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Abstract

The net effects of various climate policies on households in the United States are
assessed, with particular attention to the distribution of economic outcomes across
geography, urbanity, and income groups. Climate policy has the potential to assess
more costs to low-income households than high-income households (regressive) as well
as more costs to rural households than metropolitan. The objective of this study was
to improve the understanding of the potential for regressivity, geographic transfers,
and rural-urban transfers among climate policy options and to test for ways to miti-
gate regressivity and unwanted transfers.

Using different machine learning algorithms, I created a statistical model of the
household carbon footprint (HCF) for an average household in each US Census tract.
Policy outcomes were assessed by quantifying the net increase or decrease of annual
household expenses (e.g. electricity, utilities, and gasoline consumption) under 12
different policy scenarios, which included carbon pricing schemes, regulatory stan-
dards (Corporate Average Fuel Economy Standards, Clean Energy Standards, and
the Clean Power Plan), and a scenario that combined carbon pricing and command-
and-control regulation.

I found that there is significant variation in carbon footprints with income and
geography; income effects are mostly driven by higher footprints related to transporta-
tion and consumer products and services, while geographic effects are affected by the
carbon intensity of the electricity grid. Carbon pricing, when accompanied with a
dividend, is progressive for urban, rural, and suburban households. There are trans-
fers from the Midwest and Plains to the Coasts when the dividend is evenly divided,
but this can be mitigated though adjusting the dividend slightly (<8% increase or
decrease). Adjusting the dividend to increase the amount for low-income households
and reduce the amount for high-income households benefits rural households more on
average, but increases the overall heterogeneity of impacts within each income group.
Adjusting the carbon dividend for both geography and urbanity increases the average
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benefit to low-income households and reduces the heterogeneity of impacts within
income groups. The effects of the regulatory policy tends to be regressive and are,
on average, a net cost to households who are low income – especially those in rural
areas. Combining a carbon price and dividend with regulatory standards can remove
the regressive trend of regulations, but regional and urban-rural transfers are harder
to mitigate.

Thesis Supervisor: Chris Knittel
Title: George P. Schultz Professor of Applied Economics
Director, Center for Energy and Environmental Policy Research
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Chapter 1

Introduction

How do policy makers address climate change aggressively enough to meet stated

climate goals (keeping global temperatures below 1.5∘C) without harming communi-

ties and households reliant on fossil fuels? While economic literature has determined

that a carbon tax is the most economically efficient way to fix the carbon emission

externality, depending on what policy makers do with the tax revenues, this policy

can be regressive. The potential regressivity arises because low-income households

spend a larger share of their income on energy, and energy-intensive, products. Fur-

thermore, households in the industrial heartland and the Midwest are reliant on a

carbon-intensive electrical grid for their power; they also generally lack adequate

public transit options and use fossil fuels to heat their homes during cold winters.

Consequently, these households tend to spend a larger share of their income on en-

ergy relative to households that live in coastal areas.

These structural facts of carbon consumption across incomes and geography signi-

fies the preeminent challenge of designing equitable climate policy. Whether a specific

policy that establishes a price on carbon is regressive or harms certain regions of the

country depends on how the carbon revenue is recycled (Goulder et al. 2019). A sec-

ond structural fact with respect to energy consumption demonstrates that a number

of recycling methods will be progressive. Namely, that a policy that rebates revenues

equally to all households, a "tax-and-dividend" plan, will be progressive. Although
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low-income households spend a larger share of their income on energy, high-income

households spend a larger amount on energy. Therefore, the high-income households

contribute more to the pool of revenues than they receive back as a dividend, while

low-income households, on average, receive a larger dividend than they pay in taxes.

However, a simple tax-and-dividend plan that is geographically agnostic could benefit

the Coasts more than the industrial heartland and the Midwest, which is contrary to

stated policy goals.

These same concerns for geographic distribution and regressivity hold for alterna-

tive climate policies. Historically, instead of pricing carbon, policy makers have relied

on instruments that disguise the costs to the consumer–such as the Corporate Average

Fuel Economy (CAFE) standard, subsidies for electric vehicles, Renewable Portfolio

Standards (RPS), and subsidies for wind and solar power. While these policies tend

to keep prices for the regulated products lower, when compared to a price on carbon

they also can be regressive (Burger et al. 2020). Furthermore, these alternatives do

not generate revenues that can provide transfers to vulnerable groups.

In this thesis, I seek to demonstrate the importance of these issues for policy-

making. I use data on energy consumption, transportation habits, and consumer

behavior from representative samples of US households to predict carbon footprints.

This extends past work (C. Jones and Kammen 2014, Jihoon Min, Hausfather, and

Qi Feng Lin 2010) by utilizing machine learning techniques to better predict energy,

fuel, and product consumption of households and fills in a gap in climate policy lit-

erature (Goulder et al. 2019, McFarland et al. 2018, Woollacott 2018) by describing

the nature of heterogeneous impacts within income groups.

Given the estimation for consumption of energy, fuel, products, and services for

the 72,538 Census tracts in the continental US, I then model various policy designs

to estimate the cost and benefit of each policy on the average household in terms of

the change to their annual budget. I analyze not only carbon pricing, with a vari-
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ety of different revenue recycling plans, but also regulatory policies such as CAFE

and a Clean Energy Standard (CES). I add to the understanding of the importance

of geography in policy outcomes, the leverage policy makers have to correct for the

urban-rural divide, and the progressive outcome for a carbon price and dividend

scheme compared to other regulatory approaches. I calculate the incidence in these

policies across income quintiles and generate maps of the incidence across the geog-

raphy. I also aggregate these effects across Congressional districts and correlate the

impacts across political party.

My results suggest that while a simple tax-and-dividend plan adequately protects

low-income households, the impacts of these policies across rural and urban house-

holds may concern policy makers. I analyze six alternative revenue recycling plans

that vary across urbanity, income, Census regions, and electricity reliability regions.

I show that relatively slight changes to household dividends (less than an eight per-

cent increase or decrease) that depend on certain, readily observable, features of the

household allows policy makers to protect vulnerable populations.1

My analysis also reveals that, while all of the carbon tax-and-dividend plans I

analyze are progressive, the alternative policies are regressive. The negative effects of

CAFE standards, as a share of income, are monotonically decreasing across income

quintiles, implying CAFE standards are regressive.2 I find that the same is true for a

clean energy standard. My model of the Obama Administration’s Clean Power Plan

also suggests that it too would have been a regressive policy. The results with respect

to a CES and the CPP are not surprising. These policies increase electricity prices,

but do not generate any revenues that can be used to overcome the regressivity of

higher energy prices. The result with respect to CAFE standards is more nuanced.

CAFE standards are an implicit tax-and-subsidy program, taxing vehicles that are

1Such adjustments, for the sake of policy implementation, need to be already known by the
Federal Government and not easily changed by individual actors. The factors used in each policy
scenario fit both requirements.

2This replicates the results in Davis and C. R. Knittel 2019
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worse than the standard and subsidizing vehicles that are better than the standard

(Davis and C. R. Knittel 2019; Holland, Hughes, and C. R. Knittel 2009). Therefore,

the costs of CAFE to a household fall with the fuel economy of the vehicles in the

household. Because high-income households are more likely to purchase vehicles with

more technology (e.g., hybrids, EVs, etc.) and low-income households are more likely

to own larger vehicles (e.g., vans, trucks), high-income households are more likely to

gain from CAFE standards, while low-income households lose.

Understanding how the costs of policy are distributed in the economy and among

households should be of utmost importance for policy makers. If policy is intended to

be equitable, it is not enough to examine whether the policy is progressive. The dis-

tribution within an income group can be greater than the distribution across groups.

Dimensions such as geography, urbanity, race, and ethnicity need to also be examined

and the public should be given transparent information about the cost associated with

policy options.
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Chapter 2

Background and Literature Review

2.1 Distributed Effects of Carbon Pricing

Ignoring the revenues generated, carbon taxation is generally determined to be re-

gressive to income and expenditures (Metcalf et al. 2008; Mathur and Morris 2014).

However, the revenues from carbon taxes can be used to offset regressive effects.

The Energy Modeling Forum Model Inter-comparison Project Number 32 (EMF 32)

convened 11 groups of academics who compared different models for the impact of

a carbon tax with various revenue recycling mechanisms (McFarland et al. 2018).

Their papers varied in terms of the underlying model assumptions, the structure of

the carbon tax, and the types of recycling methods employed. They examined both

the impact to individual economic actors and to the overall economy; taken together,

this report gives insight into the trade-off between equity and efficiency.

The first general conclusion from this work is that emission outcomes are largely

insensitive to revenue recycling methods, but welfare and distributional outcomes can

vary widely (Jorgenson et al. 2018). Compared among using revenue for capital in-

come tax reductions, labor income tax reductions, and lump sum transfers, capital tax

cuts are the most efficient and the most regressive recycling method, while lump sum

transfers are the least efficient and most progressive (McFarland et al. 2018, Goulder

et al. 2019, Woollacott 2018, Jorgenson et al. 2018). The second general result is that
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the use of the revenue is important in determining the incidence of a given tax, but

it is also important for efficiency considerations. The best use of the revenue, from

an economic efficiency standpoint, is to use it to reduce other, distortionary, taxes

that exist. However, using the revenues to reduce other taxes can have important

implications for incidence. For example, the US capital and labor income taxes are

designed to be progressive. Therefore, if you were to replace these progressively gen-

erated tax revenues with a regressively-generated carbon tax source, the carbon tax

will necessarily be regressive. These themes are included in McFarland et al. 2018,

Goulder et al. 2019, Woollacott 2018, Jorgenson et al. 2018.

A consensus within EMF 32 formed on the progressive benefits of a carbon fee

and divided structure and the overall economic efficiency of reducing capital taxes.

Issuing payments to households through a price-and-dividend scheme, while progres-

sive, reduces economic efficiency and increases the heterogeneity of impact within an

income group (Cronin, Fullerton, and Sexton 2019). Adopting a hybrid policy1 was

found to have greater progressive effects and lower welfare loss compared to a pure

recycling method (Goulder et al. 2019).

More recent work has found that the incidence of carbon taxes alone (ignoring uses

of revenue) depends on the scope of the economic effects studied. A combined source-

(e.g., production) and use-side (e.g., consumption) analysis can change conclusions

compared to only a use-side study (Goulder et al. 2019). While the use-side effect of

carbon taxes is regressive and reduces welfare for each recycling option examined (in

keeping with my findings and other literature), the source-side effect is progressive

and positive for most recycling options. On net, source-side impacts outweighed the

use-side.

However, the effects within an income group (whether quintile or decile) were

1In this paper, the hybrid policy consiseted of implementing both tax reductions and lump-sum
transfer, designed such that rebates were targeted to avoid welfare loss in the bottom two or three
quintiles and the remainder of the revenue was used to reduce taxes.
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more heterogeneous than the effects across groups. The variability of impacts within

an income group can be partially explained by a household’s geographic region. Re-

gional impacts tend to follow economic structures (e.g., impacts to Northeast and

West Coast are similar), however capital ownership may be uncorrelated to regional

impact depending on the presence of pass-through business entities (M. T. Ross 2018).

There are also significant differences in consumer behavior across geography, due to

factors like reliance on cars and size of homes (Wiedenhofer, Lenzen, and Steinberger

2013). Geography also accounts for significant variation in the co-benefits of climate

policy (the benefits from reducing non-GHG contaminants such as sulfates) as well

in the welfare effects of policy (Woollacott 2018).

Additionally, there is temporal variability in welfare benefits for labor versus cap-

ital income tax cuts. That is, labor tax cuts are better in short term, while capital

tax cuts are better in later term (Zhu et al. 2018). Variability in the generational

effects of carbon tax designs are also significant. The generation that first sees the

implementation of a carbon tax would fare worse, but welfare losses diminish with

time after introduction (Rausch and Yonezawa 2018). Using the revenue from a car-

bon tax for a household dividend favors older generations, while reducing labor taxes

favors younger generations (Rausch and Yonezawa 2018).

While I do not attempt to model temporal transfers, the heterogeneity within an

income group is a critical focus of my research. Indeed, I show that where you live is

nearly as strong a determinant of absolute policy impact as income.
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2.2 Effects and Costs of Other Climate Policies

2.2.1 Regulation

The implicit carbon tax2 of regulations and policy measures vary from negative prices

for behavioral energy efficiency programs (-$190/ton), to moderate prices ($11/ton)

for EPA regulation though the Clean Power Plan, to high prices for the Weather-

ization Assistance Program ($350/ton) (Gillingham and Stock 2018). Replacing all

current federal regulations with a carbon tax (in 2020) would require roughly $7 per

ton to achieve equivalent emissions reductions (C. Knittel 2019). This price would

increase to approximately $30 as some regulations such as CAFE Standards ramp up

by 2030.

2.2.2 Clean Energy Investments

Clean energy innovation as a method of reducing emission is widely embraced by

prominent Republicans, Conservative-leaning organizations, and moderate Democrats.

An optimal path for inducing clean energy innovation is a combination of research

subsidies and a carbon tax (Acemoglu et al. (2014)). Compared to the optimal path,

implementing only carbon taxes is inefficient and would result in a welfare loss, al-

though current US policy deviates significantly from optimal policy and under current

policies, climate change dynamics will be significantly worse (Acemoglu et al. (2014)).

2.2.3 Renewable Portfolio Standard/ Clean Energy Standard

A Renewable Portfolio Standard (RPS) has a range of implicit costs between $0 and

$190 per ton of CO2 (Gillingham and Stock 2018). Other estimates of the implicit

cost of an RPS is between $130 and $460 per ton (Greenstone and Ishan (2019)),

2These implicit costs are calculated by dividing the cost of implementing the policy by the
carbon emissions reduced by the policy. In many cases, the estimate range is wide because of high
uncertainties in both costs and emissions avoided.
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although this study received criticism for overestimating the upper bound of the cost

by not adequately isolating the effects of an RPS or defining a realistic counterfactual

for carbon emissions without an RPS.3

A research team at Resources for the Future modeled the effects of a Clean Energy

Standard (CES) introduced in Congress. Through a cost-benefit analysis, they found

net benefits of $579 billion over the 2020 - 2035 time period. However, the study did

not examine welfare effects or an implicit carbon price of CES.

2.3 Estimating a Household Carbon Footprint (HCF)

According to a multi-regional input output model, the largest aggregate contributors

to HCF are private transport (26%), home energy (23%), miscellaneous goods and

services (10%), health services (8%), and home food and beverages (6%). The re-

maining 30% of emissions are distributed across the other seven categories (Weber

and Matthews 2008). The largest fractions of energy requirements of households (res-

idential energy, transportation, and food) are also the most energy intense per dollar

(Wiedenhofer, Lenzen, and Steinberger 2013).

Carbon footprints widely vary by income, urbanity, and geography. With increas-

ing income, direct energy requirements (energy used to heat homes or drive cars) raise

weakly and indirect energy requirements (energy involved in goods and services) raise

strongly (Wiedenhofer, Lenzen, and Steinberger 2013; Lenzen, Dey, and Foran 2004).

Consequently, emissions are strongly correlated with income, but the emissions inten-

sity per dollar declines with increasing income, as necessities are more energy intense

than luxuries (Sovacool and Brown 2010, Lenzen 1998). This distinction between

total carbon footprint and carbon intensity per dollar is important to consider when

3Many states passed their version of an RPS as part of a larger energy package, including policy
that would conceivably increase emissions. These accompanying policies were not isolated in the
Greenstone paper.
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studying the effects of urbanization on HCFs.

Total energy use and indirect energy is higher in urban households, but direct

energy use is lower than rural households (Wiedenhofer, Lenzen, and Steinberger

2013; Lenzen, Dey, and Foran 2004). Per dollar, direct energy has higher carbon

content than indirect energy consumption, leading rural households to have higher

carbon intensity because more of their budget is spent on energy intensive commodi-

ties, namely private transportation and residential energy (Wiedenhofer, Lenzen, and

Steinberger 2013; Munksgaard et al. 2005). While rural households have larger foot-

prints than urban households (Baiocchi, Minx, and Hubacek 2010), it is not true that

increasing urbanization decreases carbon footprints. As population density increases,

total carbon footprint weakly increases until a threshold is met, at which point HFCs

decline sharply (C. Jones and Kammen 2014; Ummel 2014). This trend is driven

by the higher incomes and the greater vehicle miles traveled in the areas outside of

metropolitan centers. In result, the suburbs account for 50% of household carbon

emissions (C. Jones and Kammen 2014), despite accounting for approximately one

third of the U.S. Population.

While urban areas have lower emissions than suburbs, particularly in older areas

such as NYC, the differences within metropolitan areas (between city and suburbs)

are smaller than across metropolitan areas (e.g., between New York and San Fran-

cisco) (C. Jones and Kammen 2014; Glaeser and Kahn 2008). Variability in emissions

depends in part on age. Older cities tend to have lower transit emissions but higher

heating emissions compared to newer cities (Glaeser and Kahn 2008). Globally, urban

density is not always related to small carbon footprints, as there is greater dependence

on the wealth of those occupying city (Sovacool and Brown 2010).
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2.4 Policy and Policy Proposals

2.4.1 Carbon Pricing

Carbon pricing has gained prominence in the policy landscape over the last several

years. The Baker-Schultz carbon pricing framework has provided a road-map for a

market-based solution to climate change. It includes four main components: a car-

bon price (starting at $40 per ton and increasing at 2% above inflation annually), a

dividend, a border adjustment for goods traded into and out of the United States,

and regulatory roll back (Baker et al. 2017).

Seven bills introduced in the 116th Congress would implement a carbon price

ranging from $15 to $52 per metric ton of CO2. The legislation varies in how revenue

would be used; five of the bills propose direct payments to consumers, either as a

dividend or an increase to social security; four bills include tax reform, either through

a payroll tax cut or a tax credit scheme; and, most bills include ancillary uses of

revenue such as research funding, block grants, and infrastructure spending.4

2.4.2 Regulatory Policy

The Corporate Average Fuel Economy (CAFE) standard is a regulation that is a

legacy of the 1970s Arab Oil Embargo. It has since been used with the goal of reduc-

ing carbon emissions and was the subject of a protracted battle between the Trump

Administration and that State of California. CAFE mandates a certain fuel economy

for the production-weighted average vehicle fleet. This incents car-markers to pro-

duce more vehicles that are more efficient, such as hybrids, and fewer cars that are

less efficient, such as SUVs, which creates an implicit subsidy and tax (respectively).

A Clean Energy Standard (CES) is a regulatory framework that mandates electric-

4Resources for the Future compiles information on carbon pricing bills here: RFF Carbon Pricing
Bill Tracker
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ity providers to acquire a certain percentage of their energy from clean or low-carbon

sources. There were two CES proposals in the 116th Congress, which both used on a

credit trading system to create a subsidy for clean electricity and an implicit tax on

more carbon intensive electricity. The way I model CES and CAFE is described in

the following section.

2.5 Objectives

When estimating the effects of policy, the literature hitherto has applied economy-

wide, sectoral models. Other bodies of research have quantified the size of household

carbon footprints according to sources of consumption. I seek to bridge these bodies

of work by estimating the impacts of climate policy on households and examining the

way that the resulting costs of these policies vary with geography and demography.

Further, I endeavor to fill the important gap of identifying how the heterogeneity

within an income group varies across the United States and its implications for policy

design. Finally, I also compare household impacts of tax policies versus regulatory

policies, showing that the impact to the public can be obscured and that the cost of

regulatory compliance is passed on in regressive ways.
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Chapter 3

Methodology

The general process is as follows: I start with a data set that tracks consumption of a

commodity for a representative sample of US consumer units (households), along with

household demographics, and physical characteristics of housing. Next, I use machine

learning techniques that trains a prediction model relating household demographics,

geographic, and weather data to energy consumption. Finally, I apply the model to

Census data with the equivalent variables at the smallest geographic unit of analy-

sis. This analysis is repeated for transportation data and consumer expenditure data.

3.1 Data Sources

The 2015 Regional Energy Consumption Survey (RECS) was used to estimate the

electricity and heating fuel consumed by each household (U.S. Energy Information

Administration 2018). RECS, conducted by the Energy Information Administration,

comprises two surveys: one to households and one to energy suppliers. Together, it

characterizes the energy use and expenditure across a range of physical characteris-

tics of housing and demographic characteristics and the corresponding sample weight.

Due to the lower response rate on the 2015 survey, estimates could only be character-

ized at the Census Division level, of which there are 9, though RECS separated the

Mountain Division into North and South. The 2017 National Household Transporta-
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tion Survey (NHTS) was used to estimate the vehicle miles traveled per household

(Federal Highway Administration 2019). NHTS characterizes non-commercial travel

at the household level and associated demographics. The 2018 Consumer Expendi-

ture Survey (CEX) was used to estimate household spending on products and services

(U.S. Bureau of Labor Statistics 2020). CEX is conducted quarterly and annual es-

timates were made by aggregating across the five quarters for which there are data

for 2018, following the guidelines published by the Bureau of Labor Statistics.

3.2 Model

I developed a model for consumption of electricity, heating fuel (methane, propane,

and fuel oil), miles traveled, and consumer products and services (food, alcoholic

beverages, housing, apparel, health, entertainment, personal care, education, tobacco

products, life insurance, cash contributions, and miscellaneous).

I tested three variations of a linear model: Least Absolute Shrinkage and Selection

Operator (Lasso) regression, Ridge Regression, and Elastic Net, which combines Lasso

and Ridge. Elastic Net allows me to increase the predictive power of the model and

improve the accuracy the estimates by identifying which variables among all potentials

are worth including.

𝐿(𝜆1, 𝜆2, 𝛽) =
𝑛∑︁

𝑖=1

(𝑦𝑖 −
∑︁
𝑗

(𝑥𝑖𝑗𝛽𝑗))
2 +

1 − 𝛼

2
𝜆2

𝑚∑︁
𝑗=1

𝛽2
𝑗 + 𝜆1𝛼

𝑚∑︁
𝑗=1

|𝛽𝑗| (3.1)

Where 𝑛 is the number of observances, 𝑚 is the number of variables (and coeffi-

cients) in the model, 𝛽 is the coefficient for variable, 𝑗, 𝜆 is a penalty term, and 𝛼

is the tuning parameter between ℓ2 regularization and ℓ2 regularization. The penalty

term, 𝜆, will adjust how restrictive the model will be. If 𝜆 = 0, then all variables will

be selected; if 𝜆 = ∞, then no variables will be selected.
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The tuning parameter, 𝛼, is the differentiation between Lasso and Ridge regres-

sions. If 𝛼 = 1, then we only have ℓ2 regularization, which is a Lasso regression.

If 𝛼 = 0, then we only have ℓ1 regularization, which is a Ridge regression. The R

package "caret" (Kuhn 2020) was used to find the alpha parameters for Elastic Net.

The R package "glmnet" (Friedman, Hastie, and Tibshirani 2010) was used to solve

the below optimization equation:

𝛽 = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐿(𝜆1, 𝜆2, 𝛽)} (3.2)

The variables were all mean-standardized before the optimization is conducted so

that the magnitude of a variable does not affect its selection. The coefficients are

returned for the non-standardized variables after the optimal soultion is found.

There are thousands of covariates among the variables and interaction terms. For

example, the age of a house and source of home heating may both be predictive of

energy consumption (older homes might have less insulation and tend to use more

energy to heat their house, and people who heat their homes with natural gas will

consume more natural gas). However, the interaction between the age of the home

and home heating could also be important if, perhaps, older homes tend to have less

efficient natural gas furnaces. Indeed, in my estimate for natural gas consumption,

Lasso selected to include the interaction term between age of home and whether the

home heats with natural gas.1

I tested various values of lambda using a k-fold cross-validation method. Cross

validation allows me to determine the optimal trade-off including too few variables

(with a large lambda) and too many variables (with a small lambda). RECS and

CEX data were given five folds (k=5) and NHTS data were given 10 (k=10), which

1The R package glinternet (Lim and Hastie 2019) was used to find interaction pairs
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are randomly divided.

After first determining a sequence of potential lambda values, the model is “trained”

with one of the folds omitted and used for testing. The error and standard deviation

are averaged over each fold. The value for lambda that minimizes cross-validation er-

ror (the difference between the predicted value using the trained model and the actual

value in the kth fold) is identified. For models relating to energy and transportation

use, the cross-validation error decreased monotonically with lambda, reflecting the di-

minishing ability of including new variables to improve predictive power.2 The model

is selected with the “1SE rule,” using the largest value of lambda that is one standard

deviation above the minimum lambda. This rule increases the regularization and

therefore improves the generalization of the model.

With the exception of the model for electricity use, which does not have null values

in the outcome variable, a Probit model was used to transform the y and improve

non-linear prediction. The R package "sampleSelection" (Toomet and Henningsen

2008) was used to fit the Probit model. Probit models the probability, 𝑝, of a variable

being positive or negative:

𝑝𝑖 = Φ

(︃
𝑗=𝑚∑︁
𝑗=0

(𝛽𝑗𝑥𝑖𝑗)

)︃
(3.3)

Where Φ is the function for a normal distribution on the linear model. Variables

that were selected by Lasso were fed to the Probit model, and variables were removed

that caused separation in the data. The Probit model was multiplied by the Lasso

estimate, conditional on values being positive:

2See Fig B-3, B-4, and B-5 in the Appendix for the cross-validation with respect to lambda for
each model.
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𝐸[𝑦|𝑥] = 𝐸[𝑦|𝑥, 𝑧 > 0] × (𝑝𝑧>0) + 𝐸[𝑦|𝑥, 𝑧 ≤ 0] × (𝑝𝑧≤0) (3.4)

= 𝐸[𝑦|𝑥, 𝑧 > 0] × (𝑝𝑧>0) (3.5)

Where 𝑧 is the dummy variable indicating whether 𝑦 is positive or negative. In

this case, there cannot be negative values of consumption as I did not account for

cases such as home generation of energy through solar power.

3.2.1 Model Performance

Table 3.1: Alpha Values Selected and Used in Elastic Net Model
𝛼

Electricity 0.29
Natural Gas 0.24

Propane 0.91
Fuel Oil 1.0

Vehicle Miles Traveled 0.10
Food Cons. 0.70

Alcoholic Bev. Cons. 0.40
Housing Costs 0.20
Apparel Cons. 0.10

Healthcare Costs 0.20
Entertainment Cons. 0.20
Personal Care Cons. 0.60

Education Costs 0.50
Tobacco Products Cons. 0.10

Life Insurance Cons. 0.70
Miscellaneous COns. 0.70
Cash Contributions 0.20
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Table 3.2: R-Squared Values for Linear Models (Positive-values Only)
Lasso Ridge Elastic Net

Electricity 0.687 0.631 0.683
Natural Gas 0.674 0.663 0.670

Propane 0.646 0.608 0.651
Fuel Oil 0.604 0.578 0.615

Vehicle Miles Traveled 0.324 0.311 0.317
Food Cons. 0.332 0.335 0.352

Alcoholic Bev. Cons. 0.0716 0.0767 0.144
Housing Costs 0.243 0.266 0.303
Apparel Cons. 0 0 0.0701

Healthcare Costs 0.142 0.141 0.214
Entertainment Cons. 0 0 0.0821
Personal Care Cons. 0.115 0.135 0.168

Education Costs 0.0131 0 0.146
Tobacco Products Cons. 0.0195 0.00330 0.147

Life Insurance Cons. 0 0 0.116
Miscellaneous Cons. 0 0 0.0255
Cash Contributions 0 0 0.0758

Table 3.3: R-Squared Values for Combined Linear and Non-Linear Models
Lasso Ridge Elnet 2 Jones & Kammen

Electricity 0.623 0.620 0.659 0.608
Natural Gas 0.835 0.819 0.841 0.471

Propane 0.614 0.462 0.622
Fuel Oil 0.812 0.642 0.852 0.206

Vehicle Miles Traveled 0.277 0.281 0.284 0.324
Food Cons. 0.248 0.242 0.254

Alcoholic Bev. Cons. 0.0503 0.0465 0.0487
Housing Costs 0.184 0.162 0.116
Apparel Cons. 0.00221 0.00221 0.00220

Healthcare Costs 0.0849 0.0922 0.0772
Entertainment Cons. 0.00349 0.00349 0.00355
Personal Care Cons. 0.0610 0.0796 0.0738

Education Costs 0.00513 0.00513 0.00480
Tobacco Products Cons. 0.0133 0.0130 0.0123

Life Insurance Cons. 0.0111 0.0111 0.0112
Miscellaneous Cons. 0.00239 0.00239 0.00232
Cash Contributions 0.00373 0.00373 0.236
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Figure 3-1: Predicted versus Actual Values using Elastic Net Models
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3.3 Footprint Estimation

The American Community Survey (ACS) was used to gather average household char-

acteristics per census tract for each variable (U.S. Census Bureau 2019).3 A Census

tract is a subdivision of a County, consisting of approximately 4,000 residents. I

chose to conduct the analysis at the Census tract level because tracts are drawn to

have similar demographics and when variables are standardized, they will be more

reflective of the average household in that tract. However, for some variables, such as

number of vehicles per household, the data were sparsely populated and the county

estimates were used instead.

The ACS does not have all the variables present in the other surveys, so the data

were supplemented with other sources. Vehicle fuel economy per Census tract were

averaged from the registry of motor vehicles (an IHS Markit report). Climate Normals

(30-year averages) were provided by the National Oceanic and Atmospheric Adminis-

tration (Arguez et al. 2012)4 and the International Energy Conservation Code (IECC)

climate region were provided by county from Pacific Northwest National Laboratory.

NOAA Climate data were matched to counties by spacial analysis; for counties with-

out sufficient weather data, the heating degree days and cooling degree days in each

IECC climate region were averaged and applied. The residential prices of fuel oils

were provided by the State Energy Data System (SEDS) (U.S. Energy Information

Administration 2019), and the residential electricity prices were collected from the

Utility Rate Database and aggregated at the county level (National Renewable En-

ergy Laboratory 2020).

Carbon footprints were then calculated using the estimates for consumption us-

ing the Lasso models. The Department of Energy’s Emissions Generation Resource

Integrated Database (eGRID) were used for the carbon intensity of the grid (U.S.

3I used the five-year estimate for the year 2015 using the Census API and the R package tidycensus
(Walker 2019)

4I used the 1981-2010 Normals for Heating Degree Days and Cooling Degree Days
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Environmental Protection Agency 2020). Each tract was assigned to a NERC sub-

region through geospacial analysis (U.S. Department of Homeland Security 2019); if

a tract fit within one or more subregion, the average emissions factor was used. The

Complication of Air Pollutant Emissions Factors, published and updated by the EPA,

was used to determine emission factors for various fuel types (U.S. Environmental

Protection Agency 2016). Lifecycle emissions were also factored into the emissions

factor calculations using the GREET model (Argonne National Laboratory 2019).

The emissions intensity per dollar of spending on goods and services were used from

Ummel 2014.

3.4 Policy Modeled

I model the effects on household budgets for a given policy by estimating the cost

to households due to increased prices of energy and commodities with a carbon tax

or regulatory cost; I assess the benefits of a policy by estimating savings related to

a decrease energy and commodity prices due to a subsidy or a lump sum transfer, in

the case of carbon dividend schemes. My approach only accounts for use-side effects,

not source-side effects, which are important to determine regressivity. While there

are direct benefits to climate policy such as avoiding social costs and co-benefits such

as reduced emissions of nitrogen oxides, they are outside the scope of this work. To

model costs and benefits, I assume that consumers are inelastic in their spending,

there is complete pass through of tax and policy costs, and a carbon dividend scheme

would be revenue neutral. I model the average household footprint for each Census

tract; therefore, I do not capture the full variance of household effects in the United

States. Rather, I capture the expected variance for a representative household across

variables of geography, urbanity, and income. This is meant to inform policy makers

of the distributed effects of policy, rather than provide a perfect calculation of such

effects. I intend to describe the distributional impacts of policy, not to assess the

relative efficacy of a policy to reduce emissions or to model the distributional impacts

of climate change on the United States. I would argue that a policy of "do nothing"
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is the worst of all alternatives and will have severe consequences for households who

are low-income and vulnerable to disruption.

There are 12 policy designs that I model: (1) A carbon tax with no revenue recy-

cling; (2) a carbon price and dividend (CPD); (3) CPD with an adjustment for urban

and rural households; (4) CPD with an adjustment for geography; (5) CPD with an

adjustment for both urbanity and geography; (6) CPD with an adjustment for NERC

regions; (7) CPD with an adjustment for household income; (8) CPD with an adjust-

ment for household income and geography; (9) the Corporate Average Fuel Economy

(CAFE) standard; (10) a Clean Energy Standard (CES); (11) the Obama-era Clean

Power Plan; and (12) a combination of a CAFE standard, CES, and carbon pricing.

I took a baseline of $50 per ton of Carbon for all applicable scenarios.

A carbon tax with no revenue recycling is an edge case in the scenario that pol-

icymaker decide to fix the externality, but commit all revenue to paying down the

deficit. I consider this the least likely policy to be enacted, but it nonetheless provides

a baseline for consideration. CPD policy scenarios use this baseline to calculate total

revenue and resulting dividend per household.

For scenarios 2-6, the carbon footprint for households in each category (e.g., urban

or rural) were averaged and the dividend was adjusted so that the average household

would break even. For scenarios 7 and 8, the dividend was calculated such that

the average household in each quintile would break even, then increased by 75% for

the bottom quintile, 25% for the second quintile, reduced by 25% for the fourth

quintile, and reduced for the fifth quintile by approximately 40% (adjusted such that

the policy remained revenue neutral). Scenarios 7 and 8 were calculated differently

from 2-6 because the latter were structured such that transfers between each group

(e.g., urban and rural) were eliminated; if 7 and 8 followed the same procedure,

it would reduce dividends to low income households because they have a smaller

absolute contribution. When adjusting for income, I am considering the scenario
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where policy makers want to increase the progressive outcome of the policy. Urban

and Rural designations were determined following the method described in Isserman

(2005) and income quintile ranges were followed the 2015 data from the Tax Policy

Center. Scenario 9, the CAFE standard calculated the implicit tax/subsidy on each

vehicle owned according to the shadow price of the regulation. Cars that get worse

fuel economy than the standard get taxed and cars that get better than the standard

get subsidized according to the model:

Price of a Car = MC + 𝛼(GPM of car − Standard in GPM) (3.6)

I then multiplied the average tax by the vehicles per household. I used the esti-

mate for vehicles per household at the county level because of poor availability in the

ACS data at the finer scale.

Scenario 10, a CES, assumed the policy will set an emissions standard for the

electricity grid and energy providers with more carbon-intensive energy would buy

credits (which would cost $50/ton) from providers with less carbon-intense energy.

The household cost or benefit was the implicit tax or subsidy multiplied by the elec-

tricity consumed.5 Scenario 11, the Clean Power Plan (CPP), was based on a study

of permit prices, conducted by the Nicholas Institute (M. Ross, Hoppock, and Murray

2016). The policy cost was calculated as follows:

Policy Cost = (Permit Cost/MWH)(MWH Consumed) (3.7)

Scenario 12 combined regulatory policy costs with a carbon price and dividend

scheme. In this case, I assumed that areas of consumption that were covered by

5By assuming inelastic consumption of energy, I note that the associated costs and benefits will
be more accurate in the short-term. This assumption is not accurate in long-run, as consumers will
adapt to differentiated energy prices. I also note that $50 per ton is a high estimate for permit
prices.
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regulation policy would be exempt from the carbon price. This scenario blended the

effects of a Clean Energy Standard, CAFE Standards, and a carbon price with an

evenly divided dividend. Therefore, the carbon price applied only to home heating

fuels and consumer goods and the net policy effects were the combined costs of CES,

CAFE, and the refined CPD.

36



Chapter 4

Results

4.1 Household Footprint

My results highlight the importance of accounting for not only differences across in-

comes, but also differences across geography and urbanity. Across the US, the average

carbon footprint is 23.8 tons per year per household.1 The bottom 20% of households

generate 17.1 tons, or less, of carbon dioxide emissions, while the top 10% of house-

holds generate 30.1 tons, or more. Meaningful differences exist across both income

and geography. There is significant variation in HCF with income. The average car-

bon footprint of a household in the bottom 20% of income is 18.5 tons; the average

is 28.2 tons, 52% greater, for households in the top 20% of income. Average carbon

emissions per dollar of income, in contrast, falls monotonically across income quin-

tiles, with the bottom quintile producing 1.04 tons per every $1,000 of income and

the top quintile producing 0.2 tons per every $1,000 of income.

Carbon footprints in rural communities exceed those of suburban and metropoli-

tan areas, though the differences are not as extreme as the variation with income.

Average footprints are 25.7 tons per year in rural areas, but 24.5 tons in urban areas

and 21.0 tons in metropolitan areas. The difference in HCF across regions and states

is especially significant. The average HCF in California is 18.8 tons, while the aver-
1This is the population weighted average across all Census tracts.
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age HCF in Missouri is 30.6 – a difference greater than the difference across income

groups. That difference holds across Census divisions. The average HCF in the Pa-

cific Division is 19.3 tons (which includes California, Oregon, and Washington) while

the average is 27.4 tons in the West-North Central Division (which includes Kansas,

Missouri, Nebraska, Iowa, Minnesota, and the Dakotas). There are also important

differences across race. While footprints are negatively correlated with the share of

residence that are African American or Hispanic (correlation of -0.31 and -0.30 respec-

tively), emissions are positively correlated with the share of White residents (0.49).

The footprint associated with electricity consumption is heavily influenced by the

emissions intensity of the associated North American Electric Reliability Corporation

(NERC) region. Fuel oil- and methane-related carbon emissions are concentrated in

regions that rely on those fuels for home heating, most notably, in the North East

where fuel oil is heavily relied upon. Transportation emissions are greater in the

suburbs, where households tend to have longer commutes and multiple cars. The

transportation footprint is generally larger in the Midwest where the fuel economy

for private vehicles tends to be lower. 2 Products and services account for a carbon

footprint that was strongly correlated with income. These findings are consistent with

similar studies in literature (C. Jones and Kammen 2014, C. M. Jones and Kammen

2011, Ummel 2014, Jihoon Min, Hausfather, and Qi Feng Lin 2010).

2I did not model the footprint related to public transit or air travel, which would likely increase
the estimate in urban areas.
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Figure 4-2: Carbon Footprint by Modeled Component

Figure 4-1 shows the distribution of carbon footprints across geography. An ex-

panded view of New York City is included to highlight the effect of Urbanization –

an average household on Long Island has a footprint nearly three times larger than

that of an average household in Manhattan. Across the map, similar trends visible:

major metropolitan areas have a "donut" trend, where the city center has low car-

bon emissions and the suburban areas outside the city have high emissions. Some

rural and suburban areas have lower than average emissions, such as, through the

Carolinas, the southern Mississippi Valley, and parts of the Pacific Coast. This is
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driven by two different factors: the Carolinas and the southern Mississippi Valley

have more households that are low income, which depresses their overall footprint.

The Coast has higher income, but operates on a grid with lower emissions intensity

and in a climate that does not necessitate the same level of energy required for cooling.

Figure 4-3: Total Household Carbon Footprint (in tons) across income quintiles and
urbanity, compared to U.S. average (represented by the dashed line)

Figure 4-3 shows the distribution of carbon footprints across two dimensions: ur-

banity and income. This shows that as income increases, the footprint distribution

moves right, and for a given income group, increased urbanization generally shifts

the distribution left. It also shows that there can be wide and bi-modal distributions

within each grouping.

Figure 4-4 shows the significant effect that geography and NERC Region have

on footprints related to energy. While income and urbanity both influence the size
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Figure 4-4: Total Household Carbon Footprint according to a) Census Region; b)
Income Quintile; c) Urbanization; and, d) NERC Region, broken out by footprint
contribution
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of footprint, the variances across geography reduce the absolute difference between

income quintiles and between urban and rural populations. That is, there are of-

ten significant differences between the urban and rural areas of one city (as seen in

Fig. 4-1), but the variances across metropolitan areas can exceed the differences within

metropolitan areas. Figure 4-5 shows the variation in HCF across party affiliation, as

determined by households represented by Members of the House of Representatives

in the 116th Congress. While households represented by Republicans tend to have a

slightly higher footprint than average and households represented by Democrats tend

to have a slightly lower footprint than average, there is a wide distribution for both

parties.

Figure 4-5: Distribution of Household Carbon Footprints across political parties (ac-
cording to party affiliation of House Members in the 116th Congress), compared to
U.S. average (represented by the dashed line)
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4.2 Policy Impacts

My results highlight the large differences in incidence across policies, even within

different carbon tax designs, and across geographic regions within policies. However,

even the most basic tax-and-dividend plan, one that has each household within the

US receiving the same dividend payment is highly progressive; higher-income house-

holds receive lower net payment, the dividend amount minus carbon tax payments,

especially as a share of their income.

Under a simple tax-and-dividend plan, 96% of tracts with an average income in

the bottom 20% of income receive a larger dividend than they pay in increased prices

of energy and commodities, with an average net gain of $284 per household per year.

This is a substantial amount of income for these households. On average, a household

receives over $15.1 for every $1,000 of income. Among tracts in the second income

quintile, 69% of households have net gains (average gain of $106 or $3.01 per $1,000

of income), 43% in the third quintile (-$16 or -$0.29 per $1,000 of income), 33% in

the fourth quintile (-$104 or -$1.18 per $1,000 of income), and only 20% in the fifth

quintile (-$226 or -$1.51 per $1,000 of income).

This simple plan, however, leads to transfers from suburban and rural homes to

metropolitan households. Rural households are less likely to benefit from this simple

tax-and-dividend plan. Across all income levels, only 25% of rural households receive

a net positive dividend with an average net gain of -$121 per household per year (-

$2.44 per $1,000 of income). In contrast, 76.1% of metropolitan households receive net

benefits, with an average net benefit of $152 per household per year ($2.64 per $1,000

if income). Suburban areas lose, on average, under the simple tax-and-dividend plan.

The average suburban household spends $57 more in taxes per household per year,

with over 57% of households spending more in taxes than they receive in dividends.
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Table 4.1: Net Impact of Policy Scenarios by Income Quintile (USD/Household)
1st Q. 2nd Q. 3rd Q. 4th Q. 5th Q.

Carbon Tax -866 -1040 -1170 -1250 -1360
CPD 284 106 -16.3 -104 -208

CPD – adjusted for urbanity 247 108 -5.73 -117 -234
CPD – adjusted for geography 309 123 -9.86 -132 -262

CPD – adjusted for urb. + geo. 278 119 -1.07 -136 -276
CPD – adjusted for NERC Reg. 304 122 -12.6 -128 -244

CPD – adjusted for income 650 261 0 -313 -556
CPD – adjusted for inc. + urb. 650 261 0 -271 -541

CAFE -68.1 -87.9 -86.4 -53.4 -23.4
CES -6.21 -6.85 -1.56 18.6 32.2
CPP -139 -165 -154 -126 -114

CPD & Regs -21.5 -42.2 -77.1 -99.7 -149

Table 4.2: Net Impact of Policy Scenarios by Urbanity (USD/Household)
Metropolitan Rural Suburban

Carbon Tax -998 -1270 -1210
CPD 152 -121 -56.6

CPD – adjusted for urbanity 99.9 0 -100
CPD – adjusted for geography 106 -68.2 -39.1

CPD – adjusted for urb. + geo. 70.9 0 -70.7
CPD – adjusted for NERC Reg. 112 -74.3 -43.2

CPD – adjusted for income 167 -68.7 -82.2
CPD – adjusted for inc. + urb. 119 83.8 -116

CAFE -46.7 -136 -74.7
CES 17.9 -24.6 -1.64
CPP -109 -192 -160

CPD & Regs -52.0 -93.4 -88.1
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However, the difference among households in the first and second quintile is dra-

matic. A large share of households receive a net positive dividend (68.5%) and the

average net impact is $106, but the average net impact is about a third ($33.7) among

rural households in the second income quintile. Rural households in the first quin-

tile have less than 40% of the net benefit compared to the quintile overall ($109 per

household, compared to $284).

There are significant differences in the effects for households in these policy sce-

narios. The best policy for rural households is a carbon price and dividend with the

dividend adjusted for both income and urbanity. The effects are often negative on

average for rural households, except for when adjusted for urbanity in which case the

net effect is zero by construction. When only adjusting the dividend for income, the

effect is negative for 60% of rural hosueholds (-$68.7 on average, or -$1.38 per $1000

of income), while the effect is positive for 62% of rural hosueholds ($83.8 on average,

or $1.68 per $1000 of income) when adjusting for both household income and urbanity.

Regulations had negative costs for most households, as I only examined the dis-

tributed effects with respect to energy and commodity prices and ignored all other

benefits of regulation that would typically factor into a cost-benefit analysis. It is dif-

ficult to compare across regulatory scenarios, because they do not all reduce carbon

emissions by the same amounts and the magnitudes of each would vary if controlling

for carbon reduction. That said, examining the distributional effects, especially the

potential for regressive outcomes, carries important lessons.

CAFE Standards and the Clean Power Plan are both regressive. For CAFE, the

average effect on households in the first quintile is -$68, while the average effect on

households in the top quintile is about a third the size, -$23. Hardly any households in

the first quntile see positive net effects from CAFE Standards (5%), while 31% of the

wealthiest households have positive effects. CAFE also benefits those in metropoli-

tan areas more (-$47 on average) compared to rural households (-$136). In the case
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of CPP, households in the second quintile have a net effect of -$165, compared to

-$114 for households in the top quintile. CPP is worse for rural households (-$192 on

average or -$3.9 per $1000 of income) compared to households in metropolitan areas

(-$109 on average or -$1.9 per $1000 of income).

A blended approach that combines a carbon price and dividend with regulations

preserves the progressive nature of carbon dividends. The net effect for this policy

scenario is -$21.5 for the bottom income quintile and -$149 for the top income quin-

tile. However, this scenario was worse for rural households (-$93.4 on average) than

for metropolitan households (-$52 on average).

Table 4.3: Net Impact of Policy Scenarios per $1000 of Income by Income Quintile
1st 2nd 3rd 4th 5th

Carbon Tax -46.3 -29.7 -20.8 -14.3 -10.0
CPD 15.1 3.01 -0.291 -1.18 -1.51

CPD – adjusted for urbanity 13.1 3.07 -0.102 -1.33 -1.70
CPD – adjusted for geography 16.4 3.51 -0.176 -1.51 -1.91

CPD – adjusted for urb. + geo. 14.7 3.38 -0.0191 -1.56 -2.00
CPD – adjusted for NERC Reg. 16.1 3.47 -0.226 -1.46 -1.77

CPD – adjusted for income 34.5 7.44 0 -3.58 -4.04
CPD – adjusted for inc. + urb. 34.5 7.44 0 -3.09 -3.93

CAFE -3.61 -2.50 -1.54 -0.610 -0.17
CES -0.330 -0.195 -0.0279 0.213 0.234
CPP -7.38 -4.69 -2.75 -1.44 -0.826

CPD & Regs -1.14 -1.20 -1.38 -1.14 -1.09
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Table 4.4: Net Impact of Policy Scenarios per $1000 of Income by Urbanity
Metropolitan Rural Suburban

Carbon Tax -17.2 -25.5 -18.4
CPD 2.64 -2.44 -0.875

CPD – adjusted for urbanity 1.73 0 -1.55
CPD – adjusted for geography 1.85 -1.37 -0.605

CPD – adjusted for urb. + geo. 1.23 0 -1.09
CPD – adjusted for NERC Reg. 1.95 -1.49 -0.667

CPD – adjusted for income 2.90 -1.38 -1.27
CPD – adjusted for inc. + urb. 2.06 1.68 -1.79

CAFE -0.812 -2.73 -1.15
CES 0.311 -0.493 -0.0253
CPP -1.9 -3.86 -2.48

CPD & Regs -0.904 0 -1.36

Table 4.5: Fraction of Households with Positive Net Impact by Income Quintile
1st 2nd 3rd 4th 5th

Carbon Tax 0 0 0 0 0
CPD 0.959 0.693 0.432 0.325 0.198

CPD – adjusted for urbanity 0.947 0.714 0.466 0.307 0.156
CPD – adjusted for geography 0.991 0.815 0.453 0.174 0.074

CPD – adjusted for urb. + geo. 0.987 0.833 0.503 0.163 0.0682
CPD – adjusted for NERC Reg. 0.985 0.789 0.447 0.237 0.0930

CPD – adjusted for income 1.00 0.917 0.463 0.0976 0.0182
CPD – adjusted for inc. + urb. 1.00 0.938 0.48 0.12 0.0184

CAFE 0.0487 0.0854 0.114 0.201 0.310
CES 0.331 0.356 0.411 0.541 0.619
CPP 0 0 0 0 0

CPD & Regs 0.463 0.45 0.366 0.276 0.113
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Table 4.6: Fraction of Households with Positive Net Impact by Urbanity
Metropolitan Rural Suburban

Carbon Tax 0 0 0
CPD 0.761 0.254 0.433

CPD – adjusted for urbanity 0.689 0.479 0.354
CPD – adjusted for geography 0.738 0.309 0.465

CPD – adjusted for urb. + geo. 0.682 0.529 0.403
CPD – adjusted for NERC Reg. 0.741 0.308 0.461

CPD – adjusted for income 0.719 0.395 0.471
CPD – adjusted for inc. + urb. 0.679 0.620 0.407

CAFE 0.161 0.104 0.113
CES 0.496 0.336 0.386
CPP 0 0 0

CPD & Regs 0.415 0.343 0.327

4.2.1 Carbon Pricing

Tables 4.7 and 4.8 display the average dividend amount per household for policy

scenarios 2 through 8 according to income and urbanity, respectively. In each sce-

nario, the revenue collected is the same (approximately $141 Billion), but divided

differently. In scenarios 3, 5, and 8, there is an explicit adjustment for urbanity of

the household and in scenarios 7 and 8 there is an explicit adjustment for income.

However, adjusting for urbanity and geography increases the dividend for the bot-

tom three income quintiles and adjusting for income increases the dividend for rural

households. Adjusting for NERC regions also increases the progressive structure of

the dividend.

Table 4.7: Average Household Dividend by Income Quintile
1st 2nd 3rd 4th 5th

CPD 1150 1150 1150 1150 1150
CPD – adjusted for urbanity 1110 1150 1160 1140 1120

CPD – adjusted for geography 1180 1170 1160 1120 1100
CPD – adjusted for urb. + geo. 1140 1160 1170 1120 1080
CPD – adjusted for NERC Reg. 1170 1166 1154 1126 1114

CPD – adjusted for income 1520 1310 1170 940 802
CPD – adjusted for inc. + urb. 1520 1310 1170 983 817

CPD & Regs 523 523 523 523 523
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Table 4.8: Average Household Dividend by Urbanity
Metropolitan Rural Suburban

CPD 1150 1150 1150
CPD – adjusted for urbanity 1100 1270 1110

CPD – adjusted for geography 1110 1200 1170
CPD – adjusted for urb. + geo. 1070 1270 1140
CPD – adjusted for NERC Reg. 1110 1200 1160

CPD – adjusted for income 1170 1200 1130
CPD – adjusted for inc. + urb. 1120 1360 1090

CPD & Regs 523 523 523

Figures 4-6, 4-8, and 4-10 show the geographic distribution of household impacts

for policy scenarios 2, 5, and 7, respectively. Each figure includes an expanded view

of St. Louis, Missouri to facilitate discussion on impacts to major Midwestern cities.

Figures 4-7, 4-9, and 4-11 show the income distribution of household impacts for pol-

icy scenarios 2, 5, and 7, respectively. Each figure includes the overall effect and the

cross-sectional impacts across urbanity for each income group.

Scenario 5, a carbon price and dividend adjusted for urbanity and geography, has

the most homogeneous impact across the United States and the most narrow distri-

bution of impacts within each income group. Scenario 7, a carbon price and dividend

adjusted for income, has the greatest heterogeneity net effects within income groups.

St. Louis is a good example of the effects of urbanization across each of these policy

scenarios. In each case, there are greater net benefits in the city center, lower net

benefits in the suburbs, and rural areas tend to break even or lose on net. But, com-

pared to the baseline CPD, the CPD adjusted for urbanity and geography has more

homogeneous effects (a smaller absolute difference) and the CPD adjusted for income

has more heterogeneous effects (a larger absolute difference). Comparing across geo-

graphic differences, when controlled for urbanity and geography, there does not seem

to be clear and strong advantage for any particular state. However, when this is not

controlled for, there are stronger advantages to California and New York and lower

advantages to the Midwest and Mountain North.
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Figure 4-6: Net Impact of $50 Carbon Price and Dividend

Figure 4-7: Net Impact of $50 Carbon Price and Dividend - According to Income
Quintiles and Urbanity Classifications
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Figure 4-8: Net Impact of $50 Carbon Price, Dividend adjusted for Urbanity and
Geography

Figure 4-9: Net Impact of $50 Carbon Price, Dividend adjusted for Urbanity and
Geography - According to Income Quintile and Urbanity
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Figure 4-10: Net Impact of $50 Carbon Fee, Dividend adjusted for Income

Figure 4-11: Net Impact of $50 Carbon Price, Dividend adjusted for Income
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Figure 4-12: Net Impact of $50 Carbon Price, Dividend Adjusted for Income and
Urbanity

Figure 4-13: Net Impact of $50 Carbon Price, Dividend Adjusted for Income and
Urbanity
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4.2.2 Regulations

Figures 4-14, 4-16, 4-18 show the geographic distributions for regulatory policy, CAFE

Standards, Clean Energy Standards, and the Clean Power Plan, respectively. Figures

4-15, 4-17, 4-19 show the distribution of net effects across income groups and urbanity

for each regulatory approach. As shown, CAFE standards are regressive and tend to

disadvantage rural and Midwestern areas while benefiting coastal and urban areas.

The conclusions for regressivity are less clear in the case of a CES, as the distribution

is bi-modal, but there is a clear disadvantage to households in dirtier NERC regions,

which are located in the Midwest and the Plains.

All the regulatory policy I modeled had net costs to the bottom two income quin-

tiles. The Clean Power plan has the largest absolute cost per household (-$139 per

household for the lowest 20%, or -$7.38 per $1000 in income; and -$165 for the second

quintile, or -$4.69 per $1000 in income), followed by CAFE standards (-$68 per house-

hold for the lowest 20%, or -$3.61 per $1000 in income; and -$88 per household for

the second quintile, or -$2.50 per $1000 in income). Although it followed a regressive

trend, the costs associated with a Clean Energy Standard were small in comparison

(-$6.21 per household for the lowest 20%, or -$0.33 per $1000 in income, and -$6.85

for the second quintile, or -$0.20 per $1000 in income). It should be noted that the

estimated carbon emissions reduction between each regulatory policy and between the

regulatory policies and the carbon pricing policies are not the same. I seek to draw at-

tention to the general trends in regional and income effects, not only absolute impacts.

The estimation of costs and benefits for the Clean Energy Standard are based

on the assumption of inelastic consumption of electricity for each household. If a

household is in a NERC region with lower carbon emissions than the national aver-

age, then they will subsidized electricity rates and therefore will have a net benefit,

scaled by the amount of consumption for that household. In areas with more carbon-

intensive NERC regions, especially in states such as Missouri, Wisconsin, and Illinois,
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then households pay more and have a net cost associated with them. Accounting for

distributed benefits of a Clean Energy Standard such as reduced NO𝑋 emissions is

important but outside the scope of this study.3

A Clean Energy Standard follows a regressive trend for rural and suburban house-

holds, while the trend is less clear overall and for metropolitan areas due to the

multi-modal distribution. Rural areas tend to have a higher median cost and see

a wider distribution of effects compared to metropolitan and suburban households.

There is a large swath of the country that relies on coal and natural gas for power

and these are where the households who bear greater costs for a CES are located.

The rapid development of wind power and the displacement of coal with natural

gas are changing the carbon landscape of the United States; however, households in

the Midwest and Industrial Heartland could see mitigated costs if this trend continues.

The costs of the Clean Power Plan are based on the estimated permit prices for

each state that would be necessary to be in compliance with the Obama-era policy.

As with the Clean Energy Standard, estimating the benefits of avoided emissions

and the co-benefits of lowered pollutants and their respective distribution across the

country is important but outside the scope of this study.

Rural and suburban households have higher costs on average than metropolitan

households. Regardless of urbanity, the Clean Power Plan has a regressive costs,

as households in the top quintile have lower average and median costs than that of

households in the bottom two qunitiles.

3This analysis should be understood as a compliment to the study by Resources for the Future
(Projected Effects of the Clean Energy Standard Act of 2019) which accounted for the direct benefits
of avoided emissions as well as co-benefits of air pollution reduced.
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Figure 4-14: Net Impact of CAFE Standard

Figure 4-15: Net Impact of CAFE Standard - According to Urbanity and Income
Quintile
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Figure 4-16: Net Impact of Clean Energy Standard

Figure 4-17: Net Impact of Clean Energy Standard - According to Urbanity and
Income Quintile
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Figure 4-18: Net Impact of the Clean Power Plan

Figure 4-19: Net Impact of the Clean Power Plan - According to Urbanity and Income
Quintile
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Chapter 5

Discussion and Conclusion

5.1 Discussion

The models I developed analyzed regional and geographic variability in household

carbon footprints with greater granularity in comparison to existing literature. When

comparing carbon footprints, I found that the correlation with geography is as sig-

nificant as household income. The relationship between footprint and geographic

region is largely due to the relative carbon intensity of the electricity grid. Other

modeling has found that the majority of emissions reduction will come from changes

in the electric power sector (Goulder et al. 2019). Therefore this regional difference

will likely be mitigated with higher amounts of renewable penetration and the re-

tirement of coal power in Appalachia and the Midwest. As decarbonization occurs

in the United States, there is potential to reduce the heterogeneous impacts of cli-

mate policy within an income group – especially through programs that will reduce

consumption and emissions in rural areas. Such a policy could include community so-

lar and weatherization assistance programs and the extension of the Production Tax

Credit. However, new wind and solar in the heartland will not erase the substantial

advantage of the West Coast in renewable energy and efficiency measures. A carbon

dividend can be an effective tool for mitigating regional transfers, while still incenting

households everywhere to reduce emissions.
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Based on the conclusions of Jorgenson et al. 2018, I can expect that all policy

scenarios that assess a similar price on carbon (scenarios 1 through 8) will have sim-

ilar emissions reductions. However, I cannot assume that there will be equivalent

reductions through regulatory control (scenarios 9 through 12). Indeed, as discussed

in Knittel (2019), existing regulations could be replaced with a $7 per ton price on

carbon. I draw attention instead to the trends in regressivity and regional transfers

across policy scenarios. There is likely to be a blend of regulatory approaches and

pricing policy in a comprehensive climate strategy and future work should focus on

how policy can be efficiently combined, and which sectors of the economy should be

decarbonized through the instruments available.1

Figure 5-1 shows that, for a carbon price and dividend policy, there are transfers

between income quintiles and between urban and rural households. I believe that the

former is desirable, as a progressive policy will yield a transition that is equitable and

resilient to change. The latter, however, is not necessary in achieving a progressive

outcome and should be avoided in the design of an national climate policy. Further, I

believe that dividends are the clearest and most efficient way to correct for transfers

between urban and rural populations.

I found that policy makers can protect both rural populations and low-income

households if a carbon dividend scheme accounts for geography and/or urbanity.

Creating a ladder for the dividend, where low-income households are paid more and

high-income households are laid less, can indeed increase the progressive trend of

the policy, but also increases the heterogeneity of outcomes within an income group.

While income-adjusted policy design might have more natural political support, I be-

lieve that reducing the heterogeneity of net effects should be a goal for policy makers.

1Goulder et al. 2019 showed that 64 to 68% of the emissions reduced from a carbon price come
from the electric power sector. My work shows that the electric grid accounts for the large regional
differences between effects of climate policy, while higher costs to high-income households are a
factor of greater transportation emissions and more product and service consumption. If a carbon
price is not economy wide, or properly applied through border adjustment policy, my conclusions
that a price and dividend scheme will be broadly progressive may not hold.
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Figure 5-1: Transfers between income quintiles and urban-rural households for Carbon
Price and Dividend (the left side represents relative tax paid through a carbon price,
the right side represents the dividend received)

That is, it is not enough to examine the effects to the average household within an

income group, but the distribution of outcomes must also be considered.

I found that accounting for both geography (determined by the Census divisions

of the country) and urbanity (determined by population density and Census clas-

sifications) produces an outcome that is significantly less heterogeneous and more

progressive than an equal dividend given to all households. Such a policy could be a

good bipartisan "win-win" that will benefit constituents in progressive and conserva-

tive districts alike.

There will be a trade-off between the simplicity of policy and fixing regional trans-

fers; and, there is also a trade-off between protecting vulnerable populations who could

be adversely affected by a policy and maintaining the incentive to reduce emissions.

For example, carbon tax revenues could be adjusted based on state boundaries so

that households in more carbon-intense states would receive higher dividends than
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states that have lower emissions. I believe that such a policy could create an adverse

incentive for state policy makers to maintain a higher carbon footprint so that their

constituents would continue to receive a higher dividend.

Future work would benefit from a quantification of error propagation. Developing

precision in modeling will be important in predicting the effects of proposed policy

and the efficacy of potential solutions to correct for the mismatch between goals and

outcomes. The interaction between command-and-control regulation and a market-

based carbon price should also be explored in further depth with a computational

general equilibrium model. Other components of carbon price policy proposals also

deserve more attention, particularly border adjustments and their effect on trade and

local economies. Finally, the distribution of source-side effects, costs to business, and

costs to local governments also warrants examination.

5.2 Conclusion

The results from my work underscore the high variability in household carbon foot-

prints across a number of dimensions. Two dimensions warrant focus. First, my

results suggest that based on consumption of goods and services, low income con-

sumers are likely to spend more on carbon taxes, as a share of their income. I am

not the first to find this result. The regressivity of carbon taxes, ignoring the use

of the revenues, is a well-known argument against their use. While recent work sug-

gests that after accounting for the impact of carbon taxes on firms and employment

(known as source-side effects), carbon taxes are no longer regressive, the regressivity

of carbon taxes on the consumption dimension is likely to be a major political obstacle.

My work highlights a second dimension that is likely to pose a political obstacle

that is just as large, if not larger, than the regressivity of carbon taxes: the wide range

in carbon footprints across rural and urban communities. Indeed, the geographic cor-

relation of carbon footprints is nearly as significant as the variability across income
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levels. For example, the difference in average household emissions between the top

and bottom quintile is smaller than the difference between the average household in

California and Missouri.

These results accentuate the importance of how revenues from a carbon tax are

recycled into the economy. From an economic efficiency perspective, the best use

of the revenue is to reduce existing taxes that are a drain on economic activity and

efficiency, such as income or sales taxes. As inefficient (e.g., income) taxes are re-

placed with efficiency-enhancing taxes, such as carbon taxes, we not only help reduce

climate change, but we also improve the overall efficiency of the macro economy. The

drawback of such a carbon tax policy is that it requires jointly adopting a carbon

tax together with larger tax reforms, as well as the commitment of policy makers to

not increase the income or sales taxes in the future. As tax reform packages are seen

once per generation and are often political hot potatoes, I suspect that the political

hurdles of such a system are insurmountable.

A more simple policy design refunds the revenues collected by the carbon tax

in the form of household dividends, so-called "tax-and-dividend" plans (Baker et al.

2017). Most tax-and-dividend plans that I am aware of do not differentiate across

households; each household receives the same dividend amount each year. While such

a policy has the advantage of being straightforward, it ignores the large geographic

differences in carbon footprints that I document, particularly across rural and urban

settings.

I showed that correcting for heterogeneity can also improve the progressive out-

come of policy. When I adjusted the dividend to increase the amount for low-income

households and reduced the amount for high-income households, I found that the

benefits for rural households increased on average but that the impacts within each

income group were more heterogeneous. When I adjusted the dividend for both ge-

ography and urbanity, there was an increase in the average benefit to low-income
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households and a reduction in the heterogeneity of impacts within income groups.

I recommend a tax-and-dividend policy design that accounts for the rural-urban

divide in carbon footprints. There are many ways to achieve this outcome. The basic

structure is to condition the level of the dividend on some information about the type

of the household. It is of upmost importance that households have limited ability to

alter their type themselves. If a household can take strategic actions to affect their

dividend level, then they will have less of an incentive to reduce their carbon foot-

prints. In addition, the dividends cannot be state-specific. Having them be based on

the average carbon content of a given state will reduce the incentives of state policy

makers to adopt carbon-reducing policies. I leave the details of such a plan for future

policy discussions.

My results underscore an important lesson: climate policies that generate revenue

within the policy itself afford policy makers the flexibility to protect disadvantaged

groups. There is need for transparency in the impact to the public of each policy

option – "do nothing" is the worst option, but all policy has a cost on some portion

of the public. Vulnerable groups should be supported by public policy rather than

burdened by it. Spurring the change necessary to steeply cut carbon emissions will

pose significant costs and if these costs are distributed through regressive policy, the

transition to a sustainable future will not be equitable.

66



Appendix A

Additional Tables

Note: Standard errors and Log-Likelihood are not included because the probit model

involved variables that cause separation in the data and therefore the errors are not

interpretable. This was deemed acceptable for predictive purposes as the variables

that caused separation intuitively explain consumption (e.g., houses that heat with

propane will consume propane) and our sample size was large.
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Appendix B

Additional Figures

Figure B-1: Policy Scenarios 1 - 6
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Figure B-2: Policy Scenarios 7 - 12
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Figure B-3: Cross-Validation Error and Lambda Values for Models 1 - 6
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Figure B-4: Cross-Validation Error and Lambda Values for Models 7 -12
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Figure B-5: Cross-Validation Error and Lambda Values for Models 13 -17
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