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Abstract
In this paper, we propose a new nonparametric Bayesian framework to cluster white matter fiber
tracts into bundles using a hierarchical Dirichlet processes mixture (HDPM) model. The number of
clusters is automatically learned driven by data with a Dirichlet process (DP) prior instead of being
manually specified. After the models of bundles have been learned from training data without
supervision, they can be used as priors to cluster/classify fibers of new subjects for comparison across
subjects. When clustering fibers of new subjects, new clusters can be created for structures not
observed in the training data. Our approach does not require computing pairwise distances between
fibers and can cluster a huge set of fibers across multiple subjects. We present results on several data
sets, the largest of which has more than 120, 000 fibers.

Keywords
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1. Introduction
Diffusion Magnetic Resonance Imaging (dMRI) is an MRI modality that has gained
tremendous popularity in recent years and is one of the first methods that made it possible to
visualize and quantify the organization of white matter in the human brain in vivo. It measures
local diffusivity of water within the tissue and provides information about the orientation of
white matter fiber tracts. dMRI has different representations. For example, in Diffusion Tensor
MRI (DT-MRI), a local 3×3 symmetric matrix is used to characterize the motion of water in
all directions (Basser et al., 1994). There are more general models such as High-Angular-
Resolution Diffusion-Image (HARDI) (Tuch et al., 2002), Q-ball (Tuch, 2004) and Diffusion
Spectrum Imaging (DSI) (Wedeen et al., 2005) etc. Extracting connectivity information from
DT-MRI, termed “tractography” (Basser et al., 2000; Conturo et al., 1999), is an especially
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active area of research, as it promises to model the pathways of white matter tracts in the brain,
by connecting local diffusion measurements into global trace-lines. In neurological studies of
white matter using tractography it is often important to identify anatomically meaningful fiber
bundles. Similar fibers form clusters of points, where each cluster is identified as a “fiber
bundle”. Some examples are shown in Figure 1 and 2. The fiber bundles of different subjects
(examples are shown in Figure 3) or fiber bundles of the same subject captured at different
times are compared for the purposes of clinical study.

Automatically clustering fibers has drawn a lot of attention in recent years. It faces many
challenges. Full brain tractography typically generates 10, 000 ∼ 100, 000 fibers per subject.
In some cases, fibers from multiple subjects need to be clustered together for comparison. Thus,
the developed algorithms are expected to cluster large scale data sets. Due to data quality and
other factors, tractography results may have a significant amount of errors. The clustering
algorithms are required to be robust to these errors. In order to compare the fiber bundles of
different subjects in group study and save computational cost, it is of interest to explore how
to use the fiber bundles learned from old data sets to cluster fibers of new subjects. To obtain
fiber bundles which correspond to anatomical structures, the clustering algorithms are expected
to incorporate anatomical information input by experts to guide tractography segmentation.

A typical framework is to first define a pairwise similarity/distance between fibers and to input
the similarity matrix to standard clustering algorithms. Various distances between fibers have
been proposed. Brun et al. (2004) computed the Euclidean distances between 9-D fiber shape
descriptors. Jonasson et al. (2005) measured the similarity between two fibers by counting the
number of points sharing the same voxel. Maddah et al. (2005) used the B-spline representation
to compare fibers. Gerig et al. (2004) proposed three measures related to Hausdorff distance:
closest point distance, mean of closest distances and Hausdorff distance. Various clustering
algorithms, such as hierarchical clustering (single-link and complete-link) (Gerig et al.,
2004; Xia et al., 2005), fuzzy c-means (Maddah et al., 2008a), k-nearest neighbors (Ding et
al., 2003), normalized cuts (Brun et al., 2004), spectral clustering (Brun et al., 2004; Jonasson
et al., 2005; O'Donnell and Westin, 2007) and dual rooted-graphs Tsai et al. (2007) have been
used. Mean of closest distances and spectral clustering are popular among possible choices
(O'Donnell and Westin, 2007; Moberts et al., 2005).

These clustering algorithms required manually specifying the number of clusters or a threshold
for deciding when to stop merging/splitting clusters, both of which are difficult to know
especially when the data sets are complicated and noisy. Moberts et al. (2005) showed that the
performance of clustering varied dramatically when different numbers of clusters were chosen.
To avoid this difficulty, O'Donnell and Westin (2007) first chose a large cluster number for
spectral clustering and then manually merged clusters to obtain models for white matter
structures. Recently Zvitia et al. (2008) and Wassermann and Deriche (2008) used mean-shift
to decide the number of clusters. Zvitia et al. (2008) required calculating the average of fibers,
which was not easy in cases when fibers were not represented as feature vectors and only fiber
similarities were available. Wassermann and Deriche (2008) required the white matter fiber
atlas as prior knowledge. Neji et al. (2009) decided the number of clusters by adding a penalty
to a larger cluster number and solving the optimization using linear programming. However,
choosing the penalty term was ad hoc.

Another drawback of this framework is the high space and time complexities of computing
pairwise distances between fibers when the data set is large. Whole brain tractography produces
between 10, 000 and 100, 000 fibers per subject. It is difficult to compute a 100, 000 × 100,
000 similarity matrix or even to store it in memory. Some clustering algorithms, such as spectral
clustering, need to compute the eigenvectors of this huge similarity matrix. This problem
becomes more serious when clustering fibers of multiple subjects. The current solutions are to

Wang et al. Page 2

Neuroimage. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cluster only a small portion of the whole data set after subsampling or to do some numerical
approximation based on the sampled subset (O'Donnell and Westin, 2007). However, important
information from the full data set may be lost after subsampling.

Besides this framework, some other approaches have been proposed in recent years (Savajiev
et al., 2008; Maddah et al., 2008b; Wassermann et al., 2009b,a). For example, Savajiev et al.
(2008) proposed a fiber tract segmentation algorithm based on the geometric coherence of fiber
orientations. Instead of directly grouping fiber trajectories, it clustered diffusion orientation
distribution functions maxima. Maddah et al. (2008b) proposed a probabilistic approach to
cluster fibers without computing pairwise distances. They used a Dirichlet distribution1 as a
prior to incorporate anatomical information. This approach is different from ours. It used a
parametric model, assuming that the number of clusters is known and required manual
initialization of cluster centers. Maddah et al. (2008b) required establishing point
correspondence which was difficult, while our approach does not.

There are two typical ways of clustering fibers of multiple subjects for comparison purposes.
One is to put fibers of different subjects into one data set and cluster them together. It has high
computational cost and is not scalable. The other way is to classify the fibers of new subjects
using the bundle models learned from an training set (O'Donnell and Westin, 2007). The bundle
models are fixed without adaption to the new data. Among the approaches discussed above,
there are only a few (Maddah et al., 2005; Savajiev et al., 2008) exploring how to incorporate
anatomical information from experts to guide tractography segmentation.

Nonparametric Bayesian models using Dirichlet Processes (DP) as priors have been widely
applied in computer vision, language processing and bioinformatics because of their capability
to learn the number of clusters from data. Bayesian models involving Dirichlet process mixtures
(DPM) are at the heart of the modern nonparametric Bayesian movement. Dirichlet process
mixtures (DPM) models were applied to medical image analysis in recent years because of
their capability to learn the number of clusters and their flexibility to adapt to a wide variety
of data. Adelino and Ferreira (2006) used a DPM model for brain MRI tissue classification. In
(Kim and Smyth, 2006; Thirion et al., 2007) DPM models were used to model spatial brain
activation patterns in functional magnetic resonance imaging. In (Jbabdi et al., 2009), Jbabdi
et al. modeled the connectivity profiles of a brain region as an infinite mixture of multivariate
Gaussian distributions with a DP prior. To the best of our knowledge, our work is the first to
use HDPM for tractography segmentation to automatically learn the number of clusters from
data. Our approach is related to the work (Teh et al., 2006) where HDPM models were used
for word-document analysis. HDPM was also used for trajectory analysis in visual surveillance
(Wang et al., 2008).

In this paper, we propose a nonparametric Bayesian framework to cluster fibers into bundles.
The 3D space of the brain is quantized into voxels. A bundle is modeled as a discrete distribution
over voxels and orientations. This probabilistically models the spatial variation of the pathways
of fibers. The models of bundles are learned from how voxels are connected by fibers instead
of comparing distances between fibers. If two voxels are connected by many fibers, a bundle
model will be learned with large weights on both voxels. This means that they are on the same
pathway of white matter tracts. Many existing approaches have difficulty in determining the
number of clusters and in clustering a very large set of fibers. Our approach automatically
learns the number of clusters from data with Dirichlet processes (DP) priors (Ferguson,
1973). While the space and time complexities of existing distance-based fiber clustering

1Dirichlet distribution is used as a prior of finite mixture models. These models can only well adapt to data from particular distributions.
Dirichlet process in our approach is used as a prior in infinite mixture models. These models can well adapt to a wide variety of data.
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approaches are at least O(M2), where M is the number of fibers, the space complexity of our
approach is O(M) since it does not compute and store pairwise distances between fibers.

After the models of bundles have been learnt from training data without supervision, they are
used as priors to cluster/classify new fibers. Given fibers of new subjects observed, the models
of bundles learned from the training set are updated and fibers of new subjects are clustered
based on the updated models. Instead of fixing the number of clusters as current methods do,
our approach allows the updated models to create new clusters for fiber bundles not observed
in the training data. Our framework can be extended to multiscale clustering. First cluster fibers
using a large size of voxels yielding bundles corresponding to structures at a large scale. Then
each bundle can be further clustered using a smaller size of voxels, leading to structures at a
finer scale. Multiscale clustering makes it easier for experts to identify white matter structures
across different scales. Experimental evaluation on several data sets show the effectiveness of
our approach.

2. Method
In our method, hierarchical Bayesian models are used to cluster fibers. Hierarchical Bayesian
models can provide enough parameters to fit complicated fiber bundle structures. In the
meanwhile they capture the dependency among parameters through sharing priors and can
better solve the overfitting problem which could be caused by a large number of parameters
(Gelman et al., 2004). Moreover, hierarchical Bayesian models are flexible to be extended. For
example, in Section 2.3, our model is extended by using pre-learned bundle models as priors
to guide clustering of new data. We begin by introducing a parametric hierarchical Bayesian
model (Section 2.1), which is easier to understand. Using a Dirichlet Process (DP) explained
in Section 2.2.1, the parametric model is extended to a nonparametric hierarchical Bayesian
model, Hierarchical Dirichlet Process Mixture (HDPM) model (Section 2.2.2) and Gibbs
sampling is used for inference (Section 2.2.3). In Section 2.3, we explain how to use the models
of bundles learned from old data as a prior to cluster new data. We will use the graphical model
representation to describe our probabilistic models. Readers who are not familiar with graphical
models can find (Jordan, 2004) for reference.

2.1. Parametric Model
2.1.1. Feature Space—In probability theory, statistics, and machine learning, a graphical
model is a graph that represents independence among random variables. The graphical model
of our parametric hierarchical Bayesian model is shown in Figure 5. There are M fibers and
each fiber j has Nj points which are ordered sequentially along the fiber. Our feature space is
the locations and orientations of points on fibers. oji = (u⃗ji, Δu⃗ji) is the observed 3D coordinate
u⃗ji = (xji, yji, zji) and shift Δu⃗ji = u⃗ji+1 − u⃗ji of point i on fiber j. Δu⃗ji has the information on the
orientation of point i on fiber j. The 3D space of the brain is uniformly quantized into voxels
2. When fibers pass through a voxel, they may have different orientations. We quantize the
orientations of fibers within each voxel into different directions, represented by different colors
as shown in Figure 4 (a). In our experiments, shifts {Δu⃗ji} are quantized into three orientations
Δu⃗1 = (1, 0, 0)T, Δu⃗2 = (0, 1, 0)T and Δu⃗3 = (0, 0, 1)T. A codebook is built, in which codes
(entries of the codebook) are indices of voxels and orientations. Let u⃗w be the centroid of the
voxel and dw be the index of the orientation vector corresponding to code w. Quantization is
done in a probabilistic way,

2In this paper, “voxel” means the spatial granularity of the codebook and it is not the image voxel.
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(1)

(2)

(3)

R is a parameter defining a spherical neighborhood of code w. Δu⃗d is one of the three orientation
vectors {Δu⃗1, Δu⃗2, Δu⃗3}. As shown in Figure 4(b), a point (u⃗ji, Δu⃗ji) could be assigned to code
w if it falls in the neighborhood of u⃗w and its shift Δu⃗ji is the closest to Δu⃗dw. The probability
depends on its spatial distances to u⃗w and other neighboring voxels. As shown in the
experimental section, the size of voxels affects the scale of fiber bundle structures found by
clustering. It is chosen emperically. By choosing different sizes of voxels, multiscale clustering
can be developed. By choosing the size of neighborhood R, a point could be in the
neighborhoods of multiple voxels and will be assigned to one of the voxels in a probabilistic
way. In practice we choose it as 1.5 times of the voxel size. Since we do not distinguish the
starting and ending points of a fiber, the sign of the correlation between Δu⃗ji and Δu⃗d is ignored
in Eq (3). The statistical model φk of a bundle is a discrete distribution over voxels and
orientations. Optionally, if the symmetry across hemispheres is considered, we can do bilateral
clustering as in (O'Donnell and Westin, 2007). Assuming that the brain is aligned and x = 0 is
the midsagittal plane, we modify observed 3D coordinates as u⃗ji = (|xji|, yji, zji) ignoring the
signs of the x coordinates. Then, learnt models of bundles are symmetric to the midsagittal
reflection.

The M fibers are clustered into K bundles. Each fiber bundle k is modeled as a discrete
distribution φk over the codebook (i.e. quantized voxels and orientations within voxels). {φk}
are learned from the co-occurrences of voxels on fibers. We assume that if two voxels are on
the same bundle, they are connected by many fiber trajectories and a model φk with large
distribution on both voxels is learned.

2.1.2. Generative model—The generative model and an example are shown in Figure 5.
H is a Dirichlet distribution over the codebook as a prior and {φk} are sampled from Dirichlet
(H). β is a Dirichlet distribution over bundles as a prior. Each fiber j samples a multinomial
πj from Dirichlet(β). Each point i on fiber j chooses one of the bundles (cji ∈ {1, …, K} is the
bundle indicator) from a discrete distribution parameterized by πj and samples its quantized
voxel and orientation wji from the discrete distribution (φcji) given by its bundle. In the given
example, cji = 1 and wji is sampled from φ1. The observed 3D coordinate and orientation oji is
sampled from a kernel parameterized by wji in Eq (1). The generative process is summarized
as following.

Wang et al. Page 5

Neuroimage. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.1.3. Inference—In this model, H and β are hyperparameters and are chosen as uniform
distributions (H = [h, …, h]1×L, β = [β0, …, β0]1×K, where L is the size of the codebook).
{oji} are observations. {φk}, {πj}, {cji} and {wji} are hidden variables to be inferred. This model
has higher data likelihood if each fiber concentrates on only a few bundles instead of uniformly
distributes over all the bundles. So voxels often co-existing on the same fibers will be grouped
into one bundle. In this work, collapsed Gibbs sampling is used to do inference. Collapsed
Gibbs sampling integrates out some hidden variables to make the sampling converge much
faster. During the sampling procedure, only {cji} and {wji} are sampled alternatively while
hidden variables {φk} and {πj} are integrated out without being sampled. The efficiency of
Gibbs sampling is significantly improved when a fewer number of variables need to be
sampled. The posteriors of cji and wji are given as follows (see details of proof in Appendix),

(4)

(5)

nj is the number of points on fiber j. njk is the number of points assigned to bundle k on fiber
j. mk is the number of points assigned to bundle k in the whole data set. mkw is the number of

points with voxel and orientation index w and assigned to bundle k. , ,  and  are
the statistics without counting point i on fiber j. Although {φk} and {πjk} are not explicitly
sampled during the Gibbs sampling procedure, they can be estimated from any single sample,

In Eq (4), the first term shows that point i tends to have the same bundle label as the majority
of other points on the same fiber. The second term shows that the voxel and orientation index
of point i needs to fit the model of the bundle chosen. From this inference procedure, we also
can see that the voxels which are connected by many fibers will eventually be grouped into the
same bundle.

2.2. Nonparametric model
In our parametric model, the number of bundles (K) is manually specified and it is difficult to
know in advance. Using Dirichlet Processes (DP) as priors, we extend the parametric Bayesian
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model to a nonparametric Bayesian model, which is an infinite mixture model. In this new
model, the number of bundles is learned driven by data.

2.2.1. Dirichlet Process—We first introduce DP in this section. DP (Ferguson, 1973) is
used as a prior to sample probability measures. It is defined by a concentration parameter α,
which is a positive scalar, and a base probability measure H. A probability measure G randomly
drawn from Dirichlet process DP(α, H) is always a discrete distribution,

(6)

which can be obtained from a stick-breaking construction (Sethuraman, 1994). In Eq (6), φk is
a parameter vector sampled from H, δφk is a Dirac delta function centered at φk, and

 is a non-negative scalar constructed by , .

G can be used as a prior for an infinite mixture model. This is called a Dirichlet process mixture
(DPM) model. Let {wi} be a set of observed data points. Under this infinite mixture model,
wi is sampled from a density function p(·∣θi) parameterized by θi. θi (which is one of the φks
in Eq (6)) is sampled from G. Data points sharing the same parameter vector φk are clustered
together under this mixture model. Given parameter vectors θ1, …, θN of N data points, the
parameter vector θN+1 of data point wN+1 can be sampled from a prior by integrating out G,

(7)

There are K distinct parameter vectors  (identifying K components 3) among θ1, …,
θN. nk is the number of points with parameter vector . θN+1 can be assigned as one of the
existing components (wN+1 is assigned to one of the existing clusters) or can sample a new
component from H (a new cluster is created for wN+1). The posterior of θN+1 is

(8)

It is likely for this DPM model to create a new component if existing components cannot well
explain the data. There is no limit to the number of components. These properties make DP
ideal for modeling data clustering problems when the number of clusters is not well-defined
in advance.

2.2.2. Hierarchical Dirichlet Processes Mixture Model—The extension of the
parametric hierarchical Bayesian model introduced in Section 2.1 with a DP mixture model
leads to our proposed hierarchical Dirichlet process mixture (HDPM) model. The graphical
representation of the HDPM model is shown in Figure 6. A prior G0 on the whole data set is
sampled from a DP, G0 ∼ DP(γ, H), where the base measure H is a Dirichlet distribution.

3When mixture models are used for clustering data, a component in a mixture model corresponds to a cluster of data. Data samples
generated from the same component are grouped into the same cluster.
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 is a infinite mixture in which components  (multinomial parameters) are
models of bundles and  is a prior over bundles 4. For a fiber j, a prior Gj is sampled
from a DP, Gj = DP(α, G0). It was shown that in HDPM all the Gj share the same set of

components {φk} as G0. However, they have different weights πj over {φk}: ,
πj ∼ Dirichlet(β) (Teh et al., 2006). For a point i on fiber j, a bundle indicator cji is sampled
from Discrete(πj) and a multinomial parameters θji = φcji is chosen as the model of bundle cji
5. Its index of voxel and orientation wji is sampled from the model of a bundle, wji ∼ Discrete
(θji). Observation oji is sampled from p(oji∣wji). Optionally, concentration parameters γ and α
are sampled from gamma priors, γ ∼ Gamma(a1, b1), α ∼ Gamma(a2, b2

) 6. H, a1, a2, b2 and
b2 are hyperparameters. The clustering performance is quite robust to the choice of their values
in a large range. {oji} are observations. The remaining are hidden variables to be inferred. A
fiber j is assigned to a bundle k with maximum πjk. Comparing Figure 5 and Figure 6, there is
correspondence between parameters of the two models, except that the nonparametric model
has an infinite number of bundle models {φk} and its mixture weights β and πj have infinite
components.

The size of voxels determines the scale of the structures to be learnt. Our framework can be
extended to multiscale clustering. First cluster fibers using a large size of voxels so that bundles
correspond to structures at a large scale. Then each bundle can be further clustered using a
smaller size of voxels, showing structures at a finer scale. Multiscale clustering makes it easier
for experts to identify white mater structures across different scales.

2.2.3. Inference—We use the collapsed Gibbs sampling method proposed in (Teh et al.,
2006), which is based on Chinese restaurant franchise (Aldous, 1983), for inference. During
the sampling procedure, suppose that K models of bundles (clusters) have been created and
assigned to data. Then,

(9)

The Gibbs sampling scheme proposed in (Teh et al., 2006) integrated out {πjk} and {φk} without
sampling them. The posterior of cji is given by

(10)

This posterior allows us to create a new bundle if none of the existing bundles fits the data
well. The posteriors of β, γ and α involve more details of the Chinese restaurant franchise. They
can be found in (Teh et al., 2006). The posterior of wji is the same as Eq (5). The sampling
algorithm is summarized in Algorithm 1. Evaluating the convergence of Gibbs sampling is a
complex issue. In practice, we stop iterations when the data log likelihood stabilizes. Let likt

4As explained in Section 2.2.1, φk ∼ Dirichlet(H) and β is sampled from stick-breaking construction controlled by γ.
5This is equivalent to sampling θji from Gj, θji ∼ Gj.6As the increase of hierarchical levels, hierarchical Bayesian models become less sensitive to hyperparameters (Gelman et al., 2004).
By adding gamma priors over α and γ, α and γ do not need to be specified. Our model is more robust to the choice of a1, a2, b1 and b2
than directly tuning α and γ.

Wang et al. Page 8

Neuroimage. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



be the data log likelihood after t iteraction. The stopping criterion is ‖(likt − lik(t−100))/likt‖ <
0.1%. The maximum iteration number is set as 5000.

The space complexity of our approach is O(M). The time complexity of each Gibbs sampling
iteration is O(M). It is difficult to provide theoretical analysis on the convergence of Gibbs
sampling. In practice, we stop burn-in 7 when the data likelihood converges. From our empirical
observation, the time complexity of our approach is much lower than O(M2). Recently some
more efficient inference approaches, such as variational inference (Blei and Jordan, 2006), and
parallel sampling (Asuncion et al., 2008), have been proposed and applied to DPM and HDPM
models. In future work, we will study how to improve the efficiency of inference using these
schemes.

Algorithm 1 Collapsed Gibbs sampling for our HDPM model

1: Initialization assign all the points as one cluster.

2: repeat

3:  step1: sample bundle indicator cji using Eq (10).

4:  step2: sample voxel and orientation index Wji using Eq (5).

5:  step3: sample β using the approach proposed in (Teh et al., 2006).

6:  step4 (optional): sample concentration parameters α and γ using the approach proposed in (Teh et al., 2006).

7: until converge or exceed the maximum iteration number

2.3. Clustering New Data
In some applications, fiber bundles of multiple subjects need to be compared. For that purpose,
we first collect a training set which includes some old subjects and learn bundle models from
it in an unsupervised way. Then the pre-learned fiber bundles are used as priors to cluster fibers
of each of the new subjects sequentially. Compared with alternative approaches, this approach
has the following advantages. 1) If fibers of each new subject are clustered independently
without using the models pre-learned from the training data, the correspondence between fiber
bundles of different subjects are unknown unless it is manually specified. In our approach, the
correspondence is automatically established since models of the training data are used as priors
to cluster new data. 2) If both old and new subjects are merged into one data set and clustered
together, although correspondence can be automatically obtained, the computational cost is
high when the subject number is large. In contrast, our approach clusters new subjects one by
one and saves computational cost. 3) Instead of “clustering” fibers of new subjects,
alternatively one could fix the bundle models G0 and the number of clusters learned from the
training set, and use them to“classify” new fibers. However, the fixed models may not be able
to fit the new data well. In our approach, pre-learned bundle models are only used as priors,
new bundle models will be updated given the new data observed. 4) Lastly, using pre-learned
models as priors can improve the convergence on the new data, since Gibbs sampling starts
from a better position than random initialization.

Our HDPM model for clustering new data is shown in Figure 7. Suppose that

 in Eq (9) has been learnt from the old data and Ko clusters are created.
A prior  on the new data is to be learnt. Different from the model shown in Figure 6, where
G0 is generated from a DP with a flat base measure H,  is generated from DP(γ, F), where
the base measure F is constructed from  and includes models learnt from the old data.

7Burn-in is to throw away samples generated from the early iterations of Gibbs sampling before it converges.

Wang et al. Page 9

Neuroimage. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(11)

F is composed of two parts: the models learned from the old data and a flat prior. ω is a scalar

between 0 and 1.  are normalized weights in ,

This assumes that before observing any new data, there already exist Ko models of bundles

. However, instead of letting  be equal to , we sample  from a Dirichlet distribution
choosing  as prior,

where ξk is a positive scalar. Thus the models of bundles can adapt to the new data instead of
being fixed.

The choice of γ, ω and ξ controls how much the models learned from the old data affect the
clustering of the new data 8. The two extreme cases are that the pre-learnt models have no
effect on clustering the new data (ω = 0, ξ = 0) and that the models learned from the new data
are exactly the same as those learned from the old data (γ = ∞, ω = 1, ξ = ∞).

Suppose there are Kn models of bundles assigned to the new data. Then an explicit construction
of  is given by

(12)

Models  have been seen in the old data. They have priors Dirichlet  and are

updated using the new data.  are new models not found in the old data. They are
sampled from a flat prior Dirichlet(H). The remaining parts are the same as described in Section
2.2.2.

2.4. Discussion
Tractography results may have significant errors due to data quality and the tractography
algorithms used. Two types of errors which occur frequently are shown in Figure 8. Our
tractography segmentation algorithm is more robust to these errors. In Figure 8(a), a short
broken fiber is generated because tracking terminates at a voxel of low FA value. If Euclidean

8There is a principled way to select γ, ω and ξ. See details in Chapter 4 of (Wang, 2009)
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distance of shape descriptors as in (Brun et al., 2004) is used, this fiber has large distance to
fibers in both bundle 1 and bundle 2, because its shape is quite different from other fibers. If
Hausdorff distance (O'Donnell and Westin, 2007) is used, this fiber will have small distance
to fibers in both bundles, because it is close to other fibers within this local region. In our
approach, each bundle has a distribution over space and orientations. Although this fiber is
broken by tracking error, it better fits the model of bundle 1 than bundle 2. In Figure 8(b), a
fiber crosses two bundles because of tracking errors. Its shape is quite different from the fibers
in these two bundles. The existence of this kind of fibers may lead to the two bundles merging
into one cluster under some algorithms. In our approach, part of points on this fiber are assigned
to bundle 1 and others are assigned to bundle 2. The models of the two bundles can be well
learned without being affected by errors.

3. Results
3.1. Results on Real Data Sets

We evaluate our approach on four DTI data sets. Quantitative evaluation is done on the first
two data sets. The acquisition and preprocessing of the DTI data sets are the same as the
Population II data set in (O'Donnell and Westin, 2007). DTI images were acquired using a 1.5
Tesla MR scanner with 30 directions of diffusion weighting and b = 700s/mm2. The field of
view, the size of the acquisition matrix acquisition matrix, and the slice thickness were
240mm × 240mm/96 × 96/2.5mm. Whole brain tractography was performed using Runge-Kutta
order two integration, with the following parameters: seeding threshold Tseed of linear
anisotropy measure 0.25, stopping threshold Tstop of linear anisotropy measure 0.15, step size
0.5mm, and minimum length Tlength of 25mm. Group registration of subject FA images was
performed using the congealing algorithm (Zollei et al., 2005). See more details of experimental
settings in (O'Donnell and Westin, 2007). As discussed in Section 2.1.1, 3D space of the brain
is uniformly quantized into voxels. The size of each voxel is 12.5mm × 12.5mm × 12.5mm. We
choose the hyperparameters in Figure 6 as a1 = a2 = b1 = b2 = 1, h = 0.3. We do bilateral
clustering.

1) Data set I—The first data set has 3152 fibers and is a subset of whole brain tractography
results on a subject. They are manually labeled to six anatomical structures as ground truth.
Figure 9 (a)-(d) plots the clustering results of our approach and a spectral clustering approach,
compared with the ground truth. Colors are used to distinguish clusters. Since clusters may be
permuted in different results, the meaning of colors is not consistent across different results.
The spectral clustering approach uses the mean of closest distances (a variation of Hausdorff
distance) as the distance measure, which was found the most effective in previous studies
(Moberts et al., 2005; O'Donnell and Westin, 2007). The clustering result of our approach is
close to the ground truth. Although the correct number of clusters has been set, two anatomical
structures are merged in the result of the spectral clustering approach. A few outlier fibers form
a small cluster. As the number of clusters increases to 7, the two anatomical structures still
cannot be separated, instead, another structure splits into two clusters.

There are two important aspects, called correctness and completeness, to be considered when
comparing a clustering result with the ground truth (Moberts et al., 2005). Correctness implies
that fibers of different anatomical structures are not clustered together. Completeness means
that fibers of the same anatomical structures are clustered together. Putting all the fibers into
the same cluster results in 100% completeness and 0% correctness. Putting every fiber into a
singleton cluster results in 100% correctness and 0% completeness. To measure correctness,
we randomly sample 5, 000 pairs of fibers which are in different anatomical structures
according to the ground truth and calculate the accuracy (rcorrect) that they are also in different
clusters according to the clustering result. To measure completeness, we randomly sample 5,
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000 pairs of fibers which are in the same anatomical structures and calculate the accuracy
(rcorrect) that they are also in the same clusters. The accuracies of our approach and spectral
clustering are plotted in Figure 9 (f). The horizontal axis is the number of clusters manually
specified for spectral clustering. Since our approach (HDPM) automatically decides the
number of clusters, which converges to six on this data set, it only has two points instead of
two curves corresponding to correctness and completeness in this plot. It is observed that the
correctness and completeness of spectral clustering are significantly affected by the chosen
cluster number, which is hard to know in advance. As we increase the number of clusters from
2 to 25, the correctness of spectral clustering increases and its completeness decreases. When
spectral clustering chooses the number of clusters as 6, which is the ground truth, both
completeness and correctness of our approach are much better than those of spectral clustering.
In order to achieve the same correctness as our approach, spectral clustering has to choose a
cluster number larger than 19. In that case, its completeness is almost 40% lower than ours. In
order to achieve a higher completeness than ours, spectral clustering has to choose fewer than
6 clusters. In that case, its correctness is almost 20% lower than ours. These observations show
that our approach outperforms spectral clustering.

2) Data set II—We compare our approach with the approach proposed in (O'Donnell and
Westin, 2007) on a larger data set with 12, 420 fibers, which is also a subset of whole brain
tractography results on a subject. In (O'Donnell and Westin, 2007), fibers were first grouped
into a large number of clusters (200) and then experts merged these clusters to obtain anatomical
structures. In this data set there are 10 anatomical structures. Our approach clusters these fibers
into 27 clusters. We also manually merge them to these 10 anatomical structures, however its
takes much less effort than (O'Donnell and Westin, 2007) since the number of clusters is
smaller. Figure 10 shows some of the anatomical structures obtained by the two approaches.
83.2% fibers have consistent anatomical labels according to the two results. To evaluate how
our approach is sensitive to initialization, we run 50 trials of Gibbs sampling with random
initializations. Figure 10 (g) plots the frequency of the numbers of clusters learnt from data.

3) Data set III—Figure 11 shows an example of multiscale tractography segmentation on 30,
125 fibers generated by whole brain tractography on one subject. When we choose the voxel
size as 12.5mm × 12.5mm × 12.5mm, the fibers obtained by full brain tractography are clustered
into 35 bundles. These bundles correspond to structures at a large scale. Choosing a smaller
voxel size of 3.5mm × 3.5mm × 3.5mm, one of the bundles shown in Figure 11 (b) is further
clustered into smaller bundles corresponding to structures at a finer scale. So far it is still not
clear whether the obtained hierarchical fiber bundles well correspond to hierarchical white
matter structures. It requires ground truth on white matter structures at a finer scale, which is
hard to obtain at the current stage, for further evaluation. As observed in Figure 11 (b), some
fibers diverging from the bundle are separated through clustering at a finer scale. They might
be axons diverging from bundles and innervating the cortex. However this observation needs
to be verified by further biomedical study.

4) Data set IV—Figure 12 shows the results of clustering fibers across multiple subjects. The
old training data has 63, 751 fibers generated by whole brain tractography on two subjects.
The models of bundles are learnt from all these fibers. The new data has 61, 572 fibers from
two new subjects. The major purposes of using the models learned from the training data as
priors are to automatically establish the correspondence between bundle structures in the old
and new data and to speed up the convergence. If the learned models are not used as priors,
94.2% fibers of the new data have consistent labels as using those priors.

5) Computational cost—Since it is difficult to provide theoretical justification on the time
complexity of our approach, we provide some empirical observation on the computational cost
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of clustering data sets of different sizes. Running on a computer with 3GHz CPU, it takes less
than half minute to cluster 1, 000 fibers and around four hours to cluster 60, 000 fibers. This
ratio of computational costs is lower than (60, 000/1, 000)2. We empirically observe that the
time complexity of our approach is lower than O(M2). The data log likelihoods of the two data
sets with different number of Gibbs sampling iterations are plotted in Figure 13. The data log
likelihoods of the two data sets converge after 400 iterations and 4, 000 integrations
respectively. With priors of pre-learned bundles models, clustering fibers of new subjects
converges faster. For examples, it takes 54 minutes for cluster 61, 572 new fibers and the data
log likelihoods converge after 800 iterations.

3.2. Results on Synthetic Data Sets
We also do experimental evaluation on fiber data synthesized by the approach proposed in
(Close et al., 2009) using their default parameters. The results are shown Figure 14. Figure 14
(b) shows the accuracies of correctness and completeness of spectral clustering and our
approach when different number of bundles (from 5 to 20) are simulated. For spectral
clustering, the number of clusters is manually set as ground truth. Even though our approach
automatically chooses the number of clusters, it outperforms spectral clustering. The number
of synthesized fibers ranges from 240 to 694. As the number of bundles increases, the structures
of bundles become more complicated with more overlaps, and thus the performance drops.

As discussed in Section 2.4, two types of errors occur frequently in tractography results: (1)
broken fibers are generated because tracking terminates at a voxel with a low FA value; (2) a
fiber crosses two bundles because of tracking errors. We simulate these two types of errors by
randomly splitting a fiber with probability rb (0 ≤ rb ≤ 1) and associating a broken fiber with
a nearby broken fiber incorrectly with probability rs (rs = 0.2). As rb increases, both the two
types of errors increases. Figure 14 (c) shows that our method significantly outperforms spectral
clustering with the existence of these errors.

In order to study the effect when there is mismatch between the bundle structures of the training
data and the new data, we synthesize training data and new data with identical bundle structures
and rotate the new data around the center by B degrees. The number of bundles is 10 in both
sets. The mismatch increases with B. Figure 14 (c) shows that if the pre-learned models do not
match the new data well, more clusters which do not correspond to the training data will be
discovered from the new data and the cluster number on the new data becomes larger than the
ground truth. In this case, the accuracies of correctness and completeness on the new data may
decrease if mismatched bundle models are added as priors. For example, when B = 20o, the
correctness and completeness are 98.02% and 87.78% if the models learned from the training
data are used as priors, while they are 99.44% and 95.35% without these priors.

4. Conclusion and discussion
We propose a nonparametric Bayesian framework for tractography segmentation. The number
of clusters is automatically learnt from data through DP. This method has much lower space
complexity than distance-based clustering methods can cluster a very large set of fibers. In the
future work, we will use our model to study the groups difference between normal and diseased
populations under a Bayesian framework. This approach also has some limitations. Since the
clustering is based on the spatial affinity and connectivity of fiber trajectories, the biomedical
principles and justification behind it are not clear. As other fully automatic clustering methods,
it does not allow human intervention. In a specific application it may not be able to provide
fiber bundles desired by users. In the future work, we will extend our Bayesian model to include
biomedical and anatomical knowledge input by users as priors to guide tractography
segmentation. When data sets are large in size, our algorithm is still not efficient enough for
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real time operation. The efficiency of inference can be improved using variational methods
and parallel sampling.
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Appendix
The posteriors of cji and wji in Eq (4) and (5) are given as follows. In these posteriors hidden
variables {πj} and {φk} are integrated out to improve the sampling efficiency.

(13)

Since p(πj∣β) (Dirichlet distribution) is a conjugate prior of p(cji = k∣πj) and p({cj′i′}j′i′≠ji∣πj)
(multinomial distributions) and p(φk∣H) (Dirichlet distribution) is a conjugate prior of p
(wji∣φk) and p({wj′i′}cj′i′=k,j′i′≠ji∣φk) (multinomial distributions), the two integrations in Eq 13
has close form solutions. Similarly, we can compute the posterior of wji integrating out φk.

(14)
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Figure 1.
Example of our tractography segmentation result. (a) Fibers generated from DT-MRI. It is hard
to identify anatomical structures without clustering fibers into bundles. (b) Fiber bundles by
tractography segmentation.
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Figure 2.
Anatomical labels of some fiber bundles generated by our tractography segmentation approach.
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Figure 3.
Compare fiber bundles of two subjects.
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Figure 4.
Feature quantization. (a) In order to build a codebook, the 3D space of the brain is uniformly
quantized into voxels. Shift orientations within voxels are also quantized (indicated by different
colors). A bundle is modeled as a discrete distribution over the codebook. (b) A point (u⃗ji,
Δu⃗ji) on a fiber, indicated by the red cross, is quantized into a code (u⃗w, Δu⃗dw) according to Eq
2 and 3.
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Figure 5.
The graphical model of the parametric hierarchical Bayesian model. {oji} are the observed
input. H and β are hyperparameters to be specified. {φk}, {πji}, {cji} and {wji} are hidden
variables to inferred by Gibbs sampling. {cji}, the labels of points on fibers, are the desired
output.
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Figure 6.
Graphical model of our HDPM model. {oji} are the observed input. a1, b1, a2, b2, and H are
hyperparameters to be specified. α, β, γ, {φk}, {πj}, {cji} and {wji} are hidden variables to
inferred by Gibbs sampling. {cji} are the desired output.
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Figure 7.
Graphical model of our HDPM model for clustering new data. {oji} are the observed input.

a2, b2, γ and H are hyperparameters to be specified. βo and  are models learned from the

old training data and they are fixed when clustering new data. , βn, {πj}, {cji} and {wji} are
hidden variables to inferred by Gibbs sampling. {cji} are the desired output.
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Figure 8.
Tractography errors which generate short broken fibers in (a) and fibers crossing two bundles
in (b).
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Figure 9.
Compare the results of two clustering approaches with the ground truth on a data set with 3,
152 fibers. Two views are plotted for each result. (a) Ground truth. (b) Our approach. (c)
Spectral clustering when the number of clusters is 6. (d) Spectral clustering when number of
clusters is 7. (e) Anatomical labels of the fiber bundles obtained by our approach. (f) The
accuracies of completeness and correctness of spectral clustering and our approach (HDPM).
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Figure 10.
Compare results of our approach and the approach proposed in (O'Donnell and Westin,
2007), in which experts manually merged the clusters from spectral clustering to obtain
anatomical structures. (a) shows the obtained anatomical structures by merging clusters from
our approach (totally 27 clusters) and those by merging clusters from spectral clustering (totally
200 clusters). Colors are used to distinguish clusters. (b) plots the frequency of the numbers
of clusters learnt by our approach when running 50 trials of Gibbs sampling with random
initializations.
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Figure 11.
An example of multiscale clustering. The spatial range of the whole brain is 200 × 200 × 200.
(a): The clustering result when the space is quantized into voxels of size 11 × 11 × 11. The
bundles correspond to structures at a large scale. (b): One bundle from (a). (c): The space is
quantized into voxels of size 3 × 3 × 3 and the bundle in (b) is further clustered into smaller
bundles corresponding to structures at a finer scale.
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Figure 12.
Cluster fibers across multiple subjects.
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Figure 13.
Data log likelihoods of two data sets with 1, 000 fibers and 60, 000 fibers with different number
of Gibbs sampling iterations.
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Figure 14.
Results on synthetic data. (a) Fibers synthesized by the approach proposed in (Close et al.,
2009). (b) Accuracies of correctness and completeness of spectral clustering and our approach
when different number of bundles are simulated. (c) Accuracies of correctness and
completeness of spectral clustering and our approach when the number of bundles is ten and
the simulated fibers are broken with different probabilities from 0 to 1. (d) The number of
clusters learned on the new data set by our approach, when the structures of the new data set
deviate from those of the training set by 0o ∼ 20o.
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