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Abstract
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that was flown on NASA’s Origins, Spectral Interpretation, Resource Identification,
Safety, Regolith Explorer (OSIRIS-REx) mission. During the primary science ob-
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anticipated solar x-ray count rate. Solar x-ray count decreased most prominently
in the low energy region of instrument detection, and made calibrating the REXIS
main spectrometer difficult. This thesis documents a root cause investigation into the
cause of the low x-ray count anomaly in the SXM. Vulnerable electronic components
are identified, and recommendations for hardware improvements are made to better
facilitate future low-cost, high-risk instrumentation.
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Chapter 1

Introduction

This thesis is intended to provide an overview of operations involving the REXIS
Solar X-ray Monitor (SXM), and an investigation into the cause of unanticipated low
solar signal seen during data collection. The SXM is a subunit of the REgolith X-
ray Imaging Spectrometer (REXIS), which is mounted aboard NASA’s OSIRIS-REx
mission.

REXIS an instrument intended to use to produce elemental abundance maps of the
surface of the asteroid 101955 Bennu, a C-type near-Earth asteroid using spectrom-
etry. Bennu is of particular interest because it has a 1-in-2700 chance of impacting
Earth between 2175 and 2199 [9].

The SXM is a low-cost, high-risk payload. Isolating the root cause of the malfunc-
tion and identifying critical components that resulted in failure will provide future
projects with additional knowledge for instrument design. The SXM works in con-
junction with the REXIS spectrometer to characterize high-energy solar x-ray flux.
The SXM is used to detect variable input from the Sun, which is used by the REXIS
spectrometer to calibrate x-ray input to Bennu. This thesis will provide an explana-
tion of how solar x-rays are captured by the SXM and how signal data are interpreted.
Solar spectra analysis and solar temperature fitting techniques are discussed, as well
as the limitations of SXM modeling. SXM hardware is explained, with a focus on the
analog signal amplification chain.

An operational timeline of the SXM will be presented. The focus of the latter por-
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tion of the thesis will be on a root cause analysis of the low x-ray count-rate anomaly
that occurred late in the SXM'’s operational lifetime. This thesis will conclude with
a roadmap for future work, including a more complete root cause investigation into
thermal sensitivity, and a CAST analysis to highlight organizational and program-

matic controls that may have contributed to the drop off in x-ray counts.

1.1 REXIS Mission

REXIS is a student experiment developed initially as part of the 2011 undergraduate
capstone class in the Department of Aeronautics and Astronuatics at MIT. Construc-
tion and management of the instrument was conducted in the MIT Space Systems
Laboratory (SSL) as part of a larger collaboration with Harvard College Observatory
(HCO), the MIT Department of Earth, Atmospheric, and Planetary Science, the MIT
Kavli Institute (MKI), MIT Lincoln Laboratories, and Aurora Flight Sciences. Day-
to-day operations and engineering are conducted primarily by students with guidance
from senior faculty and staff including Professor Richard Binzel, the REXIS Instru-
ment Scientist, Professor Jonathan Grindlay, the REXIS Deputy Instrument scientist
from HCO, and Dr. Rebecca Masterson, the REXIS Project Manager, from the MIT
Department of Aeronautics and Astronautics. To date, over 80 students have worked
on REXIS at all levels and stages of the project.

The REXIS main spectrometer relies on coded aperture mask spectroscopy to cap-
ture incident x-rays from Bennu'’s surface in the soft x-ray band (0.5-7.5 keV). A total
x-ray spectrum is derived from the soft x-ray data and REXIS was designed to detect,
if measurable, signals from Si, S, Mg, and O. REXIS has two operating modes: Imag-
ing and Spectral. In imaging mode, REXIS maps specific abundances to locations on
Bennu’s surface with necessary spatial resolution at an observation distance of 700m.
In spectral mode, REXIS records x-ray energies and produces the global average of
the x-ray spectrum passing through the coded aperture mask. REXIS performs its
science objective in concert with the other OSIRIS-REx instruments.

The flight schematic of REXIS is shown in Figure [[-1 The primary components
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of REXIS are housed in the main instrument. These consist of a 2x2 array of CCD’s
housed within a coded aperture mask. Housed separately is the Solar X-Ray Monitor

(SXM), which will be the focus of this study.

Radiator

L]
-\ e ﬂ' § o/
L] L]
[} vl
Coded Aperture Mask
Telescope _|
Assembly ) )
Truss and Side Shields
30.90 cm
Access Port
Thermal i Detector Assembly and
Isolation _{ Radiation Cover
Layer (TIL) F
Electronics—
Box
L Z i  Solar X-Ray
7 %

)E)Y A rJ Monitor
x % (SXM)

14.29 cm 6

Y'\| X 1588cm\ s

Figure 1-1: Schematic of the REXIS Instrument and SXM (shown to scale).

The SXM is an x-ray detector located on the outside of the spacecraft bus, so
that it would be sun facing during observations of Bennu. The SXM is connected
to REXIS by a coax cable, and SXM data processing occurs in the main REXIS
instrument.

REXIS is the second student experiment to accompany a New Frontiers mission
as part of NASA’s education and public outreach initiative. The first student instru-
ment, the Venetia Burney Student Dust Counter (VBSDC, formerly SDC) built by
University of Colorado Boulder, flew on the New Horizons spacecraft and recorded
interplanetary dust from between 2.6 and 15.5 AU [13]. REXIS is a significant leap
in complexity from the VBSDC, and at its inception was required to "directly engage
students at the undergraduate and graduate levels in the conception, design, imple-

mentation, and operation of space flight instrumentation. (2011 internal program
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level doc.)"

1.2 REXIS Operational Timeline

This section will discuss the operational lifetime of REXIS and the SXM, from its
launch on 8 September 2016 until the instrument’s planned shutdown following the
OSIRIS-REx Orbital R mission phase in November 2019. A more detailed explanation
of SXM operations can be found in Chapter 3. Henceforth, some operational times
will be referred to as "L+", which stands for months after launch, unless otherwise
specified. For example, events in the L+30 phase of the mission occurred 30 months
after launch. The REXIS timeline is inherently linked to the OSIRIS-REx timeline.

REXIS was powered on during L+14 Days for a payload inspection and functions
check. The SXM took 3935 seconds of x-ray data, and the instrument function was
nominal. The SXM was turned on for an additional function check at L-+6, where the
instrument threshold was set. A third functions check was conducted during L+18.
The SXM remained nominal, and there were no anomalies in x-ray detection.

The next big milestone was the L+22 Checkout in July 2018, where REXIS and
the SXM were again checked for behavioral anomalies. Data collected by the SXM
demonstrated full functionality. During L+22, REXIS was internally calibrated to
identify background noise and hot pixels. As a diode detector, the SXM cannot have
hot pixels in the same way as a charge-coupled device (CCD) detector.

REXIS performed its cover opening operation in September 2018. The radiation
cover was released using a frangibolt, after which REXIS detectors were first exposed
to the space environment. REXIS underwent a series of cosmic x-ray calibrations
(CXB), and the REXIS spectrometer was shown to be sensitive to stray light.

The L+30 Calibration was the first time Bennu was observable in the REXIS field
of view. During this calibration, a hot pixel mask was tested on REXIS. SXM count
rates were lower than previous observations, but returned to previously seen levels in
later flight.

During flight, REXIS underwent a series of calibrations using the Crab Nebula and
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Scorpius X-1 (Sco-X-1), two known cosmic x-ray sources. Using a known, stable x-
ray emitter provided a source that allowed the gain and offset of the REXIS detector
nodes to be set. Crab Calibration took place in November 2018 and March 2019,

while Sco X-1 occurred later, during Mask Calibration.

Orbital B, the first REXIS observation phase, occurred from 1 July to 6 August,
2019. This was initially the only observation window for REXIS. The OSIRIS-REx
spacecraft was placed in a stable orbit one kilometer above the surface of Bennu.
The SXM count rate saturation anomaly was found during Orbital B, where the
instrument reported abnormally high counts on the detector. On 5 July, SXM data
was saturated with an additional value of 34880. It was believed that a "bit flip"
occurred, where radiation moved the reset value on the SXM. This was corrected
with a reset command from the ground.

Additionally, throughout Orbital B the SXM began showing a two order of mag-
nitude decrease in x-ray signal disproportional to the spacecraft’s solar distance. The
results from results from the SXM’s Internal Calibration are depicted in Figure [4-2]
More on this anomaly can be found in Chapter 4. In all, two anomalies were detected
in the SXM, and three were detected in REXIS. For more information on REXIS

anomalies, consult Maddy Lambert’s thesis [7].

Orbital R was the final observation window for REXIS, which occurred during
November 2019. The REXIS team petitioned for, and was awarded, this additional

observation to supplement limited data taken during Orbital B.

1.3 Anomaly Resolution during the OSIRIS-REx mis-
sion

Anomaly detection for instruments on OSIRIS-REx was primarily the job of the
engineers and scientists behind the individual instrument. Generally, a few weeks
were allotted after reporting the anomaly to conduct an investigation, and isolate the

root cause.
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After an assessment had been made, the instrument team would present a rec-
ommendation for how to proceed with using the instrument to the OSIRIS-REx PI.
This recommendation included an identification of the incident, current results of the
investigation, and conclusions about future instrument performance and how it might
affect the spacecraft. The investigation could be closed without reaching a defined
root cause, so long as the incident was isolated and did not impact other instruments

on the spacecraft.

1.4 Motivation

Low-cost, high-risk spaceflight missions granting better accessibility to space than ever
before. The REXIS project was developed with the philosophy of being a student
instrument. From its inception as the final deliverable for 16.83, the MIT Aerospace
Engineering senior design capstone class, where undergraduate students worked side-
by-side with experienced research scientists and engineers. Students directly applied s
learned in their undergraduate curricula, and produced an instrument of complexity,
scale, and mission worthy of being included on a New Frontiers spacecraft. Like all
projects, there were challenges faced along the way. A rotating ensemble of students

created a challenging environment for informational and experiential entropy.

The REXIS instrument is categorized as a NASA Risk Class D mission, which is
characterized by lower cost and the use of legacy hardware [11]. Indeed, a portion
of the electronics design process for REXIS consisted of utilizing existing schematics
from NICER, an x-ray instrument developed by the MIT Kavli Institute (MKI). These
schematics were simplified for the design of the SXM as a matter of reducing cost.
Identifying the source of the SXM spaceflight anomaly not only provides guidance on
potential hardware vulnerabilities which exist in current spaceflight missions; it also

yields a roadmap for future missions.
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1.5 Thesis Roadmap

This thesis is organized into six chapters, which document the SXM background,
instrument anomaly, and subsequent investigation. The current chapter has intro-
duced the larger REXIS mission, operations over its lifetime, and how anomalies
were identified, catalogued, and solved. Chapter 2 presents a background on the
SXM, including an explanation of the SXM data pipeline and associated solar x-ray
modeling. A broad overview of the electronic components that comprise the SXM
will be provided, as well as how they operate in the space environment. In Chapter 3,
the structure and design process of the SXM will be explained in greater detail. This
is followed by a summary of instrument testing that occurred, both on the ground
and after launch. Then, SXM flight operations leading up to and after the anomaly
are discussed. Chapter 4 explores the SXM root cause analysis. The identification of
the low count-rate anomaly is explained in depth. The investigation into the SXM
pre-amplification chain electronics is next. The chapter ends with a plan for future
research into the identification of the vulnerability that caused the anomaly and how

such a finding may be interpreted.
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Chapter 2

Background

This chapter will describe the circuitry used in the SXM. The SXM relies on an
intricate array of amplifiers and filters, which are capable of x-ray detection when
combined. The chapter will begin with an introduction of standard electrical com-
ponents and how they operate. An example circuit of each component is provided
and includes a visual representation of ideal operation. This will create a foundation
of understanding that will translate to more complex electrical engineering systems
seen in the SXM. The first advanced concept explained is signal amplification. Signal
amplification is the primary means through which a signal is passed from the SXM
detector and recorded by the instrument. Typical amplification techniques will be
compared against amplification used in the SXM. To understand signal processing in
the SXM, an explanation of analog-to-digital conversion is provided. A more thor-
ough model of SXM signal processing is covered later in the chapter. The thermal
sensitivity of electrical systems is explained, and typical response sensitivities are
modeled. An overview of the SXM will explain the functions of the instrument in
broad terms. The SXM Data Pipeline will be explained from end-to-end. A theoret-
ical solar x-ray response will be followed from detection, through the pipeline, and
finally to transmission to the ground. Finally, the chapter concludes with theoretical
instrument response using the Chianti Atomic Database and an explanation of how
it was implemented in the Data Pipeline. SXM instrument simulation code can be

found in Appendix B.
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2.1 Basic Circuitry

This section introduces the common electrical components used in the SXM, how
they operate individually, and how they are used together to create more complex

circuitry.

2.1.1 Common Components

Resistor

Resistor

Figure 2-1: The symbol used to represent a resistor in circuit diagrams.

A resistor is an electrical element with a positive and negative terminal that utilizes
the property of electrical resistance. Its primary functions include voltage division,
current flow reduction, and signal reduction. Ideal resistors function based on Ohm'’s

law,

V =IR (2.1)

where the voltage differential across the resistor is proportional to the product of
current and resistivity. Resistors are commonly used in two constructions: parallel
and series. Resistors in parallel are be treated as the multiplicative inverse of the sum

of the reciprocals of individual resistors,

= (22)

Series resistors are treated as the sum of individual resistances,

Reg=Ri+Ry+ ...+ R,. (2.3)

In practical application, resistors are susceptible to series induction and parallel
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capacitance in alternating current (AC) systems. These vulnerabilities are expressed
primarily in the high frequency regime, which can impact signal amplification. Re-
sistors are thermally emissive as a property of power dissipation. Power dissipation

in an ideal resistor is modeled as

P=—=I?R=1V. 2.4
- (24)

This power is converted to heat and emitted by the component.

Capacitor

Capacitor

Figure 2-2: The symbol used to represent a capacitor in circuit diagrams.

A capacitor is a passive, two terminal component that stores electrical charge.
When a voltage potential is passed along a capacitor, an electrical charge is produced.
A capacitor consists of two charged conducting nodes separated by a non-conductive
medium. This medium consists of either a vacuum or a dielectric material, which
can increase the capacitance of the component. Capacitors are characterized by their
capacitance. In an ideal capacitor, its capacitance is measured as the ratio of charge

held to the voltage across the component. This is represented in the formula

0= (2.5)

in a DC system. In AC systems, a capacitor’s impedance influences the capacitance
of the system. Impedance can be considered as a vector quantity described as the
sum of the resistance and reactance, which is the component’s opposition to current.
Impedance is inversely related to capacitance and signal frequency.

The characteristics of capacitors in parallel and series are exactly opposite of a

resistor. The capacitance of multiple capacitors in parallel are be calculated as the
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sum of the capacitance of the individual components. This is represented by the
equation
Cog =Cr1+Co+ ...+ C,. (2.6)

For capacitors in series, the total capacitance can be calculated as the multiplicative

inverse of the sum of the reciprocals of individual resistors and represented by the

formula
Diode
Diode

Figure 2-3: The symbol used to represent a diode in circuit diagrams. The positive
terminal is to the left, and the negative terminal is on the right.

A diode is a unidirectional conductor that passes current from a positive to neg-
ative terminal, and restricts current flow in the reverse direction. A typical diode
utilizes a p-n junction material to generate a forward direction with zero resistance,
and a backward direction of infinite resistance. A diode has two response modes
known as reverse-bias and forward-bias. A diode that is reverse-biased will act as
an insulator and will ideally prohibit current from being passed, so long as its volt-
age limit is not exceeded. Conversely, a diode that is operating with a forward-bias
will become a conductor, and current can pass backwards through the diode. Diodes
also possess a property known as breakdown voltage, which flips a diode’s bias when
reached. When a diode is exposed to its breakdown voltage in the direction opposite
the flow of current, the formerly infinite resistance drops to low resistance, and cur-
rent backflows. This property is exploited to direct current in anomalous situations
such as overvoltage. When an overvoltage situation occurs, a diode will switch from
being negative-biased to being positively-biased, and will direct current away from

sensitive components. Additionally, diodes have a characteristic voltage drop in the
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direction of current flow, which is described in its commercial datasheet. This can be

used to help shape a voltage in signal processing.

Gain

In analog amplification systems like the SXM, gain refers to the ratio of output to
input signal. Voltage gain will be primarily discussed henceforth, as this is what
occurs in the SXM amplification chain, although power, amplitude, and current are

all other methods of measuring gain.

2.1.2 Operational Amplifiers

An Operational Amplifier, or op-amp is a high-gain voltage amplifier that takes a
differential input and produces a single output. It is directly coupled, meaning that
it relies on direct current transmission, rather than through inductive or capacitive

coupling [2]. In a circuit diagram, an op-amp has five terminals, which are labeled in

Figure [2-4]

3

I  Generic_Opamp
1 -

>E 5
20+

M

4

Figure 2-4: A generic op-amp. (1) Inverting input, (2) Non-inverting input, (3)
Positive power supply, (4) Negative power supply, (5) Output.

Additionally, an ideal op-amp has the following characteristics [2]:
e No output impedance

e No noise contribution to the output signal
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No DC offset in the output signal

Infinite bandwidth

Infinite input impedance

Infinite open-loop voltage gain

Open-loop gain is entirely dependent on the input. Consider Figure in which
an op-amp is placed in the open-loop configuration. For any non-zero voltage input,
the open-loop gain drives the op-amp output into saturation. When the op-amp is
saturated, the output voltage no longer increases. When the voltage input to the
op-amp is zero, the output from the op-amp is also zero. An op-amp in the open-loop
configuration is liable to latch-up, where the op-amp experiences a short circuit and
ceases to work. Op-amp saturation is not always reversible, and can permanently

disrupt current flow through the circuit.

V generic_opamp

Figure 2-5: A generic op-amp with open-loop gain.

In order to guard against voltage output saturation, an op-amp can be configured
for closed-loop gain, as shown in Figure Closed-loop gain relies on the output
signal feeding back into the input in order to shape desired input. Op-amps that
amplify through the use of closed-loop gain are less susceptible to voltage saturation
through amplification. However, it should be noted that saturation can still occur

through overvoltage from the input.
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generic_opamp

R

—AN—

Figure 2-6: A generic op-amp with closed-loop gain.

2.1.3 Signal Amplification

The SXM uses a signal amplification chain to shape and condition x-ray flux signal
for analog-to-digital conversion. Two different input configurations will be discussed

in this section, and select common amplification circuits will be explained.

Inverting amplifiers take a positive DC voltage at the input and produce a larger
negative voltage at the output. In AC amplification, the output is exactly 180 °)
out of phase with the input. Non-inverting amplifiers take an AC input and preserve
its phase in the amplified output. A positive voltage DC input will yield a positive

voltage output.

The first common amplification circuit is a differentiator, shown in Figure 2-7. A
differentiator is created using an inverting amplifier with a capacitor in the input line,
and a resistor in the negative feedback loop, which can be considered a rudimentary
high-pass filter. This causes the output from the op-amp to be proportional to the
time derivative of the input, which is where the circuit owes its name. The differentia-
tor has a few characteristic limitations. For instance, a differentiator is susceptible to
circuit noise which may be amplified in the output. A differentiator is also susceptible

to high-frequency noise, which can cause instability [2].

Similar to the differentiator, an integrator is used to integrate and invert an input

signal. The output voltage is the time-dependent integral of the input voltage [2]. In
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Figure 2-7: An example differentiator circuit.

this configuration, a resistor is included on the input line, and a capacitor is placed

in the negative feedback loop, which creates a low-pass filter, as shown in Figure [2-§

Figure 2-8: An example integrator circuit.

In its simplest configuration, an integrator circuit requires periodic discharge of
the capacitor, which can become saturated with charge. When this occurs, the output

voltage can drift beyond the optimal range of the op-amp. One way to mitigate this
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challenge is to include a resistor in the feedback loop that functions as a discharge

path for the loop capacitor (Figure [2-9)).

Figure 2-9: An integrator circuit with an additional resistor added to the feedback
loop provides a discharge path for the capacitor.

The last configuration worth mentioning is the Schmitt Trigger, which shapes an
input signal into a square wave. An example Schmitt Trigger is provided in Figure
[2-10] This configuration can be used to shape a signal at a set voltage, so that it can
achieve a more lossless input into an analog-to-digital converter. A Schmitt Trigger
is a modified integrator with positive feedback. A voltage divider is used to set the
positive feedback, and looped back to the non-inverting input. When a prescribed
threshold voltage is exceeded, the input voltage triggers and changes the state of the
output voltage. This configuration is vulnerable to hysteresis effects, where the input

voltage is above the threshold voltage.

2.1.4 Analog-to-Digital Signal Conversion

Analog-to-digital conversion is the process through which an analog signal is trans-
lated into a series of digital values using an analog-to-digital converter (ADC). In
the SXM, an input x-ray signal is amplified and shaped before being converted and
digitized for data processing. The digital output from the ADC is proportional to the
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Figure 2-10: An example Schmitt Trigger.

analog input signal, and is limited by quantization speed and accuracy concerns.

2.1.5 Thermal Impact on Circuitry

Temperature concerns must be accounted for when creating and operating complex
electrical systems. Amplification circuits often have a small window of acceptable in-
put voltages, and signals must remain within specified bounds in order to be amplified
and ultimately converted by an ADC. Furthermore, unwanted over- or under-voltage
can cause temporary or even irreversible damage to sensitive electrical systems.
While voltage itself is not thermally dependent, individual circuit elements are
dependent. For instance, an increase in temperature can affect power dissipation
in resistors. This can cause permanent damage to resistors by burning or melting
the resistor. In capacitors, temperature can alter how charge moves within a dielec-
tric material, increasing or decreasing the amount of charge required to saturate the
component. Additionally, resistivity in the wiring connecting circuit elements scales

positively with temperature, which can cause unintended voltages within the circuit.
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Temperature concerns are considered in the design process of space hardware. For
Class D missions, NASA recommends that only Level 1, Qualified Manufacturer List
Class V (QMLV) legacy hardware is used in instrumentation. Circuitry tested to
this level is rated for interplanetary spaceflight, where extreme radiation and thermal

conditions are experienced [10].

2.2 SXM Overview

The SXM component of the REXIS instrument suite is a subassembly located on
the OSIRIS-REx bus such that it will face the sun during windows of operation that
REXIS is pointed at Bennu. The electrical elements of the SXM are attached to the
REXIS Main Electronics Board (MEB) by a coax tether. The SXM mechanically
adheres to the spacecraft bus using an aluminum mounting bracket. The external
elements of the SXM consist of an Amptek XR-100SSD silicon drift diode (SSD) de-
tector connected to a pre-amplification circuit (henceforth referred to as the preamp)

located on a mounted printed circuit board (PCB).

When a solar x-ray hits the SSD detector, an analog signal is passed through the
preamp, where it is conditioned and sent to the MEB. At the MEB, the analog signal
passes through an ADC, which outputs a digital response. This digital response is
processed further by the MEB into x-ray energy event histograms sorted by energy
level. Event energy data is kept in Analog-to-Digital Units, which can be converted
to units of Electronvolt (eV). A conversion from ADU to eV is calculated using the

formula
keV = 0.0219 x ADU, (2.8)
for the REXIS SXM.

Solar x-rays and their energies are then used to calculate the influx and energy of
primary solar x-rays onto Bennu. A knowledge of primary x-ray energies is required

to calibrate the secondary x-ray fluorescence capture by the REXIS detector.
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2.3 SXM Data Pipeline

The SXM Data Pipeline takes a converted signal from the SXM ADC and processes

it into data packets that are transmitted to the ground.

2.3.1 Instrument Response Modeling

The SXM underwent a series of ground and in-flight validations between 2013 and
2019. This section will focus on the instrument response modeling that was used to
verify early in-flight observations. The SXM Data Pipeline included a model of ideal
SXM response, which at its core took a sample time-series of x-ray detections and
produced energy histograms. These energy histograms could then be fitted to a known
solar abundance model, which would match an input signal to x-ray characteristics
of elements in the Sun’s photosphere, and subsequently constrain solar temperature
at the time of x-ray emission. While this function fell beyond the original scope of

the SXM'’s purpose, it provided yet another way to produce instrument science.

2.3.2 Chianti Atomic Database

The Chianti Atomic Database was used to create an instrument response model across
all temperatures and energies observable by the SXM. The Chianti Database is an
atomic spectra database built and maintained by a global consortium of atomic sci-
entists [§]. Chianti and its associated python package, ChiantiPy, allow a user to
generate model spectra of astrophysical bodies. For the purposes of the SXM, Chi-
anti provided a known database against which sample SXM histograms could be
matched. Both coronal and photospheric abundance models were generated at the
temperatures and energies observable by the SXM, and ideal instrument response
was cross-referenced against early in-flight calibration data that was taken prior to
the REXIS instrument’s primary observation window. The intention of this cross-
reference was to build reasonable confidence in the instrument response model such
that temperatures and spectra abundances could be derived from data collected dur-

ing observation.
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Chapter 3

SXM Design and Operation

This chapter describes the design process and flight operations of the REXIS Solar
X-ray Monitor (SXM). The first section will focus on the design constraints of the
instrument. REXIS is a Risk Class D mission, which means it is a low budget instru-
ment, and is designed to use legacy, off-the-shelf components [11],[12]. This section
also describes the science mission requirements for the SXM, as well as design re-
quirements stipulated by the OSIRIS-REx team. The design section will primarily
detail the development of the SXM signal amplification chain, which is at the center

of the Root Cause investigation found in Chapter 4.

The next section of this chapter will describe the testing battery used to char-
acterize the SXM on the ground and in flight. The SXM'’s pre-flight ground testing
regimen will include testing data relevant to the SXM root cause analysis, and in-
clude rationale for why some tests were foregone. Results of SXM flight testing will

be presented, and nominal x-ray count data will be shown.

The last section of this chapter summarizes SXM flight operations. A timeline of
operations is included to understand where flight testing occurred relative to science
observations. Flight operations are separated into three distinct phases, which corre-
late to OSIRIS-REx mission phases. Early flight operations are described, followed by
operations during Orbital B and Orbital R, the SXM’s two science operation phases.
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3.1 SXM Design Background

The SXM was first designed as part of the 16.83 undergraduate capstone class in
the MIT Department of Aeronautics and Astronautics in 2011. This first design
became the foundation upon which the SXM flight model was developed. The REXIS
instrument was designed to use heritage spaceflight technology to reduce the design
timeline. The SXM detector is an Amptek XR-100SDD, which is an updated model
of detectors flown on previous x-ray instruments. The XR-100SDD is an updated
version of the XR-100CR, and the former uses a silicon drift diode, while the latter
uses a PIN photodiode [I]. Both models a beryllium window above an evacuated
chamber in which the detector is housed. Amptek XR-100CR detectors were used in
the Solar X-ray Spectrometer aboard GSAT-2, a space-based Indian solar observatory
[5]. A similar Russian space observatory used the XR-100CR in the Solar Photometer
in X-rays (SphinX) instrument [15]. Both of these previous instruments demonstrated
that the Amptek XR-100 class detector could be reasonably be used to for x-ray solar
observation, despite the XR-100SDD never having flown prior to REXIS.

The XR-100SDD detector was also included in early designs of the Neutron star
Interior Composition ExploreR (NICER) instrument. NICER was developed by the
MIT Kavli Institute (MKI), and the engineering teams worked closely together in the
development processes. Both Professor Richard Binzel and Dr. Rebecca Masterson,
who represent two-thirds of REXIS leadership, are affiliated with the Kavli Institute.
Additionally, the Kavli Institute is located in the same building as the REXIS team,
meaning collaboration was as easy as going upstairs. Additionally, the Goddard
Spaceflight Center serves as the managing center for both REXIS and NICER. This
closeness of personnel was reflected in the design of the REXIS SXM.

The NICER instrument is mounted aboard the International Space Station, where
its main spectrometer observes neutron stars in the 0.2 to 12 keV range [4]. The
REXIS SXM shares both structural and electronic heritage with the NICER instru-
ment. An early design of NICER implemented 56 XR-100SDD detectors, the same
detector used by the REXIS SXM. The NICER team later changed their design to
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use an Amptek CMOS detector, which benefits from higher temporal resolution.
While the NICER instrument and the REXIS SXM’s designs diverged during the
design phase, the SXM was heavily influenced by this early NICER design. The design
of the SXM preamp circuit and SXM Electronics Board resemble the NICER pream-
plifier board and surrounding electronics housing respectively. These similarities are
the legacy of John Doty, an engineer affiliated with MIT who created the SXM timing
circuitry, signal pulse shaping, and threshold trigger. A complete documentation of

SXM circuit diagrams can be found in Appendix A.

3.1.1 Mission Requirements

REXIS SXM requirements fall under the REXIS instrument’s main requirements,
which in turn are derived from OSIRIS-REx requirements for the instrument. The

REXIS requirements documentation flow was described extensively in Mike Jones’s

Master’s thesis [6]. The information flow diagram for REXIS is shown in Figure

Level 1

Level 2

Level 3

Level 4

Figure 3-1: The REXIS Requirements documentation flow from Jones, 2015 [6].

The SXM’s energy band of interest is from 0.6 keV to 6 keV. Quantum efficiency
for the SXM is also outlined in the REX-74 requirement. Quantum efficiency is the
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ratio of photon events that are successfully converted to electrons by the detector, and
is a metric used to evaluate the performance of an instrument at different detection

energies (shown in Table [3.1)).

Quantum Efficiency | Energy Range (keV)
>0.01 0.62 - 0.7
>0.03 0.7-0.8
>0.09 0.8-1.2
>0.65 1.6 - 2.8
>0.85 2.8-4.1
>0.9 6.0-7.0

Table 3.1: Quantum Efficiency Requirements for the SXM Detector.

The REXIS SXM Requirements are derived from the different levels of REXIS
requirements. SXM operational and environmental requirements are found in the
Level 4 documentation. Level 3 documentation describes the requirements for detec-
tor functionality. The Level 2 requirement REX-7 is the highest-level requirement
pertaining to the SXM. REX-7 requires that the SXM "shall measure solar coronal
temperature to within 0.1 MK every 50 sec while observing Bennu in Phase 5B as-

suming a single temperature model." A complete overview of Level 3 and Level 4

requirements can be seen in Tables [3.2] and [3.3]

ID No. Title Description
REX-225 Integration The SXM shall integrate counts for 32
Time seconds (nominally) to form a spec-
trum.
REX-73 Spectral Resolu- | The SXM shall have a spectral resolu-
tion tion (FWHM) that is less than 200 eV

from 0.6 to 6 keV.

REX-74 Quantum  Effi- | The SXM shall detect x-ray events from
ciency 0.6 to 6.0 keV with quantum efficiencies
as given in Table 3.1.

REX-75 Field of View The SXM shall have a full width zero
intensity (FWZI) FOV of no greater
than 60 deg full cone and a full width
full intensity (FWFI) FOV of no less
than 10 deg full cone.

Table 3.2: SXM Level 3 Requirements.
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ID No. Title Description
REX-228 SDD  Survival | The temperature of the SDD shall al-
Temperature ways be greater than -65°C and less
than 150°C.
REX-229 SDD Operating | The temperature of the SDD shall be
Temperature less than -30°Cand greater than -70°C.
REX-76 Preamp Survival | The temperature of the SXM Preamp
Temperature shall be greater than -55°C and less
than 85°C.
REX-77 Preamp Operat- | The temperature of the SXM preamp
ing Temperature | shall be greater than -40°C and less
than 85°C while operating.
REX-78 SXM Health The SXM shall survive and remain op-
erational through the end of Phase 8.
REX-79 SXM Opera- | The SXM shall be capable of operating
tional Time 24 hours per day

Table 3.3: SXM Level 4 Requirements.

3.1.2 Overview of SXM Signal Amplification Chain

The SXM amplification chain is responsible for priming a signal from the SDD de-
tector before it is converted by the Analog-to-Digital Converter (ADC). The amplifi-
cation chain is housed on the SXM Main Electronics Board (MEB), which is located
within the REXIS instrument on the spacecraft. The SXM detector and preamp cir-
cuit are housed in the SXM backpack, which is bolted to the outside of the spacecraft,
and is connected to the MEB by a coaxial cable. The SXM detector housing is shown
in Figure [3-2]

The SXM ADC requires a positive voltage signal pulse to be passed to it in order
to register a detection count. When an x-ray strikes the detector, an analog signal
pulse is created. The raw signal biased at 3.3 V, sent through the preamp, and then
sent, across the coax cable to the MEB. When the signal reaches the MEB, it is passed
through three opamps, which amplify the signal. Then the voltage signal is divided,
where one signal passes through an integrator circuit and the other signal through
a differentiator circuit. The output from the integrator circuit is labeled outu, and
the output from the differentiator circuit is labeled outb. The amplification chain

schematic diagram is shown in Figure 3-3] Additional SXM electronics schematics
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Figure 3-2: SXM detector and preamp housing. The SXM detector is located below
the collimator.

can be found in Appendix A.

The signals are then sent through a low pass filter to eliminate high frequency
noise artifacts added to the signal when it passed through the preamp circuit. The
outu signal is then sent to the final section of the amplification circuit, where 3 V of
bias are subtracted, leaving the signal with a residual 0.3 V bias. This bias is required
to keep the outu signal positive because the ADC used in the SXM electronics chain
is not rated for negative voltage inputs.

Next, Signal outu is sent to the ADC to be measured, while signal outb is sent to
a zero cross monitor, which provides the timing for the ADC to sample new signal,
now named outul.

In order to trigger an ADC detection, the SXM relies on a trigger circuit that uses
a series of comparators to compare outb to a reference voltage. The trigger circuit is
shown in Figure [3-4]

This trigger includes a command to manually set the threshold Voltage Lower
Limit of Detection (VLLD). The VLLD is set above the outh bias voltage as well as
the noise floor to prevent the SXM from accidentally triggering due to random noise

in the electronics. The relationship of outb to VLLD is given as:

LLD = outb— VLLD, (3.1)
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Figure 3-4: SXM Trigger Circuit Schematic.

where LLD is the Lower Limit of Detection. A threshold setting anomaly was discov-

ered early in flight, where the threshold would fluctuate. This was resolved by sending
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three threshold setting commands to the instrument. The first two commands were to
set the threshold to an arbitrarily high value, and the third command was to set the
threshold to the intended value. This workaround was only used once, but resolved
noticeable threshold drift for the remainder of flight.

The second threshold circuit is used to determine the zero crossing of outh. When
outul is at it’s peak, outb will have a zero crossing, and the ADC is triggered to begin

recording. Figure [3-5 shows an example of all signal shapes.

OUTU1

SRR (. s

OuTB

LLD

Zp Latched

» 0T

ZE Latched

ADC CS

Figure 3-5: SXM signals at various points throughout the amplification chain.

41



3.2 Instrument Testing

As part of the instrument design process, the REXIS SXM was subject to numer-
ous functionality tests on the ground. Testing was limited by time and financial
constraints, but the testing framework was rigorous and proved the SXM ready for
flight. The subsection on ground testing will focus on testing that aided in charac-
terizing the SXM low count rate anomaly discussed in Chapter 4. A more thorough
description of SXM ground testing can be found in Kevin Stout’s thesis [14].

The SXM also underwent a series of flight tests between launch in 2016 and Orbital
B, the first data collection phase, in July of 2019. Flight testing was primarily used
to characterize the REXIS main spectrometer, whose CCD array required in-flight
calibration, although the SXM was tested as well [7].

3.2.1 Ground Testing

The SXM was put through a battery of ground tests to ensure the instrument was
ready for flight testing. The testing procedure followed NASA requirements for Risk
Class D missions [LI]. The focus of this subsection will be on SXM thermal tests,
which provided a background for the root cause analysis outlined in Chapter 4.

The SXM was subject to thermal testing using thermal vacuum chambers built in

the MIT Space Systems Laboratory and at MIT Lincoln Laboratory.

SXM Oven Test

The SXM MEB underwent an oven test at Lincoln Laboratory in November of 2015.
The complete SXM flight assembly, including the preamp and SDD detector, were
placed in a thermal chamber. The MEB remained connected to the SXM assembly,
but outside the chamber. The MEB was held at a temperature of approximately
20°C. The temperature of the thermal chamber was then fluctuated between -40°C
and 60°C with a ground calibration iron source to measure instrument performance
as a function of temperature. This was a more drastic temperature fluctuation than

was expected in flight, and was used to identify thermal vulnerabilities in the SXM.
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An example histogram from the ground calibration source is shown in Figure [3-6]

50 . T

40}

(V]
o

Number of Events
[\ ]
o

olLa nnnnm_nnm A d‘\

0 50 100 150 200 250 300
Energy [ADU]

Figure 3-6: SXM Histogram of Ground Calibration Source. A strong iron line can
be seen at around 200 ADU.

The preamp and SDD detector remained insensitive to temperature fluctuations
over the test range. Additionally, it was discovered that both low and high energy

artifacts set in at approximately 53°C. The results of this test are provided in Figure

3-71

MEB Thermal Characterization

The SXM MEB was included in a similar thermal test. The MEB was placed in
the thermal test chamber, where its temperature was then cycled between -40°C and
60°C, while the SXM was exposed to the Fe-55 ground calibration source. Figure [3-8
shows temperature changes in the SXM during testing.

At high temperatures, the SXM recorded lower source counts than at lower tem-

peratures. Hysteresis effects were also seen in the MEB, and it was determined that
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Figure 3-7: Results of SXM Oven Test, November 2015.
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Figure 3-8: Temperature Fluctuations during the MEB Thermal Characterization
Test.

temperature changes in the MEB can result in changes to the SXM’s low energy

threshold. The results of this test are provided in Figure [3-9
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Figure 3-9: Ground Testing results of MEB susceptibility to temperature fluctua-
tions.

3.3 Flight Operations

This section will describe the REXIS SXM during flight operations, from launch in
September 2016 to planned shutdown in November 2019. The REXIS SXM operated
over a period of approximately 3.5 years. The SXM was first powered on during L+14
days for a payload functions check. It was powered on at various times in flight during
which it underwent calibration and additional functions checks. The SXM entered
its first data collection phase in July, 2019 during Orbital B. Due to unanticipated
low x-ray counts during Orbital B, it was powered on for an additional observation

window in November, 2019 as part of the Orbital R mission phase.

3.3.1 Early Flight Operations

Early flight operations for the SXM were characterized by a series of functionality
tests, which served as milestones towards the ultimate goal of data collection during
the Orbital B mission phase. The first of these calibrations occurred during the L+14
days payload check. The SXM collected 3935 seconds of nominal x-ray data, and the
instrument was determined to be working properly.

The next notable evaluation of the SXM occurred during L+30, which took place
in January, 2019. L+30 was the first time that Bennu was in the field of view of the

REXIS main spectrometer, and was a critical functionality check for the instrument.
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The L-+30 mission phase was divided into two distinct flight patterns. The first had
the REXIS main spectrometer pointing nadir at the asteroid, while the second had
the main spectrometer pointing away from the asteroid. During the second phase of
L+30, the SXM recorded a low x-ray count rate from the sun, which was because
the instrument was not directly facing the sun, as it was during the first phase of
L+30. A comparison of L+30 flight data are shown in Figure [3-10] This example of
off-pointing low x-ray counts became an important comparison data set with which

to compare Orbital B data.

3.3.2 Flight Operations during Orbital B

The SXM entered its primary data collection phase during Orbital B, which occurred
in July, 2019. On 5 July, the SXM suffered a "bit flip" error, where each detection
was saturated by an additional value of 34880. This was noticed when the daily
histogram data was saturated at an extremely high count rate. The "bit flip" most
likely occurred when the SXM was struck by a high energy cosmic ray, which shifted
the reset value of the SXM from its minimum value to its maximum. This required
a reset of the instrument from the ground, which reverted the SXM reset value to its

designed minimum.

Once the "bit flip" had been resolved, the SXM remained operational for the rest
of Orbital B. During Orbital B, the SXM recorded an x-ray count rate two orders
of magnitude lower than what was previously seen during the first part of Internal

Calibration. An example event rate histogram from Orbital B is shown in Figure

B-111

Low x-ray counts persisted for the remainder of Orbital B, and were subsequently
the focus of an anomaly report made to the OSIRIS-REx team. These low x-ray
counts were unexpected, and highlighted anomalous performance in the instrument,
give the spacecraft’s heliocentric distance, and the solar state. While the Sun was

recorded at a quiet A6.7 state, x-ray counts should have reflected a higher solar flux.
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REXIS SXM Histogram: 19982 seconds of data from 2019 FEB 16 01:07:41.2 UTC
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(a) Nadir Pointing REXIS Main Spectrometer

REXIS SXM Histogram: 9352 seconds of data from 2019 FEB 20 14:41:51.8 UTC
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Figure 3-10: SXM Event Rate Histograms during L+30

3.3.3 Flight Operations during Orbital R

The REXIS instrument team requested an additional observation due to lower than
anticipated counts by the SXM and REXIS main spectrometer during Orbital B.
The OSIRIS-REx mission operations team allowed the REXIS instrument to have an

additional observation window during Orbital R, which took place during November
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REXIS SXM Histogram: 84796 seconds of data from 2019 JUL 25 00:00:01.4 UTC
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Figure 3-11: SXM Event Rate Histogram from Orbital B, 25 July 2019.

2019. It was hoped that when REXIS was powered on for Orbital R, the main
spectrometer would detect higher flux counts from the asteroid, and the SXM would
report x-ray counts at the expected rate.

During Orbital R, the SXM recorded low x-ray counts similar to those seen in
Orbital B. An example Orbital R event rate histogram is shown in Figure [3-12]

As Orbital R progressed, the SXM event rate began to decline. This coincided
with a change in temperature in the SXM MEB, which occurred on 18 November,
2019. The secondary count drop off occurred rapidly over the course of the day, and
can be seen in Figure[d-4] The SXM recorded low counts for the remainder of Orbital

R. An investigation of the cause of these low x-ray counts in described in Chapter 4.
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REXIS SXM Histogram: 86368 seconds of data from 2019 NOV 13 00:00:15.5 UTC
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Figure 3-12: SXM Event Rate Histogram from Orbital R, 13 November 2019.
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Chapter 4

SXM Root Cause Analysis

This chapter presents a preliminary root cause analysis of the SXM low count rate
anomaly that began on 3 July, 2019, at the beginning of the Orbital B observation
window. A root cause was chosen to examine the failure of the SXM as an instrument.
It consists of an investigation into all possible causes of failure, which is the fourth

probable cause described in a fishbone diagram (shown in Figure [4-1).

(/Of SXM seeing far
44:?/ fewer counts

than expected,

based on solar

state and
previous
&2 instrument
O
& performance
O
&

Figure 4-1: Example Fishbone diagram used to outline a Root Cause Analysis. Each
bone is used to categorize the type of cause.

Based on evidence collected during a preliminary investigation by the instrument
team, the most likely cause of low x-ray counts in the SXM was hypothesized to

be due to a change in temperature in the signal amplification change. This thesis
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will focus on the subsequent investigation of the thermal vulnerability of electronic
components in the SXM. A brief explanation will be given for why other bones on
the fishbone diagram have been discounted as the causes of failure.

In this chapter, an investigation report delivered to the OSIRIS-REx PI will be
presented. A section will be devoted to how the anomaly was first identified, and the
methods used to bound the problem. SXM response modeling to Orbital B data will
be shown, and how it corresponds to deviations in the SXM’s long-term temperature.
LTSpice simulations show that modeling capabilities are limited by vendor simulation
code, and leave a path forward for further research. A preliminary conclusion is
offered, and a recommendation for future investigation is provided. As a point of
reference, the terms "count rate" and "event rate" will be used interchangeably, as the
SXM histogram data are recorded as counts (or particles striking the diode detector)

per energy level, recorded in 32 second bins.

4.1 SXM Low Count Rate Anomaly

The SXM received lower than expected counts during its two observation windows.
This problem was first identified in Orbital B, and was subsequently observed in all
of Orbital R as well. It was an ongoing impediment to solar science using the SXM,

and its exact cause remains an open area of investigation.

4.1.1 Orbital B

The SXM low count rate anomaly was first discovered during Orbital B, which took
place in July and August of 2019. The SXM showed a decreased count rate that was
atypical for the spacecraft’s heliocentric distance. At this time, the spacecraft was
located at a heliocentric distance of 1.3AU, and was showing a solar state of A6.7
as recorded by GOES15, a solar observatory located in Low Earth Orbit (LEO). An
AG6.7 solar state is relatively quiet from the sun, which at this time was near solar
minimum, a period of low solar output. Orbital B data were two orders of magnitude

lower when compared to signal data taken during Internal Calibration, during which
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the spacecraft was at a comparable heliocentric distance.SXM data from Orbital R

show a similar signal discrepancy, shown in Figure [I-2

REXIS SXM Solar Spectrum: 6635072 seconds of data from 2016 SEP 21 16:16:04.7 UTC
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Figure 4-2: SXM count rate histogram from launch to Orbital R.

During Orbital B, the SXM also suffered an unrelated "bit flip" error, which caused
each histogram bin to increase by a value of 34880. The bit flip was most likely caused
by a strike from a stray high energy particle, which caused the 16-bit reset value to
wrap around from 0 to 34880, the maximum value. This was first observed on 5
July, 2019, and resulted in a saturated event rate histogram. When this value was
subtracted from these data, the corrected histogram showed values similar taken the
previous day. A comparison of the saturated and corrected histogram is shown in
Figure [4-3| The bit flip was corrected by manually resetting the histogram minimum
value, which could be done from the ground. There were no issues with saturation in
the SXM event rate for the remainder of Orbital B. The reset of the SXM offset did

not impact the low count rate issue previously identified.
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Figure 4-3: SXM Saturated Histogram (Right) and Corrected Histogram (Left)

4.1.2 Orbital R

Due to low counts during Orbital B, REXIS was allotted an additional 15 day obser-
vation window during November, 2019. On 18 November, 2019, SXM signal during
Orbital R decreased beyond the low count rate seen in Orbital B, which can be seen in
Figure [4-4 This decrease in signal is distinct from the previous six days observation
in Orbital R, and demonstrates a departure from the previous low-count issue. This
second decrease in signal persisted for the remaining 7 days of Orbital R.

A notice was provided to the OSIRIS-REx PI following the first instance of a
lower than anticipated count rate during Orbital B. A subsequent incident, surprise,
anomaly report (ISA) was requested, which was the formal directive for a root cause

analysis into the instrument anomaly.

4.2 Constraining the Problem

Once the low count-rate anomaly had been identified, it became necessary to provide
boundaries on the investigation. The following section begins with an overview of the
ISA report and provides a fishbone diagram of the five likely root causes, as well as
the rational behind selecting thermal variability in the SXM Main Electronics Board

(MEB) amplification chain as the most likely root cause.
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REXIS SXM Histogram: 86367 seconds of data from 2019 NOV 18 00:00:15.8 UTC
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Figure 4-4: SXM count rate histogram on 18 November, 2019. The gap in the
histogram is when the instrument was not recording data, and is unrelated to the low
count rate anomaly in Orbital R.

4.2.1 TISA #10939

The OSIRIS-REx PI’s office opened a formal Incident, Surprise, Anomaly (ISA) in-
vestigation into the SXM low count rate. At the conclusion of Orbital B, this inves-
tigation was not time sensitive, as REXIS had completed its only observation phase,
collected all possible data, and had been powered off according to OSIRIS-REx power

mission design.

A fishbone diagram was created to illustrate the possible causes of a low instrument
count rate in the SXM. The fishbone diagram included in the SXM low count rate
ISA is shown in Figure

Each potential cause of the SXM low count rate shown in the fishbone diagram

will be explained briefly.
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Figure 4-5: Fishbone diagram constructed for OSIRIS-REx ISA #10939

SXM SDD Detector was Occulted

The SXM SDD detector being occulted was a natural concern for the instrument
team. The OSIRIS-REx team discovered that Bennu is an "activated asteroid,"
which is characterized by dust ejecta from the asteroid’s surface [3]. If particulate
matter partially or completely occulted the SXM field of view, then the instrument
would receive lower counts than predicted. However, it is unlikely that particulate
blockage occurred, as the SDD detector is small, and the spacecraft took extreme

care to avoid ejecta.

Another way that the SXM might have been physically occulted is if part of the
spacecraft, for example foil used to insulate sensitive electronics, became dislodged
and migrated to cover the detector. Parts of the spacecraft are lined with mylar,
which acts as a thermal insulator. This too is unlikely, as the spacecraft’s guidance

and control team would notice a change in spacecraft motion.
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Internal Collimator Shifted

The Internal Ring Collimator is attached to the exterior of the preamp housing, and
acts as a pinhole for solar x-ray flux. The collimator is attached to the preamp in
such a way that if the collimator shifted, it would disconnect critical SXM wiring.
This would appear as a total loss of signal in the instrument, rather than as reduced
X-ray counts.

It was determined that the SXM did not suffer a complete loss of signal after the
SXM observed a solar flare. The timing of the flare detected by the SXM coincided
with flare data observed by one of the GOES satellites (Figure . GOES is an
Earth-orbiting satellite constellation that monitors solar phenomena and provides

persistent solar observation.
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Figure 4-6: Flare Coincidence between the SXM and GOES15.

Voltage Shift in SXM Driver Circuit

Another possibility considered was that the SXM driver circuit’s voltage had shifted.
The driver circuit was directly linked to the Analog-to-Digital Converter (ADC) at
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Figure 4-7: SXM longterm HV for its operational lifetime.

the end of the amplification chain. A departure from the designed driver voltage
would cause the ADC to convert less analog signal. SXM long-term High Voltage
(HV) did not deviate by more than + 1 V, as seen in Figure Thus, a voltage
shift in the driver circuit can be eliminated from the list of possible root causes for

the low count anomaly.

Dark Current Increase

It is unlikely that dark current increased in the SXM during Orbital B. Ground testing
indicated that dark current was not a significant concern for the SXM when it was
cooled to operational temperature. Dark current was found to cause more frequent

resets when the SDD detector was warm [6].

Temperature Shift in the Amplifier Electronics Chain

The most likely possibility remaining unaccounted for in the fishbone diagram was
a temperature change in the signal amplification chain located on the Main Elec-
tronics Board (MEB). The SXM showed sensitivity to temperature changes in the
MEB during ground testing, which included suppressing low energy signal at higher
temperatures. Figure X shows an SXM oven test that illustrates ground test thermal

susceptibility.
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Additionally, the second decrease in SXM signal during Orbital R coincided with a
thermal change on the spacecraft. Inertial Measurement Unit 1 (IMU1) was switched
off, and IMU2 was powered on. The inertial measurement units provide the OSIRIS-
REx navigation team with the exact position of the spacecraft, and where it is located
with respect to Bennu. When the IMU changeover occurred, the SXM entered a new
phase space (shown in Figure X), where the Thermo-Electric Cooler (TEC) tem-
perature decreased, and the temperature doubled in the Detector Electronics (DE),
where the REXIS main spectrometer’s video board is housed. The SXM backpack

electronics were not effected by this thermal change.
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Figure 4-8: SXM Temperature Phase Space.

This dramatic shift in SXM temperature phase space indicated that low count rate
was related to a change in MEB temperature. The SXM operated in a new phase
space for both Orbital B and Orbital R when compared to previous data, which
coincided with lower signal counts. This sensitivity was reported in the ISA #10939
briefing, and it was determined that the SXM was still functional above 3 keV. The
low count anomaly presented no threat to any other spacecraft system, and it was

recommended that additional work focus on further isolating the root cause.
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4.2.2 Modeling SXM Instrument Response

Once it had been established that SXM signal was reduced below its expected value,
rather than totally lost, efforts were made to recover the signal. If it was possible
to recover the signal, SXM data could still be used to measure solar temperature.
Solar temperature measurements can be used to calculate solar output, which in turn

makes it an essential step in characterizing the Sun’s input to Bennu’s surface.

The most prominent of these attempts involved rebinning SXM data. Since the
SXM was reporting a 100x loss in signal, it was thought that signal could be ampli-
fied by rebinning 100 histograms together. The original SXM histograms showed 32
seconds of data. Rebinned histograms combined 3200 seconds of data into a single
histogram. Rebinning histogram data required writing additional code to interface
with the existing Data Pipeline. Data were separated by collection phase, with Or-
bital B consisting of one dataset, and Orbital R divided into two, differentiated by

which IMU was employed.

Data were rebinned using a sliding bin technique, which used a 3200 second win-
dow of data and took averages of the energies of the individual histograms and pro-
duced a stacked histogram. Sliding binning was employed to prevent individual high-
count histograms from skewing binned data. A limitation to rebinning was that it
raised the high energy noise as well as improved signal, which is shown in Figure [4-9|
Rebinning also amplified instrument artifact, which binned at an disproportionate

rate when compared signal.

Rebinning was ultimately unsuccessful at extracting SXM signal from the low
count rate data. Rebinning recovered artifacts back to levels seen in the Internal
Calibration, but failed to recover signal to the same levels. Signal could not be
recovered to the levels of previous quiet sun data, and further rebinning attempts were

abandoned, and efforts were focused on identifying thermally susceptible electronics.
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Figure 4-9: SXM Histogram Rebinning. The boxed area surrounds the SXM’s main
signal peaks. The peaks at the outer edges of the figure are instrument artifacts.

4.3 LTSpice Simulations of Amplification Chain

The SXM amplification chain proved to be the most promising path towards isolating
a root cause of the low count anomaly. As was previously explained in Section 4.2.1,
the SXM was susceptible to temperature changes in the MEB. This temperature
vulnerability was not seen in the ground spare unit, and MIT’s closure due to COVID-
19 prevented any further ground testing. Computer simulation of the SXM electronics
using LT'Spice was chosen as an alternative to physical testing. LTSpice can simulate
circuits across multiple temperatures and signal inputs, making it an excellent choice
to investigate thermal vulnerability.

LTSpice is a free software distributed by Analog Devices, which allows a user
to build and test circuits. LTSPice allows a user to upload proprietary component
models, which are produced by electronics hardware companies. These proprietary
models incorporate existing LTSpice modeling code and data from a component’s
spec sheet.

The opamps used in the SXM amplification chain are produced by MAXIM In-
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tegrated, an electrical components company that produces analog and mixed-signal
integrated circuits. MAXIM Integrated offers LTSpice models for their components
on their website, which are free to download and developed by their engineering staff.

LTSpice has two simulation modes: a netlist, and a schematic. A netlist utilizes
Spice syntax and works similar to common coding languages. Components and their
values are added to a netlist, and connections to other components are written in
LTSpice’s netlist syntax. LTSpice schematics are drawn or imported by the user,
and have a more robust visual interface. LTSpice schematics are nearly identical to
KiCAD and other schematic design software. Both a netlist and schematic can be

used to simulate the same circuit.

4.3.1 Thermal Variability in Components

The SXM had an existing netlist from previous simulation, which required minor
changes due to software updates. The simulation procedure involved running the
circuit for 10ms, with a global electronics temperature range from 0°C to 30°C, run
at steps of 5°C. A voltage pulse was used as the input signal, which represented a
single detection by the SXM. However, the simulation would not run when given
the stepwise temperature procedure. LTSPice refused to run at the upper and lower
bounds of the simulation.

The range of testing was modified to run between 20°C and 30°C, within the
range of temperatures seen by the MEB during Orbital B and Orbital R. Again,
temperatures at the extremes of the range were unable to be simulated by LTSpice.
The simulation worked at a temperature of 27°C, but the total time to simulate the
circuit increased as the temperature moved closer to 20°C and 30°C.

The increased simulation time was considered to be a result of high-frequency
noise, which was believed to indicate that the amplification chain had components
that were highly vulnerable to noise, near operational temperatures. This could not be
well established with the netlist, as the netlist could not simulate flight temperatures
seen in Orbital B, Orbital R, or from any previous flight data with which to compare.

The validity of the existing netlist was called into question, and it was decided
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to try to create a schematic of the amplification chain from scratch, to avoid any

preexisting errors that could have propagated from the updating of the old netlist.

The amplification chain was recreated in LTSpice using the electronics schematic
for the SXM. The MAX4416ESA opamp model was placed in the electronics chain
to provide an accurate simulation of signal amplification. The LTSpice schematic of

the amplification chain is provided in Figure 4-10]

The simulation was conducted with the same reduced range as the netlist, and
again faced the same challenges as the simulation run from the netlist. To eliminate
the possibility that the simulations were failing due to computing limitations, the

circuit was broken up into five distinct sections, and each contained only one opamp.

Each subcircuit was tested within the same 10°C temperature range. The simu-
lation crashed at same temperatures seen in prior simulations. Consistent simulation
failures at the same temperature across multiple configurations was hypothesized to
be the result of faulty opamp code. A simulated test circuit was constructed, where
the MAX4416ESA opamp was given a generic input and output within its range of
operation. The test circuit was run with the same 10°C temperature range, and the
range at which the simulation ran properly was constrained to between 22°C and
29°C. This pointed to a limitation in the opamp Spice model, which was confirmed
through a series of emails with MAXIM Integrated. The thermal constraint is a
known limitation from the manufacturer, which was not published with the Spice
model. This was unknown to the REXIS team until April 2020. Additionally, efforts
to freeze the opamp model at a local temperature, and run the LTSpice simulation

at a different global temperature were unsuccessful.

This revelation made further thermal investigation with LTSpice a fruitless en-
deavor. The temperatures seen by the MEB during Orbital B and Orbital R were
out of range of the model of the opamp used in the amplification chain. While these
results are inconclusive, there is further work that can be done towards isolating the

root cause of the low count rate anomaly.
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Figure 4-10: The SXM Signal Amplification Chain.




4.4 Root Cause Next Steps

The SXM low count rate anomaly remains an open area of investigation. The SXM is a
model instrument for other Class D missions, and instrumentation and programmatic
lessons learned will allow other instruments to learn and improve from the SXM.
Despite the limitations of circuit simulation, there are avenues to continue the
root cause analysis. This section will describe two areas of future work, a continued
root cause investigation, and a CAST analysis, which will together serve as the crux

of my Master’s thesis.

4.4.1 Identification of Vulnerable Components

There is still work to be done on a root cause investigation into the low count anomaly.
The hypothesis that there are temperature-sensitive components in the SXM ampli-
fication chains has not yet been proven wrong. Identifying vulnerable components is
important for the NICER team, from which the SXM amplification chain schematic
was derived. There is a possibility that NICER is operating with the same vulner-
ability in their detector chain, and a known vulnerability could be planned for, or

worked around by the instrument team.

4.4.2 CAST Analysis

Another approach to isolating the cause of the low count rate anomaly is through a
Causal Analysis based on System Theory (CAST) investigation. CAST is used to ex-
amine the programmatic and control factors that may have influenced an event. While
this will not provide further information towards which components in the SXM am-
plification chain are thermally vulnerable, it offers a way to document lessons learned
at a programmatic level. This includes decisions to prioritize some ground tests over
others, and decisions made in instrument development. CAST also documents suc-
cessful control measures that were implemented throughout the project that guarded
against other accidents. The goal of this future CAST investigation is to produce a

definitive list of lessons that can be used by future instrument teams in their design
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and testing process.
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Appendix A

SXM Circuit Schematics

The following Appendix contains the circuit diagrams of all sections of the REXIS
SXM. This Appendix also serves as a means through which to document the design

of the SXM.
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Appendix B

Simulation Code

The following Appendix contains python code developed for SXM data analysis.

B.1 SXM Simulated Instrument Response Code

The following section contains SXM simulated response code used to attempt to fit
SXM flight data to Chianti solar abundance models. This code implements SXM
Data Pipeline code written by the REXIS Science Team.

#!/usr /bin/env python3
# —x— coding: utf—8 —x—

nmnn

Created on Fri Jun 28 09:26:40 2019

@author: andrewcummings

import ChiantiPy.core as ch
import ChiantiPy.tools. filters as cf
import matplotlib.pyplot as plt

import numpy as np
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#templ = np.arange(l.e+6,625e+4,25.e+4)
#temp2 = np.arange (65.e+5,10.e+6,5.e+5)
#temp3 = np.arange (10.e+6,21.e+6,1.e+6)
#templ2 = np.concatenate ((templ ,temp2),axis=None)
#T = np.concatenate ((templ2,temp3d), axis=None)
"""file name"""
def chianti spectra generation(file ,abundance):
file =’sun_photospheric 1998 grevesse highres.npz’
#abundances :
# sun_ photospheric 1998 grevesse,
sun_photospheric 2015 scott ext,
sun_coronal feldman 1992 ext,

sun_coronal 2012 schmelz ext

E= np.arange(0.0495, 25.0005, 0.005)
T = np.array (| 0.5, 0.6, 0.7, 0.8, 0.9,

1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8,
1.9, 2., 2.1, 2.2,
2.3, 2.4, 2.5, 2.6, 2.7,
2.8, 2.9, 3., 3.1,
3.2, 3.3, 3.4, 3.5, 3.6,
3.7, 3.8, 3.9, 4.,
4.1, 4.2, 4.3, 4.4, 4.5,
4.6, 4.7, 4.8, 4.9,
5. 5.1 5.2 5.3, 5.4,
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19. , 19.1, 19.2, 19.3,
19.4, 19.5, 19.6, 19.7, 19.8,
19.9, 20. ])

T=Tx1.e6

#T= np.logspace (5, 7, 50)
s= ch.spectrum (T, wavelength= 12.4/E, eDensity= 1e9,
em—= 1le27, filter= (cf.gaussianR, 10000),
abundance=’sun_ photospheric 1998 grevesse ',

minAbund= le—6,verbose=1)

[= s.Spectrum
#plt . plot (E, I[ intensity "|[1])
#plt . xlabel (’Energy [keV]")
#plt . ylabel (I[’ylabel "|[: —2])
np.savez compressed (file , T ,E=E , T=T,
wavelength = 12.4/E)
f = np.load(file)
s= dict (f|’arr_0’"]. tolist ())

wvl = s| wavelength ’|
T={[’T’]
T-T/1.c6

E = 12.4/wvl
intensity= s|[’intensity ’|

for i in range(len(T)):
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intensity[i,:] = intensity[i,:]*4.06%1.e6*(wvl)xx3
data = intensity
np.savez compressed (file , E=E,

data=data.T,T=T)

B.2 SXM Histogram Rebinning

Code used to rebin Orbital B and Orbital R flight data to attempt to recover x-ray
signal. SXM flight data was loaded manually into the rebinner because of x-ray count
rate differences that existed between the two sections of Orbital R. Level 0 SXM flight
data is delineated by "YYYYDDD," where DDD is the day of the year that data was

recorded.

import hbpy as h
import math as m

import numpy as np

2019182 LO.h57,72019183 L0O.h57,72019184 10.h5",
2019185 L0O.h57,72019186 LO.h5 7,
2019187 LO.h57,72019188 L0O.h57,72019189 L0O.h5"7,
2019190 LO.h57,72019191 LO.h5",
2019192 L0O.h57,72019193 1L0.h57,72019194 10.h5",
2019195 L0.h57,°2019196 L0.h5 7]
file=| ’2019197 L0.h57,°2019198 10.h5’,’2019199 L0.h57,
2019200 LO.h57,72019201 LO.h5",
2019202 L0O.h57,72019203 LO.h5 7,
2019204 LO.h57,72019205 L0O.h57,72019206 LO.h5",
2019207 LO.h57,72019208 LO.h5",
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2019209 L0O.h57,72019210 LO.h57,72019211 LO.h57,
2019212 LO.h57,72019213 LO.h5"7,
2019214 LO.h57,72019215 L0.h57,72019216 L0O.h5",
2019217 L0.h57,72019218 L0.h57|

#dtype (|( ’sxm _period’, '<u2’), (’'TotalEventsCnt’, ’'<u2’),
(’underflowEventCnt ', '<u2’), (’overflowEventCnt’, '<u2’),
(’bin’, ’<u2’, (512,)), (’scTime(subsecs)’, '<f87),
(’scTime(secs)’, '<f8"), (’scGlobalCount’, '<f8")])

#dtype (|(’Sync’, ’S307), (’Length’, '<ud’),

(’PacketID’, '<ud’), (’GlobalCount’, '<ud’),
(’Time(secs)’, '<ud’), (’Time(subsecs)’, '<ud’),
("LocalCount’, ’<u4’), (’LocalTotal’, '<ud’),
(

"SpacecraftTime ', '<ud’)]|)

def concatenate hdr (ENTRY):
f000 = h.File(file[0],’ ")
b000 = f000 |’ data/tlm_ sxm_data/hdr ’| | ENTRY]
for i in range(1,18):
# NEED TO CHANGE THIS TO range(1,len(file)) |[this currently
throws an error for 18th or 19th entry in file |
f now = h.File(file[i],’r")
b_now = f now|’data/tlm_sxm data/hdr’|[ENIRY]
if 1 = 1:
c_now = np.concatenate ((b000,b _now) ,0)
current = ¢_now
else:
c_now = np.concatenate ((current ,b_now),0)
current = c¢_now

return current
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def concatenate prehdr (ENTRY):
f000 = h.File(file[0],’ ")
b000 = f000 |’ data/tlm_sxm data/pre_ hdr | [ENIRY]
for i in range(1,18):
# NEED TO CHANGE THIS TO range(1,len(file)) |[this currently
throws an error for 18th or 19th entry in file |
f now = h.File(file[i],’r")
b_now = f now|’data/tlm_sxm data/pre_hdr ’| [ENTRY]|
if i = 1:
c_now = np.concatenate ((b000,b _now) ,0)
current = ¢_now
else:
c_now = np.concatenate ((current ,b_now),0)
current = c¢_now
return current

s = concatenate prehdr (’SpacecraftTime ")

def binner(data,bins):
while len(data) > bins:
#if len (data)%2==0:
data2 = ([(at+b)/2 for a,b in
zip (data[::2], data[1l::2])])
data = np.asarray(data2)
#print (data)

return data

def create data prehdr(width):
sync_data = concatenate prehdr (’Sync’)

#BINNED bin data = binner (sync_data,width) —
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#binner function doesn’t work with binary data

length data = concatenate prehdr(’Length’)
BINNED length data = binner (length data ,width)

PacketID data = concatenate prehdr (’PacketID ")
BINNED PacketID data = binner (PacketID data,width)

GlobalCount _data = concatenate prehdr (’GlobalCount ’)
BINNED GlobalCount data = binner (GlobalCount data ,width)

Time secs data = concatenate prehdr(’Time(secs)’)

BINNED Time secs data = binner (Time secs data,width)

Time subsecs data = concatenate prehdr (’Time(subsecs)’)

BINNED Time subsecs data = binner (Time subsecs data,width)

LocalCount data = concatenate prehdr(’LocalCount )

BINNED LocalCount data = binner (LocalCount data ,width)

LocalTotal data = concatenate prehdr(’LocalTotal”)
BINNED LocalTotal data = binner(LocalTotal data,width)

SpacecraftTime data = concatenate prehdr(’SpacecraftTime ")

BINNED SpacecraftTime data = binner (SpacecraftTime data ,width)

dtp = np.dtype (]|

#(’Sync’ , 'S307 ),
(’Length’ , J<ud’ ),
(" PacketID’ Cocud’ ),
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"GlobalCount’ , T<ud’ ),

"Time (secs )’ , T<ud’ ),

Y

"Time (subsecs) , '<ud’ ),

"LocalTotal’ , <ud ),

)

(

(

(

(’LocalCount’ , T<ud’ ),
(

(’SpacecraftTime | '<ud )

|

)

bpdata= np.rec.fromarrays (|
#sync data, #SHOULD BE BINNED DATA but
# there’s a bug currently (binner function not
#compatible with binary files)
BINNED length data,
BINNED PacketID data,
BINNED GlobalCount data,
BINNED Time secs data,
BINNED Time subsecs data,
BINNED LocalCount data,
BINNED LocalTotal data,
BINNED SpacecraftTime data|, dtype= dtp)

return bpdata
create data prehdr (1)

def create_ data_hdr(width):

79 79

hard coding this since for now
bin data = concatenate hdr(’bin’)

BINNED bin data = binner(bin_ data,width)
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sxm _period data = concatenate hdr(’sxm_ period’)

BINNED sxm period data = binner (sxm_period data,width)

TotalEventsCnt data = concatenate hdr(’TotalEventsCnt ")
BINNED TotalEventsCnt data = binner (TotalEventsCnt data,
width)

underflowEventCnt data = concatenate hdr(’underflowEventCnt )
BINNED underflowEventCnt data = binner (underflowEventCnt data,
width)

overflowEventCnt data = concatenate hdr(’overflowEventCnt ")
BINNED overflowEventCnt data = binner (overflowEventCnt data ,
width)

scTime subsecs data = concatenate hdr(’scTime(subsecs)’)

BINNED scTime subsecs data = binner(scTime subsecs data,

width)

scTime secs data = concatenate hdr(’scTime(secs)’)
BINNED scTime secs data = binner (scTime secs data,

width)

scGlobalCount data = concatenate hdr(’scGlobalCount ’)
BINNED scGlobalCount data = binner (scGlobalCount data
width)

dt = np.dtype (|
(’sxm_period’ , T<u2’ ),

("TotalEventsCnt ’ , T<u2’ ),
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underflowEventCnt ’ <u2’ ),

Y

overflowEventCnt’ <u2’ ),

)

"bin’ , '<u2’ (512,)),

scTime (secs )’ , <f87 ),

(

(

(

(’scTime(subsecs)’ , <87 ),
(

(’scGlobalCount ’ , <187)
|

bdata= np.rec.fromarrays (|
BINNED sxm period data,
BINNED TotalEventsCnt data,
BINNED underflowEventCnt data,
BINNED overflowEventCnt data,
BINNED bin_data,
BINNED scTime subsecs data,
BINNED scTime secs data,
BINNED scGlobalCount data|, dtype= dt)

return bdata

def create file(width, filename):
bdata = create data hdr(width)
bpdata = create data prehdr(width)
with h.File(filename , ’'w’) as f:
grp = f.create group("data")
subgrp = grp.create group("tlm sxm data")
sub2 = subgrp.create dataset("hdr", 6 data=bdata)

sub3=subgrp.create dataset("pre hdr" 6 data=bpdata)
f.close()

return
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create file (500, rebinned data.h5’)

B.3 LTSpice Simulation Readout

This code is used to analyze LT'Spice simulation data. LTSpice software was updated
between the time early LTspice readout code written by Dr. Branden Allen, and the
SXM low count rate root cause investigation. The code was updated to take .txt files

instead of .raw files, which was the old LTSpice file output.

#1/usr/bin/env python
#—x—encoding=utf—8&*—

200

A library for loading the output spice simulations

Author: Branden Allen
Date: 2015.06.18
Edited: Andrew Cummings
Date: 2019.01.30

A

from  future  import print function

#Numerical

import numpy as np

#Standard
import struct

import re
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def open spice(filename, dtype= 'f’):
with open(filename, ’rb’) as f:
d= f.read()
div= re.search(’Binary:’.encode(), d)
data= d[div.end()+1:]
hdr= d[: div.end()+1]

#Fzxtract the data
size= [re.search(i.encode(), hdr).span() for i in
| 'No._Points:\s+\d+’, 'No._Variables:\s+\d+’]]
nrow, ncol= [int(hdr[i[O0]:i[1]].split(’: .encode())[—1])
for i in size|
#print (nrow, ncol)

d= np.reshape(struct.unpack(nrowsncolxdtype, bytearray(5952)),
(nrow, ncol)) #[1:]

#Retrieve the data keys
start= re.search(’\nVariables:’, hdr.decode()).end()+1
end= re.search(’\nBinary:’, hdr.decode()).start ()
keys= [i.split() for i in hdr[start:end]|.decode().split(’\n’)]

#Generate record array
d= np.rec.fromrecords(d, names= [i[l] for i in keys]|)

return d

# Andrew’s Version for txt files
def open text(filename ):

with open(filename, "r") as readfile:

x=|]
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y =l

for line in readfile:
Type = line.split ("\t")
x.append (Type[0])
y-append (Type|[1])
xlabel = x[0]
ylabel = y|0]
x.pop (0)
y.pop (0)
time = np.array (x,dtype=np.float32)
time = time=x1.e06
value = np.array (y,dtype=np.float32)
print (xlabel , ylabel)

return time, value
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