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Abstract

Human dexterity far exceeds that of modern robots, despite a much slower neuromus-
cular system. Understanding how this is accomplished may lead to improved robot
control. The slow neuromuscular system of humans implies that prediction based on
some form of internal model plays a prominent role. However, the nature of the model
itself remains unclear. To address this problem, we focused on one of the most complex
and exotic tools humans can manipulate—a whip. We tested (in simulation) whether
a distant target could be reached with a whip using a (small) number of dynamic
primitives, whose parameters could be learned through optimization. This approach
was able to manage the complexity of an (extremely) high degree-of-freedom system
and discovered the optimal parameters of the upper-limb movement that achieved
the task. A detailed model of the whip dynamics was not needed for this approach,
which thereby significantly relieved the computational burden of task representation
and performance optimization. These results support our hypothesis that compos-
ing control using dynamic motor primitives may be a strategy which humans use to
enable their remarkable dexterity. A similar approach may contribute to improved
robot control.

Thesis Supervisor: Neville Hogan
Title: Sun Jae Professor of Mechanical Engineering
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Chapter 1

Introduction

Tool-use is a hallmark of human behavior. The dexterity required to handle a broad

range of tools has been widely recognized as a distinctively human characteristic

[Boesch and Boesch, 1990, Hunt, 1996, Johnson-Frey, 2004, Kenward et al., 2005,

Lewis, 2006, Hogan and Sternad, 2012, Hogan, 2017]. Although many animals employ

simple tools to extend their physical capabilities, there still is a significant gap between

the performance of humans and non-human beings. The way humans make and use

tools is perhaps what sets our species apart from any other animals.

Inspired by this salient feature, intensive research on human tool manipulation

aims to eventually confer this dexterity onto robots. However, despite extensive

research, the remarkable performance of humans has yet to be replicated, and a

comprehensive theoretical framework remains to be established.

1.1 The Paradox of Human Performance

A paradox emerges when we recognize that humans vastly out-perform modern robot

technology despite low-bandwidth actuators, imprecise sensors, high levels of noise

and long latencies in neural communication within the neuromuscular system. The

fastest neural transmission speed in humans is no more than 120m/s (animals’ con-

duction speed is slower and less economical) [Kandel et al., 2000, Sperelakis, 2012].

Even the fastest neural transmission speed is a million times slower than in its robotic
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counterparts, which can conservatively reach up to ∼108m/s [Myers, 2009].

Muscles, our biological actuators, are slow. The typical twitch contraction time,

the time from an impulsive stimulus (e.g., electrical) by the nervous system to peak

isometric tension, for the human biceps brachii is about 50ms [Kandel et al., 2000].

Assuming a linearized model to approximate this neuromuscular system results in

a bandwidth of about 3Hz. In comparison, electromechanical technology routinely

achieves bandwidth from tens to hundreds of Hz [Paine et al., 2013].

The brain, which is the central organ of the human nervous system, is also slow.

The spatial cognitive performance of the brain was assessed from the classic “mental

rotation” task [Shepard and Metzler, 1971]. It was reported that the average time

required to determine whether two visual objects were the same in shape or mirror im-

ages (enantiomer), increased linearly with the angular difference in their orientation.

Quantitatively, the average reaction time of the subjects required about 1 second plus

1 additional second per 60∘, i.e. ∼4s for 180∘ rotation.

How can the sensorimotor capabilities of humans out-perform modern robots,

despite their slow “hardware” (e.g., muscles) and “wetware” (e.g., neurons)?

1.2 Internal Models in Human Motor Control

Since the slow neuromuscular system impairs reactive control, the controller must rely

heavily on prediction, as in model-predictive control (MPC) [Sakaguchi et al., 2015].

The considerable closed-loop delay of the neuromuscular system makes pure feedback

control of large classes of fast movements impossible [Gerdes and Happee, 1994].

Even fast and coordinated arm movements, ubiquitous in everyday tasks, cannot be

executed solely by feedback control [Kawato, 1999]. Thus, rather than achieving

motor skills based on real-time intervention from the central nervous system (CNS),

the slow neuromuscular system implies that prediction based on some form of internal

model plays a prominent role in human motor control.

The concept of an internal model contributing to human motor control is not

new. Over the last several decades, the hypothesis that the nervous system con-
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structs predictive internal models of the physical world has been a major focus in

neuroscience [Wolpert et al., 1998, Kawato, 1999, Flanagan et al., 2003, Crevecoeur

et al., 2010, Degallier and Ijspeert, 2010, McNamee and Wolpert, 2019]. However,

although prediction based on some form of internal representation is widely accepted

as a key aspect of human motor control, the nature of the internal model itself still

remains unclear.

1.3 Why study a Whip?—Complexity is Informative

If an internal model plays a key role in human motor control, in what form will the

internal model be? To address this problem, we focus on one of the most complex

and exotic tools which humans can manipulate—a whip.

There are several reasons why studying the manipulation of an object as complex

as a whip promises new insight. In particular, a whip forces us to confront the

daunting complexity of tools which humans can routinely master. Previous motor

neuroscience research has gained considerable insight from studying the Lagrangian

dynamics of an open kinematic chain of rigid bodies. This explicit and/or implicit

knowledge of body dynamics was postulated to be implemented in neural circuits

involving the cerebellum, i.e. an “internal model” [Shidara et al., 1993, Wolpert

et al., 1998, Kawato, 1999]. However, owing to the rapid growth of computational

complexity with degrees-of-freedom, most of these studies were confined to models

with a small number of degrees-of-freedom (often as few as two). Regarding motor

learning as equivalent to some form of optimization process, real-time optimization of

Lagrangian dynamic systems with as few as tens of degrees-of-freedom is profoundly

challenging [Martínez-del Rincón et al., 2007, Khusainov et al., 2018]. Due to what

Richard Bellman called the “curse of dimensionality”, optimization suffers deeply from

the exponential growth of computational complexity, and often fails to converge to

an optimal solution [Bellman, 2015].

A whip has vastly more degrees-of-freedom with significant dynamics. A whip

is a flexible object with non-uniform mechanical properties that interacts with a
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compressible gas up to the supersonic regime. A competent engineering-style model to

describe the whip dynamics requires nonlinear partial differential equations of infinite

order [Bernstein et al., 1958, Goriely and McMillen, 2002, McMillen and Goriely,

2003]. This complexity is not confined to whips: similar dynamics are observed in

common objects such as tablecloths and towels. The daunting complexity innate

to these extremely high degree-of-freedom (DOF) objects (in principle an infinite

number), is almost unmanageable, taxing even modern super-computers.

Nevertheless, apparently indifferent to this daunting complexity, humans can learn

to manipulate a whip, sometimes with apparent ease, with some “whip masters”

reaching an impressive level of expertise [Henrot, 2016]. In preliminary studies we

found that an expert whip master could wield a 6-foot (∼1.8m) bullwhip to hit a

2.5-inch (∼6.4cm) diameter target at a distance of 6-foot (∼1.8m) with a success rate

of more than 90%. This observation suggests that the CNS employs a profoundly

different approach than optimization based on an engineering-style model.

1.4 Dynamic Motor Primitives Hypothesis

Mounting evidence indicates that human sensorimotor control relies on a composition

of primitive dynamic actions [Sternad et al., 2000, Thoroughman and Shadmehr,

2000, Flash and Hochner, 2005, Kargo and Giszter, 2008, Sternad, 2008, Sing et al.,

2009, Degallier and Ijspeert, 2010, Dominici et al., 2011]. Instead of containing an

exact model of the tool being manipulated, we propose that humans simplify the

motor task by composing motor control using “dynamic motor primitives” [Hogan

and Sternad, 2012, Hogan and Sternad, 2013, Hogan, 2017].

“Dynamic motor primitives” refers to dynamic behaviors that manifest as stable

attractors of the (nonlinear) neuromechanical system. They are conceived as dynamic

“building blocks” that may be combined to produce complex behavior. Three classes of

dynamic primitives have been identified — submovements, oscillations and mechanical

impedances, the latter to manage physical interaction — though there may be others

[Hogan and Sternad, 2012, Hogan, 2017] [Figure 1-1]. We hypothesize that the
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internal model used for (at least some) cognitive operations (e.g., learning,

recalling, predicting and planning) is based on dynamic motor primitives.

Submovements Oscillations Mechanical
Impedances

Dynamic Motor Primitives

𝑍: 𝚫𝒙 𝑡 → 𝒇(𝑡)

#Discrete #Point-to-Point #Rhythmic #Repetitive #Interaction #Operator

Figure 1-1: Three dynamic motor primitives - submovements, oscillations and me-
chanical impedances.

To test this hypothesis, we studied how humans learn to manipulate a complex

object with significant dynamics — a whip. Encoding motor tasks via parameterized

dynamic primitives may dramatically simplify the control of complex objects, thus

enabling dexterous manipulation with minimal high-level supervision and interven-

tion. Using optimization as a model of learning, this parameterization may enable

convergence (or accelerate it) without encountering limitations due to the “curse of

dimensionality”.

The thesis set out to test (in simulation) whether a target could be reached with

a whip using a (small) number of dynamic primitives, whose parameters were learned

through optimization. We found that this approach was able to identify an upper-

limb movement which could approximate a distant target with a whip. This result

supports our hypothesis that composing actions using dynamic motor primitives may

be a strategy which humans use to enable their remarkable dexterity. A similar

approach may contribute to improved robot control.

27



1.5 Overview of Thesis

This research aims to validate the following hypothesis: humans simplify motor

tasks by employing an internal model based on dynamic motor primitives.

This introductory chapter provided the reasoning that led to this hypothesis, and

emphasized the importance of this study.

Chapter 2 delves into the basic definition of each dynamic motor primitive in

detail — submovements, oscillations and mechanical impedances. Using mathemati-

cal language, definitions for each primitive are presented, and the Norton equivalent

network model, which combines these primitives, is discussed.

Chapter 3 introduces the upper-limb and whip model used for simulations. The

models differ depending on the dimensionality of the movements, i.e. whether move-

ment is in 2D or 3D space.

Chapter 4 discusses the numerical accuracy of the MuJoCo (Multi-Joint dynam-

ics with Contact) software used for simulation [Todorov et al., 2012]. How well the

numerical integrator used for the simulation complies with the law of energy conser-

vation was tested.

Chapter 5 discusses a theoretical analysis of a linearized 2D planar whip model.

Eigenvalue and eigenvector analysis of the linearized whip model was conducted.

Chapter 6 discusses experimental estimation of the parameters of the whip model.

By conducting a simple experiment with the actual whip, the model parameters of

the 2D planar whip model were identified.

Chapter 7 discusses a 2D planar whip task. With the planar model described in

[Chapter 3], an upper-limb controller and a whip task to be optimized are defined.

Detailed results of the optimization are presented.

Chapter 8 discusses a 3D spatial whip task. The whip task defined in [Chapter 7]

is generalized to 3D, and optimization results of the spatial whip task are presented.

Finally, chapter 9 presents conclusions of the present work, the relation to prior

research, limitations of the research and discussion of further inquiry which should

be addressed in the near future.
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Chapter 2

Dynamic Motor Primitives

Dynamic motor primitives are defined as patterns of behavior that emerge from dy-

namic systems, that is, as attractors [Hogan and Sternad, 2013]. An attractor is a

subset of state-space with (at least) two main properties. First, it is an invariant

set: if the system resides in an invariant set, it never leaves.1 Second, the invariant

set is attractive: if the initial condition of the system starts sufficiently close to the

invariant set, the system will eventually converge to the attractor.

Three distinct classes of dynamic motor primitive are proposed as a foundation for

a comprehensive theoretical framework — submovements, oscillations and mechan-

ical impedances. Submovements and oscillations provide a basis for unconstrained

movements, and mechanical impedances account for contact and physical interaction

with objects. For combining the three dynamic motor primitives, a Norton equivalent

network model is re-purposed and extended to provide a unified framework.

2.1 Submovements

One class of dynamic primitives manifests as submovements. A submovement is con-

ceived as a coordinative atom: just as atoms are primitive units of chemical reactions,

1A simple example is the eigenspace corresponding to a specific eigenvalue of a linear operator. Let
the eigenvalue and eigenvector of linear operator 𝐴 be 𝜆 and 𝑣, respectively. Then the 𝑊 = span{𝑣}
is an invariant subspace of dimension 1 with respect to operator 𝐴, and the elements of subspace
𝑊 are 𝐴 invariant.
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submovements are elements of dynamic coordination for composing motor behavior

[Hogan and Sternad, 2012].

To render precision with mathematical language, let 𝑥 be a 𝑛-length vector, 𝑥 ∈
R𝑛, which contains coordinate information (position, orientation etc.) with respect to

a specific coordinate frame. We define a submovement as an attractor that describes

a smooth transition of a variable from one value to another with a stereotyped time

profile. In particular, a single submovement is defined as a stereotyped unimodal

speed profile with basis function 𝜎(𝑡):

�̇�𝑗(𝑡) = 𝑣𝑗𝜎(𝑡), 𝑗 = 1, 2, · · · , 𝑛 (2.1)

where 𝑥𝑗 is the 𝑗𝑡ℎ variable of vector 𝑥; 𝜎(𝑡) is the unit basis function with a unimodal

profile; 𝑣𝑗 is the speed amplitude which scales the unit basis function 𝜎(𝑡); dots denote

derivatives with respect to time.

The basis function 𝜎(𝑡) has a non-zero positive value within a single finite duration,

and the function value is zero outside of that domain. The derivative of function 𝜎(𝑡)

is zero at the peak, and the peak value is 1, i.e. if the time where the peak happens

is taken to be 𝑡𝑝, then �̇�(𝑡𝑝) = 0 and 𝜎(𝑡𝑝) = 1 [Figure 2-1].

These speed profiles with different amplitude and duration can be superimposed

along time. Assuming that 𝑚 submovements with the same speed profile 𝜎(𝑡) are

combined, the resulting speed profile of variable 𝑥𝑗 is:

�̇�𝑗(𝑡) =
𝑚∑︁
𝑘=1

𝑣𝑗𝑘𝜎(𝑡|𝑏𝑘, 𝑑𝑘), 𝑗 = 1, 2, · · · , 𝑛 (2.2)

where 𝑣𝑗𝑘 is the speed amplitude of the 𝑗𝑡ℎ coordinate of the 𝑘𝑡ℎ submovements; 𝑏𝑘

and 𝑑𝑘 is the start time and duration of the 𝑘𝑡ℎ submovement, respectively [Figure

2-2].
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𝑣

𝑡

�̇�𝑗(𝑡)
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𝜎(𝑡)

Figure 2-1: Plot of a representative single submovement with a unimodal speed profile
�̇�𝑗(𝑡). The basis function 𝜎(𝑡) is plotted as a dashed line. 𝑣 is the peak speed of the
submovement; 𝐷 is the duration of the submovement; 𝑡𝑝 is the time when the peak
happened.

𝑏1 𝑏2 𝑏1 + 𝑑1 𝑏2 + 𝑑2

𝑣𝑗1

𝑣𝑗2

𝑡

�̇�𝑗(𝑡)

Figure 2-2: Plot of 2 superimposed submovements. Individual submovements are
plotted as dashed lines. 𝑏, 𝑑 and 𝑣𝑗 are the start time, duration and speed amplitude
of 𝑗𝑡ℎ coordinate for each submovement.
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The way the movements are composed makes the major difference between sub-

movements and discrete movements. Submovements are like discrete (rest-to-rest)

movements but they may overlap in time and their profiles may superimpose [Hogan

and Sternad, 2013]. Claiming that any consistent definition of discrete movements re-

quires that it should begin and end with a period of no movement, discrete movements

can only be “sequenced” and cannot be “overlapped” in time [Hogan and Sternad,

2007, Hogan and Sternad, 2013]. Considering the rich variety of movements which

humans exhibit, composing movements solely of discrete movements would severely

restrict the repertoire of movements which can be generated. Defining submove-

ments which can overlap in time can overcome this limitation and serve as competent

“building blocks” of observable motor behavior.

Submovements may require complex patterns of neuromuscular activity to gener-

ate movement. However, the definition of submovements is deliberately confined to

the behavioral or observational level, remaining silent about possible generative dy-

namic processes that may give rise to these observations [Hogan and Sternad, 2012].

2.2 Oscillations

From a strictly mathematical perspective, rhythmic movements may not be primitive.

In principle, overlapping submovements are sufficient to describe all observed move-

ments, since oscillatory or repetitive motor behaviors can be decomposed to a finite

number of submovements. However, biological observations have shown that repet-

itive and discrete movements may be distinguished neurally [Brown, 1911, Brown,

1914, Grillner and Wallen, 1985, Schaal et al., 2004, Hogan and Sternad, 2012].

Rhythmic movement is very old phylogenetically and available evidence indicates

that oscillatory behavior is a distinct dynamic primitive of biological motor control

(and not a composite of submovements).

Neuroscientific evidence showed that rhythmic arm movement cannot be a com-

posite of discrete movements [Schaal et al., 2004]. For a simple discrete/repetitive

wrist joint movement, functional magnetic resonance imaging (fMRI) showed that
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discrete and rhythmic movements involved distinct regions of the brain. In detail,

discrete movement involved several higher cortical planning areas in addition to cor-

tical areas activated in rhythmic movement, even when both movements were per-

formed by the same single wrist joint. This result showed that rhythmic movements

cannot be a composite of discrete movements, although the possibility that discrete

movements are truncated rhythmic movements remains open.

For the numerous variations and degrees of periodicity shown in rhythmic and

repetitive movements, we denote these classes of dynamic primitive as “oscillations”.

In mathematical formulation, an oscillation primitive is defined as an attractor that

describes an almost-periodic motion. Let 𝑥 be an 𝑛-length vector, 𝑥 ∈ R𝑛, which

contains the coordinate information (position, orientation etc.) with respect to a

specific coordinate frame. A mathematical condition for motion to be almost-periodic

can be defined as:

|𝑥𝑗(𝑡) − 𝑥𝑗(𝑡 + ∆𝑡 + 𝑙𝑇 )| < 𝜖𝑗 (2.3)

where 𝑥𝑗 is the 𝑗𝑡ℎ variable of 𝑥; 𝑇 is a constant; its smallest value is the period of

the movement; 𝑙 is an integer; |∆𝑡| < 𝛿 is a small deviation of each cycle duration

from the period; 𝜖𝑗 and 𝛿 are small constants. As with submovements, this definition

of an oscillation is silent about the physiological-level mechanism which gives rise to

the observed behavior. The definition is deliberately confined to the behavioral or

observational level of analysis.

2.3 Mechanical Impedances

As submovements and oscillations provide a basis for unconstrained movements, they

may be sufficient to describe the observed unconstrained motor behavior of humans.

To account for contact and physical interaction with the environment, a third class

of dynamic primitives is required, mechanical impedances.

The term impedance was first coined by Oliver Heaviside in the study of electrical

circuits [Heaviside, 2011]. In the electrical domain, the impedance of an element is

defined as a functional relation between the input current through the element (flow
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variable), and the output voltage across the element (effort variable). However, the

definition of impedance need not be confined to the electrical domain. If the power

conjugate relationship of flow and effort is consistent, i.e. the inner product between

flow and effort variable yields power, the definition of impedance can be generalized

to multiple domains. For instance, in the domain of mechanical translation, velocity

(flow) and force (effort) define a power conjugate pair, and in the domain of mechan-

ical rotation, angular velocity (flow) and torque (effort) define a the power conjugate

pair [Borutzky, 2011]. To expand the definition of impedance to the mechanical do-

main, the mechanical translation pair is used for convenience.

The effort variable for mechanical translation is force 𝑓 , and the flow variable is

velocity 𝑣. However, configuration (or position) plays a special role in mechanical

systems that is not encountered in electrical circuits. Restricting inputs to velocities

(analogous to electrical currents) would not take this distinction into account. The

essential concept of (mechanical) impedance is an operator that yields an output

exertion variable (force or any of its integrals or derivatives) in response to an input

motion variable (velocity or any of its integrals or derivatives). To account for the

special role of configuration in mechanical system, mechanical impedance is defined

as a dynamic operator that determines the force 𝑓(𝑡) (time-history), evoked by an

imposed displacement ∆𝑥(𝑡) (time-history).

𝑍 : ∆𝑥(𝑡) → 𝑓(𝑡) (2.4)

The imposed displacement ∆𝑥(𝑡) is defined as the deviation of the actual trajectory

𝑥(𝑡), from the “zero-force trajectory” 𝑥0(𝑡) of the mechanical system, i.e. ∆𝑥(𝑡) =

𝑥0(𝑡) − 𝑥(𝑡). Note that the form of the impedance operator 𝑍{·} may be nonlinear

and time-varying. For brevity, the “mechanical” prefix is often omitted.

To define the imposed displacement ∆𝑥(𝑡), a construct called zero-force trajectory

is defined. The zero-force trajectory is the trajectory that would have been followed

if the external forces were zero.2 Mathematically, in the absence of external forces

2The term zero-force trajectory is mainly used throughout this paper. However if the motion is
planned in the joint-space coordinate, the term zero-torque trajectory is used instead.
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or constraints, no force is exerted when the actual trajectory, 𝑥(𝑡) exactly matches

with the zero-force trajectory, 𝑥0(𝑡). The zero-force trajectory summarizes one con-

sequence of neural activity and expresses it as a quantity that may be compared with

actual motion [Hogan and Sternad, 2013, Hermus et al., 2020]. This concept of zero-

force trajectory allows us to define the displacement input to the impedance operator

𝑍{·}, which generates the corresponding force output.

As long as the impedance operator is invertible, given measured actual position

𝑥(𝑡) and force 𝑓(𝑡), the zero-force trajectory can always be identified at any time

[Hermus et al., 2020]. The mere existence of the zero-force trajectory 𝑥0, under

the assumption that the inverse of the impedance operator exists, is not by itself

very surprising. Therefore, the existence of the zero-force trajectory does not per se

provide compelling evidence about how the CNS actually encodes motor commands

to generate observable behavior. The definition of zero-force trajectory can be used

to describe observable neuromechanical behavior, yet may have no relation to how

the CNS actually gives rise to this behavior.

It may be questioned how to incorporate impedance, which is a mathematical

mapping or operator from one variable to another, into the definition of attractive

invariant sets. However, the set of objects need not be limited to a set of state

variables. Just as a set of matrices or a set of operators can be defined, it is possible

to define an “operator space” consisting of mathematical operators or mappings.

Compared to submovements and oscillations which define how motion may be

composed and structured, mechanical impedance regulates physical interaction be-

tween a human and its environment. By dynamically regulating the relation between

displacement and force, mechanical impedance determines how the system interacts

with a variety of environments.

Neuromechanical impedance arises in part from intrinsic properties of muscles, and

humans can voluntarily modulate the mechanical impedance of their limbs. One way

to modulate impedance is by co-activation of agonist-antagonist muscle groups. Op-

posing muscle groups activated simultaneously generate net torque via the difference

of their actions about a joint. However, mammalian muscle mechanical impedance
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increases with generated muscle force. The sum of muscle activity determines the net

mechanical impedance about the joint, even if the net generated torque is unchanged.

Thus, at the same static posture, humans can exhibit different responses to external

disturbance via impedance modulation.

Mechanical impedance is also influenced by feedback loops at the spinal level or

higher [Nichols and Houk, 1976, Hoffer and Andreassen, 1981]. It was reported that

the gains of these feedback loops are highly modifiable, and one of the major means is

via gamma motor neuron activity [Prochazka et al., 2000]. Roughly speaking, gamma

motor neurons adjust the sensitivity of muscle spindles (which are stretch receptors

within the body of a muscle that detect changes in the length of the muscle), thereby

regulating the resulting muscle forces. The larger the gain of the gamma neuron is,

the greater the change in generated muscle force that results from a given amount of

stretch applied to the (intrafusal fibers of the) muscle [Purves et al., 2004].

2.4 Norton Equivalent Network Model

How can we combine these dynamic primitive elements, and build up an internal

model that can competently represent the human motor behavior?

The first step is to recognize the two different domains in which the dynamic

primitives are situated: the information processing domain and the energy processing

domain. Submovements and oscillations belong to the information processing domain:

these primitives plan the motion of the system with far fewer constraints than elements

in the energy processing domain. The only constraints on the information processing

domain are temporal causality, i.e. no output before the corresponding input, and

boundedness of the information signal.

Mechanical impedances, which manage physical interaction with the environment,

belong to the energy processing domain: physical interaction with the environment

is by nature bi-lateral — each system affects the other. On top of the constraints

of temporal causality and boundedness, they are additionally subject to physical

constraints such as energy conservation, entropy production, etc.
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One versatile structure for combining the two different domains of motion primi-

tives (i.e. submovements, oscillations) and interactive primitives (i.e. impedances) is

a nonlinear extension of the classical electrical equivalent circuit [Hogan, 2013, Hogan,

2017]. The port behavior of a complex electrical circuit with an arbitrary number

of interconnected sources and linear circuit elements may be exactly modeled by an

equivalent source and an equivalent impedance or admittance. An analogous struc-

ture may be defined for a broad class of interconnected nonlinear elements. Depending

on the type of equivalent source (motion or force), and the configuration of the corre-

sponding equivalent impedance (parallel, common force connection or series, common

motion connection), the result is a Norton or Thèvenin equivalent network model.

Between the two types of model, the Norton equivalent network model provides

a competent structure for how the three classes of dynamic primitives may be re-

lated and combined [Hogan, 2013]. The Norton equivalent network is chosen since

the representation preserves the property of “translational invariance”: even though

the reference frame origin is translated, the resulting interactive behavior does not

change. This property of “translation invariance” is a desirable geometric symme-

try for representing interactive dynamics, and this property is well preserved via an

equivalent motion source and common force connection of a Norton model rather than

an equivalent force source and common motion connection of the Thèvenin model.

Modeling the net interactive behavior of human motor dynamics with a Norton net-

work model offers us a unified description of how central commands from the CNS

and peripheral mechanics cooperate to produce observable behavior.

A diagram of a Norton equivalent network model is shown in [Figure 2-3]. Two

commands from the CNS completely determine the whole interactive dynamics: a

motion command via the equivalent motion source and an impedance command which

regulates the equivalent impedance. The CNS sends a uni-directional feed-forward

command to the motion source. The forward-path dynamics of the equivalent motion

source result in an output which can be summarized as a zero-force trajectory 𝑥0.

With a given actual trajectory 𝑥, displacement ∆𝑥 is determined. Impedance 𝑍{·}
specified by the CNS, determines the output force 𝑓 from the input displacement ∆𝑥
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evoked by the interaction. Summarizing, the output of the uni-directional forward-

path dynamics, which consists of submovements and oscillations, combined with the

bi-directional interactive dynamics, characterized by (equivalent) impedance, specifies

the dynamics of the whole model.

CNS

Equivalent
Impedance 𝒁{⋅}

Equivalent
Motion Source 𝚺

Interaction 
Port

𝒇

𝒙
-+

𝒙𝟎

𝚫𝒙

Information Domain Energy Domain

Impedance 
Command

Motion 
Command

Figure 2-3: Diagram of a Norton equivalent network model of the human motor
control system. A nonlinear equivalent network relating motion planning in the in-
formation domain with interactive dynamics in the energy domain [Hogan, 2013].

There are two key benefits of representing the neuromuscular behavior of humans

by a Norton equivalent network model. One is prodigious simplification: the biologi-

cal system of humans is excruciatingly complex and largely uncharted [Kandel et al.,

2000]. Considering this exceedingly complex structure, our ability to study the in-

ternal details of this “black box” are quite limited. Nonetheless, based on the Norton

equivalent network formulation, the behavior at an interaction port of an arbitrarily

complex system can be completely summarized in a simpler form which is functionally

equivalent. The other benefit is that the elements comprising the network model are

experimentally identifiable (at least in principle) [Hodgson and Hogan, 2000, Hermus

et al., 2020]. Based on this simplified model, the two parts of the model, the equiv-

alent motion source and equivalent impedance, can be identified from experiments

in situ. The resulting summary representation with experimentally identifiable parts

can significantly facilitate analysis.
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Chapter 3

Modeling

The research presented in this paper used the simulation software called MuJoCo

(Multi-Joint dynamics with Contact) [Todorov et al., 2012]. Models for conducting

whip manipulation tasks in the simulation environment were developed to test the

dynamic motor primitives hypothesis.

The models used for the simulation consisted of two main parts: an 𝑁 -node

model of a whip (the object being manipulated) and a model of the human upper

limb (the manipulator). Various types of each model were constructed, and various

combinations of whip and upper-limb models were studied.

3.1 Whip Model Type 1 – Planar

An 𝑁 -node “lumped-parameter” model was developed to approximate the continuum

dynamics of a whip. It consisted of a finite sequence of serially-connected planar

sub-models. Each sub-model was composed of three lumped-parameter elements: an

(ideal) point mass, a linear torsional spring and a linear torsional damper. The point-

mass 𝑚 [𝑘𝑔] was suspended from a single degree-of-freedom pivot with length 𝑙 [𝑚].

The pivot, a rotational joint, was equipped with a linear torsional spring and a linear

torsional damper, with coefficients 𝑘 [𝑁 ·𝑚/𝑟𝑎𝑑] and 𝑏 [𝑁 ·𝑚 ·𝑠/𝑟𝑎𝑑], respectively. 𝑁

of these identical planar sub-models were serially connected to comprise the 𝑁 -node

whip model. The parameters (𝑁, 𝑙, 𝑚, 𝑘, 𝑏) were called the “whip parameters” of
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the model [Figure 3-1].

Sub-model
N-node Whip Model

a. b.

Figure 3-1: (a) Planar sub-model of the 𝑁 -node whip model. The blue filled circle
depicts the (ideal) point mass 𝑚 of the sub-model. The mass 𝑚 was attached to
the grey massless cylinder with length 𝑙. The swirl icon on the pivot symbolizes the
linear torsional spring 𝑘 and linear torsional damper 𝑏. (b) 𝑁 identical sub-models
comprised the 𝑁 -node whip model.

3.2 Whip Model Type 2 – Spatial

A 3D spatial whip model was developed to reproduce the 3D movement of the whip.

On top of the 2D sub-model presented in [Section 3.1], an additional single degree-of-

freedom pivot was added perpendicular to the original pivot [Figure 3-2]. Assuming

that the stiffness and damping properties of the whip were isotropic (i.e. the physical

property of the whip was the same when measured in different directions), the same

linear torsional spring 𝑘 and linear torsional damper 𝑏 were assigned to the additional

pivot. Summarizing, each node of the whip consisted of two rotational joints, where

the axes were perpendicular to each other.
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Figure 3-2: A 3D spatial model of the 𝑁 -node whip model. Axes of rotation are
visualized as a bullet shape. Each node of the whip had 2 degrees-of-freedom. The
3D whip model was modeled and rendered with the MuJoCo simulator.

3.3 Upper-limb Model Type 1 – Planar

The human upper-limb was modeled as a two-bar open-chain linkage. The fingers,

hand and wrist (everything distal to the wrist joint) were excluded from this model.

The flexion/extension movement of the shoulder and elbow were modeled as single

degree-of-freedom rotational joints. The shoulder joint axis was fixed in space, and the

movement of the upper-limb model was confined to the sagittal plane. Independently

controlled torque actuators were mounted co-axially with the shoulder and elbow

joints. The two limb segments were taken to be non-uniform cylinders, i.e. the center

of mass (C.O.M.) and the geometric center of the limb segment were not identical.

The geometrical and inertial parameters for each limb segment were obtained from a

computational model by Hatze [Hatze, 1980], and detailed values used for the model

are presented in [Table 3.1].
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Type equation here.
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Figure 3-3: The two-bar planar upper-limb model. 𝑥′, 𝑦′ and 𝑧′ denote the axes of
the principal moments of inertia for each limb segment. Values and description of the
mathematical notation are shown in [Table 3.1].

Description Notation Values Unit

Limb Inertia
Parameters

Mass of Limb Segment 𝑀1 , 𝑀2 1.595 , 0.869 [𝑘𝑔]

Length of Limb Segment 𝐿1 , 𝐿2 0.294 , 0.291 [𝑚]

Length from proximal joint to C.O.M. 𝐿1𝑐 , 𝐿2𝑐 0.129 , 0.112 [𝑚]

Principal Moment of Inertia, x’-axis 𝐼1,𝑥𝑥, 𝐼2,𝑥𝑥 0.0119 , 0.0048 [𝑘𝑔 ·𝑚2]

Principal Moment of Inertia, y’-axis 𝐼1,𝑦𝑦 , 𝐼2,𝑦𝑦 0.0119 , 0.0049 [𝑘𝑔 ·𝑚2]

Principal Moment of Inertia, z’-axis 𝐼1,𝑧𝑧 , 𝐼2,𝑧𝑧 0.0013 , 0.00047 [𝑘𝑔 ·𝑚2]

Table 3.1: Detailed parameters of the upper-limb model [Hatze, 1980]. Subscripts
denote the shoulder and elbow joints, numbered proximal to distal. Principal mo-
ment of inertia of limb segments were calculated with respect to the center of mass
(C.O.M.). A graphical description of the model is shown in [Figure 3-3].

3.4 Upper-limb Model Type 2 – Spatial

A spatial 4 degrees-of-freedom upper-limb model was developed to reproduce 3D

upper-limb movements. Based on the 2 degrees-of-freedom planar upper-limb model

in [Section 3.3], two additional rotational joints perpendicular to each other were

added to the shoulder joint, i.e. adduction/abduction movement (J2), lateral/medial

rotation movement (J3) were added to the flexion/extension movement (J1) [Figure
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3-4]. For all of the four joints of the upper-limb model, independently controlled

torque actuators were mounted co-axially. The geometrical and inertial parameters

for each limb segment were identical to the upper-limb model type 1 [Section 3.3],

which are shown in [Table 3.1].

+𝑦

+𝑥

+𝑧

J1

J2

J3

J4

Figure 3-4: A spatial upper-limb model rendered with the MuJoCo simulator. A
Cartesian coordinate frame is indicated at the shoulder joint. Joint J1, J2 and J3 were
perpendicularly connected to reproduce a 3D shoulder joint movement. The order of
rotations of the three shoulder joints were ordered with ascending number, i.e. J1 -
J2 - J3. J1, J2 and J3 corresponded to flexion/extension, adduction/abduction and
lateral/medial rotation, respectively. Axes of rotation are visualized as a bullet shape.
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Chapter 4

Validation of the MuJoCo simulator

To assess the reliability of the MuJoCo simulator, how well the numerical integrator

used for the simulation complied with the law of energy conservation was tested. The

law of energy conservation was used as a measure of simulation accuracy.

The total (kinetic + potential) energy of a lossless whip model was monitored as

a function of time. A planar 𝑁 -node whip model [Section 3.1] was used for the sim-

ulation. The lossless model was created by setting the torsional damping coefficient

𝑏 to zero for the 𝑁 sub-models. For all of the MuJoCo simulations, the semi-implicit

Euler method was chosen as the numerical integrator, with a time step of 0.1ms.

Two separate methods were conducted for the validation: an initial condition re-

sponse method [Section 4.1.1] and a displacement function excitation method [Section

4.1.2]. Both methods monitored the total energy of the whole lossless whip model

with respect to time. At each time step, the potential and kinetic energy of the whole

system were called by printing out the Energy data array under mjData.

4.1 Methods

4.1.1 Method 1 – Initial Condition Response

The simulation consisted of a lossless 𝑁 -node whip model suspended from a freely-

rotating pivot fixed in space. No external actuators or external energy sources were
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included in the simulation, i.e. the whip model was a closed system, where no energy

was exchanged with the surroundings.

The simulation started by setting free the lossless whip model, which was at rest

in a specific initial position [Figure 4-1]. As the whip model swung to and fro under

the influence of gravity, the total energy of the lossless whip model was monitored.

Various initial positions of various 𝑁 -node whip models were tested. The data were

extracted with a sampling rate of 50Hz, and the simulation was conducted for 60

seconds.

𝑡 ↑Given Initial Position, 𝑡 = 0𝑠

𝒈

Figure 4-1: The initial condition response method. From a given initial position at
time 𝑡 = 0𝑠, the lossless whip model was set loose and the energy of the system was
monitored. Vector 𝑔 denotes gravity of the simulation environment.

4.1.2 Method 2 – Displacement Function Excitation

The simulation started with the lossless whip model in an equilibrium configuration,

at rest hanging vertically downward. A single degree-of-freedom linear actuator,

driven by a position controller with (extremely) high proportional gain, moved the

top of the modeled whip in a horizontal motion from rest with a position input

described by function 𝑝(𝑡):

𝑝(𝑡) =
𝐴

2

{︂
1 − cos

(︂
2𝜋

𝑤
· (𝑡− 𝑡0)

)︂}︂
(4.1)
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where 𝐴 [𝑚] is the amplitude of the motion profile, 𝑡0 [𝑠] is the time when the motion

started and 𝑤 [𝑠] is the duration of the motion; 𝑡 [𝑠] is the time variable defined in the

domain [𝑡0, 𝑡0 + 𝑤]. For times before and after this interval, the position controller

remained at rest, i.e. 𝑝(𝑡) = 0 [𝑚] [Figure 4-2]. The simulation was run for 5 minutes,

and the value of total energy was extracted with a sampling rate of 50Hz.

𝑡 ↑Given Initial Posture, 𝑡 = 𝑡! 𝑡 = 𝑡! + 1/3w 𝑡 = 𝑡! + 3/4w 𝑡 = 𝑡! +w

𝑡! 𝑡! + 𝑤 𝑡! 𝑡! + 𝑤 𝑡! 𝑡! + 𝑤 𝑡! 𝑡! + 𝑤

𝑝 𝑡

𝒈

Figure 4-2: The displacement function excitation method. The upper graph depicts
the representative function profile of displacement function 𝑝(𝑡) [Eqn. 4.1]. 𝑡0 [𝑠]
denotes time when the displacement function started and 𝑤 [𝑠] denotes the duration of
the motion. From the equilibrium configuration at rest hanging vertically downward,
the whip was excited with function 𝑝(𝑡) from time domain [𝑡0, 𝑡0 + 𝑤].
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4.2 Results

4.2.1 Method 1 – Initial Condition Response

A single degree-of-freedom 1-node whip model (single pendulum) was first tested.

The 1-node whip model was positioned just at the vicinity of the upward unstable

equilibrium posture.

Figure 4-3: Time vs. energy plot of a 1-node whip model. The 1-node whip model
was initially positioned 3.13-radian from the vertically-down stable equilibrium pos-
ture (i.e. 0.01-radian off from the vertically-upward unstable equilibrium posture).
Detailed whip parameters: (𝑁, 𝑙, 𝑚, 𝑘, 𝑏) = (1, 1, 1, 0, 0)

Since there was no dissipative element in the model, the energy of the lossless

1-node whip model should remain constant. Using the (semi-implicit) Euler method,

although the energy value itself fluctuated along time, the value was still bounded

within a finite range, and the mean energy value vs. time neither increased nor

decreased [Figure 4-3]. Even though long-term instability of the simulation might

occur due to accumulation of numerical errors of the integrator, for a single degree-

of-freedom model, the (semi-implicit) Euler method resulted in a stable simulation

without any sign of unbounded divergence of the energy value.

As we increased the number of nodes 𝑁 and tested with different initial positions,
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the law of energy conservation was violated. Compared to the previous result where

the energy value was finite-bounded with respect to time, a gradual increase of energy

value was observed for whip models with more than 1 degree-of-freedom (𝑁 > 1)

[Figure 4-4]. The accumulated error innate in the numerical integrator acted as

equivalent to a negative damper in the simulation. The unbounded growth of energy,

due to the negative damper, resulted in instability of the simulation.

Note that the rate of growth of mean energy, and the amplitude of local fluctu-

ations of energy, were (approximately) proportional to the node number 𝑁 . This

result implied that the accumulation of numerical error became proportionally larger

as the number of degrees-of-freedom of the system increased.

Figure 4-4: Plot of total energy vs. time with different lossless whip models. Values
for mass 𝑚, length 𝑙, torsional stiffness coefficient 𝑘 and torsional damping coefficient
𝑏 were fixed, and different values of node number 𝑁 were tested. The straightened
𝑁 -node whip model was initially positioned 0.3-radian from the vertically down equi-
librium posture, and was released to freely oscillate. Whip parameters: (𝑙, 𝑚, 𝑘, 𝑏)
= (0.1, 0.1, 0, 0).
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4.2.2 Method 2 – Displacement Function Excitation

The energy of a lossless 𝑁 -node whip model should remain constant after the excita-

tion ended. However, using the (semi-implicit) Euler method as the numerical inte-

grator for the MuJoCo simulation, a gradual decrease of total energy was observed.

Consistent with the previous result, the simulated energy loss was more pronounced

for models with more than 1 degree-of-freedom (𝑁 > 1). This apparent dissipation

of total energy, due to the accumulation of numerical error, acted as an equivalent

positive damper in the simulation [Figure 4-5].

Figure 4-5: Numerical dissipation of total energy over time with different lossless
whip models. Excitation with displacement function 𝑝(𝑡) started at 1.5s. Values for
mass 𝑚, length 𝑙, torsional stiffness coefficient 𝑘 and torsional damping coefficient 𝑏
were fixed, and different values of node number 𝑁 were tested. Whip parameters:
(𝑙, 𝑚, 𝑘, 𝑏) = (0.1, 0.02, 0.05, 0); displacement function parameters: (𝐴, 𝑡0, 𝑤) =
(0.02, 1.5, 0.1) [Eqn. 4.1].
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4.3 Conclusion

It was discovered that for whip models with more than one degree-of-freedom (𝑁 >

1), the law of energy conservation was violated with MuJoCo’s semi-implicit Eu-

ler method. Positive and negative numerical damping were observed using different

methods and whip models. Under what configuration the simulation would exhibit a

positive or negative numerical damping remains to be answered.

To improve the physical fidelity of the simulation, it is important to compensate

the error due to the innate numerical damping of the simulator. Since numerical

dissipation acts as intrinsic damping within the simulation, dissipation in the whip

model is the sum of implicit numerical dissipation and explicit model dissipation (due

to non-zero 𝑏). Hence, carefully choosing the damping value 𝑏 may compensate for

the numerical error intrinsic to the simulation, such that the combination provides a

reliable approximation of the actual whip behavior.
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Chapter 5

Analysis of a Linearized Whip Model

Theoretical analysis of the discretized 𝑁 -node planar whip model [Section 3.1] was

conducted. Based on Euler-Lagrange equations, it is straightforward (albeit tedious)

to establish the governing equations of the discretized 𝑁 -node whip model. However,

owing to the complexity of the dynamics, closed-form or analytical solutions for whip

models with more than two degrees-of-freedom are impractical. Even the double

pendulum exhibits a rich variety of motions, including chaotic behavior [Shinbrot

et al., 1992].

However, if the motion is restricted to small deviations from the equilibrium con-

figuration, the nonlinear equations of motion of the 𝑁 -node whip model can be lin-

earized, and linear analytical methods can be used for system analysis [Braun, 2003].

By describing the dynamics of the linearized 𝑁 -node whip model in a state-space

representation, information on system responses and their sensitivity to model pa-

rameters can be derived.
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5.1 Method

Nonlinear Euler-Lagrange equations of motion were linearized about rest in the vertically-

downward position, which yielded the following state-space representation:

�̇� = 𝐴𝑥 :=

⎡⎣ 0𝑛×𝑛 𝐼𝑛×𝑛

−𝑀−1
𝑤 (𝐾𝑤 +𝐺𝑤) −𝑀−1

𝑤 𝐵𝑤

⎤⎦⎡⎣𝑞
�̇�

⎤⎦ (5.1)

where 𝑀𝑤,𝐵𝑤,𝐾𝑤,𝐺𝑤 ∈ R𝑛×𝑛 are matrices of inertia, damping, stiffness and grav-

itational effects, respectively; 0𝑛×𝑛, 𝐼𝑛×𝑛 ∈ R𝑛×𝑛 are the zero and identity matri-

ces, respectively; vector 𝑞 ∈ R𝑛 denotes joint angles in relative angle coordinates;

𝐴 ∈ R2𝑛×2𝑛 is the state matrix and 𝑥 ∈ R2𝑛 is the state vector. Detailed derivation

of the state-space representation and matrices is provided in [Appendix A].

An eigenvalue and eigenvector analysis of state-space matrix 𝐴, with different

values of torsional damping coefficient 𝑏, was conducted to study the effect of damping

on the whip dynamics. The real (dissipative) and imaginary (oscillatory) components

of the eigenvalues of matrix 𝐴 were evaluated for different values of 𝑏. The imaginary

part of the complex eigenvalue was called as the (eigen)frequency of the eigenvalue,

and the corresponding eigenvector was called as the (eigen)mode of the corresponding

eigenvalue.

To check whether the dynamic behavior of the whip shown in the simulation

was consistent with the eigenvalue and eigenvector analysis, spectral analysis of the

whip model was conducted. To excite the (eigen)frequencies of the whip model, the

displacement function excitation method [Section 4.2] was used on the planar 𝑁 -

node whip model. The position controller moved the top of the modeled whip in a

horizontal motion from rest with a position input described by [Eqn. 4.1]. For 5

minutes, the relative angle data of the 𝑁 𝑡ℎ joint (i.e. the angle of the last-suspended

sub-model of the whip model) were extracted with a sampling frequency of 500Hz.

In MuJoCo, the relative angle of the joint was extracted by calling qpos array

under mjData. Using the Fast Fourier Transform (FFT) of the Numpy python library,

a spectral analysis was conducted on a segment of the data.
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5.2 Result

5.2.1 Pole-Zero Analysis

As the damping value 𝑏 changed, while the other parameters were fixed, the com-

plex eigenvalues of matrix 𝐴 which were located further from the complex plane

origin and had proportionally larger real (dissipative) components [Figure 5-1]. As

a result, (eigen)modes with higher (eigen)frequency (i.e. complex eigenvalues with

larger imaginary parts) decayed faster than (eigen)modes with lower (eigen)frequency

(i.e. complex eigenvalues with smaller imaginary parts). In other words, the high-

frequency oscillatory behavior of the damped whip model quickly faded, and the whip

behavior was dominated by (eigen)modes with the lowest frequencies [Mottershead,

2016].

5.2.2 Spectral Analysis

The theoretical result of the pole-zero analysis was confirmed by spectral analysis.

When a non-zero damping coefficient value 𝑏 was included in the whip model, the

dominant dynamic behavior was a single frequency of oscillation, which was shown as

a single dominant peak in the power spectrum [Figure 5-2]. The dominant frequency

value of the damped whip model was 1.175Hz, which was in reasonable agreement

with the theoretical value, 1.168Hz. Whether the small difference of value (0.007Hz)

was due to the numerical dissipation within the MuJoCo, or due to the error from

the linearization, remains to be determined.
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Figure 5-1: Plot of the (complex) eigenvalues of matrix 𝐴 in the complex plane.
The radial grids are numbered in ascending order of distance from the origin. Whip
parameters: (𝑁, 𝑙, 𝑚, 𝑘) = (3, 0.1, 0.02, 0.05).
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5.3 Conclusion

Theoretical analysis of a linearized 𝑁 -node planar whip model showed that the tor-

sional damping coefficient 𝑏 highly affected the resulting dynamics. Theoretically,

the dynamics of the linearized 𝑁 -node whip model is a superposition of 𝑁 distinct

(eigen)modes. However, even a modest amount of damping simplified the complex

whip dynamics — the dynamics was dominated by few of the lowest (eigen)frequencies

and their corresponding (eigen)modes. This theoretical result was important to de-

termine the estimated whip parameters from the experiment [Section 6.1], and to

understand the robustness analysis of the optimal solution [Section 7.5]. Within a

range of motion where errors due to linearization (the small-angle approximation)

of the model are negligible, the difference between the theoretical frequency value

and the frequency derived from spectral analysis was most likely due to numerical

damping within the simulation. The model damping parameter may be selected to

compensate for this numerical artifact.
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Chapter 6

Experimental Estimation of Whip

Parameters

A simple experiment was designed to estimate the 5 parameters of the planar whip

model, (𝑁, 𝑙, 𝑚, 𝑘, 𝑏) [Section 3.1]. The experiment was conducted at Action Lab

in Northeastern University, by Aleksei Krotov and Marta Russo. In this experiment,

3D position tracking markers attached on the whip were used for the parameter

estimation. By releasing the whip from rest at some initial position, the resulting

frequency and exponential decay time-constant of the oscillation were measured, and

these values were used to estimate the whip parameters. From the experimentally

estimated whip parameters, the “experimentally-fitted” whip model was constructed

in simulation, and the accuracy of the estimated parameters of the whip model was

examined.

6.1 Method

A commercially available 1.8m bullwhip was used for the experiment. The distal

parts of the whip, fall and cracker1, were removed. 12 markers were attached to the

whip for 3D position tracking: 2 markers at the handle and 10 customized reflective
1The fall is a single piece of tapered leather suspended from the main part of the whip. The

cracker is a twisted piece of short rope suspended from the fall of the whip. The cracker is believed
to be important to produce the supersonic crack of the whip.
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markers mounted at equal distances along its 1.8m length main part [Figure 6-1].

2

10

(b)(a)

Figure 6-1: (a) Illustration of the actual whip. The green-shaded region depicts the
handle of the whip; the yellow-shaded region depicts the main part of the whip;
the circles attached to the whip illustrate the markers used for position tracking.
(b) Customized 1.8m bullwhip used for the experiment. In total, 12 markers were
mounted on the whip.

For parameter estimation, it was assumed that (1) the physical properties of the

whip were isotropic (i.e. had the same value of stiffness 𝑘 and damping 𝑏 when

measured in different directions), and (2) the mass was uniformly distributed along

the whip length without tapering. Considering the physical properties of the actual

whip, these assumptions are demonstrably incorrect. The mass per unit length of the

actual whip tapered from handle to tip; intertwined straps of leather which composed

the main part of the whip produce anisotropic physical properties. However, these

two assumptions were made to avoid cluttering the simulation model with excessive

detail.

With the given number of nodes 𝑁 for the experimentally-fitted whip model, the

mass 𝑚 and length 𝑙 of the sub-models were derived from direct measurement of total

mass (0.3kg) and length (1.8m) of the actual whip.
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The values of stiffness 𝑘 and damping 𝑏 were indirectly measured from a simple os-

cillation experiment. The top of the handle was attached to a pivot, and the whip was

freely suspended. The tip of the whip was manually displaced approximately 20cm

horizontally from equilibrium and released to initiate small oscillations. Twelve Oqus

cameras (Qualisys, Goetheborg, Sweden) recorded the 3D position of whip markers

for 20 seconds at a sampling rate of 500Hz. The frequency and the exponential decay

time-constant of the whip oscillation were identified.

The 2D horizontal position data (𝑥 and 𝑦 coordinate of the Qualisys Cartesian

coordinate frame) of each marker were used to measure the frequency 𝑓 [𝐻𝑧] of the

oscillation. All analyses were conducted using MATLAB (Mathworks Inc., Natick,

MA). FFT analysis was conducted on the 𝑥 and 𝑦 coordinate position data. The

mean value of 𝑥 and 𝑦 position data were subtracted for each marker. The dominant

frequency values in the frequency domain were averaged across markers to measure

the frequency 𝑓 .

With the measured frequency 𝑓 , the exponential decay time-constant 𝜏𝑑𝑒𝑐𝑎𝑦 [𝑠] of

the oscillation was calculated. The position data of the marker at the tip of the whip

was used for the calculation. Since the trace of oscillation was not aligned with the 𝑥

and 𝑦 axis of the Qualisys Cartesian coordinate frame, the position data were rotated

so that the starting position of the marker resided on the 𝑥 axis.

The rotated 𝑥 position vs. time was curve-fit with the following function 𝑐(𝑡) to

find the coefficient of exponential decay 𝜏𝑑𝑒𝑐𝑎𝑦:

𝑐(𝑡) = 𝐶𝑒−𝑡/𝜏𝑑𝑒𝑐𝑎𝑦 sin(2𝜋𝑓𝑡 + 𝜑) (6.1)

where 𝐶 [𝑚𝑚] is the amplitude and 𝜑 [𝑟𝑎𝑑] is the phase offset of the sine function.

The values of 𝐶, 𝜏𝑑𝑒𝑐𝑎𝑦 and 𝜑 which minimized the sum of squared errors with the

experimental data were searched with the fminsearch function.

From the measured frequency 𝑓 and the exponential decay time-constant 𝜏𝑑𝑒𝑐𝑎𝑦,

the best values of stiffness 𝑘 and damping 𝑏 of the whip model were computed which

resulted in the same damped oscillation. For searching the optimal 𝑘 and 𝑏 values,
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the theoretical analysis of the (eigen)frequency and (eigen)mode of the linearized

whip model was considered [Section 5.1]. Approximating the actual whip dynamics

as a linearized state-space model, theoretically, the dominant frequency 𝑓 and its

corresponding mode of the damped oscillation would be the lowest (eigen)frequency

and (eigen)mode of state matrix 𝐴 [Eqn. 5.1].

With the given 𝑘 and 𝑏 values, the complex eigenvalue of matrix 𝐴 with smallest

imaginary part (i.e. lowest eigenfrequency) was extracted. Since the real (dissipative)

and imaginary (oscillatory) part of this complex eigenvalue corresponded to the mea-

sured exponential decay time-constant 𝜏𝑑𝑒𝑐𝑎𝑦 and frequency 𝑓 , the best 𝑘 and 𝑏 which

matched these values were searched. The lsqnonlin function was used for iteratively

searching the 𝑘 and 𝑏 values. Summarizing, the whip model parameters which repro-

duced the same oscillation frequency 𝑓 and exponential decay time-constant 𝜏𝑑𝑒𝑐𝑎𝑦

were determined.

Based on the experimentally estimated whip parameters, the experimentally-fitted

whip model was built in the MuJoCo simulator, and a comparison with the actual

experimental data was conducted. To emulate the experiment conducted with the ac-

tual whip, the initial condition response method [Section 4.1] was conducted with the

experimentally-fitted whip model. The simulation was conducted with the same time

length and sampling rate as the experiment: for 20 seconds the 3D Cartesian posi-

tion of the tip of the experimentally-fitted whip model was extracted at the sampling

rate of 500Hz. The 3D Cartesian position of the tip was collected by printing out

geom_xpos array under mjData. Function 𝑐(𝑡) was curve-fit to the extracted position

data, and 𝑓 and 𝜏𝑑𝑒𝑐𝑎𝑦 values were compared with the actual whip data. Moreover, the

root-mean-square error between the position data of the experimentally-fitted whip

model and the actual whip was calculated.

62



6.2 Result

The experimentally observed trajectory of the 2D horizontal position of a single

marker attached at the tip of the whip is shown in [Figure 6-2]. Note that the

approximately elliptical 2D trajectory of the oscillation gradually tilted counterclock-

wise as time progressed. Small oscillations in the 𝑦 direction were observed in the

experimental data.

Figure 6-2: Plot of the 2D horizontal position of the marker attached at the tip of the
whip. The position data of 𝑥 and 𝑦 coordinates were adjusted to position the mean
value of 𝑥 and 𝑦 position at the origin. The blue dot denotes the starting position of
the oscillation. The 2D horizontal data were rotated to align the blue marker with
the global 𝑥 axis.

FFT analysis of the 10 markers of the main part of the whip is shown in [Fig-

ure 6-3]. Regardless of the coordinate and markers, the dominant frequency was

0.45Hz. Based on the measured frequency 𝑓 , the exponential decay time-constant

𝜏𝑑𝑒𝑐𝑎𝑦 was calculated [Figure 6-4]. The exponential decay time-constant, 𝜏𝑑𝑒𝑐𝑎𝑦 was

29.24s. From the measured frequency 𝑓 and the exponential decay time-constant
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𝜏𝑑𝑒𝑐𝑎𝑦, the 5 whip model parameters were determined. Choosing the number of nodes

𝑁 as 25, the lsqnonlin function succeeded to converge to a valid 𝑘 and 𝑏 values.2

Detailed parameters of the experimentally-fitted whip model are presented in [Table

6.1].

𝑁 𝑙 𝑚 𝑘 𝑏

Experimentally-fitted 25 0.072 0.012 0.242 0.092

Table 6.1: Detailed values of the experimentally-fitted whip model. 𝑁 [−]: number of
nodes (i,e, sub-models) for the whip model; 𝑚 [𝑘𝑔]: the point-mass of each sub-model;
𝑙 [𝑚]: length of the sub-model; 𝑘 [𝑁 ·𝑚/𝑟𝑎𝑑]: coefficient of linear torsional spring of
the rotational joint; 𝑏 [𝑁 · 𝑚 · 𝑠/𝑟𝑎𝑑]: coefficient of linear torsional damping of the
rotational joint.

Figure 6-3: (Left) FFT spectral analysis of the 𝑥 position of the whip markers. (Right)
FFT spectral analysis of the 𝑦 position of the whip markers. Excluding the markers
attached to the handle, 10 markers were numbered in ascending order of distance
from the handle. The dominant frequency value was 0.45Hz for both cases.

2The value 𝑁 = 25 was simply the “sweet-spot” which was manually discovered – the node
number 𝑁 was high enough, and function lsqnonlin converged to a positive 𝑘 and 𝑏 values.
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Figure 6-4: Plot of the rotated 𝑥 position data vs. time of the experimental and
curve-fit data. The red-dotted line depicts the curve-fit function 𝑐(𝑡) [Eqn. 6.1];
the blue-dotted line depicts the corresponding exponential decay curve. Detailed
parameters of function 𝑐(𝑡): (𝐶, 𝜏𝑑𝑒𝑐𝑎𝑦, 𝜑) = (180.07, 29.24, −1.062).

With the experimentally identified whip parameters, a comparison between the

experimentally-fitted whip model and the actual whip was conducted. As shown in

[Figure 6-5, 6-6], the exhibited dynamics of the experimentally-fitted whip model

were in good agreement with the actual experimental data. The dominant frequency

value was exactly the same with the two: 0.45Hz for both. The exponential de-

cay time-constant were near the same: 29.24s and 29.07s for the actual whip and

experimentally-fitted whip model, respectively [Figure 6-5]. The root-mean-square

error between the position data of experimentally-fitted whip model and the actual

whip was 43.65mm [Figure 6-6].

In conclusion, the whip model with experimentally estimated parameters was

able to reproduce the essential behavior of the actual whip, which was the damped

oscillation with frequency 𝑓 and exponential decay time-constant 𝜏𝑑𝑒𝑐𝑎𝑦.
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Figure 6-5: Plot of the 𝑥 position of the tip of the modeled whip vs. time of the
MuJoCo and curve-fit data. The yellow-dotted line depicts the curve-fit function 𝑐(𝑡)
[Eqn. 6.1]; the blue-dotted line depicts the corresponding exponential decay curve.
Detailed parameters of function 𝑐(𝑡): (𝐶, 𝜏𝑑𝑒𝑐𝑎𝑦, 𝑓, 𝜑) = (180.19, 29.07, 0.45,−1.27).

Figure 6-6: Comparison between the actual whip and the experimentally-fitted whip
model of MuJoCo. The 𝑥 position of the tip of the whip for the MuJoCo model and
the actual whip are plotted and compared. The root-mean-square error was 43.65mm.
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Chapter 7

2D Planar Whip Task

A simple-yet-non-trivial whip task was defined to test the dynamic motor primitives

hypothesis. The goal was to reach a distant target with the whip using a single dis-

crete (point-to-point) upper-limb movement. The study tested in simulation whether

the task of approximating the target with the whip, could be achieved based on

parameterized dynamic motor primitives.

For all of the MuJoCo simulations, the semi-implicit Euler method was chosen as

the numerical integrator, with a time step of 0.1ms.

7.1 Modeling

The 𝑁 -node planar whip model [Section 3.1] was connected to the two-segment planar

upper-limb model [Section 3.3]. To introduce no torque between the upper-limb and

the 𝑁 -node whip model, the whip and the upper-limb were connected with a freely-

rotating hinge. This connection was established in simulation by setting the torsional

stiffness 𝑘 and damping coefficients 𝑏 of the sub-model, which directly attached to the

upper-limb model, as zero. Summarizing, the combined model simulated a sequential

open-chain planar mechanism with 𝑁 + 2 degrees-of-freedom [Figure 7-1].
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Figure 7-1: The model used for the planar whip task. The planar upper-limb and
planar whip model were combined. SH and EL denote shoulder and elbow joint,
respectively.

7.2 Control of the upper-limb

7.2.1 Impedance Controller

To account for physical interaction between the upper-limb and the whip, the model

included a simple impedance controller [Hogan, 1985]. The two-joint manipulator

muscle model from Flash [Flash, 1987] was adopted and reconfigured:

𝜏 = 𝐾(𝜑− 𝜃) + 𝐵(�̇�− �̇�) + 𝜏𝐺 (7.1)

In this equation, 𝐾 ∈ R2×2 is a constant joint stiffness matrix, 𝐵 ∈ R2×2 is a

constant joint damping matrix, which both represent the neuromuscular mechanical

impedance of the upper-limb; vector 𝜏 (𝑡) = [𝜏1(𝑡), 𝜏2(𝑡)]
𝑇 denotes the net torque in-

put on each joint; subscripts 1 and 2 denote shoulder and elbow, respectively; vector

𝜏𝐺(𝑡) = [𝜏1,𝐺(𝑡), 𝜏2,𝐺(𝑡)]𝑇 denotes the torque required for gravity compensation; vec-

tor 𝜃(𝑡) = [𝜃1(𝑡), 𝜃2(𝑡)]
𝑇 denotes the actual joint angle trajectory defined in relative

angle coordinates [Figure 7-2]; vector 𝜑(𝑡) = [𝜑1(𝑡), 𝜑2(𝑡)]
𝑇 represents a motion com-

mand from the CNS as a zero-torque trajectory, i.e. neglecting gravitation effects, if

the actual joint angle trajectory 𝜃 exactly matches with the zero-torque trajectory

𝜑, no torque will be exerted by the actuators.
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Figure 7-2: The relative angle coordinate used for the planar upper-limb model.
Angle 𝜃1 (𝑟𝑎𝑑) and 𝜃2 (𝑟𝑎𝑑) denote relative angles of the shoulder and elbow joint,
respectively.

Detailed values for 𝐾 and 𝐵 were borrowed from Flash [Flash, 1987]:

𝐾 =

⎡⎢⎣29.50 14.30

14.30 39.30

⎤⎥⎦ , 𝐵 =

⎡⎢⎣2.950 1.430

1.430 3.930

⎤⎥⎦ (7.2)

Biological observations from previous studies were considered to determine the

controller of the planar upper-limb model. Although muscle force production is a

complex function of many factors, its interactive behavior can well be described as

a function of muscle length and its rate of change [Joyce et al., 1969, Rack and

Westbury, 1969, Flash, 1987]. The joint torques resulting from activation of relevant

muscles were assumed to depend upon the position and velocity deviation between

the actual upper-limb position and a zero-torque position. As the upper-limb con-

troller was described in relative angle coordinate, the stiffness matrix 𝐾 was taken to

be constant, since it was shown that joint stiffness was (approximately) constant in

joint coordinates [Flash and Mussa-Ivaldi, 1990]. Based on reports showing that the

stiffness field of the upper arm was nearly curl-free and predominantly spring-like, the

stiffness matrix 𝐾 was chosen to be symmetric [Mussa-Ivaldi et al., 1985]. Consis-

tent with a single time-constant characterizing neuromuscular interactive dynamics,

values for the joint damping matrix 𝐵 were assumed to be proportional to the joint
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stiffness matrix 𝐾 [Flash, 1987]. This set of observations served as the basis for the

constructed upper-limb controller, which resulted in a motion resembling the actual

motor behavior of the upper-limb.

Gravitational effects were compensated with 𝜏𝐺, so that the actual upper-limb

posture 𝜃 could exactly match with the zero-torque posture 𝜑 when the whole model

was at rest. In detail, the following equation was used for the gravity compensation

torque 𝜏𝐺:

𝜏𝐺 = 𝐽𝑇
01𝑓1,𝐺 + 𝐽𝑇

02𝑓2,𝐺 + 𝐽𝑇
03𝑓3,𝐺 (7.3)

where 𝐽𝑖𝑗 ∈ R3×2 is a Jacobian matrix of frame 𝑗 relative to frame 𝑖; 𝑓𝑖,𝐺 ∈ R3

denotes the gravitational force applied to frame 𝑖; frame 0, 1, 2 and 3 are attached to

the shoulder, center of mass of the upper arm, center of mass of the forearm, and the

end-effector of the upper-limb model where the connection with the whip happened,

respectively [Figure 7-3].

𝒇𝟏𝑮 = 𝑀"𝒈

𝒇𝟐𝑮 = 𝑀$𝒈
𝒇𝟑𝑮 = 𝑚-𝒈

𝑥$ 𝑦$

𝑧$

𝑥%

𝑦%

𝑧%

𝑥&

𝑧&

𝑥'

𝑦'

𝑧'

{2}

{3}

{1}

{0}

𝑦&

𝒈

Figure 7-3: Frames and the imposed forces of the simulation model.

The detailed force vectors for each frame were as follows:

𝑓1,𝐺 = 𝑀1𝑔, 𝑓2,𝐺 = 𝑀2𝑔, 𝑓3,𝐺 = 𝑚𝑤𝑔, (7.4)
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where 𝑀1 and 𝑀2 denote the mass of upper arm and forearm, respectively [Table

3.1]; 𝑚𝑤 denotes the total mass of the whip model, which is the node number of the

whip 𝑁 multiplied by the mass of a single sub-model mass 𝑚, 𝑚𝑤 = 𝑚 · 𝑁 ; vector

𝑔 ∈ R3 denotes gravity in the simulation environment.

7.2.2 Zero-Torque Trajectory

A single discrete upper-limb movement defined the zero-torque trajectory [Section

2.1]. The zero-torque trajectory of the upper-limb model followed a rest-to-rest

minimum-jerk profile [Flash and Hogan, 1985] in joint coordinates [Figure 7-4]:

𝜑1(𝑡) = 𝜑1,𝑖 + (𝜑1,𝑓 − 𝜑1,𝑖) ·
{︂

10

(︂
𝑡

𝐷

)︂3

− 15

(︂
𝑡

𝐷

)︂4

+ 6

(︂
𝑡

𝐷

)︂5}︂
𝜑2(𝑡) = 𝜑2,𝑖 + (𝜑2,𝑓 − 𝜑2,𝑖) ·

{︂
10

(︂
𝑡

𝐷

)︂3

− 15

(︂
𝑡

𝐷

)︂4

+ 6

(︂
𝑡

𝐷

)︂5}︂ (7.5)

where 𝑡 is time and subscripts 𝑖 and 𝑓 denote the initial and final postures, respec-

tively. For times greater than the duration 𝐷 (i.e. 𝑡 > 𝐷), the zero-torque trajectory

of the shoulder and elbow joint remained at 𝜑1,𝑓 and 𝜑2,𝑓 , respectively. Rigorous

and detailed mathematical derivation of the minimum-jerk profile is presented in

[Appendix B].

Although simple reaches, for which the minimum-jerk-trajectory was first derived,

are coordinated as motions of the hand in an extrinsic coordinate frame (e.g., Carte-

sian) [Morasso, 1981], for simplicity, 𝜑(𝑡) was defined in joint space. This avoided the

need to compute inverse kinematics, which would become a considerable challenge for

the spatial task.
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Figure 7-4: Plot of the zero-torque trajectory of the shoulder 𝜑1(𝑡) and elbow 𝜑2(𝑡)
joint. Detailed values for 𝜑1,𝑚𝑎𝑥 and 𝜑2,𝑚𝑎𝑥 are 1.875·(𝜑1,𝑓−𝜑1,𝑖) and 1.875·(𝜑2,𝑓−𝜑2,𝑖),
respectively.

A Norton equivalent network representation of the upper-limb controller is shown

in [Figure 7-5], and an illustration of the single upper-limb movement is shown in

[Figure 7-6].

CNS

𝑲,𝑩

𝚺
𝜽(𝑡)

-+
𝝓(𝑡)

𝝓 𝑡 − 𝜽(𝑡)

Impedance Command 
and Gravity Compensation

Motion 
Command

a

a

𝝉(𝑡) 𝜏"

𝜏$

Figure 7-5: The upper-limb controller represented with the Norton equivalent network
model.
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𝑓
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𝑓
𝜙)

𝜙* 𝑖

𝑓
𝜙)

𝜙*

Figure 7-6: Representative images of the zero-torque trajectory and the actual upper-
limb movement. The top row depicts the zero-torque trajectory in joint space coordi-
nates. In the bottom row, the transparent upper-limb depicts the zero-torque position
of the upper-limb. 𝑡 denotes time and 𝐷 denotes the duration of the single discrete
upper-limb movement.

7.2.3 Implementation

In the simulation, the zero-torque trajectory 𝜑(𝑡) was determined by 5 movement

parameters: (𝜑1,𝑖, 𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷). At every time step, the actual joint angle 𝜃

and angular velocity �̇� for each joint were extracted by calling qpos and qvel array

under mjData. Based on these values, the position and velocity deviation between the

zero-torque trajectory 𝜑(𝑡) and the actual joint angle trajectory 𝜃(𝑡) were calculated.

The gravity compensation torque 𝜏𝐺 was calculated by calling the Jacobians for

each frame with function mj_jacBodyCom() and mj_jacGeom(). With the specified

𝐾 and 𝐵 matrices and the gravity compensation torque 𝜏𝐺, the resultant torque

values were calculated and applied to each torque actuator at each time step.
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7.3 Optimization Method

The objective of the whip task was to minimize the value 𝐿 [𝑚], the distance between

the tip of the whip and a target, with a single discrete upper-limb movement, i.e.

a single set of 5 movement parameters (𝜑1,𝑖, 𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷) [Figure 7-7]. To

avoid chaotic behavior due to the model whip colliding with a target, the target

was located at a distance just 0.01m beyond the combined length of the upper-limb

and whip measured from the shoulder (𝐿1 + 𝐿2 + 1.8 + 0.01 = 2.395m) [Table 3.1]

[Figure 7-8]. The minimum value of the distance 𝐿 reached with a single discrete (i.e.

rest-to-rest) upper-limb movement, 𝐿* [𝑚], was a quantitative measure to assess the

performance.

For this planar whip task, three variants of the whip model were constructed

and tested. Fixing the sub-model of the whip model, short-, medium-, and long-whip

models were constructed by increasing the number of nodes (sub-models) 𝑁 . Detailed

values of the whip parameters (𝑁, 𝑙, 𝑚, 𝑘, 𝑏) for each whip model are listed in [Table

7.1]. The objective of the whip task was cast as an optimization problem: finding

the optimal 5 movement parameters (𝜑1,𝑖, 𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷) which resulted the

minimum 𝐿* value. The distance 𝐿 was calculated for each time step, by calling the

Cartesian positions of the target and the tip of the whip, with function geom_xpos

array under mjData.

𝑁 𝑙 𝑚 𝑘 𝑏

Short-whip 10 0.10 0.1 0.05 0.005

Medium-whip 15 0.10 0.1 0.05 0.005

Long-whip 20 0.10 0.1 0.05 0.005

Table 7.1: Detailed values of whip parameters for each whip model.
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Figure 7-7: The 2D planar whip task.
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Figure 7-8: The position of the target.
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For each whip model, the optimal 5 movement parameters (𝜑1,𝑖, 𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷)

which minimized 𝐿* were identified with the nlopt (nonlinear optimization) C++ tool

box. Since the derivative of 𝐿* with respect to the five movement parameters (𝜑1,𝑖,

𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷) was unknown, several global derivative-free optimization algorithms

were compared. Of the global derivative-free optimization algorithm considered, the

DIRECT-L (DIviding RECTangles, Locally biased) algorithm was chosen for the

optimization [Gablonsky and Kelley, 2001]. A detailed comparison between different

global derivative-free optimization algorithms is presented in [Appendix C].

For the DIRECT-L algorithm, the upper and lower bound of the search space

were defined. The bounding box constraint for the 5 movements parameters (𝜑1,𝑖,

𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷), are presented in [Table 7.2]. Within the bounds of the constraint,

the DIRECT-L optimization algorithm conducted 600 iterations.

𝜑1,𝑖 𝜑2,𝑖 𝜑1,𝑓 𝜑2,𝑓 𝐷

Lower bound -0.5𝜋 0 0 0 0.4

Upper bound 0 𝜋 𝜋 𝜋 1.2

Table 7.2: Lower and upper bound of the 5 movement parameters used for the
DIRECT-L optimization algorithm.

7.4 Optimization and Simulation Results

For each whip model, the DIRECT-L algorithm converged to an optimal set of five

movement parameters which yielded a minimum value of distance 𝐿* for the corre-

sponding whip model. Detailed values of the optimal parameter set of the discrete

movement, (𝜑1,𝑖, 𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷), and its corresponding output 𝐿*, are presented

in [Table 7.3]. Actual movements in simulation generated with the optimal movement

parameters are shown in [Figure 7-9]. A graph of the number of iteration vs. 𝐿* with

different whip models is shown in [Figure 7-10].

Without the computational impasse of the “curse of dimensionality”, all three whip

models (based on the same sub-model) converged to an optimal solution. Considering
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the daunting complexity of the whip dynamics, it was not a priori obvious that the

optimization would even converge. Nevertheless, encoding the movement based on

parameterized dynamic motor primitives simplified the control task and provided a

way to work-around the “curse of dimensionality”. Regardless of the number of nodes

of the whip model, the task of searching for a time-history of inputs to an extremely

high degree-of-freedom system (22 degrees-of-freedom system or 44 state variables for

the longest whip) was dramatically simplified to searching for 5 movement parameters.

This simplification greatly reduced the numerical burden of the control task, and

facilitated the optimization process to converge to an optimal solution.

Even though the optimization algorithm used here was able to yield an optimal

set of movement parameters, several “spikes” of output value occurred during the

optimization process [Figure 7-10]. This phenomenon was due to the DIRECT-L

algorithm, which intermittently deviated from a locally-converged value, rather than

remaining at it. The spikes occurred when the algorithm “stepped out” from its

locally-optimal value (up to that point). These pronounced spikes were due to the

structure of the algorithm; the strength of the DIRECT-L algorithm is its balance of

global and local search [Gablonsky and Kelley, 2001, Finkel and Kelley, 2004].

Parameters
Whip Type

Short-whip Medium-whip Long-whip

Total Mass 1.0 1.5 2.0

Total Length 1.0 1.5 2.0

Optimal Movement

Parameters

𝜑𝑖,1 -1.312 -1.447 -1.496

𝜑𝑖,2 1.670 0.368 0.505

𝜑𝑓,1 1.565 1.562 1.570

𝜑𝑓,2 0.000 0.121 0.506

𝐷 0.667 0.833 0.803

Optimal Output 𝐿* 0.032 0.048 0.122

Table 7.3: Optimal movement parameters and the corresponding output value 𝐿*.
600 iterations were conducted with the DIRECT-L algorithm.
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(A.1) (A.2) (A.3)

(B.1) (B.2) (B.3)

(C.1) (C.2) (C.3)

Figure 7-9: Time sequence of the simulation of the whip task. (A) Short-whip (B)
Medium-whip (C) Long-whip. Each upper-limb movement was generated with the
optimal movement parameters, which yielded the minimum distance 𝐿* [Table 7.3].
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7.5 Robustness Analysis of the Optimal Solution

Considering the complexity of the nonlinear whip dynamics, it is likely that the

objective function, 𝐿* is non-convex and non-smooth with discontinuities. As a result,

the objective function 𝐿* may have multiple local extrema within the search space.

The optimization may become trapped in a local minimum and fail to find the globally

optimal solution. This possibility of local minima called for an examination of the

“robustness” of the converged optimal solution. Robustness of the converged optimal

solution was examined by checking the landscape of the objective function 𝐿*, in

the vicinity of the optimal 5 movement parameters [Table 7.3]. If the landscape

of objective function 𝐿* in the vicinity of the optimal 5 movement parameters was

(relatively) smooth without multiple “valleys” (local minima), the optimal solution

was deemed robust.

7.5.1 Method

The optimal solution of the short-whip model was chosen for the robustness analysis.

Data collected from the 600-iteration optimization process were used for the analysis

[Figure 7-10]. To retrieve the 5 movement parameters in the vicinity of the converged

optimal value of 𝐿*, values of 𝐿* lower than 0.05m (0.018m further from the optimal

value of 𝐿*, which was 0.032m [Table 7.3]) and the corresponding 5 movement param-

eters, were collected. The mean, standard deviation, minimum, maximum, coefficient

of variation and standard error values of the collected 5 movement parameters were

calculated.1 To check the landscape of the objective value 𝐿* in the vicinity of the

optimal 5 movement parameters, the search space in the vicinity of the optimal so-

lution was taken to be a 5-dimensional hypercube, where each edge ranged between

the minimum and maximum value of the collected 5 movement parameters. Within

this 5-dimensional hypercube search space, the values of 𝐿* were analyzed.

The simplest method to analyze the value of 𝐿* was to densely sample the data

1Coefficient of variation (C.O.V.) is defined as the ratio of the standard deviation 𝜎 to the mean
𝜇, i.e. C.O.V.= |𝜎/𝜇|. Standard error (S.E.) is the estimate of the standard deviation of a sample.
With the sample size of 𝑁 , S.E.= 𝜎/

√
𝑁
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points within this 5-dimensional hypercube. However, even for a 5-dimensional search

space, due to the “curse of dimensionality”, an exhaustive dense sampling of the data

points would be demanding. For instance, if 15 points were evenly sampled within

the range of each 5 movement parameters, 155 = 759, 375 data points in total, would

be sampled. Since collecting a single data point corresponded to running a single

simulation, assuming 3 seconds were needed for a single simulation, it would require

roughly 3 × 759, 375𝑠 = 2, 278, 125𝑠 ≈ 26 days to complete the data acquisition.

Hence, a naïve approach of exhaustively collecting the data points was avoided owing

to the exponential growth of computation time.

To solve this problem, the strategy of “divide-and-conquer” (Divide et impera), was

used for the analysis. Within the 5 movement parameters, 2 movement parameters

with the highest standard deviation (i.e. most widely dispersed) were chosen, and

the other 3 movement parameters were fixed at the mean value of the collected data.

The landscape of output value 𝐿* with respect to these two movement parameters

was analyzed.

7.5.2 Result

The calculated mean, standard deviation, minimum, maximum, coefficient of varia-

tion and standard error values of the collected 5 movement parameters are shown in

[Table 7.4]. The two parameters with the highest standard deviation were the initial

posture of the zero-torque trajectory of the shoulder joint 𝜑1,𝑖 and elbow joint 𝜑2,𝑖.

The landscape of output values 𝐿* with respect to these two variables is shown in

[Figure 7-12]. Even with the highly nonlinear dynamics of the whip, the landscape

of output values 𝐿* with respect to the initial posture was (relatively) smooth. No

local valleys, which could yield local minima, were evident in the plotted landscape.
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Figure 7-11: (Top) Number of iterations vs. 𝐿* value for the short-whip model. The
shaded region depicts 𝐿* values lower than 0.05m. (Bottom) Distribution of the data
of the corresponding 5 movement parameters, which resulted in 𝐿* values lower than
0.05m. The shaded region depicts the upper and lower bound of the optimization
[Table 7.2].

Movement Parameters
Measures

𝜑1,𝑖 𝜑2,𝑖 𝜑1,𝑓 𝜑2,𝑓 𝐷

Mean −1.3185 1.6798 1.5672 0.0267 0.6751

Std. 0.0459 0.0804 0.0174 0.0442 0.0151

Max −1.1345 2.0362 1.6096 0.1745 0.7404

Min −1.5417 1.2217 1.4544 0.0001 0.6669

C.O.V. 0.0349 0.0479 0.0111 1.6526 0.0224

S.E. 0.0025 0.0044 0.0009 0.0024 0.0008

Table 7.4: The mean, standard deviation (std.), maximum (Max), minimum (Min),
coefficient of variation (C.O.V.) and standard error (S.E.) values of the 5 movement
parameters which yielded 𝐿* values lower than 0.05m. The number of samples was
339.
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Figure 7-12: 3D plot of the initial shoulder angle 𝜑1,𝑖, initial elbow angle 𝜑2,𝑖 of the
zero-torque trajectory vs. output 𝐿*. The points were evenly sampled with 0.001-
radian step size for shoulder and elbow angles. In total, 3362 points were sampled.

How could the landscape of output value 𝐿* be relatively smooth despite the highly

nonlinear dynamics of the whip? It appears that damping of the whip model 𝑏 may

account for this smooth landscape. From the eigenvalue analysis of the linearized 𝑁 -

node whip model [Section 5.1], even with a modest amount of damping, it was shown

that the high-frequency oscillatory behavior of the damped whip model quickly faded,

and the whip was dominated by (eigen)modes with the lowest frequencies. Hence,

damping of the whip model “smoothed” the complex whip dynamics, resulting in a

less chaotic behavior.

To test this explanation, we examined how the landscape of the objective function,

𝐿* changed due to varying the damping value 𝑏 of the whip. We predicted that as the

damping value 𝑏 decreased, the landscape 𝐿* would lose its smoothness and exhibit

multiple local minima. That was observed [Figure 7-13].

By gradually decreasing the damping value 𝑏 to zero, the chaotic dynamics of the

whip became more evident. The irregularity of the landscape suggested an increased

vulnerability to converging to a local minimum. However, even a modest amount
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of damping, which could be physically justified from experimental results [Chapter

6], was sufficient to “robustify” the optimization by eliminating local minima. This

robustness implies that good performance of the whip task could be achieved even

with slight deviations from the optimal movement. This may (partially) explain how

humans can reduce variability of output performance despite ubiquitous noise which

is present at all stages of sensorimotor control.
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7.6 Optimization of the Experimentally-fitted Whip

Model

Encoding the movement with parameterized dynamic motor primitives succeeded to

identify an optimal upper-limb movement. However, all three whip models were based

on a single sub-model, the parameters of which were not based on actual measure-

ments. Hence, an optimization of a (more) realistic whip model was additionally

conducted. The experimentally-fitted whip model [Table 6.1] was subjected to the

exact same optimization process used for the previous three whip models [Section 7.2,

7.3].

As with the previous whip models, the experimentally-fitted whip model also

converged to an optimal solution. Detailed values of the optimal parameter set of the

discrete movement, (𝜑1,𝑖, 𝜑2,𝑖, 𝜑1,𝑓 , 𝜑2,𝑓 , 𝐷), and its corresponding output 𝐿*, are

presented in [Table 7.5]. Actual movements in simulation generated with the optimal

movement parameters are shown in [Figure 7-14], and the graph of the number of

iteration vs. 𝐿* is shown in [Figure 7-15].

Optimal Movement Parameters Output
Whip Type

𝜑1,𝑖 𝜑2,𝑖 𝜑1,𝑓 𝜑2,𝑓 𝐷 𝐿*

Exp.-fitted −1.367 0.015 1.571 0.054 0.810 0.015

Table 7.5: Optimal movement parameters and the corresponding output value 𝐿*.
Exp.-fitted denotes experimentally-fitted whip model

Figure 7-14: Time sequence of the simulation of the experimentally-fitted whip model.
Each upper-limb movement was generated with the optimal movement parameters,
which yielded the minimum distance 𝐿* [Table 7.3].
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Compared to the short-, medium- and long-whip model, the experimentally-fitted

whip model showed the best performance of the whip-targeting task [Table 7.3, 7.5].

The best performance was accomplished even with the highest number of nodes 𝑁

(25 for the experimentally-fitted whip model which is higher than 20 of the long-

whip model), and with a relatively long length of the whip model (1.8m for the

experimentally-fitted whip model which is comparable to 2.0m of the long-whip

model). This result may be due to the quantitative differences of the inertial, stiffness

and damping parameters of the model. The total mass of the experimentally-fitted

whip model was lowest compared to the others, while the values of stiffness and damp-

ing were relatively high [Table 7.3, 7.5]. As a result, the whip dynamics exhibited a

much “stiffer” behavior, which may account for why this model resulted in the lowest

optimal 𝐿* value compared to other whip models.
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Chapter 8

Spatial Whip Task

The 2D planar whip task was generalized to 3D. The goal was to reach a distant

target with the whip using a single discrete (point-to-point) upper-limb movement.

Multiple target positions were tested for the spatial whip task. For all of the MuJoCo

simulations, the semi-implicit Euler method was chosen as the numerical integrator,

with a time step of 0.1ms.

8.1 Modeling

The discretized 𝑁 -node spatial whip model [Section 3.2] was connected to a 4 degrees-

of-freedom spatial upper-limb model [Section 3.4]. The handle, which connected the

upper-limb and the 𝑁 -node whip model, consisted of 2 freely-rotating hinge joints

perpendicular to each other. This connection was established in simulation by setting

the torsional stiffness 𝑘 and damping coefficients 𝑏 of the sub-model, which directly

attached to the upper-limb model, as zero.

Summarizing, the combined 3D model simulated a sequential open-chain mech-

anism with 2𝑁 + 4 degrees-of-freedom: 4 for the upper-limb model and 2𝑁 for the

whip model and its handle, a total of 4𝑁 + 8 state variables [Figure 8-1, 8-2].
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4 DOF Upper Limb Model N-node Spatial Whip Model Combined Model

Figure 8-1: The model used for the spatial whip task. A 4 degrees-of-freedom (DOF)
upper-limb and spatial whip model were combined.

Figure 8-2: The upper-limb and the spatial whip model at an equilibrium posture.
The connection of the upper-limb and whip model was achieved by 2 freely-rotating
hinge joints perpendicular to each other. Axes of rotation for each joint are visualized
as a bullet shapes.
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8.2 Control of the upper-limb

8.2.1 Impedance Controller

The vector form impedance controller of the planar upper-limb controller [Eqn. 7.1]

was used for the spatial upper-limb controller. The only difference was the size of the

matrices and vectors of the equation; they were expanded to include the 4 joints of

the spatial upper-limb model:

𝜏 = 𝐾(𝜑− 𝜃) + 𝐵(�̇�− �̇�) + 𝜏𝐺 (8.1)

In this equation, 𝐾,𝐵 ∈ R4×4 are a constant joint stiffness matrix and a constant

joint damping matrix, respectively; vector 𝜏 (𝑡) = [𝜏1(𝑡), 𝜏2(𝑡), 𝜏3(𝑡), 𝜏4(𝑡)]
𝑇 denotes

the net torque input on each joint; vector 𝜏𝐺(𝑡) = [𝜏1,𝐺(𝑡), 𝜏2,𝐺(𝑡), 𝜏3,𝐺(𝑡), 𝜏4,𝐺(𝑡)]𝑇

denotes gravity compensation torque; vector 𝜃(𝑡) = [𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡), 𝜃4(𝑡)] de-

notes the actual joint angle trajectory defined in relative angle coordinates; vector

𝜑(𝑡) = [𝜑1(𝑡), 𝜑2(𝑡), 𝜑3(𝑡), 𝜑4(𝑡)] represents a motion command from the CNS as a

zero-torque trajectory; subscripts 1 to 4 denote joints for shoulder flexion/extension

(J1), shoulder adduction/abduction (J2), lateral/medial rotation (J3) and elbow flex-

ion/extension (J4), respectively [Figure 3-4]. Equation [Eqn. 7.3] is used for the

gravity compensation torque 𝜏𝐺(𝑡), with Jacobian matrix 𝐽𝑖𝑗 ∈ R3×4 for the spatial

upper-limb model.

The details of the 4-by-4 stiffness matrix 𝐾 and damping matrix 𝐵 of the spatial

upper-limb model were determined based on three key assumptions:

∙ The shoulder joints J2, J3 (excluding the shoulder flexion/extension joint, J1)

and elbow flexion/extension joint J4 were perfectly decoupled.

∙ The stiffness matrix was constant in relative angle coordinate.

∙ The damping matrix 𝐵 was chosen to be proportional to joint stiffness 𝐾, such

that 𝐵 = 𝛽𝐾, where 𝛽 was a time-constant of 0.05s, such that 𝐵 = 0.05𝐾
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Experimental measurements of shoulder impedance were used to determine the 4-

by-4 neuromuscular stiffness matrix 𝐾. For the 3-by-3 stiffness submatrix which cor-

responded to the three shoulder joints (J1, J2 and J3), experimentally measured values

were used [Lipps et al., 2015]. For the 2-by-2 stiffness submatrix which corresponded

to the shoulder flexion/extension joint (J1) and elbow flexion/extension joint (J4),

the stiffness matrix of the planar upper-limb model was used [Eqn. 7.2]. However,

that 2-by-2 matrix was multiplied by a scaling constant (valued as 17.4/29.5 ≈ 0.590),

so that the diagonal element of the stiffness matrix for joint J1 matched the experi-

mentally measured value reported by [Lipps et al., 2015].

The resulting 𝐾 and 𝐵 matrices were as follows:

𝐾 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

17.4 4.7 −1.9 8.4

9.0 33.0 4.4 0.0

−13.6 3.0 27.7 0.0

8.4 0.0 0.0 23.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, 𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.87 0.235 −0.095 0.42

0.45 1.650 0.22 0.0

−0.68 0.150 1.385 0.0

0.42 0.0 0.0 1.16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8.2)

Note that the stiffness and damping matrices of the spatial upper-limb model

were non-symmetric, compared to the planar upper-limb model where the 𝐾 and

𝐵 matrices were symmetric. This non-symmetric property implied that the stiffness

matrix 𝐾 and damping matrix 𝐵 had a skew-symmetric component, which indicated

a non-zero curl element.

8.2.2 Zero-Torque Trajectory

The zero-torque trajectory of the spatial upper-limb model followed a rest-to-rest

minimum-jerk profile in joint coordinates:

𝜑(𝑡) = 𝜑𝑖 + (𝜑𝑓 − 𝜑𝑖) ·
{︂

10

(︂
𝑡

𝐷

)︂3

− 15

(︂
𝑡

𝐷

)︂4

+ 6

(︂
𝑡

𝐷

)︂5}︂
(8.3)
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where 𝑡 is time and subscripts 𝑖 and 𝑓 denote the initial and final postures, respec-

tively. For times greater than the duration 𝐷 (i.e. 𝑡 > 𝐷), the zero-torque trajec-

tory of the upper-limb remained at final posture 𝜑𝑓 = [𝜑1,𝑓 , 𝜑2,𝑓 , 𝜑3,𝑓 , 𝜑4,𝑓 ]. The

zero-torque trajectory 𝜑(𝑡) was determined by 9 movement parameters: 4 for initial

posture 𝜑𝑖, 4 for final posture 𝜑𝑓 , and 1 for the movement duration 𝐷.

8.3 Optimization Method

The objective of the spatial whip task was to minimize the value 𝐿 [𝑚], the distance

between the tip of the whip and a target with a single discrete spatial upper-limb

movement, i.e. a single set of 9 movement parameters (𝜑𝑖, 𝜑𝑓 , 𝐷). The minimum

value of the distance 𝐿 reached with a single discrete (i.e. rest-to-rest) upper-limb

movement, 𝐿* (𝑚), was a quantitative measure to assess the performance of the

spatial whip task. The objective of the whip task was cast as an optimization problem:

finding the optimal 9 movement parameters which resulted in the minimum 𝐿* value.

The DIRECT-L algorithm was used for the optimization. The bounding box con-

straint for the 9 movement parameters are presented in [Table 8.1]. Within the bounds

of the constraint, the DIRECT-L optimization algorithm conducted 600 iterations.

𝜑1,𝑖 𝜑2,𝑖 𝜑3,𝑖 𝜑4,𝑖 𝜑1,𝑓 𝜑2,𝑓 𝜑3,𝑓 𝜑4,𝑓 𝐷

Low. B. -0.5𝜋 -0.5𝜋 -0.5𝜋 0 0.1𝜋 -0.5𝜋 -0.5𝜋 0 0.4

Up. B. -0.1𝜋 0.5𝜋 0.5𝜋 0.9𝜋 1.0𝜋 0.5𝜋 0.5𝜋 0.9𝜋 1.5

Table 8.1: Lower bound (Low. B.) and upper bound (Up. B.) of the 9 movement
parameters used for the DIRECT-L optimization algorithm.

The spatial version of the experimentally-fitted whip model was used for the spa-

tial whip task [Table 7.1], i.e. since 𝑁 = 25, the whole model simulated a sequential

open-chain mechanism with 54 degrees-of-freedom [Section 8.1]. Three different tar-

get locations were defined for the spatial whip task. All three targets were distanced

just 0.01m outside of a sphere, centered at the shoulder joint, of radius 𝑅 [𝑚] equal to

the sum of the lengths of the upper-limb and the length of the experimentally-fitted
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whip model (𝑅 = 𝐿1 + 𝐿2 + 1.8 + 0.01 = 2.395m) [Table 3.1].

In a spherical coordinate system (radius-azimuth-elevation), target 1 was located

at coordinate (𝑅, 0∘, 0∘); target 2 was located at coordinate (𝑅, 45∘, 0∘); target

3 was located at coordinate (𝑅, 45∘, 45∘) [Figure 8-3]. Optimization of upper-limb

movements for each target were performed.

Target 1

45
∘

45∘

Target 2

Target 3

𝑅

𝒈

Figure 8-3: The target positions depicted in a spherical coordinate system. 𝑅 [𝑚]
denote the radius of the sphere.

8.4 Optimization and Simulation Results

For each target position, the DIRECT-L algorithm converged to an optimal set of

9 movement parameters which yielded the minimum value of distance 𝐿* for the

experimentally-fitted whip model. Detailed values of the optimal parameter set of

the motion, (𝜑𝑖, 𝜑𝑓 , 𝐷), and the corresponding output 𝐿*, are presented in [Table

8.2]. A time-lapse of the simulation generated with the optimal movement parameters
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is shown in [Figure 8-4, 8-5, 8-6]. The trajectories of the optimal 3D upper-limb

movement (excluding the whip) are emphasized and separately plotted in [Figure 8-7,

8-8, 8-9]. Images were produced using MATLAB based on the position data extracted

from the MuJoCo simulation. Even though the whip task was generalized from 2D

to 3D, the optimization converged to an optimal spatial upper-limb movement.

Target 1 was at exactly the same location as the planar whip task. The only

difference was the dimensionality of the movement: the planar whip task was con-

strained to the 2D sagittal plane; the spatial whip task used the whole 4D joint

space. Minor differences of performance were observed between the planar and spa-

tial whip task. For the experimentally-fitted whip model, the optimal 𝐿* values were

0.015m and 0.050m for the planar and spatial whip task, respectively [Table 7.5, 8.2].

The slightly larger value of 𝐿* for the spatial whip task may be due to the higher

degrees-of-freedom of each node for the spatial whip model — each node of the spatial

whip model had two degrees-of-freedom, while the planar whip model had a single

degree-of-freedom.

For reaching target 1 with the whip model, the contribution of shoulder joints

J2 and J3 were relatively small compared to the others. Shoulder joint J2 remained

exactly at zero for the whole movement: 𝜑𝑖,2 and 𝜑𝑓,2 were zero. Shoulder joint J3

started at a moderate value, 𝜑3,𝑖 = 0.349 [𝑟𝑎𝑑], and ended at zero, 𝜑3,𝑓 = 0 [𝑟𝑎𝑑].

Considering that joints J1 and J4 respectively corresponded to the shoulder and elbow

joints of the planar upper-limb model, it can be concluded that the optimal spatial

upper-limb movement for target 1 resembled that computed for the planar case. This

result is clearly shown in the 𝑥𝑦-plane view of the optimal movement [Figure 8-4,

8-7], where the optimal spatial upper-limb movement was approximately planar and

mostly confined to the 2D sagittal plane.

The task of reaching target 2 was simply a rotated version of target 1. Considering

the rotational symmetry of this model of the whip task, the difficulty of reaching target

2 was equivalent to the task of reaching target 1. However, even though the optimal

𝐿* value for target 1 and target 2 were similar (0.050m and 0.069m, respectively), the

optimal movement for target 2 provided from the optimization algorithm showed a

95



substantial difference from the optimal movement for target 1 [Figure 8-7, 8-8]. Rather

than the movement being fully-stretched with a large planar “sweeping” motion, the

optimal movement for target 2 was “spiraled” and non-planar.

The optimal value of 𝐿* for target 3 was the largest compared to the others. The

optimal upper-limb movement for target 3 resembled the spiraled, non-planar optimal

movement of target 2 [Figure 8-5, 8-6, 8-8, 8-9].

Target Type
Parameters

Target 1 Target 2 Target 3

𝜑𝑖,1 -1.554420 -1.361357 -1.361357

𝜑𝑖,2 0.000000 1.047198 0.349066

𝜑𝑖,3 -0.349066 -0.297352 -0.698132

𝜑𝑖,4 1.378810 1.111193 2.042035

𝜑𝑓,1 1.727876 1.727876 1.727877

𝜑𝑓,2 0.000000 -1.034269 -1.047198

𝜑𝑓,3 0.000000 -0.754155 -0.349066

𝜑𝑓,4 0.351005 0.157080 0.471239

𝐷 0.950000 0.950000 0.583333

𝐿* 0.050384 0.069136 0.162527

Table 8.2: Optimal movement parameters and the corresponding output value 𝐿* for
each target.
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(a) 𝑥𝑦-plane view. (b) 𝑥𝑧-plane view.

(c) 𝑦𝑧-plane view. (d) 3D view

Figure 8-7: 3D plot of the optimal upper-limb movement for target 1. Shoulder joint
trajectory is colored in orange, and the end-point trajectory of the upper-limb is
colored in blue.
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(a) 𝑥𝑦-plane view (b) 𝑥𝑧-plane view

(c) 𝑦𝑧-plane view (d) 3D view

Figure 8-8: 3D plot of the optimal upper-limb movement for target 2. Shoulder joint
trajectory is colored in orange, and the end-point trajectory of the upper-limb is
colored in blue.
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(a) 𝑥𝑦-plane view (b) 𝑥𝑧-plane view

(c) 𝑦𝑧-plane view (d) 3D view

Figure 8-9: 3D plot of the optimal upper-limb movement for target 3. Shoulder joint
trajectory is colored in orange, and the end-point trajectory of the upper-limb is
colored in blue.
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Chapter 9

Conclusions and Discussion

This study examined whether a target could be reached with a simulated whip using

a (small) number of dynamic primitives, whose parameters could be learned through

optimization. Because of the dynamic complexity of the whip model, this simple task

is anything but trivial. It was not a priori obvious that the optimization would even

converge, let alone produce a meaningful result.

By encoding upper-limb action using the parameters of dynamic primitives, the

acquisition of the motor skill to achieve this task was greatly simplified. Simplifying

the motor task via parameterized dynamic primitives dramatically reduced the com-

putational complexity of the optimization problem, providing a way to work-around

the “curse of dimensionality”. This approach successfully managed the complexity of

an (extremely) high degree-of-freedom system: for 2D, the highest was a 27 degrees-

of-freedom model, a 54𝑡ℎ dimensional state-space representation; for 3D, the highest

was a 54 degrees-of-freedom model, a 108𝑡ℎ dimensional state-space representation.

In all cases, a minimum distance from the target was achieved with a single discrete

movement.

It is worth emphasizing that the upper-limb controller was “ignorant” of the com-

plex whip dynamics. While it is straightforward (albeit tedious) to derive the equa-

tions of motion for the sequential chain model for both planar and spatial cases,

optimization using such a complex mathematical model seems impractical, challeng-

ing even with modern computational resources. Using dynamic motor primitives,
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the whip-targeting task was achieved without the need to store or recall any de-

tailed mathematical representation of the whole system dynamics. This may be a

key simplification humans use to learn complex motor skills, since only a small set

of parameters may need to be acquired and retained regardless of the dimensionality

of the object being manipulated. To the extent that dynamic motor primitives of-

fer a simplified solution to complex and flexible object manipulation, this approach

may facilitate robotic manipulation of flexible materials, which is presently a major

challenge.

9.1 Relation to Prior Work

The movement primitives described by Ijspeert et al. [Ijspeert et al., 2002] have

successfully been used in robotics with different applications. Schaal et al. used

movement primitives to learn from a demonstrated trajectory [Schaal et al., 2003].

Peters and Schaal showed that a robotic arm was able to learn a baseball swing via

movement primitives [Peters and Schaal, 2006]. Stulp et al. used a reinforcement

learning algorithm and motion primitives to improve the robustness of grasping and

pick-and-place tasks [Stulp et al., 2012].

This prior work mainly focused on comparatively simple objects with few degrees-

of-freedom, which did not fully account for the true complexity of the range of objects

that humans can handle. To the best of our knowledge, using dynamic motor primi-

tives for controlling high degree-of-freedom systems has not previously been studied.

Flexible objects with highly complex internal dynamics remain particularly challeng-

ing for robots.

The only comparable study we are aware of demonstrated whip-cracking with

a robot manipulator [Yamakawa et al., 2016]. However, in that work the motion

trajectory of the robot was determined by replicating experimental observations of

actual human performance. Planning using optimization based on dynamic motor

primitives was not considered.
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9.2 Limitations and Future Direction

For the 2D planar whip task, it was notable that the minimum distance became

greater as the length of the whip increased. This suggested that a single discrete

movement might not be sufficient for longer whip models. Adding a second dynamic

primitive may improve performance. In fact, observations of a skilled human per-

former indicated that one action (sometimes rhythmic) was used to “energize” the

whip while a second action (e.g., a “wrist flick”) served to propagate a wave along it

[Henrot, 2016].

In the work reported here, a single discrete movement with a minimum-jerk-

trajectory was sufficient to accomplish the targeting task, but different types of

movement may be explored. For instance, superimposing oscillations with discrete

movements may result in a richer repertoire of upper-limb movements to achieve the

task.

The neuromuscular mechanical impedance of the upper-limb model was chosen to

be constant, and motion primitives with no consideration of interaction were sufficient

to perform the whip-targeting task successfully. For future work, the importance

of physical interaction between the upper-limb and whip model will be explored.

Specifically, it is speculated that there exists an optimal impedance value of the upper

limb which determines the ability to approximate a wave-like behavior of the whole

model. If the upper-limb model is too stiff, wave-like behavior may be suppressed. If

the upper-limb model is too compliant, the injection of wave energy into the whip may

be compromised. We anticipate that a condition resembling “impedance-matching”

will be optimal to propagate a wave-like behavior. A series of simulation experiments

to test this speculation is a subject of future work.

Discretizing the continuous whip dynamics with a finite number of lumped pa-

rameter sub-models enabled a compromise between ease of analysis and fidelity of re-

producing essential behavior. However, to avoid cluttering the simulation model with

excessive details, some physical properties of the whip (which might be essential) were

not considered. For instance, studies reported that the tapering of the whip is crucial
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to achieve whip cracking and wave propagation [Goriely and McMillen, 2002]. Taking

these properties into account may be crucial to represent a more realistic model of

the whip.

The results reported here do not preclude alternative approaches to reducing the

dimensionality of an optimization problem. For example, an input time-history (e.g.,

of joint torques) might be defined by a sparse number of “knot” points connected

by some suitable spline function, and that may also facilitate convergence of the

optimization. In essence, the discrete motion profile used here is an extreme example

of that approach, using only two knot points for the entire trajectory. However, it

is important that the choice of motion profile used was not arbitrary, but based on

the highly-stereotyped motion profiles of point-to-point reaching movements made by

unimpaired humans; found in the earliest movements made by persons recovering after

stroke; and made by infants learning to coordinate their limbs [Hogan, 1982, Flash

and Hogan, 1985, von Hofsten, 1991, Berthier, 1996, Rohrer et al., 2004].

In this simulation study the wrist joint was neglected for simplicity, since it is

always better to start simple and slowly add complexity, rather than the other way

around. Anecdotally, the wrist appears to play a prominent role in skilled whip

manipulation. However, at this time the role of the wrist remains unclear. Future

work may clarify the role of the wrist.

9.3 Conclusion

Despite the significant limitations of our neuromuscular system, humans manipulate

objects of prodigious dynamic complexity with apparent ease. The simulations pre-

sented here showed that encoding control via the parameters of primitive dynamic

actions—discrete movements—enabled optimization to identify actions that managed

an extremely complex dynamic object—a whip. Understanding how this is accom-

plished may facilitate endowing robots with comparable dexterity.
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Appendix A

Dynamics of the Multi-Pendulum

A.1 Equation of Motion of the Multi-Pendulum

By treating the object as a set of “lumped-parameter” sub-models, a continuous

infinite-dimensional model can be simplified to a discrete finite-dimensional model.

The continuous dynamics of flexible objects was discretized to a planar 𝑁 -node

multi-pendulum model. The planar 𝑁 -node multi-pendulum model consisted of an in-

extensible massless cylinder, suspended with length 𝑙 from a single degree-of-freedom

pivot with a (ideal) point mass 𝑚 attached to the other end. The pivot, a rotation

joint, was equipped with a linear torsional spring 𝑘 and linear torsional damper 𝑏.

The lumped-parameters of the 𝑖𝑡ℎ pendulum were denoted as 𝑚𝑖, 𝑙𝑖, 𝑘𝑖 and 𝑏𝑖, respec-

tively [Figure A-1]. The multi-pendulum model was suspended from a fixed point in

space.
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Figure A-1: The 𝑁 -node multi-pendulum model. The Cartesian coordinate frame
with its origin 𝑂 is indicated at the top of the pendulum.

The equation of motion of the 𝑁 -node multi-pendulum model can be derived from

the Euler-Lagrange equation. The Lagrangian 𝐿, a scalar value function, is defined

as:

𝐿 := 𝑇 − 𝑉 (A.1)

where 𝑇 and 𝑉 denote the total kinetic energy and potential energy of the system,

respectively.

In Cartesian coordinates, the kinetic and potential energy can be written as:

𝑇 =
1

2

𝑁∑︁
𝑖=1

𝑚𝑖(�̇�
2
𝑖 + �̇�2𝑖 ), 𝑉 = 𝑔

𝑁∑︁
𝑖=1

𝑚𝑖𝑦𝑖 (A.2)

where

𝑥𝑖 =
𝑖∑︁

𝑗=1

𝑙𝑗 sin 𝜃𝑗, 𝑦𝑖 = −
𝑖∑︁

𝑗=1

𝑙𝑗 cos 𝜃𝑗 (A.3)

Dots denote derivatives with respect to time, and angle 𝜃𝑗 is the absolute angle of the

108



𝑗𝑡ℎ pendulum measured from the vertically-downward equilibrium posture, i.e. the

angle measured from the −𝑦 axis of the Cartesian frame [Figure A-1].

The kinetic energy 𝑇 and potential energy 𝑉 can be rewritten as a function of

absolute angles of the 𝑁 pendulums. The 𝑁 absolute angles of the 𝑁 pendulums

were chosen to be the independent generalized coordinate vector 𝜃(𝑡):

𝜃(𝑡) = [𝜃1, 𝜃2, 𝜃3, · · · , 𝜃𝑁 ] (A.4)

Based on this generalized coordinate vector 𝜃(𝑡), it was able to derive the 𝑁

equations of motion of the multi-pendulum model with the Lagrange’s equation:

𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕𝜃𝑗

)︂
− 𝜕𝐿

𝜕𝜃𝑗
= 𝑄𝑗 (A.5)

where 𝑄𝑗 denotes the generalized force, which was the torque from the linear torsional

spring and linear torsional damper.1

In Cartesian coordinates, the velocity and acceleration of each point masses are

given as:

�̇�𝑖 =
𝑖∑︁

𝑗=1

𝑙𝑗𝜃𝑗 cos 𝜃𝑗, �̇�𝑖 =
𝑖∑︁

𝑗=1

𝑙𝑗𝜃𝑗 sin 𝜃𝑗 (A.6)

�̈�𝑖 =
𝑖∑︁

𝑗=1

𝑙𝑗(𝜃𝑗 cos 𝜃𝑗 − 𝜃2𝑗 sin 𝜃𝑗), 𝑦𝑖 =
𝑖∑︁

𝑗=1

𝑙𝑗(𝜃𝑗 sin 𝜃𝑗 + 𝜃2𝑗 cos 𝜃𝑗) (A.7)

The partial derivative of the position and velocity terms with respect to the joint

angle 𝜃 are:

𝜕𝑥𝑗

𝜕𝜃𝑖
= ℎ𝑖𝑗𝑙𝑖𝜃𝑖 cos 𝜃𝑖

𝜕𝑦𝑗
𝜕𝜃𝑖

= ℎ𝑖𝑗𝑙𝑖𝜃𝑖 sin 𝜃𝑖 (A.8)

𝜕�̇�𝑗

𝜕𝜃𝑖
= −ℎ𝑖𝑗𝑙𝑖𝜃𝑖 sin 𝜃𝑖

𝜕�̇�𝑗
𝜕𝜃𝑖

= ℎ𝑖𝑗𝑙𝑖𝜃𝑖 cos 𝜃𝑖 (A.9)

1Strictly speaking, the elastic potential energy due to torsional spring should also be added into
the potential energy term 𝑉 , However, for the sake of simplifying the derivation, the effect of torsional
spring was added to the generalized force 𝑄.
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where

ℎ𝑖𝑗 =

⎧⎪⎨⎪⎩1 if 𝑖 ≤ 𝑗

0 else
(A.10)

Therefore, each term of the Euler-Lagrange equation are derived:

𝜕𝐿

𝜕𝜃𝑖
=

𝑁∑︁
𝑗=1

𝑚𝑗

[︂
�̇�𝑗

𝜕�̇�𝑗

𝜕𝜃𝑖
+ �̇�𝑗

𝜕�̇�𝑗
𝜕𝜃𝑖

− 𝑔
𝜕𝑦𝑗
𝜕𝜃𝑖

]︂

=
𝑁∑︁
𝑗=1

ℎ𝑖𝑗𝑙𝑖𝑚𝑗

[︀
𝜃𝑖(𝑦𝑗 cos 𝜃𝑖 − 𝑥𝑗 sin 𝜃𝑖) − 𝑔 sin 𝜃𝑖

]︀
= −𝑙𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗

[︂
𝜃𝑖

𝑗∑︁
𝑘=1

𝑙𝑘𝜃𝑘 sin(𝜃𝑖 − 𝜃𝑘) + 𝑔 sin 𝜃𝑖

]︂

= −𝑔𝑙𝑖 sin 𝜃𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗 − 𝑙𝑖𝜃𝑖

𝑁∑︁
𝑗=1

𝑙𝑗𝜃𝑗 sin(𝜃𝑖 − 𝜃𝑗)
𝑁∑︁

𝑘=𝑛𝑖𝑗

𝑚𝑘

(A.11)

where:

𝑛𝑖𝑗 =

⎧⎪⎨⎪⎩𝑖 if 𝑗 ≤ 𝑖

𝑗 else
(A.12)

and:

𝜕𝐿

𝜕𝜃𝑖
= 𝑙𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗(�̇�𝑗 cos 𝜃𝑖 + �̇�𝑗 sin 𝜃𝑖)

𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕𝜃𝑖

)︂
= 𝑙𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗(�̈�𝑗 cos 𝜃𝑖 − �̇�𝑗𝜃𝑖 sin 𝜃𝑖 + 𝑦𝑗 sin 𝜃𝑖 + �̇�𝑗𝜃𝑖 cos 𝜃𝑖)

= 𝑙𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗

𝑗∑︁
𝑘=1

𝑙𝑘
[︀
𝜃𝑘 cos(𝜃𝑖 − 𝜃𝑘) + (𝜃2𝑘 − 𝜃𝑖𝜃𝑘) sin(𝜃𝑖 − 𝜃𝑘)

]︀
= 𝑙𝑖

𝑁∑︁
𝑗=𝑖

𝑙𝑗
[︀
𝜃𝑘 cos(𝜃𝑖 − 𝜃𝑘) + (𝜃2𝑘 − 𝜃𝑖𝜃𝑘) sin(𝜃𝑖 − 𝜃𝑘)

]︀ 𝑁∑︁
𝑘=𝑛𝑖𝑗

𝑚𝑘

(A.13)

Substituting these derived terms to the Euler-Lagrangian equation gives us:

−𝑔𝑙𝑖 sin 𝜃𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗 − 𝑙𝑖

𝑁∑︁
𝑗=𝑖

𝑙𝑗
[︀
𝜃𝑘 cos(𝜃𝑖 − 𝜃𝑘) + 𝜃2𝑘 sin(𝜃𝑖 − 𝜃𝑘)

]︀ 𝑁∑︁
𝑘=𝑛𝑖𝑗

𝑚𝑘 = 𝑄𝑖
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where:

𝑄𝑖 = −𝑘𝑖(𝜃𝑖 − 𝜃𝑖−1) + 𝑘𝑖(𝜃𝑖+1 − 𝜃𝑖) − 𝑏𝑖(𝜃𝑖 − 𝜃𝑖−1) + 𝑏𝑖(𝜃𝑖+1 − 𝜃𝑖) (A.14)

with 1 ≤ 𝑖 ≤ 𝑁 . Note that 𝜃0 and 𝜃0 are both zero, since the first pendulum was

attached to the fixed point in space.

As a result, in the general linear equation form 𝐴𝑥 = 𝑏, the 𝑁 nonlinear equations

of motion of the multi-pendulum model can be written as:

𝑁∑︁
𝑗=1

𝑎𝑖𝑗𝜃𝑗 = 𝑏𝑖, where

𝑎𝑖𝑗 = 𝑙𝑖𝑙𝑗 cos(𝜃𝑖 − 𝜃𝑗)
𝑁∑︁

𝑘=𝑛𝑖𝑗

𝑚𝑘

𝑏𝑖 = −𝑙𝑖𝑔 sin 𝜃𝑖

𝑁∑︁
𝑗=𝑖

𝑚𝑗 − 𝑙𝑖

𝑁∑︁
𝑗=1

𝑙𝑗[𝜃𝑗
2

sin(𝜃𝑖 − 𝜃𝑗)]
𝑁∑︁

𝑘=𝑛𝑖𝑗

𝑚𝑘 −𝑄𝑖

(A.15)
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A.2 Linearization of the Multi-Pendulum Model

Let the lumped parameter of the model be homogenous, i.e. the mass 𝑚𝑖, length 𝑙𝑖,

torsional spring coefficient 𝑘𝑖 and torsional damping coefficient 𝑏𝑖 are common for the

𝑁 pendula. Let these common parameters be denoted as 𝑚, 𝑙, 𝑘 and 𝑏, respectively.

With the small angle approximation, the trigonometry functions can be simplified as:

𝜃 ≈ 0 =⇒ sin(𝜃) ≈ 𝜃, cos(𝜃) ≈ 1 (A.16)

By linearizing the nonlinear Euler-Lagrange equation of motion about rest in the

vertically-downward position, the equations can be simplified and formulated as a

vector form equation:

𝑀 ′
𝑤𝜃 + 𝐵′

𝑤�̇� + (𝐾 ′
𝑤 + 𝐺′

𝑤)𝜃 = 0 (A.17)

where 𝑀 ′
𝑤,𝐵

′
𝑤,𝐾

′
𝑤,𝐺

′
𝑤 ∈ R𝑁×𝑁 are matrices of inertia, damping, stiffness and gravi-

tational effects, respectively. Note that the matrix for gravitational effect was included

in the stiffness term, since the gravitational force acted as a restoring force to the

multi-pendulum model.
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Detailed values for each matrices are [Braun, 2003]:

𝑀 ′
𝑤 =𝑚𝑙2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 𝑁 − 1 𝑁 − 2 · · · 1

𝑁 − 1 𝑁 − 1 𝑁 − 2 · · · 1

𝑁 − 2 𝑁 − 2 𝑁 − 2 · · · 1

...
...

... . . . ...

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐺′
𝑤 =𝑚𝑔𝑙

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 0 0 · · · 0

0 𝑁 − 1 0 · · · 0

0 0 𝑁 − 2 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐾′
𝑤 = 𝑘

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐵′
𝑤 = 𝑏

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0

−1 2 −1 · · · 0

0 −1 2 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A.3 Coordinate Transformation

The generalized coordinate can be interchanged between absolute angle coordinates

and relative angle coordinates, by simply multiplying the appropriate coordinate

transformation matrix. Let the generalized coordinate vector be the relative an-

gle coordinate 𝑞(𝑡). The relation between the absolute angles and the relative angles

of the 𝑁 -node multi-pendulum can be written as:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜃1

𝜃2

𝜃3
...

𝜃𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
... . . . ...

1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑞1

𝑞2

𝑞3
...

𝑞𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
:= 𝑅𝑞 (A.18)

where 𝑅 denotes the coordinate transformation matrix. Reformulating the equation

of motion with respect to the relative angle coordinate vector 𝑞 results in:

𝑀𝑤𝑞 + 𝐵𝑤�̇� + (𝐾𝑤 + 𝐺𝑤)𝑞 = 0 (A.19)

114



Detailed values for each new matrices are:

𝑀𝑤 =𝑚𝑙2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︀𝑁
𝑖=1 𝑖

∑︀𝑁−1
𝑖=1 𝑖

∑︀𝑁−2
𝑖=1 𝑖 · · · 1

∑︀𝑁
𝑖=1 𝑖− 1

∑︀𝑁−1
𝑖=1 𝑖

∑︀𝑁−2
𝑖=1 𝑖 · · · 1

∑︀𝑁
𝑖=1 𝑖− 3

∑︀𝑁−1
𝑖=1 𝑖− 1

∑︀𝑁−2
𝑖=1 𝑖 · · · 1

...
...

... . . . ...

𝑁 𝑁 − 1 𝑁 − 2 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐺𝑤 =𝑚𝑔𝑙

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑁 0 0 · · · 0

𝑁 − 1 𝑁 − 1 0 · · · 0

𝑁 − 2 𝑁 − 2 𝑁 − 2 · · · 0

...
...

... . . . ...

1 1 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐾𝑤 = 𝑘

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐵𝑤 = 𝑏

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0

0 1 −1 · · · 0

0 0 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
115



The state-space representation of the linearized equation of motion can be written

as:

�̇� = 𝐴𝑥 :=

⎡⎣ 0𝑛×𝑛 𝐼𝑛×𝑛

−𝑀−1
𝑤 (𝐾𝑤 +𝐺𝑤) −𝑀−1

𝑤 𝐵𝑤

⎤⎦⎡⎣𝑞
�̇�

⎤⎦ (A.20)

where 0𝑛×𝑛, 𝐼𝑛×𝑛 ∈ R𝑛×𝑛 are the zero and identity matrices, 𝐴 ∈ R2𝑛×2𝑛 is the state

matrix and 𝑥 ∈ R2𝑛 is the state vector. Note that the inverse of inertia matrix 𝑀𝑤

always exist since it is a positive-definite matrix. The eigenvalues and eigenvectors

of the state matrix 𝐴 determine the characteristic dynamics of the 𝑁 -node multi-

pendulum model.

It is worth noting that the eigenvalues of state matrix 𝐴 do not depend on the

choice of coordinate, meaning that the eigenvalue of matrix 𝐴 are equivalent for

absolute angle coordinates and relative angle coordinates.
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Appendix B

Calculus of Variations

Calculus of variations is a field of mathematical analysis that calculates and finds the

maxima/minima of functionals. Functional is a mathematical mapping from a set of

functions to a real number, compared to function which maps from a single element

to an element. Some core concepts of calculus of variations are necessary for deriving

the minimum-jerk-trajectory. Hence a brief overview which offers us the basic toolset

for the derivation is addressed.

B.1 Problem Statement

Assume our objective is to find a specific function 𝑥(𝑡) which yields the minimum or

maximum of some functional value in interest, 𝑉 . If function 𝑥(𝑡) is defined over some

interval of domain [𝑡𝑖, 𝑡𝑓 ], the functional value 𝑉 can be formulated as following:

𝑉 {𝑥(𝑡)} =

∫︁ 𝑡𝑓

𝑡𝑖

𝐿(𝑥, �̇�, �̈�, · · · , 𝑥(𝑛))𝑑𝑡 (B.1)

where the integrand 𝐿(·) denotes an algebraic function which depends on function

𝑥(𝑡) and its time-derivatives.

The main goal of calculus of variations is to identify function 𝑥(𝑡) which minimizes
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or maximizes value 𝑉 :

𝑥(𝑡) = argmin
𝑥(𝑡)

∫︁ 𝑡𝑓

𝑡𝑖

𝐿(𝑥, �̇�, �̈�, · · · , 𝑥(𝑛))𝑑𝑡 (B.2)

B.2 Euler-Lagrange Equation

General approach for finding function 𝑥(𝑡) which maps to the extremum of value 𝑉

starts with the derivation of Euler-Lagrange equation. Consider the case where our

quantity of interest 𝑉 is solely dependent on function 𝑥(𝑡) and its first-order time

derivative �̇�(𝑡):

𝑉 {𝑥(𝑡)} =

∫︁ 𝑡𝑓

𝑡𝑖

𝐿(𝑥, �̇�)𝑑𝑡 (B.3)

The change of value of 𝑉 due to a small variation of function 𝑥(𝑡) can be written as:

∆𝑉 =

∫︁ 𝑡𝑓

𝑡𝑖

𝐿(𝑥 + 𝛿𝑥, �̇� + 𝛿�̇�)𝑑𝑡−
∫︁ 𝑡𝑓

𝑡𝑖

𝐿(𝑥, �̇�)𝑑𝑡 (B.4)

where 𝛿𝑥(𝑡) denotes the deviation from function 𝑥(𝑡)1 [Figure B-1].

For a single point of time, 𝛿𝑥 and 𝛿�̇� are independent variables. Hence, at an

arbitrary point in time, Taylor expansion at the single point of integrand 𝐿 is possible.

Expanding and neglecting the second- and higher-order terms results:

∆𝑉 ≈
∫︁ 𝑡𝑓

𝑡𝑖

[︂
𝜕𝐿

𝜕𝑥
(𝑥, �̇�)𝛿𝑥

]︂
𝑑𝑡 +

∫︁ 𝑡𝑓

𝑡𝑖

[︂
𝜕𝐿

𝜕�̇�
(𝑥, �̇�)𝛿�̇�

]︂
𝑑𝑡 (B.5)

However, whereas 𝑥(𝑡) and �̇�(𝑡) may be independent at any arbitrary point of time

(differentiation), 𝛿�̇�(𝑡) is dependent with function 𝛿𝑥(𝑡) over the entire time domain

(integration). Therefore, via integration by parts:2

∫︁ 𝑡𝑓

𝑡𝑖

[︂
𝜕𝐿

𝜕�̇�
(𝑥, �̇�)𝛿�̇�

]︂
𝑑𝑡 =

𝜕𝐿

𝜕�̇�
(𝑥, �̇�)𝛿𝑥

⃒⃒⃒⃒𝑡𝑓
𝑡𝑖

−
∫︁ 𝑡𝑓

𝑡𝑖

{︂
𝑑

𝑑𝑡

[︂
𝜕𝐿

𝜕�̇�
(𝑥, �̇�)

]︂
𝛿𝑥

}︂
𝑑𝑡 (B.6)

For the predetermined start and end point of 𝑥(𝑡), 𝛿𝑥(𝑡𝑖) and 𝛿𝑥(𝑡𝑓 ) are both zeros
1Notation 𝛿 was distinguished from 𝑑, since 𝛿 represented a deviation of function, not a single

variable.
2One of the key points of integration by parts is that it interchanges the variable of integration.
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[Figure B-1]. Thus, applying this boundary condition gives us:

𝛿𝑥(𝑡𝑖) = 𝛿𝑥(𝑡𝑓 ) = 0 =⇒ 𝜕𝐿

𝜕𝑥
(𝑥, �̇�)𝛿𝑥

⃒⃒⃒⃒𝑡𝑓
𝑡𝑖

= 0 (B.7)

Merging and rearranging the equation gives us:

∆𝑉 =

∫︁ 𝑡𝑓

𝑡𝑖

[︂
𝜕𝐿

𝜕𝑥
− 𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕�̇�

)︂]︂
𝛿𝑥 𝑑𝑡 (B.8)

At an extremum, for any 𝛿𝑥(𝑡), value ∆𝑉 should be zero. This result eventually

leads us to the Euler-Lagrange equation:

∆𝑉 = 0 =⇒ 𝜕𝐿

𝜕𝑥
− 𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕�̇�

)︂
= 0 (B.9)

Function 𝑥(𝑡) which satisfies [Eqn. B.9] is the optimal function that maps onto the

extremum value of 𝑉 .

𝑥(𝑡𝑖)

𝑥(𝑡𝑓 )

𝑥(𝑡) + 𝛿𝑥(𝑡)

𝑥(𝑡)

Figure B-1: Diagram of possible paths of 𝑥(𝑡) from point 𝑥(𝑡𝑖) to point 𝑥(𝑡𝑓 ). Black
line represents one of the possible paths which 𝑥(𝑡) could take, and red line denotes the
deviated path from function 𝑥(𝑡) by function 𝛿𝑥(𝑡). Note that all possible paths start
from the same point, 𝑥(𝑡𝑖) and end at the same point, 𝑥(𝑡𝑓 ), i.e. 𝛿𝑥(𝑡𝑖) = 𝛿𝑥(𝑡𝑓 ) = 0.
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B.3 Euler-Poisson Equation

It is able to extend and derive a much generalized equation for cases where integrand

𝐿 depends on higher-order derivatives:

𝑉 {𝑥(𝑡)} =

∫︁ 𝑡𝑓

𝑡𝑖

𝐿(𝑥, �̇�, �̈� · · ·𝑥(𝑛))𝑑𝑡 (B.10)

Equivalent with the Euler-Lagrange equation, using integration by parts, it is straight-

forward to derive the much generalized Euler-Poisson equation:

∆𝑉 = 0 =⇒ 𝜕𝐿

𝜕𝑥
− 𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕�̇�

)︂
+

𝑑2

𝑑𝑡2

(︂
𝜕𝐿

𝜕�̈�

)︂
+ · · · + (−1)𝑛

𝑑𝑛

𝑑𝑡𝑛

(︂
𝜕𝐿

𝜕𝑥(𝑛)

)︂
= 0 (B.11)

The Euler-Poisson equation is the essence for deriving the minimum-jerk-trajectory.

B.4 Derivation of Minimum-Jerk-Trajectory

Humans are known to generate the “smoothest” motion to transport a limb from

one posture to another [Morasso, 1981, Hogan, 1982, Flash and Hogan, 1985]. For a

discrete point-to-point reaching movement, the salient observation to be modeled is

that the movements exhibit a stereotyped unimodal speed profile: movement starting

from rest (zero speed), rising smoothly to a single peak, then decline smoothly to rest

again.

One of the mathematical models which competently describes this commonly-

observed unimodal speed profile is known as minimum-jerk-motion. Maximizing

smoothness of the motion was mathematically defined as minimizing the mean-squared

jerk of the movement, where jerk denoted a physical quantity defined as a third time

derivative of position.

Casting it as an optimization problem, the mean-squared jerk value of the finite-

duration trajectory is minimized. The cost function 𝑉 is:

𝑉 {𝑥(𝑡)} =
1

𝑡𝑓 − 𝑡𝑖

∫︁ 𝑡𝑓

𝑡𝑖

(︂
𝑑3𝑥

𝑑𝑡3

)︂2

𝑑𝑡 (B.12)
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where 𝑥(𝑡) is the single degree-of-freedom trajectory defined in the domain [𝑡𝑖, 𝑡𝑓 ];

scalar value 𝑉 is the mean-squared jerk value of trajectory 𝑥(𝑡) along time.

Without the loss of generality, treating 𝑡𝑖 = 0 and defining duration as 𝐷 := 𝑡𝑓−𝑡𝑖,

𝑉 is reformulated as:

𝑉 {𝑥(𝑡)} =
1

𝐷

∫︁ 𝐷

0

(︂
𝑑3𝑥

𝑑𝑡3

)︂2

𝑑𝑡 (B.13)

Euler-Poisson equation [Eqn. B.11] gives us:

∆𝑉 = 0 =⇒ 𝜕𝐿

𝜕𝑥
− 𝑑

𝑑𝑡

(︂
𝜕𝐿

𝜕�̇�

)︂
+

𝑑2

𝑑𝑡2

(︂
𝜕𝐿

𝜕�̈�

)︂
− 𝑑3

𝑑𝑡3

(︂
𝜕𝐿

𝜕
...
𝑥

)︂
= 0 (B.14)

where 𝐿 represents the square of the jerk of trajectory 𝑥(𝑡).

Since function 𝐿 is solely dependent on the third derivative of position 𝑥(𝑡):

𝑑3

𝑑𝑡3

(︂
𝜕𝐿

𝜕
...
𝑥

)︂
= 0 =⇒ 𝑑6𝑥

𝑑𝑡6
= 0 (B.15)

Therefore, trajectory 𝑥(𝑡) which minimizes value 𝑉 is a 5𝑡ℎ order polynomial with

respect to time 𝑡:

𝑑6𝑥

𝑑𝑡6
= 0 =⇒ 𝑎0 + 𝑎1𝑡 + 𝑎2𝑡

2 + 𝑎3𝑡
3 + 𝑎4𝑡

4 + 𝑎5𝑡
5 = 0 (B.16)

where 𝑎0 through 𝑎5 are constants determined by the boundary condition.

The choice of boundary conditions disambiguates the coefficients of trajectory

𝑥(𝑡). For a single discrete movement, the movement starts and ends with a resting

posture. Hence, the velocity and acceleration of trajectory 𝑥(𝑡) are all zeros at the

start (𝑡 = 0) and end (𝑡 = 𝐷) of the movement. Assuming that the movement starts

at zero and ends at 𝑥𝑖 and 𝑥𝑓 , respectively, the boundary conditions of trajectory 𝑥(𝑡)

are:

𝑥(0) = 𝑥𝑖, 𝑥(𝐷) = 𝑥𝑓 , �̇�(0) = �̇�(𝐷) = 0, �̈�(0) = �̈�(𝐷) = 0 (B.17)

These 6 boundary conditions result in a 6 linear equations that define the 6 polynomial

coefficients, 𝑎0 through 𝑎5. Solving the 6 equations determines the 6 coefficients,
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𝑎0 ∼ 𝑎5, and the minimum-jerk-trajectory is derived:

𝑥(𝑡) = 𝑥𝑖 + (𝑥𝑓 − 𝑥𝑖) ·
{︂

10

(︂
𝑡

𝐷

)︂3

− 15

(︂
𝑡

𝐷

)︂4

+ 6

(︂
𝑡

𝐷

)︂5}︂
(B.18)

where subscripts 𝑖 and 𝑓 denote the initial and final positions, respectively; time t is

defined in the domain [0, 𝐷].

The velocity and position profile of trajectory 𝑥(𝑡) are plotted in [Figure B-2].

0 0.5𝐷 𝐷

𝑥𝑖

(𝑥𝑖+𝑥𝑓 )

2

𝑥𝑓

𝑡

𝑥(𝑡)

0 0.5𝐷 𝐷

𝑣𝑚𝑎𝑥

𝑡

�̇�(𝑡)

Figure B-2: Plot of position and velocity of minimum-jerk-trajectory 𝑥(𝑡) [Eqn. B.18].
A single peak unimodal bell-shaped speed profile of the minimum-jerk-trajectory, with
peak value 𝑣𝑚𝑎𝑥, is shown in the right. Detailed value for 𝑣𝑚𝑎𝑥 was 1.875 ·(𝑥𝑓 −𝑥𝑖)/𝐷.
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Appendix C

Comparison of Nlopt Algorithms

The nlopt (nonlinear optimization) toolbox offers multiple options of algorithm to

solve the optimization problem. The algorithms are categorized by two standards:

(1) whether the optimization problem is global or local and (2) whether the algorithm

employs derivative-free or gradient-based approach. Within these categories, 4 global

derivative-free algorithms were chosen and compared:

∙ ESCH (Evolutionary Algorithm)

∙ DIRECT-L (Dividing Rectangle - Locally Biased)

∙ AGS

∙ ISRES (Improved Stochastic Ranking Evolution Strategy)

The performance of the 4 global derivative-free algorithms: ESCH [da Silva Santos

et al., 2010], DIRECT-L [Gablonsky and Kelley, 2001], AGS [Sergeyev and Markin,

1995] and ISRES [Runarsson and Yao, 2005], were compared. The simple-yet-non-

trivial planar whip task [Chapter 7] was chosen for the performance evaluation. Three

types of whip model were used for the comparison: short-, medium- and long-whip

model [Table 7.3]. All of the optimization process comprised 600 iterations. With the

given whip model, the optimal values of 𝐿* for each algorithms were identified and

compared.
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C.1 Comparison and Results

Along the four algorithms, DIRECT-L algorithm yielded the best result (i.e. the

smallest value of 𝐿*) for the short-, medium- and long-whip model. The minimum

values of 𝐿*, within the 600 iterations are listed in [Table C.1]. Plots of iteration vs.

𝐿* value for short-, medium- and long-whip models are shown in [Figure C-1], [Figure

C-2] and [Figure C-3], respectively.

ESCH DIRECT_L AGS ISRES

short-whip 0.0333 0.0323 0.0564 0.0369

medium-whip 0.0520 0.0479 0.0886 0.1227

long-whip 0.1613 0.1216 0.2500 0.2866

Table C.1: Minimum values of 𝐿* [𝑚], within the 600 iterations.

Figure C-1: Algorithm comparison: optimization with the short-whip model. Data
from 400 to 600 iterations were plotted.
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Figure C-2: Algorithm comparison: optimization with the medium-whip model. Data
from 400 to 600 iterations were plotted.

Figure C-3: Algorithm comparison: optimization with the long-whip model. Data
from 400 to 600 iterations were plotted.
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C.2 DIRECT-L Algorithm

The DIRECT (DIviding RECTangles) algorithm employs a pattern search method

that balances local and global search within bounded constraints [Jones et al., 1993,

Torczon, 1997, Gablonsky and Kelley, 2001, Jones, 2009]. Compared to algorithms

which rely on randomness for optimization, DIRECT is a systematic deterministic

exploration algorithm. Inspired originally from Lipschitzian optimization, which di-

vides the bounded search space into boxes and samples the vertices of each, it is a

sampling algorithm which requires no gradient information of the objective function.

For the given lower and upper bound of the search space, the DIRECT algorithm

divides the search space into (hyper-)rectangles in a consistent pattern. Based on the

sampled data, the algorithm decides where to search next within the divided search

space, and eventually searches down the optimal solution [Figure C-4]. DIRECT-L

algorithm is simply the locally-biased version of DIRECT algorithm — it weights

more toward the local search than the global.

Figure C-4: Searching the optimal solution with the DIRECT algorithm in the 2-
dimensional search space. The optimal value for the function resided near point
(𝑥1, 𝑥2) = (0.5, 0.25). Image from [Finkel, 2003].
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