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Abstract

Airline revenue management will have to adapt to a new world of airline retailing
enabled by the New Distribution Capability. One area of interest is Dynamic Offer
Generation (DOG), in which airlines respond to every booking request in real-time
with a customized set of offers and prices. In these offers, ancillary services may be
bundled with the flight. Selecting and pricing these offer sets represents a new joint
pricing and assortment optimization problem in revenue management.

We propose a formulation for the dynamic offer generation problem and study
the robustness of its solution. We derive conditions under which selling the flight
in a bundle with an ancillary service increases total net revenues over selling the
ancillary as an optional add-on. We show how this model integrates with traditional
revenue management systems. We simulate DOG under competition in the Passenger
Origin-Destination Simulator (PODS) to show the potential revenue benefits.

The simulation results show that bundling the flight with an ancillary service can
generate higher revenues than selling both services separately. This is especially true
when the ancillary service is highly valued by passengers, can be provided at low cost
by the airline and passengers make purchase decisions rationally. We also show that
price segmentation between passenger types can increase revenue and that there is a
first-mover advantage for airlines to implement dynamic offer generation mechanisms.

When one of four airlines implements DOG, it can increase its total net revenue
by up to 2.6% through ancillary bundling alone and up to 12% in combination with
dynamic flight pricing. Most of these dynamic flight pricing gains are attributable to
undercutting the existing fares offered by airlines with traditional RM systems. When
all four airlines use DOG, their revenue increases by up to 0.9% through bundling
alone and 7% with dynamic pricing. Under more realistic market conditions, the
simulated net revenue gain of DOG reduces to 1.7% when all airlines implement it.

Thesis Supervisor: Peter P. Belobaba
Title: Principal Research Scientist, Aeronautics and Astronautics
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Chapter 1

Introduction

The airline industry is diversifying. Driven by a period of record profitability from

2010-2019, many different airline business models have found success. Global net-

work carriers and short-haul low-cost carriers alike have found their target customers

with different service levels and fares. Airlines are pushing new retailing initiatives

to better distinguish themselves from their competitors. More recently, airlines have

used branded fares such as Basic Economy, Main Cabin or Economy Plus to deliver

differentiated travel experiences within the same cabin. In the future, the New Dis-

tribution Capability (NDC) standard is expected to streamline the ticket distribution

process and enable airlines to receive more information about their customers’ pref-

erences and in return generate more relevant offers, which combine flight itineraries

and ancillary services to form new customized travel products.

For revenue management, this represents a new opportunity to improve flight and

ancillary revenues. However, new revenue management models are needed to dynam-

ically generate and price airline offers in response to customer requests. Our research

explores this new problem space we call dynamic offer generation by developing new

optimization models and heuristics to price flight and ancillary offers. In this chapter,

we contextualize the recent trends in the airline industry by discussing the evolution

of airline revenue management (1.1), the growth of ancillary services (1.2) and the

development of NDC (1.3). We then motivate our research (1.4) and outline the

remaining chapters of this thesis (1.5).
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1.1 Airline Pricing & Revenue Management

Airlines have long aimed to price seats in a way that maximizes revenue. To account

for the large variation in willingness-to-pay of different customer segments, airlines

use restrictive fare rules to differentiate their fares such that each customer segment

prefers a different fare class. Examples of such rules are advance purchase and point

of commencement restrictions, change and cancellation fees, as well as round-trip and

minimum stay requirements. Revenue management systems limit the availability of

low fares on high-demand flights in order to reserve seats for higher revenue bookings

in the future. Revenue management teams set seat inventory levels to maximize

total flight revenue while balancing the trade-off between departing with unsold seats

(spoilage of inventory) and not having enough seats to serve high-revenue, last-minute

demand (spill of demand).

The introduction of the first automated revenue management system by Ameri-

can Airlines in the 1980s has been credited by its then-Chairman and CEO Robert

Crandall as "the single most important technical development in transportation man-

agement". The airline estimated a sustained $500 million annual revenue benefit from

its investment in yield management and overbooking systems (Smith et al., 1992).

Initial revenue management systems optimized the seat inventory for each flight leg

individually using heuristics such as the expected marginal seat revenue method in-

troduced by Belobaba (1987). Today’s advanced optimizers consider the demand

across the entire flight network as a whole. This is especially important for the hub-

and-spoke networks of many major airlines. As each flight acts as a source of onward

connections for other flights, the revenue value of a booking extends beyond the flight

itself to the entire network. Network revenue management models increased revenues

by 1-2% over leg-based revenue management in simulations (Belobaba, 2002).

The effectiveness of differential pricing with fare restrictions reduces when low-

cost carriers enter a market with simplified fare structures and almost no restrictions.

Their one-way pricing typically offers a single fare for each flight at any one time

and is easier to comprehend for consumers, but dilutes the pricing power of airlines

18



with restricted fare structures. Airline revenue management systems had to adapt to

unrestricted fare structures (Belobaba, 2011), where the core assumption of indepen-

dent demand in each fare class was no longer valid: passengers would always choose

the lowest available price and could no longer be segmented into different fare classes

using restrictions.

The long legacy of airline distribution also imposes constraints on an airline’s

ability to price flights. These include limitations on the number of reservation booking

designators (RBD) and thus price points that can be offered in each market at any

one time, typically a maximum of 26. In addition, price points can only be updated in

fixed intervals when airlines "publish" their fares publicly through organizations such

as the Airline Tariff Publishing Company (ATPCO). Currently, airlines are preparing

for a future with continuous prices, where the fare could be set at any price point

without limitations. This would allow a revenue management system to freely set

prices and potentially dynamically adjust them in real-time to match a competitor’s

fare. As airline revenue management continues to evolve, it is plausible that the

concept of fare classes could be eliminated altogether.

1.2 Role of Ancillary Services in the Airline Industry

In the airline context, ancillary revenue can be defined as "revenue generated by

activities and services that yield cashflow for airlines beyond the simple transporta-

tion of customers from A to B" (IdeaWorks, 2019). These come mainly from a la

carte sales of services such as checked luggage, seat assignments, meals, onboard

WiFi, or cancellation and rebooking fees. Another ancillary revenue stream is from

commission-based sales and frequent flyer activity, for example credit card spend or

rental car and hotel bookings made through the airline.

Ancillary services have been a fast-growing revenue stream in the last decade,

expected to hit an average of $24 per passenger and 12.2% of total airline industry

revenue in 2019 (IdeaWorks, 2019). Of this total, we focus our research on a la

carte sales, which represent an estimated 70% of global ancillary revenues. The
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Figure 1-1: CarTrawler worldwide estimate of ancillary revenue (IdeaWorks, 2019)

Figure 1-2: Average US domestic round-trip airfares (Airlines for America, 2018)

biggest source of global ancillary revenue are baggage fees, which represent 60% of

total ancillary revenue for low-cost carriers (IdeaWorks, 2018). Airlines have achieved

this growth in ancillary revenues by unbundling their fares, removing services such

as inflight meals and checked luggage that were previously offered for free from the

cheapest fares. This allows them to counter a trend of generally declining ticket prices

(Figure 1-2).

Unlike the pricing of the flight itself, airlines have more flexibility to set ancillary

prices, as most ancillaries are sold through the airline’s direct distribution channels.

As a result, ancillaries are a popular testbed for experiments with dynamic and con-

tinuous pricing (IdeaWorks, 2018). For example, Spirit Airlines, an ultra low-cost

carrier in the United States, varies baggage fees based on the search request, travel
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date, route, and time of purchase (CAPA Centre for Aviation, 2019). In another

experiment, the use of machine learning to individually price ancillary services based

on passenger characteristics increased ancillary sales (Shukla et al., 2019).

As ancillary revenues increase in importance, revenue management systems have to

take those potential revenue sources into account when they calculate seat protection

levels. New research has shown that maximizing ancillary revenue can have a negative

impact on flight and total revenues if revenue management systems are not adapted

(Lu, 2019). Strategies and new optimization models to extend revenue management

systems to account for ancillary sales were proposed by Bockelie (2019).

1.3 IATA’s New Distribution Capability

Airlines primarily sell their flights and services through either the direct or indirect

channels. When airlines sell tickets through the direct channel, they have full control

over the booking flow: the order in which itineraries are shown, which fare classes

are displayed and which ancillary services are offered. The indirect channel comprises

bookings made through third parties such as travel agents, corporate travel providers,

or metasearch engines. These retailers typically rely on global distribution systems

(GDSs) to aggregate flight offers from multiple airlines and make bookings with the

airlines. In 2015, the GDSs processed nearly half of global flight bookings (Taubmann,

2016).

In the indirect channel, airlines have much less control over how their services are

priced and sold. The EDIFACT standard, which is used to communicate between

airlines and the GDS, can only transmit basic information about flight schedule and

fare class inventory availability (Wittman, 2018). In each available fare class, a price

can be computed by looking up the corresponding published fares and verifying that

the chosen itinerary satisfies all the rules and restrictions of the fare. As a result

of the technological limitations of the indirect channel, GDSs and flight comparison

websites rank itineraries almost exclusively based on price and schedule. The lack of

detailed product information in the indirect channel makes it difficult for airlines to
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differentiate themselves with meal services, free checked baggage or more comfortable

seating.

To overcome the limitations of the indirect channel, the International Air Trans-

port Association (IATA) has launched the New Distribution Capability (NDC) pro-

gram (Westermann, 2013). Its purpose is to drive the adoption of a new XML-based

data transmission standard, which allows better communication between airlines,

content aggregators and travel agencies. Under the NDC standard, the airline could

receive more information about each search request, for example the geographical

location, frequent flyer profile, or preferences for ancillary services. Instead of only

providing fare class availability, the airline can respond with a set of customized of-

fers. Beyond the itinerary and the flight price, these could include information about

associated fare rules, included onboard services, or prices of additional ancillary ser-

vices. NDC could give airlines more influence over how their services are presented

and sold. The airline could sell its services as branded fares and enrich results with

multimedia content about the onboard experience.

In particular, NDC could remove legacy restrictions and transform pricing and

revenue management. For example, the elimination of fare classes and the limit on

26 fixed price points would pave the way for continuous pricing. Besides, the airline

would receive more data about the customer making the request, which could improve

an airline’s understanding of customer willingness-to-pay. It is conceivable that more

detailed price segmentation will become possible. Furthermore, NDC presents a large

opportunity for airlines to improve the distribution of ancillary services. Currently,

many ancillary services cannot be distributed through the indirect channel and have

to be purchased in a second step on the airline’s website or at the airport. With NDC,

the ancillaries offered and their prices could even vary from one request to another.

In the limit, NDC enables dynamic offer generation (DOG), which is the focus

of this thesis. In response to a search request, a customer would receive a set of

dynamically generated offers that contain flights and ancillary services, the nature of

which could vary based on a customer’s profile. Some customers may receive bundled

offers, where the ancillary services are already included in the flight price, especially
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Figure 1-3: Illustration of potential benefits of NDC distribution (Lufthansa, 2018)

if they expressed a preference for such in the search request. Other customers may

receive a la carte or unbundled offers, that allow them to purchase ancillary services

as add-ons to the flight for a fee. Multiple ancillary services could be combined in

bundles at a discount. With NDC, the flights, ancillary services and bundles could

all be priced continuously without pre-determined price points.

1.4 Research Motivation

The focus of this thesis is to develop new revenue management models that enable

dynamic offer generation in the airline industry. With dynamic offer generation and

the new distribution capability, the scope of airline pricing & revenue management

teams could expand. In addition to their existing responsibility to set the most

appropriate flight and ancillary prices at any given point in time, revenue management

would be able to control the subset of products displayed to the customer (assortment

optimization) and vary this from one customer segment to another. The overall

objective of the airline is to optimally price both flight and ancillary services and

make the revenue-maximizing subset of services available for purchase.

This represents a fundamental departure from traditional pricing and revenue
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Figure 1-4: Example of ancillary offer generation (Source: united.com on 2019-12-04)

Figure 1-5: Schematic illustration of the dynamic offer generation problem

management functions. Typically, prices of ancillary services are predetermined and

independent of the flight price, although some airlines include more ancillary services

free of charge with more expensive fares. While studies have shown that ancillary

prices can impact flight revenues (Lu, 2019), there exists little research on how ancil-

lary services could be priced optimally alongside the flight.

For example, United Airlines generates two ancillary bundle offers during the flight

purchase process in their direct distribution channel (Figure 1-4). It states that "the

bundle offers you receive are customized to your trip." The goal of revenue manage-

ment is to select two combinations of ancillary services and determine the best prices

that will generate the highest expected revenue from each customer. Theoretically,

the offers could change based on trip-specific parameters (distance, flight price, etc.),

but also customer-specific information (trip purpose, loyalty status, etc.).
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In our research, we explore the potential for dynamic offer generation to go one

step further beyond ancillary offer generation (Figure 1-5). Instead of generating

bundles of ancillary offers after the flight and its price has been determined, we are

interested in optimizing flight and ancillary prices together. We would also like to

evaluate bundles that combine the flight with ancillary services at a single price point.

Optimizing flight and ancillary prices together raises previously unexplored questions

in airline revenue management, such as:

∙ How should the prices for flight and ancillary bundles be determined?

∙ For which customers and when is it beneficial to offer services a la carte instead

of as a bundle?

∙ When is it better to only offer bundles and no option to purchase the standalone

flight?

∙ Can it be profitable to offer customers both bundled and a la carte options?

∙ How does the optimal price for a service depend on the alternative offers that

are displayed alongside it?

∙ Does the optimal price for the bundle change if the a la carte option was avail-

able for purchase as well?

Making these pricing and assortment optimization decisions dynamically in re-

sponse to each customer request calls for new optimization models, which is the

motivation for our research.

1.5 Thesis Outline and Contributions

In this thesis, we provide a formulation for the general dynamic offer generation prob-

lem in the context of airline revenue management. We propose a solution that can be

integrated with traditional revenue management systems and study its performance

in a competitive airline network revenue management simulation. Our research shows
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when bundling ancillary services with the flight can improve revenue and explores the

competitive implications of such a pricing strategy.

Chapter 2 provides a literature review on new developments in both airline flight

revenue management and ancillary revenue management. We also review the litera-

ture on the topic of bundle pricing of two or more products and assortment optimiza-

tion.

In Chapter 3, we formulate the joint price and assortment optimization problem

and apply it to airline revenue management, in the context of dynamically pricing

bundles of flights with ancillary services. We propose a dynamic offer generation

algorithm to solve the problem for Gaussian distributed demand. We explore the

robustness of the algorithm to its input parameters and derive conclusions about the

profitability of bundling ancillary services. We illustrate how airlines can apply the

solution and integrate it with existing revenue management systems.

In Chapter 4, we introduce the Passenger Origin-Destination Simulator (PODS)

and define a set of baseline parameters to study the performance of the model in

conjunction with a traditional flight revenue management system under competition.

We explain the magnitude and source of observed revenue performance in detail by

separating the benefits of dynamic offer generation into its two components: dynamic

flight pricing and dynamic offer set selection (ancillary bundling). We also illustrate

the competitive effects exhibited in the simulation.

In Chapter 5, we use further sensitivity tests to confirm the performance of dy-

namic offer generation under a variety of input parameters. We identify conditions

under which dynamic offer generation performs better than traditional revenue man-

agement as well as the additional risks introduced by the strategy. We incorporate

the insights in a simulation that reflects more realistic market conditions, where the

ancillary service represents a checked bag.

Finally, we conclude the thesis with Chapter 6, summarizing the key findings and

suggesting future research directions in the area of airline dynamic offer generation.
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Chapter 2

Literature Review

This chapter surveys the revenue management literature with a focus on airline in-

dustry applications and offer generation problems. In Section 2.1, we discuss the

origins of revenue management in the airline industry. Beginning with traditional op-

timal solutions and heuristics for the revenue management problem with independent

demand, which is applicable in markets with restricted fare structures (2.1.1), we dis-

cuss the evolution of airline pricing to less restricted and unrestricted fare structures

and the implications for revenue management algorithms (2.1.2) and look ahead to

a future reality with continuous prices and dynamic price adjustment (2.1.3). We

then discuss the impact of ancillary services on airline revenue management (2.2) and

describe models that incorporate ancillary choice behavior into revenue management

to maximize total revenue. Finally, we discuss the implications of bundling flights

and ancillary services into offers for revenue management (2.3). We review the eco-

nomic rationale behind bundling and existing results from the economics literature

(2.3.1). We discuss how a set of offers can be generated (assortment optimization)

and priced (pricing optimization) (2.3.2). We conclude this chapter by reviewing prior

contributions to the airline dynamic offer generation problem (2.3.3), on which the

contributions in this thesis are based.
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2.1 Airline Revenue Management

Revenue management is the discipline of selling the right product to the right con-

sumer at the right time and the right price through the use of analytics. The idea

is especially applicable to airlines because they are faced with perishable inventory

(unsold seats at the time of departure have no salvage value), variable and elastic

demand (seasonal variability in demand, trip purpose and willingness-to-pay) and

varying lead times (travel booked both far in advance and close to departure). As

a result, the airline industry led the development of revenue management systems

before the idea spread to other industries like hotels, rental cars and retail. Initial

revenue management research made many assumptions specific to the airline industry

and led to the rapid advancement of the field. Over time, as the business environment

changed for the airlines, revenue management research evolved with it. Here, we pro-

vide a brief overview of the history of airline revenue management and the current

research directions.

2.1.1 Restricted Fare Structures

McGill and Van Ryzin (1999) provide a seminal overview of the state of revenue

management research at the time. They trace the origins of revenue management to

the airline overbooking problem, in which airlines oversell flights to maximize revenue

based on their forecast of cancellations and no-shows. The earliest seat protection

mechanism is credited to Littlewood (1972), whose rule applies to an airline with

two fare levels (high and low). Based on the newsvendor model of inventory theory,

it limits the number of seats available at the lower fare in order to "protect" the

remaining seat capacity for future high fare bookings. Littlewood’s rule balances the

revenue of the lower fare with the expected revenue of potentially selling at a higher

fare in the future. Belobaba (1987) extended the rule to multiple fare classes using

the expected marginal seat revenue (EMSR) heuristic. A refined version of EMSR,

called EMSRb, was widely adopted in the airline industry due to its simplicity and

intuitiveness (Van Ryzin and McGill, 2000). Though EMSR is not optimal (Robin-
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son, 1995), the heuristic is faster to compute and produces near-optimal results with

demand distributions commonly observed in the airline industry (Belobaba, 1992).

Algorithms that determine optimal booking limits (OBL) for the single flight leg RM

problem were published by Curry (1990) and Brumelle and McGill (1993). These are

computationally more expensive, as they require convolutions of multiple probability

density functions to compute the nested purchase probabilities for each class.

Both the OBL and EMSR methods are static optimization models that compute

the seat allocations based on strict assumptions about the demand. For example, the

methods assume that demand across each fare class is independent. This is not the

case in reality, where passengers choose to sell-up and buy-down from one fare class

to another. Furthermore, the demand arrivals are assumed to be ordered strictly in

increasing order, with the demand for a cheaper fare class arriving entirely before the

demand for a more expensive fare class.

To relax this assumption and better account for the fact that low-fare demand

exists close to departure (and vice versa), an alternative revenue management op-

timization approach models demand arrivals as a Markov decision process. In this

formulation, every single unit of demand is forecast to arrive in its own time slice 𝑡, the

state is described by the number of accepted bookings 𝑥𝑡 at time 𝑡. The two control

actions are to either accept the new demand and transition to a state 𝑥𝑡+1 = 𝑥𝑡 +1 or

reject it and transition to state 𝑥𝑡+1 = 𝑥𝑡. The seat allocations for a single flight leg

are then solved using dynamic programming (DP) (Lautenbacher and Stidham, 1999).

The optimal control policy is generated by taking the action that maximizes the value

function at any point in time, which describes the maximum expected future revenue

from state 𝑥𝑡 at time 𝑡. This mathematically attractive formulation has not been

widely adopted in modern airline RM systems, due to the computational complexity

of the algorithm. DP has been shown to outperform EMSRb and OBL when demand

variance is low, but underperform the static methods when true demand variance is

higher than the underlying model assumption of Poisson arrivals (Diwan, 2010).

Most early optimization methods were based on key simplifications, such as op-

timizing for a single flight only without considering connecting traffic and assuming
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independent demand in each booking class (McGill and Van Ryzin, 1999). The sec-

ond assumption was reasonable at the time, because airlines used highly restricted

fare structures to segment demand into different fare products, whose availability was

controlled with booking classes. For example, a business traveler desiring a round-

trip ticket departing on a Monday and returning on a Thursday would not be able to

choose a lower fare because the discounted fare products required a Saturday night

stay at the destination. However, the first assumption was unsatisfactory since airlines

with hub-and-spoke systems carried large amounts of connecting traffic. Accepting a

booking on a connecting itinerary could displace higher revenue nonstop passengers,

or vice versa. Further research described an approach that set seat protection levels

on an origin-and-destination level (O-D control) (Smith and Penn, 1988).

Most commonly, network RM solutions rely on a linear program to produce an

optimal allocation of deterministic (zero variance) O-D demand forecasts across the

network (a minimum cost flow problem). Despite the deterministic demand assump-

tion, the shadow (dual) prices of the capacity constraints can be used as estimates

of the opportunity cost of displacing a single passenger on that flight segment. O-D

control methods use these displacement costs to account for the network effects when

calculating the seat protection limits. One approach called Displacement Adjusted

Virtual Nesting (DAVN) maps the net revenue value of a connecting fare after ad-

justing for displacement costs into a corresponding local booking class on each flight

segment (Smith and Penn, 1988). Thus, all O-D pairs are clustered and tied to the

availability of local booking classes. An alternative approach uses bid prices (BP) to

determine the minimum fare required to accept a booking. The bid price is the total

displacement or opportunity cost of accepting a booking summed across all traversed

flight legs. A booking class is available for purchase if its fare is higher than the cor-

responding bid price. One algorithm that uses bid price control is called Probabilistic

Bid Price (ProBP), which nests and prorates connecting fares to each traversed leg

based on their displacement costs (Bratu, 1998). Another widely adopted bid price

control method is Unbucketed Dynamic Programming (UDP), a network extension of

the single-leg DP (Lautenbacher and Stidham, 1999). Because solving the Markov
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decision process for an entire flight network is computationally infeasible, the DP is

solved for each flight leg individually, after applying using a deterministic network LP

to perform displacement adjustment. This reduces the total revenue value of accept-

ing a connecting booking on the leg to be optimized by the displacement cost on the

other legs. The bid price for each flight leg at time 𝑡 is determined as the change of

the DP value function (expected future revenue) if one unit of demand was accepted

at time 𝑡.

2.1.2 Less Restricted Fare Structures

With the advent of low-cost carriers (LCCs), revenue management systems had to be

fundamentally revised (Belobaba, 2011). To compete against legacy airlines, LCCs

often use unrestricted fare structures, where every flight has a single price at any given

time, no matter how many nights passengers stays at the destination or whether it

is the outbound or the return flight. These simplified fares are popular with con-

sumers, but weaken the airline’s ability to segment demand into different fare prod-

ucts. Legacy airlines often respond by matching the less restricted fare structures,

which causes an issue for revenue management systems. Less restricted fare structures

fundamentally violate the second assumption in Section 2.1.1, namely that demand

is independent in each fare class. Instead, customers mostly choose the lowest avail-

able fare, with few incentives to purchase a higher fare. When traditional revenue

management systems are used with unrestricted fares, the well-documented spiral

down effect occurs (Cooper et al., 2006). As passengers that were originally willing

to pay higher fares buy down into the lower booking classes, the independent demand

forecast expects fewer future bookings in higher classes and the revenue management

system protects fewer seats, which allows for more even buy down to occur.

The notions of customers buying down to a lower fare class when it is available

for purchase and selling up to a higher fare class when the lower one is closed were

studied by Belobaba and Weatherford (1996), who proposed heuristics to account for

these effects. New revenue management models had to account for customer choice

behavior. The groundwork was laid in a general model proposed by Talluri and van
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Ryzin (2004). Strauss et al. (2018) provide a good review of the developments since

2004 and popular choice models for revenue management.

In the airline context, Q Forecasting is a forecasting method developed by Belob-

aba and Hopperstad (2004) that accounts for sell-up effects. Instead of forecasting

demand for all booking classes independently, it generates a single forecast of total

demand at the lowest (Q) class. This forecast is then re-partitioned into higher class

demand using a sell-up rate described by a FRAT5 value (fare ratio at which 50%

of demand is willing buy up from the lowest fare). For a detailed description of the

method, see Cléaz-Savoyen (2005).

Q forecasting for unrestricted fare structures assumes all demand will buy down

to the lowest available fare (priceable demand). With less restricted fare structures

in reality there is a proportion of yieldable demand that seeks a specific booking class

even though a lower fare is available (Boyd and Kallesen, 2004). This is especially true

when airlines employ a mix of restricted and unrestricted fare structures across their

network, or when airlines group booking classes into so-called fare families (Walczak

and Kambour, 2014). Fare families have become a popular way to market airline fares,

in which all fares within a family share the same set of restrictions and characteristics

and thus demand is priceable within, but each family differs from another significantly.

As a result, demand within a fare family can be considered priceable, whereas it is

yieldable across different families. Hybrid forecasting methods were tested by Reyes

(2006), in which yieldable and priceable demand are forecast independently using

traditional class-independent forecasts and Q forecasting methods, respectively.

Beyond the effects on the demand forecast, priceable demand has to be accounted

for in the optimization. This is especially important for O-D control systems, where

some O-D markets may have restricted and others unrestricted fare structures. In

both markets, the booking class availability on a shared flight leg is determined by

comparing the displacement adjusted fare against a common bid price. However, in

markets with unrestricted fare structures, the risk of buy down (or revenue dilution)

is much higher if a lower booking class is made available. To account for this differ-

ence, Fiig et al. (2010) developed a marginal revenue transformation, which converts
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an unrestricted fare structure to an equivalent set of fare classes with independent

demand. The transformation reduces the revenue management optimizer’s percep-

tion of the revenue value of opening a lower fare class and accounts for the risk of

buy down. The unrestricted fare is thus nested in a lower class than the restricted

fare when using O-D control. As a result, a network RM system would reduce seat

availability in markets with unrestricted fare structures. This method is called Fare

Adjustment and has enabled the continued use of traditional revenue management

systems in markets with unrestricted fare structures and prevented the "spiral down"

effect, despite an assumption of independent demand (Fiig et al., 2005) (Fiig et al.,

2010) (Walczak et al., 2010). This concept was later applied to the optimization of

fare families (Fiig et al., 2012).

2.1.3 Continuous Flight Pricing Methods

Motivated by the advancements in revenue management and dynamic pricing for

other industries (Golrezaei et al., 2014) (Gallego et al., 2016), airlines began to ex-

plore the possibilities of offering flights at more than 26 pre-defined price points.

Wittman and Belobaba (2019) provide a definitional framework describing two dif-

ferent approaches to so-called "dynamic pricing", as compared to traditional revenue

management, which is described as an assortment optimization problem of choos-

ing which pre-defined fare classes to make available for purchase. The first, called

Dynamic Price Adjustment, uses a traditional revenue management system to per-

form the assortment optimization process, but then adjusts the resulting fares away

from the pre-defined published fares (Wittman and Belobaba, 2018). The adjustment

could be based on an estimate of the individual passenger’s willingness-to-pay or trip

purpose, or on the current competitor fares available (Fiig et al., 2016). Wittman

(2018) discusses the potential regulatory implications of segmented pricing, in which

different customer segments could receive different fare quotes at the same time for

the same itinerary, a possibility with dynamic price adjustment and IATA’s New

Distribution Capability (Westermann, 2013).

The second approach, called Continuous Pricing, lets a revenue management sys-
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tem freely choose an appropriate price from a continuous and unlimited set of pos-

sible price points. Liotta (2019) describes and tests two different continuous pric-

ing methods in the Passenger Origin-Destination Simulator (PODS). The class-based

continuous method uses the bid price calculated by a traditional class-based revenue

management system as the continuous fare. On the other hand, the classless method

removes the concept of fare classes altogether and generates demand forecasts by

time period for the revenue management optimizer instead. Both methods result

in positive revenue gains over traditional class-based pricing in both symmetric and

asymmetric scenarios with unrestricted fare structures. The results also show that

similar revenue gains can be achieved by increasing the number of pre-defined fare

classes sold by an airline using traditional revenue management systems.

2.2 Airline Ancillary Services

As ancillary revenues have become more important to airlines (see Chapter 1.2),

researchers and airline revenue management teams have begun studying the ancillary

revenue management problem in more detail. In this section, we review existing

literature on how ancillary purchase behavior of passengers can be modeled and how

ancillary revenues impact the optimality of existing revenue management systems.

Finally, we review existing literature on how revenue management can account for

ancillary revenues with the goal of total revenue optimization.

2.2.1 Passenger Ancillary Choice Behaviors

For any model that attempts to optimize ancillary revenues, it is important to con-

sider how and when passengers choose which ancillary services to purchase. In their

research on ancillary price optimization, Odegaard and Wilson (2016) modeled a mix

of three types of choice behaviors: passengers who never purchase any ancillaries,

passengers who purchase ancillaries if the price is below their reservation price and

passengers who always purchase the ancillary service with the flight. For the eval-

uation of price against reservation price, Bockelie and Belobaba (2017) propose an
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integrated flight and ancillary choice model and describe two distinct types of con-

sumers: Simultaneous consumers select a flight "itinerary, a fare class and a set of

ancillary services at the same time" based on their flight and ancillary reservation

prices and a combined overall budget (willingness-to-pay). They choose rationally

with full knowledge of all ancillary prices across all airlines at the time of booking.

On the other hand, sequential consumers first choose a flight itinerary and fare class

without any knowledge of ancillary offers or prices at all, before proceeding to eval-

uate the offered ancillary services against their reservation prices. This boundedly

rational behavior represents consumers who choose the cheapest flight on a low-cost

carrier and then encounter unexpected ancillary fees, while a competing full-service

carrier airline offers a lower total price.

2.2.2 Impacts of Ancillary Services on Revenue Management

Bockelie and Belobaba (2017) performed initial studies of both simultaneous and

sequential choice behaviors in PODS. They show that sequential passengers evaluate

flight and ancillary service offers independently and thus an airline’s flight revenue

is not impacted by ancillary pricing. On the other hand, the ancillary purchase

decision of simultaneous passengers can impact flight revenues: If higher booking

classes include complimentary ancillary services, they may choose to buy-up and pay

a higher fare instead of the ancillary fees. Simultaneous passengers can also buy down

to a lower, more restricted fare class, and instead purchase ancillary services with their

remaining budget. This has implications for the forecasting and optimization systems

of airline revenue management systems. Lu (2019) extended the studies to include

the competitive effects of ancillary price segmentation (if one or more airlines begin to

charge a subset of passengers more or less for the same ancillary service) and ancillary

differentiation (if a subset of passengers have a higher or lower reservation price for

the ancillary service). These suggest that an airline’s market share can increase

when it offers a cheaper ancillary service than its competitors, because simultaneous

passengers will switch their choice of airline. Thus, a minor difference in ancillary

pricing can have large implications on an airline’s ticket and overall revenue.
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2.2.3 Joint Management of Flight and Ancillary Revenues

These results raise the question of how airline revenue management systems can

account for the impacts of ancillary revenues. It also highlights the importance of

collaboration within an airline’s commercial department. If ancillary prices were set

myopically to maximize ancillary revenues, an airline’s overall and flight revenues

would decline (Lu, 2019).

One approach called the Optimizer Increment (OI) involves informing the revenue

management optimizer of the ancillary revenue value of a customer. This is done by

increasing the fare values used in the revenue management optimizer by the expected

ancillary revenue generated by an incremental passenger. As a result, it becomes more

preferable to sell a seat for $100 than to protect it for a potential $200 booking in the

future that materializes with a 50% probability. This is because each seat sold has a

potential to generate ancillary revenues after booking. Hao (2014) first simulated Op-

timizer Increment in PODS and found that it results in overall revenue losses. These

stem primarily from higher availability of lower fare classes and resulting buy-down

of demand with higher willingness-to-pay. However, revenue management methods

that incorporate passenger sell-up models (hybrid forecasting with fare adjustment)

showed overall revenue increases with OI methods.

Bockelie (2019) proves that OI is an optimal control strategy under limited condi-

tions. However, simulations of OI with the ancillary choice behaviors described in Sec-

tion 2.2.1, show that revenues decrease with OI once feedback effects are considered:

Buy down from higher classes lead to lower demand forecasts and thus more opportu-

nity for buy down. Instead, Bockelie (2019) proposes the Ancillary Choice Dynamic

Program (ACDP) for joint flight and ancillary revenue management, which is an ex-

tension to the dynamic program in Talluri and van Ryzin (2004) with an ancillary

revenue term. He also develops the Ancillary Marginal Demand (AMD) and Ancil-

lary Marginal Revenue (AMR) transformations, which are fare adjustment heuristics.

Analogous to Fiig et al. (2010), these transformations incorporate ancillary-awareness

(buy-up and buy-down) into traditional static revenue management optimizers that
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assume independent demand. He shows that in competitive PODS simulations, the

AMD/AMR heuristics can outperform OI by 3.5% in total revenue in a hypothetical

small market scenario.

The AMD/AMR heuristics, the ACDP and OI are all assortment optimization

methods that determine the availability of flight and ancillary combinations from a

pre-defined set of fares and ancillary prices. They do not optimize the flight and

ancillary prices themselves. On the other hand, Odegaard and Wilson (2016) develop

a multi-period dynamic program that solves for the optimal flight and ancillary prices

in each period, but do not consider the nature of airline distribution systems that

currently rely on pre-defined flight and ancillary price points.

2.3 Bundling of Flights and Ancillary Services

Previous research has explored the interactions between the flight and ancillary pric-

ing, but to our knowledge no prior research has developed an optimization model to

price a bundle of flights with ancillary services, as would be required for dynamic offer

generation. To motivate the rationale behind bundling flights with ancillary services,

this section reviews the economics literature on bundling and its profitability. We

then review methods to optimize prices in an assortment of products. We conclude

the literature review with existing research on the topic of dynamic offer generation

in the airline industry.

2.3.1 Economics of Bundling

The first studies into the economics of bundling are attributed to Stigler (1963) and

Adams and Yellen (1976). Early research generally showed that it can be profitable to

offer bundles of two distinct products at a cheaper price than purchasing both items

separately. These bundles can either be sold alongside the individual products (mixed

bundling) or exclusively, such that the products are not available for purchase indi-

vidually (pure bundling). Kobayashi (2005) provides a good overview of the different

types of bundling and the relevant literature.
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The seminal model of Adams and Yellen (1976) makes a number of key assump-

tions about bundling:

∙ A seller’s marginal cost of selling one bundle is the sum of the marginal costs

of its components.

∙ A consumer’s reservation price (maximum willingness-to-pay) for a bundle is

the sum of the reservation prices of its components.

∙ The reservation prices for the individual products are independent. In par-

ticular, there is no limit on total willingness-to-pay for all products and the

reservation prices do not depend on the selling prices.

∙ A consumer’s choice behavior is fundamentally rational, in that they purchase

the products that maximizes their consumer surplus (reservation price - selling

price). In mixed bundling, they will never purchase two products individually if

a cheaper bundle is available.

Schmalensee (1984) explored this model where the reservation prices for two prod-

ucts were subject to a bivariate normal distribution and concluded that both pure

bundling and mixed bundling could be more profitable than unbundled (or a la carte)

sales. Under this model, bundling appears most effective when the reservation prices

are negatively correlated and as a result the optimal price for the bundle is rela-

tively close to the individual prices (in mixed bundling) (Adams and Yellen, 1976)

(Schmalensee, 1984) (McAfee et al., 1989). This way, mixed bundling can be used as

a price discrimination tool: Customers with a high willingness-to-pay for one product

would be able to purchase a second product in a bundle at a small incremental cost.

Only a relatively small willingness-to-pay for the second product is thus required for

customers to be able to afford the incremental cost.

Bundling has been especially popular when the marginal cost of selling another

item of the product is small and inventories are unlimited (Bakos and Brynjolfsson,

1999). This is especially the case with information goods, such as television channels
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(cable subscriptions usually bundle many channels at a single price) and software

products (such as the Microsoft Office or Adobe Creative Cloud bundles).

All research above assumes the rationality of the consumer and the additivity of

their reservation prices. These assumptions fail to consider the psychological influ-

ences of customer choice. For example, the "center-stage effect" states that humans

are biased towards options in the middle when presented with a set of choices (Raghu-

bir and Valenzuela, 2006) (Rodway et al., 2012). Yadav (1994) explores the psychol-

ogy of bundling and suggests a model, in which consumers first evaluate the most

relevant offer (anchoring) and then compare alternatives relative to it (adjustment).

Further studies on how consumers evaluate bundles and partitioned prices were con-

ducted by Morwitz et al. (1998), Johnson et al. (1999) and Chakravarti and Paul

(2002). Ben-Akiva and Gershenfeld (1998) provide an example of how more realistic

discrete choice models could be calibrated using stated preference data of customers

choosing among different bundle options.

2.3.2 Pricing and Assortment Optimization

From the perspective of revenue management, the design and pricing of bundles repre-

sents a joint pricing and assortment optimization problem. When bundles of different

products are offered, it is reasonable to assume that the optimal price for one product

depends on the other products and bundles available for purchase. Early on, Adams

and Yellen (1976) showed that the optimal price for a bundle could vary across the

pure bundling and mixed bundling strategies.

The question of how bundles of n products could be priced optimally was explored

by Hanson and Martin (1990), who propose a general linear program to generate prices

for bundles of any possible subset of the n products. The optimization assumes that

customers will rationally choose the bundle that maximizes their consumer surplus

among all available options. More recently, Bulut et al. (2009) and Gürler et al.

(2009) explored optimal bundle pricing and assortment optimization problems subject

to inventory constraints.

As a field of research distinct from price optimization, assortment optimization
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originated in the retail industry and was used to optimize the selection of products

on a store shelf (Kök et al., 2008). However, in the context of bundling, the joint

optimization of price and assortment becomes highly relevant. The chosen assortment

defines the bundling strategy: Which products are bundled together? Is the bundling

strategy mixed or pure? One example of an integrated model is the product planning

model by Ferreira and Wu (2011).

2.3.3 Airline Offer Generation

The topic of designing and optimizing the assortment of travel products in the airline

industry grew in relevance with the introduction of fare families and branded fares.

Branded fares are a product bundle marketed by airlines that combine an airfare with

a set of ancillary services or fare restrictions ("Basic Economy" or "Economy Plus"),

which make it easier for customers to understand the product they are purchasing.

A customer choice framework to design and evaluate branded fare products, as well

as their pricing, was initially proposed by Ratliff and Gallego (2013).

Madireddy et al. (2017) and Vinod et al. (2018) proposed solutions that allows an

airline to transition from branded fares to offer generation, where the offered travel

products could vary from one customer to another. They explore how customers

can be clustered into different segments using trip characteristics, how appropriate

offers can be designed for each segment and how price experimentation methods like

Thompson sampling in the multi-armed bandit problem can be used to price the offers.

Fiig et al. (2018) outline the unsolved scientific challenges of dynamically pricing

airline offers, but also highlight the opportunities presented by the New Distribution

Capability, the improved availability of shopping data and advancements in statistical

data analysis and machine learning.

The dynamic offer generation algorithm in this thesis is based on unpublished

work by Bockelie and Wittman (2017). They propose a joint pricing and assortment

optimization algorithm for bundling flights with ancillaries, in which the airline de-

cides dynamically whether to sell the ancillaries separately (unbundled) or whether

to include them with the flight (pure bundling). Unlike the existing literature, this
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model optimizes prices by assuming an underlying concurrent customer choice model

(Bockelie and Wittman, 2018) (Bockelie, 2018) and does not perform price experimen-

tation or reinforcement learning. Instead, machine learning could be used to estimate

the choice model parameters from real data and to segment customers based on book-

ing characteristics. However, the authors do not provide any formulations for these

components and the algorithm assumes that these tasks can be performed externally

to generate the required inputs. Similarly, the assortment optimization process selects

the offer set that maximizes expected revenue in the concurrent choice model, which

is a variant of the ancillary choice behaviors described in Section 2.2.1. It shares

many characteristics with the rational choice model described by Adams and Yellen

(1976) and Schmalensee (1984), but incorporates the dependency that ancillary ser-

vices cannot be purchased without the flight. In Chapter 3, this thesis presents the

first detailed description of this dynamic offer generation algorithm.
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Chapter 3

Dynamic Offer Generation Model

This chapter defines the dynamic offer generation problem that is the focus of this

thesis and proposes a solution heuristic that can be incorporated as an extension to a

traditional airline revenue management system. This thesis represents the first formal

description of this dynamic offer generation algorithm, which is based on an initial

formulation by Bockelie and Wittman (2017).

Section 3.1 defines key terms and separates the original dynamic offer generation

problem into two independent subproblems: offer set price optimization and offer set

selection (assortment optimization). In Section 3.2, we describe in detail how our

proposed heuristic solves the offer set price optimization problem. We show how the

resulting prices depend intuitively on willingness-to-pay, the flight bid price and the

cost of providing ancillary services. In Section 3.3, we then explain how the heuristic

selects the set of offers that are distributed to the customer in a way that maximizes

expected revenue per customer (assortment optimization). We also show how the

chosen set of offers varies with the willingness-to-pay and cost of the offers.

We conclude this chapter with a discussion on how the dynamic offer generation

model can be integrated with traditional airline revenue management systems in Sec-

tion 3.4. Here, we present an improved flight price bounding heuristic that better

isolates the offer set selection process from the flight price, compared to the original

implementation of Bockelie and Wittman (2017).
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3.1 Overview and Problem Formulation

The International Air Transport Association (IATA) defines dynamic offer generation

(or dynamic offer creation) as the "construction by an airline of an offer for a defined

set of products and services, with a defined set of conditions." The offer is called

dynamic, because it is "provided in real-time on a one-time basis and in response to

a request" (Touraine and Coles, 2018). This process is enabled by the IATA New

Distribution Capability and represents a fundamental shift in airline distribution, as

airlines would directly handle all search requests and gain more control over the set

of offers that are made available to each customer.

While dynamic offer generation (DOG) does not require dynamic pricing, the

New Distribution Capability represents an opportunity for airlines to transform their

approach to revenue management. Because offers can be customized to each search

request, these travel products can be better targeted to a customer segment, both

in terms of the included services and the pricing. Airlines would have the capability

to, for example discount the price for leisure passengers and bundle popular ancillary

services such as checked luggage in the total offer price. On the other hand, business

passengers may receive a more flexible, refundable offer at a higher price that includes

free onboard internet. By combining the pricing of ancillary services with the flight

itself, this enables next-generation revenue management algorithms to perform total

offer management and price offers at any price point (continuous pricing) without

legacy limitations on the number of price points that can be offered. The purpose of

our research is to propose such a revenue management algorithm that leverages the

full potential enabled by dynamic offer generation, including total offer management

and continuous pricing.

We begin the formulation of our dynamic offer generation (DOG) algorithm by

narrowing the problem definition and introducing key terms used in the rest of the

thesis. As illustrated in Figure 3-1, the purpose of the algorithm is to respond to

each flight search request with a customized offer set. Each offer set includes one or

more offers that contain a flight and zero or more ancillary services. Each offer has
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Figure 3-1: Example of two ancillary services in a bundled offer set with two offers

a continuous and dynamically generated price. The offer set contains a subset (an

assortment) of all possible offers that the airline can sell based on its range of flights

and ancillary services it offers. In the figure, an example airline offers one flight and

two ancillary services. With these components, four offers can be created. In response

to a request, the DOG algorithm chooses to make two of the four offers available for

purchase. Both are priced based on the characteristics of the request, such as trip

purpose, trip duration and estimated willingness-to-pay. In this particular case, the

generated offer set is bundled (Definition 7), as all offers include the checked bag,

which is bundled with the flight. On the other hand, the onboard internet service is

optional and a customer may choose not to purchase it.

To reduce the scope of the problem, we limit ourselves to offer sets with a sin-

gle flight itinerary. As a result, we treat each flight independently and neglect any

alternative flights when performing revenue management, a common assumption in

existing RM algorithms. We also neglect the restrictions and conditions of the fare,

such that every flight will have only one price point available at any given time. This

is comparable to unrestricted fare structures commonly used by low-cost carriers,

where the fare rules are identical across different fare classes. To extend the algo-

rithm to restricted fare structures, where the cheaper fares have more restrictions

such as change/cancel fees, one could treat the attribute of "no change fees" as an

ancillary service that the algorithm can choose to add to the offer.
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Definition 1 (Flight). A flight 𝑓 is a seat supplied by the airline on a specific

itinerary and path for travel from an origin to a destination. In this definition, one

flight can involve boarding more than one airplane if it includes a connecting itinerary.

Definition 2 (Ancillary). Ancillaries 𝑎1, 𝑎2, ..., 𝑎𝑚 are services provided by the air-

line in conjunction with a flight that enhances the travel experience (i.e. checked

baggage or internet).

Definition 3 (Offer). An offer 𝑂𝑖 = {𝑓, 𝑎𝑘, ...} can be sold by an airline at its

corresponding price 𝑝𝑖. Every non-empty offer 𝑂 ̸= {∅} includes exactly one flight

and zero or more distinct ancillary services.

Definition 4 (Offer Set). An offer set 𝑆 = {𝑂∅, 𝑂1, 𝑂2, ..., 𝑂𝑛} is a collection of one

or more offers with the same flight. For any flight 𝑓 , the offer set encompasses all

offers that the airline makes available for purchase. Every offer set includes an empty

offer 𝑂∅ = {∅} with price 𝑝∅ = $0.

Definition 5 (Base Offer). When it exists, we define an offer in the offer set that

is also a subset of all other non-empty offers in the offer set as the base offer 𝑂1. For

example, in the following offer set 𝑆1, the base offer is bolded (𝑂1 = {𝑓, 𝑎1}). On the

other hand, no base offer exists in 𝑆2.

𝑆1 = {{∅}, {f , a1}, {𝑓, 𝑎1, 𝑎2}}

𝑆2 = {{∅}, {𝑓, 𝑎1}, {𝑓, 𝑎2}, {𝑓, 𝑎1, 𝑎2}}

Definition 6 (A La Carte Offer Set). An offer set is called a la carte when its

base offer includes only the flight and no ancillary services. Since the flight can be

purchased without any ancillary services, all ancillaries are sold optionally for an

additional charge. 𝑆3 is an example of an a la carte offer set.

𝑂1 = {𝑓}

𝑆3 = {{∅}, {𝑓}, {𝑓, 𝑎1}, {𝑓, 𝑎1, 𝑎2}}
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Definition 7 (Bundled Offer Set). An offer set is called bundled when its base

offer includes the flight and at least one ancillary service. The ancillary services in

the base offer are bundled with the flight and must be purchased in order to travel.

𝑆1 is an example of a bundled offer set, where ancillary 𝑎1 is bundled in the base offer.

𝑂1 ) {𝑓}

𝑆1 = {{∅}, {𝑓, 𝑎1}, {𝑓, 𝑎1, 𝑎2}}

For the DOG algorithm, the objective is to choose the optimal offer set and cor-

respondingly the optimal offer prices for each booking request. This objective can be

expressed through an offer set’s expected net revenue as defined in Equation 3.1. The

algorithm needs to find the offer set 𝑆 and the prices 𝑝𝑖 that maximize this expression.

Definition 8 (Offer Set Expected Net Revenue). The expected net revenue

E(𝑆) of an offer set 𝑆 is the probability that a customer will purchase an offer 𝑂𝑖

multiplied by each offer’s net revenue, summed across all offers 𝑂𝑖 ∈ 𝑆. The net

revenue is defined as the difference between the offer price 𝑝𝑖 and the cost of providing

all the services in the offer 𝑐𝑖.

E(𝑆) =
∑︁
𝑂𝑖∈𝑆

(𝑝𝑖 − 𝑐𝑖)𝑃 (𝑂𝑖|𝑝(𝑆)) (3.1)

The dynamic offer generation algorithm can be separated into two distinct opti-

mization problems, which we formulate in this chapter:

∙ Offer Set Price Optimization: How should each offer in an offer set be priced

to maximize expected net revenue? In particular, how should the optimal price

𝑝* for an offer change with the offer set it is included in.

∙ Offer Set Selection: Which offer set 𝑆 should be shown to the customer to

maximize expected net revenue? In particular, when should the airline show an

a la carte offer set and when should the airline show a bundled offer set?
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3.2 Offer Set Price Optimization

We begin by discussing the offer set price optimization problem. The goal is to

generate a price for every offer in every offer set, such that each offer set’s total

expected net revenue (cf. Equation 3.1) is maximized. This is in the spirit of total

revenue maximization, where the airline tries to maximize the total revenue (net of

costs) received from a customer. Every customer always purchases one offer from the

offer set they are presented with. By optimizing a vector of prices 𝑝*(𝑆) for the whole

offer set 𝑆 at once, the dependence of one offer’s purchase probability on other offers’

prices can be accounted for. For example, the algorithm may choose to set a higher

price for one offer in order to incentivize buy-up to another higher revenue offer.

Definition 9 (Offer Set Price Optimization). Find the prices 𝑝* for each offer

𝑂𝑖 in the offer set 𝑆 that maximize the offer set’s total expected net revenue E(𝑆):

𝑝*(𝑆) = arg max
𝑝

E(𝑆) = arg max
𝑝

∑︁
𝑂𝑖∈𝑆

(𝑝𝑖 − 𝑐𝑖)𝑃 (𝑂𝑖|𝑝(𝑆)) (3.2)

The price optimization uses the following input parameters:

∙ The list of offers 𝑂𝑖 in the offer set 𝑆

∙ For each offer, a function that links price to purchase probability, typically using

a probability distribution of customer willingness-to-pay 𝑊𝑖

∙ For each offer, the cost of providing the services included in the offer 𝑐𝑖

We define the willingness-to-pay distribution for an offer as the sum of the willingness-

to-pay distributions for its components 𝑊𝑖 = 𝑊𝑓 +
∑︀

𝑎𝑘∈𝑂𝑖
𝑊𝑎𝑘 (the flight and any

included ancillary services). While our formulation is general for any probability

distribution 𝑊 , our implementation will assume that all 𝑊𝑓 and 𝑊𝑎𝑘 are normally

distributed. The (scalar) cost of an offer is the sum of the costs of the flight and the

ancillaries 𝑐𝑖 = 𝑐𝑓 +
∑︀

𝑎𝑘∈𝑂𝑖
𝑐𝑎𝑘 .

Both the willingness-to-pay estimates and the costs could vary in the model based

on the customer segment, time of booking and revenue management system avail-
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ability. For instance, the mean willingness-to-pay for the flight could increase toward

departure, while the mean willingness-to-pay for a checked bag could decrease, as

the demand shifts from advance-booking leisure passengers to close-in bookings by

business passengers. The airline could also use different parameters for business and

leisure passengers and attempt to identify a booking request as either business or

leisure. The resulting optimized offer prices would vary for each customer segment.

The cost of providing the flight 𝑐𝑓 is variable and represents the opportunity cost

of selling the seat. This is often called the bid price and can be computed with a

traditional revenue management system. The cost of providing an ancillary service

𝑐𝑎𝑘 is assumed to be a fixed amount per ancillary service in our implementation.

However, it could be variable when ancillary services are capacity-constrained, such

as extra-legroom seating.

3.2.1 Myopic Price Optimization

To quantify and compare the benefits of dynamic offer generation, offer set price

optimization and ancillary bundling, we define the baseline pricing strategy as one

of myopic price optimization. In this simple approach to pricing, each offer’s price is

calculated myopically to maximize that offer’s expected revenue. As a result, an offer’s

price is independent of the offer set it is included in. The potential to cannibalize the

revenue of the other offers is not considered. In the context of the airline industry, this

situation could arise when ancillary pricing is set myopically to maximize ancillary

revenue and as a result reduces flight revenue. In our experiments in Chapters 4 and

5, we compare dynamic offer generation to an a la carte pricing strategy, where the

ancillary service is priced myopically and independently of the flight.

Definition 10 (Myopic Price Optimization). Myopically find the price 𝑝* for an

offer 𝑂 that maximizes the offer’s total expected revenue E(𝑂) net of unit cost 𝑐,

without consideration of the overall offer set’s expected revenue:

𝑝* = arg max
𝑝

E(𝑂) = arg max
𝑝

(𝑝− 𝑐)𝑃 (𝑂|𝑝) (3.3)
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A simple numerical example illustrates myopic price optimization: Let the cost

of an offer 𝑂1 be 𝑐1 = $0 and the probability of purchase decreases linearly with

the price from 𝑃 (𝑂1|$0) = 1 to 𝑃 (𝑂1|$10) = 0. Then, the myopic optimal price is

𝑝*1 = $5 with an expected net revenue of E(𝑂1) = $2.5. Now consider the case where

a second offer 𝑂2 is available for purchase in the offer set (𝑐2 = $0). Its probability

of purchase depends on the price of both offer as follows:

𝑃 (𝑂2|𝑝1, 𝑝2) =

⎧⎪⎨⎪⎩0, 𝑖𝑓𝑝1 < $8 ∨ 𝑝2 > $100

1, 𝑖𝑓𝑝1 ≥ $8 ∧ 𝑝2 ≤ $100

(3.4)

Now, if both offers are priced myopically (𝑝1 = $5 and 𝑝2 = $100), then the customer

would not purchase offer 𝑂2. Here myopic price optimization does not maximize total

offer set revenue, as the airline could receive $100 from selling 𝑂2 instead of 𝑂1, if 𝑂1

were priced at 𝑝1 ≥ $8.

This simple example illustrates how offer set price optimization differs from my-

opic price optimization: It pursues to maximize total offer set revenue. In general,

an offer’s purchase probability depends on the prices of all offers in the offer set:

𝑃 (𝑂𝑖|𝑝(𝑆)). This allows the optimization to consider the effects of sell-up and buy-

down, where customers choose between different offers depending on their relative

prices. This makes it a more difficult optimization problem than myopic price opti-

mization.

3.2.2 Concurrent Choice Assumption

The dynamic offer generation algorithm uses a concurrent choice assumption to trans-

late customer willingness-to-pay distributions and prices into the purchase probabil-

ities required for the expected net revenue calculation. It assumes customers choose

among offers in an offer set according to the concurrent choice model (Bockelie and

Wittman, 2018) (Bockelie, 2018). Customers are modeled as rational and fully in-

formed. They attempt to maximize their consumer surplus by balancing the utility

of receiving a service with its price.
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Under the concurrent choice assumption, passengers are modeled as having a

utility (or willingness-to-pay (WTP)) for each flight 𝑤𝑓 and ancillary service 𝑤𝑎𝑘 ,

which is drawn from underlying random variables (𝑊𝑓 , 𝑊𝑎𝑘). The WTP for an offer

is taken as the sum of its components’ WTP: 𝑤𝑖 =
∑︀

𝑘∈𝑂𝑖
𝑤𝑘. Passengers then choose

among all offers in an offer set based on the difference between their individual WTP

𝑤𝑖 and the price 𝑝𝑖.

Definition 11 (Concurrent Choice Assumption). Consumers will choose the of-

fer 𝑂*
𝑖 within an offer set 𝑆 with the highest consumer surplus, the difference between

their total willingness-to-pay for the offer 𝑤𝑖 and its price 𝑝𝑖.

𝑂*
𝑖 = arg max

𝑂𝑖∈𝑆
𝑤𝑖 − 𝑝𝑖 (3.5)

This choice assumption represents rational consumers who are aware of all offers in

the offer set. They select the best offer by weighing their WTP against its price. It is

equivalent to the assumptions used in the economic studies of bundling by Adams and

Yellen (1976) and Schmalensee (1984). In our adaptation of the choice assumption

for the dynamic offer generation algorithm, we assume that the offer set 𝑆 has the

following two properties, which were included in Definition 4:

1. The offer set 𝑆 always includes a no-purchase option with zero surplus: 𝑆 ⊇

𝑂∅ = {∅} with 𝑤∅ − 𝑝∅ = 0. This ensures that consumers do not choose offers

with a negative surplus, which they are not willing to pay for.

2. The flight 𝑓 is included in all non-empty offers ∀𝑂𝑖 ∈ 𝑆 ∖ 𝑂∅ : 𝑓 ∈ 𝑂𝑖. This

ensures that no ancillary services can be purchased without the flight.

We will illustrate the concurrent choice assumption first for one flight 𝑓 and one

ancillary service 𝑎, before extending it to two ancillary services in Section 3.2.6. As

shown in Fig. 3-2, two non-empty offers can be created: 𝑂𝑓 = {𝑓} and 𝑂𝑓𝑎 = {𝑓, 𝑎}.

The two possible offer sets are: 𝑆1 = {𝑂∅, 𝑂𝑓 , 𝑂𝑓𝑎} and 𝑆2 = {𝑂∅, 𝑂𝑓𝑎}. Following

Definitions 6 and 7 in Section 3.1, 𝑆1 is an a la carte offer set where 𝑂𝑓 is the base

offer and 𝑆2 is a bundled offer set where 𝑂𝑓𝑎 is the base offer. Note that while the
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Figure 3-2: Illustration of dynamic offer generation with one ancillary service

offer 𝑂𝑓𝑎 is present in both offer sets, its price can differ across the offer sets. In 𝑆1, we

can split the price of 𝑂𝑓𝑎 into a flight component 𝑝𝑓 determined by the price of offer

𝑂𝑓 and an ancillary component 𝑝𝑎. We are interested in the purchase probabilities

𝑃 (𝑂𝑓 |𝑝𝑓 , 𝑝𝑎) and 𝑃 (𝑂𝑓𝑎|𝑝𝑓 , 𝑝𝑎). Similarly, in 𝑆2 we would like to find the purchase

probability 𝑃 (𝑂𝑓𝑎|𝑝𝑓𝑎) of the offer 𝑂𝑓𝑎 given its price 𝑝𝑓𝑎.

We derive these purchase probabilities with the concurrent choice assumption, as-

suming the willingness-to-pay distributions for the flight and ancillary service (𝑊𝑓 ,𝑊𝑎)

are independent. For a customer presented with 𝑆1, they will choose 𝑂𝑓 , if their sur-

plus for 𝑂𝑓 is higher than for 𝑂𝑓𝑎 and positive:

𝑃 (𝑂𝑓 |𝑝𝑓 , 𝑝𝑎) = 𝑃 ((𝑊𝑓 − 𝑝𝑓 > 𝑊𝑓 + 𝑊𝑎 − 𝑝𝑓 − 𝑝𝑎) ∧ (𝑊𝑓 − 𝑝𝑓 > 0))

= 𝑃 ((0 > 𝑊𝑎 − 𝑝𝑎) ∧ (𝑊𝑓 > 𝑝𝑓 ))

= 𝑃 (𝑊𝑎 < 𝑝𝑎) · 𝑃 (𝑊𝑓 > 𝑝𝑓 )

(3.6)

Conversely, they will choose 𝑂𝑓𝑎, if their surplus for 𝑂𝑓𝑎 is higher than for 𝑂𝑓 and
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positive:

𝑃 (𝑂𝑓𝑎|𝑝𝑓 , 𝑝𝑎) = 𝑃 ((𝑊𝑓 + 𝑊𝑎 − 𝑝𝑓 − 𝑝𝑎 > 𝑊𝑓 − 𝑝𝑓 ) ∧ (𝑊𝑓 + 𝑊𝑎 − 𝑝𝑓 − 𝑝𝑎 > 0))

= 𝑃 ((𝑊𝑎 > 𝑝𝑎) ∧ (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓 + 𝑝𝑎))

= 𝑃 (𝑊𝑎 > 𝑝𝑎) · 𝑃 (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓 + 𝑝𝑎|𝑊𝑎 > 𝑝𝑎))

(3.7)

Since 𝑆2 only contains one offer, passengers will purchase it as long as their surplus

for 𝑂𝑓𝑎 is positive:

𝑃 (𝑂𝑓𝑎|𝑝𝑓𝑎) = 𝑃 (𝑊𝑓 + 𝑊𝑎 − 𝑝𝑓𝑎 > 0)

= 𝑃 (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓𝑎)
(3.8)

In summary, the purchase probabilities for each offer under the concurrent choice

assumption and independently distributed 𝑊 are:

𝑆1 :

⎧⎪⎨⎪⎩𝑃 (𝑂𝑓 |𝑝𝑓 , 𝑝𝑎) = 𝑃 (𝑊𝑎 < 𝑝𝑎) · 𝑃 (𝑊𝑓 > 𝑝𝑓 ))

𝑃 (𝑂𝑓𝑎|𝑝𝑓 , 𝑝𝑎) = 𝑃 (𝑊𝑎 > 𝑝𝑎) · 𝑃 (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓 + 𝑝𝑎|𝑊𝑎 > 𝑝𝑎))

(3.9)

𝑆2 :

{︂
𝑃 (𝑂𝑓𝑎|𝑝𝑓𝑎) = 𝑃 (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓𝑎) (3.10)

These expressions link the probability of purchase within an offer set with input

WTP distributions and the offer price. By evaluating the probabilities, the offer set

price optimization problem can be solved.

We visualize these purchase probabilities in Figure 3-3, which marks the purchase

decision as an area on a graph of the two drawn willingness-to-pay variables 𝑤𝑓 and

𝑤𝑎. The flight and ancillary prices are marked as lines on the axes, while the combined

offer price 𝑝𝑓𝑎 is marked as a diagonal line. For example, a consumer with low flight

and ancillary WTP (compared to the prices) would fall on the lower left-hand corner

of the chart and correspondingly choose the no-purchase option. On the other hand, a

consumer with both high flight and ancillary WTP would fall on the upper right-hand

corner and purchase the combined offer 𝑂𝑓𝑎.

If the flight and ancillary WTP were independent and uniformly distributed, the
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Figure 3-3: Visualization of the concurrent choice assumption

purchase probabilities of each offer in an offer set would correspond to the area of the

colored sections on the graph. The graph also illustrates that a consumer’s purchase

decision depends on which offer set they are shown, even if the WTP’s are the same.

A consumer with 𝑤𝑓 + 𝑤𝑎 > 𝑝𝑓 + 𝑝𝑎 and 𝑤𝑎 < 𝑝𝑎 (in the bottom right-hand corner)

purchases only the flight (𝑂𝑓 ) when shown 𝑆1, but buys the ancillary too (𝑂𝑓𝑎) when

shown a bundle 𝑆2. The graph also hints that, in general, the optimized price of 𝑂𝑓𝑎

in offer set 𝑆2 (𝑝𝑓𝑎) is lower than the optimized price of the same offer in offer set 𝑆1

(𝑝𝑓 + 𝑝𝑎) once the offer set price optimization problem is solved.

While the concurrent choice model is based on common assumptions made in ra-

tional choice theory and other existing literature on the economics of bundling, it has

limitations. Customer choices cannot always be modeled with a single utility (WTP)

function as in rational choice theory. In particular in pricing, psychological effects can

influence purchase behavior, which are not reflected in the model. Furthermore, the

concurrent choice assumption used in the algorithm has very few input parameters,

which can make it difficult to fit the model to real purchase data. The general formu-

lation of the dynamic offer generation problem allows the use of any customer choice
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model, as long as a conditional probability of purchase 𝑃 (𝑂𝑖|𝑝(𝑆)) can be calculated.

As a result, other customer choice models could be explored in further research.

3.2.3 Sequential Approximation

Based on the formulation of the offer set price optimization in Equation 3.2, any offer

set with more than one offer requires a multivariate optimization that simultaneously

determines the prices of all offers. In initial tests, this led to instabilities where the

optimal a la carte ancillary price 𝑝*𝑎 of 𝑆1 could drop to $0 when bundling was the

revenue-maximizing strategy. In effect, the pricing algorithm would make 𝑆1 equiv-

alent to the bundle 𝑆2 by setting 𝑝*𝑓 = 𝑝*𝑓𝑎 and thus incentivizing all customers to

purchase 𝑂𝑓𝑎 with the ancillary service. Computational complexity is also a consid-

eration, if the algorithm is to generate real-time offer sets in response to individual

booking requests. To simplify and speed up the computations, we approximate the

problem using a series of sequential and univariate price optimizations.

The sequential method first determines optional ancillary prices 𝑝*𝑎𝑖 in an offer set

using myopic price optimization (Section 3.2.1). The 𝑝*𝑎𝑖 are then used as fixed inputs

when performing the offer set price optimization to determine the price of the base

offer 𝑂1 of an offer set. The remaining offers in the offer set are priced by summing

the price of the base offer 𝑝*𝑂1
and the prices of any additional ancillary prices 𝑝*𝑎𝑖

included in the offer.

In the single ancillary example of Figure 3-2, the sequential approximation is

only used to compute prices in offer set 𝑆1: First, 𝑝𝑎 is determined myopically as

𝑝*𝑎 = arg max𝑝𝑎(𝑝𝑎 − 𝑐𝑎)𝑃 (𝑊𝑎 > 𝑝𝑎). Then, 𝑝𝑓 of the flight-only base offer is solved

by taking 𝑝*𝑎 as given:

𝑝*𝑓 (𝑆) = arg max
𝑝𝑓

(𝑝𝑓 − 𝑐𝑓 )𝑃 (𝑂𝑓 |𝑝𝑓 , 𝑝*𝑎) + (𝑝𝑓 + 𝑝*𝑎 − 𝑐𝑓 − 𝑐𝑎)𝑃 (𝑂𝑓𝑎|𝑝𝑓 , 𝑝*𝑎) (3.11)

The remaining offer 𝑂𝑓𝑎 will then be priced as the sum of 𝑝*𝑓 +𝑝*𝑎. With this approach,

all numerical optimizations are univariate and the global maximum can be found using

common optimization methods.
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3.2.4 𝜇-Heuristic

Computing the purchase probabilities under the concurrent choice assumption in

Equations 3.9 and 3.10 can present a challenge depending on the probability dis-

tributions used for 𝑊𝑓 and 𝑊𝑎. In our implementation, we used independently and

normally distributed 𝑊𝑓 and 𝑊𝑎 similar to the work of Schmalensee (1984), for which

the following expression from equation 3.9 is difficult to evaluate:

𝑃 (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓 + 𝑝𝑎|𝑊𝑎 > 𝑝𝑎) (3.12)

As far as we are aware, there is no closed-form expression for this conditional prob-

ability and computing it requires numerical integration. To reduce computational

complexity, Berge and Bockelie (2018) developed a heuristic approximation called

the 𝜇-Heuristic.

Definition 12 (𝜇-Heuristic). Equation 3.12 can be approximated by replacing a

random variable 𝑊 with a scalar that represents the mean of the truncated normal

distribution 𝜇𝑇𝑅 := E[𝑊𝑎|𝑊𝑎 > 𝑝𝑎].

𝑃 (𝑊𝑓 + 𝑊𝑎 > 𝑝𝑓 + 𝑝𝑎|𝑊𝑎 > 𝑝𝑎) ≈ 𝑃 (𝑊𝑓 + 𝜇𝑇𝑅 > 𝑝𝑓 + 𝑝𝑎)

For any normally distributed 𝑊 = 𝑁(𝜇, 𝜎2), there exists a closed-form expression for

𝜇𝑇𝑅 based on the standard normal PDF 𝜑(𝑧) and standard normal CDF Φ(𝑧):

𝜇𝑇𝑅 := E[𝑊 |𝑊 > 𝑝] = 𝜇 + 𝜎 ·
𝜑(𝑝−𝜇

𝜎
)

1 − Φ(𝑝−𝜇
𝜎

)

For normally distributed 𝑊 , the 𝜇-Heuristic enables all purchase probabilities to

be calculated through standard normal functions without requiring numerical inte-

gration.
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3.2.5 Sensitivity of Optimized Offer Prices

To gain an initial understanding of the behavior of the model, we perform a sensitivity

test on the input parameters of the DOG algorithm with one ancillary service. We

study the optimized, unbounded offer prices that are generated by the price optimizer

with the sequential approximation and 𝜇-Heuristic. As shown in Figure 3-2, three

prices are computed by the algorithm:

𝑝*𝑓 : The flight price in the a la carte offer set 𝑆1

𝑝*𝑎: The price for the optional ancillary service in 𝑆1

𝑝*𝑓𝑎: The combined bundle price for both flight and ancillary service in offer set 𝑆2

DOG generates these prices using four input variables, two of which are related to

the flight and two of which are related to the ancillary service:

𝑊𝑓 : The estimated flight WTP distribution for the flight

𝑐𝑓 : The opportunity cost of using the flight capacity (bid price)

𝑊𝑎: The estimated ancillary WTP distribution

𝑐𝑎: The cost of providing one unit of the ancillary service

We optimize the three prices for different levels of input parameters to observe how

stable the optimization process is. We also gain insights into how the offer prices

vary with input parameters. First, we study the sensitivity of 𝑝*𝑓 , 𝑝*𝑎 and 𝑝*𝑓𝑎 to 𝑊𝑓

and 𝑐𝑓 . We test pairs of flight-related input parameters on a grid, where the mean

flight WTP 𝐸[𝑊𝑓 ] ranges from $10 to $400 and the bid price 𝑐𝑎 ranges from $0 to

$200. In all cases, we hold the ancillary-related parameters constant at 𝑐𝑎 = $20 and

𝑊𝑓 ∼ 𝒩 ($25, $7.52), which will form the baseline for our simulations in Chapter 4.

Then, we optimize 𝑝*𝑓 and 𝑝*𝑓𝑎 for pairs of ancillary-related parameters, where both

𝐸[𝑊𝑎] and 𝑐𝑎 range from $0 to $70. Here, we hold the flight-related parameters

constant at 𝑐𝑓 = $50 and 𝑊𝑓 ∼ 𝒩 ($200, $602). In all cases, 𝑊𝑓 and 𝑊𝑎 are normally
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Figure 3-4: Sensitivity of myopic optimal ancillary prices 𝑝*𝑎 to inputs 𝑊𝑎,𝑐𝑎

distributed and as the mean changes, its standard deviation scales as 30% of the

mean.

The first price computed according to the sequential approximation is the ancillary

price 𝑝*𝑎, which is myopically chosen to maximize ancillary net revenue. Figure 3-4

shows how the optimal ancillary price varies with both the ancillary cost 𝑐𝑎 and the

ancillary WTP distribution 𝑊𝑎. 𝑝*𝑎 does not depend on the flight-related parameters.

We observe that at zero ancillary cost, 𝑝*𝑎 scales linearly with 𝐸[𝑊𝑎]. As 𝑐𝑎 increases,

the ancillary price also increases non-linearly along a mostly smooth surface. There

is a discontinuity and a sharp drop in 𝑝*𝑎 in the region of very high 𝑐𝑎 and low 𝐸[𝑊𝑎].

In general, the myopic price optimization is well-behaved and intuitive, with the price

increasing with both WTP and cost.

Next, we observe how the flight price 𝑝*𝑓 and bundle price 𝑝*𝑓𝑎 respond to both

flight-related input parameters (Figure 3-5a) and ancillary-related input parameters

(Figure 3-5b). Both 𝑝*𝑓 and 𝑝*𝑓𝑎 increase with both the flight WTP 𝐸[𝑊𝑓 ] and the

bid price 𝑐𝑓 . The increase is nearly linear in regions where the WTP much higher

than the bid price. Given that passengers are expected to be willing to pay more for

the bundle that includes the ancillary service, 𝑝*𝑓𝑎 is consistently more expensive than

the flight price 𝑝*𝑓 . This is also evident when considering the sensitivity to ancillary-

related inputs, where the flight price is nearly independent of 𝑊𝑎 and 𝑐𝑎, but the

bundle price 𝑝*𝑓𝑎 shows a strong dependence on both parameters. Intuitively, when
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(a) Flight-related parameters 𝑊𝑓 , 𝑐𝑓 (b) Ancillary-related parameters 𝑊𝑎, 𝑐𝑎

Figure 3-5: Sensitivity of DOG optimized offer prices 𝑝*𝑓 and 𝑝*𝑓𝑎

𝑊𝑎 = 𝑐𝑎 = $0, both prices are identical.

These tests have given us insight into how the algorithm prices offers across a

variety of input parameters. The results are intuitive and reasonable, boosting confi-

dence in the model. Furthermore, the algorithm can find optima across a wide range

of input parameters.

3.2.6 Extension to Two Ancillary Services

The offer set price optimization with concurrent choice assumption, sequential ap-

proximation and 𝜇-Heuristic, can be applied to optimize prices for offer sets with

more than one ancillary services using the same principles. This is an important

property, as airlines have expanded their ancillary service offerings and require an

algorithm that can price a multitude of ancillary offers. In this section, we provide

an example of how the algorithm would be extended to two ancillary services.

In Figure 3-6, we show four offer sets that can be generated with two ancillary

services. While other offer sets are possible, we deem these the most commercially

relevant, as they each have a base offer that is either only the flight (a la carte) or

also includes bundled ancillaries. We call the four different offers present in the offer

sets 𝑂𝑓 , 𝑂𝑓𝑎1, 𝑂𝑓𝑎2, 𝑂𝑓𝑎12 according to their components.
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Figure 3-6: Example of dynamic offer generation with two ancillary services showing
four possible offer sets with different base offers
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In each of the offer sets, one of the offers acts as the base offer 𝑂1, and all other

offers are a superset of the base offer. These additional offers can be viewed as

ancillaries offered as an optional add-on alongside the base offer at an incremental

price 𝑝𝑎𝑖 . Note that it will always be possible to break down two offers with two

different prices 𝑝1, 𝑝12 into the price of a base offer 𝑝1 and an incremental price 𝑝12 =

𝑝1 + 𝑝2. However, we have artificially imposed an additional constraint in the a la

carte offer set 𝑆1 that the incremental price of offer 𝑂𝑓𝑎12 over the base offer is the

sum of the incremental prices of offers 𝑂𝑓𝑎1 and 𝑂𝑓𝑎2. As a result, no discount is

given to customers for purchasing both ancillary services.

Applying the concurrent choice assumption to these offer sets, we yield the fol-

lowing purchase probabilities:

𝑆1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃 (𝑂𝑓 |𝑝𝑓 , 𝑝𝑎1, 𝑝𝑎2) = 𝑃 ((𝑊𝑎1 < 𝑝𝑎1) ∧ (𝑊𝑎2 < 𝑝𝑎2) ∧ (𝑊𝑓 > 𝑝𝑓 ))

𝑃 (𝑂𝑓𝑎1|𝑝𝑓 , 𝑝𝑎1, 𝑝𝑎2) = 𝑃 ((𝑊𝑎1 > 𝑝𝑎1) ∧ (𝑊𝑎2 < 𝑝𝑎2) ∧ (𝑊𝑓 + 𝑊𝑎1 > 𝑝𝑓 + 𝑝𝑎1))

𝑃 (𝑂𝑓𝑎2|𝑝𝑓 , 𝑝𝑎1, 𝑝𝑎2) = 𝑃 ((𝑊𝑎1 < 𝑝𝑎1) ∧ (𝑊𝑎2 > 𝑝𝑎2) ∧ (𝑊𝑓 + 𝑊𝑎2 > 𝑝𝑓 + 𝑝𝑎2))

𝑃 (𝑂𝑓𝑎12|𝑝𝑓 , 𝑝𝑎1, 𝑝𝑎2) = 𝑃 ((𝑊𝑎1 > 𝑝𝑎1) ∧ (𝑊𝑎2 > 𝑝𝑎2) ∧ (𝑊𝑓 + 𝑊𝑎1 + 𝑊𝑎2 > 𝑝𝑓 + 𝑝𝑎1 + 𝑝𝑎2))

(3.13)

𝑆2

⎧⎪⎨⎪⎩𝑃 (𝑂𝑓𝑎1|𝑝𝑓𝑎1, 𝑝𝑎2) = 𝑃 ((𝑊𝑎2 < 𝑝𝑎2) ∧ (𝑊𝑓 + 𝑊𝑎1 > 𝑝𝑓𝑎))

𝑃 (𝑂𝑓𝑎12|𝑝𝑓𝑎1, 𝑝𝑎2) = 𝑃 ((𝑊𝑎2 > 𝑝𝑎2) ∧ (𝑊𝑓 + 𝑊𝑎1 + 𝑊𝑎2 > 𝑝𝑓𝑎1 + 𝑝𝑎2))

(3.14)

𝑆3

⎧⎪⎨⎪⎩𝑃 (𝑂𝑓𝑎2|𝑝𝑓𝑎2, 𝑝𝑎1) = 𝑃 ((𝑊𝑎1 < 𝑝𝑎1) ∧ (𝑊𝑓 + 𝑊𝑎2 > 𝑝𝑓𝑎2))

𝑃 (𝑂𝑓𝑎12|𝑝𝑓𝑎2, 𝑝𝑎1) = 𝑃 ((𝑊𝑎1 > 𝑝𝑎1) ∧ (𝑊𝑓 + 𝑊𝑎1 + 𝑊𝑎2 > 𝑝𝑓𝑎2 + 𝑝𝑎1))

(3.15)

𝑆4

{︂
𝑃 (𝑂𝑓𝑎12|𝑝𝑓𝑎12) = 𝑃 (𝑊𝑓 + 𝑊𝑎1 + 𝑊𝑎2 > 𝑝𝑓𝑎12) (3.16)

According to the sequential approximation, our implementation would calculate

the incremental prices 𝑝𝑎1, 𝑝𝑎2 first for each offer set using myopic price optimization

(Section 3.2.1): 𝑝*𝑎 = arg max𝑝𝑎(𝑝𝑎 − 𝑐𝑎)𝑃 (𝑊𝑎 > 𝑝𝑎). With these optimized 𝑝*𝑎, the

offer set price optimization becomes univariate for each offer set and the 𝜇-Heuristic

(Section 3.2.4) for independent and normally distributed 𝑊 is used to simplify the
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purchase probability calculations.

The most complex expression, 𝑃 (𝑂𝑓𝑎12|𝑝𝑓 , 𝑝*𝑎1, 𝑝*𝑎2), is approximated with two

truncated means 𝜇𝑇𝑅1 = E[𝑊𝑎1|𝑊𝑎1 > 𝑝*𝑎1] and 𝜇𝑇𝑅2 = E[𝑊𝑎2|𝑊𝑎2 > 𝑝*𝑎2] as fol-

lows:

𝑃 ((𝑊𝑎1 > 𝑝*𝑎1) ∧ (𝑊𝑎2 > 𝑝*𝑎2) ∧ (𝑊𝑓 + 𝑊𝑎1 + 𝑊𝑎2 > 𝑝𝑓 + 𝑝*𝑎1 + 𝑝*𝑎2))

= 𝑃 (𝑊𝑎1 > 𝑝*𝑎1) · 𝑃 (𝑊𝑎2 > 𝑝*𝑎2)

· 𝑃 (𝑊𝑓 + 𝑊𝑎1 + 𝑊𝑎2 > 𝑝𝑓 + 𝑝*𝑎1 + 𝑝*𝑎2|(𝑊𝑎1 > 𝑝*𝑎1) ∧ (𝑊𝑎2 > 𝑝*𝑎2))

≈ 𝑃 (𝑊𝑎1 > 𝑝*𝑎1) · 𝑃 (𝑊𝑎2 > 𝑝*𝑎2) · 𝑃 (𝑊𝑓 + 𝜇𝑇𝑅1 + 𝜇𝑇𝑅2 > 𝑝𝑓 + 𝑝*𝑎1 + 𝑝*𝑎2) (3.17)

The number of possible offer sets expands quickly with the number of ancillaries

in the problem. While the general formulations of the offer set price optimization

and offer set selection problem can be extended to multiple ancillaries, the scale

of the problem becomes evident. In particular, the use of the concurrent choice

assumption when calculating the purchase probabilities increases the computational

complexity. We have introduced approximations to keep the problem tractable, yet

the implementation becomes increasingly complex for a large number of ancillary

services. This is an area where further research is required to simplify the algorithm

for more than one ancillary service and rationalize the number of offer sets evaluated.

3.3 Offer Set Selection

Once all the offer prices are calculated using the algorithm in Section 3.2, the offer set

selection problem can be solved to complete the dynamic offer generation algorithm.

In offer set selection, the combination of offers that are expected to generate the

highest net revenue is selected from all possible offer sets. The chosen set of offers

can then be distributed by the airline to the final customer. In this section, we

first formulate the offer set selection algorithm. Using our example of DOG with

one ancillary service, we then show when each offer set (𝑆1 or 𝑆2) is selected by the

algorithm.
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(a) Flight-related parameters 𝑊𝑓 , 𝑐𝑓 (b) Ancillary-related parameters 𝑊𝑎, 𝑐𝑎

Figure 3-7: Sensitivity of DOG offer set expected net revenue E(𝑆)

Definition 13 (Offer Set Selection). Find the offer set 𝑆 with the highest total

expected net revenue E(𝑆) given each offer set’s optimized prices 𝑝*(𝑆):

𝑆* = arg max
𝑆

E(𝑆) = arg max
𝑆

∑︁
𝑂𝑖∈𝑆

(𝑝*𝑖 − 𝑐𝑖)𝑃 (𝑂𝑖|𝑝*(𝑆)) (3.18)

Given each offer set’s optimal prices 𝑝*(𝑆) from the offer set price optimization

problem, the expression above is to be evaluated for all offer sets. In this step, we

use the same purchase probabilities based on a concurrent choice assumption and

𝜇-heuristic. The offer set with the highest expected revenue is then shown to the

customer.

We examine the offer set selection process by continuing the sensitivity tests on

the one-ancillary case from Section 3.2.5. We use the optimized prices 𝑝*𝑓 , 𝑝*𝑎, 𝑝*𝑓𝑎

calculated there and compute the expected net revenue of each offer set according to

equations 3.9 and 3.10. DOG will choose to offer either an a la carte offer set 𝑆1 or

the bundled offer set 𝑆2, depending on which has the highest expected net revenue

under the concurrent choice assumption. For the same range of flight-related and

ancillary-related input parameters as before, the expected net revenue per passenger

is represented by a colored surface in Figure 3-7.

In Figure 3-7a, we observe that the flight-related input parameters only have a
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very small effect on the offer set selection decision. While the expected net revenue

depends heavily on the flight-related inputs, it is very similar for the two offer sets

𝑆1 and 𝑆2. The difference between the two surfaces is very small. Nonetheless, we

observe that when both 𝑊𝑓 and 𝑐𝑓 are low, there is a region when the algorithm would

offer the a la carte offer set. In the remaining regions, the bundle is the preferred

offer set given the ancillary parameters of this experiment.

The ancillary-related parameters have a sizable influence on the offer set selection

decision (Figure 3-7b). When the ancillary WTP is higher than the cost, bundling

generates higher net revenue. On the other hand, when the ancillary service is ex-

pensive to provide but does not have a broad appeal (high WTP), it is better to offer

it a la carte. This illustrates the potential risk/reward trade-off of bundling, where

the incremental net revenue gain from bundling is small compared to the potential

revenue loss of bundling the wrong ancillary service.

The offer set selection process does not currently incorporate this trade-off. The

offer set with the highest expected net revenue may not always be the best choice

in reality, especially if there are uncertainties and estimation errors in the input

parameters used in the model. Instead, an offer set with a lower expected net revenue

could be a more attractive choice, provided its expected net revenue is less susceptible

to uncertainties in the input parameters. By incorporating a notion of robustness,

one could account for uncertainties in the estimated input parameters. This could be

achieved by establishing a range of input parameters and selecting the offer set based

on the average expected net revenue within the uncertainty range.

The figure shows that there is a nonlinear decision boundary, where both offer

sets have the same 𝐸(𝑆). This boundary is relatively consistent across a variety of

tested 𝑊𝑓 and 𝑐𝑓 parameters and can be linearly approximated by the following rule

of thumb:

If 𝑊𝑎 ∼ 𝒩 (𝐸[𝑊𝑎], (0.3𝐸[𝑊𝑎])
2), then: E(𝑆2) > E(𝑆1) ⇐⇒ 𝐸[𝑊𝑎] ≥ 1.25 · 𝑐𝑎

(3.19)

The high dependence of the offer set selection process on ancillary-related variables
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compared to flight-related variables has implications for dynamic offer generation: For

a segment of passengers with static ancillary-related parameters, the offer set selection

decision is not very dynamic, meaning that they are generally offered the same offer

set throughout the booking window, independent of the flight price. As a result,

it is even more important for airlines to segment their passengers into groups with

different ancillary WTP. They also need to be able to classify a booking request into

the correct segment. This allows dynamic offer generation to show more relevant offer

sets and achieve the revenue benefits of dynamic bundling.

3.4 Integration with Revenue Management Systems

Our experimental results in Chapters 4 and 5 come from simulations of dynamic

offer generation working alongside a traditional airline revenue management system

in a competitive market. Here, we illustrate how the dynamic offer generation model

might be integrated with traditional revenue management systems, before elaborating

on the mechanics of the Passenger Origin-Destination Simulator (PODS) used to test

the model in Chapter 4.1.

The dynamic offer generation model cannot directly replace existing revenue man-

agement optimizers, as it lacks an important component: RM optimizers use network

optimization to calculate the opportunity cost of selling a seat on a flight leg (bid

price) for a given forecast of future demand and willingness-to-pay, which the dy-

namic offer generation model assumes as a given input (cost of providing the flight

𝑐𝑓 ).

Because DOG can generate prices on a continuous spectrum and do not select

from a limited set of possible price points (fare classes), it represents a departure

from traditional airline pricing and RM systems. In an ideal setting, DOG could be

integrated directly with an RM optimizer that generates continuous flight prices and

does not rely on fare classes. However, such classless RM algorithms are still under

active development and have not been implemented yet. We now show that DOG can

also be used alongside a traditional class-based revenue management system, where
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Figure 3-8: Integration of dynamic offer generation with RM systems

airlines can leverage existing RM infrastructure to deliver dynamic offers.

We use the traditional revenue management system to calculate a bid price, select

a pre-defined flight price and set a range of permitted price deviations from the

pre-defined price point. Dynamic offer generation then uses the bid price as 𝑐𝑓 to

determine the final flight and ancillary prices within the established price range, as

well as the offer set shown to each customer segment. In this capacity, dynamic

offer generation acts as a dynamic price adjustment mechanism for the flight price

as defined by Wittman and Belobaba (2019), which has been extended to include

ancillary pricing and offer set selection.

An illustration of this integration is shown in Figure 3-8. At every re-optimization

point, the revenue management system recalculates the bid price and the number of

seats available at each filed fare based on the current demand forecast. This could

occur for an individual flight segment with a leg-based RM system, or an entire

network of flights with a network RM system. In the dynamic offer generation engine,

the remaining inputs (estimated flight and ancillary WTP distributions, as well as

ancillary unit costs) are specified for each point in time and customer segment. This
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allows us to show different offers and/or prices to different customer segments. In

our simulations, each booking request’s customer segment is correctly identified with

a certain probability (identification accuracy) and the offer set price optimization is

solved using the identified segment’s inputs and the current RM bid price. In practice,

a separate customer segmentation model would have to be trained to classify the

booking request and deliver the appropriate WTP inputs.

Currently, the DOG algorithm only generates a single flight price 𝑝𝑓 , and as such it

is most compatible with an unrestricted fare structure and corresponding RM system,

where all passengers are assumed to purchase the lowest available fare. Because DOG

computes different prices than the traditional RM system, airlines will likely want to

reconcile the two systems and limit the deviation of DOG prices from the RM system’s

prices. In our implementation, we use the existing RM system to determine a range

of allowed prices that the DOG prices are bounded to. These bounded DOG offer

prices 𝑝𝑖 are marked with an overbar.

Let us call 𝐹0 the filed fare of the lowest available fare class in a traditional class-

based RM system, 𝐹+1 the filed fare of the next higher (more expensive) fare class

and 𝐹−1 the filed fare of the next lower (unavailable) fare class. If there 𝐹0 is the

lowest (cheapest) fare class of the airline, we set 𝐹−1 = 𝐹0 and if 𝐹0 is the highest

fare class, then 𝐹+1 = 𝐹0. In general, it always holds that: 𝐹−1 ≤ 𝐹0 ≤ 𝐹+1.

We propose and implement a bounding rule, where the flight price in the a la carte

offer set 𝑝*𝑓 is bounded first to be within a range of 𝐹0 determined by the bounding

parameter 𝑏. When 𝑏 = 0, no deviation from the RM system’s price is permitted

𝑝𝑓 = 𝐹0. When 𝑏 = 1, the flight price is allowed to be adjusted by up to one fare

class away from 𝐹0.

𝑝𝑓 = min[max[𝑝*𝑓 , 𝐹0 − 𝑏(𝐹0 − 𝐹−1)], 𝐹0 + 𝑏(𝐹+1 − 𝐹0)] (3.20)

The price of all other offers 𝑝𝑓𝑎𝑖 that include one or more ancillary services in

addition to the flight, including those in bundle offer sets, will be bounded based on
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𝑝𝑓 to maintain the relative price difference 𝑝*𝑓𝑎𝑖 − 𝑝*𝑓 of the original unbounded prices.

𝑝𝑓𝑎𝑖 = 𝑝𝑓 + (𝑝*𝑓𝑎𝑖 − 𝑝*𝑓 ) (3.21)

This bounding rule aims to preserve the pricing structure and minimize the impact on

the offer set selection decision, i.e. the difference between the expected net revenues of

the offer sets, while acknowledging that the bounded prices no longer maximize each

offer set’s expected net revenue. To illustrate this, we employ a numerical example

with one ancillary service, where the DOG input parameters are 𝑊𝑓 ∼ 𝒩 ($200, $602),

𝑐𝑓 = $50, 𝑊𝑎 ∼ 𝒩 ($25, $7.52) and 𝑐𝑎 = $20. The corresponding optimized prices

before bounding from the offer set price optimization are 𝑝*𝑓 = $169.72, 𝑝*𝑎 = $27.41

and 𝑝*𝑓𝑎 = $192.78. Now with 𝐹−1 = $200, 𝐹0 = $250, 𝐹+1 = $300 and 𝑏 = 1, the

flight price will be bounded to 𝑝𝑓 = $200. The flight and ancillary bundle price will

be bounded to 𝑝𝑓𝑎 = $200 + $23.06 = $223.06.

Figure 3-9 shows the offer set expected net revenue E(𝑆1) and E(𝑆2) at various

bounded flight prices 𝑝𝑓 . At all times, the bundle price is bounded to be $23.06

above 𝑝𝑓 . The offer set expected net revenue for both 𝑆1 and 𝑆2 are very similar,

indicating that this numerical example lies on the decision boundary where both

offer sets perform equally well. As the prices deviate from their optimum values,

the expected net revenue for both decreases simultaneously. However, the difference

between the two ∆E(𝑆) changes very little, by at most $0.40. It is this difference that

determines whether the a la carte offer set (∆E(𝑆) ≤ 0) or the bundle (∆E(𝑆) > 0)

is selected. ∆E(𝑆) is much more sensitive to the main DOG input parameters, as we

have shown in Section 3.3. This suggests that the impact of bounding on the offer

set selection decision is small, unless the chosen parameters are close to the decision

boundary ∆E(𝑆) = 0, as is the case in this numerical example.

As shown in Figure 3-8, the offer set selection is performed with the bounded

prices to determine which offer set is shown to the customer. The bounded prices 𝑝

are used as 𝑝* in Equation 3.18. In the final step of the interactions between DOG

and the traditional RM system, all offer purchases are reported back to the RM
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Figure 3-9: Impact of price bounding on offer set expected net revenue

system and recorded in the lowest available fare class at its filed fare 𝐹0. As opposed

to directly recording the flight price paid 𝑝𝑓 , this solution is more compatible and

easier to integrate with traditional class-based forecasters and optimizers (we deem

this simplification reasonable for 𝑏 ≤ 1).

3.5 Summary

In this chapter, we introduced a new heuristic to solve the dynamic offer generation

problem. For any offer set with one flight and up to two ancillary services, we provided

formulations that allow the algorithm to compute optimized offer prices under the

concurrent choice assumption. We simplified the computations required using the

𝜇-Heuristic and sequential approximation. We then explained how the assortment of

offers can be optimized by choosing the set of offers that result in the highest expected

revenue.

Using numerical tests, we showed that the algorithm produces optimized offer

prices reliably across a wide spectrum of input parameters. The results were intuitive

to interpret. Similarly, the outcomes of the offer set selection process are intuitive
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as well and heavily depend on the balance between ancillary WTP and ancillary

cost. We discussed that bundling can improve revenue under the assumptions of the

concurrent choice model, but that it carries a higher risk of revenue loss especially

when the input parameters used carry estimation errors.

Finally, we outlined how our algorithm could be integrated by airlines alongside

a traditional airline revenue management system. The algorithm relies on the bid

prices generated by the RM system to accurately estimate the opportunity cost of

selling a seat. It uses a relatively simple bounding heuristic to limit the deviation of

DOG prices from the original RM system fares. DOG bookings are recorded back in

the historical bookings database and used to generate the demand forecast for the

RM system. However, in this approach the conditional willingness-to-pay estimates

used by DOG are static inputs. We did not study how these would be estimated

from historical bookings. We also did not discuss in detail how booking requests can

be accurately segmented based on their search request or what the potential impacts

of adjusting the prices after RM optimization are in terms of the potential feedback

effects this may generate in the RM system.

In the following Chapters 4 and 5, we apply the dynamic offer generation algorithm

in a competitive airline revenue management simulation and examine its impact on

airline bookings, fares and revenues under hypothetical but more realistic market

conditions.
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Chapter 4

Baseline Results of Dynamic Offer

Generation in PODS

In this chapter, we present experimental results for the dynamic offer generation

algorithm introduced in Chapter 3. We introduce the Passenger Origin-Destination

Simulator (PODS) in Section 4.1, which we use to simulate the combination of DOG

with a traditional revenue management system in a competitive airline network.

We define a set of baseline parameters for a large network with four airlines us-

ing traditional RM systems (4.1.3). This sets up the subsequent experiments that

compare the performance of DOG against the traditional RM baseline.

Section 4.2 presents the results from the simulations. We first test the two com-

ponents of DOG individually: dynamic flight price optimization (4.2.1) and dynamic

ancillary bundling (4.2.2). In Section 4.2.3, we combine these components and show

the first PODS simulation results of a full implementation of dynamic offer generation

using baseline parameters.

We close this chapter with a summary of results and initial conclusions about the

potential benefits of using DOG and ancillary bundling under the baseline parameters

(4.3). The experimental studies continue in Chapter 5 with extensive sensitivity

testing of the algorithm, to determine whether the observed results are applicable

across a broad spectrum of input parameters.
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4.1 The Passenger Origin-Destination Simulator

The Passenger Origin-Destination Simulator (PODS) is an advanced revenue man-

agement simulator, originally developed in the 1990s at Boeing Commercial Airplanes

and more recently by PODS Research LLC. Today, it is used by the MIT-PODS Rev-

enue Management Consortium to test new airline revenue management strategies.

Dynamic offer generation as presented in Chapter 3 has been implemented in PODS

as part of the PODS Consortium’s research program.

4.1.1 Overview of PODS Architecture

In this section, we provide a summary of the basic architecture of PODS. For a more

detailed description of the PODS simulator and its models, see works by Gorin (2000),

Cléaz-Savoyen (2005) and Carrier (2008).

The simulator consists of two primary components:

∙ Airlines schedule flights between airports and sell tickets across their network

in each market (origin-destination pair) that they serve. Each airline uses a

revenue management system to determine fare availability on its flights, which

is based on a demand forecast generated from the airline’s historical booking

observations. Each airline operates independently from its competitors and uses

a separate revenue management system.

∙ Passengers are individually generated and have a demand for travel from an

origin to a destination in a specific time window. They evaluate all available

itineraries across all airlines and book a flight that best satisfies their willingness-

to-pay, fare option preference and schedule sensitivity. Their sensitivity param-

eters, called disutility in PODS, are individually drawn for each passenger from

an underlying probability distribution, which can vary by passenger type (busi-

ness or leisure, for example). Similarly, their maximum willingness-to-pay for

the flight is also individually drawn and determines the threshold at which pas-

sengers decide not to travel (no-go).
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The functionality of PODS has been extended beyond its core itinerary and fare choice

model over the years. For dynamic offer generation, two extensions are particularly

relevant:

∙ Dynamic Price Adjustment: Traditional revenue management optimizers in

PODS set the number of seats available for sale in each fare class. Each fare

class has a pre-determined (filed or published) price. PODS has a Dynamic Price

Adjustment capability based on research on continuous pricing by Wittman and

Belobaba (2018), which allows an airline to dynamically adjust the flight price

away from the pre-determined price determined by the revenue management

optimizer to any price within a continuous range determined by bounds. This

adjustment could vary for each customer segment with a different willingness-

to-pay (i.e. business or leisure). Probabilistic Fare-Based Dynamic Availability

(PFDynA) is one example of a heuristic to optimize the adjusted continuous

price for a customer segment, which is implemented in PODS (Wittman, 2018).

∙ Ancillary Choice: In PODS, airlines can offer ancillary services in addition to

the flight. The passengers choose among itineraries, fare classes and ancillary

services according to an integrated passenger choice model first introduced by

Bockelie and Belobaba (2017). Besides the sequential and simultaneous choice

behaviors described in the paper, passengers can also behave according to con-

current choice behavior, in which they compare the flight and ancillary prices

rationally against their separately drawn flight and ancillary willingness-to-pay.

This behavior matches the concurrent choice assumption (cf. Chapter 3.2.2)

used in the DOG pricing algorithm exactly. At the end of the simulation,

PODS reports ancillary purchases, ancillary revenues and costs for each airline

separately.

These two PODS extensions are the foundation for our implementation of dynamic

offer generation, as illustrated in Figure 3-8 (Chapter 3.4). The airlines use dynamic

price adjustment to adjust the pre-determined (filed) fares to the DOG offer prices

based on the identified customer segment. The passengers use concurrent ancillary
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Figure 4-1: Route network of the four airlines in PODS Network U10

choice behavior to choose which itinerary and which offer to purchase.

4.1.2 PODS Network U10

All of our simulations are conducted in Network U10, the largest and most realistic

network currently simulated with PODS, with four competing airlines operating in

both short-haul domestic and long-haul international markets. Each airline primarily

operates a hub-and-spoke network, offering connections over a single hub airport. In

aggregate, the four airlines offer 442 daily flights across 572 origin-destination market

pairs, with multiple frequencies on each route spread across the day. The route

network is illustrated in Figure 4-1.

The demand and supply in the network are both one-directional, with all flights

flowing from origins west of the hub to destinations east of the hubs. In total, there

are 4 hubs and 40 spoke cities served. Each airline offers 10 different fare classes

(and corresponding price points) in each O-D market pair. The price of each fare

class (the filed fare) for a market pair is identical across all airlines, representing a
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market in which competitors match each other’s prices. These fares were derived

from published fares provided by an airline when the network was first designed. The

average fare ratio 𝐹𝑖/𝐹𝑄 between the fare in a fare class i and the lowest fare in the

market 𝐹𝑄 is shown in Figure 4-2. The airlines’ revenue management systems allocate

the number of seats to sell in each fare class. This leads to differences in quoted prices

across airlines, as one airline may close a low fare class in response to a high demand

forecast, while another airline still sells seats in that fare class.

In all of our studies for this thesis, all four airlines use a fully unrestricted fare

structure in all markets. This means that the fare rules are identical for all fare classes

1-10, with the only difference being the price. None of the fares have any advance

purchase requirements either: they can be purchased at any point before departure

as long as there are seats available in that class. As a result, all passengers naturally

desire and purchase the lowest available fare class. The airlines are effectively offering

only a single price point in every market at any point in time. This is an attractive

case for continuous pricing applications, as it allows us to use the DOG algorithm

from Chapter 3 to determine a single optimized flight price 𝑝𝑓 for each passenger

segment.

Demand is generated for each O-D market pair in the form of individual passen-

gers. These passengers can come from one of two segments: business or leisure. Each

O-D market pair has a different mix of business and leisure demand, with the pro-

portion of business demand generated in a market averaging 37% with a minimum of

15% and a maximum of 74%. The passengers are generated continuously during the

booking window: In short-haul markets, 35% of business demand and 78% of leisure

demand is generated more than three weeks before departure. In long-haul markets,

the demand arrives slightly earlier and 54% of business demand and 85% of leisure

demand arrives more than three weeks before departure.

The passengers from each segment draw their schedule and price sensitivity from

a probability distribution. Most relevant to our study of dynamic offer generation are

the maximum flight and ancillary willingness-to-pay (WTP), which are described by

the random variables 𝑋𝑓 and 𝑋𝑎. While in practice, passenger’s conditional WTP
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Figure 4-2: Comparison of average fares across fare classes

for an offer is dependent on competitor’s offers and prices, the maximum WTP is the

limit at which passengers would rather choose not to travel (no-go) or not to purchase

an ancillary service. During the simulation, the underlying distributions of 𝑋𝑓 and

𝑋𝑎 are unknown to the airlines in PODS.

4.1.3 PODS Baseline Simulation

In this section, we outline the baseline settings used in the PODS simulator for

our experimental results on dynamic offer generation. A summary of all simulation

settings we use in our baseline is provided at the end of this section in Table 4.1.

In all experiments, we restrict ourselves to the dynamic offer generation problem

with one ancillary service as illustrated in Figure 3-2. Each airline incurs a variable

cost of $20 for every ancillary service sold in the baseline. To explore a wider range of

parameters, we also conduct sensitivity tests on individual input parameters around

these baseline settings.

In our experiments in Network U10, the simulated passengers draw 𝑋𝑓 from an

76



exponential distribution 𝐸𝑥𝑝(𝜆). The distribution is scaled for each O-D market pair

based on the lowest fare 𝐹𝑄 in the market, which is the filed fare of the tenth fare

class:

𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 : 𝑋𝑓/(2.5 · 𝐹𝑄) − 1 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑙𝑛(2)/0.6);𝑋𝑓 ∈ [2.5 · 𝐹𝑄,∞) (4.1)

𝐿𝑒𝑖𝑠𝑢𝑟𝑒 : 𝑋𝑓/𝐹𝑄 − 1 ∼ 𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝑙𝑛(2)/0.5);𝑋𝑓 ∈ [𝐹𝑄,∞) (4.2)

This distribution has the following properties:

∙ 100% of all business passengers are willing to pay at least 2.5 times the lowest

fare in the market 𝐹𝑄

∙ 100% of all leisure passengers are willing to pay at least 𝐹𝑄

∙ 50% of all business passengers have 𝑋𝑓 ≥ 4.0 · 𝐹𝑄. [𝑋𝑓/(2.5 · 𝐹𝑄) − 1 ≥ 0.6]

∙ 50% of all leisure passengers have 𝑋𝑓 ≥ 1.5 · 𝐹𝑄. [𝑋𝑓/𝐹𝑄 − 1 ≥ 0.5]

The resulting probability that a random passenger can afford a certain flight price

𝑝𝑓 is shown in Figure 4-3 for both passenger segments. The average network-wide fares

in U10 for each fare class are overlaid. The spacing between fare classes corresponds

to the fare ratios from Figure 4-2. The graph shows that the maximum WTP of

business passengers is high compared to the fares, such that they can purchase most

fare classes. On the other hand, leisure passengers are very price sensitive and the

airlines can stimulate additional demand by making lower fare classes available for

purchase.

The maximum ancillary WTP 𝑋𝑎 is drawn from a normal distribution that is

identical for both business and leisure passenger segments in the baseline case. The

mean 𝐸[𝑋𝑎] is $25 and the coefficient of variation is 30%.

𝑋𝑎 ∼ 𝒩 ($25, (0.3 · $25)2) (4.3)

In the simulation, the passengers will use their drawn WTP 𝑋𝑓 and 𝑋𝑎 to decide which
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Figure 4-3: Comparison of cumulative flight WTP curves with average fares

offer to purchase according to concurrent choice behavior as described in Chapter

3.2.2.

Since the airlines do not know the underlying maximum WTP distributions 𝑋𝑓

and 𝑋𝑎, they use estimated conditional WTP distributions 𝑊𝑓 and 𝑊𝑎 in Equations

3.9 and 3.10 to perform the DOG price optimization under competition. We use

normally distributed 𝑊𝑓 and 𝑊𝑎 in our tests, so that the 𝜇-Heuristic can be applied

(Chapter 3.2.4). In our baseline, we use the following distributions with a coefficient

of variation of 30% of the mean:

𝐵𝑢𝑠𝑖𝑛𝑒𝑠𝑠 : 𝑊𝑓 ∼ 𝒩 (3.0𝐹𝑄, (0.3 · 3.0 · 𝐹𝑄)2) (4.4)

𝐿𝑒𝑖𝑠𝑢𝑟𝑒 : 𝑊𝑓 ∼ 𝒩 (1.2𝐹𝑄, (0.3 · 1.2 · 𝐹𝑄)2) (4.5)

𝑊𝑎 ∼ 𝒩 ($25, (0.3 · $25)2) (4.6)

We compare the estimated conditional flight WTP 𝑊𝑓 with the true maximum flight

WTP 𝑋𝑓 in Figure 4-4 using the U10 network-wide average 𝐹𝑄 = $280. The so-
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Figure 4-4: Comparison of estimated (𝑊𝑓 ) and true (𝑋𝑓 ) cumulative flight WTP

called Q multipliers of 3.0 and 1.2 used to determine 𝑊𝑓 were chosen because they

maximized revenue among a set of PODS simulations with the following Q multipliers

tested: {2.0, 2.5, 3.0, 3.5} for business and {1.0, 1.2, 1.4} for leisure. In reality, an

airline’s choice of 𝑊𝑓 would likely be dictated by their pricing power in the market and

their competitors’ prices. We observe that the estimated conditional WTP is lower

than the true maximum flight WTP for both passenger segments, which reflects a

competitive market where none of the airlines can charge fares corresponding to the

passengers’ maximum flight WTP.

Note that 𝑊𝑎 = 𝑋𝑎, meaning that all airlines accurately estimate the true ancillary

WTP distribution of the passengers. Whenever an airline does not use DOG in our

tests, they are in the No DOG baseline state: They always present the a la carte

offer set, in which the flight is priced by a traditional RM system at the lowest

available filed fare without dynamic price adjustment and the ancillary service is

priced at the myopic optimized price. Using 𝑊𝑎 from Equation 4.6 to calculate

𝑃 (𝑂|𝑝) = 𝑃 (𝑊𝑎 ≥ 𝑝𝑎) in Equation 3.3, we obtain a myopic optimal ancillary price of
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𝑝*𝑎 = $27.41 with an ancillary cost of 𝑐𝑎 = $20.

In the baseline, the passenger segments are identified with perfect accuracy (100%).

This means that the airlines always use the appropriate estimated WTP 𝑊𝑓 to op-

timize the DOG prices for business and leisure passengers in response to a booking

request. We also perform sensitivity tests with lower than 100% identification accu-

racy to reflect more realistic customer segmentation. In our tests, the optimized DOG

prices are bounded as described in Equations 3.20 and 3.21 with 𝑏 = 1, meaning that

the flight price can be dynamically adjusted up or down one fare class.

Since the focus of our studies is the performance of the DOG algorithm, we will not

change the settings of the traditional RM system used by the airlines. All four airlines

use a network RM system for unrestricted fare structures using concepts described in

Chapter 2.1.2. Each airline uses O-D path-based sell-up Q forecasting based on an

exponential conditional WTP described by a FRAT5 curve, which is appropriate for

the fully unrestricted fare structure used. Rejected demand when a flight has sold

out completely is unconstrained in the forecast using booking curve detruncation.

Seat inventory control is performed using the Displacement Adjusted Virtual Nest-

ing (DAVN) heuristic (Smith and Penn, 1988) with the marginal revenue transfor-

mation (Fiig et al., 2010). On each flight leg, all of the connecting O-D fares are

displacement adjusted by deducting the bid price of the other legs from the fare,

which is obtained using a deterministic linear program on the network. The marginal

revenue is also deducted from the displacement adjusted fare to account for buy-down

in unrestricted fare structures. The fully adjusted fares are then nested into virtual

classes by sorting them by revenue value. Then, the leg-based EMSRb heuristic com-

putes seat protection levels on each leg for the virtual classes. The optimization is

re-run at every time frame during the booking window. The time frames are longer

at the beginning of the booking window and progressively shorten towards departure,

leading to more frequent RM re-optimizations.

Table 4.1 summarizes our chosen experimental baseline. In our experiments, we

primarily focus on the impacts of airlines switching from a traditional RM method-

ology to dynamic offer generation in an unrestricted fare structure. We study the
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following scenarios:

∙ No DOG: All four airlines use traditional RM with filed fares and an a la carte

offer set where the ancillary is always optional and priced at the myopic optimal

ancillary price 𝑝*𝑎.

∙ AL1 Only DOG: Airline 1 switches to dynamic offer generation and segmented

pricing. DOG chooses to offer either the a la carte or bundle offer set. Airlines

2-4 retain their traditional RM system and a la carte offer set. This scenario

is used to study the benefit of DOG with asymmetric competition and its first-

mover advantage.

∙ All ALs DOG: All airlines use dynamic offer generation. This scenario is used

to study the benefit of DOG with symmetric competition.

4.2 Baseline Dynamic Offer Generation Simulation

Results

In this section, we present our first results of dynamic offer generation in PODS

simulations. In 4.2.1, we first study the impact of the DOG pricing algorithm for the

a la carte offer set, a mode we call dynamic a la carte (DALC). All airlines sell the

ancillary service optionally but begin to perform segmented continuous pricing for the

flight. These experiments are similar to studies of Probabilistic Fare-based Dynamic

Adjustment by Wittman (2018). In 4.2.2, we then study the impact of dynamic

bundling (DB) without continuous pricing. All offers are priced such that the flight

price remains the filed fare without dynamic price adjustment. The DOG algorithm

compares the expected revenue of the bundle and a la carte offer sets and decides

when to offer dynamic bundles instead of the a la carte offer set. These experiments

provide insights about the revenue impact of bundling alone without the competitive

effects of changing the flight prices. Finally, in 4.2.3 we present the first results of full

dynamic offer generation (DOG) with the baseline settings. We use the insights from

81



Category Input parameter Baseline setting
Simulation Network PODS network U10 with four airlines

Fare structure No fare restrictions &
No advance purchase requirements

Passengers Segments Two passenger types (business and leisure)

Max flight WTP 𝑋𝑓/(2.5𝐹𝑄) − 1 ∼ 𝐸𝑥𝑝(𝑙𝑛(2)/0.6) for business
𝑋𝑓/𝐹𝑄 − 1 ∼ 𝐸𝑥𝑝(𝑙𝑛(2)/0.5) for leisure

Max ancillary WTP 𝑋𝑎 ∼ 𝒩 ($25, (0.3 · $25)2) for both segments
Choice behavior Concurrent choice behavior

Forecaster Method Q forecasting for each O-D path
Detruncation Booking curve detruncation
Sell-up Sell-up based on FRAT5c curve

Optimizer Method DAVN O-D Network RM
(Displacement Adjusted Virtual Nesting)

Frequency Reoptimized every simulated timeframe

Fare adjustment Marginal revenue transformation
(based on FRAT5c sell-up)

DOG Estim. flight WTP 𝑊𝑓 ∼ 𝒩 (3.0𝐹𝑄, (0.3 · 3.0 · 𝐹𝑄)2) for business
𝑊𝑓 ∼ 𝒩 (1.2𝐹𝑄, (0.3 · 1.2 · 𝐹𝑄)2) for leisure

Estim. ancillary WTP 𝑊𝑎 ∼ 𝒩 ($25, (0.3 · $25)2) for both segments
Passenger segment
identification accuracy 100% correct segment identification

Bounding 𝑏 = 1 (±1 fare class from lowest available)
Ancillary Unit Cost of Provision $20

Table 4.1: Summary Table of PODS Baseline Simulation Parameters
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Figure 4-5: Comparison of the offer set in the baseline (No DALC or No DOG) and
dynamic a la carte (DALC)

DALC and DB to explain the effects of DOG on total revenue, load factor, prices and

bookings.

4.2.1 Dynamic A La Carte Results

In dynamic a la carte (DALC), we test dynamic offer generation without offer set

selection. All customers are always shown the a la carte offer set, in which the flight is

priced using the DOG algorithm at 𝑝𝑓 , and the ancillary service is available optionally

for an additional 𝑝𝑎. Just like with DOG, 𝑝𝑎 is set to be the myopic optimal price

according to the sequential approximation (cf. Chapter 3.2.3). We compare DALC

experiments to the standard baseline without dynamic offer generation, where all

airlines sell the ancillary services optionally at the myopic optimal price. As a result,

no changes are made to the ancillary price in these experiments and we are focused on

generating revenue through gains by dynamically adjusting the flight price 𝑝𝑓 . Figure

4-5 summarizes the differences between the baseline and DALC. We show results from

both an asymmetric case where only Airline 1 uses DALC and a symmetric case where

all four airlines use DALC.

Figure 4-6 and Table 4.2 summarize the overall results. With our baseline set-
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Figure 4-6: Overview of dynamic a la carte (DALC) net revenue gains and load factor
changes in symmetric and asymmetric tests

Airline 1 Base: No DALC AL1 Only DALC All ALs DALC
Flight Revenue $2,920,160 $3,211,120 $3,058,163
Ancillary Revenue $90,937 $90,322 $92,544
Ancillary Cost $66,354 $65,704 $67,555
Total Net Revenue $2,944,743 (+9.9%) $3,235,738 (+4.7%) $3,083,152
RPM 22,889,814 22,506,11 23,059,985
ASM 28,588,660 28,588,660 28,588,660
Net Yield $0.1286 $0.1438 $0.1337
Load Factor 80.07% (-1.4pts) 78.72% (+0.6pts) 80.66%

Table 4.2: Overall simulated results of dynamic a la carte (DALC) for Airline 1
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Figure 4-7: Airline 1 average revenue per passenger by timeframe before departure

tings, we observe strong revenue gains for airlines that employ the DOG algorithm

to dynamically price the flight (only). When Airline 1 exclusively uses DALC, it

observes an up to 10% net revenue increase with a -1.4pts load factor decrease. In

the symmetric experiment when all airlines use DALC, all airlines observe a 3-5%

increase in net revenue. We define net revenue as total flight and ancillary revenue

net of ancillary cost of provision. This matches the objective of the DOG algorithm,

which attempts to find offer prices that maximize an offer set’s expected net revenue

(Equation 3.1).

These net revenue gains are very large and specific to the chosen baseline test

parameters and the simulation environment. To explain the source of the revenue

gains, we first examine the average fares paid by passengers in Figure 4-7. We observe

that the adjusted fares are different than the baseline: The DOG prices are adjusted

downward (discount) in the last two weeks before departure and adjusted higher

(increment) early on in the booking process. This is a result of the chosen normal

WTP distribution 𝑊𝑓 , which is constant in time for each passenger segment. If the

RM bid price remains fixed, the resulting DOG optimized price will also be constant

in time. As the RM system closes lower fare classes towards departure, the lowest

available filed fare increases in line with the baseline curve. Whenever the lowest
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Figure 4-8: Number of bookings observed by Airline 1 in each timeframe before
departure

available filed fare is below the DOG optimized price (early in the booking process),

DOG will adjust the fare upward closer to the optimized price, subject to bounds on

how far the fare can be adjusted. When the lowest available filed fare is higher than

the DOG optimized price (in the last two weeks of the booking process), DOG will

adjust the fare downward.

The observed change in average fare (or net revenue per passenger) is stronger

when Airline 1 asymmetrically uses DALC than when all airlines symmetrically use

DALC. This is because in the asymmetric case, Airline 1 is consistently undercutting

its competitors, who are offering baseline filed fares, in the last two weeks before

departure and thus receiving a lot more bookings during this period, lowering the

average fare per passenger. Because of the additional close-in demand observed, the

RM system makes fewer seats available in lower classes early on in the booking process,

which increases Airline 1’s average fares in those periods. This is a first indication

of the competitive effects and revenue management feedback that can be observed in

the PODS simulator. However, it is unlikely that revenue gains of this magnitude

can be achieved with DALC in reality, since competitors could respond by matching

the lower close-in prices.
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Figure 4-9: Change in bookings by segment observed by Airline 1 in each timeframe
before departure

The consistently lower fares offered by DALC in the last 14 days doubles the

number of Airline 1 bookings when it is the only airline using DALC (Figure 4-8).

These bookings are gained by undercutting the competitors’ prices and consists of

passengers that would have previously flown with airlines 2-4. As Airline 1 sells

more seats close to departure, it compensates and spills more passengers early in the

bookings process to protect seats for the higher revenue demand. In the symmetric

case, when all airlines use DALC, this competitive share shift is not observed. Airline

1 is only able to gain 13% more bookings in the last two weeks by stimulating new

demand that had previously not been able to afford the high close-in prices. The

overall effect seen on the booking curve is much smaller in the symmetric case.

Figure 4-9 shows the change in the booking curve by passenger type. It shows that

DALC gains both business and leisure bookings close to departure, while primarily

spilling leisure demand early in the booking process. As usual, the effect is smaller

in a symmetric test.

The experiments show that DALC generally increases bid prices, as the airline

observes more high revenue demand close-in, leading to higher initial bid prices and

fewer seats available at low fares. This effect is magnified in the asymmetric test, as

even more close-in bookings were observed in Figure 4-8. These bid prices are also
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used in the DOG price optimization, so they influence the DOG optimized prices

offered to the customers.

Since DALC always offers the ancillary service optionally in the a la carte offer set,

a consistent set of 38% of passengers choose to purchase it, same as in the traditional

No DALC baseline. This is because DALC introduces no changes to the ancillary

price or the offer set.

In conclusion, through these tests of DALC we gain an initial understanding of the

dynamic price adjustment component of dynamic offer generation. Compared to the

traditional RM baseline, the adjusted prices are higher in advance, but lower close-

in. Combined with the segmented pricing for business and leisure passengers, DALC

introduces a large shift in the booking curve. Airlines attract more high revenue close-

in bookings, but fewer advance bookings in the lowest fare class. Competitive feedback

effects follow, where the DALC airline attracts new close-in traffic, while traditional

airlines capture more of the early demand at lower fares. As a result, Airline 1’s

total net revenue increases by 9.9% in asymmetric tests and 4.7% in symmetric tests.

DALC does not influence ancillary revenue, as no bundles are offered and the same

proportion of ancillaries are sold.

4.2.2 Dynamic Bundling Results

In dynamic bundling (DB), we focus on offer set selection and disable the dynamic

price adjustment component of DOG, as illustrated in Figure 4-10. We let the DOG

algorithm choose whether to show offer set 𝑆1 (a la carte) or 𝑆2 (bundle) to customers

based on the expected revenue. Unlike dynamic offer generation, we bound the flight

price in 𝑆1 to be the filed fare of the lowest available fare class 𝑝𝑓 = 𝐹 with bounding

parameter 𝑏 = 0 according to Equation 3.20. Similarly, the bundle price is bounded

according to Equation 3.21 as 𝑝𝑓𝑎 = 𝐹+(𝑝*𝑓𝑎−𝑝*𝑓 ), the filed fare 𝐹 plus the unbounded

price difference between the bundle and the standalone flight. This choice makes the

DB prices very similar to the baseline so that we can isolate the impacts of offering

bundles, where the flight cannot be purchased without the ancillary service. As before,

we test asymmetric cases with Airline 1 using DB and symmetric cases with all four
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Figure 4-10: Comparison of the baseline (No DB) and dynamic bundling (DB)

Airline 1 Base: No DB AL1 Only DB All ALs DB
Flight Revenue $2,920,029 $2,956,929 $2,924,935
Ancillary Revenue $91,137 $181,172 $176,257
Ancillary Cost $66,383 $154,506 $150,427
Total Net Revenue $2,944,783 (+1.3%) $2,983,595 (+0.2%) $2,950,765
RPM 22,889,372 23,043,665 22,867,947
ASM 28,588,660 28,588,660 28,588,660
Net Yield $0.1286 $0.1295 $0.1290
Load Factor 80.06% (+0.54pts) 80.60% (-0.07pts) 79.99%

Table 4.3: Overall simulated results of dynamic bundling (DB) for Airline 1

airlines using DB.

Figure 4-11 and Table 4.3 show the overall revenue and load factor results of the

test cases. In asymmetric tests, Airline 1 can achieve a 1.3% total net revenue gain

by changing its ancillary pricing strategy, even though ancillary revenues represent

only 3% of the airline’s total revenue in the baseline scenario. In symmetric gains,

dynamic bundling changes the four airlines’ net revenue by -0.2% to +0.2%.

The larger asymmetric revenue gains are explained by competitive effects: Since

passengers are modeled using concurrent choice behavior as well-informed about an-
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Figure 4-11: Overview of dynamic bundling (DB) net revenue gains and load factor
changes in symmetric and asymmetric tests

cillary fees, Airline 1 is able to gain market share from its competitors offering a

cheaper bundled ancillary service and gain flight revenue. In fact, ancillary net rev-

enue increases by +7.7% in the asymmetric case (only +$1,912 in absolute terms),

but flight revenue increases by +1.3% (+$36,900). Compare this to the symmetric

case, where Airline 1’s ancillary net revenue increases by +$1,076, but flight revenue

increases only by +$4,907. Further sensitivity tests on this effect are performed in

Chapter 5.3.

In Figure 4-12, we verify that we the flight price is constant across the experiments

and that there are no significant changes to the average net revenue between the

baseline and dynamic bundling. However, dynamic bundling has a large effect on

the offers being purchased. Unlike in the baseline, many customers are only offered

the bundle and as a result, the number of ancillary services sold increases. In this

experiment, we have gained an initial insight into the potential benefits of a bundled

pricing strategy.
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Figure 4-12: Airline 1 average net revenue by timeframe and breakdown of purchases
by offer

4.2.3 Dynamic Offer Generation Results

Here we present the first results of dynamic offer generation (DOG) by combining

the dynamic price adjustment heuristic tested in DALC with the offer set selection

heuristic tested in DB. As introduced in Chapter 3, DOG uses the bid price of the

RM system to compute segmented, continuous prices for both passenger segments

(business and leisure) and both offer sets (𝑆1 and 𝑆2). Like DB, the offer set with the

higher expected net revenue under the concurrent choice assumption is then shown

to the customer. The simulation baseline parameters were summarized in Table 4.1.

Since this represents the complete implementation of DOG and our main focus of

the thesis, we expand our testing and report three sets of test results to study the

impact of DOG in simulations with different demand levels. The standard (medium)

demand level achieves an average load factor of 80% in the fully unrestricted baseline

without DOG. It was used in the previous DALC and DB tests. We also test a new

low demand scenario with 10% less demand generated across all passenger types, OD

markets and simulated days before departure. The baseline average load factor is

73%. Similarly, a high demand scenario has 10% more generated demand and an

average load factor of 83%. Figure 4-13 shows the total net revenue of the traditional
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Figure 4-13: Total net revenue for the baseline scenarios without DOG

RM baseline at the three demand levels (no airline uses DOG). Figure 4-14 shows

the load factor for each airline, as well as the net yield. Increasing demand increases

both the load factor and the yield.

Next, we compare DOG against these baseline results. The asymmetric test as

Airline 1 using DOG, while the other airlines continue with a traditional RM system

and a la carte ancillary service. In the symmetric case, all airlines use DOG with the

same input parameters.

Figure 4-15 shows the net revenue increases observed for airlines that implement

DOG. In the medium demand case, Airline 1 gains 10.5% in net revenue asymmet-

rically and 5.1% symmetrically. This is higher than what we observed in DALC

(+9.9% and +4.7%, Figure 4-6), reflecting the additional revenue gains from dy-

namic bundling. In the asymmetric case, DOG achieves the highest revenue gains

in the low demand case. In the symmetric case, the high demand case produces the

highest DOG revenue gains for all airlines. This is a result of the balance between

changes in net yield (Figure 4-16) and load factor (Figure 4-17).

The net yield increase from DOG is highest in the high demand case. This im-

plies that the DOG prices deviate most from the traditional RM system under high
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Figure 4-14: Load Factor and Net Yield for the baseline scenarios without DOG

demand. In the asymmetric tests, this large asymmetry in pricing leads to a large

market share shift and the Airline 1 sees a 3.9% drop in load factor with DOG. The

large drop in passenger numbers reduces the total net revenue benefit of DOG to 9.7%

in the high demand case. On the other hand, in symmetric tests a change in price

levels has a smaller impact on load factor as all other airlines use the same pricing

and the market remains in equilibrium. This allows the net revenue gain from DOG

to increase to 6.2% in the high demand case.

Conversely, in the low demand case, DOG acts to increase load factor while for-

going the high increase in yield observed at higher demand levels. DOG sells more

seats early on, competing with the traditional airlines for leisure traffic that it would

otherwise spill to protect seats for close-in demand. The asymmetric revenue gain is

an extremely high +14.4%, because DOG is able to reap the rewards of undercut-

ting traditional airlines for high-yielding demand without spilling the lower yielding

demand to its competitors. In the symmetric case, this advantage disappears and

revenue gains are reduced to +3.8%.

We can observe how the DOG pricing changes with demand in Figure 4-18. It

shows the average net revenue per passenger in the symmetric DOG case and the
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Figure 4-15: Total net revenue gains with the asymmetric and symmetric use of DOG

Airline 1 No DOG AL1 Only DOG All ALs DOG
Total Net Revenue $2,944,743 (+10.5%) $3,253,192 (+5.1%) $3,094,238
RPM 22,889,814 22,514,074 23,058,657
ASM 28,588,660 28,588,660 28,588,660
Net Yield $0.1286 $0.1445 $0.1342
Load Factor 80.07% (-1.3pts) 78.75% (+0.6pts) 80.66%

Table 4.4: Overall simulated results for Airline 1 of dynamic offer generation (DOG)
with medium demand and baseline parameters
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Figure 4-16: Increase in net yield with dynamic offer generation

Figure 4-17: Change in load factor with the asymmetric and symmetric use of DOG
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Figure 4-18: Airline 1 average net revenue per passenger by timeframe

No DOG baseline. The overall trends are similar to what was observed in DALC

(Figure 4-7): Within 14 days of departure, DOG prices are consistently lower than No

DOG, irrespective of demand level. This allows DOG airlines to capture more close-

in demand, boosting their average net yield. More than 14 days before departure,

we observe that DOG consistently has higher pricing than the baseline. Here, the

higher demand levels also translate directly into higher pricing. This is an effect of the

revenue management system protecting more seats for higher revenue passengers close

to departure, which leads to fewer seats available at low fares early in the booking

process and a higher bid price.

DOG includes the same price segmentation between business and leisure passen-

gers that was applied in DALC. Figure 4-19 shows the difference between the average

prices paid by business and leisure passengers in each timeframe. The domestic-only

Airline 3 clearly exhibits the price segmentation in DOG, with business passengers

consistently paying higher fares than leisure passengers in DOG. There is no price

segmentation in the traditional baseline without DOG. For the larger Airline 1, the

same effect exists, but it also shows that in the No DOG baseline, business passengers

pay higher prices than leisure passengers. This is not because of active price segmen-

tation by the airline, but an effect of the market mix. Business passengers that book
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Figure 4-19: Airline 1 and 3 average net revenue by timeframe and passenger type
showing price segmentation by DOG compared to the base

early are mostly long-haul international passengers, whereas many short-haul leisure

passengers also book far in advance. As a result, the average net revenue for business

passengers more than 14 days before departure is distorted by a high proportion of

international bookings at high fares. In the same timeframe, leisure bookings include

a higher proportion of domestic markets at lower fares, which explains the apparent

price segmentation for Airline 1.

DOG chooses the offer set dynamically at each timeframe for each passenger type.

Figure 4-20 shows that the demand level does not change an individual passenger’s

ancillary WTP since the percentage of passengers choosing to purchase the ancillary

optionally (Flight + Ancillary) is nearly the same across all No DOG tests. However,

DOG offers more bundles when demand is high in both asymmetric and symmetric

cases. To explain this, Figure 4-21 further separates the offer set shown to customers

by passenger type and timeframe for the symmetric (All ALs DOG) and medium

demand case, where 76% of overall AL1 passengers booked a bundle. We observe

that only some leisure passengers booking more than 21 days in advance received the

a la carte offer set and almost all business passengers received the bundle offer set.

This can be explained by our sensitivity test in Figure 3-7a, showing that the flight

WTP and bid price have a secondary effect on offer set selection. When the flight
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Figure 4-20: Airline 1 bookings by offer type, with and without DOG in asymmetric
and symmetric tests

prices are low, there is a region when the a la carte offer set has higher expected net

revenue than the bundle. This occurs especially for leisure passengers more than 21

days before departure. Fewer a la carte bookings are observed when demand is high

because the higher bid prices make DOG offer more bundles.

4.3 Summary

In this chapter, we presented simulations of dynamic offer generation algorithm with

one ancillary service in the Passenger Origin-Destination Simulator. The DOG al-

gorithm was used in conjunction with a traditional network revenue management

system. We studied the competitive implications of applying DOG for large network

airlines.

With the baseline settings, DOG increased total net revenue in both asymmetric

and symmetric cases: We showed that dynamic a la carte alone can lead to large

asymmetric revenue increases of +9.9%, but that these revenue gains reduce to +4.7%
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Figure 4-21: Bookings received by AL1 by passenger type, offer set and timeframe
(symmetric DOG, medium demand)
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once competitors respond and also implement DOG. These results are highly sensitive

to the exact parameters assumed in the simulation and are the result of DOG offering

lower close-in fares than the traditional baseline, as well as accurately segmenting

prices for business and leisure passengers. We also assume that customers choose

their itinerary, fare and ancillary services in a single step according to the concurrent

choice model.

Similarly, dynamic bundling can lead to revenue gains of +1.3% asymmetrically

under the same assumptions. Then, one airline can attract a higher market share by

offering a cheaper ancillary service than its competitors and increase its flight revenue.

In symmetric environments, the impact of bundling on total revenue was relatively

small ranging from -0.2% to +0.2% across the four airlines.

Overall, dynamic offer generation performed better than both dynamic a la carte

and dynamic bundling alone, as it combines the benefits of both. The revenue gains in

both asymmetric and symmetric cases were consistently positive across three demand

levels. In the low demand scenario, Airline 1 gained +14.4% in total net revenue

asymmetrically and +3.8% symmetrically. For medium demand level, the gains were

+10.5% asymmetrically and +5.1% symmetrically with baseline simulation parame-

ters. At high demand, DOG increased revenue by +9.7% asymmetrically and +6.2%

symmetrically.

In the following Chapter 5, we show sensitivity tests of DOG outside of the baseline

scenario studied in this chapter. This shows how our simulated revenue gains depend

on the input parameters chosen and under which circumstances DOG or dynamic

bundling can achieve the highest revenue gains.
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Chapter 5

Sensitivity Tests of Dynamic Offer

Generation in PODS

In this chapter, we present additional sensitivity analyses on the input parameters

for dynamic offer generation under the medium demand scenario in PODS. We begin

in Section 5.1 with the flight-related parameters: we test different estimated flight

WTP levels, the passenger type segmentation accuracy and flight price bounding

parameters. We further study the impact of different traditional RM optimizers and

their bid price computation methods on DOG prices and simulated revenue in Section

5.2. Next, we test the ancillary-related parameters of ancillary WTP and ancillary

cost to study the impact of bundling on DB (5.3) and DOG (5.4). We use the insights

gained to close this chapter by calibrating a new set of DOG results in Section 5.5,

which better reflect the benefits in a realistic market conditions.

5.1 DOG with Different Flight-related Parameters

First, we perform a sensitivity test on the Q multipliers used in our dynamic flight

price adjustment heuristic for DOG. The Q multipliers act as estimates of the mean

conditional flight WTP of a passenger segment. It is a multiplicative factor on the

lowest published fare in each market (Wittman, 2018). The lowest booking class is

called Q class in some airlines’ revenue management systems. In PODS network U10,
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Figure 5-1: Average net revenue per business passenger with different business Q mul-
tipliers (left) and net revenue per leisure passenger with different leisure Q multipliers
(right)

the lowest booking class is 10 and we call its fare 𝐹𝑄. DOG receives the Q multiplier as

an input for the normally distributed conditional flight WTP with mean 𝜇𝑊𝑓
= 𝑄 ·𝐹𝑄

and standard deviation 𝜎𝑊𝑓
= 0.3𝜇𝑊𝑓

, separately for each passenger segment. In

our baseline case with constant Q multipliers of 3.0/1.2 (business Q/leisure Q), the

airline assumes that on average business passengers are willing to pay $300 and leisure

passengers are willing to pay $120 at all times in a market where the lowest fare 𝐹𝑄

is $100.

In a first set of tests, we test four different business Q multipliers {2.0,2.5,3.0,3.5}

while holding the leisure Q multiplier constant at 1.2. In a second test, we hold the

business Q multiplier constant at 3.0 and vary the leisure Q multiplier {1.0,1.2,1.4}.

In all cases, we maintain the same baseline bounding on the offer prices. The Q

multipliers determine the optimal DOG offer prices before the prices are bounded to

the lowest open fare class of the RM system. As a result, changing the Q multiplier

affects the average net revenue paid by passengers in timeframes when the optimized

DOG price is within the range allowed by the fare class bounds.
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Figure 5-2: DOG net revenue increase from base with different business flight WTP
estimates (Q multipliers)

The impact of Q multipliers on fares is shown in Figure 5-1. It shows how a lower

Q multiplier decreases the close-in business fares but has nearly no impact on advance

business fares. In early timeframes, the optimal DOG price adjustment is bigger than

the upper bound allows, even at a lower business Q multiplier of 2.0. As a result, the

upper bound fare is charged irrespective of Q multiplier. Similarly, when the leisure

Q multiplier is increased, the average net revenue paid by leisure passengers increases

in early timeframes. However, close to departure, the optimized DOG adjusted price

is much lower than the lower bound permitted by the RM system, so the lower bound

fare is charged irrespective of leisure Q multiplier.

Figures 5-2 and 5-3 show the simulated revenue gains as the business and leisure

Q multipliers are varied independently. The revenue impact is largely driven by the

differences in pricing shown in Figure 5-1. In the symmetric cases, a higher business

Q multiplier of 3.5 increases revenue gains as all airlines would increase their close-in

business fares. However, in the asymmetric case, a 3.5 business Q multiplier increases

close-in business fares above the traditional airlines’ prices. This makes the DOG
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Figure 5-3: DOG net revenue increase from base with different leisure flight WTP
estimates (Q multipliers)

airline less competitive and leads to a drop in revenue. A lower Q multiplier of 2.5

produces the highest DOG revenue gains in asymmetric tests. Our chosen baseline Q

multipliers of 3.0 and 1.2 represent a compromise that produces good revenue gains

in both asymmetric and symmetric cases.

With the Q multipliers, the airlines control the degree of price segmentation be-

tween the passenger segments. The more aggressive the price segmentation, the

higher the potential risk of misidentifying passengers becomes. In all tests so far, the

identification accuracy was 100%, but in reality a classification algorithm would have

lower performance. The experiment in Figure 5-4 shows the robustness of DOG at

lower identification accuracy with 3.0/1.2 Q multipliers and standard b=1 bounding.

There is a nearly linear decline of the percentage net revenue gain as the identification

accuracy decreases. However, even a random guess (50% identification accuracy) can

produce asymmetric revenue gains in DOG. In the symmetric case where all airlines

independently misidentify at the same accuracy, greater than 60% accuracy is needed

with this set of Q multipliers to achieve a positive revenue gain.
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Figure 5-4: DOG net revenue increase from base with different passenger type iden-
tification accuracy (price segmentation)

Two effects are driving this behavior at lower identification accuracy: First, more

business passengers are misidentified as leisure by at least one DOG airline. As

a result, they receive cheaper offers and buy-down, causing revenue losses in the

business segment. Second, more leisure passengers are misidentified and receive more

expensive business offers. These are often not affordable for leisure passengers and

they choose to book with a competitor or not travel at all.

These effects can be observed in the average net revenue that the DOG airline

receives from passengers in Figure 5-5. The average net revenue from actual busi-

ness passengers decreases with lower identification accuracy on the left (buy down).

However, only little change is observed in the average net revenue paid by leisure

passengers, which suggests that the airline does not get a high purchase rate on its

more expensive offers for misidentified passengers.

Finally, we test the sensitivity of DOG to the strictness of the bounds on the offer

prices imposed by the RM system. The bounding parameter b as defined in Equation

3.20 refers to a multiplier on the price difference from the current lowest available

filed fare to the fare of the next higher and lower fare class. Our standard tests use
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Figure 5-5: Airline 1 average net revenue paid by business and leisure passengers in
each timeframe with varying identification accuracy

Figure 5-6: Airline 1 average net revenue per passenger with different bounding widths
b (medium demand)
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b=1, meaning that DOG can adjust the lowest available filed fare determined by the

RM system up to ±1 fare class. When b=0, no deviation from the flight price is

permitted, which represents the dynamic bundling scenario tested in Chapter 4.2.2.

In Figure 5-6, we test bounds of b={0.0,0.5,1.0,1.5,2.0}. As the bounding param-

eter b increases, both business and leisure fares deviate more from the traditional RM

baseline and also from each other (increasing price segmentation). Especially close-

in leisure bookings benefit from large discounts and advance business bookings are

charged higher prices. This leads to a shift in the booking curve shown in Figure 5-7:

In both the symmetric and asymmetric cases, a more relaxed bounding leads to DOG

airlines accepting more bookings close to departure and fewer bookings in advance.

This effect is strongest in the asymmetric case, as the DOG airline undercuts other

traditional airlines. This allows it to attract a large number of close-in bookings from

its competitors. In these tests, the traditional airlines do not respond to the shift in

pricing introduced by DOG and thus lose high-revenue bookings. This allows DOG to

sustain its high asymmetric revenue gains. The traditional airlines could respond by

changing their pricing to match the DOG airline and recover some of the revenue lost

to DOG. Possible competitive responses of traditional airlines to continuous pricing

algorithms were tested in PODS by Papen (2020).

Through these tests, we have seen that each DOG parameter can have a large

impact on the offer prices. The DOG price adjustment heuristic gives an airline many

levers to control the level of price segmentation and booking curve they desire, while

also applying optimization to find an optimal price point given the constraints. On

the flip side, the additional parameters create a calibration and estimation challenge

for airlines. It can be difficult to accurately estimate the flight WTP of each passenger

segment, as well as the segment that an individual booking request belongs to. We

showed that the reported DOG net revenue gains are reduced at lower passenger type

identification accuracy. The revenue gain observed in PODS is also highly dependent

on the competitive situation, with DOG performing better in asymmetric scenarios

where its prices undercut the traditional airlines that do not adapt their pricing. In a

real-world implementation, it is unlikely that the same magnitude of revenue increases
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Figure 5-7: Airline 1 bookings by timeframe for asymmetric and symmetric cases of
DOG with different bounding widths b (medium demand)

can be achieved, as traditional airlines can respond by adapting their pricing.

5.2 DOG with Different Revenue Management Op-

timizers

The revenue management forecaster and optimizer remain the backbone of the air-

line’s RM system, even with dynamic offer generation. As presented in Chapter 3.4,

DOG relies on the RM optimizer’s bid price and its computed seat availability across

fare classes to compute bounded offer prices. We are interested in studying how

sensitive the DOG offer prices are to the RM optimizer used by the airline. In our

standard baseline, all airlines use the displacement adjusted virtual nesting (DAVN)

network RM algorithm.

In this section, we test DOG with two additional bid price control methods for

network RM: Probabilistic Bid Price (ProBP) and Unbucketed Dynamic Program-

ming (UDP). ProBP was developed by Bratu (1998) and UDP is an extension of the

leg-based dynamic program by Lautenbacher and Stidham (1999) for network O-D
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control. We hold all baseline RM and DOG parameters constant, but change the

RM optimizer used by the DOG airline. We study an asymmetric scenario, where

only Airline 1 uses DOG with either DAVN, ProBP or UDP as the RM optimizer.

We compare the performance of DOG with ProBP (or UDP) at Airline 1 against

baselines where Airline 1 asymmetrically uses ProBP (or UDP) without DOG. All

other airlines always retain a traditional RM system with DAVN as the optimizer.

The RM optimizer controls the DOG prices through the bid price in two ways:

First, a higher average bid price closes more fare classes, thus increasing the corre-

sponding DOG bounds and the final prices. Second, the bid price is used in the DOG

price optimization. A higher bid price leads to higher optimized flight and bundle

prices in DOG (cf. Figure 3-5a). There are differences in the bid prices produced

by each method: The ProBP bid price is generally lower than DAVN throughout the

booking window. UDP bid prices are even lower than ProBP early on, but rapidly

increase in the last two weeks before departure. The final UDP bid prices are higher

than both ProBP and DAVN. This effect has been attributed to the inherent Poisson

demand arrival assumption in the dynamic programming approach, which underesti-

mates the true variability in the simulated demand. This makes UDP overly certain

of the future demand and causes it to accept more bookings early on.

These bid price differences are reflected in the DOG prices shown in Figure 5-8.

Comparing the three DOG cases, we observe that the different RM optimizers directly

impact the prices paid by customers: DOG with ProBP charges slightly lower prices

than DOG with DAVN, especially more than three weeks before departure. DOG

with UDP has significantly lower prices than both DAVN and ProBP up to 14 days

before departure, when the surge in UDP bid price leads to higher close-in prices

than DOG with DAVN. For reference, the average net revenue with DAVN, but

without DOG, is shown in black. This is representative of the competing fares of

the other airlines 2-4 in this asymmetric test. With DAVN, we concluded that the

DOG heuristic gains revenue by primarily lowering close-in fares. The DOG airline

compensates by increasing advance fares more than two weeks before departure. This

trend still holds for DOG with ProBP, but not with UDP. When DOG is used with
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Figure 5-8: Airline 1’s average net revenue per passenger generated by DOG airline
with different RM optimizers and bid price inputs, compared to the symmetric DAVN
No DOG baseline

UDP, the simulation shows that it lowers fares compared to the traditional baseline

throughout the booking process.

By undercutting the other airlines throughout, Airline 1 with UDP was able to

gain the most revenue and load factor in this asymmetric PODS simulation, as shown

in Figure 5-9. It compares the incremental revenue and load factor gains achieved

by using DOG compared to a No DOG baseline when Airline 1 asymmetrically uses

different RM optimizers. DAVN and ProBP generate additional revenue with DOG

by increasing the average yield and accepting a higher share of close-in high-revenue

bookings. UDP is notably different and attracts additional passengers with DOG,

increasing load factor by +7.5pts to a record 91.7%. While it performed best in

our simulations, such high load factors have not been achieved in reality and come

with operational risks for the airline. We also did not simulate interventions by RM

analysts, which could close down lower fare classes earlier and lower overall load

factors in an attempt to increase yield.

110



Figure 5-9: Average net revenue and load factor change when Airline 1 switches from
base to DOG. Airline 1 asymmetrically uses a different RM optimizer in both base
and DOG.

5.3 Dynamic Bundling with Different Ancillary Pa-

rameters

To further explore the impact of ancillary-related parameters and bundling on DOG,

we first perform two sensitivity tests on dynamic bundling (DB) as introduced in

Chapter 4.2.2. DB allows us to better isolate the impact of bundling on the results and

separate total revenue into flight and ancillary components. This gives us additional

insight into the revenue impacts. In the next section (5.4), we repeat these tests for

DOG.

The first study will vary both the actual ancillary WTP distribution of the pas-

sengers 𝑋𝑎 and the airline’s estimated ancillary WTP distribution 𝑊𝑎 as shown in

Table 5.1. The true mean ancillary WTP ranges from $15 to $30 and the standard

deviation scales as 30% of the mean. All airlines accurately estimate this WTP dis-

tribution and their ancillary cost remains constant at $20. As a result, the price of
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WTP Sensitivity Case 1 Case 2 Case 3 (Base) Case 4
Actual WTP 𝑋𝑎 𝒩 ($15, $4.52) 𝒩 ($20, $62) 𝒩 ($25, $7.52) 𝒩 ($30, $92)
Estimated WTP 𝑊𝑎 𝒩 ($15, $4.52) 𝒩 ($20, $62) 𝒩 ($25, $7.52) 𝒩 ($30, $92)
Ancillary Cost 𝑐𝑎 $20 $20 $20 $20
Myopic optimal 𝑝𝑎 $22.22 $24.51 $27.41 $30.65

Table 5.1: Sensitivity test of dynamic bundling (DB) on ancillary WTP 𝑋𝑎,𝑊𝑎 for
all airlines

Figure 5-10: Variation of dynamic bundling (DB) net revenue gains with ancillary
WTP at a constant ancillary cost of $20

the ancillary service varies in each case for both the DB test case and the No DB

baseline. When airlines do not use DB, they charge the listed myopic optimal price.

Figure 5-10 shows the overall net revenue benefit of using DB compared to always

selling the a la carte offer set (No DB). In the asymmetric tests, the net revenue gain

is only +0.1% when the WTP is low but rises to +2.1% when the ancillary WTP is

high. The same trend is seen in the symmetric cases, but the net revenue gain ranges

from +0.2% to +0.4% for all airlines at a $30 mean WTP.

Figure 5-11 shows the source of the revenue gains when WTP 𝑊𝑎 is high relative

to the cost 𝑐𝑎: Dynamic bundling begins to offer the bundled offer set when the mean
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Figure 5-11: Variation of offer purchases with ancillary WTP at a constant ancillary
cost of $20

WTP exceeds $25. In low WTP cases, dynamic bundling very rarely bundles and

uses the same a la carte pricing strategy as the No DB baseline. This is consistent

with our observations in Figure 3-7b, indicating that the bundled offer set has higher

expected net revenue when 𝐸[𝑊𝑎]/𝑐𝑎 > 1.25. It is notable that even when the a la

carte offer set is offered (No DB) the ancillary purchase rate increases with ancillary

WTP, even though the myopic optimal price increases as well.

Figure 5-12 explains why DB begins to offer bundles at higher WTP. The left

graph shows the average selling price of the ancillary and the cost the airlines incur

for selling an ancillary. When the WTP is high, the airline can achieve a sufficient

margin (price - cost) to allow it to discount the ancillary service in a bundle. By

selling the ancillary service in a bundle, the purchase rate increases significantly, since

passengers are now required to purchase the ancillary service when buying the flight

and the discounted price is sufficiently attractive to a large proportion of customers.

Figure 5-13 summarizes the revenue impact of dynamic bundling. In both asym-

metric and symmetric cases, dynamic bundling increases ancillary net revenue (an-

113



Figure 5-12: Variation of ancillary prices and purchases with ancillary WTP at a
constant ancillary cost of $20

Cost Sensitivity Case 1 Case 2 Case 3 (Base) Case 4
Actual WTP 𝑋𝑎 𝒩 ($25, $7.52) 𝒩 ($25, $7.52) 𝒩 ($25, $7.52) 𝒩 ($25, $7.52)
Estim. WTP 𝑊𝑎 𝒩 ($25, $7.52) 𝒩 ($25, $7.52) 𝒩 ($25, $7.52) 𝒩 ($25, $7.52)
Ancillary Cost 𝑐𝑎 $0 $10 $20 $30
Myopic optimal 𝑝𝑎 $19.35 $22.51 $27.41 $34.35

Table 5.2: Sensitivity test of dynamic bundling (DB) on ancillary cost 𝑐𝑎 for all
airlines

cillary revenue - ancillary cost) by a similar amount. However, the majority of asym-

metric revenue gains come from increased flight revenue, indicating that Airline 1 can

attract passengers from its competitors by offering a bundle with a cheaper ancillary

service. This competitive effect is not observed in the symmetric cases when all air-

lines offer bundles. Notably, a small change in flight revenue can outweigh a large

gain in ancillary revenue.

The second sensitivity test is on the ancillary cost incurred by airlines for every

ancillary sold. The parameters of the test cases are outlined in Table 5.2. Holding

the ancillary WTP 𝑋𝑎 and 𝑊𝑎 constant, we change the cost from $0 to $30 for all

airlines. As a result, the pricing of the ancillary changes in both the No DB baseline

and the DB cases.
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Figure 5-13: Increase of net ancillary and flight revenue with DB under a variety of
ancillary WTP distributions

Figure 5-14 shows that dynamic bundling can increase total revenue by +0.9%

in symmetric cases when the ancillary service is free to provide and by +2.6% in

asymmetric cases. The asymmetric revenue gains for Airline 1 lead to losses at airlines

2-4, as passengers are attracted by the cheaper bundle offer at Airline 1.

The revenue gains are explained by Figure 5-15. The myopic optimal selling price

of the ancillary service in the No DB case reduces with ancillary cost. This makes the

ancillary service more popular and affordable, while at the same time the reduction

in cost increases the margin for the airline. The ancillary service is in high demand at

$0 cost: 78% of passengers choose to purchase it when given the choice. As a result,

the bundles offered by DB are very attractive as it discounts the ancillary service

even further. At low cost, dynamic bundling chooses to show the bundle offer set to

>99% of all customers.

The impact on revenue is shown in Figure 5-16. As the cost decreases, the ancillary

net revenue gains of dynamic bundling increase in both symmetric and asymmetric

cases. Moreover, in the asymmetric case, Airline 1 can increase its flight revenue by
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Figure 5-14: Variation of dynamic bundling (DB) net revenue gains with ancillary
cost

undercutting its a la carte competitors with the bundle offers.

By testing DB, we observed how the balance between ancillary WTP and ancillary

cost strongly influences when bundles are offered by the DOG offer set selection

algorithm. Bundling can increase revenue when ancillary WTP is relatively high

compared to the ancillary cost. Especially in asymmetric cases dynamic bundling

is a competitive advantage and attracts new customers from a la carte competitors,

thus increasing the airline’s flight revenue. However, in symmetric cases the revenue

gains are much smaller, coming primarily from increased ancillary revenue alone.

No bundles were offered and no revenue benefits realized when ancillary WTP was

relatively low compared to the cost.

5.4 DOG with Different Ancillary Parameters

With the insights gained from dynamic bundling, we now repeat these sensitivity

tests on the ancillary WTP distributions 𝑋𝑎/𝑊𝑎 and the ancillary cost 𝑐𝑎 with DOG.
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Figure 5-15: Variation of ancillary prices and purchases with ancillary cost

Figure 5-16: Increase of net ancillary and flight revenue with DB at a variety of
ancillary costs

117



Figure 5-17: Airline 1 bookings by purchased offer for symmetric DOG and No DOG
with different ancillary WTP 𝑊𝑎

In the first test, we vary the mean and standard deviation of the normally distributed

ancillary WTP distribution while holding the cost constant. Both the underlying

passenger ancillary WTP 𝑋𝑎 and the airline’s estimated WTP distribution 𝑊𝑎 change

from a mean of $20 to $35. Refer to Table 5.1 in the previous section (5.3) for the

detailed description of this test. In the second test, we hold the ancillary WTP

constant at the baseline setting while varying the ancillary cost 𝑐𝑎. As shown in

Table 5.2, the airlines adjust their ancillary prices 𝑝𝑎 accordingly to optimize their

margin on the ancillary service in both the No DOG and DOG cases.

In terms of offer set selection, full DOG behaves the same as dynamic bundling

alone. The bundled offer set has higher expected revenue and is offered the majority

of the time when the mean ancillary WTP is higher than the ancillary cost. On the

other hand, DOG offers the a la carte offer set when the mean ancillary WTP is

smaller or equal to the ancillary cost. This trend is seen in the offer sets purchased

by passengers of Airline 1 at various ancillary WTP (Figure 5-17) and ancillary cost

(Figure 5-18). These results are very similar to those seen in dynamic bundling alone
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Figure 5-18: Airline 1 bookings by purchased offer for symmetric DOG and No DOG
with different ancillary cost 𝑐𝑎

(Figure 5-11).

We observe that when the bundled offer set is offered by DOG, total net revenue

is improved by an incremental 1-2% over dynamic a la carte in both asymmetric and

symmetric tests. This leads to a total net revenue gain over the No DOG base of up

to 12% in asymmetric and 7% in symmetric cases. In particular, the highest gains

were achieved when WTP is much higher than the cost: Either with $0 ancillary cost

and $25 mean WTP, or with $35 mean WTP and $20 cost.

Finally, we study how sensitive DOG is to over- and underestimation of ancillary

WTP. We would like to understand the behavior of the algorithm if the airline intro-

duces a bias in their estimate 𝑊𝑎 of the actual underlying passenger ancillary WTP

𝑋𝑎 in the simulation. In all tests, we maintain 𝑋𝑎 ∼ 𝒩 ($25, $7.52) as normally dis-

tributed with a mean of $25 and the ancillary cost to the airline at 𝑐𝑎 = $20. All four

airlines misestimate the mean ancillary WTP by up to $5 as indicated by Table 5.3.

In the No DOG baseline, they sell the ancillary service at the listed myopic optimal

price 𝑝𝑎, which is based on the misestimated 𝑊𝑎. In DOG, the algorithm computes

119



Figure 5-19: DOG total net revenue gains with varying ancillary WTP 𝑊𝑎 at constant
ancillary cost 𝑐𝑎 = $20

Figure 5-20: DOG total net revenue gains with varying ancillary cost 𝑐𝑎 at constant
ancillary WTP 𝐸[𝑊𝑎] = $25
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WTP Sensitivity Case 1 Case 2 Case 3 (Base) Case 4 Case 5
Actual 𝐸[𝑋𝑎] $25 $25 $25 $25 $25
Mean 𝐸[𝑊𝑎] $20 $22.5 $25 $27.5 $30
Stdev 𝜎[𝑊𝑎] $6 $6.75 $7.5 $8.25 $9
Ancillary Cost 𝑐𝑎 $20 $20 $20 $20 $20
Myopic optimal 𝑝*𝑎 $24.51 $25.90 $27.41 $29.00 $30.65

Table 5.3: Sensitivity of DOG and No DOG to misestimation of ancillary WTP
𝑊𝑎 ∼ 𝒩 (𝐸[𝑊𝑎], 𝜎[𝑊𝑎]

2) ̸= 𝑋𝑎 at all airlines

the offer prices dynamically based on 𝑊𝑎.

First, we study the sensitivity of the baseline without DOG, where all airlines

use traditional RM and sell the ancillary service a la carte at the myopic optimal

price. In the baseline, Figure 5-21 shows that myopic ancillary prices indeed maximize

ancillary net revenue when the ancillary WTP is accurately estimated 𝑊𝑎 = 𝑋𝑎. This

is an expected result since myopic prices were optimized to maximize expected net

ancillary revenue 𝑝𝑎 − 𝑐𝑎. However, in the PODS simulation we also observe that

myopic ALC prices do not maximize total net revenue for the airline when passengers

choose between flights, itineraries and ancillaries using concurrent choice behavior.

Instead, a lower ancillary price can lead to an increase in flight revenue for the airline.

While the increase in flight revenue is relatively small (+0.2%), it outweighs the small

decrease in ancillary net revenue as the ancillary service accounts for only a small

proportion of total revenue in this simulation. From this test, we learned that in an a

la carte setting with concurrent choice behavior, total net revenue is maximized when

the ancillary service is priced slightly below the myopic optimal price.

In dynamic offer generation, 𝑊𝑎 also controls the offer set selection. When the

airline overestimates 𝑊𝑎, we have seen in Figure 5-17 that DOG offers more bundles.

When it underestimates 𝑊𝑎, DOG chooses the a la carte offer set more frequently.

This additional effect makes DOG more sensitive to misestimation than the (a la

carte) No DOG baseline. Without DOG, the difference in Airline 1’s total net revenue

at 𝐸[𝑊𝑎] = 𝐸[𝑋𝑎] = $25 and the highest observed point at 𝐸[𝑊𝑎] = $22.5 was $548,

an increase of 0.02% as shown by the black bars in the center graph in Figure 5-

22. However, when all airlines use DOG symmetrically, the total net revenue is
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Figure 5-21: Airline 1 total net revenue, ancillary net revenue and flight revenue at
different estimated ancillary WTP 𝑊𝑎

Figure 5-22: Impact of misestimated ancillary WTP 𝑊𝑎 when all airlines use DOG
symmetrically on Airline 1’s total net revenue and offer purchases

maximized when 𝑊𝑎 is overestimated. The difference in total net revenue at 𝐸[𝑊𝑎] =

𝐸[𝑋𝑎] = $25 and the highest observed point at 𝐸[𝑊𝑎] = $30 is $42,733 (+1.38%).

This shows that DOG revenues are significantly more sensitive to the ancillary WTP

parameter. In this simulated scenario, total net revenue is maximized when all airlines

overestimate 𝑊𝑎 and offer the bundled offer set 99% of the time.

5.5 DOG in a More Realistic Environment

Compared to an airline that does not use revenue management systems and per-

formed manual seat inventory management, a leg-based revenue management system

can increase passenger revenues by 4-6% (Belobaba, 1989) (Smith et al., 1992). In
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simulations, an origin-destination network RM system can add an incremental 1-2%

in revenue (Belobaba, 2002). With this context in mind, it is clear that the total net

revenue increases observed in our DOG baseline (Figure 4-15) might not be achiev-

able in reality. While the baseline 5-10% revenue gains we previously observed were

a good foundation to study the source of DOG revenue gains and the sensitivity of

the algorithm, we strive to calibrate a more realistic case in this section to assess the

potential impacts of DOG in a realistic market environment.

In this section, we simulate dynamic offer generation with one ancillary service in

the context of the largest current source of airline ancillary revenue: checked baggage

fees (IdeaWorks, 2018). All four airlines in this PODS network U10 charge a fee

for the first checked bag, which is the ancillary service. We exclude other ancillary

services from the simulation, including the second or more checked bags. An airline

with a dynamic offer generation system can now decide for each passenger request,

whether to offer the checked bag a la carte for an additional fee, or whether to include

it in a bundled offer set. As before, the offer set selection can vary dynamically based

on the flight price and the identified passenger type (business or leisure).

As before, we use DOG in a network with fully unrestricted fares. All airlines

use sell-up WTP forecasting with a network RM optimizer (DAVN). However, steps

were taken to reduce the pricing asymmetry introduced by DOG, which was able

to generate large revenue gains by charging lower fares in the last two weeks before

departure than the traditional RM system. The new simulation differs from the

baseline settings introduced in Chapter 4.1.3 in the following four ways:

1. Lower sell-up rate used in the forecast and fare adjustment for both No

DOG and DOG cases. The airlines use a FRAT5d sell-up curve instead of

FRAT5c, which reduces their estimate of customer conditional flight WTP.

The underlying maximum WTP of the simulated passengers in unchanged. The

RM system believes that fewer passengers can afford to purchase the higher fare

classes. As a result, the more seats in lower fare classes become available and

thus the average flight price drops.
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2. Tighter bounds on DOG offer prices. The width parameter is reduced

from 𝑏 = 1.0 to 𝑏 = 0.5. The ability of DOG to adjust its prices away from

the lowest available fare determined by the RM system is reduced by half. As

a result, the average flight prices in DOG are going to be more similar to the

prices in the No DOG baseline. This better reflects the limited ability of an

airline to change its pricing without eliciting a competitive response in a realistic

market.

3. Lower DOG Q multipliers, which represent the airline’s estimate of condi-

tional flight WTP for each passenger segment. In the previous tests, the airlines

estimated the mean conditional flight WTP using a Q multiplier of 3.0 times

the lowest filed fare in the market for passengers and 1.2 for leisure passengers.

We use new values of 2.7 and 1.1, respectively. As the sell-up rate in the RM

system is reduced, the Q multipliers in DOG are adjusted accordingly to lower

the DOG prices quoted to passengers. The new values were chosen to match

the DOG airline’s average fares as closely as possible to the No DOG airline’s

average fares, simulating a competitive equilibrium.

4. Differentiated ancillary parameters between business and leisure passenger

segments. As we model the ancillary service as a checked baggage fee, leisure

passengers are willing to pay more, while some business passengers travel with-

out checked baggage at all. The parameters are chosen such that the ancillary

revenue represents around 3% of the airlines’ total passenger revenue, which is

in line with American Airlines’ 2018 revenue from baggage fees.

Specifically, the following parameters were used for the ancillary service: Each

leisure passenger’s ancillary WTP is normally distributed with a mean of $31 (𝑋𝑎 ∼

𝒩 ($31, (0.3 · $31)2)). Half of all generated business passengers have a normally dis-

tributed ancillary WTP with a mean of $25 (𝑋𝑎 ∼ 𝒩 ($25, (0.3 · $25)2)), while the

other half does not travel with checked baggage and has an ancillary WTP 𝑋𝑎 = 0. In

the initial test, all DOG airlines can distinguish between business and leisure passen-

ger types with 100% accuracy. They also accurately estimate both passenger types’
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Airline 1 No DOG AL1 Only DOG All ALs DOG
Total Net Revenue $2,858,341 (+4.6%) $2,990,873 (+1.7%) $2,905,600
RPM 23,460,878 23,621,755 23,525,016
ASM 28,588,660 28,588,660 28,588,660
Net Yield $0.1218 $0.1266 $0.1235
Load Factor 82.06% (+0.6pts) 82.63% (+0.2pts) 82.29%

Table 5.4: Overall simulated results for Airline 1 of dynamic offer generation (DOG)
with medium demand and new parameters

ancillary WTP distributions 𝑊𝑎 = 𝑋𝑎. All airlines incur a cost of 𝑐𝑎 = $25 per an-

cillary service sold. When an airline does not use DOG, they are unable to segment

the ancillary price between business and leisure passengers. As a result, they sell the

ancillary service a la carte at a unified price of 𝑝𝑎 = $33.59, which is the myopic op-

timal price that maximizes ancillary net revenue under the 39%/61% mix of business

and leisure bookings seen in the medium demand PODS simulation.

Compared to the original DOG baseline (Figure 4-15), the revised parameters

lead to smaller total net revenue increases as airlines switch from traditional RM to

DOG. As seen in Figure 5-23 and Table 5.4, when Airline 1 asymmetrically implements

DOG under medium demand levels, their net revenue increases by +4.6% (previously:

+10.5%) at the expense of the remaining airlines with traditional RM. This increase is

achieved with a load factor increase of +0.6pts, whereas previously asymmetric DOG

decreased the airline’s load factor by -1.3pts. As all four airlines symmetrically use

DOG, Airline 1’s net revenue gain reduces to +1.7% (previously: +5.1%) with a load

factor increase of +0.2pts (previously: +0.6pts). These more conservative revenue

increases are more achievable under real competitive market conditions.

Figure 5-24 explains how the new parameters reduced the revenue gains from

DOG. In the previous baseline (indicated with transparent lines), we observed that

DOG undercut the traditional RM system’s prices in the last two weeks before depar-

ture, which allowed the airline to gain a lot of high-revenue business passengers. To

protect additional seats for close-in demand, DOG charged higher advance fares than

the No DOG airlines. This introduced a strong shift in the booking curve compared

to the No DOG case (Figure 4-8), allowing large revenue gains to occur. With the
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Figure 5-23: Overview of DOG net revenue gains and load factor changes in symmetric
and asymmetric tests (medium demand level, ancillary service modeled as checked
baggage fee)

Figure 5-24: Airline 1 average net revenue per passenger for both old (medium de-
mand, FRAT5c, Q=3.0/1.2, b=1.0) and new parameters (medium demand, FRAT5d,
Q=2.7/1.1, b=0.5): Symmetric DOG fares are very similar to No DOG baseline fares
with new parameters
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Figure 5-25: Airline 1 bookings by timeframe for both old (medium demand, FRAT5c,
Q=3.0/1.2, b=1.0) and new parameters (medium demand, FRAT5d, Q=2.7/1.1,
b=0.5): DOG introduces a smaller booking curve shift with new parameters

new parameters, the symmetric DOG prices are much closer to the No DOG prices.

In particular, the switch to a less aggressive sell-up curve (FRAT5d) reduced No

DOG prices close-in. Close-in DOG prices are lower than before and better matched

with the new No DOG baseline throughout the booking window using Q multipliers

of 2.7/1.1. This reduces the effect of DOG undercutting the traditional RM’s pric-

ing, lowering the revenue gains observed as well as the booking curve and market

share shift (Figure 5-25). Most importantly, DOG remains revenue positive in both

asymmetric and symmetric tests, even after reducing these competitive effects.

Dynamic offer generation continues to choose between offering the a la carte and

bundled offer set for each booking request. Across all passengers on Airline 1, Figure

5-26 shows the breakdown of offers purchased with the revised ancillary parameters,

which are modeled as a checked baggage fee. In the No DOG case, when the an-

cillary service is optional for all passengers, 26% of passengers purchase it at the

myopic optimal price of $33.59. 39.0% of leisure passengers chose to purchase the ser-

vice, while only 6.3% of business passengers purchased the service, given their lower

willingness-to-pay. In the symmetric case when all airlines use DOG (All DOG), 36%

of all passengers were offered no choice and the ancillary service was already bundled
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Figure 5-26: Airline 1 bookings by offer purchased: Proportion of overall bundle pur-
chases reduced from 76% to 36% in symmetric DOG with new differentiated ancillary
parameters

in their fare. The remaining 63% of passengers could purchase the service at a seg-

mented myopic optimal price of $30.64 for business passengers or $34.10 for leisure

passengers. Since DOG was able to distinguish passenger types with 100% accuracy,

all business passengers were offered the a la carte offer set, which maximized expected

net revenue given the low WTP for the ancillary service. On the other hand, 60%

of leisure passengers were offered the bundle, whenever its expected net revenue was

higher than the a la carte offer set. This generally occurred at higher flight prices.

In reality, the passenger type identification cannot be 100% accurate and airlines

sometimes misestimate the true passenger WTP. We explore this in a sensitivity test,

in which we reduce the probability of correct identification of each passenger from

100% to 50% for all airlines simultaneously. Whenever passengers are incorrectly iden-

tified, they are shown the offer set and prices that correspond to the other passenger

segment (business or leisure). Airline 1’s total net revenue gain in both asymmetric

and symmetric cases compared to the traditional RM baseline, where no passenger

type segmentation is performed, is shown in Figure 5-27. The previous DOG base-

line was shown to be sensitive to identification accuracy in Figure 5-4. However,

the new parameters show a strong resilience of DOG revenue to changes in identifi-

cation accuracy, with asymmetric gains between 4.1%-4.6% (previous: 5.8%-10.5%)

and symmetric gains between 1.2%-1.7% (previous: -0.6%-5.1%). This is largely
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Figure 5-27: Airline 1 total net revenue gain with the asymmetric and symmetric use
of DOG at varying passenger type identification accuracy (medium demand, FRAT5d,
Q=2.7/1.1, b=0.5)

attributed to the reduced bounding parameter b=0.5, which reduces the degree of

dynamic price adjustment performed for both passenger segments. The prices for

business and leisure passengers are closer to each other, which reduces the impact of

misidentification.

5.6 Summary

In this chapter, we performed extensive sensitivity tests on the performance of DOG

measured by simulated revenue gain. We showed that competitive effects dominate

the simulated revenue impacts of DOG, as they would in reality. The flight-related Q

multipliers that are used by DOG to estimate flight WTP and associated passenger

type identification accuracy were shown to have the biggest impact on DOG revenue

gains, as they control the flight prices. The revenue gains were highest when DOG

parameters were set to generate prices that undercut traditional airlines, since there

was no competitive response in our simulations.

129



Comparatively, ancillary services generate only a small proportion of total airline

revenue and thus have a smaller impact on total revenue gains. Nonetheless, there is

a revenue benefit of 0-2% from asymmetrically bundling the ancillary service with the

flight. This is maximized when bundles are offered to passengers with high ancillary

WTP and/or for ancillary services that have a low cost of provision. There exists

value in offering specific ancillary bundles to passenger segments that have a high

WTP for those services, but it can be challenging to accurately segment passengers

and estimate their ancillary WTP.

Finally, we tested DOG with revised parameters that more accurately reflect real

market conditions. Using our insights from the sensitivity tests, DOG was calibrated

to reduce the degree of flight price segmentation between business and leisure passen-

gers. As DOG flight prices are then more similar to the No DOG baseline, simulated

revenue gains from DOG are more modest, up to +1.7% in the symmetric case. The

ancillary service was sometimes bundled for leisure passengers, representing a checked

baggage fee that many business passengers have a lower willingness-to-pay for. We

showed that dynamic offer generation can lead to revenue gains when applied to a

single ancillary service. We also showed that by placing bounds on the price seg-

mentation, the algorithm can be made more resilient to passenger type classification

errors.
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Chapter 6

Conclusions

Our research is guided by two major trends in the airline industry: the transformation

of the airline distribution process with the New Distribution Capability (NDC) and

the diversification of airline ancillary revenue streams. NDC has sparked interest in

both continuous pricing and segmented pricing, for which airlines are seeking new

revenue management (RM) models. Following the mission of RM, offering the right

product to the right customer at the right price at the right time, NDC could allow

airlines to better identify a customer’s valuations and shape their products and prices

accordingly. At the same time, the RM focus has shifted from one of flight ticket

revenue maximization to total revenue maximization and offer generation.

As ancillary revenues become more important to airlines, new RM models are

required to optimize ancillary pricing. Given the variety of ancillary services an

airline sells, a new opportunity arises for bundling and the generation of different

product offerings for different passenger segments. While a family on vacation may

be most interested in checked baggage and seat assignment services, business travelers

might prefer different services such as priority boarding or onboard internet.

In this thesis, we presented a new RM heuristic that enables dynamic offer gen-

eration, which utilizes the New Distribution Capability to generate customized offers

and bundles. Together with a traditional RM system, it jointly optimizes prices for

both flights and ancillaries. We used this model to study the benefits of dynamic offer

generation and its implications for the airline industry.
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6.1 Research Findings and Implications

Our literature review (Chapter 2) explored the extensive body of literature on airline

flight revenue management. The prospect of continuous pricing has only heightened

interest in the area, as the flight RM process evolves from one of assortment optimiza-

tion (the allocation of seat inventory to a pre-defined set of products and price points)

to one of price optimization (the determination of the optimal price point for a given

seat). On the other hand, the area of ancillary RM is relatively nascent as researchers

begin to explore how ancillary pricing can impact flight revenue and how passengers

might choose their airline and itinerary based on the provided ancillary services. In

particular, the area of bundle price optimization contains only limited literature, with

initial economic studies proving that the joint bundle pricing of products can increase

revenue for the retailer under the assumption of rational choice.

Our dynamic offer generation (DOG) model (Chapter 3) combines research in

all these areas and integrates with existing airline revenue management systems to

deliver new capabilities for airline distribution. We show how relatively simple heuris-

tics can be used to optimize the prices of offers that combine flights with ancillary

services. They can also determine the revenue-maximizing offer set and present it to

the customer. We illustrate how the optimal price of an offer depends on the prices

of all other offers in the offer set, as consumers make their purchase decision among

all offers in the offer set. We show how the generated prices depend on the model’s

input variables in intuitive ways: The price generally increases with the cost of pro-

viding the service, as well as the passenger’s willingness-to-pay (WTP). The price of

a bundle of a flight and an ancillary service always costs more than the flight itself,

but not more than purchasing both services a la carte. We also show that expected

revenue can be increased by offering only the bundle and no option to purchase the

standalone flight when the ancillary WTP sufficiently exceeds the cost of provision.

While our problem statement is very general, the solution heuristic provided re-

lies on several strong assumptions that limit its optimality. In line with the PFDynA

heuristic for dynamic flight price adjustment (Wittman, 2018), it assumes a normally
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distributed conditional flight willingness-to-pay. It also fundamentally assumes con-

current choice behavior, where passengers rationally weigh all offers against their

willingness-to-pay. In reality, some passengers could be less well-informed about an-

cillary services and may choose differently. In addition, rational choice behavior has

natural limitations in pricing, which is explored in the field of pricing psychology.

The heuristic also relies on airlines to calibrate the model to their purchase data and

accurately segment the booking requests, processes which we do not explore in this

thesis.

We showed tests of DOG in the Passenger Origin-Destination Simulator (Chapters

4 and 5). Under baseline settings with fully unrestricted fares, willingness-to-pay

forecasting, concurrent passenger choice behavior, and a single ancillary service, DOG

delivers strong total net revenue gains of +10.5% in asymmetric tests, when one of

the four competing airlines implements it. We show that this comes at the expense

of the other airlines using traditional pricing and RM, which are being undercut by

the DOG airline. When all airlines implement DOG symmetrically, the net revenue

gains are reduced to 4-5%.

Further analysis showed that the majority of this increase comes from dynamic

price adjustment and segmented pricing of the flight, which leads to a large increase

in revenue as the algorithm discounts close-in fares to attract more bookings. In

the traditional pricing structure that we used as the baseline, the price gap between

two fare classes is largest in the highest booking classes sold close to departure.

The continuous prices produced by the algorithm close the gap and sell the flights at

intermediate price points. It is important to note that the simulations did not include

competitive responses to the new pricing structure. In the real world, it is likely that

traditional airlines would have lowered their fares accordingly, reducing the revenue

gain observed by the DOG airline.

Our tests identify a smaller revenue benefit of offer set selection and bundling,

when isolated from the impacts of flight pricing. Under concurrent choice behavior,

it can be the revenue-maximizing strategy to only offer the bundled product, requir-

ing the customer to purchase the ancillary service with the flight. This strategy alone
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can lead to simulated net revenue gains between +0.1% and +2.6% asymmetrically

and between -0.2% and +0.9% symmetrically, depending on the ancillary WTP and

cost assumptions. In the asymmetric case, the airline that offers bundles can attract

customers from its a la carte competitors by charging a lower total price, further

increasing its flight revenue. In the symmetric case, this competitive advantage dis-

appears and the simulated net revenue gain reduces. Since the ancillary revenue

represents only 3-5% of an airline’s total revenue, any ancillary revenue gains can be

outweighed by slight decreases in flight revenue.

In a final test, we sought to reduce the potentially exaggerated competitive effects

observed in the simulation. After adjusting the pricing, limiting the dynamic price

adjustment range, and recalibrating the ancillary service parameters to be primarily

attractive to leisure passengers, we observe lower DOG net revenue gains of +4.6%

asymmetrically and +1.7% symmetrically. These gains are less sensitive to passenger

segmentation accuracy and offer a deeper insight into how DOG may actually perform

under realistic market conditions in an unrestricted fare environment.

Our research shows that there exists a revenue benefit attributable to price seg-

mentation for both flights and ancillary services. Airlines historically practiced flight

price segmentation by offering a set of different price points for purchase with differ-

ent restrictions that appeal to different customer segments. For instance, a flexible

and refundable fare might be offered alongside a discounted, nonrefundable fare with

round-trip restrictions. The effectiveness of such restrictions has reduced as competi-

tion by low-cost carriers has led to the introduction of less-restricted and unrestricted

fare structures. Some low-cost carriers only offer one price point on a flight at any

given time. Our simulations show that revenue can be gained by dynamically ad-

justing this price point for business and leisure passengers on a continuous spectrum,

which could be enabled by the New Distribution Capability.

Furthermore, our results show that airlines can gain additional revenue by selec-

tively bundling ancillary services with the flight. When such a bundle is offered to

customers that have a high WTP for the included services, the airline can increase

its revenue. In a competitive simulation, this revenue gain depends on the ancillary
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pricing of the competitors and can only be achieved when the bundle is cheaper than

the competitors’ offers. However, in all of our tests with DOG, the majority of rev-

enue gains are attributed to the dynamic pricing of the flight, which undercuts the

traditional flight prices, and not the bundling of ancillaries.

These observations open the door to further research on dynamic offer generation:

With the New Distribution Capability, airlines will be able to adjust their pricing

in real-time, potentially also in response to competitor pricing. In the future, RM

algorithms could incorporate information about competitor’s prices and their impacts

on customer conditional WTP.

6.2 Suggested Future Research Directions

The dynamic offer generation model introduced in this thesis can be used as an

initial step towards a world of offer generation and continuous pricing. However, its

assumptions cause limitations that could be resolved with further research, namely:

∙ Intentionally, the heuristic uses a traditional class-based RM system as the

backbone to perform demand forecasting and bid price calculations. While this

is desirable to enable airlines with existing RM systems to adapt to the New

Distribution Capability, it introduces additional complexity to the solution. For

example, DOG bookings are currently assigned to a fare class, whose filed fare

(instead of the continuous DOG offer price) is used in the RM forecast. In the

future, DOG may be directly integrated into a classless RM system (Liotta,

2019) (Papen, 2020) that directly generates a demand forecast from the DOG

prices paid. The conditional WTP estimates used in the RM system and the

DOG heuristic could also be unified, alleviating the need to reconcile and bound

the DOG-optimized prices to those generated by the RM system.

∙ We assumed that the airline only offers one price point at any given time on a

flight. Airlines commonly sell flights at multiple price points that differ in their

attributes, such as change or cancellation penalties. Further research could
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extend DOG to optimize multiple flight price points with different attributes.

∙ In our tests, the opportunity cost of selling a seat varied with the bid price

provided by the traditional RM system, yet the cost of selling an ancillary

service was fixed and known. To extend the model to capacity-constrained

ancillary services, such as extra-legroom seating, a variable cost of the ancillary

service could be used. At the limit, the ancillary service could have its own

bid price that represents the opportunity of selling the last unit of ancillary

capacity, which could be generated from a separate ancillary demand forecast.

∙ In this thesis, we primarily studied DOG with one ancillary service, where the

algorithm decides to either offer the ancillary service a la carte (a pure compo-

nents strategy) or bundled with the flight (pure bundling). When extended to

two or more ancillary services, an additional pricing strategy can be explored:

mixed bundling. In mixed bundling, an airline offers the individual ancillary

services at an (a la carte) price, yet in the same offer set also offers a discounted

price when more than one ancillary service is purchased. Such an offer set

that combines individual component prices with bundle discounts can generate

higher revenue under certain conditions (Adams and Yellen, 1976).

∙ In our model, we assume that all customers’ conditional WTP for all flights

and ancillary services are drawn from independent probability distributions.

However, further research could be done to relax this assumption. According to

the economics literature, bundling products that have a negatively correlated

WTP can be a revenue-maximizing strategy (McAfee et al., 1989). Accounting

for correlations in the DOG calculations may further increase the revenue benefit

of dynamic bundling.

∙ Currently, the DOG price optimization is challenging to solve optimally, espe-

cially as the number of ancillary services increases. This is because the con-

current choice assumption used requires the convolution of different probability

distributions, which is especially complex for the Gaussian conditional WTP
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distribution, for which we developed the 𝜇-Heuristic (Chapter 3.2.4). Future

research could explore different choice models, where the solution to the price

optimization problem scales better to a large number of ancillary services and

which can be more easily calibrated to real-world purchase behavior.

∙ The concurrent choice assumption prescribes a specific rational choice behavior

that might not be able to model the real-world purchases of airline customers.

As a result, it is not a given that the optimized DOG prices and selected offer

sets would maximize expected revenue in a real implementation. For example,

the ability of airlines to distribute information about offered ancillary services

and their pricing is currently limited in indirect channels such as the Global

Distribution Systems commonly used by travel agents. This reduces the price

transparency and the ability of customers to make rational and fully-informed

purchase decisions. A more flexible choice model may be able to better capture

these diverse purchase behaviors observed in reality, as well as some aspects of

pricing psychology such as the effect of anchoring and adjustment.

∙ In this thesis, we do not discuss the problem of model calibration and parameter

estimation. Estimating passenger’s conditional flight and ancillary WTP is a

challenging problem on its own, and our results assume that these parameters

are provided to the algorithm. Further research in this area could determine the

achievable estimation accuracy and incorporate parameter uncertainty into the

DOG algorithm, such that its solutions are robust for a range of parameters.

This is particularly relevant for offer set selection, where offering a bundled offer

set can lead to revenue losses, if the provided input parameters were inaccurate.

∙ We do not study the challenges of passenger segmentation either, we instead

assume a given identification accuracy can be achieved. Further research in the

area could develop new classification models that assign a booking request to a

given customer segment, based on the parameters in the search request (desti-

nation, day-of-week, time-of-day, advance booking period, trip length, number

of passengers, etc.).
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The New Distribution Capability has opened the possibility of fundamentally

rethinking airline distribution and removing decades of legacy distribution system

restrictions. But the technological difficulties of integrating a completely new revenue

management system or even the dynamic offer generation heuristic should not be

underestimated. The human aspect of this change alone presents challenges: how can

existing pricing and inventory teams at airlines work with an algorithm to optimize

offer prices, but also respond to competitor action? As our results show, airlines

that adapt and successfully employ the new capabilities enabled by NDC such as

price segmentation, continuous pricing and ancillary bundling may reap the rewards

of being the first mover: In all of our tests, the revenue gains were higher for the

DOG airline when its competitors were still using traditional pricing and RM than

in the fully symmetric tests where all airlines used DOG.

There also remains future work for revenue management researchers in this area,

as existing RM systems expand their reach into ancillary services and total revenue

optimization. In particular, the offer set selection problem adds a new dimension to

the revenue management problem, significantly expanding the solution space. As we

have shown, the opportunity for revenue gains exists for airlines that optimize the

offers shown to customers. As such, the mission of revenue management may have to

expand from selling the right product to the right consumer at the right time and at

the right price. Instead, the challenge now is to sell the right set of products to the

right consumer at the right time and at the right prices.
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