swain and Cao 

(2013) showed that higher levels of social media activity by supply chain partners led to 

better supply chain performance.  

Wood et al. (2015) suggested that through the usage of sentiment analysis of social media, 

it is possible for upstream firms to sense changes in market demand without relying on 

information shared by downstream firms. In their latest paper on the topic, Wood et al. 

(2016) formulated a framework for the usage of sentiment analysis in a firm, drawing on 

dual-process theory to conceptualize how information gained from sentiment analysis 

should be used in make supply chain decisions and how reflecting on the decision 

outcomes can be used to improve supply chain performance in a virtuous cycle. As an 

extension of their earlier paper, they also proposed that: by having early access to market 

data through the usage of sentiment analysis, it will help firms to respond quicker to 

market changes and counteract the bullwhip effect, especially for firms that are distant 

from the end market. 

Lastly, Swain and Cao (2017) carried out an exploratory study and found support for a 

correlation between supply chain performance and amount of social media shared, where 

supply chain performance is measured by inventory turnover.  

The papers cited above considered the sentiment analysis only of social media and were 

more focused on theorizing how to apply sentiment analysis to improve supply chain 

performance, not demand forecasting. Furthermore, Wood et al. (2016) even pointed out 
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that sentiment analysis is “unlikely to be useful in B2B markets or with B2B products” as 

consumers are unlikely to express their opinions about such products on social media. 

2.3. Industrial Context 

The following sections give a brief background to the industrial context of this thesis. 

2.3.1. Business-to-Business 

B2B refers to the sales conducted between businesses. A key issue of applying sentiment 

analysis to B2B sales is that B2B businesses typically perceive their products as “rational” 

and hence do not engage in as much branding (Beverland, Lindgreen, Napoli, Kotler, & 

Pfoertsch, 2007) and social media marketing as B2C businesses (Iankova, Davies, Archer-

Brown, Marder, & Yau, 2019). This makes it a challenge to find opinions on B2B products 

online. 

2.3.2. Commodities 

Commodities are goods that standardized, undifferentiated, have a uniform price and 

often used in the production of other goods ("What Makes Something a Commodity?," 

2017). A key difference between consumer products and commodities is that since 

commodities are so vital to commerce and have rather standardized prices; they are 

highly liquid and often traded on exchanges as a financial security, along with all the 

derivatives like futures and options ("What Makes Something a Commodity?," 2017).  

Cheng and Xiong (2014) call this the “financialization” of commodity markets and argue 

that this is a positive development as it promotes information discovery and that future 

prices are important demand signals of commodities. In addition, being a financial 

security, ample information can be found online in the form of news articles and price 

benchmarking agency reports (Johnson, 2018), which can be mined for sentiment 

analysis. 
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Chemical commodities are mass produced products and their sales are primarily driven 

by their selling price. Examples include plastic polymers such as polyethylene 

terephthalate (PET) or basic chemicals such as chlorine. Prices are volatile (Kannegiesser, 

Günther, van Beek, Grunow, & Habla, 2009) and often track a commodity benchmark 

such as that of ICIS or S&P Global Platts (Johnson, 2018).  

2.3.3. Demand Forecasting in the Industry 

Demand forecasting can be and have been applied in the B2B sales (Lackman, 2007) as 

well as commodities (Xu, Qi, & Hua, 2010). Forecasting the demand for chemical 

commodities is challenging because demand for chemical commodities is not 

autoregressive (Kannegiesser et al., 2009). Furthermore, chemical commodities sales are 

made up of spot and contract sales; and their demand patterns are different — spot 

demand does not need to be met while contract demand is fixed. (Kannegiesser et al., 

2009). For these two reasons, Kannegiesser et al. (2009, p. 66) claim that “the classical 

approach towards demand forecasting does not apply to the considered chemical 

commodity business.” 

2.4. Summary 

Given the wide range of topics covered by this thesis, this literature review has focused on 

only the most relevant and important areas in each relevant field. Demand forecasting is 

complicated because of the many different dimensions to consider, as seen in Syntetos et 

al.’s framework. Furthermore, a large variety of forecasting approaches exist, from 

judgmental methods to machine learning methods. Sentiment analysis is another new 

approach to forecasting, made possible with the rise of Big Data and recent advancements 

in NLP techniques, such as word embeddings and transfer learning. While there has been 

some research on using NLP techniques in forecasting, they were limited to either price 
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forecasts or demand of consumer products. In addition, very little existing literature on 

the usage of NLP techniques in supply chain management exists. Although it is hard to 

find sentiments of B2B commodities online, the “financialization” of commodity markets 

gives rise to other potential sources of information, such as analyst reports and news 

articles, for NLP-based forecasting. Lastly, research shows that the standard forecasting 

approach may not be suitable for forecasting the demand of chemical commodities. 

This thesis will fill several knowledge gaps across different disciplines. An NLP-based 

forecasting approach, such as sentiment analysis, is not well-studied and defined. This 

thesis will also help to answer Boone et al. (2019)’s call to forecasting researchers to better 

understand the benefits and pitfalls of AI in supply chain forecasting and contribute to 

the scarce literature on the usage of NLP techniques in supply chain management. In 

addition, this thesis will use the latest NLP techniques, such as word embeddings and 

transfer learning, which displayed very high accuracy in sentiment analysis benchmarks. 

No existing paper has used such techniques to forecast demand before. Lastly, the author 

believes that this thesis is the first paper that attempts to use modern NLP techniques to 

forecast the demand of B2B companies selling commodities specifically. Hence, this 

thesis helps to establish the feasibility of such an approach and a method to do so. 
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3. Methodology 

The primary objective of this thesis is to establish a method to extract the latent semantic 

information embedded in textual documents and use it to forecast the demand for 

polystyrene. Traditional NLP techniques, such as sentiment analysis approaches to 

forecasting, tend to calculate a sentiment score and use it as a variable to forecast demand 

(X. Li et al., 2018; Pai & Liu, 2018). In such approaches, a sentiment lexicon, which is a 

list of positive and negative sentiment words and phrases, is required to compute the 

sentiment score. However, human judgment is needed to determine what constitutes a 

‘positive’ or ‘negative’ sentiment and decide the rules to calculate ‘intensity’ of the 

sentiment (Liu, 2015). The proposed approach bypasses the need for such sentiment 

scoring by using deep neural networks to learn the hidden relationships between the 

textual data and demand.  

As seen from Figure 6, there are five phases in the proposed methodology: data retrieval, 

data cleaning, deep learning-based NLP, demand forecasting and evaluation. In the first 

two phases, data are collected and cleaned for modeling. In next phase, textual data are 

preprocessed and then converted into numerical representations or embeddings for 

forecasting. In the demand forecasting phase, the embeddings are then combined with 

other data before using neural networks to forecast demand. This NLP-based approach 

to demand forecasting, represented by the blue box in Figure 6, is NEMO. NEMO takes 

reference from Tremblay’s model, which merges image, tabular and textual data to 

predict pets’ adoption rates (Tremblay, 2019). 

Two other forecasting methods, an ARIMA model and a gradient boosting model, are also 

used to forecast demand. The ARIMA model only uses the sales data for prediction, while 
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the gradient boosting model uses all of the tabular data for prediction. Finally, 

performances of the three models are evaluated in the last phase. 

 

Figure 6. Proposed Methodology 

3.1. Research Questions and Hypotheses 

This thesis explores the possibility of bypassing the need for information gathering from 

downstream companies through the application of NLP techniques to information readily 

available online.  

Research Question One: How can NLP techniques be applied to forecast the demand of 

B2B companies selling commodities in long supply chains? 

For example, as discussed in previous chapters, sentiment analysis is typically used by 

B2C companies in purposes like market analysis or brand monitoring; as it is easier to 

capture consumer sentiments of a branded product on social media. In contrast, B2B 

products are usually not discussed on social media; and hence, it is difficult to apply 

sentiment analysis to them. However, sentiment analysis has been used on news articles 
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to forecast commodities prices such as gold (Smales, 2014) and crude oil (J. Li, Xu, Yu, & 

Tang, 2016).  

Hypothesis One: News articles contain sufficient information to apply NLP techniques 

to forecast the demand of B2B commodities accurately. 

Although this thesis is based on B2B commodities, the same NLP-based approach can be 

extended to forecast the demand of B2C products easily. 

In addition, given the speed at which exogenous factors impact demand today, traditional 

forecasting methods are not able to incorporate such information in their forecasts as 

quickly as one would like.  

Research Question Two: Does a deep learning NLP-based forecasting approach have 

greater forecast accuracy than non-deep learning forecasting approaches?  

This thesis will also compare the performance of a deep learning NLP-based forecasting 

approach against other forecasting methods, such as an ARIMA model. 

Hypothesis Two: NLP techniques can incorporate the latest exogenous factors in its 

forecasting model, making forecasts more up-to-date and more accurate. 

3.2. Methodology Steps 

3.2.1. Data Retrieval 

Two types of data, textual data and empirical data, are collected in this phase. Textual 

data are obtained from an academic database called Nexis Uni, while empirical data are 

obtained from the sponsor company. Empirical data consist of both the sales data of 

polystyrene and its related price indices. A closer analysis of data is detailed in Section 4.1. 

For both textual and empirical data, five years of data, from the start of 2014 to the end 

of 2018, is gathered. However, the frequencies of the data vary: textual data are daily, 

price indices are weekly, and sales data are in monthly buckets. The relevant price indices 
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data and sales data are upsampled to match the daily frequency of the textual data using 

the Python library pandas. 

3.2.2. Data Cleaning 

In this phase, text documents downloaded from the database are cleaned up for NLP. The 

downloaded articles contain metadata such as industry and subject classifications. The 

articles are converted into an appropriate file format and parsed using Python. The 

headline and article contents are then extracted and stored separately from the metadata 

as textual data. Duplicates articles are not cleaned up because the number of articles may 

be a predictor of demand. 

The metadata are then combined with the empirical data, undergoes feature engineering 

and one-hot encoding to create a tabular dataset. Tabular data are data that are found in 

tables and are made up of either categorical data or continuous data. All the categorical 

variables are transformed into embeddings, which allows multi-dimensional 

relationships between categories to be captured. Furthermore, time series data are also 

split into multiple categorical variables to capture such multi-dimensional relationships 

too. For example, time series data can be split into whether it is the first quarter of the 

year or the specific day of the week. One-hot encoding is simply classifying if the data are 

about a certain industry or company, encoding 1 if true and 0 if false.   

3.2.3. Deep Learning-based Natural Language Processing 

This thesis uses fastai, which builds upon the open source machine learning library 

PyTorch. fastai helps simplify the training of fast and accurate neural networks using 

modern best practices (Howard & Gugger, 2018), such as using one-cycle learning (Smith, 

2018) to fit the neural network model.  
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3.2.3.1. Text Preprocessing 

Minimal preprocessing is carried out on the textual data because traditional text 

preprocessing techniques, such as stopword removal or lemmatization, are unnecessary 

for deep learning and will in fact result in the loss of important semantic information. 

fastai contains preprocessing functions for tokenization and numericalization, which are 

necessary to turn textual data into tokens and tokens into unique IDs respectively. These 

unique IDs are subsequently used to create the vocabulary of the language model. As every 

word requires a distinct row in the resulting neural network’s weight matrix, the 

vocabulary is limited to 60,000 words to avoid having an overly large matrix to process 

later.  

3.2.3.2. Language Modeling 

This thesis uses transfer learning to reduce the time needed to train a language model that 

has deep contextualized representations of the underlying text. fastai uses a subset of 

English Wikipedia for its pretrained language model, which can be fine-tuned with textual 

data from the target domain. In the context of this thesis, the language model is fine-

tuned with the articles downloaded from Nexis Uni containing the keyword “polystyrene.” 

Since the language model is not used to predict demand directly, it is trained over the 

entire textual dataset using a recurrent neural network (RNN), which is the typical variant 

of neural networks used in NLP.  

At this point, the language model will be able to predict the next word of any input phrase, 

using its knowledge of sentences and words represented by the embeddings in it. However, 

since the aim of this thesis is understanding textual data and its hidden sentiments, only 

the part of language model responsible for encoding the textual data into numerical 

vectors is saved for later usage. This part is also known as the “encoder.” 
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3.2.4. Demand Forecasting 

In this phase, the preprocessed data are used in three different models to predict demand.  

3.2.4.1. Forecasting with Textual Data and Tabular Data 

As seen from NEMO’s architecture in Figure 7, tabular data and textual data are passed 

through several fully connected linear layers and a RNN respectively before concatenating 

them in a single tensor, passed through several more linear layers and finally trained from 

end-to-end to forecast demand. It is important to ensure that the textual data are 

processed with the same encoder from the language model trained previously in Section 

3.2.3.2. The specific type of RNN used to process textual data is fastai’s ASGD Weight-

Dropped LSTM (AWD-LSTM), which incorporates several very effective regularization 

and optimization strategies in its implementation.  

 

Figure 7. NEMO’s Neural Network Architecture 

The concatenated output is then passed through several more fully connected layers and 

trained end-to-end on the target output, which is the sales quantity for that month. As 
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this is essentially a regression problem, regression metrics are used as the loss functions 

to train the model. The regression metrics used are root mean square error (RMSE) and 

mean absolute error (MAE), which are calculated as 

𝑅𝑀𝑆𝐸  = '∑ (𝑦+! − 𝑦!)"
!#$

𝑛  

(Eq. 1) 

and 

𝑀𝐴𝐸  =  
∑ |𝑦+! − 𝑦!|"
!#$

𝑛  

(Eq. 2) 

where 𝑦+% is the predicted value at time t and 𝑦% is the actual value at time t, respectively. 

Having two versions of a model is useful because the two measures have different 

mathematical properties and hence purposes. The mathematical definitions of RMSE and 

MAE result in a model forecasting the mean when minimizing for RMSE, and a model 

forecasting the median when minimizing for MAE. When carrying out hierarchical or 

group forecasting, it is possible to aggregate forecasts by adding up forecasts of different 

groups. However, only forecasts of means can be added up (Hyndman & Athanasopoulos, 

2018). On the other hand, a model that minimizes for MAE is robust to errors and is less 

likely to result in outliers (Chai & Draxler, 2014). 

3.2.4.2. Statistical Forecasting 

An ARIMA model, which is one of the two most widely used approaches in traditional 

statistical forecasting, is used to forecast demand in this section. As an ARIMA model has 

many different components, the following approach, which observes the 
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recommendations given by Hyndman and Athanasopoulos (2018, pp. 243-252), is used 

to select the order of the ARIMA model.  

First, plot the training data to identify any unusual observations. Next, check whether the 

variance of the data is stable and apply a Box-Cox transformation if not. Then, apply unit-

root tests to determine if any differencing is necessary to correct for seasonality and to 

make non-stationary data stationary. Hereafter, try out different ARIMA models to find 

a suitable ARIMA model. The criteria used to choose models are the lowest root mean 

square error (RMSE) and mean absolute error (MAE) scores using the validation set 

respectively. The residuals of the chosen models are then tested and checked by plotting 

the autocorrelation (ACF) plots of the residual and doing a portmanteau test of the 

residuals. If the residuals look like white noise, the chosen ARIMA model is used to 

forecast the demand in the testing set. The ARIMA models chosen are described in 

Section 4.2.2 of the Data and Results Chapter.  

3.2.4.3. Machine Learning-based Forecasting 

Apart from a statistical forecasting method, a machine learning-based forecasting method 

is also selected and trained on the tabular data for like-for-like comparison. Extreme 

gradient boosting (XGBoost) is chosen because of its good performance in practice, its 

suitability with categorical data and relatively fast computational times as compared to 

other machine learning techniques such as support vector regression. It is an ensemble of 

weak learners or trees and is generalized by optimizing of a differentiable objective 

function (T. Chen & Guestrin, 2016).  

XGBoost has many parameters to adjust, including parameters like regularization 

parameters and depth of its trees. Initially, grid search and random search were employed 

to find the best parameters but the number of parameters to explore meant that model 
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tuning took a very long time. Subsequently, Bayesian optimization is used to select the 

parameters. Bayesian optimization is a search technique based on Bayes theorem, which 

makes the parameter optimization process very efficient (Snoek, Larochelle, & Adams, 

2012).  

Like NEMO and the ARIMA model, XGBoost uses RMSE and MAE as the error functions 

to train the models in cross-validation. However, as XGBoost requires a differentiable 

objective function, the pseudo-Huber loss is used as an approximation for the MAE 

instead when training the model.  

3.2.5. Evaluation 

As mentioned before, the models’ performances are evaluated using walk-forward cross-

validation with RMSE and MAE as the error measures. RMSE is widely used to compare 

performances between models because it gives a higher penalty to errors, making it an 

ideal measure to select the best model. MAE, as the average absolute difference between 

the predicted and actual value, is easier to interpret compared to RMSE. For the XGBoost 

model and NEMO, since the underlying data frequency is daily, their predictions are 

averaged to obtain a monthly prediction for evaluation. 

Initially, the models were evaluated on a simple train-validate-test split. However, cross-

validation — a more sophisticated evaluation method — is used subsequently as it 

“provides an almost unbiased estimate of the true error (Varma & Simon, 2006).” The 

models, ARIMA, XGBoost and NEMO, are carefully chosen to evaluate different 

forecasting approaches. The ARIMA model is a statistical model that only uses past 

observations of time series data in its forecasts. The XGBoost model is a highly regarded 

machine learning model and incorporates external information in its forecasts. NEMO is 

a deep learning model that uses NLP to extract information from long textual documents 
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and uses them, along with the same external variables used by the XGBoost model, to 

forecast demand. All three models are evaluated using time series cross-validation, 

specifically walk-forward cross-validation, where the training or validation set only 

contains data that occurs before the validation or test set respectively. The walk-forward 

cross-validation is used to avoid look ahead bias, which occurs when a model is trained 

on future information not yet available in the training period (Hyndman & 

Athanasopoulos, 2018). As seen in Figure 8, a year’s worth of data is used for each dataset 

to account for any yearly seasonality effect, which results in three cross-validation folds. 

For each cross-validation fold, the models’ hyperparameters are tuned using the 

validation set and the tuned models’ performance is evaluated against the testing set. The 

models’ final performance is the average of the error measure across three different folds. 

 

Figure 8. Walk-forward Cross-Validation 

3.3. Summary 

In this chapter, a five-step methodology is proposed, which outlines how a modern NLP-

based deep learning model can be used to extract information from long textual 

documents to forecast demand and how will such a model be evaluated against other types 

of forecasting models. This methodology will help explore the research questions and the 

related hypotheses on using news articles to forecast the demand of B2B commodities and 

establish the accuracy and timeliness of NLP-based forecasting techniques.  
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4. Data and Results 

The previous chapter laid out the methodology used to execute and evaluate three 

different forecasting models. In this chapter, both the input data and model results are 

described and evaluated. The first section will explore the data used in greater detail while 

the second section will look at the results obtained from the models and how to interpret 

them.  

4.1. Data 

Textual data are collected from Nexis Uni, an academic research database with more than 

15,000 news, legal and business sources. Empirical data consisting of sales data for 

polystyrene and its related price indices are obtained from the sponsor company. 

4.1.1. Textual Data  

“Polystyrene” is used as the search keyword in Nexis Uni and results are further narrowed 

down by industry and language, using “Chemical” and “English” respectively. This is 

similar to Shynkevich, McGinnity, Coleman and Belatreche’s (2015) successful approach 

of using industry-specific news articles in their stock price predictions.  

4.1.1.1. Data Distribution 

Five years of textual data are manually downloaded from Nexis Uni. As seen in Figure 9 

and Table 3, distribution of the data is not uniform. A dip in textual data available can be 

observed from April 2015 to August 2015 and more data are available in 2017 and 2018. 

This anomaly is attributed to availability of articles in the database. The uneven 

distribution of data may affect the models’ accuracies. This will be discussed further in 

Section 4.3. 
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Figure 9. Time Series Plot of Textual Data Distribution 

Table 3. Number of Articles per Year 

Year Number of Articles 
2014 4,308 
2015 3,102 
2016 5,339 
2017 6,657 
2018 9,423 

4.1.1.2. Publication Types and Subject Classification 

The publication types differ greatly, varying from pricing reports to news reports about 

regulations banning the usage of plastics. However, as seen in Figure 10, the vast majority 

are news-related articles. 

 

Figure 10. Frequency Plot of the Top 10 Publication Types 
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Nexis Uni classifies documents according to subjects using its own classification system. 

A document can have more than one subject classification. The top 20 subjects based on 

count frequency are shown in Figure 11. As expected, most of the data are documents on 

the plastic polymer industry and its trends. 

 

Figure 11. Frequency Plot of the Top 20 Subjects 

4.1.1.3. Document Length 

As seen from Table 4, the average document length is 775 words with a standard deviation 

of 3,450 words. As seen in Figure 12, the distribution is skewed by a few outliers with 

document lengths of over ten thousand words. However, the median document length is 

still fairly long at 471 words, and this is consistent with the type of textual documents 

collected, which are mainly news articles and pricing reports.  

Table 4. Descriptive Statistics of Document Length 

Mean 775 
Standard Deviation 3,450 

Minimum 18 
25% 261 
50% 471 
75% 781 

Maximum 188,180 
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Figure 12. Histogram Plot of Document Length 

4.1.2. Empirical Data 

The two types of empirical data are described in the subsections below. 

4.1.2.1. Price Indices 

Price indices are obtained from major pricing reporting agencies, such as S&P Global 

Platts, and consist of benchmark prices for polystyrene and its related chemicals, such as 

benzene and styrene. Benchmark prices are classified according to regions with the 

relevant Incoterms, such as Free on Board (FOB) Korea or Cost and Freight (CFR) Hong 

Kong. Pricing reporting agencies obtain their data by inquiring prices from contacts in 

major market participants; therefore, for each price index, there is a minimum and 

maximum price (Johnson, 2018). A total of 32 price indices of various chemicals and from 

different regions of the world are taken into consideration.  
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While specific price indices used cannot be shared due to licensing agreements, the 

general price trends can be seen in Figure 13. 

 

Figure 13. Time Series Plot of Various Regional Chemical Price Indices 

4.1.2.2. Sales Data 

Sales data are obtained from the sponsor company’s ERP system. Sales quantity data are 

used as a proxy for demand data because the company does not systematically keep track 

of demand forecasts; and therefore, demand data are inconsistent and unreliable for 

research purposes. A time series plot of sales quantity can be found in Figure 14. 

 

Figure 14. Time Series Plot of Sales Quantity Data 

However, sales data are not a perfect substitute for demand data. Apart from the usual 

reasons in academic literature, such as inventory stockouts (Wecker, 1978), a company-

specific reason is that the sponsor company adjusts polystyrene shipments due to plant 

shutdowns or scheduling issues with freight companies. Since the company’s accounting 

policy is to recognize sales when goods are shipped, these adjustments will result a 
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difference in demand and sales in the month when the order is placed and the month 

when the goods are finally shipped. 

 

Figure 15. Density Plot and Histogram of Sales Quantity Data 

From the density plot and histogram of the sales quantity data in Figure 15, it can be 

observed that the data are relatively not skewed, and the tails are relatively light compared 

to the rest of the distribution. This can be checked with the skewness and excess kurtosis 

measures in Table 5. The measures are close to zero, indicating that the distribution of 

the sales quantity data is normal. The mean and median are also approximately equal at 

12,961,198 and 12,998,505 respectively, which is further evidence that the distribution is 

symmetrical. This also suggests that although sales are volatile, peaks in demand are 

counterbalanced by dips in demand. 

Table 5. Skewness and Kurtosis Measures of Sales Quantity Data 

 Corrected for Bias Uncorrected for Bias 
Skewness 0.01659 0.01617 

Excess Kurtosis 0.16549 0.05366 

4.2. Results 

As discussed in the methodology chapter, the data above are fed into three different 

models, fine-tuned and evaluated using walk-forward cross-validation against RMSE and 

MAE as error measures. The sections below describe the predictions obtained from the 

different models and their relative performances.  
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For time series plots between Figures 16 to 29, the actual demand is represented by the 

red line, predictions from the validation dataset are represented by the yellow line and 

predictions from the test dataset are represented by the blue line. The range of predictions 

is represented by the lighter shaded area and the darker shaded area represents one 

standard deviation from the mean. 

4.2.1. Simple Average Model 

To set a baseline, a forecast using a simple average of actual demand in the previous six 

months is calculated. The sponsor company uses a similar method to set a baseline 

forecast. As seen from both Figure 16 and Table 6, this method is not very accurate. In 

addition, since this model is not cross validated, the error measures in Table 6 should only 

be used for reference and not for comparison with the other following models.  

 

Figure 16. Time Series Plot of Actual and Predicted Sales Quantity using a Simple Half-
Year Average 

Table 6. Error Measures for the Simple Average Model 

RMSE MAE 
1,594,758 1,226,378 
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4.2.2. ARIMA Model 

The forecast package in R is used for the modeling of ARIMA models. The ARIMA 

models generated predictions that did not vary very much from the mean, which is about 

13 million. As seen from Figures 17 and 18, the models minimizing for RMSE and MAE 

resulted in similar predictions that almost form a straight line. More precisely, following 

the approach described in Section 3.2.4.2, ARIMA models that were either ARIMA (1,0,1) 

or ARIMA (1,0,2) were obtained. The only difference between the model that minimized 

for RMSE and the model that minimized for MAE is in the second cross-validation fold. 

Furthermore, the nsdiffs() function returned a value of 0, suggesting that the data has 

no seasonality.  

 

Figure 17. Time Series Plot of Actual and Predicted Sales Quantity for the ARIMA 
Model, minimizing for RMSE 

 

Figure 18. Time Series Plot of Actual and Predicted Sales Quantity for the ARIMA 
Model, Minimizing for MAE 
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An interesting observation is that an autoregressive model of order 1, AR (1), was obtained 

in both versions of the ARIMA model. This is not expected, as Kannegiesser et al. (2009) 

had pointed out that the demand of chemical commodities is not autoregressive. However, 

this inconsistency may be because sales quantity was used in lieu of demand quantity. 

Another reason could be because, unlike the crude-oil related chemical commodities 

mentioned in Kannegiesser et al., polystyrene is a downstream derivative of styrene; and 

therefore, is not directly influenced by movements in crude-oil prices. Tables 7 and 8 

detail the actual results of the ARIMA models, minimizing for RMSE and MAE 

respectively. 

Table 7. Average Validation and Test Results for the ARIMA Model, Minimizing for 
RMSE 

 RMSE MAE 
Validation 695,777 550,183 

Test 743,985 561,700 
 

Table 8. Average Validation and Test Results for the ARIMA Model, Minimizing for 
MAE 

 RMSE MAE 
Validation 693,166 546,662 

Test 734,111 555,492 

4.2.3. XGBoost Model 

The XGBoost models returned a range of predictions that are largely consistent. Figures 

19 and 20 show that the model minimizing for RMSE and the model minimizing for MAE 

do not differ much except for the period from January 2018 to September 2018, in which 

the latter model predicted a lower demand as compared to the former.  

As mentioned in the Methodology chapter (Chapter 3), the news articles’ metadata and 

the related weekly price indices are used to predict demand. As the frequency of news 

articles is daily, there should be multiple predictions for a month if daily data is used to 
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predict monthly demand. However, the XGBoost models’ predictions look solid and 

consistent except for the slightly shaded regions of the blue line at the start and around 

November 2016 in Figure 19. This is evidence that although there are over 15,000 

metadata variables from news articles to choose from, the XGBoost models did not use 

many of them and chose to use common variables present across the training dataset, 

such as “Month,” in their predictions. 

 

Figure 19. Time Series Plot of Actual and Predicted Sales Quantity for the XGBoost 
Model, Minimizing for RMSE 

 

Figure 20. Time Series Plot of Actual and Predicted Sales Quantity for the XGBoost 
Model, Minimizing for MAE 

This is further supported by Figure 21, which shows the feature importance of each feature 

learned by the ensemble model from the training dataset in one of the three cross-

validation folds. The feature importance, or the F Score, is the number of times each 

feature is split on by each decision tree. From Figure 21, it can be seen that “Month” is 

one of the most used features to split on. However, as shown by Figure 22, this does not 
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mean “Month” is the most important feature in a decision tree; it is simply the feature 

that is used most often across all the decision trees learned by the XGBoost model in that 

particular cross-validation fold. 

 

Figure 21. Example of Feature Importance Rank in One of the Three Cross-Validation 
Folds, in the XGBoost Model Minimizing for RMSE 

 

Figure 22. Example of a Decision Tree Learned by the XGBoost Model Minimizing for 
RMSE 

However, the XGBoost models did not give good predictions. As seen from Figures 19 and 

20, they predicted the exact same quantity for long periods of time and were not able to 
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capture the peaks and troughs very well. Both models predicted a rise in demand around 

January 2017 and November 2018 but were unable to predict the steep decline in demand 

around the end of 2018. The poor predictions can also be validated quantitatively from 

the error measures shown in Tables 9 and 10. 

Table 9. Average Validation and Test Results for the Best Model, Minimizing for RMSE 

 RMSE MAE 
Validation 933,108 733,825 

Test 1,022,240 807,572 
 
Table 10. Average Validation and Test Results for the Best Model, Minimizing for MAE 

 RMSE MAE 
Validation 1,012,241 837,645 

Test 1,133,460 925,622 

4.2.4. NEMO 

Several variations of NEMO were used, as minor changes were made to the model 

architecture and parameters were adjusted to fine-tune the model. In general, a model 

took about 90-120 minutes to train over 6 epochs, depending on the type of GPU used. As 

a model had to be trained three times across each cross-validation fold, it took between 

4.5 to 6 hours to fully evaluate a model.  

The performance of the initial working model and the subsequent best model is described 

in the sections below. In addition, due to the data distribution problem, an alternative 

model trained over a longer period of two years is also analyzed.  

4.2.4.1. Initial Working Model of NEMO 

The first working model returned a range of demand forecasts for each month, 

represented by the shaded regions in Figures 23 and 24. From the same figures, it can be 

seen that the predictions fluctuate monthly and less smoothed as compared to the ARIMA 

and XGBoost models.  
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Figure 23. Time Series Plot of Actual and Predicted Sales Quantity for the Initial 
Working Model of NEMO, Minimizing for RMSE 

 

Figure 24. Time Series Plot of Actual and Predicted Sales Quantity for the Initial 
Working Model of NEMO, Minimizing for MAE 

The model that minimized for RMSE and the model that minimized for MAE resulted in 

similar average demand forecasts, as seen from the blue lines above. However, the latter’s 

predictions deviated more from the actual demand. This is in line with the expectations 

of the different accuracy measures, as explained in Section 3.2.4.1. It suggests that the 

model minimizing for MAE penalizes error less, leading to a larger range of forecast values. 

This can also be verified quantitatively by referring to Tables 11 and 12, where the model 

that minimized for RMSE gave better results for both RMSE and MAE. However, the 

difference is very slight, and it is unclear which is a better measure here.  
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Table 11. Average Validation and Test Results for the Initial Working Model of NEMO, 
Minimizing for RMSE 

 RMSE MAE 
Validation 971,318   771,604 

Test 986,850 792,641 
 
Table 12. Average Validation and Test Results for the Initial Working Model of NEMO, 

Minimizing for MAE 

 RMSE MAE 
Validation 981,178 762,297 

Test 1,031,187 805,490 

4.2.4.2. Best NEMO Model 

The best NEMO model uses four more fully connected linear layers with rectified linear 

activation unit (ReLU) activation functions between the concatenated layer and the final 

layer. This allowed NEMO to extract more features from the dataset.  In addition, various 

learning rates were tried in an experimental manner to find the best ones. These minor 

modifications improved the performance of NEMO significantly.  

As seen from Figures 25 and 26, the average predictions of the best model, as depicted by 

the blue lines, are more smoothed than the initial model but still managed to predict some 

of the peaks and troughs of the actual demand. The range of the predictions, as shown by 

the shaded regions, is wider than the initial model’s. The forecast range of the model 

minimizing RMSE manages to cover most of the actual demand.  
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Figure 25. Time Series Plot of Actual and Predicted Sales Quantity for NEMO, 
Minimizing for RMSE 

 

Figure 26. Time Series Plot of Actual and Predicted Sales Quantity for NEMO, 
Minimizing for MAE 

However, the model that minimized for RMSE had two outliers in its predictions. Both 

predictions were an order of magnitude higher than the average and hence excluded from 

the results. Looking closer at the data, the documents associated with the predictions are 

an article on China’s ban on imported scrap, and another on China’s styrene production 

capacity. A modified excerpt from the latter article can be seen in Figure 27. Both articles 

are longer than average, at about 75% quantile. However, the content of the articles is very 

different. It is hard to determine the reason or the variable that caused the model to 

predict such high demand. However, the article in Figure 27 has tables about styrene 

capacity and plants that were planned for construction in China. Styrene monomer is a 

key raw material of polystyrene, making up over 90% of the bill of materials. One possible 
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reason could be that having many numbers of a key raw material for a key market threw 

the model off in its prediction. 

 

 

Figure 27. Excerpt from Article that Resulted in an Outlier 

One version of NEMO attempted to constrain the range of predictions by using a sigmoid 

function on the output layer. However, this model was unable to generalize well and thus 

discarded. As expected, the model that minimized for MAE did not have any issues with 

outliers and predicted a reasonable range of values for demand. This is because MAE is 
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robust and not sensitive towards outliers. However, as seen from Tables 13 and 14, the 

model minimizing for MAE returned higher errors, as measured by RMSE and MAE on 

the testing set.  

Table 13. Average Validation and Test Results for the Best Model, Minimizing for 
RMSE 

 RMSE MAE 
Validation 851,368 689,868 

Test 838,229 673,035 
 
Table 14. Average Validation and Test Results for the Best Model, Minimizing for MAE 

 RMSE MAE 
Validation 907,563 679,239 

Test 958,106 770,273 

4.2.4.3. Best NEMO Model over a Longer Training Period 

As deep learning models tend to perform better with more data, the same model but 

trained with two years’ worth of data is also evaluated. Correspondingly, the number of 

cross-validation folds had to be reduced from three to two.  

As Figures 28 and 29 show, this version of NEMO returned predictions that are relatively 

smoothed and not far from the actual demand. This can be validated from Tables 15 and 

16, which shows this model has the lowest RMSEs for the testing set out of all the models 

except for the ARIMA model. However, since this model is evaluated on a different 

number of cross-validation folds and hence did not have the large spike in demand in 

October 2016 in its testing data, its results are not directly comparable with the models 

above.  

An interesting observation is that the model minimizing for RMSE returned a higher 

RMSE and a lower MAE on the testing set as compared to the model minimizing for MAE. 

This is probably due to the latter model having better predictions in the last quarter of 
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2018, as seen in Figure 29 where the red line is tracked closely by the blue line and is 

covered entirely by the blue shaded region. Nevertheless, the difference is very slight at 

about 2% of the total and can be attributed to randomness.   

 

Figure 28. Time Series Plot of Actual and Predicted Sales Quantity for NEMO, Trained 
for 2 Years, Minimizing for RMSE 

 

Figure 29. Time Series Plot of Actual and Predicted Sales Quantity for NEMO, Trained 
for 2 Years, Minimizing for MAE 

Table 15. Average Validation and Test Results for NEMO, Trained for 2 Years, 
Minimizing for RMSE 

 RMSE MAE 
Validation 772,232 601,478 

Test 826,854 704,918 
 

Table 16. Average Validation and Test Results for NEMO, Trained for 2 Years, 
Minimizing for MAE 

 RMSE MAE 
Validation 842,882 638,143 

Test 814,390 720,820 
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4.2.5. Comparative Analysis 

In this section, the performances of the various models, minimizing for RMSE and MAE, 

are compared and discussed. 

4.2.5.1. Comparing across Models 

Of the three models, it can be seen from Figures 30 to 33 that the ARIMA model has the 

lowest error measures, irrespective of minimizing for RMSE or MAE. However, as 

discussed in Section 4.1.2.2, the distribution of actual sales data is normal and centered 

around 13,000,000. The ARIMA models’ predictions are also centered around 

13,000,000 and have standard deviations of less than 200,000 from the mean. Hence, 

the small amount of error observed is expected. This can be seen in Figures 17 and 18, 

where the ARIMA models’ predictions form almost a straight line and barely track the 

movements of actual demand; therefore, these models are not ideal for forecasting the 

erratic demand of polystyrene.  

 

Figure 30. A Comparison of RMSE Scores of Different Models when Minimizing for 
RMSE 
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Figure 31. A Comparison of MAE Scores of Different Models when Minimizing for 
RMSE 

  

Figure 32. A Comparison of RMSE Scores of Different Models when Minimizing for 
MAE 
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Figure 33. A Comparison of MAE Scores of Different Models when Minimizing for 
MAE 

Between the XGBoost model and NEMO, it can be observed from Figures 30 to 33 that 

NEMO is superior in both measures, offering approximately 20% better performance 

when measured on the testing dataset regardless of which measure the model minimizing 

for. Furthermore, the XGBoost model performed noticeably worse on the testing dataset 

as compared to the validation dataset, which shows the XGBoost model did not generalize 

well. 

4.2.5.2. Minimizing for RMSE or MAE 

From Table 17, it can be observed that models minimizing for RMSE have lower errors 

than models that minimized for MAE, except for the ARIMA model. This is because the 

ARIMA model only uses sales data for prediction and since the underlying distribution is 

not skewed and normal, the predictions are also similar. Conversely, the difference in 

performance between the models that minimized for RMSE and for MAE, for both the 

XGBoost and NEMO, suggests that the distributions of the price indices data and textual 
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data may be uneven, leading to a biased forecast when training a model that minimizes 

for MAE.  

Table 17. A Comparison of the Percentage Differences in Error when Minimizing for 
MAE over RMSE 

  ARIMA XGBoost NEMO 

Validation RMSE 0.38% -7.82% -6.19% 
MAE 0.64% -12.39% 1.56% 

Test RMSE 1.35% -9.81% -12.51% 
MAE 1.12% -12.75% -12.62% 

However, comparing both versions of a model is useful because, as explained in Section 

3.2.4.1, models that minimize for RMSE and models that minimize for MAE have 

different purposes. Minimizing for RMSE will result in an unbiased forecast while a model 

that minimizes for MAE is robust to outliers, as shown by NEMO’s results.  

4.3. Summary 

Regarding the proposed hypotheses, the difference in predictions between the XGBoost 

model and NEMO suggests that textual documents contain some information that can be 

used to forecast future demand. However, given the large errors returned by NEMO, the 

results do not support Hypotheses One and Two, which postulate that news articles can 

forecast the demand of B2B commodities accurately and NLP techniques improves 

forecast accuracy and timeliness. 

Some of the forecast errors may be because sales data are used in lieu of demand data, 

which contain irregularities such as unplanned plant shutdowns. Such information is not 

included in any datasets, which leads to a large forecasting error. Another reason may be 

due to the distribution of the textual data, as NEMO seemed to perform better in the 

alternative model, which is trained on bigger dataset. Hence, NEMO’s results remain 
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promising and it would be interesting to test NEMO on actual demand data or on a bigger 

dataset for verification. 

Nevertheless, the results indicate that NEMO is the best for forecasting volatile demand 

as it offers a middle ground between the three models considered. As seen from Figures 

34 and 35, NEMO’s predictions are not as smoothed as the ARIMA model, yet NEMO is 

better in predicting the changes in demand as compared to the XGBoost model. While the 

predictions are not ideal, NEMO can still be useful in various other contexts, which will 

be discussed in the following chapter. 

 

Figure 34. A Comparison of Time Series Plots of Different Models, Minimizing for 
RMSE 

 

Figure 35. A Comparison of Time Series Plots of Different Models, Minimizing for MAE 
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5. Discussion 

In the last chapter, data and results of various forecasting techniques are explored. In this 

chapter, implications of the findings will be discussed. This includes practical issues that 

may be encountered when deploying NEMO in practice. Also, the limitations of NEMO 

will be touched upon. Lastly, topics for further research will be identified. Broadly, this 

chapter will contain three main sections. 

5.1. Implications 

Looking at the results obtained, the sponsor company’s current practice of using a simple 

average of past data, as discussed in Section 4.2.1, combined with expert judgments from 

experienced salespeople to make forecasting decisions, can be improved even by using a 

simple ARIMA model. However, as discussed extensively in Section 4.2.5.1, the ARIMA 

model is unable to predict the peaks and troughs of the underlying commodity. Therefore, 

NEMO can be used here as a better baseline model and complement the existing 

forecasting methodology of the sponsor company.  

NEMO also has the added advantage of predicting a range of values for any given month, 

which can be useful to management for determining the upper bounds and lower bounds 

of demand, and consequently amount of inventory on hand to hold.  

Nevertheless, several practical issues must be considered before NEMO can be deployed 

in actual operations.  

5.1.1. Investment Required 

The sponsor company currently does not have the correct environment to use NEMO and 

has to make substantial investments in systems before it is able to do so. Machine learning 

systems have all the challenges of traditional software development and more, and most 

non-technology companies are not equipped to handle these challenges. A group of 
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Google researchers highlighted these challenges as the “technical debt” of machine 

learning, and warned that such technical debt will compound quickly if not implemented 

appropriately on a systems level (Sculley et al., 2015). Examples of issues to consider 

include how to handle ongoing maintenance and how to make adjustments to complex 

deep learning models. As an analogy, while it is easy to set up a home server to host a 

personal website, hosting a business website to handle e-commerce comes with its own 

set of considerations, such as reliability and regulatory concerns. In fact, large technology 

companies such as Google and Facebook have created their own machine learning 

platforms so that they can build and deploy machine learning solutions consistently and 

reliably.   

Conversely, a simple model such as an ARIMA model or a logistic regression model can 

be easily run off Excel using a standard workstation. Therefore, a company should weigh 

the need for a cutting-edge machine learning model against the personnel and resources 

needed to deploy such a model.  

5.1.2. Training Time Considerations 

Even with the correct systems in place, a deep learning model can still take a considerable 

amount of time to train. For example, NEMO took about 90 minutes to train with a 

modern GPU with a relatively small dataset. Modern deep learning models have much 

more complex architectures and use datasets that are hundreds of times larger. Such 

models require days to be fully trained. For example, BERT took 4 days to be trained on 

16 TPU chips, which are Google’s custom-made chips developed specifically for the 

purposes of training neural networks (Devlin et al., 2018). While a language model does 

not need to be retrained every day, having a long training time in general will have an 
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impact on operations, especially if there is a limited pool of computing resources and 

multiple forecasting models for various product lines to be trained.  

5.1.3. Textual Data Collection 

NEMO requires large amounts of textual data to be collected. Textual data are readily 

available from news databases or can be scrapped from the web. However, there are legal 

implications as well as intellectual property and copyright issues surrounding text mining. 

Scraping web content is a legal gray area, but commercial usage of such content is usually 

disallowed. Some databases allow text mining, but they charge a hefty premium to do so. 

Any company considering adopting NEMO must consider such issues. 

5.2. Limitations 

In addition to the practical issues to be considered above, NEMO has several limitations, 

which are discussed below. 

5.2.1. Black Box Model 

NEMO is a deep learning model and a big limitation of such models is they can be black 

box models. Consequently, deep learning models are challenging to understand and hard 

to debug. For example, the outliers predicted by NEMO, detailed in Section 4.2.4.2, were 

challenging to explain as there are thousands of variables to consider. Furthermore, there 

is usually a trade-off between performance and interpretability in such models, where 

accurate models are often exponentially more complex and interpretable models are 

usually less accurate (Johansson, Sönströd, Norinder, & Boström, 2011). 

There is a lot of ongoing research focused on improving interpretability of black box 

models, with model-agnostic methods like local interpretable model-agnostic 

explanations (LIME) (Ribeiro, Singh, & Guestrin, 2016) and Shapley additive 

explanations (SHAP) (Lundberg & Lee, 2017). These methods uses a property called local 
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explainability and try to understand model decisions for a particular data point, as 

opposed to trying to understand the model as a whole (Molnar, 2019).  

5.2.2. Disinformation and Adversarial Attacks 

Another significant limitation of NEMO is its susceptibility to disinformation. Apart from 

the usual method of hiring humans to write “fake” news or reviews, NLP techniques have 

advanced to the point where artificially generated text is indistinguishable from those 

written by a human being. For example, OpenAI’s GPT-2 model alarmed its developers 

so much that they decided to release the code for GPT-2 in stages, due to their concern 

that GPT-2 will be used for malicious purposes at scale (Radford et al., 2019).  

In business, companies may intentionally generate fake news to limit competition or 

artificially inflate demand. Such deliberate acts of disinformation are known as 

adversarial attacks, which seek to confound machine learning systems purposely and is 

an emerging field of research as well. Zhou, Guan, Moorthy Bhat, and Hsu (2019) showed 

NLP models can be vulnerable to such attacks, but their proposed solution of a 

crowdsourced knowledge graph may not be practical to implement concurrently with 

NEMO.  

5.2.3. Novel Vocabulary 

As a machine learning model, NEMO is able to learn only from past events to predict 

future demand. In other words, it will not be able to fully understand events that have not 

happened before, as it has not learned to associate new vocabulary from these events with 

demand. Furthermore, the language model’s vocabulary is limited a certain size to help 

with performance. Words that are not frequently encountered during training are labeled 

as “out-of-vocabulary” and disregarded. Therefore, as an example, prior to the 2008 
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financial crisis, the model will not be able to associate words like “Lehman shock” with a 

shape decline in demand. 

However, this is not a significant limitation as NEMO uses word embeddings, which 

understand word context. As new vocabulary will appear in the context with other regular 

words, the model should still be able to understand the general context of the text. Using 

the previous example, although the model cannot interpret the significance of “Lehman 

shock” on its first encounter, the model will be able to correlate the context of a “financial 

crisis” with a drop in demand. 

5.3. Further Research 

Given the timeliness of this thesis’s research focus, there are many unexplored areas for 

further research, which can be broadly categorized into data-related and model-related 

sections.  

5.3.1. Data 

As with any machine learning model, NEMO’s performance is highly dependent on its 

data. Data can be varied in many ways to test the performance and extend the applications 

of NEMO.  

Because all companies use the written language in one form or another, the model can 

analyze a wide range of textual data for prediction. Examples of such data may include 

emails, written contracts or product reviews. For example, as discussed in Section 1.4, the 

input data from a B2C company can be quite different from a B2B company in terms of 

composition and semantics, and may include opinionated data such as customer feedback. 

It would be interesting to use NEMO with a wider range of data from other industries.  

Taking the idea of using other types of data further, NEMO can even be extended to 

analyze other forms of data, such as audio data. This will unlock many other sources of 
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information. In the case of audio data, new sources of information could now include 

news clips and interviews. The only additional step required to do so is to convert audio 

into text, which can be accomplished automatically with a high accuracy rate today.  

5.3.1.1. Bias 

The way data are represented can be biased and this is especially true for textual data. 

Language is inherently biased. For example, research has shown that “He is a doctor” has 

a higher conditional likelihood than “She is a doctor” in a language model (Lu, Mardziel, 

Wu, & Amancharla, 2018). Crawford (2017) categorized bias in terms of allocation and 

representation bias. Allocation bias occurs when a model performs better on data that 

have greater frequency. A representation bias is when a biased concept is captured by a 

model due to the way the data are represented such as the gender bias in the previous 

example. 

Using a biased dataset can have far reaching implications, as highlighted by Angwin, 

Larson, Mattu, and Kirchner (2016) in an ProPublica article which exposed how 

proprietary algorithms used in U.S. courts are biased against African-Americans. 

Similarly, as this research is carried out using the English language, this makes the data 

biased towards English-speaking countries; and since the model is a black box model, 

such subtle biases are hard to uncover. Therefore, as discussed in Section 5.2.1, further 

research into interpretability of black box models is important and much needed.  

5.3.2. Model 

NEMO is developed as a proof-of-concept for a very specific problem, so there are many 

areas for further development and improvement.  
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5.3.2.1. More Tricks and Tuning 

As mentioned in Section 4.2.4, NEMO’s performance improved significantly with minor 

adjustments as simple as varying the learning rate. Currently, tuning deep learning 

models is more of an art than a science, and there are many other hyperparameters to 

change and “tricks” that can be tried to further improve the model in terms of accuracy 

and other performance measures like training time.  

Many papers document the different “bags of tricks” that deep learning practitioners and 

researchers found to improve the performance of their models. For example, He et al. 

(2019) detailed the usage of 16-bit floating point precision over the standard 32-bit, which 

resulted in a reduction in the time needed to train their models by 2 to 3 times. Similarly, 

NEMO can be further improved by implementing some of these “tricks.”  

In addition, much like the Bayesian optimization library used by the XGBoost model, 

hyperparameter optimization frameworks such as Optuna for PyTorch models have been 

developed recently to automate the search for best hyperparameters in deep learning 

models. Adopting the use of such frameworks will reduce the effort and guesswork needed 

to find the best hyperparameters for NEMO. 

5.3.2.2. Other Neural Networks Variants 

NEMO has a relatively simple architecture and uses LSTMs. Modern deep learning 

networks can be up to thousands of layers deep and use recently developed concepts like 

self-attention, which allows a neural network to figure out which inputs to pay more 

attention to. Hence, adding more layers to NEMO and updating some components of the 

network will probably result in better performance.  

Furthermore, NEMO is not explicitly designed to handle time series data. RNNs are 

particularly well-suited for time series prediction as they can maintain an internal state 
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which retains the information they have encountered so far. Other promising methods to 

consider include using convolutional neural networks (CNNs) to extract important 

features (Pang, Yin, Zhang, & Zhao, 2017) or a combination of CNNs and RNNs (Cirstea, 

Micu, Muresan, Guo, & Yang, 2018) to handle time series data. All these variants can be 

used in place of the linear layers after concatenation in NEMO and should improve the 

model’s predictions. 

5.3.2.3. Online Learning 

NEMO assumes all data are available a priori for training, which may not be realistic for 

real-world applications where data often arrive in streams. An interesting extension for 

NEMO is to examine the feasibility of adapting the model for online learning. Online 

learning refers to the machine learning method in which the latest data available are used 

immediately to update a model’s best prediction. However, online learning is 

substantially more difficult to achieve for deep learning models, as they will experience 

convergence issues such as vanishing gradients if online learning is applied directly on 

them. Sahoo, Pham, Lu, and Hoi (2018) have proposed hedge backpropagation to allow 

online learning to be used with deep learning models. Modifying NEMO to use hedge 

backpropagation will enable it to make faster predictions without having to retrain the 

entire model. 

5.3.2.4. Multi-step Forecasting  

In multi-step forecasting, two or more future time steps are predicted simultaneously, 

which can be accomplished through various methods. One method is to frame NEMO as 

a multi-step forecasting model using a sliding window and use RNNs to predict the future 

demand for the next few steps. Adapting NEMO to predict multiple time steps will be 

useful for long term planning purposes, such as planning the inventory levels for the next 
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three months. However, multi-step forecasting also comes with additional complexities, 

such as error aggregation and a higher level of uncertainty (Bontempi, Taieb, & Le Borgne, 

2012).   
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6. Conclusion 

In this thesis, NLP techniques are applied to textual documents in an attempt to forecast 

the demand of B2B companies selling commodities in long supply chains. Unfortunately, 

the results do not lend support to NLP techniques being able to predict demand of such 

commodities accurately. However, this may be due to issues with the underlying dataset. 

Nevertheless, given that one of the purposes of this thesis is to establish an NLP-based 

forecasting methodology, NEMO’s results are still promising and suggest such that a 

forecasting method remains viable, but much remains to be done before NEMO can be 

deployed in day-to-day operations. In its current form, NEMO can be used alongside 

other forecasting models and provide invaluable information about upcoming volatility 

in demand.  
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