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Abstract

A method of computing acoustic perturbation values i< presented. The governing
equations are derived directly from the Euler equations by assuming that acoustic values
are a small, linear, unsteady perturbation upon a steady mean flow. The linearization
limnits the applications to those cases in which the square of the forced unsteadiness is
not large, but since the linearization is only in the time sense the steady mean flow can
be completely arbitrary.

The numerical method is based upon the Jameson [37] finite volume scheme and
is globally conservative. The small length scales found in acoustics are efficiently dis-
cretized by a fourth order accurate compact scheme in the azimuthal direction and by
a second order accurate central differencing scheme in the normal direction. The com-
plete set of complex Euler equations are integrated in the pseudo-time plane using a
Runge-Kutta integration method.

Analysis is presented which shows the accuracy of the method, and computational
examples are provided for some model aeroacoustic problems. The computational results
obtained indicate that the commonly used linear methods are applicable only when
the given parameters (thickness, angle of attack, Mach number and compactness) are
within a narrow range of validity, and beyond that range, a more sophisticated numerical
method, such as the one included, is required.

Sound waves radiating from a thick airfoil in a nonuniform flow are diffracted by a
varying mean velocity field. An airfoil at an angle of attack subjected to an unsteady
load has associated with it a trailing vorticity sheet, and although the wake is itself
silent, the wake influences the perturbation velocity field and the sound pressure near
the airfoil. Furthermore the unsteady wake can extract energy from the mean flow to
the perturbation vortical mode, and via the Kutta condition, the extraction may create
a higher than expected overall sound field.

Thesis Supervisor: Sheila E. Widnall
Title: Abby Rockefeller Mauze Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation for Current Study

Sound is a perception of pressure disturbances passing through the atmosphere, and
acoustics is the science of propagation and production of sound. Aeroacoustics is a
branch of acoustics which combines the classical acoustics, scattering and diffraction
of sound by bodies in still media, with the acoustics of moving flow, the scattering
and generation of sound by flow field inhomogeneities. It is not surprising that given
the wealth of knowledge available to solve the wave equation, the initial theories of
aeroacoustics were also based on the wave equation. Lighthill [44] found that by a
formal manipulation of the Navier-Stokes equation an ‘analogy’ to the classical acoustic
equation could be found. The acoustic analogy equation is,

3 2 2, _ 0Ty

a2 —eve= 0z;0z; (L.1)

where

T;; = pvivj + pij — 8ije?p’ (1.2)

c is the local speed of sound, &;; is the Kronecker é, and ' denotes a fluctuating acoustic
quantity. p;; is the total stress tensor containing both pressure and viscous terms and for
an inviscid flow p;; = pd;;. Note that the left hand side is just the standard wave opera-

tor, and hence if the source term T;; is known the exact solution can be found by usual
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Green’s function methods. T;; contains all the sources of aerodynamically generated
sound, i.e. sound sources due to unsteady injection of mass, momentum or energy; but
in addition, T;; also contains viscous diffusion and all the acoustic diffraction effects due
to a varying velocity field. T;;, therefore, embodies acoustic phenomena which are both
energy-conserving (diffraction) and energy-transferring (sound creation/attenuation).

The basis of Lighthill’s theory is that if we know Tj; the problem of sound generation
and propagation is reduced to that of solving a problem of conventional acoustics.
However, for realistic aeronautical cases (say Re = 10% and My = 0.7) the flow is
compressible, and the boundary layer may be turbulent. In such situations the pv,v;
term in Equation 1.2 is not only nonlinear but also third order, and the specification of
T;; is usually quite difficult for practical situations. The most profound value of Lighthill
theory, perhaps, is that it can reveal many dominant features of the sound field in terms
of easily estimated parameters of the flow; the theory is capable of correctly predicting
dimensional trends and scaling laws. The much heralded ‘U®-law for acoustic energy
of cold jets is one example of the usefulness and power of the Lighthill analogy. Past
efforts [17, 19, 27] seem to indicate that such analysis, if sufficient care is taken, can
reveal sound field values within a factor of 10 of actual values.

If, however, one is interested in a detailed study of aeroacoustics, T;; must be speci-
fied accurately, and a rigorous specification of T;; requires the resolution of the unsteady
Kolmogorov microscale; we need the complete unsteady time history of the turbulent
compressible boundary layer. It is exceedingly difficult to accurately specify T;; for real-
istic problems, even with the current class of computer resources. Consider a turbulent
boundary layer over a square flat plate of 1 x 1, and assume that the boundary layer
thickness grows as Rea:l/5 (66], where Re_ is the Reynolds number based on the posi-
tion along the plate. Also assume that the nondimensional Kolmogorov length scales as

Re~7/8, Then for a three dimensional case, we would require a grid of,

Re™® x Re™® x Re™/® x Re /% ~ 10" nodes
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in the normal directions to have about 1 node point per micro vortex width. This is
computationally impractical for steady problems, and even less so for unsteady cases,
because we would need the complete solution at each time step.

In the CFD community the turbulence resolution requirements are bypassed by em-
ploying a ‘model’ to emulate the subgrid scales. But we require an unsteady model and
such a model does not seem to exist. Therefore, given that full computational resolution
of turbulence is not possible and given also that there does not exist a simplified model
of turbulence, we need to restrict our research to those cases in which the turbulent
quadrupole sources of sound are not the dominant sources. We are eliminating all non-
linear sources of sound, such as those due to vortex pairing and those due to turbulent
microscales.

A full linearization and the isentropy/inviscid assumption of the Lighthill source
term T;; leads to the convective form of the wave equation in sound pressure r,

azpl 62pl 32})'

gir ~ OV = “dugs tu s (1.3)

when the mean flow is in the +z direction. The above equation is the basis of most
aeroacoustic effort of laminar unsteady flow to date. It has been used to model sound
radiation from a flat plate as a response from a vortical gust 3, 6, 7, 13, 27] and it has
also been used to model the scattering of sound by a flat plate [35, 62]. An important
question is: how realistic is the linear flat plate model with respect to a thick cambered
airfoil at an angle? Undoubtedly the answer will depend on the various length and time
scales involved. In fact one of the thrusts of current thesis is to quantify the parametric
dependence. But even without a detailed computational analysis, an observer can expect
Equation 1.3 to eventually produce faulty results simply because Equation 1.3 assumes
a uniform mean flow.

A fundamental and perhaps an obvious method of including the effects of flow
nonuniformity on sound propagation would be to directly integrate the full set of laminar

Navier-Stokes equations using CFD techniques.
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The past 20 years have seen a large increase in both CFD and computer capabilities.
Many researchers currently use Navier-Stokes methods to accurately compute lift and
drag profiles for a variety of two and three dimensional bodies in a wide range of Mach
and Reynolds number flows. Many issues, particularly turbulence, remain unresolved,
but for engineering purposes CFD has gained wide acceptance.

The question is then: What Is the most efficient method of adapting current CFD
capabilities to compute the acoustic values?

Ignore viscous effects and let us consider an illustrative example. Suppose we need
to compute a propagation of a single frequency plane acoustic wave through an arbitrary
domain. One method of solution would be to spatially discretize the wave and explicitly
integrate in time to ‘track’ the moving wave. But if the domain is large and if there
are reflections at the boundaries, this approach can be quite expensive and inefficient.
The maximum time step allowed in the integration would be of the smallest cell in the
domain for all the cells, and thus, the time evolution process can be quite slow if there are
variations in grid densities. A more efficient approach would be to Fourier transform
the equations and solve for the resulting complex coefficients in the domain. Here
the time derivative simply becomes a simple algebraic factor and all the convergence
acceleration schemes for steady flows such as local time stepping and multigrid methods
can be directly applied. Furthermore, when the complete time history is desired, the
explicit ‘tracking’ approach would require considerably more memory, because the entire
solution for at least one complete period would have to be stored. In contrast, the
complex domain approach requires only one (real and imaginary) solution to be saved.

This is the approach that the current thesis applies. The acoustic values are con-
sidered an unsteady linear perturbation of the steady, mean, inviscid flow, and the full
set of Fourier transformed linearized Euler equations are integrated to yield complex
sound amplitudes in the domain. Such an approach is equivalent to retaining all the
diffraction effects but discarding the nonlinear sources of sound in the inviscid Lighthill

source term T;;. The implications of the linear assumption are that we must now limit
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the applications to those cases where the unsteadiness is not very large, or equivalently,
we must limit the application to those cases in which the nonlinear sources of sound are

not the dominant sources of sound.

1.2 A Brief Survey

Linear perturbation methods for unsteady aerodynamic analysis have been exten-
sively used in the past. For a two dimensional, inviscid, incompressible parallel flow the
governing equation is the Rayleigh equation. Its solution has been used to predict the
stability of a fluid subjected to an infinitesimal disturbance (20, 41|. A two dimensional,
compressible parallel flow cannot be reduced to a single linear equation, and a system
of coupled equations must be solved. The solution processes for the eigenvalue problem
are in References [46, 48]. A general two dimensional compressible case has, however,
not been analyzed.

In the aeroacoustic community, the most commonly used computational methods
are of acoustic analogy type. Infinitely many choices of acoustic analogy are possible.
The Lighthill’s version is the most popular, although the analogy versions by Ffowes
Williams-Hawking [9, 27), Phillips & Lilley [27, 45], Ribner [60], and Powell [59] have
also been used. They all share the characteristic that the aeroacoustic problem reduces
to a forced wave equation of the form,

1 9%

—_—— 2 —
(cg gz~ V k=4 (1.4)

where ¢ is the sound speed in the quiescent field and h is the variable which in the
far field is the acoustic pressure. The choices for A and g are arbitrary, but they must
be consistent with the equations of mass, momentum, and energy conservation, and
furthermore, all the choices should lead to the same sound field if the flow variables are
known. The advantage of one choice over another is dependent on the details of the

particular problem [18].
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The acoustic analogy is directly applicable when the mean Mach number is very low.
The source terms are approximated from the incompressible flow solution; for instance,
when the flow is inviscid/isentropic and the mean Mach number is < 1 the source term

for the Lighthill’s version of the analogy is,

9*T;;

7= 82,‘81'
where

T,'J' =X pPoviv;.

The source terms are assumed to be independent of the acoustic values, and the solution
is obtained via a Green’s function integral. Applications of such approach for rotors
maybe found in References [55], for cold jets References [60], and for turbulent flow
Reference [17, 18, 31].

Another commonrly used method has been of Kirchoff type. In the Kirchoff approach
the solution is an integral solution to the wave equation external to some real or imagi-
nary surface on which the relevant acoustic data is known. The acoustic surface values
are often a near field solution to the acoustic analogy [6]. The Kirchoff method is used
later to compute the far field values.

Linear perturbation potential methods have also been applied to aeroacoustics [6, 7,
62]. Generally a quiescent or uniform flow is assumed, and thus the potential methods
are similar to the acoustic analogy equations except that the dependent variable in the
wave/convective-wave operator is the perturbation velocity potential. A wake allows
a finite discontinuity in the velocity potential but not in pressure, and therefore the
petential methods allow problems which include unsteady lift. Note that the potential
methods, as applied, do not allow production or convection of vorticity except as a
specified boundary condition of a ‘jump’ in the potential. The methods are therefore
generally not appli:able for cases in which the vorticity location is not known a priori

or when the free convection of vorticity is important.
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Perturbation Euler techniques which naturally allow vorticity and enircpy produc-
tion/convection have recently received attention from both the acoustic community and
also the unsteady fluids community at large. Khan et al. [40] solved the perturbation
Euler equations to analyze the acoustic radiation from a monopole in uniform flows,
and Hariharan et al. [32, 33] computed the acoustic radiation in cylindrical ducts by
using the linearized Euler equations in a quiescent field.

The linearized Euler equations can be cast as a set of steady equations in frequency
domain by using the single frequency assumption. No generality is lost in the assumption
since in linear problems the complete solution can be reconstructed as a sum of multiple
frequencies using the Fourier synthesis. The frequency domain Euler approach was
pioneered by Ni [54] and Hall [30] who applied the method to study unsteady flows in
turbomachinery. Ni used the isentropic form of the linearized Euler equations to validate
the concept with the linear flat plate cascade analysis, and Hall investigated transonic
duct flows and cascades using a combination of both the linear perturbation and full
Euler equations. The current thesis extends the works of Ni and Hall to aeroacoustics
of external flows.

It should also be noted that recently there has been some effort in direct numer-
ical simulations of acoustics using the full set of Navier-Stokes equations. Ridder &
Beddini [61] integrated the full set of axisymmetric Navier-Stokes equations for acous-
tic radiation of sound from resonance tubes, and Colonius et al. [15] have integrated
the full set of Navier-Stokes equations for the problem of plane wave scattering by a
compressible vortex. Ridder & Beddini's solution correctly predicted the general trend
of pressnre oscillation but suffered from noticeable dissipative errors due to insufficient
grid resolution. Colonius et al. used high amplitude (~ 107°) sound waves with a fourth
order accurate spatial discretizaiion in an orthogonal rectangular domain. The numer-
ical domain guaranteed a minimum resolution of 60 points per shortest wavelength,
and the computed solution was “within a few percent” of the solution predicted by the

acoustic analogy. The two examples not withstanding, a direct Navier-Stokes acoustic
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calculation for a realistic flow geometry has not yet been computed. A high grid reso-
lution requirement, a lack of an effective far field boundary condition, and an accurate

unsteady turbulence model are believed to be .he primary obstacles [31).

1.3 Synopsis of the Thesis

A numerical method to determine acoustic values is presented. The governing equa-
tions are derived from the Euler equations with an assumption that an acoustic value
is a small unsteady pressure perturbation about a steady mean quantity. The small
perturbation assumption allows the use of linearization and the single frequency suppo-
sition.

Much of the numerical method is based upon previously used CFD techniques and
is completely general geometrically. The application will also allow arbitrary mean
steady flows, although there is some limitation in the free stream Mach number so that
nonlinearities such as wave-steepening and shock oscillations do not dominate the flow
field.

In the following chapter we discuss the derivatiorn of the governing equations, and
we determine the rang~ of parameters within which the derived equations are valid.

In chapter 3 the unsteady wall boundary conditions and the nonreflecting far field
boundary conditions are presented.

Chapter 4 analyzes the numerical approach with particular emphasis on the trunca-
tion error, pseudo-time stability, and convergence acceleration schemes.

In chapter 5 we apply the numerical method to simulate the sound radiation process
from a vortical gust-airfoil interaction. The first set of computations are benchmarked
with known analytic solutions to assure accuracy and consistency. Later we investigate
the effects of thickness, Mach number, angle of attack, and the reduced frequency on
the geaerated sound field.

Chapter 6 presents computational models of sound generation from an oscillating

airfoil. We present a set of 6 cases which highlights the effect of thickness and angle of
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attack on radiated sound field from an isolated airfoil in high subsonic flow.

Chapter 7 presents acoustic scattering results from incident pressure waves. We
discuss diffractive effects of nonuniform mean flows, and we measure sound attenu-
ation/amplification in lifting and nonlifting situations. We also measure changes in
scattering patterns from varying the mean Mach number and the angle of attack.

In chapter 8 we put all the above into perspective and make suggestions for future

research.
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Chapter 2

Governing Fquations

An accurate determination of acoustic signatures resulting from an unsteady flow
in or around aircraft components is important to efforts in noise suppression and in the
design of advanced aircraft. In this work, we analyze some aspects of changes in flow
parameters (Mach number, angle of attack, etc.) on the generation and propagation of
sound. We are concerned primarily with the gross features of aeroacoustics; the effects
of flow variations which scale with the dominant length scale upon audible wavelengths
of sound.

The Reynolds number of the mean flow is to be of typical transport aircraft range
(~ 10°%), and hence the viscous effects are confined to thin boundary layers and wakes.
We will not consider extremely high frequencies of sound which have wavelengths of
the same scale as the viscous layers, and furthermore, the acoustic boundary layer
is assumed to remain attached. Thus for current purposes, the flow is inviscid, and
compressible, but may be rotational and nonisentropic. The governing equations for
the present aeroacoustic field are, therefore, derived from the unsteady Euler equations.

We begin with the derivation of the Euler equations in the inteyral form.

2.1 Integral form of the Conservation Laws

Consider an adiabatic, inviscid, compressible fluid in two dimensions passing through
a region D enclosed by a surface S which is fixed in space as shown in Figure 2-1.

The quantities to be conserved are mass, momentum, and energy. The statement of
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Figure 2-1: Control area used to derive the conservation equations.

conservation of mass is that the rate of change of mass within the control area is equal
to the rate at which mass flows into or out of the region through the surface (the mass

flux). In integral form,
0
—pdD = - | pU-nd 2.
[ 574D = - [pU-nds (2.1)

where p and U are the density and velocity of the fluid; ¢ is the time and n is a unit
normal vector pointing out of the region.

The statement of conservation of momentum can be expressed in a similar way.
The rate of change of momentum within the control area is equal to the sum of the
body forces acting on the fluid particles plus the integrated surface forces acting on the

boundary. With no body forces,

_/;)-:—tpUdD+/pU(U-n)dS= —-/pndS’ (2.2)

where pis the pressure. The first term in Equation 2.2 represents the time rate of change

of momentum within the region D, and the second term represents the rate at which

28



momentum leaves the domain (the momentum flux). Together the two terms represent
the rate of change of momentum of the fluid particles which pass through the surface
S, and this then is equal to the sum of the forces acting on the boundary surface §.
Now consider the principle of the conservation of energy. The net rate of change of
energy of a group of fluid particles ir. the contrnl area is equal to the work done on them

by external forces. Mathematically we have that,

0 U? U?
/ =—p(ei + ——)dD+/p(e;+ —)U - -ndS§ = —/pU-ndS (2.3)
D ot 2 s 2 s

where pe; is the internal energy per unit volume of the fluid, and the term pU?/2 is the

kinetic energy per unit volume. For a perfect gas,

P6i=—p—-

7-1

where v is the ratio of specific heats and is assumed to be 1.4. The rate of change of
total energy of fluid particles within the control area is equal to the two terms on the
left hand side of Equation 2.3, and this in turn is equal to the external work done by

pressure acting on the surface S.

2.2 Differential form of the Conservation Laws

In the previous section the conservation laws were presented in the integral form;
however, it is sometimes more useful to express the conservation equations in an equiv-
alent differential form. By applying the divergence theorem the conservation laws can

be recast as,

/ [g—p +V-(pU)]dD =0 (2.4)
p Ot
/ [ng 4+ V. (pUU) + Vp]dD =0 (2.5)
p Ot
2 2
[ Gpptes+ 5+ 9 lofes + )0 + pUIaD = 0 (26)
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where the term V . (pUU) represents a divergence of a dyadic tensor and may be
expressed as [39],

V-(pUU) = pU-VU + UV . (pU). (2.7)

If the above equations are to hold for any arbitrary region of fluid, then all of the iate-
grands must vanish identically everywhere within the fluid. The differential conservation

laws (the Euler equations) in Cartesian form are therefore,

g 0 7]
EQ+£F+5§G—O (2.8)
where,
P
u
Q=" (2.9)
pv
pe
( pu pv
2
+ Suv
F=|"™"?] @G-= ¢ (2.10)
puv pv’ +p
puh pvh

u and v are the z and y components of the velocity U; e and h are the total energy and

enthalpy of the fluid; for a perfect gas they are defined as,

1
e=¢€ + §(u2+vz)
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2.3 Linearized Euler Equations

As a sound wave travels it perturbs the fluid from its mean state. These disturbances
are nearly always small. We will consider acoustic quantities to be small unsteady

perturbations about a steady space varying mean value. We assume that,
u(z,y,t) = uo(z,9) + ¢ (2,9, t), v(z,9,t) = vo(z,y) + v'(z,9,t) (2.11)

p(z,y,t) = po(z,y) + p'(2,u,t), D(2,9,t) = po(z,y) + P'(2, ¥ ) (2.12)

where the subscript o refers to the steady mean quantity, and the superscript ’ refers to
the time varying acoustic quantity. The ratio |p'/po| is in most acoustic cases very much
less than unity. Even at the threshold of pain |p'/po| is ~ 102, and at the threshold of
hearing |p'/po| is only ~ 1071%. The flow perturbations involved in acoustic waves are
very small, and all products of the perturbed quantities can usually be neglected. This
is equivalent to stating that the response of the acoustic field is typically linear.

The governing aeroacoustic equations are derived by substituting the perturbation
relations (Equations 2.11 and 2.12) into the Euler Equations 2.8. Collecting terms of
equal order and neglecting terms of second order produces the equation for the steady
mean flow and the equation for the first order unsteady perturbation quantities. The

steady mean flow equations are,

d 0
—F —Gp=0 2.13
gzF0t 5, Co (2.13)
where,
Polo PoVYo
2
Poly + Po PouoVo
Fo = , Go= \ (2.14)
PoloVo Povg + Po
potioho povoho

which is identical to the original equations with the time derivative terms set to zero.
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Note that the mean flow is represented by a set of coupled nonlinear equations.

The first order perturbation equations are given by,

a i} 7]
7T 5 F T 5,8 =0 (2.15)
where,
pl
Q= (pu)* (2.16)
(pv)*
(pe)*
(pu)* (pv)*
p_ | wl2ew) —uop)+ ¢ a o | wllev) —vopl+ (pw)uo | (2.17)
vo[(pu)* — uop'] + (pv)*uo vo[2(pv)* — vop'] + P’
uo[(ph)* — hop'] + (pu)*ho vo[(ph)* — hop'] + (pv)*ho
The state equation is given as,
P = (v = D{(pe)" ~ luo(2(pu)’ — uop) + wo(2(p0) w0} (218)

and the * quantities are defined as,
(pu)* = pu — pouo = pou’ + p'ug (2.19)
pv)* = pv — povo = pov’ + p'vo
( )o / + /

/

p
7-1

1
(pe)* = pe — poeo = + pouott’ + povov’ + Ep'(u(z, + vd)
(ph)* = ph — poho = (pe)* +p'.

These equations are linear in the perturbation variables; the mean flow values are known

from the solution of Equation 2.13.
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2.3.1 Single Frequency Approach

The governing perturbation Euler Equation 2.15 is also homogeneous, therefore any
unsteadiness must arise from the applied boundary conditions such as those due to
upstream and/or downstream pressure disturbances. Suppose that these external ex-
citations are harmonic in time with a frequency w, then since the given equations are
linear, the time dependent solution will also be harmonic with frequency w. Thus the
completely unsteady Euler equations can be recast as a set of steady complex equations

by the use of the single frequency assumption,
o' = R(a(z,y)e” ™), o = R(d(z,y)e”™)

P = R((z,y)e™™), o' = R(A(z,y)e™")

where the superscript “denotes a complex quantity and R refers to the real part.

The governing equations then become,

. i} /]
bt ‘le + '5;F + E‘JG = 0 (2.20)
p
qQ-| ¥ (2.21)
(pv)
(pe)
(pu) (pv)
po | wllw-wd+s oL wl(er) ol (pupo |
vo[(pu) — uop) + (pv)uo vo[2(pv) — vop| + P
uo{(ph) - hop] + (pu)ho v[(pk) - hop] + (pv)ho
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and the state equation of the form,

5 = (7 - 1){(pe) — 3luol2(pw) ~ wod) + vo(2(p) —woA}.  (2:23)

— o o o—

The variables (pu), (pv), (pe), (ph) are defined similarly as in Equation 2.19,

—

(pu) = poit + puo (2.24)

(pv) = pob + puo

— ) 1. |
(pe) = 7—1—)f + pouot + povod + EP(ug +v5)
(ph) = (pe) + 5.

It should be noted that no generality has been lost due to the single frequency assump-
tion. Since the governing equations are linear, a general case of n number of frequencies
can be solved as a superposition of n number of single frequencies by applying the
Fourier theorem. That is to say, a total solution can be thought of as composed of an

infinite number of discrete frequencies such that,

P=R( Y Aw)e ™), p=R( Y Blwe™) (2.25)

w=—00 Ww=-—00

o =R( Y daw)e™), v = R( i B(w)e™™). (2.26)

w=—c0 w=—00
Except in situations where the sound is very ‘broad banded’ and contains many
discrete frequencies, it is usually more efficient to solve the governing equations a single
Fourier component at a time. This is because we can tailor a numerical grid to that spe-
cific wavelength rather than to the shortest wavelength amongst a group of frequencies,
and thus each frequency is solved using the coarsest most efficient grid possible.
Moreover, one of the goals of the current thesis is to investigate the effects of mean

flow variations on a range of wavelengths. For research purposes, a time domain ap-
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proach would unduly complicate the analysis.

2.3.2 Scattered Form

The linearized complex Euvler Equation 2.20 can now be solved using an appropriate
numerical method. Sometimes, however, ¢ is more efficient to recast the equations in
the ‘scattered’ form. Consider, for instance, a scattering problem in which a distur-
bance wave travels from infinity and is diffracted by an object at z = 0. Assume that
the object is ‘thin’ with respect to the wavelength of the disturbance so that the ‘scat-
tered’ portion of the solution decays as |z| becomes large (typically as |z|~'/2). In such
scattering problems, the governing equations can be more efficiently solved by ‘splitting’
the dependent variables into a known ‘incident’ quantity and a ‘scattered’ quantity [24].
This is because the scattered form requires less grid resolution in the far field where
the scattered quantities are expected to be small, but where the incident quantities are
not. The total perturbation quantity is formed as a sum of the incident quantity and

the scattered quantity,
P=DPit+Ps P=pitps
i = 1i; + U,, =17 + 9,

where the subscripts ; and , denote the incident and scattered parts, respectively. The

governing Equations 2.20 in scattered form is then,

. o 0. _
- wQ, + ‘8—;F, + BZG, =8 (2.27)
where,
. 0 0
S = ‘le, - %F, - %G‘. (2.28)

Note that the ‘splitting’ is strictly a mathematical definition; the incident quantity does
not correspond exactly to the physical incident wave everywhere. By definition the

mathematically defined incident wave is equivalent to the physical incident wave only
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at infinity, i.e. where the mean flow is uniform. Thus S contains all the incident wave—
mean flow diffraction terms and S — 0 as r — o0, and also S = 0 when there is no
mean flow.

Given a ‘nonscattering’ problem in which sound is generated by a defined unsteady
motion of a body within the domain, Equation 2.27 is still valid except here § = 0 and

Q; is the complete perturbation quantity.

2.3.3 Pseudo-Time

There are multiple methods to solve the Equation 2.27. We can solve it by directly
inverting the space varying coefficient matrix as in Hall [30], or we can introduce a
pseudo-time variable and solve them in a time marching iterative fashion as in Ni [54].
We use the latter approach, because the use of a pseudo-time variable makes it possible
to adopt the convergence acceleration methods developed in CFD such as local time

stepping and multigrid methods. The modified form of the perturbation equations is,

0 d

o ..
’a—t;Qa + 3‘; —G,-wQ,=S (2'29)

F,
* 7

where t* is the pseudo-time variable. We can also introduce the pseudo-time variable

to the mean flow equations to obtain,

a a ad
—_— —F —Gp = .
8t‘Q0+6:c o+3y 0=0 (2.30)
where
Po
Pol
Qo = olUo
PoYo
Po€o

In the asymptotic limit 5?—. — 0, Equation 2.29 is equivalent to Equation 2.27, and

Equation 2.30 is equivalent to Equation 2.13; the consistency of the methods are pre-
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served.

2.3.4 Nondimensionalization

The independent length and frequency variables are nondimensionalized as,

(z,9) = (ZL;"/'Q (2.31)

w=—nd (2.32)

Vpco;Poo.

The various flow variables are nondimensionalized as follows,

Pon Pon
=8 =2 2.33
po Poo Poo ( )
(uOvan) (2.34)

(vor o) = T

for the mean flow variables and,

- Pn - Pn
_ = Pn 2.35
p="s P=7 (2.35)
(umv") (2.36)

for the perturbation aeroacoustic variables. The subscript , refers to a dimensional

quantity and a to some reference length quantity.

2.4 Energy Corollary

The set of governing equations is complemented by an energy corollary relation.
The corollary is derived by algebraic manipulations of the governing equations. It is not
an independent equation, and the equation need not be integrated. The utility of the

relation is that it expresses a second order balance of energy which involves only first

order perturbation quantities.
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The second order energy balance may be expressed as a time variation of the total

energy density E, [51, 52, 53],

0F
24+V.I,=D 2.
ot + , ¢ (2:37)
where
pl2 po(ulz + vr2) , , POTO 302
E, = . £0-07
2pgc3 + 2 Tt w 2¢p

/

L= (% + uo - u')(pou’ + p'uo) + pouoT's’
D, = poug - (£ x u') + p'u’ - (€0 X wo) + 8'poug - VI’ — s'(pou’ + p'ug) - VT,

and T is the temperature, s is the entropy and £ = V x u the vorticity. I, represents the
flux of energy transported by both the mean and the perturbation flow and is referred
to as the intensity. The source term D, represents the production of energy associated
with interactions between the mean vorticity and the perturbation velocity and between
the mean velocity and the perturbation vorticity as well as the production arising from
the presence of entropy fluctuations.

Given a rotational but isentropic flow, E,, I,, and D, reduce to simpler forms,

plz + po(u12+vl2)

—_ / . [
E, = 200ck 5 + p'ug-u (2.38)
pl
I, = (;’- + ug - u')(pou’ + p'ug) (2.39)
D, = poug - (€' x u') + p'u’ - (& X up). (2.40)

An equivalent form of energy conservation is obtained by taking the time average
then integrating the differential equation (2.37) over an area A bounded by a closed

loop o. The conservation equation becomes,

w sfi,,-nda = // D.dA (2.41)
o A
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Figure 2-2: Acoustic Power from Two Surfaces o, and o

where ~ corresponds to a time averaged variable, n is the unit normal vector to the
surface do, and we define W as the power. The time derivative term disappeared
because of the averaging, and we have used the divergence theorem to convert the
second integral over an area to that of a closed loop. The usefulness of power is in its
continuity property: if o; and o, are two surfaces enclosing the same sources of sound
(Figure 2-2), the same value of W is found for both surfaces.

Given an isentropic, irrotational flow the source term D, becomes zero, and if there

are no sources within the area A, the conservation law simply becomes,
W= f I, -ndo = 0. (2.42)
g

When there are no sound sources and in an irrotational, isentropic flow the sound power
crossing any closed surface o is zero.

Since the energy corollary is algebraically derived from the governing equations it is
not unique, and indeed other forms have been proposed. In fact the acoustic energy can-

not, in general, be found from a solution of the linear equation, since the energy relation
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is by definition second order in fluctuating quantities. The equations of motion formally
need to be solved to second order. This difficulty is pointed out in References 5, 49].
The choice of energy definition is, therefore, somewhat arbitrary, and we have chosen a
definition with an implicit understanding that other investigators will generate results
with at least a qualitative agreement. Otherwise, the current form was choser: because
it has a wide range of conditions under which the continuity property of Equation 2.41
is valid. The wider the range of conditions, the more general is the continuity prop-
erty and the more usefu! the definition. For example, the energy definition provided in

Reference [65] defines the intensity I, for an isentropic flow as,

/2

u-u
Ia=p,ul+UO[ p 5 +p0
2poc

; 0 (2.43)

which has a certain intuitive appeal; if the first term is interpreted as the flux of energy
relative to the fluid, then the second term appears to represent the convected acoustic
energy (potential + kinetic) [51].

The difficulty with this type of definition is the production term in the energy

balance, D,. Included in the energy production rate are terms like,
Ou '
Po By

which vanish only where the mean velocity is uniform. The acoustic source term of
Equation 2.37, on the other hand, leads to an energy production rate that vanishes
wherever the flow is irrotational and isentropic. The definition of Equation 2.37, there-
fore, extends the continuity property to a wider class of mean flows and is generally
more useful.

Finally, the current form also has the property that when there is no mean flow and
no entropy gradient the energy relation (2.37) reduces to the classical acoustic energy

balance,
)l prz po(ul2 + v:z

—_ ) 'Y —
3t[2p0c3 2 1+ V. (p'u')=0.
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2.5 Limitations of Linear Analysis

The current thesis is based on the assumption that the fluid flow can be linearized
about some nominal steady flow. For small perturbations in the flow, this is a reasonable
assumption. But for flows with finite perturbations the linear perturbation method may
not be valid.

The linearized Euler equations ignore terms of order two and higher in the pertur-
bation analysis, and therefore do not describe the acoustic process exactly. They are
an approximation which will provide an accurate description in many cases, but will
provide only adequate or perhaps even completely wrong description in other situations.
An important question is then: In which situations is the current approach valid? We
will investigate the validity of our method using a Fourier series analysis as shown by
Hall [30].

Consider the continuity equation in one dimension,
L Zpu=0 (2.44)
T

and assume a periodic boundary condition. The continuity equation, like the momentum
and energy equations, is nonlinear in the primitive dependent variables. Now expand
the dependent variables in a complex Fourier series in w, where w is the frequency of a

dominant excitation [34],

plz,t)= 3 plz)e™ (2.45)
u(z,t) = z up(z)e ™ (2.46)

where p,, and u, are complex functions of z only. The Fourier coefficients are defined

by,
Pol\Z) = —-1 PZT d

1 T —iwnt
pule) = 7 [ ple,tpem at
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and T is the period, T = 27 /w.
Substitute the Fourier coefficients in Equations 2.45 and 2.46 into the continuity

Equation 2.44 such that,

o 35 pul@)e ™ + LS pale)e M L wala)M) =0, (247)

n=-—oo n=-—oo n=-—o0o

Now wherever products of dependent variables occur, the multiplication of the Fourier

series is carried out term by term, and the resulting series is arranged in like powers of

exp(iwt),
G + p_auz + p_1u; + pouo + pru—y + pau_z + ) =0 (2.48)
) 0
wpy + -+ p_2U3 T P-1U2 T PolUy T P1Up T PzU—1 T ) = .
p+0:c( + + + + + +:)=0 (2.49)
) i)
—wp_y + %(' <o+ poguy + porto + poti_1 + pru_z + pau_3 +---) = (2.50)
. .0
2iwps + 5;(' o+ p_quz + pouz + pruy + patto + p3u_y + ) =0 (2.51)

. 0
— 2iwp_z + ‘-9-2-( ot poguy + poatte + portoy + pou_z + pru—at+ ) =0 (2.52)

and so forth.

In principle, the complete solution to the continuity Equation 2.44 can be obtained
by solving the above set of nonlinear simultaneous differential equations. This, how-
ever, is impossible since the above set involves an infinite number of variables in an
infinite number of nonlinear equations. Nevertheless, some insight into the effects of

nonlinearities can be analyzed by assuming an asymptotic behavior of the variables,
Po > pt1 > pr2 > -

Ug > Ugpy D Ugp D -
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Then to leading order, the Fourier coefficients are given by,

d
apo‘uo =0 (2.53)
. i} ‘
wpy + -é-:;(poul + p,uo) =0 (2.54)
and
) 0
2iwpy + 5;(»01“1 + pouz + pauo) = 0. (2.55)

The first equation above is the steady mean equation, and the second equation is the
first order equation in which the current thesis is based upon. The last equation is the
leading order behavior of the second harmonic (nonlinear) component in the flow. Note
that the second harmonic component is excited by a product of first order components
p1u;. The component of the nonlinearity present will be approximately proportional
to the square of the linear components, and thus to leading order, the linearized Euler
equations give the correct results.

Next consider the higher order corrections to the mean and the fundamental fre-

quency equations. Keeping only the next highest order terms in the equations gives,
8 * L
5;(!’0“0 + prui + piur) = 0 (2.56)
for the mean equation and,
: 9 o e
wp1 + 5-(pour + o + paui + piuz) =0 (2.57)
for the fundamental frequency equation where we have used the definition,
Pon=pn Uon =,

and * denotes the conjugate operator. The first equation indicates that the mean flow

is affected by the presence of unsteadiness. These nonlinear terms in the continuity
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equation (and similar terms in the momentum and the energy equations) show that the
mean of an unsteady flow is not the same as the steady flow when the unsteadiness is
large. Fortunately, this effect is second order and therefore very small in acoustics.

The higher order corrections to the first order equation are a product of the second
harmonic component and the fundamental component, i.e. they are third order. The
linearized Euler equations are, therefore, valid so long as the square of the unsteadiness
is not significant, and the corresponding errer between the results of the linearized
Euler analysis and an exact solution will also be of the order of the square of the
unsteadiness. Note that the Fourier expansion was performed only in time, and since
the mean flow solver is completely nonlinear, the current method is valid so long as the
square unsteadiness is not very large even for highly nonlinear cases such as transonic
flows.

Hall [30] showed that for a subsonic flow, even when |p;|/po was as high as 0.02
there was little difference between the complete Euler and the linearized Euler solutions.
Therefore, the Fourier analysis shows that the linearized Euler equations are valid for
most acoustical processes which involve realistic sound pressure levels (|p1|/po no greater

than 1073).

2.6 Summary

In this chapter, the governing set of linearized Euler equations was derived. The
linearized equations were cast in the frequency domain by utilizing the single frequency
assumption; the equations were further modified by casting them in the scattered form.

The concept of acoustic energy and intensity were also introduced. Their definitions
in differential and integral forms were derived.

The limitations of the current approach was also discussed. The method was shown

to be inadequate when the square of the unsteadiness was large.
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Chapter 3

Boundary Conditions

3.1 Surface Conditions

A rigid wall type of boundary condition was used for all calculations. For an inviscid
wall the correct boundary condition is that there is no normal flow relative to the surface,

or that the flow velocity normal to the surface is equal to the surface normal velocity.

Or
U-n=a-n (3.1)

where U is the flow velocity, n is the unit normal vector to the surface, and r is the
surface position vector. Since in general the normal vector is a function of position,
n = n(r) and the boundary condition in Equation 3.1 is nonlinear.

Ideally, the above boundary condition should be applied at the instantaneous loca-
tion of the surface. If the surface moves, the location at which the boundary condition
is applied should correspondingly change also. It is, thus, more convenient to rederive
the boundary condition so that it is enforced at the fixed, mean position. To do this,
we linearize the variables about the mean and assume a small amplitude harmonic
perturbations as in References (26, 30],

r = rg + Fe "t

n = ng + fie”**
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and

U = ug + tie™**

where the subscript o refers to the steady mean quantity, and”values denote the complex
perturbation amplitudes.
Next we expand in Taylor series the velocity U for small excursions in the surface

position,

U(r) = U(re)+(r—ro)-VU

~ ug(re) + fi(rg)e ™t + £ - Vuge ", (3.2)

If we substitute the above equations into the boundary condition in Equation 3.1,

we obtain,

Ug*Ng = 0 (3.3)
for the mean steady boundary condition and,
fi-ng = —ug-fi—F-V(ug-ng)-iwf-ng (3.4)

for the first order unsteady boundary condition. Since the motion of the body is pre-
scribed, all the terms on the right hand side are known values.

Note that for a stationary surface ¥ = fi = 0, and the boundary condition simplifies
to,

i-ng =0 (3.5)

or in terms of the scattered quantities,
i, -ng=—1;-ng (3.6)

where {i; is a given incident complex velocity. In addition for no mean flow situations,
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Figure 3-1: Isolated Airfoil Geometry

we obtain the classical boundary condition for moving walls,

-1 = —iwk - ng. (3.7)

3.2 Far Field Conditions

The implementation of far field boundary conditions is dependent on the geometry
of the domain. Here we are primarily concerned with isolated airfoil type of problems
as shown in Figure 3-1.

The analytic far field boundary conditions for the dependent variables Q are that,

Q-0 as r— o0 (3.8)

and the variables must also satisfy the causality condition. That is the information

about the current source activity should not be contained in past waves that anticipate
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the present [19]. For simple no mean flow situations the causality condition is equivalent
to the Sommerfeld radiation condition,

. op' ép'

lim r(2E + co-t) = 0. (3.9)

r—oo  Gi or

For aeronautical applications involving nonzero base mean flows, the causality con-
dition is not equivalent to the Sommerfeld radiation condition, and in addition, for
practical reasons we need to siecify the boundary conditions on a finite domain.

There are many different methods to specify the far field boundary conditions. One
common approach is to map the convective wave equation in pressure to the standard
wave equation using Prandtl-Glauert methods, then the boundary conditions commonly
used in no mean flow methods such as the Sommerfeld radiation condition or the Bayliss
& Turkel radiation condition [10, 11] can be applied. These methods are usually simple
and can often be quite effective for steady mean flow calculations {10, 11, 23]. But for
unsteady perturbation analysis they have been found to be inadequate {36}, primarily
because the boundary conditions ignore the unsteady vortical wake, and also because
they are one dimensional and ignore all variations in the azimuthal direction.

Another commonly used approach is to apply unsteady one dimensional character-
istic conditions. The characteristic conditions are also quite simple to apply, and in
fact, we have used such an approach as a first attempt and only later abandoned them
because of their high errors in cases with large azimuthal variations.

The boundary conditions we currently use are an extension of the theory by Giles [25,

26) for isolated airfoil type geometries.

38.2.1 Perturbation Flow Far Field Boundary Conditions

In perturbation problems, any reflection is of the same order as the desired solution,
and the effectiveness of the far field boundary conditions is critical to the overall accuracy
of the scheme. Given a domain of about 10 chords and 10 wavelengths, one dimensional

characteristic or radiation boundary conditions maybe insufficient for isolated airfoil
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type of problems. The conditions are typically only effective when the outgoing waves
are close to normal incidence with the boundary.

A correct mathematical model would extend the domain to infinity, and would re-
quire only outgoing wave modes (Radiation Condition) which vanish at infinity. This is
impractical numerically, and a set of wellposed boundary conditions must be placed on
a finite domain. Wellposedness is the requirement that a solution exists, is unique, and
is bounded in some norm sense. All acoustic problems included in the current thesis
arise from models of physical problems, and therefore, any far field boundary conditions
which are used to truncate the domain must give a wellposed problem.

The far field conditions generally become more accurate as the boundary is placed
further away from the source, but at the same time, the numerical efficiency is necessarily
decreased as the numerical domain is increased. It is thus desirable to implement a
set of conditions which would allow the smallest wellposed numerical domain without
compromising accuracy or stability.

The current methodology uses a slightly modified version of the multi-dimensional
nonreflecting boundary conditions by Giles. The boundary conditions are an extension
of contributions made earlier by Engquist & Madja [21], Ferm [22], and Gustafson
[29]; the complete details are found in References [25, 26]. They are repeated here for
completeness.

The linear perturbation Equations 2.15 may be expressed in ‘primitive’ form as,

cu ou ou
Bt +A5;+B'a_y' =0, (3.10)

where U is the column vector of perturbation variables

U= , (3.11)
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and the coefficient matrices A and B are assumed constant matrices based on the steady

mean variables,

u 1 0 0 v 0 1 0
0 » 01 0 v O
A= , B= (3.12)
0 u 0 0 0 v 1
01 0 u 0 01 v

where the matrices A and B are nondimensionalized using the steady density and speed

of sound. Consider wavelike solutions of the form,

U(z,y,t) = uet(k=tly-wt)
Substituting this into the differential equation gives,

(-wI+ kA + IB)u = 0. (3.13)
For a nontrivial solution it must follow that,

det(--wI+ kA +1IB)=0

or

(uk + vl — w)?[(uk + vl — w)? = (K + 1?)] = 0. (3.14)

Equation 3.14 is called the dispersion relation, and is a polynomial equation of degree
4 in each of w, k, and I.

Define right eigenvectors vR and left eigenvectors ukX and v¥ such that,
(-wI+ kA +IB)u® =0 (3.15)

ul(-wI+ kA +IB)=0 (3.16)
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and,

“H-wI+ kA +1IB) =

vi(-wA ' + kI +1A7IB) = 0. (3.17)

ul' are the left eigenvectors of (kA + IB) with eigenvalue w, and vl are the left eigen-
vectors of (—«JA‘1 +1A~1B) with eigenvalue —k. uR are the right eigenvectors of both
(kA +IB) and (-wA~! + IA~!B) with eigenvalues w and —k, respectively. In general,

the left and right eigenvectors are orthogonal such that,

V,I{u& 0
if m # n, and also
vI‘ = unA

Suppose that the differential Equation 3.10 is to be solved in some domain zo <
z < 21, yo < ¥ < y1 and one wants to construct nonreflecting boundary conditions at
z = z; to minimize the reflection of outgoing waves. At the boundary z = z;, U can
be decomposed into a sum of Fourier modes in y and ¢ and into a sum of its eigenmodes
in z,

+ 00 400 4

U(z,y,t)= >, ). ZanuRe'U"‘"’*"“"‘") (3.18)

w=—00 |=-00 n=1

where k, is the n** root of the dispersion relation for the given values of w and !, and
u,l,l is the corresponding right eigenvector. Then for each value of w and [, the ideal
nonreflecting boundary conditions would be to specify that a, = 0 for each n that

corresponds to an incoming wave. Because of orthogonality,

4
VII‘J( Z amugeikmz)ei(ly—wt)

m=1

— an(vL R :knc)ei(ly—-wt) (3.19)

viU(z,y,t)
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so that an equivalent specification of nonreflecting boundary conditions is,
viku =0 (3.20)

for each incoming mode n.
Given the system of Equations 3.10 the eigenvalues and the corresponding left eigen-

vectors are found to be,

o

=

Il
€
[
<
II

-1.0 0 1) (3.21)

o~
~
|
€
]
.
Nr‘
It

0 —-uX 1-0vA —z\) (3.22)

x~
w
il
e
A
o
-1
8
ot
]

=
(
( 0 (1-vX) ur (1-vA)S ) (3.23)
(

0 —(1-vA) —-uX (1-vA)S ) (3.24)

_ (1 - u2)A?
S—\/_ (1-vA)?2°

The direction of propagation is computed by analyzing the group velocity vector,

Sw
B8k, u
Bw
o u
Cg=| % | = : (3.25)
Buw 1-u?
Oky —u+l;$
Bw. 1-u?
8 —u-1/8

The first two eigenvalues, k; and k;, correspond to entropy and vorticity waves,
respectively, and convect at the local velocity u. Assuming that |u| < 1 and § is
purely real, k3 corresponds to a pressure wave which travels in the +z direction, and

k4 corresponds to a pressure wave which travels in the —z direction. The nonreflecting
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boundary condition when +z direction points out of the domain is thus,
lu=o0
viu = (3.26)

when u > 0 (outflow conditions) and,

I lu=o0 (3.27)

when u < 0 (inflow conditions).

3.2.2 Local Implementation: (Nonzero Mean Flow Cases)

In principle the above exact boundary conditions can be implemented in a numerical
scheme; however, because v,l; depends on w and [, the implementation would require a
Fourier transform in y. This is computationally difficult for nonperiodic type geometries
or when the outer boundary has both incoming and outgoing regions. The current
method implements a local approximate form of the left eigenvector v,Il‘ when the free
stream Mach number is nonzero.

For a local implementation, a space varying reference frame (z', y') which is defined
for each point on the outer boundary and points directly out of the domain in the
positive z' direction is needed (see Figure 3-2). In addition since the left eigenvectors
vf{ are functions of u,v and ), some knowledge of the outward traveling waves is also
required.

Suppose the direction of the acoustic wave propagation is known, say for example,
that an airfoil appears as a simple source in uniform flow at the far field. Define the
anticipated acoustic wave travel to be in the positive " direction in the reference frame
(z",y"), as shown in Figure 3-2.

The assumption of propagation is equivalent to specifying the wavenumbers ko and
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Figure 3-2: Global Reference Frame (z,y), and Local Reference Frames (z',y'), (z",y")

lo by using the dispersion relationship. The acoustic portion of the dispersion equation
is,

(uko + vlp — w)? — (k2 + 12) = 0. (3.28)
The velocity of propagation of sound wave energy is equal to the group velocity obtained

by differentiating the dispersion relation [25]. The group velocity is thus,

dw k

Bko u pressy e

Cg = o | = 4| orvko—vbo | (3.29)
dw v ]
mo w-—ukg ~vig

When an acoustic wave travels purely in the positive z direction,

!
Coy=v+ = 9 0. (3.30)

- ‘uko - vlo -
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Define kg and Aq as,

The substitution of the above relation into Equation 3.30 gives,

v(ukg — 1)
Ao = ——l—_v_2 (3.31)
and the dispersion relation gives,
—u+V1- 02
ko= —wEVIZ VT (3.32)

1-u?—v?

The choice of the root depends whether the waves travel in the positive or negative z

direction; the outgoing wave corresponds to the positive radical.

First Order Boundary Conditions

Once the two wave numbers ko and ly (or ko and )\g) are known, the boundary
conditions in Equations 3.26 and 3.27 can be directly used since w is a given parameter.
This sort of boundary condition is first order accurate in [ and is similar to the commonly
found one dimensional characteristic conditions, such as in Reference [15].

The boundary conditions are,

vEG =0 (3.33)

for each incoming mode n and where U = Ue~t. When u < 0, apply inflow boundary

conditions,
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or

-1 0 0 1 p
u
0 —ulg 1-vXo -Xo =0 (3.34)
7
0 —-(1 - ‘UAo) qu (1 - vAo)So .
p
and when u > 0, apply outflow boundary conditions,
vi’f] =0
or
p
u
( 0 —(1 - ‘U/\o) U/\o (1 - ‘UAo)So ) . =0. (3.35)
: ?
p

In practice the boundary conditions are more easily applied using characteristic

variables. The equivalent boundary conditions in characteristic variables is,

& 0
. 1 .

€ | = [T 50)(1 = hov)? — Aeu(l - u) Ao(1 + Sou)(1 — Aov)és

é4 (1 = So)(i— Aov)? + Alu(l + u)és

(3.36)
for the inflow u < 0 condition, where é; is the outgoing characteristic. The boundary

condition at the outflow u > 0 is,

3 2ulg . 1-S8.
Rl TEwIn So)c és (3.37)

€4

where é,, &, and é3 are the outgoing characteristics. The transformation to and from

the characteristic variables is performed by simple matrix multiplications,

C=pU0 (3.38)



& -1 0 01 p
é; 0 0 10 @
= (3.39)
és 0 1 01 ¥
é4 0 -1 01 p
U=D"'C (3.40)
p -1 0 3 3 é
@ 0 o 1 -1 é
- 2 T2 2 (3.41)
B 0 10 O é3
P 0 031 1 ,/\é

The assumed direction of sound wave travel, i.e. the local reference frame (z",y"), is
defined as a sum of a vector whose direction is normal to the lines of constant pressure
phase and whose magnitude is the local speed of sound plus the local velocity vector.
The phase of pressure is computed such that at the far field the body is assumed to be

a simple source in uniform flow. The amplitude of acoustic pressure then scales as,

#(d, 6) ~ 7‘_71H“’(——)sm¢ (3.42)

for a dipole and,

#(d, $) ~ \,%Hé"( ) (3.43)

for a monopole. d and ¢ are defined in Prandtl-Glauert coordinates such that,

= (2/B)* + ¢
yB

¢ = arctan —
z

and 8 = /1 — MZ. The asymptotic approximation for a large argument of H;l) in

Reference [1] is used to derive the normal to constant phasc lines for both simple poles
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for ‘:—: — 00 as,
(3.44)

wd wr 7
ta.n[ta.n(; - M°§Bf - Z)] = constant.

The boundary conditions are applied at each of the outer boundary points. Its

implementation is as follows:

1. Renormalize variables with respect to the free stream density, pressure, and speed

of sound.

Define the coordinate frame (z",y"). When the mean flow is along the positive z

2.
axis and given a simple source. (u",v") is defined at the far field as,
u' cos sin u
= ¢ ¢ (3.45)
v —sing cos¢ v

where

cos ¢ = \/;— (Mpsin8)? cos @ — M sin® 0

sing = \/1 — (Mo sin8)? sin@ + M cos 0 sin @

and Mj is the free stream Mach number and tané = 5.

Compute &g for an outgoing wave using Equation 3.32 and Aj using Equation 3.31.

3.
4. Transform velocities in (z,y) frame to (z',y') reference frame.
o’ cosf sinf u
= (3.46)
v —sinf8 cosf v

where f is a function of the outer boundary shape. For a circular outer boundary,

tanf =

8w
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. Transform )] to Aj and compute Sg.

Xy = — sin(B - $)xl + cos( — )Ny (3.47)

S; follows as,

1—u2)A}

sy =1 LZ¥)A 3.48
0 \/ (1 - v'2p)? ( )
. Apply boundary conditions on the (z',3') domain. When u’ < 0 compute the
outgoing characteristic é; using Equation 3.38, then apply the inflow boundary
conditions in Equation 3.36. When u' > 0 compute the outgoing characteristics
é,, &, and & using Equation 3.38, then apply the outflow boundary conditions in

Equation 3.37.

. Convert the characteristic variables to the perturbation variables using Equa-

tion 3.40.

. Retransform velocities in (z',3') to (z,¥),

u cos —sin u
= A p . (3.49)
v sin8 cosf v

Reference [26] shows that the curreut first order boundary conditions are wellposed,

and that the error scales as,

I:cac '_Iu imate
O( € t - te t )

Error =

where l.zqct and L. timate are the exact and the assumed wavenumbers, respectively. The

boundary conditions are exact if the outgoing waves are planar and if the estimated

direction of propagation is the same as the actual direction of travel.
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Fourth Order Inflow, Fourth/First Order Outflow Boundary Conditions

A higher order boundary condition is derived by expanding § about the assumed
wave number Iy (or Ag),

as
S(Ao+e)zSo+—a—>‘-e+--- (3.50)

where the subscript o refers to the assumed values and again A = -:; Unfortunately

a straight forward Taylor series expansion of this type often leads to an illposed set
of boundary conditions. Giles [26] showed how a higher order, yet wellposed, set of
boundary condition is derived by combining different order approximations of multi-
ple eigenvectors. The boundary conditions are constructed by adding to the second
order approximation of the third left eigenvector the first order approximation of the
second eigenvector, multiplied by factor ae, and the first order approximation of the
third eigenvector, multiplied by factor be. The formal proof of the error scale and the
wellposedness are in Reference [26].
The modified boundary conditions are of the form,

o0’

—iwB, U + (By + v'Bl)—b—;’- =0 (3.51)

where the / notation again refers to variables in the local normal and outward pointing
coordinate frame (z’,y'). In terms of the previously defined characteristic variables, the

equivalent boundary condition is,

~ ac
—iwB;D7'C' + (B3 + v'Bl)D‘l—é—J =0. (3.52)

The matrix D is defined in Equation 3.38 and again U’ = R(0’e~*t). The matrices
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B; and B are different for inflow and outflow regions,

-1 0 0 1
Bi=]| 0 0 1 0
0 —1+bM+au'd? —ubAZ—a)y SH(1—brp)+ (1—-51:2 + a)\?
(3.53)
0 0 0 0
B2=1]0 ~u' 0 -1 (3.54)

0 —b—au'X, —u' —ubdy+a Sib— (1—53*2 +a)\}

when v’ < 0 (inflow condition) and,
B, = ( 0 —1+4bX+au' g —uw'bAg —a)y Sp(1—bXp) + (l;s'(,:g + a) 2\ ) (3.55)

B, = ( 0 —b—au')y, —u'-ubl\y+a Sib- (1—'.;‘.‘,‘2 + a)A} ) (3.56)
0
when ' > 0 (outflow condition). The constants a and b are defined to be,

3 (l _ u12)(1 _ (2 _ ul2)/\l2)
= st WSy (3.57)

(1—w2)N

b= T S2(1+ w'Sh)

(3.58)

The above relations are for the case v = 0, and hence an additional coordinate

" y") coordinate systemn which

transformation is required at the far field. Define a (z
is identical to the (z',3') frame (normal and outward pointing to the boundary) except
that it has a relative velocity (0, v') such that the fluid velocity component v" is zero.

The boundary conditions are tailored at each outer boundary point. The implemen-

tation is as follows:

1. Renormalize variables with respect to free stream density, pressure, and speed of

sound.

61



2. Define the anticipated direction of propagation (z"”, y") and compute (u",v")as in
p

the first order case.
3. Compute «{ for an outgoing wave using Equation 3.32 and \j using Equation 3.31.

4, Transform Aj to A\j' and compute S{'.
0 0 0
Ay = —sin(B — @)rg + cos(B — )y (3.59)

and because of the Doppler shiii iu frenuency for the moving reference frame,

Ao

Ay = ————.
1 - v}

(3.60)

S follows as,

Sat= /1 - (1 - uw2)\g? (3.61)

5. Substitute S3’ for Sy and Ay’ for Ay in Equations 3.53 - 3.58. Apply boundary

conditions in Equation 3.52.

6. Retransform velocities in (z',y') to global reference frame (z,y) as in the first

order case.

The inflow boundary conditions are of O(€*) in accuracy; the outflow boundary con-
ditions are of O(e) in accuracy for the vorticity wave and of O(e*) in accuracy for the
acoustic pressure wave. The boundary conditions are again exact if the outgoing waves

are planar and if the estimated direction of travel is exact, i.e. when € = 0.

8.2.3 Global Implementation: (No Mean Flow Cases)

When there is no mean flow and given a periodic grid, the Giles boundary condi-
tions can be improved by implementing the global boundary conditions described in
Section 3.2. The vorticity and entropy waves do not exist, and at each of the outer

boundary points there are only one incoming and one outgoing piressure waves. Thus
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Figure 3-3: Circular Domain for Classical Acoustics

there are no separate inflow and outflow regions, and we can construct a highly accurate
boundary conditions for cases which involve no mean flow.

Suppose we need to construct a nonreflecting boundary condition for a no mean flow
case on a circular domain as shown in Figure 3-3. The most appropriate form of the

equations for a circular outer boundary is the polar form of the perturbation equations,

U AU _4U U
57 A, B3 +C-=0 (3.62)

where U is the column vector of perturbation variables

U = u’ (3.63)

and we have assumed an isentropic relation p' = c2p’ where ¢ is the speed of sound.

The coefficient matrices A, B, and C are again normalized with respect to the free
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stream pressure, density, and speed of sound and are defined as,

010 00 1 01 0
A=]l1001|, B=]ooo], C=]00 0 (3.64)
000 100 00 0

where the reference coordinates in (r, s) are related to the values in (z,y) by,

tan @ = y
z

and

s=r6.

In addition, u is the component of velocity in the r direction, and v is the component

in the s direction. We seek wavelike solutions of the form,
U(r, 5,t) = uellkrtis—wt), (3.65)

The substitution of the above equation into Equation 3.62 gives the dispersion rela-
tion,

w® — W[1® + k(k - ;)] =0. (3.66)

The first root is a degenerate root w = 0, and the two remaining roots are,

1 1 i
k12 = \/ - —(r 24 )+ .
1,2 = Twy/1 wr(T + 4) + 2 (3 67)

k, and k, here are complex, and the wave modes are not purely nondissipative. The
imaginary portion i/2r corresponds to an exponentially decaying factor of e 1/2,
For complex k we define incoming waves as those modes which have a negative group

velocity or those which have (k) < 0. The latter condition refers to exponentially
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growing modes.

The group velocities are,

Cgm——- —:t\/ —(— (r212 + ) (3.68)

When Cg is purely real, k; and k; are an outward traveling and an inward traveling
sound waves, respectively. Conversely when Cg is imaginary, both modes are simply
exponential. The degenerate root w = 0 is the stationary ‘vorticity’ wave.

The boundary conditions require the derivation of the left eigenvectors v,l; , and they

are computed using the methods described in Section 3.2,

v{‘_l S—-s+ 1 0

2rw
= — (3.69)
vi 250\ s+ -1 0

Y A

So = 1/1 - (—

where

and

2wr

There are only 2 left eigenvectors because the third ‘vorticity’ wave does not exist here.

The enforcement of the nonreflecting boundary condition is,
vio =0 (3.70)

where again

for each n which corresponds to an incoming mode.

The implementation is as follows:

1. Renormalize the variables with respect to the free stream density, pressure, and
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speed of sound.

. Define polar coordinates (r, s) and recast the velocities.
. Fourier transform the dependent variables p, @, 9 in s at the outer boundary.

. For each Fourier mode ! determine if it is an incoming or an outgoing mode. If

Cg is purely real then k; is the incoming mode, and the boundary condition is

implemented as,

p
Vo=l (s 10 2| =0 (3.71)
V=25, Stws - = '
v
The equivalent boundary condition in the characteristic form is,
So— S
Co = ¢ 3.72
C2 So + Scl ( )

where é, is the outgoing sound wave, and the characteristic variables are defined

as,
p
é 1 So—35= 1 0
) L B a (3.73)
é 250\ So4+5- -1 0
]
and
P 1 1
. . )
@ | =| Sot 3y —So+t 3 ) (3.74)
C2
0 0 0
If Cg is imaginary then k, is outgoing and k; is incoming if S(k2) < 0.
5. Compute ¥ by enforcing the irrotationality condition,
Jd, . 0. .
E(rv) = 3—011.. (3.75)
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6. Inverse Fourier transform to obtain the original dependent variables.
7. Reconvert the velocities in the global Cartesian coordinates.

The boundary condition is performed for each Fourier component ! and no local
expansicns of the left eigenvectors are performed, the boundary condition is therefore
exact in the wavenumber !. However, the exponential wave assumption of Equation 3.65
is only strictly valid at infinity, and the reflections may be large when the boundary is
close to the surface.

A typical physical solution scales algebraically for a large r,

D lex (}.__O.J_,.'.)
p N p o

whereas the current exponential expansion shows that for r > 1,

. (iwr L ico
p~exp(— + —).
Co 8wr

But as r tends infinity the variations of 1/,/r is locally negligible and the two above
relations become equivalent. In such situations the current boundary conditions are

nearly exact and fully two dimensional.

3.2.4 Mean Flow Far Field Boundary Conditions

Nonreflecting far field boundary conditions for the steady mean flow equations are
presented. The mean flow solver uses a combination of radiation boundary conditions by
Bayliss & Turkel [10, 11] and a slightly modified form of one dimensional characteristic
conditions discussed in previous sections.

In general steady flow problems, acoustic waves are transient perturbations on the
desired nonfluctuating fluid variables. A one dimensional characteristic or radiation
boundary conditions as in References [10, 11, 64, 68) are usually sufficient to guarantee

a correct solution to within 5-10 % in lift given a domain which is about 10 chords in
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radius,

The one dimensional characteristic equations are derived by assuming all cross
derivative (8—37) terms to be small. Then following linearization and diagonalization,
the governing mean flow Equations 2.13 can be cast as a set of uncoupled scalar equa-

tions of the form,

36,’ Bc,-

Bt + 52 = 0 (3.76)

where ’ denotes variables in the local outward pointing reference frame (z', y') shown n

Figure 3-2. The characteristics ¢; are defined as,

c -c2, 0 0 1 bp
c 0 0 0Coo 0 §u’'
- PooCeo (3.77)
c3 0 PooCoo 0 1 v’
c4 0 —PooCoo 0 1 ép
op —;%; 0 5;15 EE!’: c
su' 0 0 2 -5 c
= ) 2l I 2 (3.78)
!
v 0 v 0 c3
ép 0 0 % % cq
and the associated eigenvalues JA; are,
/\1 ugo
A u!
i o (3.79)
A3 ul, + Coo
A4 'll.:” — Coxo

where o, quantities are the free stream values and are taken from the solution at the

preceding time step. § quantities denote the differences from the free stream variables,

6p = po ~ Poo (3.80)
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0p = po — Peo

!

'
fu' = uy — vy,

" I}
v’ = vy — v,

The diagonalized Equaticn 3.76 allows each ¢; to be computed independently using
the method of characteristics,

¢; = constant. (3.81)

The characteristic ¢; remains constant along the curve C; in the 2t plane defined by

dzl

£ = Ai. A consistent boundary condition is then to set all incoming ¢;’s to 0.

In a typical steady subsonic two dimensional flow, the entropy and vorticity gradients
in the fluid field are small at the far field. The pressure perturbations, however, may be
large if the far field is brought in close to the surface. Thus in terms of the characteristic
variables, ¢; and c; will be small while ¢3 and ¢4 may be large.

Bayliss & Turkel [10, 11] have constructed a family of radiation boundary conditions
which are based on an asymptotic expansion of the solution of the wave equation. The
condition asymptotically simulates outgoing pressure waves and at a sufficient distance
from the source, prevents the generation of incoming pressure waves. The current
scheme uses the Bayliss & Turkel operator to annihilate the incoming c3 or c4; ¢; and ¢
are computed using the appropriate characteristic condition. They are presented here
without proof.

The Bayliss & Turkel operator used here is the first in the family and may be

expressed as,
dp 2 22 0u yov 6p
“or TP G T P4 T 2d T (3.82)

where a and d are defined as,



The implementation is as follows:

1. Transform velocities in (z,y) reference frame to the local normal (z', y') reference

frame as in the previous sections.

2. If u! < 0 then apply the inflow boundary conditions,
cp=c2=0 (3.83)

and if u/, > 0 then apply the outflow boundary conditions by computing ¢; and

¢, from Equation 3.78.
3. Compute pressure by applying the Bayliss & Turkel operator
4. Compute c3 and c4.

5. Compute § variables by applying Equation 3.77 and compute the current depen-

dent variables from Equation 3.80.

6. Retransform velocities to the global reference frame (z,y).

3.3 Kutta Condition

Continuous solutions for subsonic inviscid flow around a body with sharp edges are
singular at those edges, the velocity there becoming infinite as some inverse fractional
power of distance, r, the power depending on the wedge angle [8]. The situation is
somewhat different for acoustics, given a flat plate for example, the pressure jump Ap
across the plate will vanish like r3 when there is no mean flow, but will become infinite
like 7~ 3 in the presence of a mean flow [18]. Thus when there is a mean flow, one either
has to accept a continuous solution which has a singularity at a sharp edge or must
enforce an arbitrary condition which requires a finite pressure at the edge. The current

method uses the latter approach, better known as the Kutta condition.
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Euler solvers in use today automatically enforce the Kutta condition; that is to say,
a numerical model of an inviscid flow does not allow infinite velocity gradients in the
domain. It is thought that numerical diffusion (through artificial viscosity and grid
stretching) is the dominant mechanism in which viscosity, however small, will not allow
a finite pressure jump across a sharp edge. The current scheme behaves in a similar

fashion and no explicit finiteness condition is enforced at a sharp edge.

3.4 Summary

A set of boundary conditions for rigid walls was presented. The boundary conditions
were shown to be valid for both stationary and moving walls and were derived by
linearizing the nonlinear boundary conditions about a steady mean state.

A set of nonreflecting far field boundary conditions for a finite numerical domain was
also discussed. The boundary conditions for the perturbation equations using first and
fourth order accurate local conditions in nonzero mean flow cases were derived. Global
conditions valid for quiescent cases were also derived, and a simplified one dimensional
characteristic/radiation condition for the mean flow equations was presented.

For all numerical computations, the fourth order perturbation far field boundary
conditions of Section 3.2.2 were applied when the mean flow was nonzero, and the
global boundary conditions of Section 3.2.3 were applied when there was no mean flow.

Finally, a numerical imposition of the Kutta cordition in an inviscid model was
discussed. The numerical viscosity enforces a pressure continuity condition at a sharp

edge.
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Chapter 4

Numerical Method

The governing mean steady and the unsteady aeroacoustic equations were derived
in Chapter 2. The aeroacoustic quantities were defined to be linear perturbations about
some nominal steady flow. The steady base flow is, thus, an input to the acoustic field
and must be solved before any analysis on the perturbation values can be performed. In
this chapter we discuss the numerical approximation methods to both the steady mean

and the acoustic perturbation flows.

4.1 Grid

We are modelling a continuous solution in space and time by discrete approximations.
The space domain is divided into distinct cells by a coordinate grid system, and while we
could use a simple cartesian type orthogonal coordinates, they are usually not the most
convenient or efficient for numerical computations about general two dimensional bodies.
We have instead used a body-fitted coordinate system which offers the advantages of
geometric generality and ease of boundary condition implementation.

‘O-type’ grids were used for all calculations, and a typical grid section about an
arbitrary body is shown in Figure 4-1. Each of the nodes on the grid is referenced by
two subscripts (i,j) denoting the node number in the azimuthal direction and in the
normal direction, respectively. In the azimuthal direction, the nodes are numbered from
1 to I in the clockwise sense, and in the normal direction, the nodes are nuinbered from

1 to J in the outward sense. There are a total of (I - J) nodes.
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Figure 4-1: O-grid About a Body
4.2 Spatial Discretization

The conservation mean flow and the perturbation aeroacoustic equations are nu-
merically solved using finite-volume, node-based schemes. The mean flow equations
are discretized by a modified form of the Jameson method [37] and are of O(h?) in
accuracy for a smooth grid, where h is a typical grid mesh length. The perturbation
flow equations are discretized using a combination of the Jameson scheme and the Padé
scheme and are of O(h?) accuracy in the normal direction and of O(h*) accuracy in the
azimuthal direction. The Padé scheme is described in, among others, Anderson et al.
(4], Orszag [56], Verhoff [69], and Lele {43].

We begin with methods of approximating the spatial fluxes for the base mean flow.

4.2.1 Mean Flow

At each node, the mean flow equations are discretized using a finite volume operator
similar to the one used by Jameson [37]. Consider the mean flow Equations 2.13 which
are to be satisfied over a super cell formed of 4 individual cells as shown in Figure 4-2.

Since the mean flow equations are satisfied everywhere within a conservation volume, it
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Figure 4-2: A Conservation Super Cell

must follow that,

8Qo OFy 08Go., .,
[+ 5 gy dzdy =0 (4.1)

where the integral is satisfied over the super cell. The vectors Qg, Fg, and Gg are again

defined as,
Po Polo Po%o
2
Polo Polg + Po PoloYo
Qo = , Fg= y Go= \
Povo PoloVo Povg t+ Po
Poeo pouoho povoho

Using the divergence theorem, the area integral is converted into a line integral of the

form,

/_/ aaQtod"-'dy + f(Fo, Gg)-nds =0 (4.2)
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which is equivalent to,

// agod:cdy + fFody - ){Godz =0. (4.3)

The grid is stationary in time, and so the integral Euler equations can be approxi-

mated as,
A dQo

Wi T > (FoAy - GoAz) =0 (4.4)

sides
where A; ; is the total area of the super cell, and Az and Ay are positive in the counter-
clockwise sense. The second term represents the total flux of mass, momentum, and
energy through the sides of the super cell.
The area A, ;j is computed as a sum of the 4 individual cell areas, and similarly, the
total flux is computed as a sum of the 4 individual cell fluxes. So consider a single cell

defined by the nodes (1234) in Figure 4-2. The area of the cell is,
1
Area.(1234) = §d1 X dz (45)

where d; is a vector from node 1 to node 3, and dg2 is a vector from node 2 to node 4.

This simplifies to,

Area(z3q) = %[(-’cs -1 )(ys — ¥2) — (y3 — y1)(24 — z2)]. (4.6)

The flux for the cell (1234) is computed at each of the cell faces using an average of

the two ends. For example for the e face,

Flux, = 5[(Fs + F2)(ys - 32) - (Gs + Ga)(zs - 1) (4.7)

and similarly for the n, w, and s faces, where the subscript number denotes values at

that node position and the subscript ¢ is implied. The total flux for the cell (1234) is
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/

Figure 4-3: Conservation Volume at the Wall and at the Far-Field

then,
Flux(y234) = Flux, + Flux, + Flux, + Flux,,. (4.8)

The areas and the fluxes for the remaining 3 cells of the super cell are computed in a

like fashion.
Note that because of internal cancellation of fluxes, the total flux of the super cell

in the azimuthal direction is,
Total Azimuthal I'lux = Fluxg + Fluxw
and for the normal direction is,
Total Normal Flux = Fluxy + Fluxgs

where N, S, E, and W faces comprise the two individual cell faces as shown in the
Figure 4-2.
At a wall and at the far-field, a super cell is composed of only 2 individual cells as
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shown in Figure 4-3, and the total area and the flux are obtained as a sum of the two

contributing cells.

4.2.2 Perturbation Aeroacnustic Flow

A semi-discrete approximation to the perturbation Equations 2.29 is,

452 4 Y (FAy - GAg) - iwdijQ = 45 (49)

sides

where again A;; is the area and the second term represents the perturbation fluxes.
The vectors Q, F, and G are defined in Section 2.3, and S is the source term defined
in Section 2.3.2. Note that the above equation is similar to the mean Equation 4.4
in structure, and we can adopt the same discretization techniques as in the previous
section.

Unlike typical steady mean flow calculations where only the region close to the
surface is important, the perturbation acoustic calculation contains the body as well as
its surrounding field as the domain of importance; we need to resolve the entire numerical
domain. An O-type of grid has its typical mesh size h in the azimuthal direction
which grows linearly with the distance from the body, and a grid which maintains a
minimum number of node points per relevant length scale may become very large. We
have, therefore, implemented here a higher order discretization method in the azimuthal
direction which decreases the resolution requirement.

The perturbation Equations 2.29 are discretized using a finite volume operator sim-
ilar to the one used for the mean flow equations. The flux calculations in the normal
direction (the fluxes on the N and S faces for the super cell) are identical to the previous
section. The discretization in the azimuthal direction, however, is based on the classical
Padé scheme. The Padé scheme can be interpreted as an extrapolation technique of
combining different multiples of adjacent fluxes to obtain a higher order approximation.

Define Flux{’ as the flux in the azimuthal direction for the super cell in Figure 4-2

obtained by the methods described in the previous section. We can then improve the
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accuracy of the flux by summing them implicitly as,
1
E(Fluxs_l’j + 4Flux} ; + Flux{,, ;) = Flux{} (4.10)

where Flux; ; is the improved azimuthal flux evaluation at node (4, 7). This leads to an

aperiodic-tridiagonal system of equations in Flux; ;,

(41 1) ( P, | [ Pl )
e Fluv} Fluxg?,
5 : - S B (4.11)
1 41 Fluxj_, ; Flux§?, ;
| 1 14\ Pug; )\ Pl )

The inversion of the above matrix system gives the desired higher order flux evaluation.

The Padé scheme is globally conservative, and there is no net flux into or out of an
azimuthal system of cells. However, the Padé scheme is not locally conservative, and a
flux out of one cell is not necessarily the same flux into an adjacent cell; fortunately,
conservativeness is not a critical issue here since the governing perturbation equations

are linear.

Source Term Discretization

In Section 2.3.2 we discussed the utility of the scattered form of the equations for
cases where the complete solution may be split into a known ‘incident’ and an unknown
‘scattered’ portions. The scattered form of the equations require less grid resolution
at the far ficld where the scattered quantities are expected to be small, but where the
incident quantities are not. By definition the mathematically defined incident wave is

equivalent to the physical incident wave at infinity and therefore it must be that,

S—-0 as r— o0
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where again,

i} d

S = sz,- - aF, - 'a—yG". (4.12)

We must be, however, careful in numerically determining the source term 5 sc that
near the far field S correctly approaches zero. A straightforward discretization of S
will not necessarily guarantee the smooth vanishment of S at the far field, because the
incident quantity is not small there. Define linear operators L and Lo, which correspond
to the spatial discretization of Equation 4.12 using the local and the far field mean flow
values, respectively. Note that by definition,

LooQ; =0.

A discretization of the source term using local mean flow values is,
S=-LQ,.

But the above method requires a high grid resolution at the far field, because the
operator L must discretize the incident term Q; which is large and has gradients which

may also be large.
The incident term Q; may, however, be ‘factored’ out of the far field source term if

we discretize S as,

s = -LQ

(Leo — L)Qi. (4.13)

Here the source term S can be discretized using a grid tailored only for the scattered
term, and we would require a correspondingly coarser grid at the far field. This is
because L., =~ L at the far field where there are little mean flow variations, and S

correctly approaches zero at the far field irregardless of the discretization used.
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Figure 4-4: Grid Transformation

4.2.3 Numerical Operator Notation

The current spatial techniques are most conveniently expressed in numerical operator
form. The physical domain in (z,y) is transformed to the computational domain (£,7)
such that the computational domain is composed of simple rectangular regions with
equal grid spacing, as shown in Figure 4-4 (2, 37).

Define the standard difference operator § and the averaging operator u such that,

1

6¢Uiy1 5 = Uirr,j — Ui

1
reUpps 5 = 5(Ui+1.j+Uo’.j)

"*"2').1

1

ol jpr = Uiy = Ui
1
Uy = 5(Uijsr + Uij)-

The semi-discrete form of the method can then be written as,

d
J5Qoii t pipebeFo,; + HepnbaGoy; = 0 (4.14)
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for the mean flow solver and,

d Hoed .
J-(EQ,'J' + -].—-?-éT;ﬁFlij + ﬂgan"G';j —-wJQ;; = JS;; (4.15)
for the perturbation aeroacoustic solver. A{ and A7 are set to 1, and hence have been
omitted. For both equations the second and third terms represent the spatial fluxes in
the azimuthal and normal directions of the super cell. The vectors Fy, Gg, F', and G’
are defined as,

Fy = Foy, — Goz,
6 = —Fuye + Goze

and

F' = Fy, - Gz,
G' = -Fy; + Gzg.

J is the determinant of the Jacobian matrix in the coordinate transformation and is

equivalent to the area of the super cell,
J = zeyy — zhye-

4.3 Numerical Analysis of 1-D Model Equation

An analysis of the current method’s consistency and stability is presented. A con-
sistent discrete model of partial differential equations results in a finite amount of trun-
cation error which decays as some power of the mesh size. In the limit the mesh size
vanishes, the discrete model becomes equivalent to the continuous equation.

A stable numerical scheme is one for which errors from any source does not grow from
one iteration to the next. The stability of our numerical model is important because we

are ‘pseudo-time marching’ our discrete equations to convergence, i.e. until -8% term is
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suitably small. A consistent numerical scheme is not necessarily stable, and we need to
prove that our curreut scheme is both consistent and stable.
We begin the analysis by examining the truncation errors of the spatial discretiza-

tions using Taylor series expansions.

4.3.1 Taylor Series Truncation Error

For simplicity and clarity, consider a one dimensional scalar version of the governing
equations,

B + a% —iwu=0 (4.16)

with periodic boundary conditions. The above equation is an appropriate model equa-
tion for both the mean and the perturbation flows; we merely set w = 0 for the mean
flow examples.

Let the domain be divided into equal Az segments, the semi-discrete form of Equa-

tion 4.16 using Jameson’s scheme is then identical to the one obtained using the standard

central differencing,

. V) 3
—= + e U Ty = (4.17)
and the semi-discrete form for the compact differencing (Padé scheme) is,

duj a ;Lfls( .
— t ——7—u; — = 0. 4.18
@t tasivaz/e Y (4.18)

Expand u in Taylor series about u; such that,

Ou 0%u Az?
un = g A gy T
J J
du 0%u Az?
uj_l:uj*E;Az-*-—ih_z—T K
J
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The substitution of the above relations into Equations 4.17 and 4.18 gives,

Ou; ou alAz? 3u

Bt + a-aTj — wuj = 6 -873 v (4.19)
for central differencing and,

du; ou aAz* §%u

@ T, T TR0 0ay T (4:20)

for compact differencing. Central differencing has its leading order truncation error
which scales as O(Az?), and compact differencing has its leading order truncation error
which scales as O(Az*). The truncation errors decay uniformly when Az approaches
zero, and thus both schemes are consistent.
18%u 1 8% 0 ~
If a, 55.%, and 7g55;¢ are all order 1, then for a 1% local error Az must be = 0.1

for central differencing and Az must be = 0.3 for compact differencing. The associated

resolution requirement is about 10 points per relevant wavelength for central but only

about 3 points per relevant wavelength for compact differencing.

4.3.2 Fourier Analysis

The accuracy and stability characteristics of the current scheme have been analyzed
by applying the discrete Fourier analysis. The present analysis follows somewhat closely
to that of Lele’s [43], who has previously conducted a thorough investigation of resolution
properties of compact differencing.

Reconsider the model Equation 4.16 and let u be composed of discrete Fourier modes
such that,

uj(z,t) = a(k,t)e?’
where 8 = kAz. Substitution into semi-discrete central difference Equation 4.17 yields,

iiz_l N i[a sin @
dt Az

—wli=0 (4.21)
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and the same substitution for the compact Equation 4.18 yields,

du asin@

dt * z[A:r:(l - % sin? -g—

—wli = 0. (4.22)

The above two equations can be integrated to give,

u(k,t) = a(k,0) exp[—i( A w)t] (4.23)

for central differencing and,

asin@
u(k,t) = u(k,0) exp|—1 —w)t 4.24
(ko) = i, ) expl =il 7 s — ) (4.24)
for compact differencing.
The dispersion relationships are then obtained as,

asiné
Qccntral = T —w (425)

asinf
Qcompact = - w. (4.26)

Az(1 - Zsin? %)

The analytic dispersion relationship is obtained by substituting the continuous form

of Fourier transform in space,
u(z,t) = ﬁ(k,O)eik”

which yields,

i
= tilak - wli = 0. (4.27)

The analytic dispersion relation follows as,
Qanalytie =ak - w. (4.28)

The true analytic dispersion relationship is a real linear function of k. The discrete
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Figure 4-5: Input Wavenumber vs. Output Wavenumber

dispersion relationships are, however, real nonlinear functions of k, and, therefore, both
discrete approximations are nondissipative but dispersive.
The exact group velocity is obtained by differentiating Equation 4.28 with respect

to k,
N

bt = a. 4.29
0k analytic @ ( )

Similarly the group velocities for central and compact differencing are,

N

— = acosf
Ok central

(4.30)

an a 1sin%0

cos@+ ————).
'29( +1—§sin2g)

— = 4.31
Ok compact 1 — % sin® 3 ( )

The errors in the group velocities make it clear that both finite approximations have

introduced phase errors such that modes of varying wavenumbers travel at different
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Figure 4-6: ‘Saw-toothed’ Modes

speeds rather than at the correct speed of a. But when k is fixed and Az — 0, it
must follow that & — 0, and so both %%wmal — a and %cmmd — a. As the mesh is
refined, the dispersive errors decrease until in the limit the finite group velocities and
ihe analytic group velocity become identical.

The magnitudes of the dispersive errors are illustrated graphically in Figure 4-5.
The figure is a plot of 2 versus 6 for the Equations 4.25 and 4.26 and 2 versus k for
Equation 4.28 with @ = 1 and w = 0. The straight line represents the true analytic
solution. Notice that central differencing technique begins to exhibit noticeable phase
errors at  ~ 0.375 and compact differencing at # ~ 1.1. Since § = kAz and for a
wavelength of 1, k = 27, an approximate resolution requirement for central differencing

is 17 points and for compact differencing is 6 points per minimum relevant wavelength.

This is a somewhat higher requirement than that obtained by Taylor series analysis.

4.3.3 Time Integration and Stability (Von Neumann Analysis)

The stability characteristics of the numerical schemes can be analyzed by examining
the previously derived dispersion relationships in Equations 4.25 and 4.26. We require
all Fourier modes to be stable, and hence we seek the most unstable modes. For central

n

differencing, the most unstable mode is at § = § which corresponds to Qs = 1,

and similarly for compact differencing, the most unstable mode is at 6 = 2—;— which
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corresponds to Qpaz = V3. Wave modes of 6 = S and 6 = %" are ‘saw—-toothed’ modes
of wavelength 4Az and 3Axz, respectively. This is illustrated in Figure 4-6.

The stability of the mean solver is derived from the model Equation 4.16 withw = 0.
The CFL condition states that the numerical domain of influence must be less than or

equal to the analytic domain of influence,
A
Atcrr < =
a

where At is the time step. The mean flow solver uses central differencing, and since
0,... = 1, a necessary condition for stability using a fully explicit time-integration

method must scale with the CFL condition,

A
At < ”—a—f (4.32)

where [—i0;,10;] is the portion of the imaginary axis in the stable region for the time
integration method.

The stability of the perturbation solver is also similarly derived from the model
Equation 4.16 but with w # 0. The perturbation solver uses both types of differencing,
and since Q,,,.'s are different amongst them, they have different tiine step limitations.

For a fully explicit central differencing scheme the stability requirement is,

a~
At < ——— (4.33)
a: tw

and the time step limit for a fully explicit compact scheme is,

(4.34)

Notice that when w is small, central differencing allows larger time steps to be used
than compact differencing, but when w is large the two schemes have similar time step

values. The use of compact differencing is most efficient for the high {requency cases.
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A fully discrete form of the above equation using a four stage explicit Runge-Kutta
method then follows as,

i =a" (4.35)

where a; = 1/4,a; =1/3, a3 = 1/2, a4 = 1,
R* = i(y + )ik

Define now the amplification factor G,

G = (4.36)

and we require |G| < 1 for stability. For the explicit Runge-Kutta scheme G is,
G=1—§(D+I‘) +—2—4(D+I‘) +z[E(D+I‘) — (D +T)] (4.37)

where

D =wAt, T =9At

A corresponding contour of |G| < 1 is shown in Figure 4-7.
We require all Fourier modes to be stable, and so we use the most unstable modes

derived in the previous section to compute the time step constraints as,

_2\/5

At < — (4.38)
2z T
for central differencing and,
2v/2 .
At < _2v2 (4.39)
2+
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Figure 4-7: Contours of |G| < 1 for a Fully Explicit Runge-Kutta Scheme
for compact differencing. In the limit w — oo, the time step restriction becomes,

2V/2
w

At < =2

1 0.0000
2 0.1000
3 0.2000
4 0.3000
5 0.4000
6 0.5000
7 0.6000
8 0.7000
9 0.8000
10 0.9000
11 1.0000

for both differencing techniques, and so the explicit Runge-Kutta scheme is stiff when

w is large.

The time step constraint for the mean flow solver is obtained by setting w = 0 in

the amplification Equation 4.37. The amplification factor then becornes,

G=1—11‘2+l

1
2 24 z(6 ).
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|Glis < 1if T < 2/2 and so for central differencing,

At < 2‘/?1“. (4.41)

4.4 Nonuniform Grid

The one dimensional uniform grid analysis has shown that the numerical method is
consistent and stable when the time step is within the specified constraint. The analysis
also showed that the numerical method is nondissipative, and given a resolution of about
6 points per wavelength for compact differencing and about 17 points per wavelength
for central differencing, the numerical method is also nearly nondispersive.

We are using a body-fitted coordinate system, and the grid may be distorted and
nonuniform near 2 body, but at least 2 or 3 chord lengths away from the body, the grid
should be smooth and nearly uniform. In such regions the previous one dimensional
analysis is directly applicable, and a grid which guarantees the just defined resolution
requirement should be accurate in both amplitude and phase.

However, while the body-fitted coordinate system allows easy boundary condition
implementation, it also implies that the grid near the body may be nonuniform. The
accuracy of both central and compact differencing for a nonuniform mesh can be better
understood by analyzing the Taylor series truncation error of g—: on a variable grid. Let

Az and r, be defined such that,

Az = T; —T;-1

Tit1 7%
L; —Z;1

Ty =
Then it is shown in Reference [23] that for central differencing,

Bu u_,
P — E 4.42
Bz, #e5c(zj) +T (4.42)
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where
r.—1, 8%u (14 r2)? Az *F

TE = — 5 Azaz§ o az?-{....
For compact differencing,
Ou _ pebe(uj/z;)
— = + TE (4.43)
Oz; 1+ 652/6
where
re—1, 0%u (ro—-1)%, ,0% d*u
E=--= A — L= Az? - — 1)3Az3— AzY) 4 ---
T 3 ”azg o z 3z?+0[(r 1)°Az ]az;—i-O( z%) +

The accuracy of the schemes are functions of the grid uniformity, and both schemes
are only of O(Az) given an arbitrary grid. The accuracy increases to O(Az?) for both
schemes when 7, = 1 + O(Az), and compact differencing reaches its peak accuracy
of O(Az*) when r, = 1 + O(Az?®). Unfortunately, a grid near a typical body shape
would only be approximately r, = 1 + O(Az) or at best r, = 1 + O(Az?), which
translates to a peak accuracy in the azimuthal direction of O(Az®). When r, = 1 +
O(Az) the truncation error of compact differencing is approximately :—2, of that for central
differencing.

Note that for an arbitrary grid the leading order error terms scale as %‘f, and
therefore, both schemes are dissipative. Note also that the leading order dispersive
term % will be larger for a stretched grid because the associated coeilicients will be
greater.

Actual amount of truncation error depends upon the grid size and higher order
derivatives, but it is usually safe to assume that we need to increase the grid density
near the surface of a highly contoured mesh. Fortunately, when the wavelength and
chc d length are about the same and given an O-type of mesh, a grid which has 6
points per wavelength at a far-field of 10 chords usually has more than 100 points per
wavelength near the body. An O(Az) accurate scheme requires about 100 points per

wavelength for 1% accuracy, and so such a grid should be able to resolve most of the

physicaily relevant length scales everywhere in the flow field.
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4.5 Filtering

The truncation error analysis has shown that the current method is dispersive, and
that in regions which has high flow gradients (where %‘3‘- term is large) or in regions which
has small length scales (where Az is relatively large) the numerical method can generate
unphysical wave modes. These unwanted wave modes are most typically created near
a sharply contoured body where both the flow gradients and the relative grid sizes
are large, but they may also be generated elsewhere by far field reflections or even by
numerical round-off errors. The most dominant unstable modes are the ‘saw-toothed’
modes shown in Figure 4-6.

The one dimensional Fourier analysis has illustrated that the discrete forms of the
dispersion relations from Equations 4.26 and 4.25 are purely real. This is, in general,
a desirable quality of the spatial discretization since it implies that the traveling wave
form preserves its amplitude, but it also implies that, once generated, the numerical
scheme is incapable of eliminating the unwanted wave modes. Thus the current spatial
discretization techniques admit oscillatory solutions which are not solutions of the true
analytic equation. Some dissipation, therefore, must be present in the discretization to
dampen the unwanted wave modes. The goal of the filtering scheme is thus to efficiently
annihilate those modes which are not realizable by the discretization technique while
undisturbing the physically reievant modes.

The mean flow finite volume scheme is augmented with explicit fourth order dissipa-
tion in both azimuthal £ and normal 7 directions. The perturbation flow finite voiume
scheme uses explicit sixth order dissipation in the £ direction and fourth order dissipa-
tion in the 7 direction. The fourth order differences are described in References [37, 63|,
and the sixth order differences are an extension of the fourth order differences.

The governing equatiors are then modified by added dissipative terms Do and D

such that,

d
J‘&zQOij + u2uebeFo;; + ppnb,Goy; = Doyj (4.44)
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for the mean flow and,

d papede .
J Qi+ TJ:Tz/EF"’ + pipnb,G'ij — iwJQij = Dij + JSi; (4.45)

for the perturbation flow. The dissipation terms D¢ and D are defined as,

J
Do;; = —vade(438¢)Qoi; - vab( o ~3%7)Q0;; (4.46)

D,_uséf( 6E)Q,, vabq( _6,,)Q,J (4.47)

In the above equations, v4 and vg are the fourth and the sixth difference dissipation
coefficients, J is again the cell area, and £ is the time step when the CFL nuniber is 1.
The inclusion of the cell area J is necessary so that the amount of added dissipation
does not scale with the area of the cell. Similarly, the scaling term ¢ assures that the
artificial viscosity is independent of the CFL number.

The fourth order dissipation terms in the mean flow solver and in the 5 direction
of the perturbation solver scale as Az3, and the sixth order dissipation term in the £
direction perturbation solver scales as Az®. Thus the second order accuracy is assured
for the mean flow solver and 7 direction perturbation solver, and similarly, fourth or-
der accuracy is formally preserved in £ direction perturbation solver. The numerical
schemes, nevertheless, may still be overly dissipative in coarse grid regions, and hence it
is important to minimize the dissipation coefficients v4 and vg to preserve the accuracy.
It is also important to minimize the dissipation so that it does not affect the inviscid
time step limits. For all numerical cases, v4 was between 0.008 and 0.01, and vg was

between 0.0008 and 0.001.
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4.6 Time Integration

For the current two-dimensional system of equations with dissipation, the time

integration is computed as follows,

Q?j = Q?j (4.48)
At::
- QY = —e (RS - D,
Atis
L-Qy= —az—J'l(R}j - DY)

At;
% - QY = —as—5*(R} - DY,

4 _Q0 = a4A"(R3—D°

ij ij 7
Qn+1 _
1 1 1
o=, a2=§, a3 = o, ag =1

where for the mean flow solver,
RY = papebeFos; + 1irnbnGoy;
and subscript ¢ is implied. For the perturbation solver,

ko_ l‘rl‘( 66 k 2 k . k k
Rij = mF, + uﬂéﬂG'ij - IWJQ"J' - JS‘-J-.
A single evaluation of the dissipative terms is required at the initia! stage of the temporal
integration. This is to reduce the operation count for the scheme.
The time step limit for the current two—-dimensional system of equations is computed
by computing the spectral radii of the linearized coefficient matrices A and B shown in

Section 3.2.1. For the current scheme a conservative estimate of the time step criterion



is computed as,

At.'j < aiJ

4.49
S [T 17l + coxo (4.49)

for the mean flow solver and,

O’;J
ti; <
V3lg| + |r] + cox + Jw

A (4.50)

for the perturbation flow solver. The variables g, , Xo, and yx are defined as,

Xo = /=2 + ¥ + 2§ + ¥} + 202nze + yavel

X = \/3z,2, +3y2 + 2} +yf + 2V/3|znze + Ynvel
q = UgYyn — VoTy
T = —UgY¢ + VoT¢

and ¢ is the local speed of sound.

We seek here the steady state solution to the governing equations, and hence each
node is integrated in time using the maximum time step allowed by the stability limit,
i.e. at o; = 2v/2. Each node is integrated with the same CFL number but with different

time steps.

4.7 Summary

Numerical techniques for the steady base mean flow and the linear perturbation flow
were presented.

The finite-volume, node-based schemes are based upon the integral form of the
governing equations and are second order accurate for the mean flow solver and sec-
ond/fourth order accurate for the perturbation solver.

The truncation error and the Fourier analysis has shown that the numerical methods

are consistent and have leading order error terms which are dispersive but nondissipative
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for an uniform grid.

The time-stability is assured when the time step limits are within the restriction of
the Von Neumann amplification analysis.

A fourth/sixth order dissipation terms are added to the numerical methods to filter
the artificially generated high wavenumber disturbances. The dissipation terms are

computed such that the formal accuracy of the discretization schemes are maintained.
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Chapter 5

Sound Radiationr: from Gust—Airfoil Interaction

When a body convects in a nonuniform flow sound is generated as a result of in-
teractions between the unsteadiness in the flow and the body. This noise generation
mechanism is common to many aerospace components such as wings and propellers
and may be due to a variety of sources like atmospheric turbulence, inlet distortions,
and rotor-stator interactions. Noise generated by such mechanisms often tend to be
loud and are important sources of sound. In this chapter, we will investigate the sound
generation properties from one such unsteady process.

Consider an airfoil in a steady flow which encounters an unsteady ‘gust’. We model
the gust as a velocity perturbation in the y direction. In a reference frame fixed to the
airfoil sucli a gust is a transverse velocity defect which convects with the local mean flow,
and although a gust can be of any arbitrary function in time and space, for simplicity

we limit the scope of the research to an incoming sinusoidal gust only,
v = ei(k.‘:-wt) (5.1)

where

k=—

Uo
and ug is the free stream velocity. Note that within the framework of linearity, a general
vortical disturbance can always be thought of composed as a sum of multiple Fourier

modes and hence no generality is lost in the single frequency assumption.
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Vv = el(kx - ot)

Figure 5-1: Incident Sinusoidal Gust on an Airfoil

The wall boundary conditions are that the total normal velocity on the airfoil is

zero, and since the surface is stationary the boundary condition is as in Equation 3.6,

fl, sng = —ﬁ; *Ng (5.2)
where
ﬁ. _ eik:cj

and j is the unit vector in the transverse y direction.

The boundary condition on the wall is such that it exactly cancels the incoming
vortical disturbance, and the total normal velocity on the wall is zero. This condition
is equivalent to the plate with camber oscillating, and so the current study is closely
related to that of sound produced by a cambered airfoil in unsteady motion. Such
unsteady airfoil undulations necessitate a continuous shedding of vorticity into a wake
with the implementation of the Kutta condition at the trailing edge. The vorticity
sheet, in turn, influences the velocity field on the body, and so the radiated sound is
strongly affected by the trailing wake. For an accurate numerical solver it is important

to resolve both the acoustic field as well as the vortical wake.
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5.1 The Aerodynamic Problem

Before we embark on the numerical study, it is useful to first consider the mathe-
matics for the flat plate problem which may illuminate some insights and identify some
key parameters.

The linearized Euler equations in a uniform flow can be represented by an equivalent

convective form of the wave equation in the perturbation velocity potential ¢,
¢tt + 2u0¢zt - (c(z) - u(2))¢zz - 0(2)¢w =0 (5.3)

where u' = ¢, and v' = ¢,.

Following the substitutions presented in References [6, 7], we introduce the suc-
ceeding transformations for both dependent and independent variables, (z,y,t,¢) <
(§mit, @),

{=2,n=Py

é(f, 7 t) = 43(:1:, y)e—i(“’t‘FMoK:c)

where,
B =4/1- M
VMQ
K = g
and v = e 18 the reduced frequency, where a is the characteristic length. We then
arrive at,
(VE+K)e =0 (5.4)

with the boundary conditions,

(5.5)
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along the body, —a/2 < £ < a/2 and,
A% = (A%), e /" (5.6)

along the wake, £ > a/2. V is the Laplacian operator computed in the (£,7) domain,
and A® represents the jump of & across the wakeline. The latter boundary condition
results from the continuity of pressure in the wake.

The Helmholtz Equation 5.4 can be solved using the Green’s theorem,

1 oG 0%,
#(En)= 5§ (25, ~ O ). (5.7)

The integration is over both the body and the wake. The free space Green’s function
for Equation 5.4 is
G(r) = igH{,‘)(Kr) (5.8)

where r = /(€ — £')2 + (7 — 1')? and Hgl) is the Hankel function of the first kind zeroth
order. An exact solution to Equation 5.7 requires the enforcement of boundary condi-
tions, but even without such a statement, the nature of the general solution illustrates
that the parameter K plays an important role. K is actually a nondimensional param-
eter based on the ratio of expected length scales. An acoustic length scale is based on
the acoustic wavelength,

2we

Lacou - A = —w— (5.9)

where c is the speed of sound and X is an average acoustic wavelength in the domain.
The convection length scale is dependent on the geometry of the case, an. for now,
define it to be a,

Leony = a. (5.10)

K can then be cast as a simple multiple of the ratio %"m,

acou

_vMy  m Leony T

F— 2Lacou B ﬂz (5-11)

> K
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A flat plate in a gust has the second term in the integral Equation 5.7 equal to zero,
and the flat plate can be thought of as a distribution of simple dipoles. At a given point,
the sound heard from such collection of dipoles is a function of compressibility and the
‘compactness’ of the source.

In compressible flows with finite phase speeds, the concept of ‘compactness’ is an
important issue. A compact source is one in which the acoustic length scale is much
longer than the body such that an observer ‘hears’ the distribution of sources in phase,
and there are little or no retarded time differences. The differences in ‘firing’ time
A(t —r/cp) are small such that all the sources can be thought to be grouped as a single
dipole firing in phase.

In contrast, a noncompact source is one in which the acoustic length scale is much
shorter than the body such that an observer ‘hears’ the distribution of sources out of
phase; he ‘hears’ the sources closest to him first, and there are large retarded time
differences between the sources. In such cases, instead of radiation from a simple dipole
we expect a more complicated acoustic field due to a distribution of dipoles over the
chord with large differences in phase.

K is a measure of the compactness of the acoustic source. When K is small, it must
follow that L.ony, € Lacou and the body is essentially compact. Conversely when K is
large, Loony > Lacou and the body is no longer compact.

Note that in an unsteady flow, the condition My < 1 is not sufficient to guarantee
an incompressible flow. We need to require that the acoustic length scale is much longer
than the flow length scale, i.e. we need to assure that the source is compact, and so the

correct parameterization is Mp < 1 and K < 1.

5.2 Validation

We begin the numerical analysis by first considering a set of three numerical cal-
culations for which there exists an analytic or an asymptotic expansion solution. For

historical reasons we start the analysis with a flat plate in incompressible gust.
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5.2.1 Incompressible Flow

Consider a flat plate in an incompressible flow which encounters a sinusoidal vorticity
field of the form in Equation 5.1. We seek to compute the time-harmonic response of
the plate and its surrounding fluid perturbed by the incoming vortical gust. The steady

base mean flow was computed first, and the following parameters were used:
o Geometry: NACA0001

e Grid: 300 x 150

o M;: 0.1

o a: 0.0

e Far Field Radius: 10 chords
e vy 0.01

o Iterations: 500

e Ly(6p): 1.3 x 1074

My is the free stream Mach number, « is the angle of attack, and v4 is the dissipation
coefficient for the fourth order artificial viscosity. Ly(8p) is the L, norm of the difference
in density and is equivalent to the root mean square of the density residual. The residual
is normalized such that the first iteration difference is set to 1. The calculation required
500 iterations for 5 orders of magnitude convergence in density.

The Mach number was purposely chosen to be small so that the simulation would
closely resemble an incompressible flow, and a NACA0001 airfoil section was used to
model a flat plate.

The mean flow solution was used as an input to the perturbation solver on an
identical grid with the same nase Mach number. The run time perturbation parameters

were as follows:

o w: 0.01

e Iterations: 9000

e vy 0.01

e vg: 0.001

o Ly(8p): 1.5x 1074
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Figure 5-2: Ap on the Flat Plate in Incompressible Flow

vg is the dissipation coefficient for the sixth order artificial viscosity in the azimuthal
direction. The computation required 9000 iterations for 4 orders of magnitude conver-
gence in density amplitude.

w = 0.01 corresponds to a reduced frequency, v = 0.0425 and a wavelength of 743
chords. Within a domain of 10 chords the computed solution should correspond closely
to that of an incompressible approximation. Figure 5-2 shows a plot of the difference in
the upper and the lower surface pressures, Ap, along the flat plate. The lines represent
the real and imaginary parts of exact Ap which is given in Reference [13], and the
symbols represent the corresponding computed solutions. The accuracy is good and
uniform even at the leading edge where there is a singularity. In terms of the total lift,
the analytic solution is |L| = 0.3448 and arg(L) = 7.3° and the computed solution is
|L| = 0.3496 and arg(L) = 8.7°. The error is approximately 1.4% in amplitude and

approximately 1.4° in phase. It appears that the methodology is accurate in predicting
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the unsteady pressure values and the vorticity shedding process.

The computation required 174 minutes of cpu time on a Cray X-MP for convergence.
The time required was large but expected since the Mach number was so low. A low
Mach number case is inefficient when integrated by a compressible solver, because the
vorticity and acoustic waves travel at very different rates, and the solver must integrate

in a CFL limit sense to accommodate the slower moving wave.

5.2.2 Compressible Compact Gust

We now consider a flat plate in compressible flow which encounters a compact gust
of the form in Equation 5.1. The compactness is defined as per Amiet in Reference (3]
such that when K < 1 the gust is assumed compact. For the current case K = 0.5. The
base mean flow was computed first and the numerical parameters were as follows:

e Geometry: NACA0001

e Grid: 200 x 100

o My: 0.5

e a: 0.0
e Far Field Radius: approximately 4 wavelengths

o vy 0.01
Iterations: 400
Ly(6p): 1.8 x 1074

The calculation required 400 iterations for 4 orders of magnitude convergence.
The mean flow values were used as an input to the perturbation solver and the

acoustic parameters were as follows:

e w: 0.8875

e Iterations: 1500
e vy 0.01

rg: 0.001

Ly(8p): 3.2 x 1073
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Figure 5-3: Ap on the Flat Plate for a Compact Gust

The calculation required 1500 iterations for about 3 order of magnitude convergence.
Amiet [3] has provided an expansion solution for the compact case as an extension

to the incompressible theory of Sears [67]. The pressure difference Ap along the {at

_ ﬂ]_ (0/2)—12 o\ —iv* M3z _—iv* f(M,) 5
Ap = 2ﬂ Uo\/_—(a/2)+:c S(v*)e °%e (5.12)

V‘ — ll/ﬂz

plate is given as,

where

f(Mo) =(1-8)InMo + BIn(1 + ) —In2 (5.13)
and S is the Sears function defined in Reference [67],

1
—io|Ko(~io) + K,(—ic)]

S(o) = (5.14)
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Ko and K, are modified Bessel functions. The associated lift on the flat plate is [3],

i.= —27r%q—('%)35(u‘)[lo(MoK) +idy (MoK )] (5.15)

where Jy and J, are Bessel functions of order 0 and 1, respectively.

Figure 5-3 compares the computed values of Ap versus the expansion of Amiet. The
symbols represent the computed solution and the lines represent the Amiet’s approxi-
mation. The agreement is quite close, except perhaps the imaginary portion of the solu-
tion at the leading edge. In terms of the lift the coraputed solution was |L.| = 0.84336,
arg L. = 1.2698° and the Amiet solution is |L.| = 0.83899, arg L. = 2.3685°. The
difference is about 0.6% in amplitude and 1.1° in phase. It seems the numerical solution
is accurate in the near field.

Once the pressure distribution on the flat plate is known then we can use the Green’s

theorem to compute for the pressure values everywhere else in the flow field,

. 1 fe/z = 3G
B(z,y) = 5‘;'/;“ Apa—yd:c (5.16)

where the Green’s function is defined in Equation 5.8. The above integral can be

simplified by expanding it in inverse powers of r as shown in Reference (6],

K e“i'/‘ sin 6 . 2. 209\1/2
5 = kel —ir[K(1-M3 sin? 6)! /3 - M K cos6) -3/2
P(z,y) = Fleo) 8t r (1 - M}sin® 0)3/4e ° +0(r™'%)
(5.17)

where

af? )

F(ap) = Ape " *dx

-a/2
and

cos@

ag =K - MoK

V1 - MZsin?0

6 = arctan -'1{.
z
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Figure 5-4: Polar Plot of D, at the Far Field for a Compressible Compact Gust

We have compared the computed solution at the far field with the above asymptotic
approximation to insure that the numerical method does not admit large reflections.
Figure 5-4 shows the polar directivity D, of the two methods. D, is the amplitude of

acoustic pressure scaled by /r,

D, = Vrlhl. (5.18)

The continuous line is the expansion of Equation 5.17 and the broken line is the numer-
ical approximation. The agreement is quite good in all directions, and it appears the
current far field boundary condition is effective in preventing noticeable reflections.

Figure 5-5 shows the contour of amplitude of sound pressure in the domain. The
figure ‘8’ shape in the amplitude contours indicate that the flat plate appears as a single
dipole at the far field, i.e. the flat plate is a compact source.

Note also that the amplitude of pressure is zero along the wake line. A symmetric
airfoil under a purely transverse gust will have zero pressure along the wake line with

the enforcement of the Kutta condition. As a proof, consider a flat plate in a vertical
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Figure 5-5: Amplitude Contour of Acoustic Pressure, My = 0.5, K = 0.5

oscillation with velocity,

v = voe—aut

as shown in the upper portion of Figure 5-6. Then because of linearity there will be an

associated pressure field which is also harmonic in time,
p(z, y) = i’(za y)e-iwt'

Now consider the same oscillating flat plate in (2',y'}) domain where y' = —y as
g y y

shown in the lower portion of Figure 5-6. v' must be —v for all time such that,

and,

pe',y') = Bz, y)e (5,
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yl
Figure 5-6: p = 0 Along the Wake Line for a Symmetric Airfoil

But p must be same in both domains so,
Hz,y) = -p(z',y)
and by enforcing the Kutta condition along the wake line we must have,
Ap=0 Qy=y =0.

Which is equivalent to,
;3(2:, 0+) = p(=, 0_)

i’(zl$ 0+) = f’(z" 0—)
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Figure 5-7: Phase Contour of Acoustic Pressure, My = 0.5, K = 0.5

however since,

ﬁ(‘ca 0_) = —ﬁ(l", 0+)

it must follow that,

}3(1‘, 0+) = _13(31 0+)

which is only possible if p(z,0) = 0 along y = 0 wake line. This is not true for a general
asymmetric airfoil.

Figure 5-7 shows the contour of acoustic pressure phase. The phase plot indicates
that the airfoil appears as a single source concentrated at a position near the quarter—
chord point. Note that the contour lines are spaced further apart in the downstream
direction than in the upstream direction due to the Doppler effect. The acoustic wave-
lengths are longer in the direction of the flow and shorter in upstream direction. In

general the acoustic wavelength will vary in space as,

27w (co + Up cos 9)
w

Ao = (5.19)
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where 0 is the angle between the reference point and the positive z axis.

5.2.3 Compressible Noncompact Gust

Now consider a flat plate in a compressible low which encounters a noncompact
gust of the form in Equation 5.1. K for this validation case is 3.0. The base mean flow
was computed first and the numerical parameters were as follows:

e Geometry: NACA0001

e Grid: 230 x 120

e My: 0.4

e a: 0.0
Far Field Radius: approxiinately 4 wavelengths

vg: 0.01
Iterations: 500
Ly(6p): 2.5x 1074

The calculation required 400 iterations for about 4 orders of magnitude convergence.
The mean flow values were used as an input to the perturbation solver and the

acoustic parameters were as follows:
e w: 5.964
o Iterations: 2000
e v4: 0.01
o vg: 0.001

o Ly(6p): 2.7x 1073

The calculation required 2000 iterations for approximately 3 orders of magnitude con-
vergence.

Landahl [42] has provided an iterative method of computing the surface pressure
distribution for a gust of arbitrary wavelength. The solution process divides the flat
plate problem into two distinct leading and trailing edge problems in which iterations
are performed to match the two solutions. In the leading edge problem the chord is

allowed to extend infinitely in the downstream direction which eliminates the Kutta
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condition and the wake from the problem. A trailing edge problem is then solved in

order to correct the leading edge solution in the wake. The sum of these two solutions
satisfies the flow tangency on the airfoil and pressure continuity across the wake, but it
violates the condition of ¢ = 0 upstream. Additional iterations are computed to provide
a more accurate solution.

In the short wavelength limit, however, the leading and the trailing edges become
largely independent of each other. Furthermore, the fluctuating lift does not act through
the quarter—chord point when the reduced frequency is large, but rather moves toward
the leading edge as the frequency increase; the trailing edge region is relatively unimpor-
tant at the higher reduced frequencies [27]. Given noncompact sources the fluctuating
lift can be computed using only Landahl’s leading edge solution. The fluctuating pres-

sure difference across a semi-infinite flat plate due to a gust of this type is given by,

e—iu .
Ap = —i200U. i[Mov/(1+Mo))[(22/a)+1] 5.20
P et L+ Mo) (1§ 22/a) (5:20)

The associated lift L, is,

L. = wpoUpaS(v, My) (5.21)
where
e~ [2i 4v M,
§(v, Mo) = — Ef(\/m) (5.22)

is the high—frequency approximation to the compressible Sears function and
F(z) = / ei(n12)€ gg (5.23)
0

is the complex Fresnal integral. This formula is accurate to about 10% in lift when
K > 1 according to Reference [27].

Figure 5-8 compares the computed values of Ap versus the expansion of Landahl [27].
The symbols represent the computed solution and the lines represent the expansion of

Landahl. The agreement is quite close, except perhaps towards the trailing edge where
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Figure 5-8: Ap on the Flat Plate for a Noncompact Gust

the expansive solution violates the Kutta condition of zero pressure jump. In terms of
the lift, the computed solution was II:,_.I = 0.1383, arg L. = —175.43° and the Landahl
solution is |L.| = 0.1288, arg L, = —83.49°, where we have also used the following

asymptotic approximation for the Sears function,

—ifv—(x/2)]
S~ ie———— as v — 00.

v /My

The difference is about 7.4% in amplitude and 8.06° in phase. It seems the numerical
solution is also accurate for the noncompact case in the near field.

The far field values were checked for unwanted reflections using Green’s theorem
in Equation 5.16 and the asymptotic approximation in Equation 5.17. The comparison
between the computed and the approximation D, is shown in Figure 5-9. The computed

solution is in good agreement with the approximation in all directions.
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Figure 5-9: Polar Plot of D, at the Far Field for a Compressible Noncompact Gust

Figure 5-10 shows the amplitude contours of acoustic pressure. Notice the amplitude
contour shape is more complicated than a simple figure ‘8’ shape. This is due to the
noncompactness and the retarded time differences hetween the dipoles along the flat
plate.

Figure 5-11 shows the phase contours of acoustic pressure. Close to the airfoil two
distinct sources at the leading and the trailing edges are visible. At moderate distance
from the airfoil the elliptical contour lines show higher eccentricity than the compact
case in Figure 5-7, because the sources appear to be distributed along the entire length
of the flat plate rather than concentrated at a single point. Still further away from the
plate, the phase contour lines are similar to the compact case, because the reference
distance is much farther than the average acoustic wavelength. It is important to note
that at long distances the phase contours between the compact and the noncompact
sources look similar, but because of the retarded time differences the radiation patterns

as illustrated in Figures 5-4 and 5-9 are not.
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Figure 5-10: Amplitude Contour of Acoustic Pressure, My = 0.4, K = 3.0
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5.3 Parametric Studies

The previous section illustrated that the current numerical method is accurate and
consistent throughout the domain. We ncw turn our attention to parametric studies
to determine some gross effects of the mean flow Mach number, the mean loading, the
airfoil thickness, and the upstream gust parameter on the radiated sound field.

The existing linear theory by Sears [67] and others (3, 27, 42] has been presented in
Sections 5.1 and 5.2. It is directly applicable for airfoils with small excursions from a
flat plate in low Mach number flows.

Consider a thin airfoil with its edge defined by the equation g(z) = 0, and let € be
a small parameter such that the y = €f(z) determines the mean position of the surface
of the airfoil, and €,/g determines its thickness distribution.

The velocity in the domain can be represented as,
U = upi + uj + u), (5.24)

where ug is the free stream velocity, u; is the imposed gust perturbation, and u/, is the

‘scattered’ perturbation velocity such that,
u, -0 as r— co.

Then for an inviscid body the linearized boundary condition can be expressed as in

Reference [27),
1 dg

2,50z

on y = +0 and g > 0 and where the * refers to the upper and lower surface of the

- 6(% + Juo + v} = —v! (5.25)

airfoil, respectively. The first term on the left side of the equation contains the effects of
thickness, camber and angle of attack and is independent of time while the second term
which depends on time, is uninfluenced by these geometric effects. In the linearized

approximation the effects of geometry, therefore, contribute only to the steady mean
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solution and make no contributions to the unsteady perturbation component.
Reference [42] also shows that the convective wave Equation 5.3 itself is invalid
when the free stream Mach number approaches unity. So we see that the linearization
is constrained by both the geometry and the free stream Mach number (and also possibly
by the compactness).
We will now conduct a systematic study to see if and when the linear theory is
valid, and in situations where it is not valid, we will attempt to identify and discuss

parameters which govern the nonlinearity.

5.3.1 Similarity Parameter K

We have seen that K is an important parameter in the solution of the radiated
sound field, and that when K is small a flat plate emits sound as a compact source. We
now prove this by performing 3 different calculations at different Mach numbers and
frequencies but with an identical K.

In each of the runs we used a grid of 200x100 about a NACAO0001 airfoil, and the
far field was placed such that there was approximately 4 wavelengths in all directions
within the domain. The mean flow was computed first, and a convergence of at least 4
orders in magnitude for the RMS residual of dens'ty was assured. hey parameters in

the 3 calculations are tabulated below:

Mo v K
Casel | 0.4 | 2.100 | 1.C
Case 2| 0.6 | 1.067 | 1.0
Case 3| 0.7 | 0.729 | 1.0

Table 5.1: Parameters for Compact Source K = 1.0 Cases

The amplitudes of acoustic pressure |p| are shown in Figures 5-12, 5-13, 5-14. Notice
the similarity in the directivity patterns between the three cases. The amplitudes in-
crease with the free stream Mach number, but the radiation patterns remain the same.
Also note that the amplitude of sound is zero along the wake. The radiation patterns

at the far field are illustrated in Figure 5-15. The figure is a polar plot of the quantity
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D, for the three cases. It indicates that as the incoming Mach number increases the
amplitude of sound pressure increases correspondingly, but the directivity remains the
same. Note also that the directivity pattern is symmetric about the horizontal axis but

is not about the vertical axis; there is a slight tilt towards the downstream direction.
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Figure 5-12: Amplitude Contour of Acoustic Pressure, My = 0.4, v = 2.10, K = 1.0
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Figure 5-13: Amplitude Contour of Acoustic Pressure, My = 0.6, v = 1.067, K = 1.0
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Now consider a noncompact case at 3 different Mach numbers and frequencies but
with an identical K.

In each of the runs we used a grid of 230x120 about a NACA0001 airfoil, and the
far field was placed such that there was approximately 4 wavelengths in all directions
within the domain. As before the mean flow was computed first, and a convergence
of at least 4 orders in magnitude for the RMS residual of density was assured. Key

parameters in the 3 calculations are tabulated below:

Mo v K
Casel | 0.4 | 6.300 | 3.0
Case 2 | 0.6 | 3.201 ! 3.0
Case 3| 0.7 ] 2.186 | 3.0

Table 5.2: Parameters for Noncompact Source K = 3.0 Cases

Amplitudes of acoustic pressure |p| are shown in Figure 5-10 on page 115 and in
Figures 5-16, 5-17 on the following pages. Again the figures indicate that the amplitude
increases as the Mach number increases but the directivity remains the same. This is

also illustrated in the polar plot of far field D, in Figure 5-18.
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Figure 5-16: Amplitude Contour of Acoustic Pressure, My = 0.6, v = 3.201, K = 3.0
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5.3.2 Thickness

We have seen that K is a similarity parameter such that disturbances of the same K
have the same directivity patterns. We now turn our attention to the effects changes in
the thickness of the airfoil have on the radiated sound field. Note again that according to
the linear theory, the thickness does not have any effect on the unsteady solution. How-
ever, as we increase the thickness we expect the linear theory to eventually breakdown
because there must necessarily be diffraction of sound from flow and surface gradients.

Accustic diffraction occurs in a region which has a solid body of interference or in a
region which allows some part of the wave front to propagate faster than another.

In a homogeneous media, i.e. in a uniform flow, diffraction occurs near a solid surface
as wave fronts are necessarily distorted when the traveling waves ‘bend’ in order to
accommodate the surface. Diffraction can also occur in an inhomogeneous media when
the group velocity varies as a function space. The wave fronts ‘bend’ as different parts
of the wave front propagate at different rates. Reconsider the acoustic portion of the

dispersion Equation 3.14 derived earlier in Section 3.2,
(uok + vol — w)? — c2(k* +13) =0 (5.26)

where again k and [ are the spatial wavenumbers and w is the temporal frequency. The

above equation can be differentiated with respect to k and [ to obtain the acoustic group

velocity,
%7:- to 2 Wlm
Cg = s = + ¢o ol o . (5.27)
a Yo Tkl

The group velocity can be interpreted as a vector sum of the local convection velocity
plus a vector whose magnitude is equal to the local speed of sound and whose direction

is normal to the wavecrest defined by [26],

kz + ly = constant.
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Thus when ¢p or (ug, vo) is a function of space, Cg must also be a corresponding function

of space. Diffraction can occur by spatial changes in the local speed of sound and/or

by spatial changes in the local convection velocity.

0.500

1%
7 3%
0.357 . 6%
0.2144
1 N
.071
sinaly,
-
—0.0714
. \\_/
—0.214 4
—0.3574
_0'500 T ] J L} | ) l 1 1 ) ] 1 L
-0.500-0.357-0.214-0.071 0.071 0.214 0.357 0.500
cos8Dp

Figure 5-19: Polar Plot of D, at the Far Field, My = 0.4, K = 1.0

Compact Cases

We present first a set of compact cases in which the maximum thickness 7 is varied
from 1% to 6% while we keep the compactness ratio K and the free stream Mach number
My constant at 1 and 0.4, respectively. We used a grid of 200x100 about NACA00
sections, and the far field was chosen such that the domain contained approximately 4
wavelengths in all directions. The key parameters for this set are in Table 5.3 where ||
is the amplitude of complex lift.

The lift is slightly higher for the two thicker cases and this results in a small increase
in the far field amplitude as shown in Figure 5-19. The effect of thickness is quite small
in this set, and a simple dipole model with its strength set by the unsteady lift would

provide an accurate solution.
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My| v | K| 7 | |L
Casel | 0.4 ]2100;1.0]1% | 0.46
Case2 | 0.4 2100 1.0 3% { 0.49
Case 3 | 0.4 | 2.100 [ 1.0 | 6% | 0.49

Table 5.3: Parameters for My = 0.4, K = 1.0 Varying Thickness Cases

We now present a set of compact cases in which the maximum thickness 7 is varied
from 1% to 13% while we keep the compactness ratio K and the free stream Mach num-
ber My constant at 1 and 0.7, respectively. We used a grid of 200x100 about NACA00
sections, and the far field was chosen such that the domain contained approximately 4

wavelengths in all directions. The key parameters for this set are tabulated below:

My | Mpooe | v | K| 7 | |L
Case1 | 0.7] 0.71 [0.729|1.0| 1% | 1.21
Case2 | 0.7 0.75 [0.729 1.0 | 3% | 1.19
Case3 | 0.7 0.82 [0.729({1.0| 6% | 1.18
Cased4 | 0.7 | 098 [0.729 1.0 | 13% | 1.16

Table 5.4: Parameters for Mg = 0.7, K = 1.0 Varying Thickness Cases

M4- is the peak Mach number in the domain. In this set there is a small (< 5%)
decrease in the lift as the thickness increases, and thus the dipole strength should be
roughly equivalent between the four cases. The contours of constant acoustic pressure
for the 13% airfoil are shown in Figure 5-20. Compare this plot with the 1% airfoil
result of Figure 5-14 on page 120. Near the airfoil where the flow gradients are high,
the 13% airfoil indicates large gradients of acoustic pressure, and away from the surface,
there is a ‘tilt’ of acoustic directivity towards the upstream direction.

The far field sound directivity is illustrated in Figure 5-21. Figure 5-21 is a polar
plot of far field D, for all four airfoils. The thickness does not seem to affect the far
field sound pressure in a noticeable way when the thickness is 6% or less, but there is a
distinct tilt of the lobes towards the upstream direction for the 13% case.

Reference [42] shows that the linear assumption is valid and that the convective
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wave equation of the type in Equation 5.3 can be used when,

For My = 0.4 and 1% < 7 < 6% above constraint is clearly satisfied, and the convective
wave equation produces correct results. For the My = 0.7 case the above criteria may or
may not be satisfied when 7 = 6% (72/2 ~ 0.15) and is clearly not valid when T = 13%.
The solution obtained indicates that the directivity does not change noticeably from that
of a simple dipole when T < 6%, but when 7 = 13% the sound radiation pattern departs
significantly from the linear theory in both the near and far field regions. It seems that
as long as the sources are compact the linear theory is accurate for a moderately thick

airfeil in low Mach number flows; however, when the airfoil is thick enough such that

11— M| > 72/3.
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the peak Mach number approaches unity the existing theory is inadequate.
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Noncompact Cases

We now consider noncompact cases at a low Mach number of My = 0.4. The
maximum thickness 7 is varied from 1% to 6% while we keep the compactness ratio
K and the free stream Mach number M, constant at 3 and 0.4, respectively. We used
a grid of 230x120 about NACAOQO sections, and the far field was chosen such that the
domain contained approximately 4 wavelengths in all directions. The key parameters

for this set are tabulated below:

My| v K| 7| |L
Casel1) 0.4 6.300)3.0|1%/|0.17
Case2 | 0.4 |6.300|3.0|3%]|0.18
Case 3| 0.4 | 6.300 3.0 6% | 0.18

Table 5.5: Parameters for My = 0.4, K = 3.0 Varying Thickness Cases

All three thickness cases have virtually the same amount of lift so, in an integral
sense, each has an equivalent total dipole distribution along the airfoil. However, as
shown in Figure 5-22 the far field directivity varies considerably from one airfoil to the
next. The thickness has enhanced sound amplitude in the forward direction and, to a
lesser degree, in the downward direction, while it has reduced the sound amplitude in
the normal direction. Apparently the varying mean flow has diffracted sound away from
the center region towards the up and downstream directions. This is more evident in
the phase contour plots in Figures 5-23 and 5-24. Compare these two plots with the flat
plate (1%) phase plot Figure 5-11 on page 115. The mean flow has diffracted sound such
that the leading and trailing edge regions appear as two distinct radiators of sound.

The two thicker solutions differ significantly from that of the flat plate result, and the
previously described linear method would not be sufficiently accurate for the 7 > 3%
cases. The effect of mean flow diffraction is too great to be ignored for the current

noncompact case. Evidently the constraint,

1 - Mo| > 72/° (5.29)
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is not necessarily sufficient

number and 7 are small.
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Figure 5-22: Polar Plot of D, at the Far Field, My = 0.4, K = 3.0
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Figure 5-23: Phase Contour of Acoustic Pressure, Mp = 0.4, K = 3.0, 7 = 3%
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Figure 5-24: Phase Contour of Acoustic Pressure, My = 0.4, K = 3.0, 7 = 6%
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Consider a noncompact set in free stream of Mach number 0.7. The maximum
thickness 7 is varied from 1% to 13% while we keep the compactness ratio K and the
free stream Mach number M, constant at 3 and 0.7, respectively. We used a grid of
270x120 about NACAO0 sections, and the far field was chosen such that the domain
contained approximately 4.5 wavelengths in all directions. The key parameters for this

set are tabulated below:

My | Myox v K T |E|
Casel1 | 0.7 0.71 [2.186 | 3.0 | 1% | 0.62
Case2 | 0.7 0.75 {2186 | 3.0| 3% | 0.64
Case3 | 0.7 | 0.82 |2.186({3.0{ 6% | 0.63
Case4 | 0.7 | 0.98 |2.186 3.0 13% | 0.65

Table 5.6: Parameters for My = 0.7, K = 3.0 Varying Thickness Cases

All four thickness cases have virtually the same amount of lift and total dipole
distribution along the airfoil. The directivity patterns of the 4 airfoils are shown in
Figure 5-25. For the 3% airfoil case, the thickness has enhanced sound amplitude in
the forward and downward directions, while it has reduced the sound amplitude in
the normal direction. The varying mean flow has diffracted sound from the center
region towards the up and downstream directions. For the 6% airfoil case, there is
an amplification of sound in the downstream direction and an increase in the peak
sound pressure in the upstream direction. However, the angle of peak sound radiation
is different in this case than in the flat plate case. Evidently the mean flow has affected
the sound propagation direction such that in the 6% case the forward directivity pattern
is altered. This diffractive effect is even more dramatic for the 13% case. There are
large increases in sound amplitude of the 4 lobes, and there exists 2 new lobes in the
upstream direction.

The effect of thickness on the acoustic near field is illustrated in the constant pressure
contour plot for the 13% airfoil in Figure 5-26. Compare the plot with the 1% result of
Figure 5-17 on page 122. There are large gradients of pressure through out the domain

but particularly near the thick leading edge region.
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The diffraction of sound from the varying mean flow is also illustrated in the pres-
sure phase contour plots of Figures 5-27, 5-28, 5-29, and 5-30. The 3% case shows a
separation of leading and trailing edge regions. The 6% :.nd 13% cases also increase
the separation of sound radiation, but they also illustrate a complicated phase behavior
directly ahead of the airfoil indicating that the forward upstream direction is a region
of high diffraction. This is to be expected since the acoustic wavelength is significantly
shorter in the upstream direction and is, therefore, more sensitive to small changes in

flow gradients.

Conclusions

In this section we have investigated the effects of thickness on the radiated sound
field. When the gust is compact and the free stream Mach number is sufficiently small
such that the constraint in Equation 5.28 is satisfied, thickness has little effect on the
radiated sound field. The linear dipole model would suffice in these cases. However,
when the thickness is sufficiently large, the effect of thickness on a compact gust is to
tilt the acoustic radiation towards upstream direction.

When the gust is noncompact and the free stream Mach number is small, the mean
flow diffracts sound away from the center region towards the up and downstream di-
rections. At a higher Mach number the separation of source regions also occur, but in
addition, there exists a more complicated diffraction in the forward upstream direction.
The linear method is not effective for noncompact gusts even when given a moderately

thick airfoil and the constraint 5.28 is satisfied.
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Figure 5-25: Polar Plot of D, at the Far Field, My = 0.7, K = 3.0
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5.3.3 Angle of Attack

We now investigate the effects of small changes in the angle of attack on the radiated
sound field of an airfoil subject to a vortical gust. In linear theory, the airfoil at an angle
of attack is projected as an equivalent flat plate with zero incidence. Angle of attack,

therefore, decreases the actual chord length and its associated unsteady lift amplitude.

Compact Cases

A NACAO0012 airfoil is at My = 0.5 and at 3 different angles of attack. A compact
transverse gust of reduced frequency v = 1.0 and a compactness ratio of K = 2/3

impinges on the airfoil. The important parameters for the 3 angles are tabulated below:

Mo | Moz | v | K | a | [L] | Wa
Case1| 05| 0.62 | 1.0|2/3| 0 | 0.624 | 0.0300
Case2 | 0.5 | 0.75 | 1.0 | 2/3 | 3° | 0.616 | 0.0297
Case3 | 0.5 | 0.95 | 1.0 2/3 | 5° | 0.651 | 0.0330

Table 5.7: Parameters for My = 0.5, v = 1.0 Varying Angle of Attack Cases

W, is the radiated sound power and is computed by numerically integrating the
acoustic intensity around a closed loop. The acoustic power has been previously defined

in page 38 and is repeated here,
W = f I,-ndo (5.30)

where the overbar ~denotes a time-averaged quantity, and the acoustic intensity I, is

defined as,

/

L = (- + o) (pov + p'wa) (5.31)

and we have assumed an isentropic flow.
The perturbation velocity ' is, in general, composed of both vortical and acoustic

parts, and we must include just the acoustic portion in the integral of Equation 5.30 for
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sound power. The decomposition can be accomplished using the Helmholtz method as
described in Reference [57], but this usually entails a solution to the Poisson equation
over the numerical domain. We have chosen a less accurate, but a simpler splitting
method, one which becomes exact as r — o0o.

Recall from the earlier group velocity analysis in Section 5.3.2 that the direction
of energy propagation (and of acoustic velocity) is determined by the group velocity.
Recall also that as r — oo the acoustic waves locally appear planar. The acoustic
portion of velocity is thus computed such that the amplitude and phase is determined

as,

. p
Uy =
PoCo

and its direction is chosen to coincide with the group velocity vector. The approximation
is strictly valid only at » = oo, but in practice the planar assumption is accurate at much
smaller values of r. Figure 5-31 is a plot of radiated acoustic power versus distance along
the positive z-axis for the three angles. Note that the O-grid is not circular so that the
values on the horizontal axis do not coincide with actual radial distance. The airfoil is
the only sound source so we expect the plot to indicate a constant acoustic power for
all ». The figure shows that close to the surface the approximation is inaccurate, but
by r = 1.5 (only 1.5 chords away from the quarter—chord position) the power values
are essentially at the correct asymptotic values. The simple splitting method seems
adequate as long as the circuit integral is not performed too close to the surface.

Table 5.7 indicates that at 3° angle of attack there is a small decrease in the unsteady
lift amplitude and sound energy. This is as expected from the linear theory. However,
for the 5° angle of attack case, there is an increase in both the lift amplitude (+4 %) and
the associated sound energy (+10 %). This could only occur if there was an extraction
of energy from the mean flow to the acoustic perturbation.

Recall that energy can be transferred fromn the steady mean flow to the perturbation

flow through interactions between the mean velocity and the perturbation vorticity. The
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perturbation energy source term D, is repeated here,

Dg = poug - (€' x u') + p'u’ - (£ x uo) (5.32)

where ¢ is the vorticity vector. The second term above is zero in an inviscid 2-D flow,
but the first term may not be when the unsteady lift is nonzero and there maybe transfer
of energy through the wake into the vortical mode. Normally the acoustic and vortical
modes convect as if the other were not present, but they can easily be coupled by any
surface which bounds the flow [27]. A sharp trailing edge of the airfoil provides just
such a rigid body, and through the imposition of the Kutta condition there can be a
net increase in the acoustic energy when the vortical mode gains energy from the mean
flow.

Figure 5-32 shows the directivity patterns for the 3 angles. The azimuthal angle 6
here is rotated by —a such that the reference angle is with respect to the chord line of
the airfoil. As the angle of attack is increased, the sound radiation becomes amplified
in the zone 90° < 8 — a < 180° and is attenuated in the zone 0° > 8 — o > —90°.
Notice that the directivity patterns for both the 3° and 5° cases are the same in the
zone 0° > 6 — a > —180°, but the 5° case has significantly higher amplitude in the zone
0° < 0 — a < 180° than the 3° case. The 5° case must, therefore, have higher energy
content than the 3° case.

The effects of angle of attack is more clearly shown in the 3 amplitude contour
Figures 5-33, 5-34, and 5-35. The contour plots clearly indicate that as the angle of
attack is increased, the sound is amplified on the suction upstream area and is attenuated
in the lower downstream zone.

The effect of angle of attack on the phase of pressure is illustrated in Figure 5-36.
There is a rotation of phase in the counterclockwise direction. Notice also that there
is no jump in phase across the wake line. The acoustic pressure is non-zero along the

wake line, because the numerical case is no longer symmetric.
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Noncompact

Consider now 3 angle of attack cases for a NACA0012 airfoil subject to a noncompact

gust of K = 1.73. The important parameters are tabulated below:

My | Mpoz | v K | « |L| W,
Casel [ 05| 0.62 |3.0|1.73| 0 | 0.404 | 0.026
Case2 | 0.5 0.75 | 3.0 | 1.73 | 3° | 0.388 | 0.025
Case3 05| 095 | 3.0 1.73|5° ] 0.427 | 0.029

Table 5.8: Parameters for My = 0.5, » = 3.0 Varying Angle of Attack Cases

At 3° angle of attack there is a small decrease in the lift amplitude and sound energy.
But at 5° angle of attack, there is again an increase in both the lift amplitude (+6 %)
and the sound energy (+11 %). Apparently there was a transfer of energy from the
mean flow to the acoustic mode via the wake.

Figure 5-38 shows the far field directivity patterns for the 3 angles, and the Figures 5-
39, 5-40, and 5-41 show the contours of sound pressure in the domain. For the 3° case,
the angle of attack has amplified the sound pressure on the upper front lobe while it
has decreased both lobes on the lower side of the airfoil. This is similar to the events
of the compact case. For the 5° case, however, there is an increase in sound pressure
for both upper lobes of the airfoil and only the front lower lobe shows any decrease in
sound amplitude. There seems to be an overall increase in sound energy for the 5° case.

Figures 5-42 and 5-43 show the acoustic pressure phase contours for a = 0 and
a = 5° cases, respectively. In the a = 5° case the phase lines appear to be rotated in
the clockwise direction. This is in direct contrast to the compact case which, at an angle
of attack, rotated the phase lines in the counterclockwise fashion.

The leading edge suction effect, which assures that in an inviscid flow the total force
vector is purely in the lift direction, tends to rotate the phase in the counterclockwise
fashion. This is what we observed in Figure 5-36. Further away from the airfoil, however,
the mean bound vorticity on the airfoil rotates the pressure phase in the clockwise

direction. Figure 5-37 illustrates that, at an angle of attack, the bound mean vorticity
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Figure 5-37: Diffraction of Sound by a Bound Vortex

diffracts sound propagation in the clockwise fashion. Thus there are two competing
effects, one rotates the directivity in the counterclockwise direction and is dominant
close to the airfoil, and the other rotates the directivity in the clockwise direction and is
dominant further away from the airfoil. At a particular point in the domain either effect
may be dominant depending on the distance from the airfoil and the compactness of
the disturbance. The compact case has a much longer wavelength than the noncompact
case, and the leading edge suction effect is more dominant than the bound vortex effect

for the compact case at a fixed chord length from the airfoil.
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Note also that there is considerably more ‘warping’ of the phase lines for the 5° case
than for the no angle of attack case. There must be a higher level of diffraction in the
5° case. The phase lines are also closer together on the upper side of the airfoil for the
5° case, because the flow has a higher velocity on that side and the acoustic wavelength

must be correspondingly shorter there.
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Figure 5-38: Polar Plot of D, at the Far Field, My = 0.5, K = 1.7
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Figure 5-39: Amplitude Contour of Acoustic Pressure, My = 0.5, K = 1.7, a = 0°
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Figure 5-41: Amplitude Contour of Acoustic Pressure, My = 0.5, K = 1.7, a = 5°
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Figure 5-42: Phase Contour of Acoustic Pressure, My = 0.5, K = 1.7, a = 0°

Contour of Pressure Phase

12.3

Increment = x/2

-12.3 LIS S B | LU L L N L DL L A R AL . T
-70 =35 0.0 3.5 70 10.5 14.0 17.56 21.0 24.56 28.0
z

Figure 5-43: Phase Contour of Acoustic Pressure, My = 0.5, K = 1.7, a = 5°

148



Conclusions

We have seen that the effects of angle of attack on both the radiated sound directivity
and phase can be large, even for moderate angles and compact gusts.

For compact gusts the effect of small angles of attack is to rotate the directivity in the
counterclockwise fashion, while the overall sound energy decreases slightly. The linear
theory would also predict the slight reduction in sound energy levels, but it would not
account for the rotation of directivity. At larger angles of attack there is also a rotation
of directivity, but in addition there is an increase in overall sound pressure and energy
levels. The effect of angle of attack on a noncompact gust is similar to the compact
case except that at the far field the bound vortex rotates the directivity in the clockwise
fashion.

Evidently, the presently available linear theory would be applicable for an airfoil at

an angle of attack only if the angle is very small (<< 3°).

5.3.4 Thick Airfoils at an Angle of Attack

The previous two sections have demonstrated that the effects of thickness and angle
of attack on a vortical gust are to alter both the directivity and the overall noise levels in
the flow field. We have attempted to highlight these effects by examining the thickness
and lift problems as separate and distinct problems. However, in contrast with the
case of linearized steady flow, the effects of thickness and angle of attack cannot simply
be superposed. This is because the varying steady mean flow creates variations in
the wavelength of the incident vorticity wave while also causing variations in both the
amplitude and phase of its associated velocity field [28]. Such distortions of the incoming
gust impart a nonlinear character to the problem.

We thus suspect that given a very thick airfoil at moderate angle of attack, the
effects of thickness and angle of attack will be different from a simple summation of the
previously described results.

Consider a NACA0024 airfoil at 5.5° angle of attack. We have computed two separate
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cases, each of which corresponds with the compact and noncompact examples in the

previous section. The pertinent parameters are tabulated below:

Mo Mmac 14 K a IZI Wa
Casel | 0.5 1.0 [1.0] 2/3 | 5.5°| 0.700 | 0.040
Case2 | 0.5 1.0 |3.0(1.73] 5.5° | 0.430 | 0.030

Table 5.9: Parameters for My = 0.5, NACA0024 Airfoil Varying Reduced Frequency
Cases

For case 1 there is an increase in both lift amplitude (+11%) and in radiated acoustic
power (+33%) when compared with the zero incidence results. This is a much larger
increase than the 5° NACAQ012 case. Case 2 has a small incremental increase in lift
amplitude (+6.4%) and in sound power (+15%) as compared to the zero angle results.
Evidently the energy transfer process is a function of both the angle of attack and the
reduced frequency of disturbance.

Figure 5-44 shows the far field polar directivity for the first compact case. The
directivity of the previous compact angles have also been superimposed to allow a direct
comparison. The radiated sound is greater in almost all directions, and there is a larger
amplitude increase of the lower lobe than in the upper lobe. This is an unexpected
result and is in direct contrast to the 3° and 5° NACA0012 case which indicated larger
increases to the upper lobe. Because of the ‘leading edge suction’ effect, the pressure
amplitude is higher over the upper surface of the airfoil than the lower surface; which
in turn, usually creaies a far field amplification and tilting of the upper lobe at the
expense of the lower lobe. This is what we see in the 3° and 5° cases, but not in the
latest 5.5° case.

Figure 5-45 is a contour plot of constant acoustic pressure amplitude. Notice that
close to the airfoil we indeed have greater sound amplitude over the upper region than
the lower region, but also notice that further away from the airfoil, the lower upstream
region has higher sound amplitude than the comparable upper region. Apparently the
diffractive effect of the bound vortex is dominant at the far field even for a compact

disturbance when the airfoil is very thick.
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Figure 5-44: Polar Plot of D, at the Far Field, My = 0.5, K = 2/3

The constant pressure phase contours in Figure 5-46 indicate the similar near field
phase rotation as in Figure 5-36 on page 142, but the thicker airfoil indicates opposite
direction of rotation at the far field. Evidently the thicker airfoil has stronger bound
vortex influence. Note also that close to the surface, the latest result has a more
complicated phase structure due to complex mean flow-acoustic interactions created

by the thicker airfoil.
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Figure 5-47: Polar Plot of D,, at the Far Field, Mp = 0.5, K = 1.7

Figure 5-47 is the far field polar directivity for the noncompact 5.5° case. The
previous noncompact results have again been superimposed to allow a direct comparison.
The plot illustrates a large increase in sound in the forward upstream direction and a
smaller increase in the down stream direction. There is also an attenuation in the
normal direction. The mean flow has diffracted sound away from the center region
towards the up and down stream directions. This is similar to the result obtained from
the noncompact thickness study. But there is also a rotation of directivity which is
unexpectedly larger than the 5° case, and the result is different from what one would

expect from a superposition of thickness and angle of attack studies.
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Figure 5-43 shows the amplitude contour of acoustic pressure. Compare this figure
with Figure 5-41 on page 147. The pressure contours are considerably more complicated
in the thicker case, especially near the surface; there must be a higher level of diffraction
for the thicker airfoil. Notice also the increase in sound pressure in the lower region
upstream of the ai:foil.

The phase of acoustic pressure is shown in Figure 5-49. Compared to Figure 5-43,
there is more ‘warping’ of the constant phase lines in the 5.5° case. This too is an

indication of higher level of diffraction.
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Figure 5-48: Amplitude Contour of Acoustic Pressure, My = 0.5, NACA0024 Airfoil,

K =17 a=55°
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5.4 Summary

In the past chapter we have investigated the effects of Mach number, airfoil thickness
and angle of attack, and upstream compactness on the radiated sound of an airfoil
impressed with a vortical gust.

A compact source appears as a single dipole radiating in phase, and at a constant
Mach number, an increase in compactness ratio increases the retarded time differences
which appear as additional lobes in directivity.

Changes in thickness do not alter the amplitude of unsteady lift or the radiated
sound energy, but they do affect the directivity of sound when the compactness ratio
is large. Given a moderate Mach number, the effect of thickness on a compact gust
is small in terms of both the directivity and phase. For a noncompact gust, however,
thick airfoils direct sound away from the center region towards the up and downstream
directions. At a higher Mach number there also appears complex diffractive effects
in the upstream direction directly ahead of the airfoil. The presently available linear
theory is adequate for compact gusts only if the thickness is not very large (i.e. within
the constraint of Equation 5.28), and is inadequate for noncompact cases.

For a compact source at small angles of attack, the directivity is rotated in the
counterclockwise direction, and the amplitude of lift and the radiated sound energy de-
creases. At higher angles, the directivity is also similarly rotated. but in addition, there
is also an extraction of energy from the mean flow which creates higher sound pressure
levels at the far field. The effect of angle of attack on a noncompact source is similar
except that the rotation of directivity at the far field is in the clockwise direction. It is
believed that the mean bound vortex and its associated clockwise rotational flow alter
the sound propagation direction in the clockwise sense. The linear theory is applicable
only if the angle of attack is very small.

Unlike linear steady flow analysis, an airfoil at an angle of attack cannot be decom-
posed into a separate thickness and an angle of attack problem. Thus given a thick

airfoil at a critical angle of attack, the noise level can easily be far higher than the
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angle of attack alone would predict, and there may exist an unexpectedly complicated

directivity structure.
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Chapter 6

Sound Radiation from Oscillating Bodies

An oscillating body will generate propagating pressure disturbances, and if the fre-
quency of oscillation is within the audible range, we perceive such disturbances as sound.
This, in fact, is the basis of classical acoustics — sound generation from unsteady motion
of bodies in still media.

In aeronautical applications an airfoil in unsteady motion, say flutter, can also create
a similar sound radiation. However, if the airfoil is also convecting the propagating
pressure wave can interact with the underlying mean flow, and such interactions may

create unexpectedly complicated sound fields.

6.1 Oscillating Circular Cylinder

We begin the study of sound radiation from oscillating bodies by first considering an
example from classical acoustics. Consider a circular cylinder in a quiescent field which
oscillates in the z direction with an amplitude of 1 and a frequency of w as shown in
Figure 6-1.

The surface boundary conditions are that the local normal fluid velocity and the
cylinder velocity are the same. In mathematical terins the boundary condition can be

expressed as,

i ng = —iwk-ng (6.1)
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Figure 6-1: Oscillating Circular Cylinder

where,

e 1}
I
-

ng and i are the surface unit normal vector and the unit vector in the +z direction,

respectively.

At the far field we have implemented the specialized no-flow version of the Giles’

boundary condition as described in Section 3.2.3 on page 62.
The runtime parameters were as follows:
e Grid: 129 x 100
o w: 7434 (A =1)
o vg: 0.01
e vg: 0.001

e Far-field: 1
o Iters: 800

Lg(&ﬁ). 4.3x 1074
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w = 7.434 corresponds to an acoustic wavelength of 1 and so the domain contains exactly
1 wavelength in all directions. The computation required 800 iterations for almost 4
orders of magnitude convergence.
The exact analytic solution is provided in Reference [19] and it is,
- wegcosd )y
p = m—
Hgl)"(i) 0 ( o

2¢co

wr

) (6.2)

where r = \/z% + y? and 6 is measured counterclockwise sense from the +z axis.
Figures 6-2 and 6-4 show the amplitude and phase of the computed acoustic pressure,
and Figures 6-3 and 6-5 show the amplitude and phase of the exact acoustic pressure.
High accuracy in both the amplitude and the phase is evident in the entire domain.
Figures 6-6 and 6-7 show the absolute error of the R(p) and the $(p). The largest
absolute errors of approximately 0.03 for the real part and of approximately 0.04 for
the imaginary part are at the far field. The average Ly(A|p|) was 1.2714 x 1078, the
average Lo(AR(p)) was 1.0638 x 10~°, and the average L,(AS(p)) was 1.9656 x 1075,
In no flow situations, the combination of current numerical scheme and the special-

ized far field boundary conditions produce highly accurate results.
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6.2 Oscillating Airfoil in a Steady Flow

We will now investigate the sound generation and propagation from an isolated,
oscillating airfoil in a variety of mean flows. We seek to understand the influence
of Mach number, angle of attack, thickness, and the frequency of oscillation on the
radiated sound field.

Consider an oscillating airfoil in otherwise a steady flow of My as shown in Figure 6.2.

We assume that the oscillation is purely in the transverse y direction, and that the

-
N

Figure 6-8: Sound Radiation from an Oscillating Airfoil

amplitude of oscillation is sufficiently small such that the complete flow can be thought
of as a superposition of linear unsteady perturbation upon a steady mean flow. Then
without any loss of generality, we can also assume that the airfoil oscillates with a single
frequency w.

The wall boundary conditions are that the total normal velocity with respect to
the airfoil is zero, and since the surface is moving, the boundary condition is as in
Equation 3.4,

i-ng = -uyg-n—-=%-V(ug-ng)—iwf-ng (6.3)
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where,

e {]
Il
Qe

and i = 0 since the airfoil does not rotate. All the terms on the right hand side
are functions of the steady mean solution and are known quantities. However, the
second term involves the gradient of the normal mean velocity and must be computed
numerically. At the wall the differencing must be of first order backward type in the
normal direction, and it is thus important to maintain high grid densities near the surface
so that the numerical solver remains second order accurate in the normal direction. This
is particularly critical at the leading and trailing edges where the velocity gradients may
be large.

A transversely oscillating airfoil is similar to an airfoil subject to a sinusoidal ‘gust’ of
the previous chapter. In fact for a flat plate and k¥ — oo, i.e. infinite wavelength, the two
problems become identical. Thus we can use the incompressible gust validation case of
the previous chapter as a check to ensure that the current surface boundary conditions
are correctly enforced. The parameters for an oscillating fla. plate (NACAO0001 airfoil)
in incompressible (Mp = 0.1) are tabulated below. Notice that the parameters are
identical to the incompressible gust case of Chapter 5 except that here all the values

need to be scaled by the far.or —iw.
e w: 0.01
e Iterations: 8500
e v4: 0.01
o vg: 0.001

Ly(6p): 3.8 x 1074

The computed total lift is || = 3.455 x 10~3 and arg(f,) = —88.0°, and the analytic
solution is |L| = 3.448 x 10~2 and arg(L) = —82.7°. There is approximately 0.2% error
in amplitude and 5.3° error in phase. It appears that the surface boundary condition is
correctly enforced.

In Chapter 5 we conducted several rigorous validation cases to ensure that the

numerical scheme is accurate and consistent throughout the domain. We therefore are
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confident that since the surface boundary condition seems to be accurately specified,
the numerical scheme must be accurate and consistent throughout the domain for the

current oscillating airfoil study as well.

6.2.1 Thickness

Consider now the effects of thickness on an oscillating airfoil. The currently available
linear theory is again based upon the convective wave equation, and the aerodynamic
analysis is as presented in Section 5.1 on page 99. The thickness does not have any
effect on the unsteady solution, and, furthermore, we expect the radiation pattern to

be a function of the compactness ratio K, where again K is defined as,

VMo

KZ-Ez—

and v is the reduced frequency based on 1/2 chord length.

Compact Case

Let us first consider a compact case in which K is 1.0. We have computed 2 com-
parison studies for a NACA0001 and a NACAO0013 airfoils in which the angle of attack
is zero, and we have used a grid of 200x100 node points for both computations. Other

pertinent parameters are as tabulated below:

I‘JO Mmaz v K T |L| Wa
Casel | 0.7 0.71 [0.729 (1.0 1% | 2.18 | 0.46
Case 2 1 0.7} 0.98 | 0.729 | 1.0 13% | 5.68 | 4.50

Table 6.1: Parameters for My = 0.7, NACA0001 and NACAO0013 airfoils in compact
oscillation

In the previous chapter, we showed that the radiated acoustic energy from an airfoil
subject to a vortical gust was only a weak function of the thickness of the airfoil. The
thickness merely modified the direction of travel and had little effect on the overall

integrated noise level.
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The sound radiation due to an oscillating airfoil is, however, a direct function of
the thickness. The 13% airfoil has significantly higher total lift (x2.6) and the radiated
sound power (x9.8). The increased sound energy is graphically illustrated in the polar
plot of far field directivity D, shown in Figure 6-9. The sound amplitude is much higher
for the 13% case in all directions, and, in addition, the sound pressure lobes indicate a

direct ‘tilt’ towards the upstream direction for the 13% case.
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Figure 6-9: Polar Plot of D, at the Far Field, My = 0.7, I = 1.0

Recall that the surface boundary conditions for the gust problem is strictly a function
of the incident vortical gust and is independent of the mean flow or the thickness. Thus
the radiated sound energy is only weakly dependent on the thickness. The radiated
sound energy in the oscillating airfoil case, however, is a strong function of the thickness,
because the source distribution is a function of the mean flow gradient. Consider the
surface boundary conditions of Equation 6.3. A large mean velocity gradient in the

normal direction at a point translates directly to a large source strength at that point.
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Thus a thick airfoil which has large mean flow gradients has strong source strengths
along the airfoil.

Figures 6-10 and 6-11 show the contours of acoustic pressure amplitude in the do-
main. The 13% airfoil shows increased sound amplitude and a forward tilt in the
directivity. Figures 6-12 and 6-13 show the contours of acoustic pressure phase in the
domain. The constant phase contour lines for the two plots are virtually identical.
Evidently the current long wavelength oscillation does not exhibit much diffraction for

either thickness cases.
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Figure 6-10: Amplitude of Acoustic Pressure, My = 0.7, K = 1.0, 7 = 1%

Contour of Pressure Amplitude

4.00
1 0.0000
7 2 0.5000
2.86 3 1.0000
4 1.5000
] 5 2.0000
1.711 6 2.5000
. 7 3.0000
8 3.5000
3-57— 9 4.0000
i A W 10 4.5000
11 5.0000
—~0.57-
-1.714
—2.86
—4,00

T T T YT T
-4.00 -2.86 -1.71 -0.57 0.57 1.71 2.86 4.00
x

Figure 6-11: Amplitude of Acoustic Pressure, My = 0.7, K = 1.0, 7 = 13%
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Noncompact Case

A 1% and a 13% NACAOQO airfoils are oscillating such that the compactness ratio
K is 3. A grid of 270x120 was used for both airfoils and the far field was chosen such
that the domain contained approximately 4.5 wavelengths in all directions. The key

parameters are tabulated below:

My | Mpor v K T L] | W,
Casel | 0.7 | 0.71 | 2.186|3.0| 1% | 7.88 | 11.9
Case2 | 0.7 | 0.98 | 2.186 | 3.0 | 13% | 9.16 | 18.0

Table 6.2: Parameters for My = 0.7, NACA0001 and NACA0013 airfoils in noncompact
oscillation

The 13% airfoil again has a higher lift (+16%) and sound power (+51%) than the
1% airfoil. The large mean flow gradient has increased the surface source strength.

Figure 6-14 is the polar plot of far field directivity. The sound pressure level is
generally higher in all directions for the 13% airfoil, but it is particularly higher in the
up and downstream directions. There also appears two additional lobes in the forward
upstream direction. Compare the figure with the similar polar plot from the gust case
in Figure 5-22 on page 130. The directivity patterns of the two figures are very similar
since the mean flows are the same in the two cases.

Figures 6-15 and 6-16 show the constant acoustic pressure contours for the two
thickness cases. The 13% case exhibits large pressure gradients through nut the domain,
particularly near the thick leading edge region. This is as expected since the mean flow
gradients are also the greatest in the leading edge region.

The diffraction of sound from the varying mean flow is also illustrated in the pressure
phase contour plots of Figures 6-17 and 6-18. Both airfoils exhibit some warping of the
contour lines which shows that the airfoils are composed of sources ‘firing’ out of phase.
The 13% airfoil also illustrates a complicated phase behavior directly ahead of the
airfoil indicating that the forward upstream direction is a region of high diffraction.

The acoustic wavelength is much shorter in the upstream direction and is, therefore,

171



e 1%
T o 13%

—5.0

-7.0 T T T T L{ L) T T T T T T 4

-~7.0 -56.0 -3.0 -1.0

Figure 6-14: Polar Plot of D, at the Far Field, My = 0.7, K = 3.0

more sensitive to small changes in the flow gradients.

Conclusions

In the current section we have investigated the effects of thickness on the radiated
sound field from an oscillating airfoil. When the oscillating frequency is sufficiently
low such that the associated compactness ratio K is 1 or less, the thickness increases
the integrated radiated sound energy. This amplification of sound is believed to be the
result of an increase in the source specification along the airfoil caused by the gradients
in the flow field. The directivity is also slightly altered such that the sound field has a
slight tilt towards the upstream direction.

When the oscillating frequency is high and the airfoil is no longer a compact source of
sound, the thickness still increases the integrated radiated sound energy, but, in addition,

the diffractive effect of the varying mean flow amplifies sound in the upstream and
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downstream directions and generally increases the complexity of the sound propagation
patterns in the forward direction.

The currently available linear theory is unable to incorporate the diffractive effect
of the varying mean flow or the increase in the overall sound pressure levels from the
thickness. Consequently the linear method would only be applicable if both the thickness
of the airfoil and the frequency of oscillation are quite small. We suspect that the
constraint of Equation 5.28 is probably sufficient for the compact case, as was in the
gust problem, but because of the diffractive effect of the mean flow, the constraint is

probably insufficient in the noncompact case.
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Figure 6-15: Amplitude of Acoustic Pressure, My = 0.7, K = 3.0, 7 = 1%
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Figure 6-16: Amplitude of Acoustic Pressure, My = 0.7, K = 3.0, 7 = 13%
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Figure 6-18: Phase of Acoustic Pressure, Mp = 0.7, K = 3.0, 7 = 13%
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6.2.2 Angle of Attack

The effect of angle of attack on the radiated sound of an oscillating airfoil will now
be studied. The linear theory based on the convective wave equation considers an airfoil
at an angle of attack as an equivalent projected airfoil at zero incidence. Thus according
to the linear theory, angle of attack should slightly decrease the amplitude of unsteady

lift and the associated acoustic energy.

Compact Case

A thick NACA0024 airfoil is oscillating at a reduced frequency of v = 1 at 0 and 5.5°
angles of attack. The computational domain contains 200x100 node points and the far
field is approximately at 4 wavelengths away in all directions. The pertinent parameters

are tabulated below:

MO Mmaz 4 K a Iil Wﬂ
Casel [ 0.5 | 0.74 | 1.0 { 2/3 0 4.53 | 1.71
Case2 | 0.5 1.00 [1.0|2/3|5.5°| 4.58 | 1.78

Table 6.3: Parameters for My = 0.5, NACA0024 airfoils at « = 0 and a = 5.5° in
compact oscillation

There is a small increase in both the amplitude of lift (+1%) and the radiated sound
power (+4%) for the a = 5.5° case. Evidently the radi.ted sound energy is only weakly
dependent on the angle of attack for the current case.

Figures 6-20 and 6-21 show the contours of acoustic pressure amplitude in the do-
main. Near the airfoil the a = 5.5° case indicates higher sound pressure levels in the
upper region than the lower region, but away from the airfoil the lower region has sig-
nificantly higher sound amplitudes. Close to the airfoil the leading edge suction effect
creates higher sound amplitudes for the upper region. Further away, however, the mean
bound vorticity tends to direct sound towards the leading edge in the lower zone and
towards the trailing edge in the upper zone, and thus sound amplitude levels are higher

in the lower than in the upper region at the far field. Figure 6-19 clearly illustrates this
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Figure 6-19: Polar Plot of D, at the Far Field, NACA0024 airfoil, My = 0.5, K = 2/3

mean flow diffraction effect. The lower lobe is amplified at the expense of the upper

lobe for the 5.5° angle of attack airfoil.

Figures 6-22 and 6-23 show the contours of acoustic pressure phase for the two angles

of attack cases. Note the rotation of phase lines in the clockwise direction for the 5.5°

case; this is an indication of diffraction of sound towards the lower leading edge and the

upper trailing edge regions.
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Figure 6-20: Amplitude of Acoustic Pressure NACA0024 airfoil, My = 0.5, K = 2/3,
a=0
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Figure 6-21: Amplitude of Acoustic Pressure NACA0024 airfoil, My = 0.5, K = 2/3,
a = 5.5°

178



Contour of Pressure Phase

Increment = x/2

—4.04

-12.04

—20.0

-

—-28.0 | Ll ¥ T ) ) 1) J | ] v ) ¥ v L) ) ] 14 )
—-20.0 -12.0 —4.0 4.0 120 20.0 280 36.0 440 520 60.0
z

Figure 6-22: Phase of Acoustic Pressure NACA0024 airfoil, My = 0.5, K = 2/3,a =0
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Figure 6-23: Phase of Acoustic Pressure NACA0024 airfoil, My = 0.5, K = 2/3,
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Noncompact Case

Consider an oscillating NACA0024 airfoil in a free stream of My = 0.5 with angles of
attack of a = 0 and a = 5.5°. The numerical domain contains 270x120 node points and
approximately 4 wavelengths in all directions. The pertinent parameters are tabulated

below:

My [ Mpoo | v | K | « | |L] | Wa |
Case1 [ 05| 0.74 [3.0[1.73] 0 [7.02][11.1 |
Case2 | 0.5] 1.00 [3.0[1.73]5.5° [ 7.64 | 12.6 ||

Table 6.4: Parameters for My = 0.5, NACA0024 airfoils at a = 0 and a = 5.5° in
noncompact oscillation

There is a larger increase in both the amplitude of lift (+8.8%) and the radiated
acoustic power (+13.5%) as compared to the compact case. Apparently there is a larger
amount of trausferred radiated sound energy from the mean flow when the compactness
ratio is higher.

Figures 6-25 and 6-26 show the contours of acoustic pressure amplitude in the do-
main. Near the airfoil the a = 5.5° case has higher pressure levels on the upper surface
than the lower surface; this is an indication of the leading edge suction effcct. Further
away from the airfoil the sound amplitude is higher in the lower region than the upper
region, and this is an indication of diffraction by the mean bound vortex.

The diffractive effect of the bound vortex is also evident in the far field polar direc-
tivity plot of Figure 6-24. At 5.5° angle of attack there is a significant increase in the
lower lobe, and there also appears an additional lobe towards the upstream direction.

Figures 6-27 and 6-28 show the contours of acoustic pressure for the two angles of
attack cases. Away from the airfoil, the 5.5° case indicates a rotation of phase lines in
the clockwise direction. In addition there are many regions of warped phase lines for
both figures but particularly for the nonzero angle case; the warping of the phase lines

is an indication of gradients in propagation direction, i.e. diffraction.
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Figure 6-24: Polar Plot of D, at the Far Field, NACA0024 airfoil, Mp = 0.5, K = 1.7

Conclusions

In the current section we have investigated the effects of angle of attack on the
radiated sound field of an oscillating airfoil.

When the frequency of disturbance is compact, the angle of attack modifies the sound
propagation direction such that near the airfoil the leading edge on the upper ‘suction’
side of the airfoil is amplified, while in the far field the upstream lower ‘pressure’ side of
the airfoil is amplified. The effects are purely diffractive, and the total radiated sound
energy does not seem to be strongly influenced by the angle of attack.

Given a noncompact source of disturbance, the angle of attack similarly changes
sound directivity in both the near and the far field, but in addition, there appears a
new upstream directed sound lobe at the far field. The total radiated sound energy

increases moderately when there is a mean lift.
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6.3 Summary

A preliminary study on the effects of the thickness and the angle of attack on an
oscillating airfoil has been conducted. While we have not conducted enough case studies
to conclude general trends, some early indications of the geometric influences have been
formulated.

A thick symmetric airfoil at a zero incidence angle in a compact oscillation (K <1)
has a significantly higher acoustic energy level than a flat plate case. The symmetry
of the problem precludes the mean flow energy transfer through the wake, and instead,
the energy cascade is direct and immediate from the mean flow to the acoustic mode
via interactions of the mean flow gradients and the oscillating airfoil. A large mean flow
variations in the surface normal direction corresponds to large surface source strengths.
The diffractive effect from the thickness is small for the long wavelength case, but there
is a distinct upstream tilting of the directivity lobes due to the thick leading edge.

The same airfoil in a noncompact oscillation (K > 1) also has higher energy levels
than a flat plate though to a lesser degree. The diffraction of sound due to the thickness is
much more pronounced for the short wavelength case such that there is an amplification
of sound in the zone 90° < 6 < 270°, and moreover, in the directivity plot additional
lobes appear in the forward upstream direction.

The linear theory based upon the convective wave equation does not incorporate the
diffractive effect of the varying mean flow or the increase in the overall sound energy
levels from the thickness. Thus the linear method would only be applicable if both the
thickness of the airfoil and the frequency of the oscillation are small. As was in the
previous chapter’s gust case, the constraint of Equation 5.28 is expected to be sufficient
for the compact case, but because of the diffractive effect of the mean flow, the constraint
is probably insufficient in the noncompact case.

A thick symmetric airfoil at an angle of attack in a cornpact oscillation has only
slightly higher energy levels when compared to the same airfoil at zero incidence. Ap-

parently the energy transfer from the vortical wake is insignificant when compared to
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the direct energy transfer through the thickness contributions. The diffraction of sound
from the leading edge suction and the bound vortex effects create a sound field at the
far field which has amplified sound pressure levels in the lower 180° < 6 < 270° zone.

The same airfoil in a noncompact oscillation has moderately higher energy levels
than the same airfoil at zero incidence. The diffraction of sound from the mean bound
vortex dominates at the far field, and there appears amplified pressure levels in the
upstream direction.

The linear theory based upon the convective wave equation is unable to predict the
diffraction of sound from both the leading edge suction and the bound vortex contribu-

tions, and therefore, is ineffective for thick airfoils at an angle of attack.
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Chapter 7

Scattering of Sound

A traveling sound wave which encounters a solid body will be scattered by that ob-
ject, and the scattered sound could, in turn, interact with the incident wave to create a
cornplicated sound field composed of ‘shadow’ and ‘illuminated’ zones. In aeonautical
applications, the scattering could be further complicated by the influence of the varying
mean flow #nd the imposition of the Kutta condition. Past studies [35, 62] have sug-
gested that the integrated scattered sound energy is strongly influenced by the unsteady
lift, and that the overall noise level heard at the far field is a function the Mach number,
the frequency, and the angle of the incident wave.

In this chapter, we will discuss some important aspects of the scattering phenomena,
particularly as it pertains to external aerodynamic situations. We seek to understand
the effects of flow and wave parameters such as the the Mach number, the angle of
attack, and the frequency of the incident wave on the scattered sound field.

We will begin the analysis with a validation test case from classical acoustics.

7.1 Scattering Sound by a Circular Cylinder

Scattering of plane waves by a circular cylinder was computed as a good test case
since there exists an analytic solution to the problem [50]. The incident plane waves
were of the form,

p: - el’(kz—wt) (7.1)
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Figure 7-1: Plane Sound Wave Scattering by a Circular Cylinder

The wall boundary conditions are that the total normal velocity on the airfoil is

zero, and since the surface is stationary the boundary condition is as in Equation 3.6,
fl, ‘Nng = —-fl,' B ¢ 1] (7.2)

where W; is the given incident perturbation velocity and can be computed as,

. _ Pik,

i =
Pow

and i is the unit vector in the streamwise +z direction.
The run time parameters were as follows:
o Grid: 256 x 90
o w: 22.302 (A = )
e vy 0.01
e vg: 0.001
e Far field: %
o Iters: 500
Ly(6p): 2.0 x 1075
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w = 22.302 corresponds to a wavelength of 1/3 diameter, and the domain contains 1
wavelength in all directions.

Figures 7-2 and 7-4 show the amplitude and phase of the computed scattered pres-
sure, and Figures 7-3 and 7-5 show the amplitude and phase of the exact scattered
pressure. Each set of figures shows contours which are very close to one another, and
the computed solution is quite accurate.

Figures 7-6 and 7-7 show the absolute error in the real and imaginary parts of the
scattered pressure, respectively. The largest absolute error of approximately 0.04 is
found at the far field for both parts. The average L,(A|p,|) was 3.822 x 1075, the
average Lo(AR(p,)) was 5.182 x 1075, and the average L,(AS(p,)) was 5.752 x 1075,
As was in the oscillating cylinder case, the present numerical scheme is quite accurate

when there is no flow. The run required 24.2 minutes of cpu time on a Convex Cl1.
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7.2 Scattering of Sound by an Airfoil in a Steady Flow

With an assurance that the surface boundary conditions are correctly enforced we
now proceed with the aeronautical application at hand. Consider an airfoil at an angle

of attack « in a steady mean flow of My which encounters a plane sound wave of the

form,
P: — ei(kz-ut) (7.3)
where,
[ —
co(1 + Mo)
MO
e e
' —_—
I o
p-e i(kx - wt)

Figure 7-8: Scattering of Sound by an Airfoil in a Steady Flow

The wall boundary conditions are identical to the circular cylinder test case, except
that the incident perturbation velocity now has a longer wavelength due to the Doppler

effect,
- pik .
= ——i,
" po(w — uok)

7.2.1 Effects of Mach Number

We seek to understand the effects of changes in Mach number on the scattering of
plane sound waves. We have computed the scattered field for two identical airfoils at

zero angles of attack in uniform flows of My = 0.3 and My = 0.7. The frequencies of
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the disturbance waves were such that the compactness K remained the same in the
two computations. It is important that K, and not the reduced frequency v, remain
constant so that in the transformed Prandtl-Glauert space the two cases would have an
identical Helmholtz number and thus the same scattering patterns.

The key parameters for the two Mach number cases are tabulated below:

My | M.z v K T |L|
Case 1| 03| 036 | 3.665] 1.2 12% | 0.0
Case2{ 0.7 0.92 (0870 1.2} 12% | 0.0

Table 7.1: Parameters for K = 1.2 Varying Mach Number Case

The angles of attack for both cases were zero, and there is no unsteady lift. This is a
thickness problem only, and the airfoil can be represented as a distribution of monopoles.

The two reduced frequencies v translate to a compactness K of 1.2 and so the present
cases are slightly noncompact. The maximum wavelengths in the downstream direction
are 3.7 for the My = 0.3 case and 8.7 for the My = 0.7 case.

For both cases the numerical domains were chosen so as to guarantee a circular
domain in the transformed Prandtl-Glauert space, and there were approximately 10
chord lengths along the up and downstream directions.

Since the thickness of the airfoil was only 3% and 1% of the incident wavelengths, the
scattering effects were expected to be small. Figures 7-10 and 7-11 show the amplitudes
of the scattered pressure p,. The figures indicate that the ieading edge was responsible
for most of the scattered sound, which is as expected since the incident wave is traveling
strictly in the +2 direction. When compared to the My = 0.3 case, the My = 0.7 case
has a significantly higher scattered amplitude even though the leading edge radius is a
smaller fraction of the incident wavelength.

Figure 7-12 is a polar plot of scattered directivity D, at the far field. Notice that for
both Mach numbers, the scattered field is almost complztely in the forward direction,
and also notice that the My = 0.7 case has a much higher noise level than the My = 0.3

case. In the My = 0.3 case the leading edge emulates a compact scattered radiating
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sound equally in all directions, but in the My = 0.7 case there appears four new lobes
in the upstream direction. This is an indication that the higher Mach number case
is more sensitive to the noncompactness and the thickness. Evidently as the Mach
number increases the overall noise level increases, and at the same time, the scattered
field becomes more sensitive to the compactness ratio of the disturbance.

Figure 7-13 shows the phase of the scattered pressure for the My = 0.3 case. The
contours are spaced closer together in the upwind direction than in the downwind di-
rection indicating a shorter wavelength upwind. The complexity of the phase structure
close to the airfoil illustrates the diffractive effect of the accelerating fluid. The ‘benas’
in the contour lines at about +45° illustrate that at moderate distances the airfoil be-
haves as two monopoles located at each of the leading and trailing edges. Evidently the
airfoil is not very compact with respect to the incoming wavelength.

Figures 7-14 and 7-15 show the amplitude contours of the scattered acoustic pressure
plus the incident acouvstic pressure, i.e. the complete acoustic pressure, for both Mach
number cases. Note that the incident pressure amplitude is 1. In the My = 0.3 case,
there appears in the region directly ahead of the airfoil interference fringes from the
interaction of the incident wave with the scattered wave; still because of the low scattered
amplitudes, the pressure field is composed almost entirely of the incident field except at
the leading edge region. In the My = 0.7 case, there also appears interference fringes in
the upstream region, but here the magnitudes of the fringes are much higher. For both
Mach numbers, the downstream region is composed almost exclusively of the incident
wave only. This is as expected since there was little scattered sound in the downstream
direction.

Comparison cases of My = 0 were computed for both Mach numbers to illustrate the
diffractive effects of a varying flow field. The two previous chapters illustrated that local
velocity gradients change the propagation direction of sound, and ti.e same diffractive
phenomena must be true here as well. The parameters for the comparison cases were

chosen so that the computed values would transform to uniform flow values using simple
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mapping functions.
In a uniform flow the pressure perturbation p'(z, y, t) is represented by a convective

form of the wave equation,

Pee + 2uopy, — (c§ — u3)pl, — cipl, =0 (7.4)

e — . T

(ey.t) €.y.»

Figure 7-9: Unsteady Prandtl-Glauert Mapping

The above equation can be transformed into the standard wave equation by using

the following ‘unsteady Prandtl-Glauert’ mapping variables [11],

_z _ Myz
€= 7 =P+

where 8 = /1 — M. In (£,y,7) space the equation for p’ bacomes,
Prr — €o(Pee + Piy) = 0. (7.5)
and in the frequency domain,
K*p+ pee + Py = 0 (7.6)

where p'(£,y,7) = R(p(£, y)e™" ).
The complex amplitude p(§, y) is related to p(z,y) by the relation,

A& y) = B(=,y) exp(%—f—%&;i) = p(z,y) exp(i%MoK:c).

The comparison My = 0 cases were computed in appropriate (£,y) spaces. The
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pressure values were then mapped to (z,y) spaces of uniform Mg = 0.3 and M, = 0.7
flows (Figure 7-9). The transformed values were, in turn, subtracted from the original
Mj = 0.3 and My = 0.7 computed solutions. The differences, Ap, are a measure of the
diffraction in a varying flow field. In regions where there are no flow gradients Ap will
be smali, and thus a large Ap indicates high diffraction. Figures 7-16 and 7-17 show
the amplitude contours of Ap.

For the M = 0.3 case, the difference is small everywhere except in the vicinity of
the leading edge of the airfoil. The leading edge region close to the airfoil is a region of
high mean velocity gradients and of high diffraction. In the absence of mean flow the
characteristic wavelength of the scattered wave at the leading edge will scale with the
radius of curvature of the leading edge. The mean flow gradients will also scale with
the radius of curvature, and hence a complex interaction between the scattered wave,
the incident wave and the mean flow can occur at the leading edge.

For the Mo = 0.7 case, the diffraction region is not limited to the immediate vicinity
of the leading edge but encompasses almost the entire upstream region. In fact, the
Ap plot of Figure 7-17 is nearly identical to the scattered pressure amplitude plot
of Figure 7-11. The transformed solution and the computed solutions have identical
incident waves; but the scattered amplitude for the My = 0.7 case is substantially
higher, and the difference plot essentially indicates only the My = 0.7 scattered pressure.
Evidently the scattered amplitude is a strong function of the Mach number such that
as the Mach number increases the scattered amplitude increases.

Section 5.3.2 on page 124 showed that the linear assumption is valid and that the

convective wave equation can be used when,
2/3
Il - Mol >T / .

In the My = 0.3 case, the NACAO0012 airfoil subject to a K = 1.2 pressure wave
is sufficiently thin such that, in the far field, the sound pressure levels are nearly as

expected by the linear theory. In the My = 0.7 case, however, the airfoil does not satisfy
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the above criteria and the computed solution differs from the linear theory throughout

most of the domain.
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Figure 7-17: Amplitude Contour of Ap, My = 0.7, K = 1.2
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7.2.2 Effects of Angle of Attack

The diffraction and energy characteristics of plane acoustic waves scattered by an
airfoil at an angle of attack have been studied. The enforcement of the Kutta condition
creates an unsteady circulation about the airfoil and a vorticity sheet downstream of
the trailing edge.

A NACAO0012 airfoil is in a steady My = 0.3 flow at angles of attack of 2° and 11°.

A plane acoustic wave of the form,
p: — ei(k::—ut) (77)

impinges on the airfoil. The key parameters for the two cases are tabulated below:

MO Mmaz v K a ILl W‘
Case1 | 0.3 | 0.40 [ 3.7]1.2] 2° | 0.0945 | 0.018
Case 2| 0.3 | 1.00 |3.7|1.2] 11° | 0.5103 | 0.240

Table 7.2: Parameters for My = 0.3, K = 1.2 Varying Angle of Attack Cases

The two computed solutions have finite lift amplitudes, and the source distributions
along the airfoil contain both monopoles and dipoles. W, in Table 7.2 is the radiated
acoustic power for the scattered portion of the solution only. The a = 11° case has
substantially higher scattered acoustic lift (x5.4) and scattered acoustic power (x13.3).

The domains and the grids are unchanged from the previous case except for the
rotation of the airfoil, and thus we expect similar resolution characteristics.

Figures 7-18 and 7-19 show the computed amplitudes of the scattered pressure p,.
Note the differences between the current cases and the corresponding values from the
previous no lift set. In the a = 2° case, the scattered values have higher amplitudes
since at an angl. of attack, the airfoil has a higher effective cross-section imposing
on the incoming acoustic wave, and the directivity pattern is asymmetric due to the
acceleration of the fluid on the suction surface. In the a = 11° case, the scattered

amplitudes are even higher, and the scattered directivity show strong diffraction effects
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from the mean velocity gradients.

The effects of a varying mean flow on the scattered directivity of sound is illustrated
in the polar plot of directivity in Figure 7-20. The figure includes the directivity of the
two angles plus the previous zero incidence result for comparison. The zero incidence and
the a = 2° results indicate a compact scattering pattern in the upstream direction, and
the a = 2° case bas a noncomnpact scattering in the downstream direction. The latter
multi-lobe scattering pattern is due to the sharp trailing edge, and in fact, Reference [50]
shows that when a plane sound wave is diffracted by a sharp edge, the scattered sound

will have terms which vary in the azimuthal direction as,

etkr cos@

where k£ = w/co. The trailing edge scattering is even more apparent in the a == 11°
solution. Here the directivity pattern is noncompact even in the upstream direction,
and the sound amplitudes in the downstream direction are significantly higher than in
the upstrcam direction. It seems that for the 11° case the scattered field is dominated
by the features due to the sharp trailing edge. This is in direct contrast to the zero
incidence and 2° cases which have scattering patterns mostly influenced by the thick
leading edge. The rotation of sound directivity in the counterclockwise direction due to
the leading edge suction is also illustrated in the a = 11° solution.

Figures 7-22 and 7-23 show the computed phase of the scattered pressure. The a =
2° case indicates a complex phase structure near the airfoil and the shorter wavelength
in the upwind direction. In addition, in the region —90° < 8 < 90° there is much
‘warping’ of the phase lines, which indicates that the sound scattered by the trailing
edge is noncompact and is sensitive to diffraction by mean flow gradients. The warping
is even more evident in the a = 11° case. The diffraction of sound is clearly implied in
all directions including in the upstream sense.

Figures 7-24 and 7-25 show the amplitude contours of the scattered plus the incide‘nt

pressure. Compare the figures with the corresponding figure on page 200. The a = 2°
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figure is similar to the zero incidence case. The region ahead of the airfoil still exhibits
the interference fringes from the interaction of the incident wave with the scattered wave,
but in the @ = 2° solution the _ringes are of higher amplitude and are asymmetric. Also
note the contour of 1.0 along the wake; the wake is acoustically silent. The a = 11° case
is substantially different from the zero lift solution. The interference effects are much
more complicated, particularly near the airfoil. Note also that the interference fringes
also exist in the downstream direction due to sound scattering by the trailing edge.

When there is no scattering object, a traveling plane sound wave has zero acoustic
power as defined in Section 2.4. There is an equal amount of energy flux into as well
as out of a closed loop. Similarly for a zero lift scattering case, the acoustic power is
also zero. The scattered sound ccrubined with the incident sound creates local zones of
‘illuminated’ (amplified) and ‘shadow’ (attenuated) regions such that there is an equal
amount of energy flux into and out of a given closed loop.

An airfoil at an angle of attack subject to an incident pressure wave has an unsteady
lift and a wake associated with it. Then it must follow that the energy from the incoming
acoustic wave is converted into hydrodynamic energy of the vorticies, and if the total
amount of energy is constant there should be a net decrease in acoustic energy. To
compare the energy levels of each let us define the quantity acoustic cross section o as

in Reference 58],

o = lim *— dl. (7.8)

There is an infinite amount of energy associated with a plane wave and thus p/, corre-
sponds to the scattered portion of sound only.

In the previous section’s nonlifting case where a = 0, the ratio Ozy/Tupg should be
= 1 since there was no energy conversion. o, is the computed acoustic cross section in
the real plane (z,y) and o, is the computed acoustic cross section in (£, y) space via the
unsteady Prandtl-Glauert transformation. Without viscosity or the Kutta condition, an
incident acoustic wave conserves energy. The actual ratio of 0, /0y, Was 0.999.

A comparison of o between the computed nonzero angles of attack solutions and the
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no lift solution from the previous section have been made to determine the amount of
energy transferred from the acoustic to the vortical mode. The presence of an unsteady
wake implies that there must be energy conversion at the trailing edge, and therefore,
the ratios o, /0¢ for both angles should be < 1. o, is the acoustic cross section for the
unsteady lift case and oy is the acoustic cross section for the previous section’s no lift
computation. The ratio for the a = 2° was 0.995 and for the a = 11° case was 0.920.
Evidently approximately 0.5% and 8% of the acoustic energy was converted into the
vortical energy, respectively.

This suggests that if vorticity is produced by the interaction of sound with a solid
surface, there could be an attenuation of sound (as proposed by References [17, 62]).
Figure 7-21 shows the polar directivity of the complete acoustic pressure (scattered +
incident) at the far field. The sound levels heard are roughly equivalent between o = 0
and a = 2° cases; however, the sound heard in the a = 11° case is substantially less
in all directions. The vortical mode has gained energy at the expense of the acoustic
mode, and this is reflected in the reduced sound levels heard at the far field.

An airfoil at an angle of attack subject to a pressure wave can be modeled by the
linear convective wave equation only when the angle is quite small (a < 2°). At a small
angle, the scattered sound is rotated slightly in the counterclockwise direction, and the
sharp trailing edge creates noncompact scattering patterns in the downstream direction.
But the sound pressure levels at the far field do not differ noticeably from that of the no
lift case. At a higher angle, the rotation is more pronounced and the noncompact lobes
appear in the entire domain. In addition, the vortical wake reduces the acoustic energy

content such that there is a substantial attenuation of sound throughout the sound field.
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Figure 7-18: Amplitude of Scattered Pressure, My = 0.3, a = 2°
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7.3 Summary

In this chapter we have studied some aspects of plane sound wave scattering by a
thick airfoil in a nonuniform flow.

The scattered sound is a function of the free stream Mach number. In no lift situ-
ations, a NACA0012 airfoil in a low Mach number flow subject to a plane sound wave
can be adequately modeled by the convective wave equation for far field sound values.
The near field values, however, cannot be computed by the linear method because of
the additional diffraction by mean velocity gradients. As the Mach number increases,
the convective wave equation becomes invalid even at the far field. The actual scattered
sound amplitudes are significantly higher than those values predicted by the linear
method.

The scattered sound is also a function of the angle of attack. At a small angle, the
scattered sound amplitude increases slightly, and the directivity is rotated incrementally
in the counterclockwise direction. The sharp trailing edge also creates a noncompact
scattering pattern in the downstream direction, but the overall sound levels at the far
field do not differ significantly from those predicted by the no lift computations. At a
higher angle, the rotation is more pronounced and the noncompact lobes created by the
diffraction of sound at the sharp trailing edge appear in the entire domain. The linear
method would be valid only at the far field and for a small angle of attack.

The impinging pressure wave also creates an unsteady lift about the airfoil and a
vorticity sheet trailing the airfoil. If there is no transfer of energy from the mean flow
to the acoustic mode, there must be a conversion of acoustic wave energy into vortical
energy, and as shown in Figure 7-21, this conversion of acoustical into vortical mode

can lead to an attenuation of sound.
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Chapter 8

Concluding Remarks

The purpose of the current thesis was two-fold. The first was to develop an accurate
and general numerical method of computing acoustic values. To that end, we have
attempted to adopt the current state of CFD wherever possible, but the very nature
of the small length and time scales involved meant that the numerical scheme had to
be, to a some extent, newly developed. The most important numerical improvements
were in the formulation of the nonreflecting far field boundary conditions. Very early
on it was realized that the far field boundary conditions were crucial to the overall
accuracy of the numerical scheme, and that the most commonly used methods would
not suffice. The thesis devotes a better part of an entire chapter on the development of
the nonreflecting conditions, but as a percentage of the total time committed, it should
be about 5 chapter in length.

In acoustics the far field values are as important as the near field solution, and
in some sense, even more important. A key aeroacoustic problem is to discern an
accurate sound level heard by a distant listener as an aircraft flies by. Such a necessity
meant that we needed to have a fine enough grid to resolve the relevant length scales
everywhere in the domain, and thus the numerical method was further refined such that
the memory and time requirements were within practical limitations of the computer
resources available. The use of higher order compact differencing in the azimuthal
direction reduced the grid size requirement by a factor of about 2.

The second purpose of the thesis was to apply the numerical method to a few model
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aeroacoustic problems. The intent was not to apply the method in actual engineering
cases, but rather to ascertain, in a parametric sense, the relevance/limitations of the
currently available linear methods and to quantify the newly acquired capabilities. We
wanted to use the numerical method as a tool to understand the effects of some key

parametric variations on the radiated sound.

8.1 Summary of Results

The amplitude and phase of sound radiating from an isolated airfoil are functions of
the thickness, the angle of attack, the Mach number and the compactness ratio. In the
thesis we have attempted to analyze the parametric dependence for 3 model aeroacoustic

problems.

8.1.1 Gust—Airfoil Interaction

An airfoil impressed with a compact (K < 1) transverse vortical gust appears as
a single dipole radiating in phase, and at a constant Mach number, an increase in
compactness ratio increases the retarded time differences which appear as additional
lobes in directivity.

Thickness creates a varying mean velocity field which alters the sound propagation
direction. The specific level of diffraction is a function of the compactness ratio (i.e.
wavelength) and the maximum thickness of the airfoil. When the airfoil is disturbed
by a noncompact (K > 1) gust, the changes in thickness affect the directivity of sound
such that sound is directed away from the center region towards the up and downstream

directions. Thickness may also affect a compact airfoil when it exceeds the constraint,
11— M| > r%/3, (8.1)

An airfoil at an angle of attack creates a nonuniform velocity field, and the gradient

of velocity affects the direction of sound travel. An airfoil at an angle of attack subjected
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to an unsteady vortical disturbance also has a trailing vorticity sheet associated with i*;
and because the protlem is no longer symmctric, the wake can extract energy from the
mean flow to the perturbation mode, and through the imposition of the Kutta condition,
the extraction may create a higher overall acoustic energy level.

A compact source at a small angle of attack has its far field directivity rotated in
the counterclockwise direction due to the leading edge suction effect. The reduction
of projected airfoil length also creates a slight decrease in the amplitude of lift and
the radiated sound energy. As the angle increases, the directivity is similarly rotated,
but in addition, there is an extraction of energy from the mean flow which creates an
overall higher noise level. The effect of angle of attack on a noncompact source is similar
except that the rotation of directivity at the far field is in the clockwise direction. This
is believed to be caused by the bound vorticity and its clockwise rotational flow. Simple
methods based on the convective wave equation are generally ineffective when the airfoil

is at an angle to the mean flow.

8.1.2 Oscillating Airfoil

A moving airfoil must necessarily ‘carry’ its surrounding fluid with it, and therefore,
the surface boundary conditions become a function of the local normal mean relocity
gradient.

A thick symmetric airfoil at a zero incidence angle and in a compact oscillation has
a significantly higher acoustic energy level than a flat plate case. Evidently there is a
transfer of energy from the mean flow to the acoustic mode. Because of the symmetry
of the problem, however, the transfer path is not through the vortical wake and the
Kutta enforcement, but instead the energy cascade is via a direct increase in the source
distribution through interactions of the mean flow gradient and the oscillating airfoil. A
large mean velocity variations in the local surface normal direction translates directly to
a stronger distribution of surface acoustic source strengths. The diffractive effect of the

thickness is small for the long wavelength case, but there is a distinct upstream tilting
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of the directivity lobes.

The energy extraction (in terms of percentage) is less for the same airfoil in a non-
compact oscillation. However, the diffractive effect of the varying mean velocity is more
pronounced in the shorter wavelength case, particularly in the upstream direction where
additional lobes appear.

The overall sound level from a thick symmetric airfoil at an angle of attack and
in a compact oscillation is only slightly higher than the same airfoil at zero incidence.
Evidently the energy transfer from the vortical wake is insignificant when compared to
the direct energy transfer through the mean flow-moving airfoil interaction. The effect
of leading edge suction creates a far field sound field which has umplified sound pressure
levels in the lower 180° < 6 < 270° zone.

The same airfoil in a noncompact oscillation has moderately higher energy level
than either the airfoil at zero incidence and in a noncompact oscillation or the angled
airfoil in a compact oscillation. The diffraction of sound from the mean bound vortex
dominates at the far field and there appears a new upstream directed sound lobe at the
far field.

The linear theory must necessarily assume a uniform mean flow, and it does not
incorporate the diffractive effect of the varying mean flow or the increase in the overall
sound pressure levels from the mean flow energy transfer. Thus the linear method would

only be applicable if the thickness, the angle of attack and the compactness are all small.

8.1.3 Scattering Effects

The diffraction and scattering of plane acoustic waves by rigid bodies in various flow
fields were investigated.

An airfoil with no lift and with a thickness within the constraint of Equation 8.1
can be adequately modeled by the convective wave equation for far field sound values.
The near field values, however, cannot be computed by the linear method because of

the additional diffraction by mean velocity gradients. The scattered sound from the
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same airfoil which is outside of the constraint of Equation 8.1 cannot be computed by
the convective wave equation, even for far field values. The actual scattered sound
amplitudes are significantly higher than those predicted by the linear method.

The mean and unsteady lift also affect the scattered sound. At a small angle, the
scattered sound amplitude increases slightly in the upstream direction, and the acoustic
phase is rotated incrementally in the counterclockwise sense. The sharp trailing edge
also creates a noncompact scattering pattern in the downstream direction; nevertheless,
the combined (incident + scattered) sound levels at the far field do not differ significantly
from those of the no lift computations. At a higher angle, the rotation of phase is
more pronounced, and the noncompact lobes from the trailing edge dominate the entire
scattered field. In addition, the conversion of acoustic energy into that of the wake
creates an attenuated sound field. The linear methods would be effective only if the

angle of attack is small and if the disturbance is also compact.

8.2 Suggestions for Future Research

8.2.1 Numerical Improvements

There are a number of improvements we can suggest to improve the accuracy and
the efficiency of the current method. A multigrid time integration method can be
implemented; such a refinement will offer the accuracy level of a dense grid and the
convergence rate of a coarse grid (at the expense of an increased memory use).

Away from the surface, say 2 chord lengths, the numerical domain is nearly circular,
and given such a geometry, we could discretize in space using the spectral method. The
Fourier spectral method requires only 2 points per length scale and thus could offer
large efficiency improvements. A ‘zonal’ grid approach which maintains a fine grid near
the surface but has a much coarser grid away from it could be implemented. In such
an approach, the discretization in the near zone would remain a finite difference type,

while we would discretize the coarse grid zone using a Fourier spectral method.
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The far field boundary conditions can be further refined. An improvement in the
accuracy of the far field conditions improves both the accuracy (less reflection) and

efficiency (smaller domain).

8.2.2 General Improvements

While we have attempted to include as much of the physical parametric effects as
possible, the financial and time constraints have forced us to limit the actual number
of case studies. Some important and interesting parametric questions remain for the 3
model problems, particularly for the scattering study.

Consider an airfoil in M flow and at an angle of attack of a which encounters a
plane sound wave of the form in Chapter 7. We have found that when the angle is
sufficiently high, the incoming acoustic energy is transferred to the unsteady wake and
the overall sound level decreases. Several investigators [17, 62], however, have suggested
that given the same airfoil, the radiated sound power can also be higher than in the
no lift case. Section 2.4 demonstrated that if the mean velocity ug is not parallel to
the perturbation velocity u’, there can be a transfer of energy from the mean flow to
the perturbation vortical flow. (We have seen this phenomenon in the Chapters 6 and
7) It turns out that the Kutta condition can, in turn, convert this additional vortical
energy into acoustic energy [17, 62]; evidently the Kutta condition converts energy both
to/from acoustic from/to vortical. The radiated sound, thus, can be actually higher
with the enforcement of Kutta condition [62].

One issue is then ‘is the radiated sound power higher or lower?’ with the Kutta
condition. It appears that the answer is not a simple one, and that the radiated sound
power is dependent at least on the parameters My, a and the angle of the incident
wave [62] and may also depend on the frequency w.

We have purposely restricted our case studies to those situations in which the local
Mach number does not exceed unity. A shock wave which is subjected to an unsteady

disturbance will generally oscillate and thereby create a radiating sound field of its own.
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This is thought to be an important source of sound and cannot be ignored in many
transonic flow situations [31]. Unfortunately the unsteady shock location problem is a
nontrivial one, and to date, we know of no linearized Euler solutions for a general two
dimensional case. Hall [30] has provided an unsteady shock ‘fitting’ method for the one
dimensional set, but its applicability to a general two or three dimensional geometry is
probably limited. Recently Lindquist [47] showed that an unsteady shock ‘capturing’
method can be applied for the linearized Euler equations in one dimension. A capturing
scheme offers a possibility of general geometric application, and it would be interesting

to apply her contribution to the current method.
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