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Abstract

Although automatically collected human travel records can accurately capture the time and
location of human movements, they do not directly explain the hidden semantic structures
behind the data, e.g., activity types. This work proposes a probabilistic topic model, adapted
from Latent Dirichlet Allocation (LDA), to discover representative and interpretable activ-
ity categorization from individual-level spatiotemporal data in an unsupervised manner.
Specifically, the activity-travel episodes of an individual user are treated as words in a docu-
ment, and each topic is a distribution over space and time that corresponds to certain type
of activity. The model accounts for a mixture of discrete and continuous attributes—the
location, start time of day, start day of week, and duration of each activity episode. The
proposed methodology is demonstrated using pseudonymized transit smart card data from
London, U.K. The results show that the model can successfully distinguish the three most
basic types of activities—home, work, and other, and it fits the data significantly better
than rule-based approaches. As the specified number of activity categories increases, more
specific subpatterns for home and work emerge. This work makes it possible to enrich hu-
man mobility data with representative and interpretable activity patterns without relying
on predefined activity categories or heuristic rules.

Keywords: Human mobility, Activity discovery, Spatiotemporal pattern, Topic model,
Transit smart card

1. Introduction1

The spatiotemporal aspect of our lives can be segmented into episodes of travel and ac-2

tivity participation. Activities have long been recognized as the fundamental driver of travel3

demand. In activity-based analysis of travel behavior, travel is treated as being derived from4

the need to pursue activities distributed in space (Axhausen and Gärling, 1992; Bhat and5

Koppelman, 1999; Bowman and Ben-Akiva, 2001; Rasouli and Timmermans, 2014). A trip is6

defined as “the travel required from an origin location to access a destination for the purpose7
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of performing some activity” (McNally, 2007), and an activity episode refers to a discrete ac-8

tivity participation (time allocated to activities) at a location (Bhat and Koppelman, 1999).9

By definition, each trip is followed by an activity episode, and the attributes of the trip are10

determined based on the activity participation at the trip destination. Therefore, individual11

mobility is closely intertwined with activity participation. Understanding activity patterns12

has important applications in urban and transportation planning, location-based services,13

public health and safety, and emergency response.14

Recent years have seen an explosion of large-scale spatiotemporal datasets related to15

human mobility, such as cellular network data, transit smart card data, and geo-tagged16

social media data. Although such automated data sources can capture the time and location17

of some human mobility with precision and at a fine level of detail, they do not explicitly18

provide any behavioral explanation, e.g., why people visit a certain place at a certain time.19

Traditionally, the most common way to collect such information is through manual surveys20

of individual activity participation, which are costly and do not scale well. A number of21

methods have been proposed to infer the activity based on heuristic rules (Alexander et al.,22

2015; Zou et al., 2018) , and/or supervised learning models fitted using the survey data (Liao23

et al., 2005; Allahviranloo and Recker, 2013). Both require predefined activity categories24

(e.g., home, work, school, recreation) that are often come up by the researchers. However, it25

is debatable whether such categorization is truly representative of the richness and diversity26

of human activities. Specifically, for human mobility research, we are most interested in27

finding the types of activities that drive distinctive spatiotemporal travel behavior. In this28

work, we focus on activity discovery (i.e., finding representative activity categories) instead29

of activity inference (i.e., predicting predefined activity categories). Of course, the two tasks30

are closely connected. Analyzing discovered activity patterns can help researchers design31

better rules to infer them.32

Automatic activity discovery is a challenging task, as people’s spatiotemporal choices33

vary from day to day and from individual to individual. Some of the variations can be34

explained by different underlying activities (i.e., inter-activity variability), and some are35

attributed to exogenous factors (e.g., weather) and thus become inherent randomness for36

the same activity (i.e., intra-activity variability). Longitudinal spatiotemporal data itself37

generally contains a significant amount of structure (Eagle and Pentland, 2009). Assuming38

that people’s spatiotemporal choices for each activity episode are generated based on the39

specific activity they intend to participate in, it is possible to find the latent activity patterns40

that underlie human mobility. This would require an unsupervised approach that is able to41

sift through large amounts of noisy data and find meaningful underlying activities. Unlike42

supervised learning, it does not require training data, and has the potential of automatic43

discovery of emerging activity patterns (Farrahi and Gatica-Perez, 2009, 2011; Hasan and44

Ukkusuri, 2014). The objective of this study is to develop a methodology that can help us45

uncover the latent activity patterns from large-scale human mobility datasets.46

In this work, we propose a model that extends Latent Dirichlet Allocation (LDA), a47

well known probabilistic topic model first introduced by Blei et al. (2003). Topic models are48

generative models that represent documents as mixtures of topics, and assign a topic to each49

word in a document. As this representation shares some similarities with individual mobility,50
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as shown in Table 1, it can be adapted for latent activity discovery. In the proposed model,51

we treat the activity-travel history of each individual as a document, and each activity52

episode as a multi-dimensional word. This would allow us to discover the latent activity53

associated with each activity episode and the activity mixture with each individual, based54

on the spatiotemporal data observed. The discovered activity patterns can then be used to55

understand time allocation behavior, predict human mobility, and characterize urban land56

uses.57

Table 1: Related concepts in natural language and human mobility

Natural language terminology Human mobility terminology General terminology

Word Activity episode (or trip) Observation
Document Individual travel-activity history Group of observations

Topic Activity Latent component

The paper has two main contributions:58

• We demonstrate that topic models can be extended for latent activity discovery at59

the individual trip (or activity episode) level based on unannotated travel records.60

This is distinctly different from previous studies that have applied topic models for61

discovery of daily or weekly activity patterns based on annotated data (Farrahi and62

Gatica-Perez, 2009; Hasan and Ukkusuri, 2014). Without activity labels provided in63

the unannotated data, one can only directly use the high-dimensional spatio-temporal64

information, which makes the problem more challenging.65

• The proposed methodology presents a flexible way to combine continuous time vari-66

ables and discrete location variables for latent activity discovery. In contrast, existing67

methods mostly rely on the discretized representation of time (Hasan and Ukkusuri,68

2014; Sun and Axhausen, 2016; Sun et al., 2019). The continuous representation of69

time not only better reflects people’s actual temporal preferences, but also mitigates70

data sparisity. In particular, we show that the use of activity duration, along with71

start time and location of the activity episode, greatly enhance the interpretability of72

the discovered latent activity patterns.73

2. Literature Review74

A plethora of methods have been proposed in the literature for activity inference. They75

can be generally categorized into two types—rule-based methods, and model-based methods.76

In rule-based methods, heuristic decision rules and thresholds are specified by researchers77

to categorically determine the activity. For example, based on Alexander et al. (2015),78

an individual’s home location is identified as the stay with the most visits on weekends79

and weekdays between 7 pm and 8 am. Hasan et al. (2013) assumed that one’s home80

and workplace were the most and second most visited places, respectively. Also based on81

transit smart card data, Zou et al. (2018) proposed a more complicated decision process82
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that considered the time, location, card type, and travel regularity. While these rule-based83

methods have been shown to work well in practice, they require domain knowledge to design84

the rules and do not provide an estimation of uncertainty. More importantly, one implicit85

assumption of most rule-based methods is that the activity is uniquely determined based on86

the location, i.e., there can only be one activity performed in a location. This is probably87

not true, especially for dense urban areas with highly mixed land use.88

Model-based activity inference overcomes many limitations of rule-based methods, but89

the true activities associated with travel records need to be provided. For example, using90

annotated GPS data, Liao et al. (2005) proposed a new approach for activity inference based91

on Relational Markov Networks (RMN) and Conditional Random Fields (CRF). Allahvi-92

ranloo and Recker (2013) adopted a multi-class Support Vector Machine (SVM) approach93

to infer the activity type, and validated it on a subset of the 2001 California Personal Travel94

Survey data. More recently, researchers turned to data fusion to form labeled training95

samples. This was commonly done by combining mobility data (e.g., transit smart card96

data) with survey data (Lee and Hickman, 2014; Kusakabe and Asakura, 2014; Alsger et al.,97

2018). The advancement of information and communication technologies has made data98

fusion more feasible. For example, Kim et al. (2014) demonstrated the feasibility of activity99

inference using data from the Future Mobility Survey (FMS), a smartphone based activity-100

travel survey system, which acquires movement data through sensors in smartphones and101

activity information through a web-based interactive process. Despite of the improved model102

performance, these methods still depend on predefined activity categorization. A more fun-103

damental problem is how to find the right activity categorization.104

For activity discovery, the activity information is not provided, and the problem is to105

discover and interpret latent patterns from the data. In one of the first studies of this kind,106

Eagle and Pentland (2009) used Principle Component Analysis (PCA) to extract a set of107

characteristic behavior vectors, called “eigenbehavior” from mobile phone data. Apart from108

PCA, other variations of dimension reduction methods have been applied to discover latent109

patterns from human mobility data, including non-negative matrix factorization (Peng et al.,110

2012), and probabilistic tensor factorization (Sun and Axhausen, 2016). A Continuous Hid-111

den Markov Model (CHMM) was proposed in Han and Sohn (2016) to impute the sequence112

of activities for each trip chain. Overall, these methods are not suitable for grouped data,113

where multiple trips associated with the same individual are highly correlated. As activity114

patterns vary across individuals, it is important to account for heterogenous behavior at115

the individual level. To address this issue, a hierarchical structure may be adopted, which116

would capture both inter-individual and intra-individual variations at different levels in the117

hierarchy.118

First introduced by Blei et al. (2003), Latent Dirichlet Allocation (LDA) is a generative119

probabilistic model for collections of grouped discrete data. Each group is described as a120

random mixture over a set of latent topics where each topic is a discrete distribution over121

the collection’s vocabulary. Other more recent topic models are generally extensions of122

LDA, including the dynamic topic model (Blei and Lafferty, 2006), supervised topic model123

Blei and McAuliffe (2010), and Hierarchical Dirichlet Process (HDP) (Teh et al., 2006).124

Originally designed as a text mining tool, it has found application in other fields such as125
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image processing (Rasiwasia and Vasconcelos, 2013) and bioinformatics (Liu et al., 2016).126

In transportation research, it has been used for mining transportation-related social media127

posts (Hidayatullah and Ma’arif, 2017), and understanding driving states (Chen et al., 2019),128

and extracting spatiotemporal patterns in bikesharing systems (Côme et al., 2014; Montoliu,129

2012). Sun et al. (2019) adapted LDA for spatiotemporal data and tested it on license plate130

recognition data. For activity discovery, it was first applied to wearable sensor data in131

Huynh et al. (2008). Regarding its application to mobility analysis, Farrahi and Gatica-132

Perez (2009, 2011) adapted the LDA model for annotated mobile phone data, in which the133

daily mobility of an individual is represented as a “bag of location sequences”. Later, a134

similar approach was used by Hasan and Ukkusuri (2014) to find weekly activity patterns135

from individual activity information shared in social media. All of these studies focus on136

identifying routines (or combinations of activities over a time period) based on annotated137

activity data. Under this problem definition, each topic represents a distinct distribution138

over activity sequences (Farrahi and Gatica-Perez, 2009) or timestamped activities (Hasan139

and Ukkusuri, 2014). In contrast, our work focuses on identifying activities from travel140

records, where each topic is a distinct distribution over time and space. There is a significant141

difference in problem dimensionality; there are typically many more locations than activity142

categories. The need to work with high-dimensional location data, in combination with143

sparsity of the data (compared to text data), makes it difficult to directly apply traditional144

LDA model for our problem.145

Another major difference lies in how we represent time. Most prior studies (Hasan and146

Ukkusuri, 2014; Sun and Axhausen, 2016; Sun et al., 2019) used discretized representation147

of time. This is obviously not ideal, as the boundaries we choose to divide time are usually148

arbitrary and do not perfectly capture people’s temporal preferences. In addition, discretized149

representation of time makes it more challenging to discover meaningful patterns with limited150

data, especially when the number of time categories is high, e.g., one category for each hour151

of the week (Hasan and Ukkusuri, 2014). To address these issues, we choose to represent152

time with three different variables—day of the week, time of day, and duration, of which153

the latter two are continuous. This not only offers a more natural representation of people’s154

temporal behavior, and but also mitigates the data sparsity problem. The next section will155

present an extended LDA model that makes it possible to combine multi-dimensional and156

heterogeneous spatiotemporal data, for the purpose of discovering latent activity patterns.157

A similar approach was proposed by Zheng et al. (2014) for mobile context discovery. It158

considered both spatial and temporal aspects of human behavior, but focused on identifying159

temporal routines. Specifically, the spatial patterns were forced to be individual-specific160

and could not be shared across individuals. This may limit the method’s ability to uncover161

activities based on land use patterns. The method was validated with detailed mobile phone162

data from 20 participants with complete survey information. For large-scale application,163

however, such detailed information is rarely available. Despite of the similarity, this work164

can be distinguished in several ways. First, both spatial and temporal patterns are treated as165

global; they can be shared across individuals. In this work, each “topic” is a latent activity166

characterized by a distinct spatiotemporal distribution. Second, the duration of an activity167

episode is included in this analysis, which provides valuable information for activity discovery168
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and interpretation. Third, for the arrival time and the duration of an activity episode, their169

variances are allowed to vary across activities, representing different temporal flexibilities.170

For example, work activities typically are less flexible than recreational activities. Fourth,171

the proposed methodology is validated using a large collection of individual-level transit172

smart card records. Unlike mobile phone data, transit smart card data is intrinsic to human173

mobility (Zhao et al., 2018b). As a result, the model needs to be adapted to match the174

characteristics of the data.175

3. Methodology176

3.1. Problem Formulation177

Let us assume that for each individual m (m = 1, ...,M), we observe a collection of178

Nm trips, each followed by an activity episode, and the n-th trip (or activity episode) of179

individual m is associated with a latent activity zmn. Only the spatiotemporal attributes of180

the activity episodes are observable. The goal is to find zmn that can best explain the data.181

To reflect individual heterogeneity, zmn is assumed to follow an individual-specific cat-182

egorical distribution parameterized by πm. In other words, different individuals may have183

different composition of activities. For example, some individuals travel mainly for com-184

muting, while others for recreation. πm may be used to characterize the activity patterns of185

individual m.186

Each activity episode is characterized by a set of spatiotemporal attributes, which should187

be chosen based on the problem and the available data source. For the purpose of latent188

activity discovery, we should choose the attributes that can help distinguish between different189

activities. In this study, we consider four attributes: the location xmn, arrival time tmn, day190

of week dmn, and duration rmn (i.e., how long the activity episode lasts). Both dmn and xmn191

are discrete, but tmn and rmn are continuous variables. Based on the activity-based analysis192

framework, the distributions of these variables depend on zmn. For this problem, xmn and193

dmn conditional on zmn are assumed to follow a categorical distribution parameterized by θz194

and φz respectively. tmn is assumed to follow a normal distribution parameterized by mean195

µz and precision τz. Unlike arrival time, the distribution of duration is bounded on the196

left (i.e., nonnegative) and heavy-tailed on the right. Therefore, rmn is assumed to follow a197

log-normal distribution parameterized by ηz and λz.198

Bayesian inference and conjugate priors are commonly used for estimating distribution199

parameters from data. Based on Bayesian inference, we can update our knowledge of a200

parameter by incorporating new observations. The use of conjugate priors allows all the201

results to be derived in closed form. In this study, the prior distribution of πm, θz, and202

φz is assumed to be a Dirichlet, which is the conjugate prior distribution of the categorical203

distribution. Both (µz, τz) and (ηz, λz) are assumed to be sampled from a normal-gamma204

distribution, which is the conjugate prior of the normal distribution with unknown mean205

and precision. These prior distributions have hyperparameters that need to be chosen by206

researchers.207

Specifically, the proposed model assumes the data are generated according to the follow-208

ing process:209
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1. For each activity z = 1, 2, ..., Z,210

(a) Sample a location distribution θz ∼ Dirichlet(β)211

(b) Sample a day of week distribution φz ∼ Dirichlet(γ)212

(c) Sample a time of day distribution µz, τz ∼ NormalGamma(µ0, κ0, ε0, τ0)213

(d) Sample a duration distribution ηz, λz ∼ NormalGamma(η0, ν0, ω0, λ0)214

2. For each individual m = 1, 2, ...,M ,215

(a) Sample an activity distribution: πm ∼ Dirichlet(α)216

(b) For each activity episode of the individual n = 1, 2, ..., Nm,217

i. Sample an activity zmn ∼ Categorical(πm)218

ii. Sample a location xmn ∼ Categorical(θzmn)219

iii. Sample a day of week dmn ∼ Categorical(φzmn)220

iv. Sample a time of day tmn ∼ Normal(µzmn , τzmn)221

v. Sample a duration rmn ∼ LogNormal(ηzmn , λzmn)222

α

πm

zmn

dmn

φzγ

xmn

θz β

tmn

µz

τz

µ0

τ0

κ0

ε0

rmn

ηz

λz

η0

λ0

ν0

ω0
Nm

ZZ

Z Z
M

Figure 1: Plate notation of the human mobility LDA model

The structure of the adapted LDA model is shown in Figure 1, where the shaded circles
represent the observed or pre-specified variables, and the non-shaded circles represent the
latent variables to be estimated. The notation used in this paper is summarized in Table 2.
Given hyperparameters α, β, γ, µ0, κ0, ε0, τ0, η0, ν0, ω0, and λ0, the generative process
described above results in the following joint distribution:

P (x,d, t, r, z, π, θ, φ, µ, τ, η, λ)

=P (z | π)P (x | θz)P (d | φz)P (t | µz, τz)P (r | ηz, λz)P (π)P (θ)P (φ)P (µ, τ)P (η, λ)
(1)
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Table 2: Notation

Notation Explanation Data Type

M number of individuals scalar
Z number of activities scalar
X number of locations scalar
D number of days of week scalar
N total number of observations scalar
Nm number of observations for individual m scalar
xmn location indicator for the n-th observation of individual

m
scalar

dmn arrival day of week indicator for the n-th observation of
individual m

scalar

tmn arrival time of day indicator for the n-th observation of
individual m

scalar

rmn duration indicator for the n-th observation of individual
m

scalar

zmn activity assignment indicator for the n-th observation of
individual m

scalar

πm probabilities of zmn for individual m Z-vector
θz probabilities of xmn for activity z X-vector
φz probabilities of dmn for activity z D-vector

µz, τz mean and precision of tmn for activity z scalar
ηz, λz mean and precision of log(rmn) for activity z scalar
α Dirichlet hyperparameter for πm Z-vector
β Dirichlet hyperparameter for θz X-vector
γ Dirichlet hyperparameter for φz D-vector

µ0, κ0, ε0, τ0 normal-gamma hyperparameters for µz and τz scalar
η0, ν0, ω0, λ0 normal-gamma hyperparameters for ηz and λz scalar

nz number of observations assigned to activity z scalar
umz number of observations with individual m and activity z scalar
vzx number of observations with location x and activity z scalar
wzd number of observations with day of week d and activity

z
scalar

sz sum of t for observations assigned to activity z scalar
Sz sum of t2 for observations assigned to activity z scalar
qz sum of log(r) for observations assigned to activity z scalar
Qz sum of log(r)2 for observations assigned to activity z scalar

where x, d, t, and r are observed, and z, π, θ, φ, µ, τ , η, and λ are latent variables to223

be estimated. The hyperparameters are omitted for clarity.224

It is worth noting that the proposed model makes two simplifying assumptions about225

the structure of activity episodes. First, the sequential dependency between consecutive226

activity episodes are ignored. To account for the sequential dependency, we need to estimate227
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the transition probabilities between activities, which will be difficult when the number of228

activities is large. In addition, it requires that the data capture a complete sequence of229

activity episodes, i.e., no missing activity episode is allowed, which limits the applicability230

of the model. In text mining, the LDA model has been proven to work well even without231

considering the sequential dependency across words in documents (known as “bag-of-words”232

assumption). Second, the distributions of different spatiotemporal attributes are assumed233

to be independent conditional on the activity. Estimating a joint distribution of multiple234

continuous and discrete variables is known to be a challenging problem. The conditional235

independence assumption allows us to avoid this problem and instead estimate multiple236

marginal distributions separately. Overall, these assumptions, although not very realistic,237

reduce the complexity of the model so that the latent parameters can be learned given a238

reasonable amount of data.239

3.2. Likelihoods240

To evaluate the goodness of fit of the model M, we use the likelihood function, which
can be expressed as

L(M) = P (x,d, t, r | M) =
M∏
m=1

Nm∏
n=1

Z∑
zmn=1

P (zmn, xmn, dmn, tmn, rmn) (2)

For the n-th activity episode of the m-th individual, the joint probability P (zmn =
z, xmn = x, dmn = d, tmn = t, rmn = r) can be further expanded as∫

πm

∫
θ

∫
φ

∫
µ

∫
η

P (πm)P (θ)P (φ)P (µ)P (η, λ)P (z, x, d, t, r | πm, θ, φ, µ, η, λ)

=
(∫

πm

P (z | πm)P (πm)
)
·
(∫

θ

P (x | θz)P (θ)
)
·
(∫

φ

P (d | φz)P (φ)
)

·
(∫

µ,τ

P (t | µz, τz)P (µ, τ)
)
·
(∫

η,λ

P (r | ηz, λz)P (η, λ)
)

=
umz + αz∑Z
k=1 umk + αk

· vzx + βx∑X
k=1 vzk + βk

· wzd + γd∑D
k=1wzk + γk

·T
(
t | 2ε0 + nz,

sz + κ0µ0

nz + κ0
,
(τ0 + nzSz−s2z

2nz
+ κ0(sz−nzµ0)2

2nz(κ0+nz)
)(κ0 + nz)

(ε0 + nz/2)(κ0 + nz)

)
·T
(

log(r) | 2ω0 + nz,
qz + ν0η0
nz + ν0

,
(λ0 + nzQz−q2z

2nz
+ ν0(qz−nzη0)2

2nz(ν0+nz)
)(ν0 + nz)

(ω0 + nz/2)(ν0 + nz)

)

(3)

where the first term represents the likelihood of activity assignments, and the second
through fifth terms indicate the marginal likelihood of location, day of week, time of day, and
duration of stay choices given activity assignments. T (e | ν, µ, σ2) represents the probability
density function (pdf) for a generalized t-distribution with ν degrees of freedom, location
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parameter µ, and scale parameter σ2. The pdf can be expressed as:

T (e | ν, µ, σ2) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ2

(
1 +

(e− µ)2

νσ2

)− ν+1
2

(4)

Perplexity is a standard metric in machine learning to measure the performance of a
probabilistic model, and it has often been used to evaluate topic models such as LDA
(Farrahi and Gatica-Perez, 2011; Hasan and Ukkusuri, 2014). A lower perplexity value
indicates better model performance. Perplexity can be directly calculated based on the
likelihood function:

Perplexity = exp

(
− log(L(M))

N

)
(5)

where N is the total number of activity episodes in the data.241

3.3. Inference via Gibbs Sampling242

In the literature, two types of approximate techniques have been adopted to estimate243

the LDA model—variational inference (Blei et al., 2003) and Gibbs sampling (Griffiths and244

Steyvers, 2004). The latter is used in this work, because it is more flexible and easier to245

implement. Gibbs sampling is a special case of the Markov Chain Monte Carlo (MCMC)246

methods, which can emulate the target posterior distribution by the stationary behavior of a247

Markov chain. In high-dimension cases, Gibbs sampling works by sampling each dimension248

iteratively, conditioned on the values of all other dimensions.249

In practice, only x, d, t, and r are observed, and we want to estimate latent variables z,
π, θ, φ, µ, τ , η, and λ. However, the latter seven variables may be integrated out, because
they can be derived using the activity variable z:

πmz =
umz + αz∑Z
k=1 umk + αk

(6)

θzx =
vzx + βx∑X
k=1 vzk + βk

(7)

φzd =
wzd + γd∑D
k=1wzk + γk

(8)

τz =
ε0 + nz

2

τ0 + nzSz−s2z
2nz

+ κ0(sz−nzµ0)2
2nz(κ0+nz)

(9)

µz =
κ0 + sz
κ0 + nz

(10)

λz =
ω0 + nz

2

λ0 + nzQz−q2z
2nz

+ ν0(qz−nzη0)2
2nz(ν0+nz)

(11)

ηz =
ν0 + qz
ν0 + nz

(12)
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The strategy of integrating out some of the parameters for model inference is often
referred to as collapsed Gibbs sampling. In order to construct a collapsed Gibbs sampler,
we need to compute the probability of an activity being assigned to an observation, given
all other activity assignments to all other observations. This requires the derivation of the
full conditional activity distribution for a specific activity episode. Assuming that xmn = x,
dmn = d, tmn = t, and rmn = r, the conditional probability of zmn = z is given by

P (zmn = z | z−mn,x,d, t, r)

∝P (zmn = z, xmn = x, dmn = d, tmn = t, rmn = r | z−mn,x−mn,d−mn, t−mn)

∝P (zmn = z | z−mn) · P (xmn = x | zmn = z,z−mn,x−mn) · P (dmn = d | zmn = z, z−mn,d−mn)

·P (tmn = t | zmn = z,z−mn, t−mn) · P (rmn = r | zmn = z, z−mn, r−mn)

∝ u−mnmz + αz∑Z
k=1 u

−mn
mk + αk

· v−mnzx + βx∑X
k=1 v

−mn
zk + βk

· w−mnzd + γd∑D
k=1w

−mn
zk + γk

·T
(
t | 2ε0 + n−mnz ,

s−mnz + κ0µ0

n−mnz + κ0
,
(τ0 + n−mnz S−mnz −(s−mnz )2

2n−mnz
+ κ0(s

−mn
z −n−mnz µ0)2

2n−mnz (κ0+n
−mn
z )

)(κ0 + n−mnz )

(ε0 + n−mnz /2)(κ0 + n−mnz )

)

·T
(

log(r) | 2ω0 + n−mnz ,
q−mnz + ν0η0
n−mnz + ν0

,
(λ0 + n−mnz Q−mnz −(q−mnz )2

2n−mnz
+ ν0(q

−mn
z −n−mnz η0)2

2n−mnz (ν0+n
−mn
z )

)(ν0 + n−mnz )

(ω0 + n−mnz /2)(ν0 + n−mnz )

)
(13)

where the superscript −mn signifies leaving the n-th observation of the m-th individual250

out of the calculation. Note that Eq. (13) is similar to Eq. (3), which is not surprising. The251

probability of an activity assignment is proportional to the joint probability of the data with252

the activity assignment.253

In practice, it is more convenient to store the input data x, d, t, r in arrays, so that254

xi, di, ti, and ri are the attributes of the i-th observation in the dataset. In order to keep255

track of the individual that each observation belongs to, we use another array m, where mi256

indicates the individual ID associated with the i-th observation. See Algorithm 1 for the257

detailed Gibbs Sampling procedure.258

3.4. Hyperparameters259

The choice of hyperparameters can significantly influence the behavior of the model. This260

section gives an overview of the meaning of the hyperparameters and the specific choices for261

this analysis.262

3.4.1. Dirichlet Priors263

Typically, symmetric Dirichlet priors are used in LDA, which means that the a priori264

assumption is that all possible outcomes have the same chance of occurring. The Dirichlet265

hyperparameters generally have a smoothing effect on multinomial parameters. Lowering266

the values of these hyperparameters will reduce the smoothing effect and increase sparsity267

of the posterior distribution. In the proposed model, the sparsity of the πm, θz, and φz268

are controlled by α, β, and γ, respectively. A sparser πm means that the model prefers to269
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Algorithm 1: Adapted LDA model for latent activity discovery

Data: spatiotemporal attributes grouped by individual x, d, t, r, and m
Result: activity assignments z, and related latent variables π, θ, φ, µ, τ , η, and λ
begin

randomly initialize z, and set up auxiliary variables nz, umz, vzx, wzd, sz, Sz, qz,
and Qz ;
foreach iteration do

for i← 1 to N do
z ← zi, x← xi, d← di, t← ti, r ← ri, m← mi ;
nz = nz − 1, umz = umz − 1, vzx = vzx − 1, wzd = wzd − 1 ;
sz = sz − t, Sz = Sz − t2, qz = qz − log(r), Qz = Qz − log(r)2 ;
for k ← 1 to Z do

calculate the conditional probability P (zi = k|·) based on Eq. (13) ;
end
z′ ← sample from P (zi|·) ;
nz′ = nz′ + 1, umz′ = umz′ + 1, vz′x = vz′x + 1, wz′d = wz′d + 1 ;
sz′ = sz′ + t, Sz′ = Sz′ + t2, qz′ = qz′ + log(r)2, Qz′ = Qz′ + log(r)2 ;

end

end
for j ← 1 to M do

calculate πj based on Eq. (6) ;
end
for k ← 1 to Z do

calculate θk, φk, µk, τk, ηk, and λk based on Eqs. (7) to (12) ;
end
return z, π, θ, φ, µ, τ , η, λ ;

end
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characterize each individual by fewer activities. Similarly, a sparser θz or φz means that the270

model prefers to characterize each activity by fewer locations or days of week. In this case,271

because there are only 7 days of week (D = 7), θz is unlikely to be sparse, and the choice272

of γ has little effect on the results. β, on the other hand, determines how “similar” two273

locations need to be (that is, how often they need to co-occur across different contexts) to274

find themselves assigned to the same activity. Therefore, for lower values of β, the model275

is reluctant to assign multiple activities to a given location. However, because of the mixed276

land use patterns in London, especially around train stations, more than one activity is likely277

to be accessible from each station. As a result, β may be higher than the choice commonly278

used for topic modeling in text analysis, e.g., β = 0.1 in Griffiths and Steyvers (2004). The279

Dirichlet hyperparameters used in this study are summarized as follows:280

• αz = 50/Z, for z = 1, ..., Z; this choice is based on Griffiths and Steyvers (2004).281

• βx = 1, for x = 1, ..., X.282

• γd = 1, for d = 1, ..., D.283

3.4.2. Normal-Gamma Priors284

The normal-gamma distribution is a bivariate four-parameter family of continuous prob-285

ability distributions. For arrival time t ∼ Normal(µz, τz) with unknown mean µz and pre-286

cision τz, the prior is NormalGamma(µ0, κ0, ε0, τ0). It means that τz ∼ Gamma(ε0, τ0) and287

µz ∼ Normal(µ0, κ0τz). τz is determined by the shape parameter ε0 and rate parameter τ0 of288

the Gamma distribution. In other words, E(τz) = ε0/τ0, Var(τz) = ε0/τ
2
0 . As τz controls the289

degree of concentration for the distribution of t given activity z, a larger τz means that the290

distribution of t is more concentrated on µz. It is preferable to avoid very small τz values291

(i.e., very large variances) so that the model may discover meaningful temporal patterns.292

One way to achieve this is to set both ε0 and τ0 very large, as this will reduce Var(τz) without293

decreasing E(τz).294

On the other hand, µz follows a normal distribution with mean µ0 and variance 1/(κ0τz).295

Therefore, µ0 should be our guess about where µz is, and κ0 is our certainty about µ0. Unless296

there are strong beliefs about µz, it is preferable to set µ0 to the sample average, and κ0 to297

a small value so that a larger range of possible values of µz can be explored.298

For arrival time r ∼ LogNormal(ηz, λz) and its prior NormalGamma(η0, ν0, ω0, λ0), the299

same properties apply. The difference is that the specific hyperparameter values need to300

chosen with respect to log(r) instead of r. Both t and r are measured in hours, but λz301

should be larger than τz, as the scale of log(r) is much smaller.302

Based on preliminary tests, the following hyperparameter values seem to work well based303

on the dataset available:304

• µ0 = 14, κ0 = 0.01; 14 is roughly the mean of t in the data.305

• ε0 = 104, τ0 = 104; the expected standard deviation of t|z is 1.306

• η0 = 2.5, ν0 = 0.01; exp(2.5) = 12 is roughly the mean of r in the data.307

• ω0 = 105, λ0 = 103; the expected standard deviation of log(r)|z is 0.1.308
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4. Data309

To test the proposed model, we use a dataset of pseudonymised trip records from more310

than 100,000 unique smart cards over two years. The data were made available by Transport311

for London. We assume each card corresponds to an individual. The public transportation312

system in London consists of several modes. However, the dataset only covers the rail-based313

modes, including London Underground, Overground, and part of National Rail. Therefore,314

the dataset can only capture a subset of the trips taken by each individual, which is typical315

for large-scale mobility data sources.316

Figure 2: Distribution of arrival time and day of week

For each trip in the dataset, we extract an activity episode with four attributes—location317

x, day of week d, arrival time t, and duration r. The first three attributes are directly318

obtained from the smart card transaction recorded when the individual exits the transit319

system at the destination station. The duration for an activity episode is defined as the320

difference between the end time of the preceding trip and the start time of the succeeding321

trip. However, because only a subset of trips are recorded in the data, an individual may322

make another trip between the two consecutive trips observed in the data. This was referred323

to as a hidden visit in Zhao et al. (2016). In order to determine the location of an activity324

episode, it is important to ensure that the destination of the preceding trip and the origin325

of the succeeding trip are close to each other. In this study, for an activity episode to be326

included in the analysis, the distance between the destination of the preceding trip and the327

origin of the succeeding trip has to be smaller than a distance threshold δ = 2 km.328

Note that this does not guarantee the exclusion of hidden visit. For example, an indi-329

vidual may travel by taxi from location A to location B before returning to A; this can not330

be observed from the smart card data. In this case, however, the hidden visit to B may be331
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considered as a sub-episode of the activity episode at A. As the duration, or “elapsed time332

interval” (Zhao et al., 2016), becomes longer, the activity episode is more likely to involve333

such hidden visits and become less “pure”. Therefore, it is important to set a duration334

threshold. In this study, for an activity episode to be included in the analysis, the difference335

between the end time of the preceding trip and the start time of the succeeding trip has to336

be smaller than a duration threshold T = 72 hours. The choice of T is to allow the model337

to identify potential activities related to weekends.338

We include only those who have at least 20 observations, i.e., Nm ≥ 20. After data pre-339

processing, we obtain 3,339,187 activity episodes from 20,667 individuals. Figure 2 illustrates340

the distribution of the arrival time and day of week. Figure 2(a) shows the distribution of341

arrival time t, which is dominated by the morning and afternoon peaks. Figure 2(b) shows342

the distribution of day of week d; it is clear that there are more trips on weekdays than343

weekends.344

Figure 3: Distribution of duration

The distribution of the duration r is shown in Figure 3, in the original scale on the left,345

and the log scale on the right. Based on Figure 3(a), r is characterized by three modes—346

13-15 hours, 9-11 hours, and 1-3 hours. They probably correspond to the three categories347

of activities—home, work, and other. Figure 3(b) shows the distribution of log(r) before348

applying the duration threshold T = 72 (log(72) = 4.28). Note that two modes can be seen349

on the right of the three aforementioned modes, one around 38 hours (1 day + 2 nights),350

and the other around 63 hours (2 days + 3 nights). This may correspond to people who do351

not travel for one or two days, most likely over weekends.352

Figure 4 presents the top 20 most visited locations (in this case, metro stations) in353

the data, and their corresponding probabilities. Oxford Circus is by far the most popular354
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Figure 4: Distribution of locations

destination, followed by Stratford and London Bridge. In total, 665 stations appear in the355

dataset, i.e., X = 665. As one might expect, most stations have low probabilities, and356

are located in the suburban areas. Showing the top stations may not effectively reflect the357

overall spatial patterns. Therefore, we use P(inner) to indicate the total probability of all358

the stations within Inner London, and P(central) for Central London. Inner London refers359

to the group of London boroughs, and the City of London, which form the interior part of360

Greater London. The top right map shows all the boroughs of Greater London, with the361

dark red area referring to Inner London. Central London is located at the core of Inner362

London. In this study, Central London is defined as the area within the congestion charging363

zone, which is highlighted in the bottom right map. P(inner) and P(central) are shown in364

the top right corner of Figure 4. It means that, based on the sample dataset, 73% of the365

activity episodes occur in Central London and 25% in Inner London.366

5. Results367

The overall framework of the proposed model introduced in Section 3 is implemented in368

Python programming language, while the core computational procedure of Gibbs sampling369

is written in Cython to reduce computational time. The actual time required to estimate370

the parameters depends on the sample size, the dimensionality of x, d, t, and r, as well as371

the number of activities Z. A typical setup for the data used in this paper took less than372

30 min.373
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Given the data and aforementioned hyperparameters, the number of activities Z still374

needs to be selected based on the use case. In the literature, perplexity is often used to375

choose Z (Farrahi and Gatica-Perez, 2011; Hasan and Ukkusuri, 2014). However, the inter-376

pretability of the results is also very important. In practice, a smaller number of activities377

is preferable as it is easier to examine and interpret the results, and less computationally378

costly to fit the model. A set of potential values of Z are tested: 3, 5, 10, 15, and 20. For379

exploration purposes, let us start with Z = 3.380

5.1. Home, Work and Other381

Traditionally, the simplest way to categorize activities are to classify them into three382

basic types: home, work (including school), and other. By setting Z = 3, we can test383

whether the model generate the same activities, as a sanity check.384

When Z = 3, the summary of the 3 discovered activities is shown in Table 3. The385

columns of the table indicate the following:386

• Index: the ID of the discovered activity387

• E(πmz|z): the average activity proportion per individual, or 1
M

∑M
m=1 πm. Note that388

the activities are not equally important; some activities are more prevalent than others.389

To reflect this, the discovered activities are ranked by importance, i.e., the activity390

index indicates the order of importance for that activity.391

• E(µz): the expected µz based on its posterior distribution. In the table, the value is392

converted to clock time format for readability.393

• Weekend: the aggregated probability of an activity z starting on weekends. It is394

computed based on φz.395

• exp(E(ηz)): the exponential of expected ηz. It is roughly the mode of the distribution396

of r|z. The unit is an hour.397

• P(inner): the aggregate probability of an activity z occurring within inner London. It398

is computed based on θz.399

• Description: a short interpretation of the activity. As the model does not explicitly400

provide a meaningful label for the results, this has to be generated based on the401

researcher’s domain knowledge.402

Table 3: Summary of activity characteristics (Z = 3)

Index E(πmz|z) E(µz) Weekend exp(E(ηz)) P(inner) Description

A3-1 0.44 14:06 0.23 3.70 0.85 Other
A3-2 0.31 19:07 0.14 17.80 0.53 Home
A3-3 0.25 08:30 0.04 9.85 0.86 Work
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Figure 5 shows the distributions of P (t|z), P (d|z), P (r|z), and P (x|z) for each activity z.403

In the figure, each column corresponds to an activity, and each row corresponds to a specific404

attribute. P (x|z) is shown in the fourth row. Because it is difficult to visually present the405

probabilities of all 665 locations, we only show the top 10 locations related to each activity.406

P(inner) and P(central) are embedded in the figure to represent the overall spatial pattern407

of each activity.408

Figure 5: Spatiotemporal distributions by activities (Z = 3)

It is relatively easy to identify activities that are related to work or school, as such409

activities typically start around morning rush hours on weekdays. Based on Table 3 and410

Figure 5, A3-3 fits this description. Its P (t|z) concentrates around 9 am and its P (d|z) is411

much higher on weekdays than weekends (96% vs 4%). Some of the most likely locations412

are important employment centers, such as Canary Wharf and Bank, and the duration is413

around 10 hours.414

In addition, we can identify activities related to home by examining P (t|z) and P (r|z),415

because people mostly stay home at night, and P(inner) and P(central), because residential416

locations tend to be more dispersed than other types of locations. A3-2 is a likely candidate.417

It typically starts at 7 pm and lasts for 18 hours, covering the whole night time. Note that418

both P (t|z) and P (r|z) are much more spread out for A3-2 than for A3-3. This is not419

surprising as time spent at home tends to be more flexible than time spent at work/school.420

The remaining activity, A3-1, likely includes all other activities, including, but not limited421

to, errands, meetings, dinners, movies, restaurants, and bars/clubs. They tend to be short422

in duration, with a mean of less than 4 hours, and may occur at any time of day on any day423

of week. Both A3-1 and A3-3 have high concentration in Inner London (above 85%). The424

detailed spatial distributions of the three activities are shown in Figure 6. Each circle in425
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the map indicates a location, with its size proportional to its probability in θz. The color is426

used to represent its centrality—orange means that the location is within Central London,427

red means within Inner London but outside Central London, and blue means Outer London.428

Clearly, A3-2 is much more dispersed spatially than the other two activities.429

(a) A3-1 (b) A3-2 (c) A3-3

Figure 6: Spatial distributions of A3-1, A3-2, and A3-3

5.2. Model Comparison430

With no ground truth activity labels, it is challenging to directly benchmark the model431

performance in terms of accuracy. Also, for many travel demand modeling tasks, the ob-432

jective is not always to accurately predict activity labels, but to use activities to explain433

travel behavior. Therefore, in this section, the comparison is done in terms of how well the434

activity categorization explains spatiotemporal behavior, measured by the goodness of fit to435

the data. As a simple validation, we compare our model results against two baseline models436

adapted from rule-based methods in the literature. The first one (baseline 1) is based on a437

assumption from Hasan et al. (2013) in which an individual’s home and work locations are438

assumed to be the most visited and second most visited places, respectively. The second439

(baseline 2) is inspired by Alexander et al. (2015), which determine home and workplaces440

with the following two rules:441

• An individual’s home is the place with most visits on weekends and weekdays between442

7pm and 8am.443

• An individual’s work location is the place (not previously labeled as home) to which444

the individual travels the maximum total distance from home, or max(d ∗ n), where445

n is the total number of visits to the given place, and d is the its distance to the446

individual’s home location.447

In a way, the only difference between the proposed topic model and the baseline models448

is how zmn is assigned; the former estimates it through Bayesian inference while the latter449

determine it through simple rules. Once zmn is given, we can calculate the likelihood for450

either approach. The process to evaluate the goodness of fit of the baseline models is451

summarized as follows:452
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1. For each individual m = 1, 2, ...,M ,453

(a) Use predefined rules to find the home and work locations, denoted as X
(1)
m and454

X
(2)
m respectively.455

(b) For each activity episode of the individual n = 1, 2, ..., Nm,456

i. If xmn = X
(1)
m , zmn = 1457

ii. If xmn = X
(2)
m , zmn = 2458

iii. Otherwise, zmn = 3459

2. With z known, calculate π, θ, φ, µ, τ , η, and λ based on Eqs. (6) to (12). For460

comparability, we use the same hyperparameters as discussed in Section 3.4.461

3. Calculate the log likelihood and perplexity based on Eqs. (2) to (5).462

Table 4 summarizes the goodness of fit metrics of the baseline models and the proposed463

model with various choice of Z. While baseline 2 fits the data better than baseline 1, neither464

come close to the proposed model with equal number of activity types (Z = 3). This means465

that the activity categorization discovered the model can better capture the spatiotemporal466

patterns in the data compared to rule-based activity categorization. This is not surprising,467

as the model is fitted through learning the representation of the data. As Z increases, the468

model fit improves.469

Table 4: Comparison of model fit

Model Num of Categories Log Likelihood Perplexity

Baseline 1 3 -42734546 361453.77
Baseline 2 3 -42150323 303437.15

Topic Model (Z = 3) 3 -37496314 75295.42
Topic Model (Z = 5) 5 -36667325 58742.21
Topic Model (Z = 10) 10 -36007846 48214.59
Topic Model (Z = 15) 15 -35489251 41279.08
Topic Model (Z = 20) 20 -34955179 35177.80

Similarly, we can examine the key statistics of the activities determined by the rule-based470

method, which are shown in Tables 5 and 6. For baseline 1, while it is relatively easy to471

distinguish other due to its shorter duration, higher probability of occuring on weekends472

and higher concentration in Inner London, the difference between home and work are not473

that obvious. This is partly because the simplicity of the rules used, as visit frequency alone474

may not be able to differentiate between the two types of activities. For baseline 2, the475

distinction between home and work is clearer, but not always makes sense. For example,476

the results show that home has far higher concentration in Inner London than work, which477

contradicts the intuition about the urban land use patterns. This is likely caused by the478

rule that requires the work location to have greatest total distance from home, which might479

prioritize the locations in the peripheral areas of the city.480

In contrast, the discovered activities described in Table 3 are much more distinctive, and481

their summary statistics arguably more intuitive. As the total variability within the data is482
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constant, the higher distinguishability between groups natually implies lower heterogeneity483

within groups. This is a desirability quality to have in activity categorization.484

Table 5: Summary of activity characteristics for baseline 1

Label E(πmz|z) E(µz) Weekend exp(E(ηz)) P(inner)

Home 0.34 14:34 0.12 11.11 0.69
Work 0.27 14:06 0.10 10.43 0.71
Other 0.39 14:26 0.22 4.83 0.82

Table 6: Summary of activity characteristics for baseline 2

Label E(πmz|z) E(µz) Weekend exp(E(ηz)) P(inner)

Home 0.34 14:35 0.12 11.11 0.68
Work 0.16 14:59 0.16 9.02 0.29
Other 0.50 14:16 0.17 6.46 0.80

In travel demand modeling, human activity information is often used to predict travel485

behavior. Therefore, another way to evaluate model performance is to see how well the486

discovered activity patterns can predict travel behavior. As an example, we specifically487

focus on predicting the departure time of the next trip of an individual, which is equivalent488

to predicting the duration of the current activity episode. It has been shown that the489

start time of the trip is the least predictable attribute (Zhao et al., 2018b) for next trip490

prediction. An estimation of the latent activity type (based on location and start time) may491

help improve prediction performance. To evaluate the predictive performance, we calculate492

the predictive likelihood of the actual duration rmn for each activity episode, by summing493

over all possible latent activity types, as shown in Eq. (14). The median of the predictive494

log likelihoods across all observations is used for model comparison.495

P (rmn | z−mn, r−mn,x,d, t) =
Z∑
z=1

P (rmn | zmn = z)P (zmn = z | r−mn,x,d, t) (14)

where P (zmn = z | r−mn,x,d, t) can be calculated in similar fashion as Eq. (13). Note496

that for heuristic baseline models, this would be deterministic, which means it can only take497

the value of either 0 or 1.498

The model performance is summarized in Table 7. The results show that, compared to499

the baseline models, the latent activity patterns discovered by the topic model can help us500

better predict the departure time of the next trip. As Z increases, the prediction performance501

improves significantly. While a large number of latent activities may limit the interpretability502

of the results, it could be used to improve the prediction accuracy of travel behavior.503
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Table 7: Model comparison for predicting the departure time of the next trip

Model Num of Categories Predictive Log Likelihood (Median)

Baseline 1 3 -1.046
Baseline 2 3 -1.126

Topic Model (Z = 3) 3 -0.970
Topic Model (Z = 5) 5 -0.903
Topic Model (Z = 10) 10 -0.835
Topic Model (Z = 15) 15 -0.730
Topic Model (Z = 20) 20 -0.563

5.3. Finding Structure in Activity Patterns504

In the proposed model, Z serves as a controller for the level of granularity in the discov-505

ered activity patterns. As we increase the value of Z, more specific activity patterns start506

to emerge. Figure 7 shows how activities evolve as Z increases from 3 to 5, and then to507

10. The three groups of activities from left to right represent the corresponding activities508

discovered when Z = 3, 5, and 10, respectively. The specific results are the latter two groups509

are summarized in Sections Appendix A and Appendix B. The width (or thickness) of the510

path connecting two activities indicates the number of observations whose activity assign-511

ments change from the one on the left to the one on the right when Z increases. The wider512

the path, the stronger the connection between the two activities.513

When Z increases from 3 to 5, the general home activity A3-2 splits into two subcategories—514

Home (or other) over weekend A5-5, and home between two workdays A5-3 and A5-4, the515

latter two of which are differentiated based on their spatial patterns (discussed later). This516

distinction makes sense, as they have very different temporal patterns in both duration and517

day of week. A5-5 has distinctively longer duration (48 vs 14 hours) and higher concentration518

on Fridays. This is likely because many commuters do not travel as much during weekends.519

Another possible reason is that people tend to travel to other cities during weekends, which520

would explain the high concentration on major train stations (e.g., King’s Cross). Also,521

when Z reaches 10, half-day work A10-10 is also distinguished as a unique pattern, with522

relatively shorter duration than general work activity A3-3 (6 vs 10 hours). Overall, the523

work-related activities are relatively isolated because of their inflexible time schedules. Home524

and other activities are more connected, as both exhibit some long-duration behavior. For525

example, it is challenging for the model to distinguish between traveling outside London,526

and staying home over the weekend.527

When Z is small, the temporal pattern plays a more important role in differentiating528

activities. As Z increases, the spatial attribute becomes increasingly significant. In addi-529

tion to the difference between A5-3 and A5-4, the spaital pattern P (x|z) also explains the530

difference between A10-3, A10-6, and A10-9, as well as between A10-4, A10-5, A10-7, and531

A10-8. All of these activities are related to commuting, either going to work or staying at532

home between workdays. The model’s tendency to differentiate commuting-related activities533

through spatial patterns is driven by the fact that people’s home and work locations are534
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Figure 7: Evolution of discovered activities when Z = 3, 5, 10

typically fixed; for most people, there are no interchangeable locations for home or work.535

As a result, categorizing activities by locations can help explain part of the inter-individual536

variability, but less so for the intra-individual variability. This is useful for some human537

mobility tasks where personalization is important, e.g., individual mobility prediction. But538

if the goal is to study the general time allocation behavior, this might be less helpful. De-539

pending on the application, the balance between temporal and spatial attributes may be540

adjusted via hyperparameters. For example, a higher β value would reduce the importance541

of the spatial attribute.542

Conventional wisdom tells us that both home and work are clearly defined and homoge-543

neous activity types, while other can be further differentiated into shopping, entertainment,544

etc. However, the model results show a different story. Although other is associated with the545

largest proportion of observations, the model is reluctant to split it into multiple subgroups546

when Z increases. This is likely because there is less clear spatiotemporal structure within547

other, compared to home and work.548

In addition to the similarity between activities, we can also examine the co-occurence549

patterns. This can be done at the individual level. Based on the proposed model, an550

individualm is characterized by an individual-specific activity distribution πm. By definition,551

πm is a vector of length Z that corresponds to a categorical probability distribution over552

Z activities; in other words,
∑Z

z=1 πmz = 1 ∀m. Thus πm can be used as a normalized553

latent feature vector to describe an individual’s activity pattern, or the combination of554

23



activities. Correlation may exist between activities. If πmj and πmk are positively correlated555

across individuals, it means that Activities j and k are more likely to co-occur for the same556

individual. Figure 8 shows the correlation matrix across the 10 activities discovered by the557

model when Z = 10. Overall, there is no particuarly strong correlation between any pair558

of activities. As expected, positive correlation is found between one of the work-related559

activities (A10-3, A10-6, A10-9) and one of the home activities (A10-4, A10-5, A10-7, A10-560

8), which makes sense as it takes two activities to form a commuting pattern. In contrast,561

the correlation within each group is mostly negative. Again, this is because an individual’s562

home and work locations are fixed.563

Figure 8: Correlation matrix across activities (Z = 10)

6. Discussion564

Although automatically collected spatiotemporal records can accurately capture the time565

and location of human mobility, they do not explicitly provide behavioral semantics under-566

lying the data, e.g., activity types. While many prior works studied activity inference (i.e.,567

predicting predefined activity categories), less have focused on activity discovery (i.e., finding568

representative activity categories). In this study, we propose a model to discover latent ac-569

tivities from human mobility data in an unsupervised manner. The proposed model extends570
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the LDA topic model by incorporating multiple heterogeneous dimensions of individual mo-571

bility. Specifically, four spatiotemporal attributes—the location, arrival time of day, arrival572

day of week, and duration of each activity episode—are used in the model to uncover the573

hidden activity structure, where each “topic” represents a latent activity with a distinct574

distribution over these attributes. The model is tested with different numbers of activi-575

ties Z. When Z = 3, the model can successfully distinguish the three most basic types576

of activities—home, work, and other. Compared to rule-based approaches, the proposed577

model achieves much better goodness of fit. The results also demonstrate how new patterns578

emerge as Z increases. When Z is small, the temporal pattern plays a more important579

role in differentiating activities. As Z increases, the spatial attribute becomes increasingly580

significant. Despite the conventional wisdom that home and work are more homogeneous581

than other, the model finds more specific subpatterns in home and work. In addition, posi-582

tive correlation is found between activities related to work, and activities related to staying583

home between workdays. The model is general and can be extended for other sources of584

data where activity episodes are extractable.585

This study makes it possible to enrich human mobility data with representative and586

interpretable activity patterns without relying on predefined activity categories or heuristic587

rules. On one hand, this can help us uncover new activity patterns or structures that588

may be helpful to consider in activity-based models. For example, we could distinguish589

between staying home between workdays or over weekends, or between regular work and590

half-day work, as they have distinctively different temporal patterns. These finding will591

then help us refine the existing activity categorization used in activity-travel surveys. On592

the other hand, when the survey data is not available, we may use the model, instead593

of simple rules, to generate meaningful activity labels, which can then be used for various594

human mobility modeling tasks. Trained to differentiate spatiotemporal patterns, the model595

allows us to account for part of behavioral variability through discovered activity types. An596

example of this is demonstrated in Section 5.2. Furthermore, the individual-level activity597

distribution may be used to characterize an individual’s activity preferences. It provides598

a way to transform multidimensional spatiotemporal observations into a normalized latent599

feature vector, which can be easily adopted for user similarity measurement and cluster600

analysis. Therefore, the model classifies not only activity episodes, but also individuals.601

The methodology presented in this paper has several limitations. First, the model is602

based on random initialization of activity assignment zmn, and different initialization may603

lead to somewhat different results. We find that the temporal patterns are relatively stable,604

but spatial patterns related to commuting (to and from work) are not. As each individual605

typically has a fixed home/work location, there are a large number of possible ways to di-606

vide them into subgroups. Therefore, the spatial characteristics of the commuting-related607

activities may vary across different model runs. Also, as the spatial proximity between loca-608

tions are not directly captured in the model, the discovered spatial patterns may not match609

the underlying geographical areas, limiting our ability to interpret them. Future research610

should consider incorporating spatial proximity in the model. Second, sequential depen-611

dency between trips is important for both activity inference and discovery. Although the612

model preserves some of the sequential relationship in the data through time and duration613

25



variables, it does not explicitly use it as a feature. For example, the probability distribution614

of the current activity should depend on that of the previous one. The challenge is that615

adding sequential dependency would add significantly more complexity in model structure.616

The problem of automatically discovering sequences of activities from data is an ongoing617

problem, with few good solutions in the literature. Section Appendix C discusses one poten-618

tial way to add sequential structure to the topic model. Third, some activity types cannot be619

distinguished based on spatiotemporal patterns alone. For example, the model is not able to620

differentiate shopping from entertainment. Future work should also explore the possibility621

of data fusion, by cross referencing other data sources such as surveys, land use, points of622

interests (POIs), events, and social media posts. This can also help with model selection623

and validation.624

LDA is not the only type of topic models that is adaptable for activity discovery or625

human mobility modeling in general. Many other types of topic models have been developed626

over the years to address some of the technical limitations of LDA. Typically, preliminary627

experiments are needed to choose the number of topics for LDA, which may not be ideal628

for general applications. Nonparametric methods, such as Hierarchical Dirichlet Process,629

relaxes this constraint by automatically inferring Z from the data (Teh et al., 2006). Also,630

dynamic topic models have been developed to analyze the evolution of topics over time (Blei631

and Lafferty, 2006; Wang and McCallum, 2006), which would be useful for human mobility632

studies as individual travel patterns can change in the long run (Zhao et al., 2018a). The633

applicability of these methods should be investigated in the future.634
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Appendix A. Model Results with 5 Activities638

Table A.8 and Figure A.9 show the summary statistics and spatiotemporal distributions639

for each of the discovered activities, when Z = 5. The top two most common activities640

among them, A5-1 and A5-2, are very similar to A3-1 and A3-3, respectively. Therefore,641

they likely represent general other and work activities. This suggests the discovered activity642

patterns are relatively consistent across different values of Z. Note the decrease in the643

E(πmz|z) for A5-1 and A5-2 are mainly because of the symmetric Dirichlet prior α.644

On the other hand, the home-related activities are divided into three subcategories. A5-5645

represents activities with long duration. Given its high probability of occurring on Fridays,646

and low values of P(inner) and P(central), a main reason is that many commuters travel647

much less frequently by rail over weekends in London. In addition, A5-5 may also include648

out-of-town trips. Its top 2 most likely locations are King’s Cross and Stratford. Both are649

important transportation hubs, and people may use them as gateways to travel to other650

cities.651
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Table A.8: Summary of activity characteristics (Z = 5)

Index E(πmz|z) E(µz) Weekend exp(E(ηz)) P(inner) Description

A5-1 0.37 14:06 0.23 3.38 0.84 Other
A5-2 0.20 8:30 0.04 9.85 0.86 Work
A5-3 0.16 19:05 0.10 14.30 0.46 Home between work-

days (outer)
A5-4 0.14 19:23 0.12 14.27 0.66 Home between work-

days (inner)
A5-5 0.13 18:06 0.25 48.06 0.54 Home/other on

weekends

Figure A.9: Spatiotemporal distributions by activities (Z = 5)

A5-3 and A5-4 exhibit similar temporal patterns, and are likely associated with the652

typical afternoon commuting trips, arriving home at around 7:00 pm and stay there for653

around 14 hours. Interestingly, both have a much lower probability of occurring on Fridays654

than other weekdays. A possible explanation for this is that most people do not go to work655

on weekends. As a result, the home activities starting on Friday nights typically have a656

much longer duration, which is captured by A5-5. The main difference between A5-3 and657

A5-4 is in their spatial distributions. Note that A5-4 has a relatively higher concentration658

in inner London, while A5-3 is more dispersed spatially. There is no distinctive geographical659

boundary that divides the two activities, as the model is oblivious to geographic coordinates660

of the stations.661
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Appendix B. Model Results with 10 Activities662

Table B.9 and Figure B.10 show the summary statistics and spatiotemporal distributions663

for each of the discovered activities, when Z = 10. Again, some consistent patterns can be664

identified. A10-1 is similar to A3-1 and A5-1, and A10-2 is similar to A5-5.665

Table B.9: Summary of activity characteristics (Z = 10)

Index E(πmz|z) E(µz) Weekend exp(E(ηz)) P(inner) Description

A10-1 0.30 14:33 0.24 3.02 0.85 Other
A10-2 0.09 17:57 0.25 47.57 0.54 Home/other on

weekends
A10-3 0.09 08:34 0.04 9.89 0.90 Work (Oxford Cir-

cus)
A10-4 0.08 19:12 0.10 14.31 0.50 Home between work-

days (Brixton)
A10-5 0.08 19:09 0.11 14.33 0.60 Home between

workdays (Finsbury
Park)

A10-6 0.08 08:27 0.08 10.04 0.86 Work (Canary
Wharf)

A10-7 0.07 19:06 0.12 14.39 0.48 Home between work-
days (Stratford)

A10-8 0.07 19:17 0.12 14.29 0.64 Home between work-
days (East Ham)

A10-9 0.07 08:27 0.05 10.08 0.79 Work (Liverpool St)
A10-10 0.07 9:58 0.13 6.09 0.81 Half-day work

A10-3, A10-6, and A10-9 all share similar temporal patterns with A3-3 and A5-2, and666

thus are all associated with typical work schedules. They mainly differ in P (x|z). A10-10667

emerges as a new pattern, whose duration is longer than A10-1 and shorter than A10-3,668

A10-6, and A10-9. This may represent half-day work shifts or instances when people get669

off work early. A10-10 also has a higher probability of occurring on weekends, which may670

indicate that it is associated with atypical work schedules, such as that of a sales person in671

a shop.672

A10-4, A10-5, A10-7, A10-8 all share similar temporal patterns with A5-3 and A5-673

4, representing staying home over-night between two workdays. All of them have a low674

probability of occurring on Friday nights. Again, the difference lies in P (x|z). The difference675

lies in their spatial concentration676

Appendix C. Adding Sequentiality to Topic Model677

The proposed topic model can be extended to incorporate the sequential structure of678

human activity-travel behavior. To do this, We could add the sequential dependency either679
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Figure B.10: Spatiotemporal distributions by activities (Z = 10)

between activity episodes ({xmn, dmn, tmn, rmn}), or between latent activity types (zmn). The680

latter is probably easier as it involves a lower number of dimensions. For simplicity, we only681

focus on first-order Markovian dependency. For a given individual m, we can illustrate the682

sequential activity structure in Figure C.11. Note that this resembles an individual-specific683

Hidden Markov Model (HMM). The difference is that, because of the hierarchical structure684

of the topic model, some of its parameters can be shared across individuals.685

The cost of adding this sequential structure is that it requires the estimation of a Z-by-Z686

transition matrix for each individual m = 1, 2, ...,M , which can be significant when the Z687

is large. In our dataset, M = 20667. If we want to estimate Z = 10 latent activities, we688
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Figure C.11: Illustration of sequential activity structure for individual m

would need to estimate over 2 million additional variables. A much longer observation time689

period is likely needed. We will reserve it for future research to explore how to estimate this690

model efficiently and robustly with limited data.691
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