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Abstract

It is an enduring question how to combine revealed preference (RP) and stated preference (SP)
data to analyze individual choices. While the nested logit (NL) model is the classical way to
address the question, this study presents multitask learning deep neural networks (MTLDNNs)
as an alternative framework, and discusses its theoretical foundation, empirical performance, and
behavioral intuition. We first demonstrate that the MTLDNNs are theoretically more general
than the NL models because of MTLDNNs’ automatic feature learning, flexible regularizations,
and diverse architectures. By analyzing the adoption of autonomous vehicles (AVs), we illustrate
that the MTLDNNs outperform the NL models in terms of prediction accuracy but underperform
in terms of cross-entropy losses. To interpret the MTLDNNs, we compute the elasticities and
visualize the relationship between choice probabilities and input variables. The MTLDNNs
reveal that AVs mainly substitute driving and ride hailing, and that the variables specific to
AVs are more important than the socio-economic variables in determining AV adoption. Overall,
this work demonstrates that MTLDNNs are theoretically appealing in leveraging the information
shared by RP and SP and capable of revealing meaningful behavioral patterns, although its
performance gain over the classical NL model is still limited. To improve upon this work,
future studies can investigate the inconsistency between prediction accuracy and cross-entropy
losses, novel MTLDNN architectures, regularization design for the RP-SP question, MTLDNN
applications to other choice scenarios, and deeper theoretical connections between choice models
and the MTLDNN framework.
Keywords: multitask learning deep neural network, machine learning, revealed preference, stated
preference, autonomous vehicles
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1. Introduction

For decades, researchers have been combining revealed preference (RP) and stated preference (SP)

data to analyze individual behavior, owing to their complementary properties. RP data are thought

to have stronger external validity but often lack the variation in attributes or alternatives, while SP

data often incorporate new attributes or alternatives but lack strong external validity. As a classical

method, the nested logit (NL) model has been commonly used to combine RP and SP by assigning

their alternatives to two nests with different utility scale factors [26, 11, 6, 7].1 However, in the

NL model, researchers need to analyze RP and SP by handcrafting the model structure, which

can be too restrictive to capture the complex data generating process. This handcrafted feature

engineering is different from the mechanism in deep neural networks (DNNs) [33, 8, 14], which can

automatically learn generalizable features to achieve outstanding predictive performance across

disciplines [16, 32, 33]. The recent innovations in DNNs prompt us to investigate the possibility of

using a DNN framework to address the classical problem of combining RP and SP, as an alternative

to the traditional NL method.

This study presents a framework of multitask learning deep neural networks (MTLDNNs) to

jointly analyze RP and SP, demonstrating MTLDNNs’ theoretical flexibility, empirical performance,

and behavioral intuition. A MTLDNN architecture starts with shared layers capturing the simi-

larities between RP and SP, and ends with task-specific layers capturing their differences (Figure

1) [12]. We first demonstrate that MTLDNNs are theoretically more general than NL owing to

their automatic feature learning, soft constraints, and diverse architectures. Then we apply the

MTLDNN framework to a data set collected in Singapore, which was designed to analyze the adop-

tion of autonomous vehicles (AVs). In the empirical experiments, we compare the MTLDNNs to two

NL benchmarks using prediction accuracy and cross-entropy loss.2 To understand the determinants

of AV adoption, we visualize the relationship between choice probabilities and input variables and

compute the elasticity values using MTLDNNs’ gradients information [3, 47]. Overall, our analysis

demonstrates that the MTLDNNs are theoretically appealing in leveraging the shared information

between RP and SP, and are capable of revealing meaningful behavioral patterns, although the

gain in empirical performance, particularly measured by cross-entropy losses, is still limited.

This study contributes to the choice modeling community by being the first to present the

MTLDNN framework in the important context of combining RP and SP. Future studies can inves-

tigate deeper theoretical and empirical questions revolving around this topic. Particularly, future

researchers should investigate the inconsistency between prediction accuracy and cross-entropy

losses, because the two metrics represent the different perspectives from machine learning and

classical choice modeling. Researchers can also investigate the classical theoretical question (e.g.

modeling the structure of random utility terms of RP and SP) under this MTLDNN framework

1This nested logit method can also be seen as a pooled estimation with heteroscedasticity across RP and SP [36,
25]

2Cross-entropy loss is the same as negative log likelihood, so minimizing the cross-entropy loss is the same as
maximizing log likelihood.
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Fig. 1. MTLDNN architecture; this architecture has 3 shared and 3 task-specific layers, but they
represent generally M1 shared and M2 task-specific layers; FC stands for fully connected layers;
ReLU for Rectified Linear Units. This study uses RP as Task 1 and SP as Task 2.

and improve the empirical performance of this study by using advanced MTLDNN architectures

[35, 22, 38, 46]. Future studies can also apply the MTLDNN framework to other choice scenar-

ios, such as jointly analyzing car ownership and travel mode choice [51, 67], activity patterns and

trip chain choices [31, 20], and many others that are traditionally analyzed by structural equation

models (SEM). For future researchers to replicate and improve upon our work, we have uploaded

the project to Github.3

This paper is organized as following. Section 2 reviews the MTLDNN and NL models. Section

3 presents the MTLDNN framework and compares its theoretical properties to the NL models.

Section 4 presents data and methods, and Section 5 analyzes model performance and presents the

economic information in MTLDNNs. Section 6 concludes our findings and discusses future research

directions.

2. Literature Review

For travel demand analysis, RP and SP data are important but associated with different sources of

problems. The RP data can have limited coverage of values, high correlation between attributes,

and poor quality of background information [7], although it typically has better external validity.

In the SP data, respondents could fail to provide valid answers because of their sensitivity to survey

formats, unrealistic hypothetical scenarios [48], or even just measurement errors that happen in

nearly all the data collection processes [24, 23]. However, SP is the only viable way to analyze new

pricing strategies, new public transit services, or new travel modes [6, 43].

To address these problems, one common remedy is to jointly estimate RP and SP, thus gaining

efficiency and correcting biases [7]. The NL model has been used as a classical method by treating

RP and SP as two nests of choices [26, 11, 43, 39]. For example, Polydoropoulou and Ben-Akiva

3https://github.com/cjsyzwsh/Multitask-learning-deep-neural-networks-to-combine-revealed-and-stated-
preference-data.git
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(2001) used the NL approach to analyze the travel mode choices for multiple mass transit technolo-

gies [43]. Golob et al. (1997) [19] used the same method to examine how vehicle usage depends on

the factors of the vehicles and fuel types. In these studies, researchers make parametric assumptions

in the NL models to capture the differences and similarities between RP and SP [11]. To capture

the similarities, RP and SP choice models can share parameters, such as the same price and time

coefficients [43]. To capture the differences, RP and SP models can have different randomness in

their error terms, causing the different magnitudes of coefficients [26, 11]. While modeling details

vary with studies, the NL approach developed in the 1990s has become a standard way of combining

RP and SP [48, 36, 62, 52].

From a machine learning perspective, we can use a MTLDNN framework to combine RP and

SP, because the MTLDNN framework can be widely applied to any related tasks. For example,

researchers used MTLDNNs to jointly analyze the steering directions and road conditions for driv-

ing, jointly locate doorknobs and identify door types by using shared door images [12], and jointly

analyze the ratings of 20 computers by using 13 shared binary attributes [2]. In natural language

processing, researchers used the MTLDNN framework to jointly learn different levels of semantic

components, such as part-of-speech tags, word chunks, and named entity tags [14, 22]. In image

recognition, researchers used the MTLDNN to jointly analyze semantic segmentation and surface

normal prediction, and jointly detect objects and predict attributes [38]. Sometimes the multiple

tasks are different only in collection procedures. For example, the four tasks in Long et al. (2015)

are the same in terms of inputs and outputs but different because they were collected through four

different online channels [35]. The 259 tasks in Ramsundar et al. (2015) refer to the 259 data

sets that were collected differently but share similar biological purposes, such as predicting drug

toxicity and protein molecules. Interestingly, while the MTLDNN framework seems intuitive and

has been developed for decades in the ML community, it is relatively less known in the community

of choice modeling.

The MTLDNN framework is similar to the simultaneous estimation of choice models, although

the similarity has never been explicitly discussed. In fact, it is possible to use the MTLDNN

framework to jointly analyze auto ownership and mode choice [51, 67], trip chains and travel

modes [65], travel time and vehicle miles traveled (VMT) [18], travel mode choices and attitudinal

factors [37, 39, 50], and activity patterns and travel demands [31, 20]. It is because all these tasks

are similar travel behavior, thus containing valuable shared information. Despite the intuition,

no study has applied the MTLDNN framework to jointly analyze these travel behaviors in choice

modeling yet.

Many MTLDNN architectures have been created in the past three decades. Caruana (1997) [12]

first created a benchmark MTLDNN architecture, which starts with shared layers and ends with

task-specific layers (Figure 1). Caruana’s initial MTLDNN architecture was further improved by

recent studies [35, 22, 38, 46], which designed regularizations and network components to control

the similarities and differences of the multiple tasks in a more specific manner [38, 46, 2, 66, 15,

29, 64, 30, 35]. Despite the vast number of MTLDNN architectures, our study uses only the basic
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MTLDNN architecture because it allows a straightforward comparison with the NL method, as

discussed below.

3. Theory

3.1. Multitask Learning Deep Neural Network for RP and SP

Let xr,i, xs,t ∈ Rd denote the input variables for RP and SP respectively, where r and s stand for

RP and SP, i ∈ {1, 2, ..., Nr} and t ∈ {1, 2, ..., Ns} are the indices of RP and SP observations, and

d represents the input dimension. The output choices of RP and SP are denoted by yr,i and ys,t;

yr,i ∈ {0, 1}Kr and ys,t ∈ {0, 1}Ks ; Kr and Ks are the dimensions of the outputs. In our case, SP

has more alternatives than RP since SP includes a new product that is not available in the existing

market (Ks > Kr). Both yr,i and ys,t are vectors taking binary values, and each component in yr,i

and ys,t is denoted by ykr,i ∈ {0, 1} and yks,t ∈ {0, 1}. Due to the constraint of mutually exclusive

and collectively exhaustive alternatives,
∑

ks
yks,t = 1 and

∑
kr
ykr,i = 1. kr and ks are the index of

alternatives in RP and SP, so kr ∈ {1, 2, ...,Kr} and ks ∈ {1, 2, ...,Ks}. As represented by Figure

1, the feature transformation of RP and SP can be represented as:

Vkr,i = (gM2,kr
r ◦ gM2−1

r ◦ ... ◦ g1r ) ◦ (gM1
0 ◦ gM1−1

0 ◦ ... ◦ g10)(xr,i) (1)

Vks,t = (gM2,ks
s ◦ gM2−1

s ◦ ... ◦ g1s) ◦ (gM1
0 ◦ gM1−1

0 ◦ ... ◦ g10)(xs,t) (2)

in which M1 represents the depth of the shared layers and M2 the depth of the task-specific layers;

g0 represents the transformation of one shared layer; gr and gs represent the transformation of one

layer in RP and SP. Specifically, g functions (including gr, gs, and g0) are the composition of ReLU

and linear transformation: gl(x) = max{W lx, 0}, ∀l 6= M2. Equations 1 and 2 describe precisely

the MTLDNN architecture in Figure 1: (gM1
0 ◦ gM1−1

0 ◦ ... ◦ g10) represent the shared layers, while

(gM2,kr
r ◦ gM2−1

r ◦ ... ◦ g1r ) and (gM2,ks
s ◦ gM2−1

s ◦ ... ◦ g1s) represent task-specific layers. The choice

probability functions in RP and SP can be represented by

P (ykr,i;wr, w0) =
eVkr,i∑Kr
jr=1 e

Vjr,i
(3)

P (yks,t;ws, w0, T ) =
eVks,t/T∑Ks
js=1 e

Vjs,t/T
(4)

in which wr and ws represent the task-specific parameters in gr and gs; w0 the shared parameters

in g0. Equation 3 takes the form of a standard Softmax activation function, while that of SP

(Equation 4) is adjusted by a T factor, which is referred to as temperature in the DNN literature

to adjust the scale of logits [28].

With choice probabilities formulated, we train the model by minimizing the empirical risk
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(ERM) with regularization terms:

min
wr,ws,w0,T

R(X,Y ;wr, ws, w0, T ; cH) = min
wr,ws,w0,T

{
L̂R(wr, w0) + λ0L̂S(ws, w0) + λT g(wr, ws, w0)

}
= min

wr,ws,w0,T

{
− 1

Nr

Nr∑
i=1

Kr∑
kr=1

ykr logP (ykr,i;wr, w0; cH)

− λ0
Ns

Ns∑
t=1

Ks∑
ks=1

yks logP (yks,t;ws, w0, T ; cH)

+ λ1||w0||22 + λ2||ws||22 + λ3||w̃s − wr||22
}

(5)

Equation 5 consists of three parts. The first part

L̂R(wr, w0) = − 1

Nr

Nr∑
i=1

Kr∑
kr=1

ykr logP (ykr,i;wr, w0; cH)

is the empirical risk of RP. The second part

λ0L̂S(ws, w0) = − λ0
Ns

Ns∑
t=1

Ks∑
ks=1

yks logP (yks,t;ws, w0, T ; cH)

is the empirical risk of SP with λ0 weight. Note that the empirical risks L̂R(wr, w0) and L̂S(ws, w0)

are taking the form of cross-entropy losses, which are simply the negative values of the log likelihood

in the classical maximum likelihood estimation. Hence minimizing the cross-entropy losses is exactly

the same as maximizing the log likelihood. The third part

λT g(wr, ws, w0) = λ1||w0||22 + λ2||ws||22 + λ3||w̃s − wr||22

is the regularization. Equation 5 incorporates four hyperparameters (λ0, λ1, λ2, λ3) for explicit

regularizations. λ0 adjusts the ratio of empirical risks between RP and SP. This study treats equally

one observation in RP and SP by fixing λ0 = 1.4 λ1 and λ2 jointly adjust the absolute magnitudes

of the shared layers and SP-specific layers: larger λ1 and λ2 lead to larger weight decay, reducing

the estimation error of the complex DNN models [56]. λ3 controls the degree of similarity between

RP- and SP-specific layers. As λ3 becomes very large, ERM penalizes more the large differences

between RP- and SP-specific layers, leading to more shared RP-SP similarities. Since ws and wr do

not match perfectly in our case, w̃s is used to denote the SP-specific weights that are corresponding

to those RP-specific weights. The ERM formulation and the regularizations in Equation 5 are

commonly used in MTLDNN studies [15, 29].

4Researchers are free to choose the value of λ0, since there is no clear-cut rule for its value specification. Our
choice reflects our belief that each individual counts as equal in RP and SP.

5



3.2. Nested Logit Model for RP and SP

Similar to the past studies [26, 11, 43, 39], the utility functions of the NL model are assumed to be

the following:

Ukr,i = Vkr,i + εkr = wTkrφ(xr,i) + εkr,i (6)

Uks,t = Vks,t + εks = wTksφ(xs,t) + εks,t (7)

in which wkr and wks are the parameters for RP and SP; φ denotes the handcrafted feature trans-

formation; for example, φ can represent the quadratic transformation, when researchers believe

there exists nonlinear relationship between utilities and input variables. εkr,i and εks,t are random

utility terms. It is commonly assumed that εkr,i and εks,t are off by a scale factor:

V ar(εkr,i)/V ar(εks,t) = 1/θ2 (8)

The choice probability functions thus become:

P (ykr,i;wr) =
ew

T
kr
φ(xr,i)∑Kr

jr=1 e
wT

jr
φ(xr,i)

(9)

P (yks,t;ws, θ) =
ew

T
ks
φ(xs,t)/θ∑Ks

js=1 e
wT

js
φ(xs,t)/θ

(10)

Here wr and ws represent the parameters in RP and SP. Note that θ is similar to the temperature

factor T in the MTLDNN framework, although θ arises from the assumption about the variance of

the random error terms while T does not. The ERM in the NL model is

min
wr,ws,θ

R(X,Y ;wr, ws, θ) = min
wr,ws,θ

{
L̂R(wr) + L̂S(ws, θ)

}
(11)

= min
wr,ws,θ

{
− 1

N

[ Nr∑
i=1

Kr∑
kr=1

ykr,i logP (ykr,i;wr) +

Ns∑
t=1

Ks∑
ks=1

yks,t logP (yks,t;ws, θ)
]}

(12)

This NL formulation is not the same as the standard NL model, since respondents do not face all

the RP and SP alternatives in one choice scenario. Therefore, researchers named this NL approach

as an “artificial nested logit” model, the details of which are available in [26, 11].

3.3. Similarities and Differences between MTLDNN and NL

MTLDNN and NL are similar in terms of the underlying behavioral intuition, but they are different

in terms of parameter constraints, learning capacity, and estimation errors. The following four

subsections respectively introduce the four perspectives.
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3.3.1. Similar Behavioral Intuition

MTLDNN and NL share a similar behavioral intuition because both improve the training efficiency

by leveraging the shared information between multiple tasks. In fact, Equations 6 and 7 can be

visualized in Figure 2a, in which the grey layer represents the φ() transformation and the green

and red layers represent wr and ws multiplication. When researchers use only an identity mapping

φ(x) = x, Equations 6 and 7 can be visualized in Figure 2b, in which inputs are directly fed into

task-specific layers. Therefore, NL models can be treated as shallow MTLDNNs, which use a single

shared layer to capture the similarities of RP and SP and a single task-specific layer to capture

their differences. With the shared information captured by the shared layers, both MTLDNNs and

NL models can fit the RP and SP data efficiently.

HFE

HFE

HFE

INPUTS

TASK 1 OUTPUTS

TASK 2 OUTPUTS

(a) NL with φ(x)

HFE

HFE

INPUTS

TASK 1 OUTPUTS

TASK 2 OUTPUTS

(b) NL without φ(x)

Fig. 2. Visualization of NL; HFE stands for handcrafted feature engineering

3.3.2. Different Parameter Constraints

MTLDNNs use soft constraints to capture the similarities between RP and SP, while the NL models

rely on handcrafted hard constraints. By defining wksh , wkr , wks as the shared, RP-specific, and

SP-specific parameters and using xsh, xr and xs to denote the shared, RP-specific, and SP-specific

variables, the utility functions of the NL model (Equations 6 and 7) can be rewritten as:

Ukr,i = Vkr,i + εkr = wTkshφ(xsh,i) + wTkrφ(xr,i) + εkr,i (13)

Uks,t = Vks,t + εks = wTkshφ(xsh,t) + wTksφ(xs,t) + εks,t (14)

The shared and domain-specific variables/parameters in NL models are designed by using domain

knowledge; for example, the coefficients for travel time can be specified as the same between RP

and SP. On the contrary, MTLDNNs use soft constraints without handcrafted adjustments; for

example, λ3||wr − ws||2 in Equation 5 controls the overall distance between the vectors of wr and

ws without specifying how the individual elements of wr and ws differ. Since the hard constraints

can be seen as the boundary cases of the soft ones, the soft constraints in MTLDNNs are more

generic than the hard ones.
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3.3.3. Different Learning Capacities

MTLDNNs have a much stronger learning capacity than NL, because MTLDNNs have a deep

structure while the NL is shallow. The deep layer-by-layer structure is more general than the

shallow one-layer NL models (Equations 6 and 7), because a deep structure can be reduced to

a shallow one when the layers after the first layer become identity mapping. Studies show that

deep architectures can represent the same function as shallow ones with an exponentially smaller

number of neurons [13, 34, 45], which explains why MTLDNNs have stronger learning capacity

than NL. In addition, MTLDNNs’ deep architectures enable more flexibility to capture the RP-SP

similarities. For example, the prototype MTLDNN framework (Figure 1) can flexibly control the

extent to which the models of RP and SP are similar by varying the numbers of shared layers M1

and task-specific layers M2. This flexibility exists owing to the depth of the MTLDNN framework,

whereas the NL architecture in Figure 2 does not have this flexibility because of its shallowness.

3.3.4. Different Estimation Errors

MTLDNNs as a more generic model family do not necessarily imply a higher prediction accuracy,

since small approximation errors obtained by a model with large learning capacity can be coun-

teracted by large estimation errors. Based on statistical learning theory, a more complex model

(e.g. MTLDNN) typically has a smaller approximation error (bias) but a larger estimation error

(variance) than a simple one (e.g. NL) [58, 56].5 The learning capacity of a model is formally

measured by the Vapnik-Chervonenkis (VC) dimension [55, 56]. The VC dimension of DNNs is

roughly proportional to its number of parameters and its depth, so the VC dimension of a simple

5-layer DNN with 100 neurons in each layer is c0×250, 000 (O(1002×5×5)) [5]. On the other side,

the VC dimension of a NL model is proportional to its number of parameters: with about 20 input

variables, the VC dimension of NL is only about c1 × 20. While this VC dimension perspective is

not the optimum upper bound on the estimation error [21, 41], it provides adequate insights for

the purpose of this paper.6 While MTLDNNs are more generic than NL in terms of the function

class relationship [13, 34, 45], MTLDNNs could perform worse due to its high model complexity

and the corresponding large estimation errors. Therefore, empirical experiments are necessary to

compare the performance of MTLDNNs and NL.

4. Data and Methods

4.1. Data Collection

A survey was conducted through Qualtrics.com in July 2017 to analyze the mode choice preferences

to autonomous vehicles (AVs) in Singapore. The survey consisted of three sections: RP, SP, and

5This tradeoff is traditionally known as bias-variance tradeoff. Bias is similar to the approximation error, and
variance is similar to the estimation error

6For a more general introduction, readers could refer to the recent studies in the fields of high dimensional
probability and statistics [59, 57, 4, 1]
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respondents’ demographics. In the first part (RP), the respondents reported the zip codes of

the origin and destination (OD) of their most recent trip with a specific trip purpose, which was

randomly drawn from commuting, shopping, or recreation, along with the travel mode choice of

the trip that was chosen from walking, public transit, driving, and ride hailing. By using the OD

information, we computed the trip characteristics from Google Map API, including walking time for

walking, public transit, and driving; waiting time for public transit and ride hailing; in-vehicle travel

time for public transit, ride hailing, and driving; and travel cost for public transit, ride hailing,

and driving. In the second part (SP), hypothetical choice scenarios (Figure 3) were automatically

created in the survey and on-demand AV was added to the choice set using the computed trip

characteristics. In the choice scenarios, trip-specific attributes took three values with the middle

level equal to the value generated from the RP section so that the scenarios were realistic to the

survey respondents, and the other two values were 50% and 150% of the middle levels. The trip

attributes of AVs were taken to be of a similar magnitude as ride hailing. Among all possible choice

scenarios, six scenarios were randomly drawn for each respondent to make mode choice decisions,

following a random experimental design. This random experiment design is not as efficient as the

SP design with fractional factorial design, and the SP experiment deriving values from the RP

(SP-off-RP) can lead to inconsistent estimates due to the unobserved factors shared by RP and SP

[53, 27]. But it is still unclear how these statistical concerns influence the predictive performance

and the interpretation of the MTLDNNs. In the last section of the survey, the respondents reported

their socioeconomic information, such as age, gender, and income.

Fig. 3. Example choice scenario in the survey

4.2. Data Summary

A significantly larger number of respondents chose driving and a significantly smaller number chose

public transit in SP than RP. As shown by the market shares of the travel mode choices in Table

1, only 1.73% of the total respondents drove as reported in RP, as opposed to 35.6% in SP; about

58.8% chose public transit in RP, as opposed to 28.8% in SP. Given that the average values of the

alternative-specific variables (e.g. cost, travel time, etc.) are the same between RP and SP, the

difference of mode shares is likely to be caused by the constraints in the RP setting, such as the

9



availability issue of automobiles in Singapore.

To investigate closely the mode switching behavior, Table 1 cross tabulates the choices in RP

(columns) and SP (rows), with the proportion of the respondents who chose consistent travel

modes highlighted in bold. Table 1 reveals that a considerable number of people changed from

public transit in RP to driving in SP. The drivers in RP are highly likely to choose driving in SP

and people from each of the other three modes switch to driving in SP for around 35% of the chance.

This change can be caused by the strict restrictions on car ownership in Singapore. To address

this challenge, our models explicitly use car availability as a constraint in both NL and MTLDNN

models, which will be detailed in the next section. The summary statistics of the independent

variables are provided in Appendix I.

Table 1: Cross tabulation of mode choice shares in RP and SP
Walk (RP) Public Transit (RP) Ride Hailing (RP) Drive (RP) SP Share

Walk (SP) 463 265 11 20 759 (12.9%)
Public Transit (SP) 375 1229 80 10 1694 (28.8%)
Ride Hailing (SP) 179 397 104 8 688 (11.7%)

Drive (SP) 642 1206 194 53 2095 (35.6%)
AV (SP) 147 365 127 11 650 (11.0%)

RP Share 1806 (30.7%) 3462 (58.8%) 516 (8.77%) 102 (1.73%) (100.00%)

4.3. Experiment Setup

Our experiments compare the MTLDNNs to two NL models that specify the utility functions as

introduced in Appendix II. Both NL models take linear forms, but differ in the parameter sharing

between RP and SP. The NL models with and without parameter constraints (NL-C and NL-NC)

represent respectively the NL with the most and the least parameter sharing between RP and SP.

The two NL models were designed to represent the two boundary NL models to guarantee a fair

comparison between MTLDNNs and NLs.

One challenge in training MTLDNNs is its vast number of hyperparameters that define their

regularization and architecture, on which the performance of MTLDNNs largely depends. To

address this challenge, we specified a hyperparameter space and searched randomly within this space

to identify the hyperparameters that lead to the high prediction accuracy [10]. The hyperparameter

space is presented in Appendix III, and the hyperparameters associated with the top 10 MTLDNNs

are provided in Appendix IV. To evaluate the models, RP and SP data were split into training and

testing sets with the ratio of 5:1. The training set was used for training and the testing set for

evaluation.

Non-availability of alternatives is addressed in NL and MTLDNN models by excluding the

driving alternative from the Softmax activation function when the respondent does not own a driver

licence and a car. The unavailable driving options account for about 39.2% of the RP training set

and 37.1% of the RP testing set. For implementation, we used the non-availability option in Python

Biogeme for the NL models, and modified the choice probability functions (Equation 3) in the ERM

of MTLDNNs using the Tensorflow module in Python.
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5. Experiment Results

5.1. Model Performance

Table 2 summarizes the prediction accuracy and cross-entropy losses of MTLDNN (Top 1), MTLDNN

ensemble over top 10 models (MTLDNN-E), NL with parameter constraints (NL-C), and NL with

no parameter constraints (NL-NC). In Table 2, Panel 1 reports the joint prediction accuracy for

RP and SP, individual RP, and individual SP data in the testing and training sets; Panel 2 reports

the cross-entropy loss for the joint RP and SP data set.

Table 2: Comparison of four models

MTLDNN
(Top1)

MTLDNN-E
(Top10)

NL-C NL-NC

Panel 1: Prediction Accuracy (Hit-Rate)

Joint RP+SP (Testing) 60.3% 59.3% 54.7% 55.3%
RP (Testing) 64.6% 61.0% 57.8% 59.7%
SP (Testing) 59.5% 59.0% 54.1% 54.5%
Joint RP+SP (Training) 62.7% 68.9% 53.9% 54.5%
RP (Training) 70.7% 83.3% 61.3% 64.3%
SP (Training) 61.2% 66.2% 52.5% 52.6%

Panel 2: Cross Entropy Loss (Negative Log Likelihood)

Joint RP+SP (Training) 1.77 1.78 0.948 0.928
Joint RP+SP (Testing) 1.91 1.94 0.984 0.985

The MTLDNNs outperform the NL models in terms of prediction accuracy, but underperform

in terms of cross-entropy losses. Measured by the prediction accuracy, the top 1 MTLDNN model

outperforms the NL-C and NL-NC by 5.6% and 5.0%. This about 5% prediction gain of MTLDNNs

over NL models is consistent in the separate RP and SP datasets. The MTLDNN-E also has higher

prediction accuracy than the NL models in the testing sets, although MTLDNN-E performs slightly

worse than the top 1 MTLDNN model. Comparing between two NL models, the NL-NC model

with fewer parameter constraints outperforms the NL-C model by 0.6% in both the testing and

training sets, which is reasonable in the classical statistical framework because releasing constraints

improves the capacity of models fitting the data. However, MTLDNNs perform worse than the two

NL models in terms of cross entropy losses. In both the training and testing sets, the cross-entropy

losses of both MTLDNN and MTLDNN-E are higher than NL-C and NL-NC: that of the best

MTLDNN is larger than the NL-C and NL-NC by 0.925 and 0.945 respectively. Interestingly, this

worse performance of MTLDNNs seems not caused by overfitting, because the cross-entropy losses

of MTLDNNs in the training and testing sets are of a similar magnitude (1.77 vs. 1.91 for the best

MTLDNN).

We can understand the inconsistency between prediction accuracy and cross-entropy losses by

their different weighting mechanisms. The prediction accuracy uses zero-one losses, which essen-

tially assign the same weights to all the observations; however, the cross-entropy loss is computed

by using the formula −yi logPi, which assigns a very large weight to the confident but incorrect
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predictions. For example, when an observation has yi = 1 but predicted choice probability is

Pi = 0.001 (0.001 chance to be one), the cross-entropy loss is −yi logPi = 6.91 while the zero-one

loss (prediction error) only equals to one. Therefore, the cross-entropy losses significantly penalize

the confident but incorrect predictions with the logPi weighting, while the zero-one losses do not.

It is difficult to argue for the importance of one metric over the other. From a theoretical per-

spective, cross-entropy losses are the same as the negative log likelihood in the classical maximum

likelihood estimation, so they have better information theoretical interpretation than prediction

accuracy. In fact, Train (2009) [52] illustrated a clear preference of cross-entropy losses over pre-

diction accuracy, which was referred to as “percent correctly predicted” and “should actually be

avoided” in practice. But on the other side, prediction accuracy is the most widely adopted metric

in the machine learning field, and it is the only metric that allows a wide comparison across data

sets and variable types.7 Despite the difficulty of choosing a definitive metric, it is important to

recognize that prediction accuracy and cross-entropy losses can lead to different or even opposite

model selection results.

5.2. Hyperparameters in MTLDNNs

Unlike the NL models, hyperparameters of the MTLDNNs have a significant impact on their per-

formance. Figure 4 summarizes how the prediction accuracy of MTLDNNs varies with the regu-

larization constraints and the architectural hyperparameters. It assists in identifying the effective

hyperparameters that contribute to MTLDNNs’ empirical performance.

When appropriately chosen, the regularization hyperparameters, such as λ1, λ2, and λ3, can

effectively improve the prediction accuracy of MTLDNNs. As discussed in Section 3, λ1 and λ2

control the absolute scales of RP and SP models, and λ3 is the penalty term on the similarity

between the task-specific layers of RP and SP. As shown in Figures 4a-4c, when λ3 becomes too

large or small, implying that RP- and SP-specific layers are either too similar or different, the

MTLDNN model cannot perform well. This finding also similarly applies to λ1 and λ2. In our case,

the best λ1, λ2, and λ3 values are respectively 10−2, 10−4, and 10−2.

Interestingly, the architectural hyperparameters, such as depth and width of MTLDNNs, do

not contribute to MTLDNNs’ prediction accuracy, suggesting that naively increasing the scale of

MTLDNNs cannot improve model performance. This result can be explained via the previous

discussion regarding how more complex models can lead to worse predictive performance in Section

3.3.4. While the approximation errors of deeper and wider MTLDNNs decrease, the large estimation

error can counteract the approximation gain, particular when the sample size is small. While

our results are different from many studies that found DNNs outperforming MNL in the travel

behavioral analysis [42, 63], the finding of only limited performance improvement from deeper and

wider DNN architectures was not unseen [40]. Our results imply that it cannot effectively help

the model performance if researchers only naively apply the default feedforward DNN architecture

7Cross-entropy losses do not allow very wide comparison. For example, when the choice sets of two models have
different numbers of alternatives, the two models are not directly comparable using cross-entropy losses.
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(a) λ1 (b) λ2 (c) λ3

(d) Depth (shared) (e) Depth (specific) (f) Width

Fig. 4. Prediction accuracy with regularization and architectural hyperparameters; red and blue
dots are the results of individual models; blue lines connect average prediction accuracy of all
models, and red ones connect the models with the maximum prediction accuracy.

without architectural innovations adjusted to the RP-SP problem.

5.3. Interpreting Substitution Patterns

MTLDNNs are not only predictive, but also interpretable. DNNs can be interpreted in at least two

ways: visualizing the substitution patterns of choice alternatives or computing the elasticity values

with the gradients’ information. The gradient information is commonly used for interpreting DNNs

[49, 44, 9, 3, 47, 61, 60]. In Figure 5, the y-axis represents the probability of choosing AVs; the

x-axis represents the change of input variables; each curve represents how the choice probability

varies with input variables holding all the other variables constant at the level of sample average.

As shown in Figure 5, the probability of choosing AVs is highly sensitive to the change of AV-

specific attributes, such as costs, waiting time, and in-vehicle travel time of AVs, but much less so

to the socio-economic variables, such as age and income. For example, as the AV cost increases

from $0 to $20, the probability of choosing AVs drops from about 50% to only 5%; similarly, as

the AV in-vehicle travel time increases from 0 to 20 minutes, the probability drops from about 30%

to only 5%. In contrast to the AV-specific variables, the probability of adopting AV is much less

sensitive to socio-economic variables (Figures 5e and 5d): the probability curve of adopting AV is

nearly flat everywhere. Meanwhile, Figures 5a and 5c reveal that as the cost and in-vehicle travel

time of AVs increase, AVs are substituted primarily by driving and secondarily by ride hailing. This

substitution pattern is intuitive, because among the five travel mode alternatives, AV is presumably

more similar to driving and ride hailing than walking and taking buses.
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(a) AV cost (b) AV wait time (c) AV in-vehicle time

(d) Age (e) Income

Fig. 5. Choice probability functions varying with inputs values; the curves are generated by varying
the targeting input variables while holding all the other variables constant; light curves are the
individual MTLDNN results; dark ones are the average of top 10 models.

5.4. Interpreting Elasticity Values

Table 3 presents the elasticity values of the five travel modes with respect to the input variables

in SP. The elasticity values in MTLDNNs are generated by computing the gradient information of

each variable, while holding all the other variables constant. The detailed coefficient tables of the

NL models are reported in Appendix VI. Panels 1 and 2 report the values in the top MTLDNN

model and the NL model. To facilitate the discussion, we highlight the self-elasticity values on the

main diagonal, which are the sensitivity of the choice probabilities of the alternatives regarding

their own attributes.

The elasticity values from the MTLDNN model are overall reasonable in terms of their signs

and magnitudes. The self-elasticity values are all negative, which are the same as those in the NL

model; the majority of the cross-elasticity values in the MTLDNN are positive, which are slightly

different from the completely positive values in the NL model. These signs are reasonable because

higher prices of one alternative should lead to fewer people choosing this alternative and more

people choosing its substitutes. As to the magnitude, economics theories suggest that the elasticity

values should be around −1.0, which are similar to the value range of the self-elasticity values

found in the MTLDNN model.8 For example, with 1% increase in walking time, the probability

of people choosing to walk decreases by 1.45%; with 1% increase in the cost of public transit, the

8When the price elasticity of demand is smaller than −1, service providers can increase revenues by reducing
prices; when it is larger than −1, service providers can increase revenues by increasing prices. Therefore, the price
elasticity should converge to −1 in an ideal theoretical setting, around which the service providers cannot improve
their revenue by increasing or reducing prices.
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Table 3: Elasticities of five travel modes with respect to input variables in SP; elasticities of the
RP part are attached in Appendix V.

Panel 1: MTLDNN Walk Public Transit Ride Hailing Driving AV

Walk time -1.653(1.6) 0.240(0.4) 0.371(0.4) 0.065(0.3) 0.166(0.4)
Public transit cost -0.202(0.7) -0.699(0.5) 0.345(0.5) 0.182(0.3) 0.146(0.4)
Public transit walk time 0.000(0.5) -0.227(0.5) 0.092(0.4) 0.054(0.3) 0.223(0.4)
Public transit wait time 0.039(0.3) -0.323(0.5) -0.129(0.4) 0.096(0.2) 0.028(0.4)
Public transit in-vehicle time 0.023(0.6) -0.518(0.6) 0.215(0.6) 0.076(0.4) 0.055(0.6)
Ride hail cost 0.198(0.9) 0.303(0.6) -0.624(0.7) -0.034(0.4) 0.683(0.5)
Ride hail wait time -0.029(0.6) 0.076(0.4) -0.644(0.7) -0.001(0.4) 0.126(0.5)
Ride hail in-vehicle time 0.005(0.7) 0.022(0.4) -0.911(0.7) 0.096(0.3) -0.110(0.4)
Drive cost 0.166(0.7) 0.391(0.6) 0.500(0.6) -0.535(0.7) 0.496(0.5)
Drive walk time 0.335(0.5) 0.124(0.4) 0.320(0.4) -0.211(0.3) 0.297(0.4)
Drive in-vehicle time 0.241(0.6) 0.560(0.6) 0.648(0.6) -0.659(0.8) 0.599(0.6)
AV cost 0.034(0.4) -0.053(0.4) 0.263(0.4) 0.192(0.4) -0.854(0.8)
AV wait time 0.039(0.4) -0.004(0.4) 0.355(0.4) 0.069(0.3) -0.378(0.4)
AV in-vehicle time -0.242(0.4) -0.085(0.4) 0.140(0.4) 0.293(0.4) -0.902(0.7)

Panel 2: NL Walk Public Transit Ride Hailing Driving AV

Walk time -1.907(1.9) 0.125(0.1) 0.125(0.1) 0.125(0.1) 0.125(0.1)
Public transit cost 0.137(0.1) -0.529(0.4) 0.137(0.1) 0.137(0.1) 0.137(0.1)
Public transit access time 0.079(0.1) -0.287(0.3) 0.079(0.1) 0.079(0.1) 0.079(0.1)
Public transit transfer time 0.067(0.1) -0.229(0.2) 0.067(0.1) 0.067(0.1) 0.067(0.1)
Public transit in-vehicle time 0.124(0.2) -0.436(0.4) 0.124(0.2) 0.124(0.2) 0.124(0.2)
Ride hail cost 0.025(0.0) 0.025(0.0) -0.197(0.2) 0.025(0.0) 0.025(0.0)
Ride hail wait time 0.036(0.0) 0.036(0.0) -0.314(0.2) 0.036(0.0) 0.036(0.0)
Ride hail in-vehicle time 0.077(0.1) 0.077(0.1) -0.680(0.5) 0.077(0.1) 0.077(0.1)
Drive cost 0.292(0.2) 0.292(0.2) 0.292(0.2) -0.790(1.1) 0.292(0.2)
Drive walk time 0.116(0.1) 0.116(0.1) 0.116(0.1) -0.218(0.3) 0.116(0.1)
Drive in-vehicle time 0.263(0.2) 0.263(0.2) 0.263(0.2) -0.433(0.5) 0.263(0.2)
AV cost 0.045(0.1) 0.045(0.1) 0.045(0.1) 0.045(0.1) -0.410(0.4)
AV wait time 0.029(0.0) 0.029(0.0) 0.029(0.0) 0.029(0.0) -0.260(0.2)
AV in-vehicle time 0.065(0.1) 0.065(0.1) 0.065(0.1) 0.065(0.1) -0.629(0.6)

probability of people choosing public transit decreases by 0.63%. Although the magnitudes between

MTLDNNs and NLs are different, it is difficult to evaluate which one approximates reality better

because the underlying true data generating process is always unknown to researchers.

The elasticity values enable us to rank the importance of the input variables regarding the

adoption of AVs, and the result is similar to that from Figure 5. Specifically, one percent increase in

the AV cost and in-vehicle travel time leads to 0.854 and 0.902 percent decrease of the probability of

using AVs, overall larger than the other variables’ impacts on AV adoption. The results suggest that

AV adoption heavily depends on its cost structure as opposed to the socio-economic information

and other alternatives’ attributes. While it is hard to rigorously evaluate the reliability of the

economic information from the MTLDNN models, the bottomline is that it is at least feasible to

extract intuitive economic information from MTLDNNs.
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6. Conclusions and Discussions

This study introduces the MTLDNN framework to combine RP and SP for demand analysis. It

is fueled by the practical importance of combining RP and SP for prediction and the theoretical

interest of using deep learning to analyze individual demand. This study investigates the theo-

retical, empirical, and behavioral dimensions of tackling the RP-SP problem under the MTLDNN

framework, yielding the following findings.

Theoretically, it is feasible and appealing to combine RP and SP data using the MTLDNN

framework. It is because the MTLDNN framework takes advantage of the capacity of automatic

feature learning in DNNs and imposes flexible constraints to capture the similarities and differences

between tasks. MTLDNNs are more generic than the classical NL in combining RP and SP, owing

to the approximation power and diverse architectures. Empirically however, the gain of model

performance in using the MTLDNN framework is still limited. MTLDNNs outperform the NL

models in terms of prediction accuracy, but underperform the NL models in terms of cross-entropy

losses. MTLDNNs’ performance can be mainly attributed to the regularizations specific to the

multitask learning problem, but not much to the feedforward deep architectures. Behaviorally,

MTLDNNs can reveal reasonable substitution patterns and elasticity values. MTLDNNs reveal

that AVs mainly substitute the driving and ride hailing modes and that the AV-specific variables

are more important than socio-economic variables in determining the adoption of AVs.

The study poses intriguing questions about how to evaluate, improve, and interpret the MTLDNNs.

First, our results show the inconsistent model evaluation between prediction accuracy and cross-

entropy losses. Since the two metrics represent two disciplinary views, currently the papers adopting

the machine learning perspective tend to emphasize the prediction accuracy while those adopting

the choice modeling perspective emphasize the cross-entropy losses (a.k.a. negative log likelihood).

However, owing to their potential conflicts, future researchers should at least report both and

then seek to reconcile any conflict between the two metrics. As machine learning permeates into

the choice modeling practices, this reconciliation will become an imperative for future researchers.

Second, even the prediction accuracy of MTLDNNs is only modestly higher than the NL models.

Since this study uses only the simplest MTLDNN architecture, the limited empirical improvement

in model performance is not unexpected. Future studies should continue the efforts of improving

the MTLDNN performance by using larger sample size or advanced MTLDNN architectures, or

creating MTLDNN architectures specific for the RP-SP problem. In fact, many novel MTLDNN

architectures are already created to capture the similarities and differences of multiple tasks in a

way subtler than the architecture used in this study [35, 22, 38, 46]. Novel MTLDNN architectures

can also be created in an automatic way by using sequential modeling techniques such as the au-

toML tools [17, 54, 68, 69]. Lastly, this study analyzed substitution patterns and elasticity values

to interpret MTLDNNs. But model interpretability is an ambiguous concept, which leads to both

the challenge of creating definitive interpretation methods and the opportunity of extracting novel

information that is unforeseen from classical choice modeling methods.

The MTLDNN framework can create a vast number of empirical and theoretical research op-
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portunities. Future studies should explore the application of MTLDNNs to the classical topics

in urban transportation, such as jointly analyzing auto ownership and mode choice, trip chains

and travel modes, and travel time and VMT, because multitask learning appears to be a viable

and intuitive framework for these situations of joint analysis. Future studies can approach the

MTLDNN framework from the classical statistical perspective; for example, classical methods of-

ten model the structure of the unobserved random utility of RP and SP, which is not yet explored

in the MTLDNN framework. In short, we hope that our work has connected the novel MTLDNN

framework to the classical choice models, and revealed the tremendous opportunities of using the

MTLDNN framework for choice modeling, behavioral analysis, and policy discussions.
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Appendix I: Descriptive Summary Statistics

The key statistics of our samples are summarized in Table A1. Even though driving is not available

to some people in their revealed preference, the survey backend calculated the driving parameters

for these observations nonetheless and is reflected in the table. A comparison of age and income

distribution between the sample and the population is summarized in Table A2. In terms of age,

the sample overrepresents young people, and underrepresents the elderly. In terms of monthly

income, individuals with no income and very high income more than 20, 000 are underrepresented

in the sample, although the distribution of other income groups is close to that of the population.

Table A1: Summary statistics of the Singapore dataset

Panel 1. Continuous Variables

mean std min 25% 50% 75% max

Walk walktime (min) 60.504 54.875 2.0 28.00 40.0 75.00 630.0
Bus cost (S$) 2.069 1.266 0.0 1.12 1.8 2.52 7.0
Bus walktime (min) 11.964 10.782 0.0 4.20 8.0 15.00 84.0
Bus waittime (min) 7.732 5.033 0.0 4.00 7.0 10.00 42.0
Bus ivt (min) 25.064 18.911 0.0 10.00 21.0 31.20 168.0
Ridesharing cost (S$) 14.485 11.636 0.0 7.00 12.0 17.60 140.0
Ridesharing waittime (min) 7.108 4.803 0.0 4.00 5.6 9.00 42.0
Ridesharing ivt (min) 18.283 13.389 0.8 9.80 15.4 23.20 147.0
AV cost (S$) 16.076 14.598 0.0 7.70 12.1 18.70 180.0
AV waittime (min) 7.249 5.675 0.0 3.00 6.0 8.00 48.0
AV ivt (min) 20.115 16.989 0.6 9.00 16.2 25.20 189.0
Drive cost (S$) 10.494 10.568 0.0 3.20 7.0 16.00 70.0
Drive walktime (min) 3.968 4.176 0.0 1.40 2.8 4.80 42.0
Drive ivt (min) 17.430 14.101 0.8 8.00 14.4 22.40 168.0
Age (year) 41.349 12.478 18.0 31.00 41.0 50.00 82.0
Income (K S$) 9.827 5.013 0.0 7.00 9.0 13.50 20.0
Education 3.063 2.698 0.0 0.0 4.0 5.00 7.0

Panel 2. Discrete Variables (Counts)

Gender 5,190 (1: Male); 3,228 (0: Female)
Employment 5,064 (1: Employed); 3,354 (0: Unemployed)
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Table A2: Comparison of sample and population

Age Group Population (%) Sample (%) Income Group Population (%) Sample (%)

20− 24 8.42 16.31 No income 10.79 1.46
25− 29 9.04 17.32 Below $2,000 7.49 7.19
30− 34 9.22 15.45 $2,000 − $3,999 10.69 14.9
35− 39 9.75 14.08 $4,000 − $5,999 11.29 17.35
40− 44 10.12 10.09 $6,000 − $7,999 10.89 15.57
45− 49 9.72 10.2 $8,000 − $9,999 9.49 14.77
50− 54 10.19 7.42 $10,000 − $11,999 8.39 10.07
55− 59 9.67 4.93 $12,000 − $14,999 9.09 8.22
60− 64 8.13 2.49 $15,000 − $19,999 9.49 4.78
65− 69 6.39 0.67 Over $20,000 12.39 5.69
70− 74 3.35 0.91
75− 79 2.84 0
80− 84 1.73 0.13

85+ 1.43 0

Appendix II: Utility Specifications of NLs

Table A3 summarizes the utility specifications of the NL-C and NL-NC models. The utility func-

tions are presented as a table rather than functions because the mathematical formula can be

unnecessarily complicated in presentation, which include about 20 equations (5 alternatives * 2

(RP and SP) * 2 (NL-C and NL-NC)). For both NL-C and NL-NC models, the utility specifica-

tions follow a linear structure:

Ukr,i = Vkr,i + εkr = wTkshxsh,i + wTkrxr,i + εkr,i (15)

Uks,t = Vks,t + εks = wTkshxsh,t + wTksxs,t + εks,t (16)

In Table A3, the first column presents the coefficients, in which ASC implies alternative specific

constant. The second column indicates whether the coefficient exists for the specific alternatives. As

walking is used as the reference alternative, the demographic variables are included in all the utility

functions except for walking. In the third and fourth columns, ‘SP’ implies that the coefficient only

exists for SP’s utility functions, corresponding to wks in the equations above; ‘SP,RP’ implies that

the coefficient enters the utility functions of both RP and SP without parameter sharing; ’SH’

implies that the coefficient enters the utility functions of both RP and SP and their coefficients are

constrained to be shared, corresponding to wksh in the equations above. As noted before, the NL-C

has many shared parameters as constraints while the NL-NC model does not include parameter

sharing. Since AV only exists for SP, the attributes of AV do not appear in RP specifications.
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Table A3: Utility specifications of NL-C and NL-NC

Coefficient Alternative(s) NL-C NL-NC

ASC walk Walk SP SP
Walk walktime (min) Walk SH SP,RP

ASC public transit Public Transit SP,RP SP,RP
Bus cost (S$) Public Transit SH SP,RP
Bus walktime (min) Public Transit SH SP,RP
Bus waittime (min) Public Transit SH SP,RP
Bus ivt (min) Public Transit SH SP,RP

ASC Ridehail Ride hail SP,RP SP,RP
Ridesharing cost (S$) Ride hail SH SP,RP
Ridesharing waittime (min) Ride hail SH SP,RP
Ridesharing ivt (min) Ride hail SH SP,RP

ASC AV AV SP SP
AV cost (S$) AV SP SP
AV waittime (min) AV SP SP
AV ivt (min) AV SP SP

ASC drive Drive SP,RP SP,RP
Drive cost (S$) Drive SH SP,RP
Drive walktime (min) Drive SH SP,RP
Drive ivt (min) Drive SH SP,RP

Age (year) All except walk SH SP,RP
Income (K S$) All except walk SH SP,RP
Education All except walk SH SP,RP
License All except walk SH SP,RP
Auto Ownership All except walk SH SP,RP

Appendix III: Hyperparameter Space

25



Table A4: Hyperparameter space of MTLDNNs
Hyperparameter Dimensions Values

Shared M1 [1, 2, 3, 4, 5]
Domain-specific M2 [1, 2, 3, 4, 5]

λ1 constant [10−20, 10−4, 10−2, 0.5]
λ2 constant [10−20, 10−4, 10−2, 0.5]
λ3 constant [10−20, 10−4, 10−2, 0.5]

n hidden [25, 50, 100, 200]
n iteration 20000

n mini batch 200

Appendix IV: Top 10 MTLDNN Architectures

It appears that naively increasing depth and width cannot improve the predictive power of the

MTLDNN models, as shown in Table A5. However, the wise choice of regularization hyperparam-

eters helps to improve model performance.

Table A5: Top 10 MTLDNN Architectures

Shared M1 Domain-specific M2 n hidden λ1 λ2 λ3

1 1 25 10−2 10−2 10−4

3 2 25 10−2 10−4 10−20

1 1 25 10−20 10−2 10−2

1 1 25 10−2 10−1 10−4

1 1 100 10−2 10−20 10−4

1 4 25 10−2 0.5 10−2

1 1 200 10−2 0.5 10−2

1 1 50 10−2 10−2 10−20

3 1 100 10−2 10−4 10−4

2 3 50 10−2 0.5 10−20
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Appendix V: Elasticities in RP

Table A6: Elasticities of travel modes with respect to input variables (RP)

Panel 1: MTLDNN Model Walk Public Transit Ride Hailing Driving

Walk time -1.235(1.3) 0.384(0.4) 0.868(0.6) 0.094(0.4)
Public transit cost -0.108(0.7) -0.198(0.3) 0.939(0.7) 0.378(0.4)
Public transit walk time -0.100(0.4) 0.014(0.2) 0.098(0.2) 0.065(0.2)
Public transit wait time 0.022(0.3) -0.042(0.2) 0.181(0.4) 0.237(0.3)
Public transit in-vehicle time -0.066(0.4) -0.020(0.2) 0.059(0.4) -0.152(0.3)
Ride hail cost -0.151(0.7) 0.190(0.3) -0.369(0.4) -0.031(0.5)
Ride hail wait time -0.274(0.4) 0.148(0.2) -0.913(0.5) -0.271(0.3)
Ride hail in-vehicle time 0.474(0.5) -0.106(0.2) -0.469(0.5) 0.052(0.2)
Drive cost -0.117(0.5) 0.034(0.2) 0.102(0.4) -0.436(0.4)
Drive walk time 0.103(0.3) -0.064(0.1) 0.213(0.4) -0.123(0.3)
Drive in-vehicle time -0.514(0.5) 0.155(0.2) 0.210(0.3) -0.754(0.8)

Panel 2: NL Model Walk Public Transit Ride Hailing Driving

Walk time -0.533(0.4) 0.219(0.2) 0.219(0.2) 0.219(0.2)
Public transit cost 0.159(0.1) -0.098(0.1) 0.159(0.1) 0.159(0.1)
Public transit access time 0.091(0.1) -0.056(0.1) 0.091(0.1) 0.091(0.1)
Public transit transfer time 0.075(0.0) -0.046(0.0) 0.075(0.0) 0.075(0.0)
Public transit in-vehicle time 0.161(0.1) -0.100(0.1) 0.161(0.1) 0.161(0.1)
Ride hail cost 0.007(0.0) 0.007(0.0) -0.085(0.1) 0.007(0.0)
Ride hail wait time 0.011(0.0) 0.011(0.0) -0.133(0.1) 0.011(0.0)
Ride hail in-vehicle time 0.025(0.0) 0.025(0.0) -0.292(0.2) 0.025(0.0)
Drive cost 0.007(0.0) 0.007(0.0) 0.007(0.0) -0.649(0.4)
Drive walk time 0.001(0.0) 0.001(0.0) 0.001(0.0) -0.121(0.1)
Drive in-vehicle time 0.003(0.0) 0.003(0.0) 0.003(0.0) -0.244(0.2)

Appendix VI: Estimation Results of the Nested Logit Models

Table A7: Performance of the nested logit models

Constrained Unconstrained

Null Loglikelihood -14247.66 -14247.66
Final Loglikelihood -9669.246 -9603.553
Number of parameters 78 122
Rho square 0.321 0.326
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Table A8: Coefficients of the nested logit model with parameter constrains
Variable Name Value Std Err t-test p-value

ASC RP BUS -2.06 13198.443 -0.000 1.000
ASC RP DRIVE -4.38 1.468 -2.986 0.003
ASC RP RS -3.31 1.387 -2.383 0.017
ASC SP AV 4.13 1.931 2.136 0.033
ASC SP BUS 5.29 13198.442 0.000 1.000
ASC SP DRIVE 6.90 2.742 2.517 0.012
ASC SP RS 5.67 2.861 1.982 0.047
ASC SP WALK 4.04 2.097 1.925 0.054
B AGE AV -0.27 0.147 -1.800 0.072
B AGE BUS -0.13 0.139 -0.900 0.368
B AGE DRIVE -0.20 0.143 -1.406 0.160
B AGE RS -0.31 0.147 -2.136 0.033
B AGE WALK -0.26 0.148 -1.785 0.074
B AUTOOWN AV -0.05 0.075 -0.721 0.471
B AUTOOWN BUS -0.12 0.068 -1.728 0.084
B AUTOOWN DRIVE -0.02 0.072 -0.246 0.805
B AUTOOWN RS 0.01 0.074 0.074 0.941
B AUTOOWN WALK -0.11 0.076 -1.416 0.157
B COST AV -0.19 0.036 -5.273 0.000
B COST BUS -0.19 0.032 -5.947 0.000
B COST DRIVE -0.50 0.077 -6.590 0.000
B COST RS -0.08 0.023 -3.515 0.000
B EDU AV 0.90 0.271 3.335 0.001
B EDU BUS 0.60 0.253 2.361 0.018
B EDU DRIVE 0.79 0.263 3.012 0.003
B EDU RS 0.73 0.265 2.763 0.006
B EDU WALK 0.71 0.268 2.635 0.008
B FULLJOB AV -0.36 0.213 -1.700 0.089
B FULLJOB BUS -0.17 0.199 -0.840 0.401
B FULLJOB DRIVE -0.40 0.207 -1.926 0.054
B FULLJOB RS -0.24 0.209 -1.132 0.258
B FULLJOB WALK -0.38 0.214 -1.767 0.077
B HEDU AV -0.19 0.228 -0.851 0.395
B HEDU BUS -0.14 0.216 -0.649 0.517
B HEDU DRIVE -0.18 0.222 -0.810 0.418
B HEDU RS -0.08 0.227 -0.372 0.710
B HEDU WALK -0.19 0.230 -0.839 0.401
B INC AV 0.11 0.073 1.479 0.139
B INC BUS 0.04 0.070 0.511 0.609
B INC DRIVE 0.09 0.071 1.255 0.209
B INC RS 0.09 0.072 1.193 0.233
B INC WALK 0.06 0.073 0.858 0.391
B IVT AV -0.27 0.047 -5.829 0.000
B IVT BUS -0.20 0.031 -6.224 0.000
B IVT DRIVE -0.26 0.041 -6.375 0.000
B IVT RS -0.26 0.044 -5.865 0.000
B LEDU AV 1.09 0.436 2.491 0.013
B LEDU BUS 0.57 0.408 1.396 0.163
B LEDU DRIVE 0.68 0.421 1.612 0.107
B LEDU RS 0.96 0.431 2.238 0.025
B LEDU WALK 0.88 0.434 2.036 0.042
B LICENSE AV 4.13 2.159 1.911 0.056
B LICENSE BUS 3.23 13198.443 0.000 1.000
B LICENSE DRIVE 2.52 1.482 1.700 0.089
B LICENSE RS 2.37 1.392 1.700 0.089
B LICENSE WALK 4.04 2.099 1.923 0.055
B MALE AV -0.48 0.159 -3.003 0.003
B MALE BUS -0.53 0.151 -3.518 0.000
B MALE DRIVE -0.49 0.155 -3.143 0.002
B MALE RS -0.51 0.158 -3.234 0.001
B MALE WALK -0.43 0.161 -2.697 0.007
B OLD AV 0.38 0.381 0.986 0.324
B OLD BUS 0.68 0.359 1.902 0.057
B OLD DRIVE 0.70 0.367 1.902 0.057
B OLD RS 0.72 0.374 1.933 0.053
B OLD WALK 0.80 0.376 2.141 0.032
B WAITTIME AV -0.11 0.026 -4.011 0.000
B WAITTIME BUS -0.09 0.020 -4.477 0.000
B WAITTIME RS -0.11 0.026 -4.183 0.000
B WALKTIME BUS -0.15 0.026 -5.872 0.000
B WALKTIME DRIVE -0.16 0.028 -5.853 0.000
B WALKTIME WALK -0.86 0.133 -6.450 0.000
B YOUNG AV -0.67 0.249 -2.689 0.007
B YOUNG BUS -0.40 0.234 -1.725 0.084
B YOUNG DRIVE -0.72 0.245 -2.929 0.003
B YOUNG RS -0.62 0.245 -2.548 0.011
B YOUNG WALK -0.66 0.250 -2.660 0.008
MU SP 2.15 0.322 6.679 0.000
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Table A9: Coefficients of the nested logit model without parameter constrains
Variable Name Value Std Err t-test p-value

ASC RP BUS 0.73 0.119 6.096 0.000
ASC RP DRIVE -1.24 0.636 -1.951 0.051
ASC RP RS -0.58 0.221 -2.631 0.009
ASC SP AV 0.73 11.285 0.064 0.949
ASC SP BUS 1.51 11.135 0.136 0.892
ASC SP DRIVE 4.39 11.309 0.388 0.698
ASC SP RS 0.11 11.457 0.010 0.992
ASC SP WALK 0.24 11.416 0.021 0.983
B RP AGE BUS -0.09 0.146 -0.590 0.555
B RP AGE DRIVE -0.33 0.661 -0.494 0.621
B RP AGE RS -0.17 0.267 -0.653 0.514
B RP AUTOOWN BUS -0.16 0.072 -2.228 0.026
B RP AUTOOWN DRIVE0.21 0.379 0.548 0.584
B RP AUTOOWN RS 0.04 0.120 0.373 0.709
B RP COST BUS -0.09 0.114 -0.778 0.436
B RP COST DRIVE -0.23 0.324 -0.720 0.472
B RP COST RS 0.13 0.120 1.118 0.264
B RP EDU BUS 0.64 0.262 2.432 0.015
B RP EDU DRIVE 1.49 1.014 1.473 0.141
B RP EDU RS 0.51 0.487 1.050 0.294
B RP FULLJOB RP BUS -0.29 0.206 -1.413 0.158
B RP FULLJOB RP DRIVE-0.62 0.813 -0.760 0.447
B RP FULLJOB RP RS 0.43 0.428 1.013 0.311
B RP HEDU BUS -0.11 0.227 -0.486 0.627
B RP HEDU DRIVE -0.04 1.286 -0.030 0.976
B RP HEDU RS -0.03 0.412 -0.068 0.946
B RP INC BUS 0.03 0.074 0.401 0.688
B RP INC DRIVE 0.76 0.304 2.491 0.013
B RP INC RS 0.11 0.126 0.875 0.381
B RP IVT BUS 0.08 0.083 0.966 0.334
B RP IVT DRIVE -0.73 0.568 -1.286 0.198
B RP IVT RS 0.08 0.152 0.548 0.584
B RP LEDU BUS 0.54 0.423 1.288 0.198
B RP LEDU DRIVE 2.86 1.853 1.546 0.122
B RP LEDU RS 0.89 0.764 1.162 0.245
B RP LICENSE BUS 0.73 0.119 6.096 0.000
B RP LICENSE DRIVE -1.24 0.636 -1.951 0.051
B RP LICENSE RS -0.58 0.221 -2.631 0.009
B RP MALE BUS -0.48 0.159 -3.020 0.003
B RP MALE DRIVE -1.58 0.835 -1.895 0.058
B RP MALE RS -1.06 0.286 -3.690 0.000
B RP OLD BUS 0.59 0.368 1.607 0.108
B RP OLD DRIVE 1.23 1.357 0.906 0.365
B RP OLD RS -0.26 0.877 -0.302 0.763
B RP WAITTIME BUS -0.01 0.086 -0.103 0.918
B RP WAITTIME RS -0.13 0.140 -0.908 0.364
B RP WALKTIME BUS 0.14 0.081 1.687 0.092
B RP WALKTIME DRIVE-1.64 0.866 -1.889 0.059
B RP WALKTIME WALK-1.29 0.160 -8.042 0.000
B RP YOUNG BUS -0.38 0.247 -1.534 0.125
B RP YOUNG DRIVE -1.85 1.238 -1.495 0.135
B RP YOUNG RS -0.17 0.426 -0.411 0.681
B SP AGE AV 0.27 11.717 0.023 0.982
B SP AGE BUS 1.14 11.721 0.097 0.923
B SP AGE DRIVE 0.67 11.706 0.057 0.954
B SP AGE RS -0.06 11.741 -0.005 0.996
B SP AGE WALK 0.31 11.715 0.026 0.979
B SP AUTOOWN AV 1.04 17.605 0.059 0.953
B SP AUTOOWN BUS 0.68 17.598 0.039 0.969
B SP AUTOOWN DRIVE 1.26 17.614 0.072 0.943
B SP AUTOOWN RS 1.37 17.621 0.078 0.938
B SP AUTOOWN WALK 0.69 17.599 0.039 0.969
B SP COST AV -1.20 1.483 -0.807 0.420
B SP COST BUS -1.21 1.499 -0.809 0.418
B SP COST DRIVE -3.16 3.902 -0.811 0.418
B SP COST RS -0.55 0.690 -0.797 0.425
B SP EDU AV 0.72 17.489 0.041 0.967
B SP EDU BUS -1.24 17.936 -0.069 0.945
B SP EDU DRIVE 0.01 17.613 0.000 1.000
B SP EDU RS -0.29 17.681 -0.016 0.987
B SP EDU WALK -0.49 17.729 -0.028 0.978
B SP FULLJOB SP AV 0.35 16.961 0.021 0.984
B SP FULLJOB SP BUS 1.65 17.011 0.097 0.923
B SP FULLJOB SP DRIVE0.12 16.965 0.007 0.995
B SP FULLJOB SP RS 0.97 16.968 0.057 0.954
B SP FULLJOB SP WALK0.23 16.965 0.014 0.989
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Table A10: Coefficients of the nested logit model without parameter constrains (continued)
Variable Name Value Std Err t-test p-value

B SP HEDU AV 0.29 22.537 0.013 0.990
B SP HEDU BUS 0.63 22.582 0.028 0.978
B SP HEDU DRIVE 0.39 22.547 0.017 0.986
B SP HEDU RS 0.98 22.639 0.043 0.966
B SP HEDU WALK 0.32 22.542 0.014 0.989
B SP INC AV 1.20 6.436 0.186 0.852
B SP INC BUS 0.76 6.428 0.119 0.905
B SP INC DRIVE 1.08 6.429 0.167 0.867
B SP INC RS 1.06 6.429 0.164 0.870
B SP INC WALK 0.91 6.426 0.141 0.888
B SP IVT AV -1.72 2.129 -0.809 0.419
B SP IVT BUS -1.32 1.632 -0.809 0.418
B SP IVT DRIVE -1.64 2.024 -0.810 0.418
B SP IVT RS -1.66 2.047 -0.809 0.418
B SP LEDU AV 2.18 29.082 0.075 0.940
B SP LEDU BUS -1.10 29.278 -0.038 0.970
B SP LEDU DRIVE -0.42 29.189 -0.014 0.989
B SP LEDU RS 1.42 29.079 0.049 0.961
B SP LEDU WALK 0.89 29.096 0.030 0.976
B SP LICENSE AV 0.73 11.285 0.064 0.949
B SP LICENSE BUS 1.51 11.135 0.136 0.892
B SP LICENSE DRIVE 4.39 11.309 0.388 0.698
B SP LICENSE RS 0.11 11.457 0.010 0.992
B SP LICENSE WALK 0.24 11.416 0.021 0.983
B SP MALE AV 0.41 21.286 0.019 0.985
B SP MALE BUS 0.01 21.276 0.000 1.000
B SP MALE DRIVE 0.35 21.283 0.017 0.987
B SP MALE RS 0.29 21.282 0.014 0.989
B SP MALE WALK 0.67 21.299 0.032 0.975
B SP OLD AV -1.65 40.331 -0.041 0.967
B SP OLD BUS 0.28 40.054 0.007 0.994
B SP OLD DRIVE 0.36 40.045 0.009 0.993
B SP OLD RS 0.63 40.022 0.016 0.988
B SP OLD WALK 1.02 39.989 0.025 0.980
B SP WAITTIME AV -0.67 0.831 -0.801 0.423
B SP WAITTIME BUS -0.57 0.711 -0.803 0.422
B SP WAITTIME RS -0.68 0.848 -0.801 0.423
B SP WALKTIME BUS -1.01 1.250 -0.809 0.419
B SP WALKTIME DRIVE-1.02 1.260 -0.809 0.418
B SP WALKTIME WALK-4.97 6.127 -0.811 0.418
B SP YOUNG AV -0.01 20.331 -0.000 1.000
B SP YOUNG BUS 1.65 20.204 0.082 0.935
B SP YOUNG DRIVE -0.31 20.375 -0.015 0.988
B SP YOUNG RS 0.18 20.307 0.009 0.993
B SP YOUNG WALK 0.07 20.322 0.003 0.997
MU SP 0.34 0.425 0.811 0.418
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