SOFTWARE DEVELOPMENT IN
ESTABLISHED AND NEW ENTRANT COMPANIES:

CASE STUDIES OF LEADING SOFTWARE PRODUCERS

by
STANLEY A. SMITH

B.S., Computer Science
lowa State University
(1982)

Submitted to the Alfred P. Sloan School of Management
and the Sciool of Engineering
in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE
in Management of Technology

at the

Massachusetts Institute of Technology
June 1993

© Stanley A. Smith (1993). All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly copies of this thesis document in whole or in part.

Signature of Author: =z A=
Alfred P. Sloan School of Management
May 7, 1993
Certified by: g 7
Michael A. Cusumano
Thesis Supervisor
Certified by: Ak
Chris Kemerer
Thesis Reader
Accepted by: .
Ruchelle Weichman
Director, Managemeni of Technology Program
1 ARCHIVES
MASSACHUSETTS INSTITUTE
OF TECHN ORY

[JUN 18 1993



SOFTWARE DEVELOPMENT IN
ESTABLISHED AND NEW ENTRANT COMPANIES:
CASE STUDIES OF LEADING SOFTWARE PRODUCERS

by
STANLEY A. SMITH

Submitted to the Alfred P. Sioan School of Managemeiit
and the School of Engineering on May 7, 1993

in partial fulfillment of the requirements for the Degree of
Master of Science in Management of Technology

ABSTRACT

Software has become a dominant part of both high and low scale technology
products. Much has been written about the different software development
processes to be considered when developing products. There is also a
constant flow of new processes and tools that are being touted as the next
wave of software development.

This study concentrates on the software development processes employed by
leading "established” and "new entrant" software producers in the United States
and Japan. Key objectives were to understand the processes used and see
whether differences exist between the groups. For the study, process
encompasses the formal lifecycle stages of requirements through maintenance,
project management, metrics, configuration management, process ownership,
and process improvement. "Established" producers turned out to be IBM
Federal Systems Company, IBM Application Business Systems, Fuijitsu, and
Hewlett-Packard Commercial Systems and Open Systems Software Divisions.
"New Entrant" producers turned out to be Microsoft and Lotus.

The resuits show significant commonality between the two groups, with an
evolution occurring within each. "Established" producers have well-defined and
relatively predictable processes, but they are seeking ways to foster increased
individual creativity. "New Entrants" are moving from an environment of
extreme creativity and are implementing process steps to help development
achieve more predictable results. Each appears to be seeking a middle ground
that benefits from both structure and creativity.

Thesis Supervisor: Michael A. Cusumano
Title: Associate Professor of Management



Tabie of Contents

Introduction . ........ ... ittt it ittt ecnrtennannans 8
Introduction . . ... ... . e 8
Thesis Structure . . ... ... ... . e 10

Chapter 1: Software Development Processes ................... 15
The Life Cycle Model of Software Development . ... ........... 15

Requirements Specification ........................ 16
Design . ... e e 17
Implementation .............. ... .. .. .. ... ... 17
Testing ... e 17
Installation . . .......... .. .. .. 18
Maintenance ........... ... .. i 18
Cost Breakdown of Life Cycle Phases . .. ................... 19
Waterfall Life Cycle Model for Software Development . . ......... 20
System Requirements ............................ 22
Software Requirements ........................... 22
Preliminary Program Design .. ...................... 24
Program Design ........... ... . ... 24
Coding .......i e 24
Testing . ... e 25
Operations . .............0uiiiiiiiiin. 25
Waterfall Process Implications . .......................... 25

Chapter 2: Software DevelopmentPreblems .. .................. 27
Problems with Software Development .. .................... 27
The Uniqueness of Software . ........................... 28
Software Problems are Not "New News" . ................... 30
The Situationinthe 1970's . . .. ......... ... ... . ... ...... 32
Progressinthe 1980's . ......... ... . ... ... ... .. ... .. 34
1990's View from the Case Study Organizations .............. 36
SuUMMaANY ... . 38

Chapter 3: IBM - Federal Systems Company, Houston ............ 40
The Company . .......... . 40
IBM Organization . . . ............. .. 41
Culture . ... e 42
Product Description . . .......... ... ... . . ... 44
Release Structure and Strategy . ......................... 45
Development Process Overview .. ........................ 45

Requirements Definiton Phase . ... .................. 46



DesignPhase ............ ... .. .. . .. 47

Coding . ... e 48
Independent Verification . ... ....... ... ... ... ... .... 49
Validation ......... ... ... ... . .. . . . 50
Maintenance ............. .. ... ... ... 51
Process Usage and Compliance . ... ...................... 51
Release Management .......... ... .. .. ... .. . .. . ... 51
Change Management / Configuration Management . ........... 52
MetriCs . ... e e 53
Process Improvement ... ......... ... ... .. .. .. ... 54
TOOIS .. e e 55
Process Education . . .. ...... ... .. . .. e 56
Summary --Results . . .......... .. . ... 56
Chapter 4: IBM - Application Business Systems . ................ 58
The Company . ........... ... 58
IBM Organization . . .. .......... ... . .. 56
CUltUre . .. e 59
Product Description . .. .......... .. .. ... .. 61
Flelease Structure and Strategy . . ........................ 61
Quality Plan .. . ... ... .. 62
Development Process Overview .. ........................ 63
Requirements Phase ............................. 63
System LevelDesign . ............................ 65
Design Phase -- High Level Design . . .. ............... 65
Design Phase -- Low LevelDesign . .................. 66
CodePhase ........... ... . 0., 67
Component Test . ........... ... iiiiiinnunnenn.. 68
System Test . ....... ... e 69

Eeta Test and other Early Programs .................. 71
Maintenance ............ ... .. ... ... . ..., 72
Process Usage and Compliance .. ........................ 73
Release Management . ........... ... ... .. .. .. .. .. .. ... .. 74
Change Management / Configuration Management ............ 75
Metrics . ... . e e 76
Process Improvement . ........... .. ... .. . . .. . .. ... 77
Tools . ... 78
Process Education . . .. ....... ... ... ... .. ... . . 78
Phase Review Process ............. ... ... ... ... 79
Summary--Resulis . .......... ... ... 80
Chapler5: Fujitsu........ ... .0ttt innnrennnnnnns 81
The Company ... ....... ..ttt 81
Fujitsu Organization . . . ........ ... ... ... B2



CURUIE . . . . e e e e 83

Product Description ... ......... ... . i 84
Release Structure and Strategy . . ........................ 85
Development Process Overview .. ........................ 85
Requirements Phase .............. ... .. .. .. .. .... 86
BasicDesign ........ ... .. . i 87
Functional and Structural Design . ................... 87
Detailed Design . . ... ... .. ... .. .. i 88
Coding .. ... e 88
Testing . ... e 90

Unit and Combined Test . . .. .................. 90

Component Test ........................... 91

SystemTest .......... ... .. ... ... 91

Product Inspection ... ....... ... .. .. ... ... .. ... ... 92
Delivery and Maintenance ......................... 92
Process Usage and Compliance . ......................... 93
Project Management .. ......... ... ... .. .. .. i, 93
Change Management / Configuration Management . ........... 94
Metrics . ... .. e 95
Process Improvement .. ....... ... ... ... i, 96
Tools . ... . e e a7
Process Education . . .. ...... ... ... . ... .. .. 98
Summary --Results . . ........ .. ... . 98
Chapter 6: Hewlett-Packard ............ e hetseereasse e 100
The Company . ....... ottt et e e e 100
Hewlett-Packard Organization . . . ......................... 101
Culture ... e 101
Product Description ... ...... ... ... ... ... . . 103
Release Structure and Strategy .. ........................ 103
Development Process Overview . ......................... 104
“Quality Plan .. .. . 105
Requirements Phase ............................. 107
Design and Architecture Phase . . .................... 108
CodingPhase ........... ... ... . .. 109
Development Test . ......... ... ... .. ... ..., 110
Independent Verification Testing .. ................... 110
System Integrationand Test . .. ..................... 11

Alpha Test .. ...... .. .. i 112
BetaTest ....... ... ... . i 112
Maintenance .............. ... ... il 113
Process Usage and Compliance . ......................... 113
Release Management . ............ ... ... i, 114
Change Management / Configuration Management ............ 114

5



MeRTICS . . . . e e e e e e e e e e e 116

Process Improvement . .................. ..., e 117
T00IS . . 118
Process Education . . . . .. e e e e e e e 119
Business Life Cycle at the Division Level . . ... ... ........... 119
Phase Review Process . .......... ..., 121
Summary -- Results . . ......... ... 123
Chapter 7: Microsoft . ... ........ ...ttt iiniinannnnn 124
The CompPany . ...ttt e e e e e e e 124
Microsoft Organization . ............ ... ..., 125
CUUIrE . . e e 127
Product Description . .. ... ... .. . ... ., 129
Review and Planning Cycle ............ .. .. ... .. ... . ... 131
Release Structure and Strategy . . ........... ... ... .. .... 132
Development Process Overview . .......... ... ... ... ....... 132
Requirements Phase . ............ .. .. .. ....... ... 135
Specification Phase . ........... ... ... .. .. .. ..., 135
Implementation Phase ............ ... .. ... ... .... 136
Design . ... ... e 137

Coding ..........iii e 137

Integration Testing .. .......... ... .. i 139
TestingPhase .............. ... 140
Maintenance .............. .0 142
Process Usage and Compliance ... ............. ... ...... 142
Project Management .. ............ . ... 143
Change Management / Configuration Management ............ 144
MetriCS ... i e 146
Process Improvement .. ........... ... ... i i 147
TO0IS .o e e e 147
Process Education . . . .......... ... ... . ... 148
Summary--Results . ......... ... . e e 149
Chapter 8: LOtUS ...........ciiiieenenncnncceconnceacnnas 150
The Company .. ......it ittt ittt 150
Lotus Organization ...............c.iiiirininenennann, 151
CUltUre . . .. e 152
Product Description . .. ....... ... . . i 153
Review and PlanningCycle .......... ... ... ... ... .. ..... 154
Release Structure and Strategy . . .............. ... ... ... 155
Development Process Overview . ............ ... ... ....... 156
Requirements Phase ................ ... ... ... ..... 157
DesignPhase ............ ... ... ... 159
Coding Phase ........... ... ... ., 61



TestingPhase . ....... ... ... ... . . . . 162

Delivery Phase .......... ... ... .. . ... 163
Maintenance .............. .. . ... 163

Process Usage and Compliance .. ........................ 164
Project Management .. ......... ... ... .. ... i 164
Change Management / Configuration Management . ........... 166
Metrics . ... . e e 168
Process Improvement .. ... ... ... .. ... .. 168

TO0lS . . e 168
Summary --Results . . ........ .. ... .. e 169
ConCIUSION . .......ciiiiieinienrenreancaannnnaasnannnnns 170
Overall View . ... ... . i i i e i 170
"Established" and "New Entrant" Comparisons . . .............. 170
Closing . ... .o e 175
Endnotes . ... ... 177
Bibliography . ... .. ... .. .. e 180



introduction

Introduction

Writing software to operate commercially available programmable computers
began in the 1950's. Over the last 40 years, software has become a dominant
part of both high and low scale technology products. As a result, software
development has become a very significant worldwide business. It has been
estimated that expenditures for software development and maintenance in the
U.S. were $70 billion in 1985'. Projections put software costs growing to over
$225 billion in the U.S. and $450 billion worldwide by 1995°.

Developing reliable and usable software that is delivered on time and within
budget is a difficult endeavor for many software organizations®. The creation of
software has both intrigued and plagued engineers, rnanagers, and customers
since the beginning of the computer era®. The standard development process
consists of requirements specification, design, implementation, testing,
installation, and maintenance. Even though these phases are expected to be
sequential they frequently become more iterative in nature. They are also
unpredictable in time and costs, because the productivity of individual
programmers tends to vary enormously and depend on elements difficult for
management to control, such as personal talent and experience. The projects
that succeed generally come about through the heroic efforts of a dedicated
individual or team, rather than through repeating the proven methods of an



crganization with a mature software process. In the absence of an
organization-wide software process, repeating results depends entirely on
having the same individuals available for the next project®.

Software producers may thus encounter budget and schedule overruns as the
rule rather than the exception, especially when attempting to build large
complex systems with many components for the first time®. The sheer difficulty
of software design and programming, exacerbated by a demand for programs
rising faster than the supply of software engineers, led to a situation referred to
as the "software crisis" as long ago as 1969’. As software projects continue to
increase in size and importance, these problems have become magnified.
Products that are late, over budget, or that don't work as expected cause
significant problems for the software organization's customers.

As the need for software has increased, there has been much study of ways to
improve the speed in which software is developed, the costs associated with
developing new software, and the quality of the resulting software. Significant
advances have occurred in the areas of tools for software development, project
management techniques, design techniques, software development techniques,
and testing methods. Despite all these advances, problems remain and the
industry is continuing to search for new ways to develop software more
productively, with higher levels of quality and with higher user satisfaction.
After two decades of unfulfilled promises about productivity and quality gains
from applying new software methods and technologies, induStry and
government organizations are realizing that their fundamental problem is the
inability to manage the software process®.

Throughout much of the early industry years, and still today for many people,
software development was considered to be more of an art than a science.
This school of thought tends to discourage anv efforts to standardize the

9



process of software development, and in fact claims that it cannot be
standardized without greatly diminishing its value. "Software artists" should give
free reign to their creativity and not stifle it with disciplined procedures,
corporate policies, or standardized methods, according to this view. But
another view, which is gaining in popularity as demand for software increases
and as historical results have shown continued fundamental problems, states
that there are some elements of science in the software development process.
From this perspective, software development can be improved upon using
techniques and practices borrowed from manufacturing science®.

The increased amount of competition in the software industry today, combined
with the shortened life cycle of individual products, places considerable time-to-
market pressure on software developers. With a shortage of software
engineers in the marketplace, companies are being forced to improve
development productivity in order fo win the time-to-market race. At the same
time, the complexity of software has grown enormously, with some of the most
complex programs now totalling several million lines of code. This greater
complexity increases the number of man-years required to produce the code.
Again, the only way to compensate for increased demands on programmers'
time is to improve their level of productivity’®. The organization must provide
the infrastructure and support necessary to help projects avoid these problems.

Thesis Structure

My thesis study has concentrated on the software development process
variations being used by a set of the leading software producers today. The
initial focus of my thesis research objective was to understand variations in the
software development lifecycle steps employed by the different companies. |
was interested in the combination of requirements, design, implementation, and
testing stages along with the details of how these phases were actually carried

10



out.

The study of lifecycle phases has remained a part of my work and defines the
base used to look at software development in the companies. But in the end, it
became only a portion of the analysis of how development was carried out.
Previous research and writings on the subject of the software deveiopment
lifecycles showed a shift in focus away from just the lifecycle stages. Process
support and the business management activities utilized appear to be the
sources of differentiation between the companies. Looking at tools like the SEI
Capability Maturity Model for Software along with many of the software quality
and productivity writings, "development support” process steps have become
the roadmap recommended for process improvement. Process characteristics
like process control, metrics, configuration management, process ownership,
and process improvement were the focus and have come about due to
problems not solved within the steps of the software lifecycles.

Chapter 1 concentrates on the basic phases used in some variation for all
software development. The "waterfall" process defined by Royce in 1970 is
considered to be the first well-defined development process and is the base
most follow-on processes have been formed on. | describe it so that there is a
base process to start from. The process is generally considered to have been
first utilized on a large scale project by IBM while developing the System/360
operating system in the 1960's. It represents a structured process and
organization created for the purpose of developing software.

Even though these processes have been defined and available for many years,
there are still a significant set of problems that exist either due to lack of
process usage or due to deficiencies in the processes utilized. Chapter 2
describes what are considered to be the key problems associated with software
development and the processes utilized to develop it.

11



After the overview of the processes and the problems of software development,
| move to the case studies of a set of the leading worldwide software
development organizations. The first group of these is classified as
"established software producers". These organizations are part of companies
with long histories of large scale software development. IBM organizations
were chosen for the study due to their wide recognition as the originator of the
structured development process and the significant amount of work that has
been done within the company to further refine the classic structured
development process. The group includes:

Chapter 3 - IBM Federal Systems Company in Houston, Texas thet is
responsible for development of software for NASA space programs. This
particular IBM group was chosen due to their recognition as having the best
software development process in the world.

Chapter 4 - IBM Applications Business Systems in Rochester, Minnesota
that is responsible for development of the OS/400 Operating System and
program products for the IBM AS/400 computer. This IBM group was
chosen because they are developing non-mainframe products, they have
done significant work to adapt the structured development process to a
rapidly changing commercial product development environment, and they
are recognized for outstanding quality.

Chapter 5 - Fujitsu Computer Systems Group - Numazu Works Software
Division in Numazu, Japan that is responsible for development of operating
systems, compilers, data basc systems, and image systems for Fujitsu
computers. This group was chosen due to their position as the leading
manufacturer of hardware designed to match IBM capability, the fact they
widely followed the IBM structured development process, and due to the
factory like processes they have evolved to, as described in Michael

12



Cusumano's book, "Japan's Software Factories: A Challenge to US
Management”.

The next group of companies is classified as "new entrant software producers”.
These companies entered the business of large scale software development
later than the set of "established” companies. The "waterfall process" had been
defined by the time they entered and maziiy lessons had been learned in the
industry. The group includes:

Chapter 6 - Hewlett-Packard Commercial Systems Division and Open
Systems Software Division that are responsible for the MPE/iX and HP-UX
operating systems, respectively. This group was chosen for the study
because of the success of their products in a wide set of commercial
computer markets, their recognition for high quality products, and the
extensive work they have done on metrics and process improvement.

Chapter 7 - Microsoft which has produced MS-DOS, Microsoft Windows,
Microsoft Excel, Microsoft Word, and a substantial additional set of system
and application software products for PCs. The company was chosen
because of their position as the leading producer of PC software that covers
both systems and applications software. Their reputation for innovative
software solutions was also a factor leading to their inclusion in the study.

Chapter 8 - Lotus which has produced leading PC software products such
as Lotus 1-2-3 and Lotus Notes. This company was chosen because of
their position as another of the PC software leaders and because of their
reputation of being a "more marketing oriented PC scftware company".

The conclusion looks at whether there are any real differences in the processes
employed by "established" and "new entrant" software providers. Process

13



discoveries worth noting again are also highlighted in the fina! section.

The process and problem sections are intended to provide a framework with
which to look at the case studies. It is the actual case studies that are the
focus on my thesis. By looking at what leading companies are doing in
software development, we can see what is actually happening versus guessing
the processes leaders are employing. This knowledge can be helpful as
companies implement new processes or decide on process improvement
actions to undertake.

14



Chapter 1: Software Development Processes

The Life Cycle Model of Softviare Development'

A development process is a set of activities, together with an ordering
relationship between activities, which if performed in a manner that satisfies the
ordering relationship will produce the desired product. A process model is an
abstract representation of a development process.

In a software development effort, the goal is to produce high quality software.
The development process is, therefore, the sequence of activities that will
produce such software. We have seen that the basic phases are requirements
analysis, design, coding, and testing, which are usually further broken down into
distinct activities. A software development process mod>l specifies how these
activities are organized in the entire software development eifort.

The purpose of specifying a development process model is to suggest an
overall process for developing software. This could be different from the actual
process that is employed by any one company or group of people. Existing
development processes can also be modeled, and such an exercise is useful
for determining the weaknesses in existing practices.

Problem solving in software must consist of these activities -- understanding
and defining the specific nature of the problem, creating a technical and

15



development plan for a solution, coding the planned solution, and finally testing
the actual program. For any software system of a non-trivial nature, each of the
four activities for problem solving should be done formally. For large systems,
each activity can be extremely complex, and methodologies and procedures are
needed to perform it efficiently and correctly. Each of these activities is a major
task for large software projects. Furthermore, each of the basic aciivities itself
may be so large that it cannot be handled in a single step and must be broken
into smaller steps. The basic Life Cycle Model activities or phases to be
performed for developing a software system are:

Requirements Specification

Design

Implementation

Testing

The steps following development are:
Installation
Maintenance

Most software development today follows the Life Cycle Model. The sequence
of stages required to complete a software project have become standard,
although a wide range of options exists within each stage. The stages and
purpose of each within the Life Cycle Model is described below.

Requirements Specification: Requirements analysis is done in order to
understand the problem which the software system is to solve. The overall
software requirements are specified and analyzed with the tectinical objective of
establishing a complete and consistent set of requirements to perform software
design. Customers and hardware designers are the groups that most frequently
define the end product requirements to the individuals responsible for turning
them into the set of requirements needed for the software design step. The

16



definition of capabilities should include both functional {i.e. testable) and non-
functional (qualitative) requirements. The requirements specification describes
what the system will do, but not necessarily how it will be done. After the
requirements specification has been written, software specialists will be able to
decide whether or not the system is technically feasible.

Design: The purpose of the design phase is to plan a solution for the problem
specified by the requirements document. Software designers determine how
the system can be structured to meet the requirements outlined in the
requirements specification. The design of a system breaks down each
functional requirement into modules and submodules, describing each module
and detailing its interactions with the rest of the system. In this stage, software
designers strive to create a design that will maximize efficiency of the
hardware, maintainability of the system, and ease of implementation (coding).
In addition, they generally try to minimize complexity in the design. Sufficient
detail is required to allow the coding of the actual programs to begin.

Implementation: During the implementation stage, each module must be
coded. Coding involves writing the instructions necessary to achieve the
program design in accordance with the design specification. The language
used for coding should be determined up-front, and will depend upon the
functionality and complexity of the system. Languages and tools used to
complete this process are often standard for the organization to ensure
programs work with each other in the final system. During this ohase, the
developer will often do a level of testing of the system as a verification of the
program logic. Testing may also be carried out between small groups of
modules before they are included in the full new system.

Testing: The testing phase is considered a formal verification of the system
being delivered. Two objectives tend to be part of this phase: ensuring that all

17



of the programs work together without error, and ensuring that the overall
system requirements are met. The testing stage should uncover and correct
any bugs that exist in the system due to requirement, design, or coding errors in
the programs. Testing is generally performed at each base level of functionality
during the implementation stage (i.e. as each module is finished), and at the
system level. To ensure requirements are met, some level of customer
involvement is often utilized as a step (usuaily a final one) of the test process.
As in all testing for product errors, there is a trade-off between the user's need
for assurance of quality and the producer's need to economize on time and
cost.

Instaliation: This is the phase when the new system is formally combined with
tre existing system. The best mental picture of this is the delivery of a new set
oi functions to a customer with a base system already installed. During this
phase, a set of regression tests is often run to ensure existing functions are not
affected by the new system, and to ensure the new system runs correctly when
combined with the existing system. It is during this phase that the end
customer will determine and decument that the final product was delivered and
that it satisfied the customer requirements.

Maintenance: This is the phase in which any problems encountered by the
customer are handled. Errors that can occur are: software errors not
discovered during the system test, failures in other parts of the system that can
be fixed by programming changes, and changing requirements for use of the
system. Fixes due to mistakes made by the programmers are usually made as
updates to the existing code and provided to the customers. Fixes to handle
failures in another part of the system and changes due to changed
requirements usually involve a formal process of approving the change
requested along with a method of delivering these more extensive software
changes.

18



The Life Cycle Model is widely used as a guide for sofiware development.
Depending upon the complexity of the system, the time-to-market pressures,
and other situational factors, development processes may combine several
stages or even skip certain ones. For example, if a simple program is to be
written under tight deadiines, it might be easier to start with low-level design
and coding and skip the requirements specification. In environments where
system quality and accuracy are essential, testing may be performed at every
stage, beginning with the requirements document. In companies where there is
a shortage of programmers, it might make sense to combine design and coding
into a single process. Prototyping is another response to rapidly changing
requirements and the need to continuously demonstrate and validate products
with customers. Evolutionary software prototype processes are coming into
place that use various stages of prototypes through the development stages of
requirements, specifications, design, and finally coding. There are other
variations on the model that have proven effective in different environments.

Cost Breakdown of Life Cycle Phases'

For software, the cost of development is the cost incurred during requirements
specification, design, implementation and testing which all occur befere product
delivery. The cost of maintenance is the cost of modifying the software due to
defects in the software or updates of the software. This cost is spread over the
operational years of the software.

It is generally accepted that the cost of maintenance is likely to be higher than
the development cost. The ratio of development cost to maintenance cost has
been estimated to be in the range of 30 - 40% development and 60 - 70%
maintenance. This is significant considering that during most development
projects the development organization is most concerned with reducing the
development cost, and are not as concerned with maintenance cost. Since

19



maintenance critically depends on the software characteristics that are decided
during development, maintenance costs can be reduced if maintenance
concerns are carefully addressed during development.

Of the development cost, a typical distribution of effort within the different

phases is:
Requirements 10%
Design 20%
Impiementation 20%
Testing 50%

The exact cost ratios will vary by organization and type of product being
developed. They are reasonable enough to use as a base for making
observations on the lifecycle stages. One observatior is that maintenance and
testing dominate the resource usage for a project. Efforts to improve
requirement, design, and implementation work can provide significant benefits to
testing and maintenance. Knowledge of the significant costs of fixing
requirement and design defects late in the development process suggests the
need for well planned and executed work in these up-front phases.

These ratios show likely improvement over what the situation would be without
some form of structured process model for the lifecycle. Lifecycles that
concentrate on doing more structured work early in the development process
phases help avoid the need to test in quality and fix significant amounts of
defects after the software has gone out the door. Structured lifecycles appear
to make economic sense for companies developing software.

Waterfall Life Cycle Model for Software Development

Credit for the introduction of a lifecycle for use in sofiware development is

20



generally attributed to Royce™. The model introduced by Royce was termed
the Waterfall model and embodied the systems engineering approach to
building large-scale systems that had already been in existence for some time.
The waterfall image is meant to signify a linear flow from the beginning phase of
the process until the final destination of the operations phase. Since its initial
use by Royce, many modifications and iterations have been made to the model.
The use of the conventional (waterfall) lifecycie has demonstrated that better
software will result from the careful use of a software development lifecycle.

In a very ideal situation, each of the lifecycle phases could be carried out
individually to completion and in sequence. When all the phases have been
executed, the software product is delivered and works as intended by the
original user or client, in accordance with the initial need or user requirements
for the system. Actually, this rarely happens. What usually happens is that one
or more phases are often repeated, after deficiencies are found, until the
system is correct or nearly so.

Iteration and interaction are the key factors to be attended to in order to
produce a successful software product. It is better to "do it right the first time"
though, since it is often very expensive to accomplish major iteration, reiteration,
and interaction due to much recycling through the lifecycle phases.

The initial waterfall lifecycle model has undergone numerous refinements.
Many versions of the software development lifecycle models appear in the
literature, and almost all of these define five to seven-phases for systems
engineering of the software development process. These iater models have
attempted to decrease the rigid boundaries of the phases, increase overall
flexibility to account ior iteration, and to introduce automation tool usage. Each
of the models are generally based on the phases introduced with the waterfall
model.

21



In the Waterfall model [See Figure 1], Royce defines the 6 phases as: System
Requirements, Software Requirements, Preliminary Program Design, Program
Design, Coding, Testing, Operations. In addition, he includes an Analysis step
between Preliminary Program Design and Program Design. What follows is a
brief description of each phase along with the documentation that is generated
during the phase. Royce was very clear in his position that documentation is
absolutely critical.

System Requirements: [n implementing this phase, it is assumed that the
system user and the systems analyst are suificiently informed about what the
new (or modified) system is intended to achieve. This knowledge is used to
develop the system-level requirements to an acceptable level such that they can
be defined in sufficiently complete detail for preliminary design to be initiated.
All of this must be done before detailed design and coding can be initiated.

Software Requirements: The development of the software requirements
phase focuses on the outcomes of the system requirements identification
carried out in phase 1 of the waterfall model of the software development
lifecycle. It is concerned with the nature and style of the software to be
developed, the data and information that will be required and the associated
structural framework, the required functionality, performance, and various
interfaces. Requirements for both the system and the software are reviewed for
consistency and then reviewed by the user to be certain that the software
requirements faithfully interpret and produce the system requirements. A
Software Requirements Document is produced to document the resuits of this
phase. It becomes a technology and management guideline that is used
throughout all subsequent development phases.

22



{] ‘0261 I1SnbBny ‘u0aSaA4 33| JO SBUIPS3I0LY |, ‘SWAISAS 2Jem);CS 6
\ uﬁﬂ%«ﬁﬁ;_ 80.e7 jo wawdojarsq ay) bu:beueyy, :82in0S '|OPOW SS3J0id |lepdiepA S;804oy " 8inbig

i 9 ON IN3INN30Q
i

SHOLLVYUHIO

N

2343)
NO1$30
TVNI4
¥ 'ON 1N3WRD0Q

ONILS3IL

1J348)

!
, NOISI0
/ | VNI
$1INS3Y 1532 | errme——
(2345 "
NVYId 1531 ONlaco

9 °OM ANIWNNJ00

.,,,” NOIS3Q
/ | 2oviusm |
(1ng svi A
noisaa | NDIS3IG .
TvNI3

WYHO0Ud

14 ghtgﬁs

T i 2343)
, 12345 NOIS3a
NVId 1331 SISATYNY AUYNINIT K4
9°ON 1NINN30a \ il ‘on 1n3wn300]

NOIS30 SiNIWIHINDIY

WvH9OuHd JYYMLIO0S
AUVHIWITIUG \ 1 'ON IN3WNI0Q

SINIWIHINDIY

ELLLVE [o ]

SININILINDIY
WALSAS

23



Preliminary Program Design: The software requirements are converted into a
preliminary software product design which is aimed primarily at the further
interpretation of the software requirements in terms of software system-level
architecture. The product of this phase is an identification and micro-level
definition of the data structure, software architecture, and procedural activities
that must be carried out in the next phase. Preliminary software design
involves representing the functions of each software system in a way that these
may be readily converted to a detailed design. The results provide insight as to
how the system is intended to work at a structural level and satisfy the
technological system requirements. The design is documented in a Preliminary
Design Specification.

Program Design: This phase involves definition of the program medules and
intermodular interfaces that are necessary in preparation for the writing of code.
Specific reference is made to data formats, detailed description of algorithms,
and tracing of all inputs to and outputs from the detailed design modules. Two
design specifications are generated during this phase. The Interface Design
Specification documents the user interfaces and pregram interfaces for each
program module. The Final Design Specification is the key output of this phase
and may undergo multiple reviews and revisions depending on the number of
design steps in this phase. During this phase, the testing group begins work on
the Test Plan Specification.

Coding: During the coding phase, the detailed design is translated into
machine-readable form. This is either a manual activity by a programmer or
can involve some machine generated code based on the structure of the
detailed design. Initial testing by the developer happens during this stage and
generally bugs are discovered. Debugging and recoding takes place to validate
the integrity of the overall coding operations of this phase.

24



Testing: The individual units or programs are integrated and tested as a
complete system to ensure that the requirements specifications are met.
Testing procedures center on the logical function of the software. They assure
that all statements have been tested, and that all inputs and outputs operate
properly. After system testing, the software is frequently operated under
controlled conditions to verify and validate the entire package in terms of
satisfying the identified system specifications and software specifications.

Operatlons: This phase is often the longest from the perspective of the entire
useful life of the software product. The system is installed at the user location,
tested, and then used under actual operating conditions to the maximum extent
possible. Maintenance commences immediately upon detection of any errors
that were not found during the earlier phases. Maintenance is primarily the
process of improving the system to accommodate new or different requirements
as defined by the user.

Waterfall Process Implications

Across the phases, there are important consequences of the linear nature of
activities. Certification should be done at the end of each phase to mark the
completion of one phase and beginning of the next. Certification is
-accomplished through some form of verification and validation that ensures the
output of the phase is consistent with its input, and the output of the phase is
consistent with the overall requirements of the system.'® The goal of each
phase is to produce the output that can be certified. Reviews are necessary for
certain key phases (requirements, design, and coding). Reviews are formal
meetings to uncover deficiencies in a product.

Documents or code are the normal outputs of a phase. Outputs from one
phase become the inputs for the next phase. The outputs that have been

25



certified should not be changed or modified, though.’® Reality says that

requirement changes will happen and must be addressed in the process. Due
to the changes, configuration control is needed to ensure changes are made in
a controlled manner after evaluating the effect of each change on the product.

The major advantages from using the classical waterfall software development
lifecycle model, or one of its many modifications, are those of organizing and
controlling the software development project. The single most important
methodological need associated with use of the waterfall lifecycle model is that
of effective identification of user requirements." In the usual lifecycle
development, inadequate attention is paid to fulfilling this need. Overall,
software development lifecycle models provide management and control over
the processes and procedures to be accomplished in software development.

Disadvantages associated with use of a lifecycie model include problems that
occur if there is no iteration and feedback among phases. Unless there is
iteration and feedback, there may be no way to improve initial imperfections in
one of the phases. Realistic lifecycle development processes are iterative and
interactive, and the software development lifecycle is one that encourages
management to recognize these facts of life in order to be successful in guiding
software development projects.'®

26



Chapter 2: Software Development Probiems

Problems with Software Development

A software crisis was initially discussed 25 years ago. The software industry
was relatively new at the time, but already had a track record cf software
projects being delivered significantly behind schedule, costs well above
budgeted amounts, quality that was poor, and maintenance costs already
beginning to mount. As more complex systems and applications were found,
software developers fell further behind schedule and quality became poorer as
they attempted to catch up. Software costs continued to rise at a very steep
rate.

Through the years since that period, the industry has continued to be in a levei
of software crisis. Knowledge and tools have advanced, but the problems
persist. The reality even today is that there are inany difficulties associated with
the production of reliable, cost effective software. In their 1990 book Software
Systems Engineering, Andrew Sage and James Palmer created a list of
attributes associated with sofiware today. The result of a very large number of
studies showed that:

Software is expensive
Software capability is less than promised and expected
Software deliveries are often quite late

27



Software cost over runs often occur and are generally large

Software maintenance is complex and error-prone

Software documentation is inappropriate and inadequate

Software is often cumbersome to use and system design for human interaction is lacking
Software products often cannot be integrated

Software often cannot be transitioned to a new environment or modified to meet evolving
needs

Software performance is often unreliable

Software often does not perform according to specifications

System and software requirements often do not adequately capture user needs

Because of this set of central problems, they point out that the following
difficulties arise: inconsistent, incomplete, and otherwise imperfect system
requirements specifications; system requirements that do not provide for change
as user needs evolve over time; and poorly defined management structures for
product design and delivery. The products that come from this environment are
frequently difficult to use, do not solve the intended problem, operate in an
unreliable fashion, are nearly impossible to maintain, and are not used in a
number of cases. These same studies generally show that the major problems
associated with the production of trustworthy software are mere concerned with
the organization and management of complexity than with direct technological
concerns that affect individual programmer productivity.

The Uniqueness of Software

Frederick P. Brooks, Jr. has done some of the most intriguing and entertaining
writing on the subject of software development and the difficulties associated
with it. In his book, The Mythical Man-Month,” Brooks stated his belief that
problems associated with software development were interrelated, difficuit to
isolate, and inherently systematic. Regarding the techniques to estimate and to
monitor schedule progress, he felt they were so poorly developed that they

28



were almost "mythical”.

it was in Brooks' article, "No Silver Bullet - Essence and Accidents of Software
Engineering"?, that he summarized key properties of software that made it
difficult to build. He considered the software entity to be a construct of
interlocking concepts: data sets, relationships among data items, algorithms,
and invocations of functions. The resulting product is abstract in nature, and
such a conceptual construct can be represented in multiple different ways (no
single way to implement it). Even though it can be done multiple ways, the
software product is nonetheless highly precise and richly detailed. Since the
hard part of building software is the spacification, design, and testing of this
conceptual construct versus the iabor of coding and verifying the code, building
software will always be hard. The inherent properties of modern software
systems that make them irreducibly difficult to build are: complexity, conformity,
changeability, and invisibility.

Complexity. Software entities are more complex for their size than perhaps any
other human construct because no two parts are alike. A scaling-up of a
software entity is not merely a repetition of the same elements in larger sizes, it
is an increase in the number of different elements. In most cases, the elements
interact with each other in some nonlinear fashion, and the complexity of the
whole increases much more than linearly. The complexity of software is an
essential property, not an accidental one. Many of the classic problems of
developing software products derive from this essential complexity and its
nonlinear increases with size. Not only technical problems, but management
problems as well come from the complexity.

Conicimity. Much complexity comes from conferming to other interfaces; this
complexity cannot be simplified out by any redesign of the sofiware alone. The
complexity is arbitrary complexity, forced on the software developer without

29



rhyme or reason by the systems which his/her interfaces must conform. These
interfaces differ because they were designed by ditferent people.

Changeability. The software entity is constantly subject to pressures for
change. The software product is embedded in a cultural matrix of:
applications: it embodies the function of the system and feels the
pressure for change;
users: people try to use it in different ways beyond the
original domain;
laws: easier to change software than hardware;
machine vehicles: successful software survives beyond the normal life
of the machine it was first written for.
These all change continually, and their changes force change upon the software
product.

Invisibility. In spite of progress in restricting and simplifying the structures of
software, they remain inherently unvisualizable, and thus do not permit the mind
to use some of its most powerful conceptual tools. This lack not only impedes
the process of design within one mind, it severely hinders communication
among minds.

Software Problems are Not "New News"

The difficulties associated with software development and the iimitations of the
software products created is not a new discovery. As mentioned earlier, it was
25 years ago that the "software crisis" was first identified. One of the most
comprehensive reports on the state of software engineering is a 1968 NATO
Science Committee conference report. Conference participants agreed that
software difficulties started with the determination of system requirements,
which initiated a cycle of uncertainty that rippled through the development of the

30



product. Cost and schedule estimates invariably were changed. Programming
modifications made to account for changed requirements affected configuration,
testing, documentation, and maintenance. When this involved large projects,
things like programming productivity variations, poor communications within
projects, lack of tools, poor measurement standards, rapid growth in demand
and size of programs, and few reusable components resulted in tremendous
maintenance costs when the systems invariably required changes.

31



The resulting "NATO Report on Software Engineering Problems" that came out
of the conference is included in a form presented in Michael Cusumano'’s book
"Japan's Software Factories”. It provides an important reference in
understanding where the software industry has progressed from.

NATO Report on Software Engineering Problems (1968)

Lack of understanding of system requirements on the part of customers and designers.

Large gaps between estimates of costs and time with actual expenditures due to poor
estimating techniques, failure to allow time for changes in requirements, and division of
programming tasks into blocks before the divisions of the system are weli-enough
understood to do this properly.

Large variations, as much as 26:1 in one study, in programmers’ productivity levels.

Difficutty of dividing labor between design and production (coding), since design-type
decisions must still be made in coding.

Difficulty in monitoring progress in a software project, since "program construction is not
always a simple progression in which each act of assembly represents a distinct
forward step.”

Rapid growth in size of software systems.

Poor communication among groups working on the same project, exacerbated by too
much uncoordinated or unnecessary information, and a lack of automation to handle
necessary information.

Large expense of developing on-line production control tools.

Difficutty in measuring key aspects of programmer and system performance.

A tradition among software developers of not writing systems "or practical use,” but trying
to write new and better systems, so that they are always combining research,
development, and production in a single project, which then makes it difficult to predict
and manage.

Rapid growth in the need for programmers and insufficient numbers of adequately trained
and skilled programmers.

Difficulty of achieving sufficient reliability (reduced errors and error tolerance) in large
software systems.

Dependence of software on hardware, which makes standardization of software difficult
across difierent machines.

Lack of inventories of reusable software components to aid in the building of new
programs.

Software maintenance costs often exceeding the cost of the original system development.

Source: Michael Cusumano, "Japan's Software Factories” (New York: Oxford University
Press, 1991).

The Situation in the 1970's

From that point in 1968, the industry grew at a very rapid rate. In 1979,

32




Richard Thayer published the results of another snapshot taken of the industry
at that time. He combined the survey results of a large group of industry
practitioners aiong with the results of 60 software projects from the aerospace
industry. The result was a smaller list of 7 key issues managers of software
development were most concerned about. Even though the list was shorter
than the NATO results, it indicated that the overall position of the industry had
not progressed significantly since 1968. The significant issues were virtually the
same. The list is:

1) Incomplete, ambiguous, inconsistent, or unmeasurable requirements specifications

2) Poor project planning

3) Poor cost estimation techniques

4) Poor scheduling estimation techniques

5) Lack of decision rules to help in selecting the correct design techniques, equipment,
and other design aids

6) Lack of decision rules to help in selecting the correct procedures, strategies, and
tools for software testing

7) Lack of standards and techniques for measuring the quality of perfformance and the
quantity of production expected from individuals

To further highlight the state of the industry during this period, an article by
Barry W. Boehm listed some of the problems associated with the different
phases of the software lifecycle along with the "frontier” solutions he viewed as
being viable for the phases. His conclusion at that time was, "There are more
opportunities for improving software productivity and quality in the area of
management than anywhere else." The following table is a partial reproduction
of his resuits that includes only the "Development Step" and the "General
Problems" of each phase:



Development Step General Problems

Requirements specifications Ambiguous, errors, ad hoc

Design Manual, bottom-up, error-prone

Implementation (Coding) Unstructured code

Testing Unplanned, much wasted effort

Maintenance Unsystematic, costly

Project management Poor planning, control, resource
estimation, accountability, and
success criteria

Source: Barry W. Boehm, “Software Engineering,” IEEE Transactions on Computsrs

C-25, 12, December 1978.

Progress in the 1980's

In 1984, another snapshot of the industry was taken. By this time, neariy a
decade had passed since Boehm's work and over 5 years had passed since
Thayer's survey results were compiled. C.V. Ramamoorthy led a group that
looked at progress that had been made in software engineering since the
software crisis was identified in 1968. The group looked at past
accomplishments, the current set of significant problems, and future needs in
the important aspects of software engineering. The key advances noted were:

Formal specification languages and methodologies to write requirements
specifications. This simplified the writing of specifications and made it easier to
analyze them for intemal consistency and accuracy.

Graphic representations of specifications and executable specifications also came
about to a limited extent.

Research had moved forward on specifications languages as well as program
generators that automatically produced code from requirements.

Tools that automated aspects of test-data generation, error locaticn, and results

34



verification.

Some improvement in tools that anatyzed source code and generated information such
as control flow and data flow.

Metrics improved for measurement of phase productivity, cost, and quality.
Improvement was also seen in quality measures like correctness, modifiability,
reliability, maintainability. For productivity, estimation models had improved.

While advances occurred, there were still a set of problems that remained.
These problems continued to be in the general areas noted in the 1866 NATO
report. They show evidence of progress in that each problem had progressed
to more specific elements of design, metrics, and other categories versus the
previous global nature of the problems. The summarized list is:

The design process remained ditficult to rationalize. Designers used one set of criteria
(such as functionality, dataflow, or data structures) but then had to account for a
range of nonfunctional requirements (maximizing maintenancs, reliabiity, speed,
reusability, or memory constraints) as they partitioned the resulting procedures
into modules. The final step required design of actual data structures and
algorithms, and transcription into text or graphic forms. The problem was no
design methodologies existed for handling complex control structures, real-time
applications, or new distributed processing requirements.

Challenge of how to select the fewest number of cases that would verify a program is
logically correct and meets user specifications. Minimizing test items remained
critical to reducing the huge amounts of time and labor normally required to
evaluate large, complex systems.

insufficient documentation; inconsistency between documents and code; designs
difficult to understand, modify, and test; absence of good records on past
maintenance are all problemns contributing to high maintenance costs.

Metrics had improved greatly but still needed improvement for effective use in design
and quality control.

Performance of individuals remained difficult to measure.

Prototyping began to be used more but they were not yet efficient to build and tended to be
"throw away" when going to actual code.

35



1990's View from ths Case Study Organizations

All previous information on the problems associated with software development
deal with broad industry surveys of key problems during multiple different time
periods. This informaticn is very useful in understanding the historical
progression of the overall industry. During interviews with the companies that
make up my study, | had the opportunity to discuss the key problems each
company was working to manage/overcome through their development
processes today. It can be viewed as a 1993 snapshot from an elite set of
software producers.

The IBM Federal Systems Company group responsible for developing the
software for NASA space systems faced the problem of creating software that
peoples' lives directly depended on. With lives hanging in the balance on each
manned space mission, the key problem to overcome was code defects. Zero
defects became the only acceptable criteria. To deal with this situation, the
whole development process is centered on eliminating situations where detects
are injected into the code along with removing any defects that may have come
from previous stages. Dealing with the creative (and human) act of developing
new and leading edge software functions while making sure it is perfect is the
main problem faced by this group.

The IBM Application Business Systems group is dealing with the problem of
responding to widely varied and quickly changing customer requirements while
making sure delivery commitments are met. In 1978, a committed delivery date
was missed and became a defining moment for Rochester. Since that time,
processes and metrics have been continually improving to be able to predict
schedules and quality early in the product development process. On top of that,
the pace of customer requirements has rapidly increased to the point where

36



existing processes of translating customer requirements to development plans
are seriously strained. Since changing requirements ripple through the
development process and are exceedingly expensive, the group is faced with
making improvements in this process step. Solving this problem is critical to the
on-going need of reducing customer delivered defects and reducing
development costs.

The Fuijitsu Computer Systems Group has been dealing with the need to put
methods/processes in place to create quality software using people with limited
computer science training. Their objective was to break the development
process into small repeatable steps that workers could gain significant
experience with and become masters of. By mastering each of the steps, the
overall process could be the most efficient possible. Consistency and
repeatability would also lead to quality improvements. Automation has aiso
been a strong area of investment with the desire to reduce human
interaction/unpredictability in the process.

Hewlett-Packard has been a company that possesses a strong culture of
engineering excellence. Software developers are referred to as software
engineers. The group is very analytical and drives for perfection, but attempts
to maintain an atmosphere of freedom to pursue invention. The freedom made
it very difficult to implement structured processes. The most signiticant turning
point came when Hewlett-Packard's Commercial Systems Division did an
analysis of the causes of the software defects being received from customers.
The results indicated that a significant number of errors were being injected
during the coding phase and were not being removed with testing. The solution
determined by the technical community was that code reviews along with more
rigor during the requirements and design stages could eliminate defect injection.
The results have been improvements in quality and cycle time during product
development. The key problem that Hewlett-Packard faced (and still faces) is

37



maintaining sufficient structure in the development process to hold defects low,
while keeping a creative edge.

Microsoft was faced with the need to become more predictable in product
schedules. The company was unable to reliably predict and feel comfortable
with development schedules. Product delays were common and when the
customer base continued to expand, this became unacceptable. On top of this,
customers have begun to express the need to feel comfortable that their
suppliers (Microsoft for PC software) are utilizing quality processes to create
products. The challenge within the company has been to implement more
structured development processes while maintaining the creative technical edge
that characterizes the company.

Lotus is faced with the delicate balancing act of process versus creativity and
flexibility. At one point, they dictated a development process which failed due to
the variations needed by individual products and due to programmers not
wanting that level of structure. Their major problem is coordination and
management (for delivery and quality) when projects grow beyond the small
team level. Mechanisms are not in-place to effectively manage development in
large groups.

Summary

To summarize the chapter, | look to a list compiled by Dick Sulack on the root
causes of "runaway" and "missed objectives" projects. Runaway projects are
characterized by significant overruns of schedule, resources, and/or funding,
while missed objectives are projects that do not meet customer expectations in
some significant way. This list was compiled in 1993 and represents an up-to-
date view of the problems that still persist, even for some of the leading
software producers. As you read the case studies that follow, you will see

38



process steps that directly deal with many of these problems. The companies
recognize the problem areas and work to manage them. In most cases, the
steps were put in place due to some significant project mistake that has
happened in the company's past.

Root Causes of Runaway & Missed Objectives Projects

1) Inadequata requirements statement

2) Lack of specitic and measurable goals

3) Architecture/design fiaws and churn

4) Inadequate change control system

5) Inadequate project status reviews and reporting
6) Inadequate project metrics

7) Lack of open project communications

8) Lack of project milestones

9) Optimistic viewpoint of project doability

10) "Management difficulties”

Source: Richard A. Sulack, ASEMTECH, INC., "Advanced Software Engineering
Management Core Competencies, presentation at Spring 1993 COMMON Meeting.

39



Chapter 3: IBM - Federal Systems Company, Houston*'

The Company

Thomas J. Watsor,, Sr. is really the beginning of IBM. He was recruited in 1914
to be General Manager of Computing-Tabulating-Recording Company, CTR. It
was a company of 1200 employees that manufactured and sold a mix of scales,
time clocks, and tabulating machines. He focused the company on tabulating
machines and drove forward with the vision. His vision was that clerks and
accountants were growing faster than the rest of American business, and that
information could be made of interchangeable parts that could be encoded,
available, reclassifiable, and printable by a machine. He continually led
refinement of the company's tabulating machines. In 1924, he became CEO of
the company and renamed it International Business Machines. The introduction
of the I1BM System/360 mainframe computer in 1264 ushered in the computer

industry that IBM rode to its current position as leading computer company in
the world.

Corporate headquarters are in Armonk, New York. Total employment by |BM
and wholly owned subsidiaries is approximately 300,000 people with operations
in most countries throughout the world. Research and Development is
concentrated in the United States with additional development locations in
Canada, Europe and Japan. Manufacturing is done in the United States,
Mexico, Europe, and Japan with each business unit controiling their own
manufacturing operations.

40



IBM's business spans nearly all aspects of the computing world. The company
develops and sells hardware that includes: mainframes, minicomputers,
personal computers, workstations, network servers, disk drives,
microprocessors, memory chips, computer terminals, printers, and other
peripheral devices. The company is also the leading total software producer in
the world with software that includes: operating systems, systems software like
compilers and data bases, communications software, contracted software, and
applications software as the main groupings. Finally, services make up an
increasingly larger part of the company's business.

IBM Organization

IBM is a federati~n of companies. Each company is working through the
process of decentralizing and increasing its competitiveness in diverse, fast-
moving industries. Each business is driving to become competitive and
sufficiently independent so that the possibility of separate ownership can be
evaluated against the tests of business logic and the prospects for attracting
and rewarding shareholders. This is a radical shift from the centralized and
heavily coordinated corporation IBM was.

IBM's primary operating units include: geographic units that provide marketing,
services, and support to their customers; and manufacturing and development
businesses that have worldwide responsibility for product development,

manufacturing, and delivery to geographic marketing units and to other
equipment manufacturers.

The geographic marketing and services units include IBM Asia Pacific, |BM
Europe/Middle East/Africa, IBM Latin America, and IBM North America. The
business units are: Application Business Systems, Application Solutions,
Enterprise Systems, Networking Systems, Pennant Systems Company,

41



Personal Systems, Programming Systems, ADSTAR, and Technology Products.
Two additional parts of the company are: Research Division, and IBM Credit
Corporation.

Federal Systems Company was formed in 1992, combining Federal Systems
Marketing and Federal Systems groups from within iBM. The organization is in
the forefront of the move to turn IBM into a network of more competitive
businesses. In the 1992 IBM Annual Report, the results of this group were
highlighted in their own section. Federal Systems markets specialized products
and services to the defense, space, and other federal agencies of the United
States and several governments beyond the United States. 1992 revenue was
$2.191 billion which was an increase over 1991 revenue. A total of 10,798
employees work for the company.

The Federal Systems Company has an IBM Vice President and CEO that
reports to the General Manager of IBM North America. The development group
responsible for all space systems software development is located in Houston,
Texas. Approximately 300 programmers, analysts, engineers and
subcontractors generate the onboard and ground systems software, and assist
in testing the product. The Space Shuttie Software organization is divided into
three groups: Avionics Software Systems Engineering which contains the group
of requirements analysts, Avionics Software Development which contains the
programmers, and Avionics Software Verification which contains an independent
group responsible for testing.

Culture

The culture of the shuttle software group in FSC is concentrated around the
drive to zero defects and usage of a team approach to achieve the goal. In
their technical environment, teams form freely to work on specific problems or

42



refine methods and procedures. The group has a strong sense of camaraderie
and a feeling that what they are doing is important. They realize that working
together is the only way to make sure the 1BM software is defect-free. The
quality improvement process used is mature and focuses primarily on how to
improve particular processes instead of just trying to raise general quality
awareness.

Satisfying their customer is another feature of the culture. Development is
based on three objectives that are all centered around delivering exactly what
the customer desires. The three are: develop software which adheres to the
letter of the customer's requirements (both explicit and implicit), ensure that the
software performs in accordance with the customer's operational expectations
for both nominal and off-nominal conditions, and provide software which is
error-free.

Structured development is the final feature of the culture. Development is
based on a reliability and quality assurance plan that has two key aspects: a
software development process which emphasizes the development of error-free
software and the early deteciion of any errors that do occur; and a series of
tests, audits, and inspections which ensure that the software developed
conforms to the requirements of the customer.

The group is very proud of their quality record and was chosen as a recipient of
the first, and recently a second, NASA Excellence Award for Quality and
Productivity for its success in producing very complex software for NASA's
Johnson Space Center. The onboard flight software has never had an in-flight
error that affected the safety of crew or vehicle, or prevented the successful
completion of mission objectives. They have been successful in reaching the
goal of zero product errors in the last 3 major releases of onboard flight
software systems which have spanned more than 15 flights. Recognition and

43



success reinforces the culture of the organization.
Product Dascription

IBM has been doing software development under contract to NASA for the
space system for decades. With the completion of the Approach and Landing
Tests in the late 1970's, focus shifted at IBM Houston to development of the
remaining mission critical software. The sofiware that remained was the "fly by
wire" control for the space shuttle to support all phases of flight, from pre-launch
to roll-out. To accomplish this, the organization was divided into the present
groups of analysts, programmers, and independent verification. The
development was segmented into three major divisions: system software that
contains the operating system; Guidance, Navigation, and Control programs
which fly the spacecratft in automatic mode; and Vehicle Cargo System which
handles all shuttle operations in orbit apart from the flying of the spacecraft.

Specific functions provided by the software are: operating system to control the
full hardware and software system, automatic guidance function, navigation and
flight control functions, systems maintenance functions, payload interface
functions, vehicle utility < - 1 checkout functions, servicing for the various
hardware sensors and eftectors that control vehicle operations, comprehensive
set of overall system health and crew input commands, and system health
monitors and alarms.

Since the software is "man rated”, which means software errors could result in
loss of life, every possible effort is expended to keep its error rate as low as
possible with a goal of zero defects. Considering the size ic the product
delivered, this goal is very significant. The organization has delivered a
significant amount of computer code to NASA over the years: total shuttle
related software of 9,780,000 source lines of code, and totai software across all

44



space programs of 30,000,000 source lines of code.
Rolease Structure and Strategy

Software is delivered in Operational Increments (Ols) to the base software that
is in-place and currently operational. This results in an incremental
development and release process. The approach is used due to the size,
complexity, and evolutionary nature of the orbiter system requirements. Ols
occur on roughly 12 month schadules.

Contents of the Ol are determined by NASA with IBM's review and concurrence
based on resource availability. A very extensive requirements process, which
will be described in detail, is utilized to create the agreed to contents. Each Ol

is used for several flights and serves as the foundation upon which the next Ol
is developed.

Development Process Overview

The software development techniques employed inciude process definition,
state-of-the-art software engineering principles, rigorous inspection of work
products across the process, independent software verification, sophisticated
defect cause analysis, and use of a set of specialized tools to assist
development and testing. The overall software life cycle consists of four basic
phases: requirements definition; software design, development, and integration;
independent verification; and customer support. Within these basic phases are
multiple sub-processes that come together to create a very extensive and well-
defined software development process.

Programming standards are documented and must be followed. Any deviation
from baseline requirements requires approval by an IBM control board.

45



Adherence to standards is audited by inspection and review of work products
from each development phase. Another aspect of the overall process is the
emphasis on early error detection. It is stated that errors detected early in the
process are cheaper to fix and are not delivered with the product. Each phase
has steps in place to minimize "defect escapes”.

Requirements Definition Phase

Requirements Definition is the area of the development process that is most
significantly different between what IBM Houston does and what nearly all other
software development groups likely do. Requirements definition and agreement
receives significant attention and the results are very clear requirements. The
single customer makes this both feasible and a very good practice. Key points
that characterize the approach to requirements definition are: management
commitment, educated personnel, well-defined process, belief that special focus
on requirements is essential, belief that errors found here are cheapest to fix
and that error insertion can be reduced, belief that formalization of requirements
benefits all processes, and baseline control and release planning are necessary
to protect against a chaotic development environment.

NASA controls the requirements which are driven by project goals, required
flignt changes, and available resources. The IBM Requirements Analysis group
is made up of programmers and engineers very familiar with the avionics
system. They are responsible for assessing the feasibility of implementing the
requirements into the hardware and software systems. An IBM Control Board
utilizes the Change Requests (CRs) to get costing information from each
development group and to determine a recommendation for each.
Recommendations from the group include a schedule of when the CR could be
delivered, cost in man-power, and cost in system CPU and memory

46



requirements. The delivery schedule is based on how much is currently in the
Ol and whether the CR would fit also.

Three stages are involved in the requirements definition and are key to
determining and achieving the delivery schedule described:

System Requirements define the system level interfaces and requirements to a
level of detail to allow top-down software design. NASA originates the candidate
list of CRs to be implemented during a scheduled Ol. Direct meetings are held
with NASA (the customer) and the IBM developers to determine whether the
capability changes they want will work and how it would be best to implement them
in software. Several formal and informal meetings are utilized to get the necessary
level of definition.

Functional Requirements start from the system level view and break it down to the
functions for each program module. Applications software requirements are
specified during this stage. What results is a map of how the function will be
spread between a set of system modules.

Detailed Requirements are created for each module. The requirements cover the
formulation of the module, logic, mission data used, and the display format of the
data. Requirements are documented in the Functional Subsystem Scftware
Requirements Document.

Formal reviews are held during the three stages. Review participants include
the requirements analyst, development programmer, verification analyst (tester),
moderator, NASA system software development representative, and the CR

author if possible.

Design Phase

47



Design of the software is done in two sub-phases. The requirements are quite
detailed which makes the design phase flow reasonably smoothly. The two
stages are:

Functional Design concentrates on describing integration of this function with
existing software, identification of all affected modules, sequencing of modules,
dependencies and interfaces between major areas of the software, structurai
design at the system and program levels, and program structure in terms of
function, storage, timing, and operational sequences. The requirements are
documented in Program Design Specifications. Formal design reviews by an
internal team of peers are held for significant system software capability updates
and for all functional changes.

Detail Design produces the detailed "build to” design for each program. The design
describes the functional organization of each module through the module structure,
database and I/O processing description, and logic flow. Detailed Design
Specifications are created to document the design and to also serve as
documentation of the final product. A formal design review is held by an internal
team for all design work products. Specific objectives are defined and
concentrated on during the inspection.

Coding

Coding is a manual process that concentrates on structured programming
methods. The operating system software is programmed in assembler
language due to the strict performance and space requirements. Applications
utilize a high-level engineering language, HAL/S, provided by NASA to IBM and
developed specifically for the space program software development. Coding is
performed to meet the defined programming standards and utilizes the Detailed
Design Specifications which define the module in very extensive detail. Formal
code inspections are held for each code unit. Reviews are done with the same

48



peer group that did the detailed design inspection. The aim is to discover errors
in coding, interfaces, and requirements implementation.

Development testing is considered to be part of the coding phase. Two levels
of testing are done, unit and functional. Unit testing is done by the developer
and consists of validating code unit logic, data handling, and testing of design
limits. Functional testing is also done by the developer and consists of
validating module interfaces, functional capability, and overall exercising of code
units in combination with each other.

Successful testing and review of the results allow the code to be integrated and
moved to Independent Verification Testing. The review of the results is through
a very formal process called the First Article Configuration Inspection (FACI).

Independent Verification

Sofiware verification is an area independent of the area directly responsible for
developing the software. The group maintains an adversarial relaionship with
the development organization. A basic assumption the group uses to guide
their work is that the software has been untested when it arrives. This ensures
an extensive test of the function.

Verification Analysts develop an independent, detailed understanding of the
requirements specifications. They review the specifications, contact the
customer independently, and participate in formal inspections during the
requirements, design, and code stages. Testcase development follows a formal
development process that involves creation of test procedure documents written
to describe individual test sequences in detail. Reviews, consistent with what is
done in development, are held with the customer community on the overall
pians and the specific testcases.

49



Testing is done in two sub-phases, Detail Verification Phase and Performance
Verification Phase:

Detail Verification Phase is used to verify that the software system meets all
specified requirements. The testing is further broken into three different aspects:
Detail tests that involve explicit testing of all functional requirements, logic paths,
algorithms, decision blocks, and execution rates; Functional tests which involve
explicit testing of all data interfaces, data /O, proper sequencing of events, and the
order of module execution; and Implicit tests which involves execution of all detail
tests while the entire flight software system is running and also involves simulation
of hardware failures to ensure proper execution in failure scenarics.

Performance Verification validates that the software system as a whole performs in
non-stress and stress environments. Each new function is tested to ensure it
performs as specified. Cases are constructed to selactively stress various
elements of the flight software with different focuses used for the system software
versus the functional software of the guidance and vehicle systems.

Configuration Inspection is a formal technical review to assure that all end item
requirements have been included in the specs and that the end item
documentation agrees with the delivered product. This is done after detailed
verification has been completed.

Validation

After the software has been accepted by NASA at Cl, it enters into the
validation testing phase. This validation testing and integration is performed in
a separate lab. NASA does testing to validate all subsystems interface correctly
and that the system functions properly when the changed subsystems are
integrated together.

50



Successful validation allows the software to be moved into operation.
Operations support is provided by IBM for user training, software installation,
routine maintenance, aid in development of user procedures and test support,
and aid in formal flight support.

Maintenance

Problems found are formally documented by NASA in DRs (Discrepancy
Reports). Failures outside the software system that can be fixed via software
along with changes to requirements are documented in CRs (Change
Requests). DRs and CRs are reviewed and must be approved before the
software changes are ailowed.

Software changes are required to follow a very formal process to keep defect
injection low. Requirements are that: the design, implementation, and
verification processes are used; documentation updates are made and
incorporated; configuration control procedures are used throughout the process;
and quality assurance and programming standards are enforced.

Process Usage and Compilance

Process usage is consistent throughout the organization with all development
utilizing this formal process. Compliance is ensured through internal peer
reviews, strict change control, and in-process metrics that gauge the results of
each development stage. The culture is the other factor that ensures the
process is used as defined.

Release Management

Program Managers are in-place for each Ol. They are responsible for ensuring

51



the software being designed and developed meets the requirements and
objectives defined by NASA. The Program Manager ensures adherence to
processes, procedures, and configuration management. Development of the
application support systems used in the preparation of flight systems is also
managed by this person. Finally, the Program Manager is responsible for
certification of all flight systems.

The Program Managers put a project-wide team in place to effectively do this
broad job. The "control board" team has the responsibility to: define, negotiate,
and baseline project-wide development, build, test, and delivery schedules;
control flight software changes (DRs and CRs); and coordinate interproject
technical issues.

Change Management / Configuration Management

Configuration management spans the full software development cycle. It begins
at requirements definition when the Change Requests are generated, it i3
required during each phase of design and coding, and it extends to schedules,
supporting tools, testing, and documentation. Baselines, which are technical
control milestones that are officially agreed to, are also controlled. The
baselines define software content, schedules, release formats, deliverable
items, verification plans, and support software.

A configuration management database is the crucial part of the system. |t
allows mapping of requirements to code, holds extensive information about
requirements and errors that drive changes, documents schedules and software
content, drives the actual software system builds, and is used to generate
reports used for development management.

Change Requests (CRs) and Discrepancy Reports (DRs) are used to control all

52



changes. Muitiple "control boards" are in-place between NASA and IBM to
review and determine whether changes are approved. Approved changes are
documented and become part of the formal baseline. The configuration
management database is updated to provide tracks regarding the change.
Different control boards are used for the different types of change requests. An
overall control board is in-place to monitor the amount of churn in the system.

Metrics

Quality measurements are the key metrics utilized. Quality is more than just
"bugs". It covers conformance to requirements and performance of a task
correctly on the first attempt. Three measurements were chosen in early 1980,
with a fourth added in the mid-1980's, that have been used since that time to

monitor the quality of software. Separate measurements are tracked for each
Ol of the flight software.

Total Inserted Error Rate is defined in terms of major inspection errors found, an in-
process measurement, plus all valid errors that resulted in documented
Discrepancy Reports. This is measured per KSLOC. The measurement is the
fourth that was added and is designed to understand the total rate of software
defects throughout the development life of the product.

Software Product Error Rate is defined in errors per thousand lines (excluding
comments) of source code (KSLOC) and is measured for each release of software.
Software errors have declined from 2 errors per KSLOC in 1982 to a rate of .11 per
KSLOC in 1985 and has continuously decreased since that time.

Process Error Rate is an in-process measurement of the efficiency of error
detection early in the software development process. Process errors are computed
prior to software delivery and are measured in errors per KSLOC. This
measurement fell from more than 10 errors per KSLOC in 1983 to less than 3 in

53



1985 and has continuously decreased since that time.

Early Detection Percentages of Software Etrors is another in-process measurement
that measures the ratio of errors found in inspections of the code to the total
number of errors that are known to exist in tha code. The total number of errors is
estimated based on past history and the quality goals for the release. Major
inspection errors are any error found in a design or code inspaction which wouid
have resulted in a valid DR if the error had been incorporated into the software.
Each phase of the process is measured with models existing for each. The
measurement has decreased from 10 errors per KSLOC in 1983 to about 4 in
1992.

Defects found during deveiopment are categorized. Analysis utilizing this data
is used as another method to drive to higher quality. It has been used to study

the process to determine the defect cause and to aid in process improvement
actions.

Measurement techniques have been used to increase the quality focus.
Product measures have been extended down into the organization including
subcontractors, employee participation has been encouraged through tool
availability, measurements have been focused on key areas, and data retention
has been used to build history that can be referred back to.

Process Improvement

It is heavily communicated and well accepted that process improvement is
critical in the drive to zero defects. A formal process of Causal Analysis and
Defect Prevention Process is used throughout the organization. Attention is
constantly placed on the removal of defect causes. The two processes have
reinforced a philosophy of: build quality in versus test errors out, usage of early

54



milestones to identify and measure quality, usage of error data to drive process
changes, and for every error found asking how the process can be changed to
prevent it next time.

As work products are inspected through the development phases, all detects
are recorded and categorized. Analysis is used to study defect trends such as
error escapes through the phases. Measurement of the process and the
product allow the effect of process changes to be measured to determine
impacts on quality.

Tools

Software Development Facility (SDF) is the major tool that is key to the
development process used for space shuttle software. SDF is an IBM
developed simulation test bed that simulates the flight computer bus interface
devices, provides dynamic access and control of the flight computer memory,
and supports digital simulation of the hardware and scftware environments.
SDF requirements were defined early by NASA and all new capabilities require
NASA approval. Enhancements are developed and tested by a dedicated

development and maintenance group that follows the formal process described
for the shuttie software development.

SDF also provides program management support to control program data,
support to do builds to create a deliverable systern, a build facility to map
software into the format needed for the system's mass memory units, a
simulator, and a documentation and statistical analysis system.

Expert systems have begun to be utilized to analyze test cases to support
verification tests. Coverage can be assessed through this mechanism.
Extensive automation support is used for iest case generation and execution.

55



Process Education

Documentation on the process is extensive and is available to everyone on-line
via their terminals or through printed copy. Mentoring by experienced
developers is another effective mechanism for orienting new people to the
process. With the level of formality associated with the process, education is
quickly gained. Numerous presentations and education packages are available
and are given upen request.

Summary — Results

Results have been excellent for IBM Houston in three key areas. The first is
the operation at a zero defects level. Three major releases that have spanned
more than fifteen missions have been at this level and NASA (the customer)
has recognized the group for their outstanding quality in meeting system
requirements and having zero defects. The second is through the quality of the
overall process used tu develop software. In an independent evaluation
conducted by NASA headquarters, the IBM Houston group's software
development process was given the highest possible rating of "5" on the SEI
standard evaluation of process maturity (at a time when most companies are at
the "1" level). The third area of success has been in productivity improvement.
As quality has improved, the group has also seen productivity improvement in
important areas such as software maintenance.

There are limitations that exist within the process when it comes to applying it to
other development groups. The process described is very costly in terms of
effort expended and cycle time to develop software. For the environment the
process is being used for which involves a dedicated customer, a limited
problem domain, and cost being less of a consideration than zero defects, the
process is an excellent fit. For the wide range of commercial software

56



developers that do not operate in this type of domain, the applicability of the
complete process is not feasible and therefcre we have process variations and
additions described in the other company case studies.

Drawing upon this success in process improvement and quality software
delivery, the Federal Systems Company has created a team that now goes out
and consults on the software development process. Their success in the
implementation of a high quality process is evident and they serve as a good
guide of what can be done through a software development process. Different
groups may not be able to, or want to, implement the full process but may be
able to adop: pieces of what is done. When this is successfully done, the
customer and the provider will both be happy with the result.

57



Chapter 4: IBM - Application Business Systems™

The Company

Refer to the IBM Company description for IBM Federal Systems Company in
Chapter 3.

IBM Organization

Refer to the IBM Company description for IBM Federal Systems Company in
Chapter 3.

Application Business Systems is the business unit that is part of this case study.
The unit is headquartered in Somers, New York with the development location
in Rochester, Minnesota. Manufacturing cperations are in Rochester,
Minnesota; Guadalajara, Mexico; and Santa Palomba, Italy. 1992 revenue was
$4.5 billion for the unit's hardware and software, and the sales of ABS systems
accounted for approximately $14 billion of total IBM product and service
revenue. Employment was 5,498 people in 1992.

ABS is managed by a Senior Vice President that reports to the Corporation
CEO. The business unit is organized into four separate groups: the
development laboratory that is responsible for all hardware and software
development, the product marketing group that is responsible for working

58



through direct and indirect sales channels for sales of business unit products,
the manufacturing group responsible for manufacture of all computer hardware
sold by the business unit, and the finance and planning group responsible for
overall financial management of the unit. Within the development laboratory,
there are groups responsible for all hardware development, software
development, strategy and planning, and support operations (testing, tools,
software builds, software distribution, and national language translation).

Culture

Multiple books and articles have been written describing the culture of IBM.
Many of these have characterized IBM as either being a marketing company, a
company based on key principles 'aid out by Thomas J. Watson, Sr., a
company with vast technology capabilities, or a company that has been working
hard to protect the markets it captured in past years. My concentration is on

the culture that surrounds the development community for ABS that is located in
Rochester, Minnesota.

Rochester is characterized by a very cohesive and productive development
group that has been high within IBM in terms of productivity and quality
achievement. The location began operation in 1955 and eventually moved into
the position of being a single location responsible for developing a family of
midrange computers. Most IBM systems are developed in muitiple locations,
but Rochester has generally operated on its own. This single location situation
has lead to a very strong sense of ownership by the development community
for the products created and sold.

"Out in the cornfields" has been a label put on Rochester. The situation has
helped ABS Rochester move forward on its own without significant intervention
from other groups in the company. The System/38 and System/36 were

59



midrange systems that have fueled much of the success. They served as the
base for development of the AS/400 computer which has been recognized as a
very significant technical and market success.

Working outside the 1BM core during the early years, which was mainframes,
created a consistent feeling of being "under-recognized and under-funded” for
development of products. The feeling of being under-funded created a culture
of the site pulling together as a team to overcome the odds. Competitive spirit
is alive within the group. The site also benefits from what is often referred to as
a "midwest work ethic" that drives people to dedicate themselves to completing
the work that needs to get done. In addition, attrition and transfers ot personnel
are minimal which has helped the site foster a large team attitude of people that
know each other and achieve success as a group.

A significant problem in 1978 also helped define the culture in Rochester.
Achievement of the committed shipment date for the System/38 computer was
missed by nearly a year. Multiple factors lead to the situation, but one of the
results of it was establishment of process steps and metrics to make software
development more predictable and to understand project status throughout the
development cycle. A well-defined process that is adhered to, along with a

strong set of in-process and post-ship metrics, are the core of product
development.

Quality and customer involvement are the two final important elements of the
culture. Market Driven Quality was a specific movement started in 1990. Prior
to that, the group had a good record of product quality but the pace of
improvement was increased with the MDQ movement. Process improvement
became a lab wide drive and the overall site pursued process improvements
and assessments that led to the Malcolm Baldrige National Quality Award, and
ISO 9000 certification. Customer involvement has been stressed since the days

60



of the System/36 and System/38. DCevelopment process phases like
requirements, testing, anc support have utilized customer involvement.
Knowledge of post-ship quality is carried throughout the development group.
Efforts to minimize customer problems are enhanced due to relatively close
relationships with many customers.

Product Description

Products developed in ABS at Rochester have centered around midrange
systems commonly referred to as minicomputers. Significant product families
are the System/3, System/34, System/36, System/38, and AS/400. The AS/400
was introduced in 1988 and is the core product now delivered irom Rochaster.
All hardware and software developmeni is managed by the developme:nt
laboratory with nearly all of it developed in Rochester.

The system hardware spans a low-end set of models appropriate for as few as
2 users and extends up to systems that will attach up to 2,400 terminals. All
models of the AS/400 family provide a consistent hardware and software
architecture. You can start with a single processor with 4 or 5 terminals, then
expand the system into a powerful network, all using the same operating
system and applications software. The operating system is proprietary with
support for a wide-range of industry standards. An integrated relational
database is part of the system. Extensive communications standards such as
OSI, TCP/IP, and SNA; a suite of languages such as C and COBOL,; co-
operative client/server processing with personal computers; and built-in
functions like security are significant parts of the operating system and system
products.

Release Structure and Strategy

61



New releases of the OS/400 operating system and program products occur on
approximately a yearly basis. The yearly base has become standard due to
customer preferences and development lab efficiency. Installing a new release
of the software is something most customers prefer only doing on a yearly
basis. The grouping of function on a yearly cycle is also efficient from a
development management standpoint, a support organization standpoint, and
from a marketing support standpoint. For development, the yearly cycle allows
concentration of most resources and management attention on one cycle at a
time even though the early stages of the upcoming release are beginning during
the later stages of the existing release. Support organizations such as testing,
software builds, and software distribution manage a single release more
efficiently than multiple releases. Finally, the product marketing group is abie to

concentrate attention more effectively when they can feature one release at a
time.

Each release has some critical functions that drive the final date for making the
release available. The dates have tended to vary slightly in either direction from
the yearly timeframe. Since support for new hardware, such as processors or
IO, is in the software, hardware can have an affect on the dates of a release.
Enhancements are periodically made available on schedules separate from the
base releases. These enhancements are managed by themselves and tend to
be provided to specific requesters of the function versus a broader distribution.

Quality Plan

At the beginning of each release cycle, a system quality plan is established.
The plan is where committed quality goals are defined and improvement actions
to achieve the goals are described. In order to create an effective plan, a
bottoms-up commitment process is used to derive the plan. After distributing an
initial draft of the goals and plans, the Development Quality group holds

62



brainstorming sessions with groups of developers to refine the goals and
actions. Quality goals and actions are then committed to by each development
and support organization. Projections of achieving these goals are then made
throughout the development process through use of in-process metrics.

The system quality plan only represents the overall system approach to quality
improvement. Development teams and product managers still own overall
quality and are responsible for planning, implementation, and outcomes of
quality actions. The system development plan, which defines what items wiil be
worked on in the lab, includes development items for the release that are
targeted towards quality improvement.

Development Process Overvisw

The development process is well known in Rochester. Documents exist on-line
and in printed form that define the stages, entry and exit checklists, and tips
and techniques. These are periodically used for reference, but most adherence
to the process comes from experienced development team leaders and team
members. The process is well accepted and people believe in the steps as
important to delivering quality products on schedule. Refinements to the
process continue, but the base lifecycle has not changed. Due to some level of
iteration in early stages, most people look at the process as a "modified
waterfall" or "incremental development" process.

Requirements Phase

Requirements are formally coordinated by a group of individuals called the
"System Strategy" team. Multiple sources input requirements and the flow is
continuous versus concentrated on any one period. Sources of requirements
include:

63



Direct input from groups of customers such as the Customer Advisory Council
which meets with the laboratory on regular intervals

Direct input from IBM Marketing and Service groups worldwide

New hardware needs

Technical devalopment input on important/strategic technical items

Executive commitments

Business Partners developing and selling applications for the system

Customer satisfaction calls on software problems

Market research done by system planners

Competitive analysis information

Requirements are written down and input to a database of Plan Content
Records (PCRs) that can be submitted by anyone with access to the computer
system. Multiple groups can submit PCRs, but the adoption process is tightly
controlled by the System Strategy team. A plan commitment process is then
used to distill this huge list of requirements down to a set that can be developed
with the resources available in the iab. The initial wave of distilling actions
occurs with a team of people from System Strategy, the hardware plan
management team, the software plan management team, the firancial plan
management team, and the support organization. It is their job to create a
prioritized plan content document that they submit to development and the
system plan management team.

From the Prioritized Plan Content document, an iterative process of comparing
requirement priorities, development costs, revenue potential, skill requirements,
and current staffing options takes place. The team of upper level management
responsible for development resources, along with the product marketing
management, determine the base of committed projects that development is
approved to work on. Formal release plans are generated hat contain
committed content for each of the planned upcoming releases.

64



System Level Design

For a select set of development projects, an early design stage is utilized. The
System Level Design is scheduled early in the plan cycle. Its purpose is to
ensure proper integration of new AS/400 functions into the overall system,
consistency of new products with existing products, new functions effectively
use existing system support where possible, and modified products continue to
be structurally sound.

Functions that are candidates for this type of review are new AS/400 License
Program Products, which are functions packaged separately from the base
operating system and sold as a separate product. Other candidates are
functions that have the potential of becoming LPPs, major enhancements to
existing LPPs, and major functional enhancements to the base operating
system. Enough design work is required at this stage to describe the product
externals, show inter-product dependencies, and show enough of the product
design to exhibit design completeness/correctness in areas like user interfaces,
interfaces within the product, performance, and compatibility.

Design Phase — High Level Design

The design phase in IBM was previously characterized by formal detailed
specification documents that were tightly controlled within the company. Design
Change Requests (DCRs) have repiaced specs and are available for on-line
access by the full development community. DCRs held relevant information for
the product being developed such as a requirements statement, design
specifications, schedules for all development and test phases, tracking
information for corpleted and planned activities, and a small amount of high-
level design information.

65



For the high level design phase, the objective is to define the externals and
internals of a function from a component perspective. System components are
previously defined areas of system function. External functions, user interfaces,
inter-component interfaces, and inter-component data structures are some of
the key portions designed during this stage.

Development organizations that will do the ongoing design and coding steps are
also responsible for the high level design. The development group works with
the system planning organization, a group of system designers called the
design control group, and groups responsible for performance, usability, and
user information. After the design is completed, any changes for late

requirements that are agreed to will require the high level design review to be
held again.

Schedules and work efforts are reviewed again at this stage, with changes
needing approval. Entry and exit criteria exist for this stage and must be met
before progressing to the next phase. Prototype and simulation work are
utilized in some cases that involve changes to the user interface. This allows
for early feedback and usability testing before the design is completed.

A formal inspection is held and must be satisfied betore design work can move
to the next phase. Nearly 100% of the groups making functional changes to the
system hold high level design reviews. A high level design inspection is
expected to be held unless the developer can define the evidence and rationale
to support not holding the review. This is considered uncommon and only
occurs when very small changes are made.

Design Phase - Low Level Design

The objective of this phase is to specify the functional breakout of the

66



component into parts, such as individual modules, macros, and includes
(macros and includes are common data structures and general code used
across muiltiple modules). The internal design of each new or changed part
required for the function is defined during this stage. This level of design work
is frequently done by the individual that did the high level design and will do the
coding of the moduie. Schedule and work estimates are reviewed again and
changes must be communicated and approved. Groups that participate in work
activities outside of development include performance, national language
support, user information, usability, and system test.

A formal design review is required before moving from this phase to the next
design phase. The review is done by a small team of peers. Low level design
reviews are held for over 75% of system changes. Genera! criteria exist that
help to define the types of changes that reviews should be heid for. Reviews
are encouraged but optional for changes that fall outside criteria. Flexibility
exists in the review process with low level design reviews sometimes combined
with code reviews which gets review coverage of low-level designs above 90%.

Tools exist to assist the design process. They allow a developer to write the
design in a language that will allow it to be contained in the actual code. This
allows the design to be extracted at any time from the code. Developers are
not required to use any specific tools for creating the design. Flexibility is
aftorded the developer to pick what works best for the module being developed.

Code Phase

This is the formal stage of taking the detailed design and turning it to code.
The primary objectives of the stage are to complete documentation in the
modules, write code for the modules, and develop the messages, commands,

67



and screens. A majority of the coding is manual with only a smail amount of
code generated by machine from formal design languages.

A formal code inspection is held to remove defects from the code. Alternatives
are used in sequencing code inspections and unit testing of code by
developers. The code inspection can be held before, in conjunction with, or
after the unit testing. Code reviews of all code is expected and runs very near
100% coverage. Small teams of peers conduct the inspection of the code.
Since it has been shown that small changes are especially prone to errors and
benefit greatly from code inspections, reviews have become an accepted part of
small code changes and this has driven the coverage number near 100%.
Formal entry and exit criteria exist for the stage. If changed or late
requirements occur during this stage, any approved changes cause reviews to
be held again for at least the high level design.

A portion of the code validation is done through unit testing that is executed by
the code developer. It is the first test of executable code and precedes
integration of the code into the system. The purpose of the test is to validate
the detailed code against the design and ensures limits, internal interfaces, and
data paths are verified. Developers are expected to have some level of test
plan, and track status and coverage based on the plan. Criteria exist for
completion of unit test which, upon satisfaction, will allow the module to be
integrated and become part of the base system code.

Component Test

This test is run on the integrated system. The integrated system consists of the
base system from the prior release along with new code that has been
integrated for this release. It will not be a complete system ready for system
test until all code from the release has been integrated. Component test phase

68



comes after the developer has tested the module in unit test and integrated it
into the system. The purpose of the test is to verify that the portion of the new
functions executed by this component work as defined in the requirements.
This is the first opportunity to put the new function together with other new
functions in the system.

A component test plan is created for the test. The developer may be the only
person using the plan, but the more common situation is that others affected by
the function will review the plan. Formal reviews of the test plans are
recommend and frequently held for more extensive functions. Component test
status is tracked for the system with the major comparison being test case
attempts versus successful tests. Criteria are in place that must be met before
the test phase can be exited.

System Test

System test is the final in-house validation test for the new release of software.
There has been a significant evolution of this phase over the last years.
Previously, System Test was done totally in-house and had a reasonably large
staff of people to do the testing. By moving a more extensive piece of testing to
select sets of customers earlier in the development cycle, both the schedule
and amount of in-house resource were dramatically reduced without
compromising product quality.

During the last 2 years, more validation responsibility has moved to the
development groups versus the system test organization. The rationale and
approach has been to ensure development process and quality responsibilities
were clearer, and to reinforce quality steps being taken while development was
in-process versus at the end of the cycle. More comprehensive regression
testing and validation of a wider range of function through component testing

69



were two things moved to development. Stricter criteria and enforcement of the
number of defects that can be open before the formal start of system test was
also put in-place. All actions were designed to move quality work to earlier
development process phases, and to solidify the system sooner SO that the test
cycle time could be reduced.

The system test organization reports through the same management chain as
development. All independent quality assurance activities have been
eliminated. The system test group has reported to the same management as
development for a long period of time, but the elimination of the systems
assurance function is new. As the systems assurance group moved from doing
a combination of independent test validation along with analysis of development
progress to only doing the analysis, they lost much of their value-add to the
development of products. During the same time that the move to only analyzing
data was happening, development was improving the amount of data analysis
being done on quality such that the two efforts were duplicate. At the point
where the duplication became abundantly clear, the independent systems
assurance group was eliminated.

System Test is called the RAISE test, which addresses the main areas of focus
during the test: Reliability, Availability, Installability, Serviceability, and
customer-like Environments. The test strategy is to utilize a range of customer-
like environments as a base and then vary the physical operating characteristics
to stress environments and simulate obscure but complex situations. Emphasis
is on stressful, concurrent product interaction to drive each part of the system
toward their limits. Artistic tests (versus automated tests) are utilized to stress
problem-prone areas or functions that can not be effectively tested tnrough
automated tests. Use of automated tests is extensive for providing background
work for stress, background work for concurrent product testing, previous
release functions for regression testing, and repeatable execution of new

70



functions.

Test planning and two different review stages are used by the group. All test
schedule and resource estimates are made by the test teams for each of the
significant functions in a release. Tne estimates are done during the
requirements and design stages and are included in the DCR along with
development estimates. An aggregate view of the release content is used to
define test coverage priorities and to recommend any staffing changes that may
be required. The overall RAISE Test Plan defines test coverage plars for each
major function in the release, customer-like environments that will be utilized,
and network requirements. The test plan is reviewed by development to gain
agreement on the adequacy of the test coverage defined. Detailed Test Plans
are created that give detailed descriptions of functions tested, test procedures,

and validation activities. The detailed plans are reviewed by peer testers and in
many cases by the developers.

The RAISE test execution phase continues until the exit criteria have been met.
The activity has a very clear end date scheduied, but completion is not
controlied by the planned end date but instead by meeting criteria. Status is
reported on a weekly basis to upper level development management. Metrics
and critical problems are concentrated on during the meetings.

Beta Test and other Early Programs

Multiple programs are in-place due to the increased significance customer
based testing has taken on through the last years. Different types of programs
are utilized versus a single formal Beta Test. While RAISE test is in progress
and before the system is released for the formal Beta Test, a set of users are
brought in with the intent to break the system in as many ways as possible.

The goal is to find defects while the developers are still heavily involved with the

71



new code.

The initial Beta group is a set of heavy system users that have a set of long-
term relationship with IBM Rochester. They get early versions of code and test
execution in their normal environment while also doing whatever they can think
of to break the code. Problerns found during the test are fixed prior to
Manufacturing Release and shipment to the full customer base. The next Beta
Test phase is used to get a tested version of the system out to a group of
customers that have been selected for different purposes. Some selections are
due to utilization of a new function, stressing of an area of the system that has
been updated in some way, and early exposure to a set of customers for
marketing reasons.

All programs are managed carefully to achieve specific objectives. Customer
selection is done by a group that looks at the specific customers to understand
their work environment and how they use the systems. The initial set of Beta
test customers are a well-known group with large, complex configurations or a
history of finding a significant number of defects after they have received new
releases. Beta Test customers are selected based on requests for new function
along with plans that will utilize it early, or due to marketing reasons
communicated to the selection group. After selection, the group monitors the
tests closely to ensure feedback is received and used. Tight management is
critical if the benefits are going to be received from the tests.

Maintenance

Software maintenance is done by the same development groups responsible for
developing the next releases of the system. This also includes a support
organization that is responsible for handling the phone calls and on-going
definition of the problems thie customer is encountering. A majority of problems

72



are resolved by the support organization either through answering a question cr
providing a fix that is available for the problem the customer is facing. Beyond
specific individual fixes, fixes are provided on a periodic basis to custcmers that
wish to receive periodic updates that have accumulated.

When problems are unable to be resolved by the support organization,
development gets involved. Work goes on between the customer, support
organization, and developer to understand the problem in detail. Developers
will then work to solve the problem and get @ fix to the customer. This whole
process is supported by an extensive tracking system that ensures problems

are not forgotten, and that code fixes are kept track of when doing future
development work.

Process Usage and Compliance

Process compliance is driven through what is considered accepted practice and
through the use of metrics. The process is well-defined and communicated to
all developers. In addition, it has been in-place for many years and the senior
developers have grown up with it as the way to do development. Quality
statistics and research are also made available which give quantitative proof of
the value different process steps provide. One key part that is important to
process usage and compliance is upper management support. The upper
managers are advocates of the process and expect developers to use it unless
they can provide good rationale for variations.

Metrics are an important guide to how the process is being used. Design
review coverage statistics are kept which show whether the reviews are being
held and how effective they are. Testing can be measured by test coverage
statistics. Defect removal can also be tracked across the phases to determine if
additional efforts need to be spent in any of the stages. All of this provides an

73



environment where process usage can be determined and evaluated.
Release Management

An individual is assigned to a specific position called Release Manager for each
release of the system that is developed. The Release Manager is a matrix
management position that spans development, test, and other support
organizations. Release Manager overall responsibilities are to: coordinate,
analyze, initiate action, provide aiternatives, and assist the development and
support organizations in whatever way necessary to deliver the release. The
final result of the work is to enable & high quality, well performing product
released on the best schedule possible.

More specific actions taken by the Release Manager are setting major
checkpoints during the release, escalating problems that are not getting
resolved in a timely manner, continually analyzing progress towards completion
of development, taking positions on plan changes to the release, and
maintaining release status. Release status is handled through constant
interaction with development and support groups along with analysis of metrics.
Scheduled briefings to the management team and the business unit executives
are responsibilities of the Release Manager.

The Release Manager works with a team of functional representatives from
each development and support organization. This team will bring problems
forward themselves or act on problems discovered through independent
investigation by the Release Manager. The Release Manager wili use personal
experience/judgement and team input to find an owner for the problem while
often providing recommendations to the owner on solutions to the problem.
Keeping schedules accurate and achievable is another key responsibility.
Through usage of thorough reviews at Major Checkpoints determined by the

74



Release Manager, analysis of each major function is done. From this review,
an assessment of the overall release is made along with recommendations on
actions that shouid be taken for individual functions.

Change Management / Configuration Management

Focus in Rochester is better defined as "change control" versus just "change
management". With releases that regularly reach about two million lines of new
and changed code, changes can get out of control without careful management.
Tools and documents are both used to control the change. DCRs (Dasign
Change Requests) are used as an important documentation tool to control
change. They contain design information, schedules, tracking of completed and
planned activities, and also go through formal phases that involve specified

actions that must be completed and reviewed before a project can proceed to
the next development phase.

Release content, release schedules, requirements, design, and code are all
managed though processes that are designed for proper review and
communication of changes. DCRs and documents that track release content
are used to communicaie changes that are approved. Release content, overall
release schedules, and requirements are controlled by the Release Manager
and a team of managers from the development, product marketing, and support

functions. Design changes are reviewed and approved by a team of technical
experts that meets on a weekly basis.

Changes to code are carefully managed by tools that run on the development
system. Integrations of new or changed code must be tied to a specific new
function or fixes of problems that are formally reported and tracked. Testing
must be done before the integrations, with the set of tests determined by the
developer. Code Freeze is a formal point at the end of the development

75



process where no further changes can be made to the code without approval.
The Release Manager, or a designated person from a development
organization, must approve all changes to the system. This process allows for
fixes to critical problems but cuts down on code churn trom widespread code
changes.

Moetrics

Metrics are a key part of managing the overall development process.
Documented metrics are used at each phase of the development process and
are part of both entry and exit criteria for the phases. Usage of metrics and
process are for the purpose of identifying how near compietion development is,
and what the expected quality level will be. The base set of metrics that span
the processes are: entry and exit criteria for each phase,

requirement/design/code change, in-process bugs/defects, post ship defects,
reliability, and performance.

In-process measurements provide the ability to understand progress versus the
plan and to implement real-time quality management. The in-process
measurements are based on a few key metrics that can be used versus a large
set of metrics that are only there for measurement purposes. Metrics are
compared to a historical baseline and with the prior release.

Key metrics used during the design stage are time spent in reviews, defects
removed by stage, and defect escapes by stage. These three measurements
can be used to determine the effectiveness of each stage and whether
additional inspection or testing should be done on functions being developed.

Defect tracking during development and test is the other important in-process
set of metrics. Metrics used are: backlog, open versus closed defects, closed

76



versus the backlog during a phase, severity mix of defects, and some analysis
of clusters of defects. Once the product has shipped, defects continue to be
measured. Some metrics tracked are: number opened during a period,
backlog, mix of severities, defective fixes, concentration of defects in areas of
the system, and releases where the defects were injected. Monthly reviews are
held on the post-ship defects to keep management informed of overall status
and of critical problems still open.

Process Improvement

Quality has always been important in Rochester, and over the last several years
the emphasis has shifted to process improvement activities that improve quality.
Causal Analysis and the Defect Prevention Process were introduced two years
ago and have been employed throughout the development and support
organizations. The goal is to determine the sources of defect injection and
remove them. Meetings are held to analyze problems and then individuals go
off to determine defect origins and how to eliminate them. Phase kick-offs are
an additional step used to start each development process phase. This ailows
for process learning from previous experience. All of this is centered around
the concept of improving the processes.

A Process and Quality Improvement department was put in-place for the
laboratory. The group acts as partners and consultants to development with the
purpose of bringing in and spreading new process ideas. By being in the
development organization, the group is considered part of development and
effective team members. The group has a significant role in tracking metrics
and interpreting results. Some process changes have come from the data
analysis. After seeing significantly high defect rates associated with module
interfaces, the high level design and review process was modified so that
interface issues are resclved earlier. Movement of quality and metric tools to

77



the developer level to allow wide spread usage was also initiated by this group
and has been an aid for the improvement of on-going attention to quality.

Tools

The tool set has evolved through the years. Development is done on
mainframe computers and many analysis databases exist on the mainframe.
The development language is standard and has been enhanced through the
years with function that minimizes the machine instructions required for
operations. Compilers and linkage tools are standardized across the system.
This has all been done to minimize the integration and linkage time required to
pull the full system together. In recent years, personal computers and
workstations have been integrated into the development environment.

Metric tools exist on the mainframes, in most cases, with some also running on
the AS/400 and on personal computers. Databases of information are available
to all users with a set of analysis tools accessible to them. Moving this access

to the teams involved with development has improved the accuracy of the data

and the usage of tools during the development phases.

Process Education

Education of new developers is accomplished through a variety of sources.
Significant process documentation exists and is accessible from every person's
terminal on their desk or in printed form. Development team leaders are
responsible for ensuring the process is understood and followed by their team
members. Education is often handled working together with experienced
people. "On demand" education is also available. This has been created and
is delivered by process experts and is often scheduled for large groups of
developers. The attempt is to time education to when it will be used during the

78



development process.

Phase Review Process

A System Manager is responsible for managing timely delivery of competitive,
high quality product offerings that encompass both hardware and software. It is
a matrix management role with the functional areas. The common mechanism
for carrying out this role is to utilize a team of representatives from each
functional area including the marketing and support organizations. A System
Checkpoint Process is utilized for each release of the product. Four key
business checkpoints are focused on by executives and organizations outside
the direct development organization.

The four checkpoints are:

Initial Business Proposal (IBP) : |BP provides an initial analysis of the business
case (cost versus incremental sales) and preliminary procuct definition. A
Business Fact Sheet, which highlights a summary of the release, may be provided
out of this stage. Exiting the IBP indicates that all functional areas agree to
proceed to the Commit Checkpoint, which is nexi in the process.

Commit Checkpoaint: This is the point where plans are examined to determine if
announcement and general availability (GA) can be met. The product definition
and business cases are completed during this phase prior to the checkpoint. A
comprehensive plan is developed that defines the work items and schedule to meet
the General Availability date. Exiting the Commit Checkpoint indicates that all
functional areas agree to achieve the announcement and general availability dates.
The Business Fact Sheet is generated or updated during this phase also.

Announce Readiness Review: This step assesses the program after most of the
development activities in the pian have been scheduled. It occurs befora the main

79



effort begins to prepare marketing deliverables for announcement. Exiting the
Announce Readiness Review indicates that work pians are defined, responsibilities
assigned, and schedules are agreed upon.

Announce Checkpoint: Obtain final commitment to announce the product.
Exiting the Announce Checkpoint indicates that all requirements are or will be met
to support the General Availability.

Summary — Results

Products developed in Rochester have enjoyed a history of high quality
recognition and business success. The team is very productive and has
successfully adapted the product to the changing market successfully. Quality
recognition has come via the Malcolm Baldrige National Quality Award and ISO
9000 registration. Change management and metrics have been incorporated
into the development process and are integral aspects now.

The challenge that exists centers around the balance of individual creativity and
process compliance. Individuals are recognized as the basic elements that
dictate success but it is sometimes difficult for them to feel the freedom to
attack an opportunity with the creative approach necessary to solve it the best
way possible. Developers recognize the positive aspects of the process, but
feel the limits imposed also. Managers continue to struggle with the need to
follow the process to improve delivery and quality predictableness while

realizing that individual creativity is needed to solve problems that continually
become more technically compliex.

80



Chapter 5: Fujitsu®

The Company

Fujitsu was established in 1835 when Fuji Electric incorporated its telephone
equipment division as a separate company. The company commercialized
Japan's first digital calculator, expanded into switching systems and other
electric and electro-mechanical equipment, before introducing a primitive non-
programmable computer in 1954. Fujitsu gradually expanded product
development and marketing for a range of communications and office
equipment, computers and computer peripherals, and data processing services.
Corporate headquarters are in Tokyo, Japan with major wholly owned
subsidiaries operating in the United States and Europe.

Fujitsu's business is concentrated in data-processing related sales,
communications systems, and semiconductors. It's stated goal is to become a
"fully integrated computer and telecommunications product company”. Data-
processing services are concentrated on two general areas: computer systems
hardware and basic systems software, and large-scale custom applications and
applications packages. Computers developed and sold are mainframes,
minicomputers, workstations, and personal computers.

Fujitsu is the number one ranked information technology vendor in Japan and
the Far East, and is now the second largest in the world, after IBM. For the
year ending March 1992, Fujitsu employed 145,000 employees worldwide.

81



Revenues were $21 billion with a profit of $94 million. To get an idea of how
the employee and revenue mix is in the company, the results for the year
ending March 1988 are useful. At that time, Fujitsu had over 52,000 employees
in the parent corporation, with more than 10,000 involved in software production
and staff support. Non-consolidated sales totalled over $13.7 billion with $10
villion in revenue coming from data-processing sales. The revenue from data-
processing sales was 72% of total revenue with the other revenue coming from
communications systems at 16% and semiconductors at 12%.

Fujitsu Organization

Fuijitsu is organized into a set of 14 operating groups, as of 1986. A subset of
the key groups focused on hardware include: Information Equipment (disk
drives, printers, FAX machines, other peripherals), Transmission Systems,
Switching Systems, Telecommunications Systems, and Semiconductors. The
groups responsible for sales are: Systems Sales, Cffice Automation Sales, and
NTT Sales. Groups that are involved with the data-processing services part of
Fujitsu are: Computer Systems, Printer-Circuit Board Products, Systems
Engineering, and Field Service Engineering.

Systems Engineering and Computer Systems are the two groups that handle
software development. Systems Engineering is responsibie for the development
of large-scale custom applications and applications packages sold to multiple
users. Computer Systems is responsible for the develcpment of mainframe and

minicomputer hardware and software with additional responsibility for factory
automation software.

Numazu is the main site for the Computer Group. It is responsible for hardware
and basic systems software development for mainframes and minicomputers.
Approximately 3000 software personnel work at Numazu. The general

82



organization groups are software engineering, development, inspection (Quality
Assurance), and a Field Support Center. ltis the Quality Assurance department
along with the software engineering departments that continue to have an
extremely significant role in software development. Led by the Quality
Assurance department, significant development process standardization and
improvement has been accomglished along with improvements in testing
effectiveness.

Culture

Part of the culture of Fujitsu is common with the other major software producers
in Japan (Hitachi, NEC, Toshiba). Their software development is described as
"factory-like". Common elements are the centralization of most programming
operations at a single facility, and factory-iike standards and controls that cover
project management and product inspection.

Fuijitsu is distinguished from the others by the breadth and depth of its
competence in computer hardware and software development. They have
relied on talented in-house engineers and a careful study of 1J.S. technology to
gain this competence. This strategy of deliberate, independent development
has led Fujitsu's rise to become Japan's largest vendor of computer products for
small, medium, and large systems. Japanese customers in 1988 ranked Fujitsu
first in Japanese-language processing software among all major firms
competing in Japan.

Heavy and continuous in-house training is an additional feature of the Fuijitsu
culture. New employees generally have no computer engineering or software
training. Fuijitsu invests heavily in training programmers and system engineers
how to use methods, procedures, and tools that are standards in the company.
Education is coordinated with career paths, which makes it a central

83



consideration for employees. All of this comes together to create a very tight
and controlled bond between the employees and the company, both technically
and personally.

Product Description

The core of Fuijitsu's computer business is the M-Series of mainframe
computers. The M-Series has a range of processors targeted at medium- and
large-sized organizations in both the commercial and government sectors.
Banking and finance are primary vertical markets. Fuijitsu's mainframe product
strategy is to manufacture and market IBM-like mainframes offering enhanced
price performance and system capacity comzared to 1BM and other rival
vendors. Fujitsu' large systems have been directly sold in Japan or to
Japanese-owned companies overseas. Over the last few years, Fujitsu has
been gradually expanding its direct mainframe presence in Europe. The Basic
Software grcup develops the full set of system software required for the
mainframe machines including: close (but not fully compatible) equivalents to
IBM's MVS, VM, and AIX operating systems; a relational database system
called RDB II; and communications support such as OSIl, SNA, and TCP/IP.

The Fujitsu K-Series is a product line of small- to medium-sized minicomputers
intended to compete with IBM's AS/400 Series. Fuijitsu recently introduced the
K-600 Series, designed to replace older K-Series systems, which feature more
innovative and faster hardware along with a new operating system, CSP/FX,
which is totally compatible with the operating system used on the older K-Series
systems. The Basic Software group is responsible for development of the
system software for the K-Series that includes: the CSP/FX operating system;
FX/RDB relational database management system; communications support for
X.25, OSI, TCP/IP, and ISDN; a range of programming languages including C
and COBOL; and support for attachment of personal computers.

84



Release Structure and Strategy

Release schedules are very consistent with the timing of IBM software releases.
Mainframe software releases come on 12 to 18 month intervals and are
frequently tied to hardware upgrades. Schedules are most often driven by the
availability of the hardware. For the K-Series minicomputer software, release
tend to come on 12 month intervals. These releases will often be in suppoit of
hardware enhancements but will more frequently involve only software function.
Lompetition differences in the mainframe versus the minicomputer markets are
the drivers of the differences in software release cycles. Due to the strategy ot
previding IBM equivalent function, the Fujitsu functions tend to come out later
than the IBM functions but on schedules that are predictable to their customers

Achievement of schedules has significantly improved through the years. in the
early 1970's, nearly all projects came i1 late which meant the Quality Assurance
received the product after the scheduled time. The percentage late improved tc
40% in the late 1970's and moved to 15% in the 1980's. The improvement
came through utilization of product handling and project control measures to
improve scheduling accuracy. Remaining delays are mainly from late
transitions between functional design and coding that result from skill variations
or changes to product specifications and designs.

Deveiopment Process Overview

The development process utilized by Fujitsu follows a conventicnal life-cycle
model: basic design, functional and structural design, detailed design and
coding, unit and combined test, component and system test, product inspection,
delivery and maintenance. Control in the past was solely due to the usage of
detailed documentation on the system and module designs; programming
reports which included detailed information on the design documentation, review

85



reports, and the test specifications and results; and testing reports which
detailed the test specifications and results.

Control shifted beyond these structured documents to making quality assurance
a part of the formal organizational and job structure. In each of the
development stages, actions to remove defects and to eliminate insertion of
new defects became the main objective to drive quality. The description of the
phases of the process will highlight the usage of both documentation and
inspection steps throughout each phase.

Requirements Phase

Requirements for Basic Software are dominated by the strategy of offering 1BM
equivalent function. For mainframe software, Fuijitsu closely watches the 1BM
functions and follows the IBM releases with their own set of the equivalent
function. Since the Fujitsu systems are primarily sold to Japanese customers
and are designed for them, the needs of this set of customers causes some
functions to be added specifically for the unique needs of these customers.
Fujitsu marketing people establish very close on-going relationships with their
customers and the flow of requirements is from the marketing people to the
development laboratories. Software releases are clearly defined by this set of
IBM functions that will be matched along with a set of functions specific to their
Japanese customer set. Available development resources deiermine the
extensiveness of the additional functions that become part of the release.

For minicomputer scftware, there are three major sources of requirements.
First is the function being offe/ed in the IBM AS/400 system that Fujitsu has
targeted for functional equivalence. Second is the unique needs of the
Japanese customer set that the system is designed for as first priority. The
final source of requirements for this market is the increasingly important set of

86



industry standards. Fujitsu has recognized the benefits (and needs) of watching
the emerging standards that customers are becoming more aware of and that
ISVs (Independent Software Vendors) are developing applications software for.
The managers of development decide as a team what the contents of the
software releases will be.

Basic Design

This is the first design stage and the objective is to take a new function and
determine how to handle it within the system. The design does not go down to
the module level but instead concentrates on "what" the function is, "how" the
major products that make up the system will be affected by the function, and
"what" the end-user interaction should be.

Functional and Structural Design

In this phase, the function is broken down into the module structure within the
system. Prior to this level of breakdown, the function is defined by the functions
that will be handied by each system component. Upon defining the module
structure, the interfaces between the modules are defined. Since interface
errors are critical and the most difficult to resolve, they are addressed early in

the design of the new function. A testing plan is also required as part of this
phase.

Formal design reviews are held for each design. Reviews are held with small
peer teams. A "phase completion reporting system” was put in-place to capture
the results from reviews. Information includes productivity information regarding
the number of defects, who reviewed it, and how much time was spent.

Functional Design Documents are created that provide the overall module
roadmap.

87



Detalled Design

Tool support is introduced in this stage to support the structured methods used
for design and programming. Yet Another Control Chart (YACI!) is a design tool
that combines aspects of conventional flow charts and pseudo code.

Structured conversationial Japanese to define the design is input on work
stations or terminals. The YACII system contains an editor, compiler, debugger,
and documentation generator.

YACII has a special program that translates the design language inputs into
machine readable YACII charts that are the input for the coding stage. With the
editing features and the common format, the YACII tool (combined with a code
generation feature within the YPS tool set) has significantly increased the
amount of automated code generation, as well as design and code reuse at the
design-specification level. Reuse at the design specification level has ailowed
the reuse to spread across different languages and architectures. Poorly
structured programs have been virtually eliminated by these toois that support
top-down, structured design through graphical and text representation.

The documentation generator produces detailed specifications from the YACII
design charts. Design-sheet reviews are held during this stage and prior to
code generation. These reviews remove a large percentage of the defects
bugs and gradually have become the major method of bug elimination. Results

from the reviews are input to the productivity and quality tracking tools to do
quantitative analysis.

Coding

YACI! Programming System (YPS) is the coding tool used in Fujitsu Basic
Software. The tool allows the user to edit YACII diagrams generated from the

88



design stage. After completing any editing required, the YPS tool takes the
design language outputs and automatically generates "bug free" code from the
machine-readable YACII charts. Executable code is generated in several
languages that include C, FORTRAN, COBOL, and LDL. LDL (Logical Design
Language) is a C-based language developed by Fuijitsu for use with YACII
charts.

The tool systems helped Fuijitsu achieve a number of development goals.
Coding errors are virtually eliminated through use of YPS. The volume of new
code programmers have to write is minimized through what is termed "“common
development": (1) writing program design in a computer language or in flow-
chart form (YACIH in this case) that can be compiled into different languages
and stored in a reusable library; and (2) designing basic programs (and even
components such as compilers) for use in more than one of Fujitsu's operating
systems. Software reuse is strongly emphasized and has been very prevalent
in applications and less prevalent in systems software (between two and three
times less). Limits exist with regards to code reuse and Fuijitsu has found that
clear productivity improvement exists as long as personnel reuse 70% to 80%
of a particular module or program part without significant changes.

Formal code reviews are held in the coding stage. The source code is
reviewed by a small team of peers that include representatives from the Quality
Assurance department. Before the addition of the design-sheet reviews, code
reviews were a more significant source of bug removal but this has lessened as
design reviews have become more effective. Review resuits are input into the
productivity and quality system.

YPS has an additional feature that is an aid to developers. Reverse generators
are part of the tools and allow design-charts to be produced from the source
code. Developers can edit the design charts more easily than source code and

89



can store the charts in a data base for later retrieval.
Testing

Fuijitsu's objectives in testing are to detect 65% of the bugs in & new program
by the end of the coding phase and 95% by the end of system test. They want
to remove as many of the remainder as possible by the end of the inspection
process following system test. As the complexity of products increased, the
combinations of factors and conditions became so large that they were
impossible to test completely using old methods of test case generation. To
overcome this probiem, the company used two approaches. The first was to
develop tools that automated as much of the testing as possible, and the
second was to create a data base on test-factor analysis methods and
conditions to help create test cases for new functions.

Testing is carried out in the development organization and the independent
quality assurance department. Automatically generated test cases are used by
both groups. The total testing phase is described in the sections that follow.

Unit and Combined Test

Code developers are responsible for execution of unit and combined test during
the coding stage. The YPS tool has very extensive testing support used for this
and subsequent stages. YPS includes executors, test coverage evaluaters, and
debuggers that can be used on the YACII charts. Through usage of these
tools, developers are able to determine the comprehensiveness of the
testcases, collect and analyze data, and debug the code.

Tests cover a very high percentage of the code paths and validate the logic,
limits, and boundaries of individual modules. The modules are combined into

90



groupings of new function and tests are run on these groupings. During both
these phases, the main concentration is validation of the design and code, not a
validation that the requirements were met. Analysis of results is done t0
determine code path coverage which is one of the criteria for test completion.

Component Test

Before the code is integrated into the base set of code used for system test,
component test is executed. This test utilizes large combinations of the new
function integrated together. A set of new testcases are run to validate the new
functions are executing properly. The other key part of the test is validation of
the existing function through a set of regression tests. Once this set of new and
regression tests have been successfully executed, the code can be integrated
into the base set of code used for system testing.

System Test

This is the phase where validation that the software satisfies the functional
requirements occurs. Documentation from the design (YPS generated) along
with the requirements statements are used as a guide for the testing. A set of
the automatically generated testcases, a set of automated testcases stressing
functions from prior releases, and new tests created by the individual validation
people are run in combination. Customer-like environments are simulated to
provide a representative set of stress situations for testing.

Performance testing and reliability certification are also part of the test. Specs
exist for performance in stress and non-stress environments. Reliability is
measured in mean time between failures (MTBF) and is measured as the test
progresses. Bugs are closely tracked and getting the bug level per module to
an acceptable range is one of the criteria for exiting system test.

91



The Quality Assurance department maintains a powerful and independent voice
in deciding on whether the product is ready to ship. Their monitoring of
development progress begins during the design phase and continues through
system test. Sufficient defect removal is critical to the ship decision and can be
analyzed using a combination of the in-process measurements and historical
data gathered from prior projects. When quality is considered sufficient
(meeting specs that were estabiished at the start of development) and when
requirements have been validated, the ship decision is made by the QA
department.

Product Inspe~tion

Product Inspection is a formal step in the process that was added in 1971.
Fujitsu requires completed software and manuals to pass a formal inspection
process before release to the customer. Product-handling procedures require
that the source code, manuals, and other documentation must be brought to the
Quality Assurance Department together and that they be consistent with the
information contained in them. No product can receive a registration number,
which is necessary for release to customers, without meeting these

requirements and gaining the formal approval of the Quality Assurance
Department.

Delivery and Maintenance

The YPS tool facilitates maintenance of the systems. By minimizing coding
errors, the amount of maintenance has been reduced by one-third between
1977-79, one-third more between 1979-82, and by 1985 the bug levels for
outstanding code were nearly zero. When mairtenance is required, the
development group is responsible for analyzing the problems and making the
changes. The capability within YPS to present the module design versus just

92



the code allows new people to more simply understand problems and also
allows experienced people to be quickly updated on the module design and
function (instead of having to study a large amount of code to understand the
overall design). Through the use of reverse generators, the source code can
be used to produce design charts that can be edited instead of the code.
Updating of documentation after maintenance changes are made is required.
Tools exist to help this get done.

Systems are in-place to report defects and track resolution of them. Customers
can report them directly through the ITS product or can report them through
Fujitsu marketing and services people.

Process Usage and Compliance

The development process described is standard throughout the Basic Software
group that is responsible for all systems software. Variations within a sub-group
are rare and do not happen on major projects. Much work is done to keep the
process, and tools to support it, state-of-the-art. Usage of a design language
aiso locks people into a structured approach to coding and testing.

Compliance comes through culture and a strong Quality Assurance department.
Culture is a factor because people do not question the process and just go out
and execute it. Quality Assurance also monitors progress through the
development phases and is very active in making sure steps are not skipped or
improperly done. Having the final ship voice gives the Quality Assurance
department a good power base to operate from.

Project Management

Improved project management was one of the areas Fujitsu invested heavily in

93



to reduce the number of projects coming in late. The central tool for this has
been the Basic Software Project Management Support System (BSMS). The
tool enforces structured procedures for project initiation, execution, and
completion. Support in the tool covers project management, development
procedures, schedule estimation, monitoring of the development process, and
testing and inspection aid.

Initial project steps are to apply for a product number which is approved by
superiors in the organization. A budget must be submitted and development and
planning documents must be created that include the following information: market
survey, functional design specs, performance design specs, reliability objectives,
maripower estimates, and machine tiime estimates. In total, these give a very clear
picture of what is being created and how much it will cost to build.

Development and planning documents are then used to track progress against the
plan. Items tracked against the initial estimates are: actual work hours, actual
computer time, and phase completions.

Additional project management support is provided through the Generalized
Program Editing and Management Facilities (GEM) tool. GEM supports direct
measurement of subsets of the project that can be at a group or even individual
level. Automatic generation of graphic reporis can be done for groups and
individuals. Productivity (lines of code developed), progress status (by month
and week), and quality (defects per module) are reported through system
usage. BSMS is the major tool currently used in Fuijitsu, but GEM still has
functions of use.

Change Management / Configuration Management
Change management is enforced throughout the development process stages.

94



Starting with the designs in YACII, library management functions via the GEM
tool manage versions of projects under development and existing projects.
When the code is generated, the history of the module within GEM control
continues to be updated. For system test (and previous) driver builds, the GEM
database is used to pull in the integrated modules that make-up the base set of
code.

Bugs are closely tracked during development and testing. Tracking ensures
that changes made to the system are due to reported defects, and also ensures
that all reported defects are resolved. The change management extends to
maintenance changes. Modules contain a track of all maintenance changes
made. This track is enforced and supported by the GEM tool.

Metrics

Metrics have been a constant part of the process changes introduced by
Fujitsu. The Quantified Management System was created as a tool to capture
the usage of metrics by management throughout the development process.
The company quantified basic measures of performance and then introduced
standardized procedures and tools. The goal was to help developers build in
quality at each phase rather than rely on inspection at the end of the process.
Some highlights of the usage of metrics are:

Quantify and then analyze information on project progress and product quality.
Instead of just comparing completed work to initial estimates, they used a two step
process: measure quality of work-items by the number of points reviewers gave
them in a structured set of review steps, and measurement of how well the results
compared to the estimates. This approach allowed managers to define tasks in
small realistic segments, and minimize estimation errors.

95



Utilize methods to predict error occurrence in the programming phase. A
management by objectives process was introduced to ensure error correction was
completed.

Determine test items through the use of statistical Design of Experiment
techniques. Using educated guesses of where problems were likely to occur, tests
could by generated to cover quality risk areas.

Quantification of the concept of user friendliness was done. Manual reviews and
inspections, along with surveys to validate the accuracy, are done for new
functions. The functions are evaluated on basic product characteristics
(performance, reliability, quality of information, price, etc), design quality and
consistency (degree to which software products and specs met user needs), and
sufficiency and attractiveness (extent to which products are acceptable to users).

Design defect and test defect tracking is also done. During the test process,
defects are recorded and tcols are available to analyze things such as total
backlog, open versus closed ratio, arrival rates, and additional statistical
measures used to determine the overall quality and the stability of the code.
Fuijitsu had relied on these testing steps to remove 85% of the defects in the
past, but emphasis has been on removal of the defects before the test phase is
entered. The test process has remained as rigorous as in the past, but has to
deai with a smalier number of potential problems.

Process Improvement

The evolution of the Quality Assurance department work at Fujitsu has been a
story in process improvement. Quality Assurance has been a significant driver
of controls for product, process, and quality. A Total Quality Control program
was instituted in Fujitsu and also extended out to all subsidiaries and
subcontractors. There are three key elements of the program, with two

96



additional items also being very important.

Quality Assurance Through Organization: They emphasized quality control as part
of the formal organizational and job structure for every employee, and especially
those in design and planning. This function is not relegated to the Quality
Assurance Department to be done through testing at the end of the process. The
Development Planning and Report System is used to munitor quality.

Diffusion of Inspection ldeas Through Horizontal Development; This stresses the
utilization of regular meetings between different departments and projects to share
data on defects and other quality information. The effort is towards spreading good
thinking and practices regarding quality control.

Advancement of Quality Concepts: This involves lectures, workshops, and
measures dealing with interpretations of product quality that extends beyond zero
defects to characteristics such as product design, function, performance, ease of
use, and maintainability.

Quality Groups: They use small groups that meet once or more a month to discuss
a range of issues related to productivity and quality as well as work conditions.

The small groups are also used to supplement formal training required of new
company employees.

Tools: Throughout Fujitsu's development evolution, tools have been an effective

way of assisting changes to improve quality. Extensive investments have been

made in using tools to help the process versus defining the process around the
tools used.

Tools

As is evident in the descriptions of the development process, Fujitsu has made

97



a significant investment in tools for the development process. They made an
extensive investment in tools to facilitate thie transformation of designs inio
executable code, and the reuse of designs and code. Investments were also
made in tools to support project and library management, product maintenance,
and testing. Throughout the process of tool creation, Fuijitsu's philosophy has
been to use tools to help the process versus defining the process around the
tools that were available.

Process Education

Historically, new employees had little or no computer engineering or software
training, although this has been changing in recent years as Japanese
universities add courses on information technology. The company invests
heavily in training and teaches programmers and systems engineers how to use
methods, procedures, and tools that are standard. To emphasize the
importance the company, and as a result the employees. place on its education
program, career paths are coordinated with education. Much of the first year is
spent on education, and it continues at a rate of about 8 days of training a year

in workshops, with self-study materials and quality-circle activities occurring in
addition to the 8 days.

The education is geared to the process steps the individuals are responsible for.
Initial education is centered on coding and development testing. Subsequent
training tracks the employees progress towards module and structural design,
with progression to project manaagement requiring trairiing on estimating and
quality assurance. The key to all of this is providing the process education
necessary for the activities the employees are responsible for.

Summary -- Results

98



Process standardization along with the quality improvements described have led
to apparent rises in quality, productivity, and schedule control. The percentage
of late products dropped from near 100% to 15%. For all code in the field,
bugs reported by users dropped one-third from 1977-1979, and another v:ie-
third from 1979-1982. Improvement since 1981 has leveled off and remains at
about .1 per KLOC which is very low. Productivity, which is difficult to measure
and compare beiween groups, showed continual improvement during this
period.

Customers have also viewed Fujitsu's results to be very good as evidenced by
the Nikkei survey results that placed them at the top in Japanese-language
software. The company provides an excellent study of what can be
accomplished with rigorous procedures and tools to support them. Depending
on the quality of the requirements stage (ensuring they are producing the
correct things), the company can be competitive in what they deliver.

Software Factories has been a label applied to these large software producers
in Japan. The Basic Software group at Fujitsu did not directly apply this label to
their organization, but the operations of the group did utilize the following set of
concepts that define the "software factory" label:

Centralized programming operations at a single facility
Adoption of rigorous standards

Adoption of rigorous controls

Quantification of management variables

De-skilling of testing

Standardization of methods and tools

Reusability of designs and code

Automation of development and management

99



Chapter 6: Hewlett-Packard®

The Company

Hewlett-Packard was founded in 1939 and incorporated in 1947. Corporate
headquarters are located in Palo Alto, California. Development locations are
located both inside and outside the United States. Marketing organizations are
located in 103 countries worldwide. Manufacturing is done at multiple
worldwide locations.

Hewilett-Packard manufactures and provides computer preducts ranging from
PC-compatible desktop systems and laptops to super-minicomputers. The
company has a strong technical orientation, both in its internal structure and
vertical market emphasis. Its reputation for quality and service has earned it a
rating of "most respected company" in national polls in the United States. HP is
a founding member of the Open Software Foundation (OSF). Its Open
Software Environment Service is committed to helping users move from
proprietary to open systems and draws on HP's proven strength in providing
technical support.

Sales results continue to be positive for the two systems that are part of this
case study. Overall demand for RISC-based multiuser systems and
workstations was strong in 1991 and 1992. The HP 3000 product line, which
runs the proprietary MPE operating system, experienced a 5 percent increase in

100



sales revenues for 1991. The HP 9000 Series 800, which runs the HP UNIX
version operating system, HP-UX, had a 51 percent increase in sales revenues
for 1991.%°

Hewlett-Packard Organization

The HP 3000 and HP 9000 systems divisions are both part of the Computer
Systems Organization. The HP 3000 is managed by the Commercial Systoms
Division and the HP 9000 is managed by the General Systems Division. These
groups have full profit and loss responsibility. Product marketing functions are
also part of these organizations and have overall responsibility for keeping 5

year product plans in place and for managing the product rollout to the
worldwide sales units.

Development is managed slightly differently for these systems. Core
Technology Organizations have responsibility in HP for developing /O
hardware, I/O software, processors, network software, and the UNIX operating
system that can be used on multiple platforms. The organizations contain the
developers and designers of the hardware and software. The HP 3000 (CSY)
and HP 9000 (GSY) use matrix management with these organizations to
develop the support needed for their systems. Since the MPE/iX operating
system and the databasie support are both proprietary for the HP 3000 system,
the management of their development is not part of the Core Technology
Organizations and instead report directly to CSY management.

Culture

The Hewlett-Packard culture centers around a very strong technical orientation.
The base of the company is engineering and the software developers are
considered to be "software engineers” versus "programmers”. The individuals

101



take a very anaiytical approach to the work they do. This analytical approach is
a critical part of how they manage development projects in the company. As
you will see in more detail in the metrics section, the development projects are
run by metrics and you can hear the statement made by many people that "the
company is run by metrics". The metrics become a guide for the actions that
must be taken to deliver on a certain schedule with an acceptabple level of
quality.

The company also has a perfectionist attitude. The individuals within the
company and management strive to do everything "the right way". The
attention to perfection has allowed the company to become more structured in
their development of software. Quality data was used to show the improvement
in software defect rates that could be gained by utilizing more riger in the
design stages and by doing formal code inspections during the coding stage.
Because of strong individual commitment to perfection (defined as software
quality in this case), a bottoms-up implementation of the formal reviews
happened within the development community. Any attempt at dictating these
changes and forcing individuals to "comply" with the processes, would have

resulted in failure. The phrase that summed this up nicely was, "Commitment is
in at HP, compliance is out."

On top of the "analytical approach” and "perfectionist attitudes"”, there is a
strong emphasis on individual creativity. Developers are allowed and
encouraged to come up with ideas on how to improve their products and to
make the changes (making sure they obtain "buy-in" from the release
management team). The analytical and perfectionist characteristics dominate
the company, though, and the culture was summed up nicely by one person |
interviewed. The statement was, "HP people have an analytical approach and
a perfectionist attitude, but they work hard to appear informal”.

102



Product Description

The HP 3000 family is Hewlett-Packard's well-established midrange computer
series. The series consists of the Micro 3000 line of products designed for
desktop or small workgroup computing, the 5x/7x line of proprietary-CPU
systems, and the Series 900 products that are based on HP's new Precision
Architecture (PA-RISC). The 3000 series features a tightly integrated
hardware/software design and is upwardly compatible at the software level from
the entry-level systems through the top-of-the-line systems. Two different
versions of the operating system actually run on the Micro 3000 and 5x/7x lines
(MPE V/E) and the Series 900 line (MPE/iX), but they remain compatible with
applications software developed for the earlier systems and use the same
interfaces and peripheral devices. The company has stated that further updates
to this product family will be on the PA-RISC platform. The HP 3000 family is

typically used in general business applications such as office automation,
education, and financial management.

HP 9009 products are UNIX based computers that run Hewlett-Packard's HP-
UX version of the UNIX operating system. The series consists of the Series
300 products, the Series 700 and 800 products, and the Apollo 9000 Series 400
systems. These UNIX-based systems are what HP is attempting to expand its
user base with. HP-UX offers a variety of programming languages, including C,
Pascal, Fortran, and COBOL along with support for functions like sort/merge
and file management. As is common with many UNIX-based systems,

extensive CASE support for software development is offered via mainly third-
party vendors.

Release Structure and Strategy

The development goals are to provide 2 operating system releases per year.

103



The releases are either required or optional product releases. Required
releases come out about 18 months apart and must be installed by all users.
The optional releases come out every 6 months between required ones, and
customers can choose whether to install them or not. To meet the goal of
simultaneous development of 2 releases, HP has gone to parallel development
of the releases using the same code base. An extensive revision control
system has been developed and installed which allows any developer to
change code from the formal code base. This parallel processing of the code
for the releases has gone through some refinement and has been the major
focus of the tools group over the last years.

The releases are date driven versus content driven. The company uses a
concept of a "release train". Function that is ready and can meet the delivery
date of the release can get on the train, while functions that can not make the
schedule must get off the train. The train runs on a specific schedule which
puts the releases under more of a delivery date base than a functional base
(i.e. wait until a specific set of functions are complete before shipping the
release). Groups are expected tc commit to a schedule and make il.
Dependencies between functions are generally the key to pull different functions
together on the same schedule for a release. There are some independent

functions that just come in whenever the release with the appropriate schedule
comes by.

Development Process Overview

Each division within Hewlett-Packard owns their development life cycles for the
products they develop. They are free to chocse different process variations for
each of the products. Even with this choice, all processes look remarkably

similar across the divisions and products even if everyone does not recognize it
as a "standard process". If not considered a "standard process", it can at least

104



be considered a "consistent process”.

A formal Life Cycle Document is used across Hew'ett-Packard with each
division having their own individually created document. The "life cycle" is a
key concept in HP and is used by the divisions to manage their businesses.
The basic model for the life cycle is the IEEE model of the standard software
process. The division's document defines phases and checkpoints. I general,
each phase has a description of the work products for the phase, entry and exit
criteria, and the outputs of the phase. The overall development process is
recognized as basically a waterfall approach to software development with HP
making "go-no go" decisions at defined checkpoints.

Key requirements for a release are determined along with a schedule for when
the release should come out. The key requirements are determined by an
entrepreneurial and contracting process involving functional, strategic, resource,
and schedule negotiations. The central point for this work is the Phase Review
Process that will be described later in this case study. For purposes of this
discussion, the Phase Review patrticipants are the executives from the HP
divisions. During this top-down view of projects, key software and hardware
functions are brought together on an agreed to schedule. Preparing for the
Phase Review includes a bottom-up process of estimating resource and
schedule requirements for the functions. Through the use of this information,
the executives can make the initial set of top-down release content decisions.
Agreements are then reached among the development groups, documented in
the Quality Plan, and from that step on the process is driven by metrics. Each
of these key steps will be described in detail in the following sections.

Quality Pian

The Quality Plan is the critical development starting point in HP. The plan is

105



created for all major development efforts (each release is considered a major
development effort along with some significant cross systems functions such as
POSIX support). Each of the deveiopment groups involved with delivering
function for the development effort participate in writing the plan. Plan creation
is overseen by the systems division and owned by the development manager
responsible for the overall product. The manager is generally at the systems
level, CSY for the HP 3000 and GSY for the HP 9000. Participants in the
writing include marketing, laboratory (development), test, and quality assurance.

Corporate standards define what must be in the pian. Measurable objectives
for the product are contained within the plan. It defines the expected results of
the process steps, checkpoints, and criteria. More specificaily, some
requirements at the development phases that would be part of the plan are:
what must be reviewed in design and code phases, percentage coverage for
design inspections, entry and exit criteria for each development phase, MTBF
(mean time between failures) quality commitment, path coverage for testing, the
amount of automated test coverage, how items that can not be handled by
automated testing will be covered, and specific checkoff items for the phase
exit. Metrics are an additional part of the plan with a description of how each
metric will be reported and who it will be reported to. Metric owners are
expected to manage the commitment made for the specific metric.

The usage and content of the plan have been heavily influenced by QFD
(Quality Function Deployment) principles. The clear definition of what will be
done in each phase, along with defined and measurable entry/exit criteria, are
central to QFD and the HP Quality Plan. The final milestone that is defined in
the Quality Pian for development is Manufacturing Release. The criteria for

Manufacturing Release must be met before the product is aliowed to go out for
customer usage.

106



Requirements Phase

The requirement phase for a specific system release occurs during an 18 - 24
month period prior to the release date. Planning is mainly a question of what
marketing and the chief development groups wish tc see in the system 24
months from the point in time they are at. The main objective of the planning is
to determine the functionality for the major release. Much of the front-end
planning involves stabilizing the development plans of the core components:
networking, operating systern, languages, and data base. Each of these
separate groups requires plans that satisfy cross dependencies.

Requirements come from 2 different sources. The first source is the product
marketing departments. These departments are focused on different industry
segments in the market. They utilize a combination of direct customer input
and marketing organization directions to determine the key requirements
needed in releases over the next 5 years with particular emphasis o the next
18 - 24 months. The marketing departments involved with this work are part of
the development organizations and work with the direct sales force of HP. The
second source of requirements is internal directions determined by the technical
groups in the company and by executive commitments. Internal directions
include things like POSIX cempliance, OSI communications support, and RISC-
based processors. These relate to strategic directions that are felt to be
important to the system along with product deficiencies recognized by the
technical groups. All requirements must be formalized before being brought
forward. Requirement formalization is done as low in the organization as
possible, with determination of the specifics of the requirement generally done
by engineers. The desire is to get the engineers more focused on what the
customer really wants. The market need is determined and defined, costs to
develop the function are estimated, and revenue is estimated. Requirement
formalization is required to at least be completed by the Commit Checkpoint

107



which is the point where functions are formally included as part of the release.

The requirements that will be part of a release are decided at a high level in the
company. The General Managers of the systems divisions (CSY for HP 3000
and GSY for HP 9000) are the final decision makers. The computer division
General Managers are responsible for each of the platforms and approve the
content decisions to drive profit and loss goals. Release content is controlled
via the negotiation process for resources. The division General Managers
provide funding to both the internal division development and the core
technology divisions based on release content. Adding content will generaily
warrant additional development resources.

Design and Architecture Phase

Design and architecture work is done by the people that do the actual software
development. HP likes to keep ownership with people all the way through the
development of the product to keep knowledge and commitment high. There
are some "system designers” who are senior level experienced people in HP
that assist in the design phase. Assistance usually is provided for complex
cross-system functions, such as POSIX compliance throughout the system.

No formal design methodologies are used. Few specifics are required
regarding steps that must be done during the design. Prototyping is used some
but is not extensively used at this time. The main mechanism utilized is formal
design inspections which are required at the end of the design phase.

Formal design reviews cover external specifications and internal specifications.
The external specs detail the user view of the function (user interfaces and
application programming interfaces). Internal specs detail some of the major
system items such as the system functions used, dependencies, and

108



performance. One major difficulty HP recognizes during design is ensuring that
all the "right" groups and people see the design. The most difficult part that
comes up during the design phase is dependency management across the
functions that are part of the release. Cross scheduling of function delivery
must be done to allow testing and integration to progress.

Coding Phase

Coding for operating systems projects at HP is manual, with methods scmewhat
open to developer discretion. Code generators are not utilized in these
development divisions. Standard compilers and linkers are used which enforces
a level of consistency within the development groups. A consistent set of

development tools is also utilized, which has assisted the standardization of
code development.

The most significant change to coding in HP has been the implementation of a
formalized inspection process. The impetus for this change was a causal
analysis of the problems that were being discovered in the code that went to
customers. It was found that coding was a significant problem area due to an
abnormally high level of defect injection. Overall usage of the design and code
reviews has come about over the last 3 years with it becoming required in the

last year. The formal code inspections are now held with a moderator and 3-7
reviewers.

Implementation of the inspection process has been viewed as a success. The
effort for reviews is high, but results have made the investment worthwhile.
Customer defects have gone down, the number of dependency problems
between code modules has been reduced significantly, testing is completed in
less time, and the number of integrations required to pull the system together at
the end of the process has been significantly reduced from the 50-60 that were

109



previously required. The net has been a reduction in the amount of rework
required during the backend of the process.

Develcpment Test

The development test phase involves two types of testing and is executed by
groups within the product development organization. The first type of testing
done is a functional test. It is a very deterministic tes! that focuses on
boundaries and limit testing of specific code sections. The developers test their
own pieces of code and make it work within the system. There is some
combining of new pieces during this phase, but it is limited and arranged
between developers. For wide scoped functions, developers combine the new
code early according to test plans that exist for testing these combined pieces.

The second type of development testing is performed by a separate group
within the development organization. This group runs a stress test of the new
function. All the new functions are combined together and old (regression) and
new tests are run against the system. Workload generating applications are run
to load up the system so that the functions are tested on a system under stress
versus a clean system running only the one set of functions. Development test

is run before the system moves on to the system tests run by the independent
verification group.

Independent Verification Testing

Independent Verification testing is the backend of the overall development
process. It amounts to a 4 - 6 month process that brings all pieces of the
system together. The test cycles utilized are: system integration test, system
test, Alpha test, and Beta test. Independent verification testing is done by a
group that is separate from the development organization. It has been

110



independent for many years and evolved to that role after initially being part of
the development organization. The group continues to be impartial and
maintains the power to stop a release if standards are not met. Development
organizations respect the group due to the hands-on testing they are
responsible for plus their level of analysis of the overall system.

System Integration and Test

System integration is the step where all new code is integrated in with the
unchanged base code. The integration includes the new code from the

operating system, networking, languages, and data base development groups,
along with code from peripheral products like office.

System test consists of two portions that are mainly distinct timeframes in the
test: Test Cycle 1 (TC1), and Test Cycle 2 (TC2). Defect and reliability
objectives are defined for TC1 and TC2 in the Quality Plan. The group runs a
variety of new tests and regression tests. Formal Test Plans are created early
in the development cycle: that define the tests that will be run against new
function, the amount of automated testing that will be done, and how functions
not covered by automated testing will be verified. The test plan also defines the
regression testing that will be executed.

TC1 is concentrated on stabilizing and validating the core parts of the system
such as the operating system itself, networking, languages, and data base. A
thorough verification of the new functions along with regression testing of
existing function is run until criteria are met for test compietion. Criteria are
what causes the test to be complete, but there is a clear schedule target for the
end of this Test Cycle.

TC2 is concentrated on bringing peripheral functions together with the core

111



parts of the system. Functions like office are introduced into the testing at this
point. As with TC1, the test is executed until criteria for test exit are achieved.
Criteria also deiermine when the system can be moved on to Beta Test.

The group is impartial and will stop a release from going to customers if the test
standards have not been met. Testing skili along with this power to stop a
release causes the Independent Verification group to be well respected in HP.

Alpha Test

For these HP systems groups, Alpha testing is done via internal "self hosting"
tests. HP uses their own systems for development of their system code. When
a function completes development and early testing, clusters of users will agree
to take the new level of code. This aliows the funciion to be used early in the

development process when fixes can be made much easier. Alpha Test starts
at the tai! end of TC1 but before TC2 begins.

Beta Test

Customer Beta Tests have been run by HP for 15 years and are a regular and
important step in the development process. HP uses a very conservative
approach in selecting customers and in the level of code given to them. The
HP Product Support area picks the customers that will be a part of the test.
Support works with the Release Team to determine the major functions in the
release and then find customers that are interested in that functionality. The
customers are signed up on a "case by case" basis dependent on the match.

The code given to customers is at Manufacturing Release level quality. After 4
- 6 weeks of Alpha Test, the system is frozen and Beta Test is started. The
code is kept in Beta Test for a specified time period (the period is defined in the

112



Quality Plan), and then it is moved to mass customer release if Beta Test

results are positive.
Maintenance

Maintenance of existing code is done by the development group. Customers
can purchase various levels of system maintenance that goes all the way to 7
day/24 hour support. HP does this 7 day/24 hour support by "following the sun"
where responsibility for handling calls goes io the area of the world that is in
their normal workday. An on-line system gets reported defect information to the
necessary development team. The routing of these problems in development is
initially handled by a "“first line team" for the hottest calls. The team
responsibility is to ensure the problem is fixed expediently.

Process Usage and Compliance

Compliance to the process is determined by the metrics during the actual
development. In-process metrics are defined in the Quality Plan for the different
development phases. Each metric is owned by an individual identified in the
Quality Plan. This owner is responsible for managing the metric results. As
they track the metric, deviations are determined and the groups responsible for
the deviations are expected to put plans in place themselves or within follow-on
groups to bring the metric back within criteria. The metric owner is responsible
for making sure this happens.

Process differences do exist between development groups. Differences
between the process used far MPE/iX and HP-UX have evoived through time.
HP-UX started with the MPE/iX process as a base and then determined process
areas that needed improvements and focused on change in those areas.

These have not been significant for HP-UX. Each organization has a group

113



looking for quality improvements which comes up with ideas that change the
process through time.

Release Management

Hewlett-Packard utilizes a designated individual as a Release Manager along
with a group called a Release Management Team. A Release Manager is used
for each software release and is the person who development and other groups
utilize to ensure a decision is made in a timely manner. It is a form of matrix
management since the person does not directly manage any of the
development organizations but does make decisions that affect each of these
groups. The release manager concept started on a smaller basis for subsets of
the system (networking, languages, etc) but during the last 2 years has been
expanded to overall responsibility for the release. Due to the constant pressure
of "fighting fires", the job involves an extremely high level of stress.

Much of the release manager's work is done in conjunction with the release
management team. The team is assembled from across the system with one
individual from the operating system, networks, languages, and data base
development groups. This team is responsible for making some of the overall
content, schedule, and coordination decisions across the total system. The
group coordinates between the releases under development by ensuring code
changes go forward to keep the parallel development across the releases
coordinated. This role of making sure code changes go forward is a major
effort and responsibility which is done as parts of the system are determined to
be stable enough to roll forward to the next release. Trouble shooting from a
system perspective is also occasionally a part of the team's work.

Change Management / Configuration Management

114



HP has a configuration management process in place for the full development
process. The formality of the process is dependent on the centrality of the
system component, the type of change requested, and the timing cf the change.
The release management team described in the previous section has a central
role in configuration management. Group involvement starts early during the
planning phase to influence the planning across the multiple releases being
considered. After being involved in the planning stage, the group maintains on-
going responsibility for changes throughout the entire release. Requests for
changes throughout the process follow the same format. The group wishing to
make a change documents it via an electronic memo to the release
management team and then the team indicates approval or rejection through
the minutes distributed from their meetings. The approval or rejection decision
is gained by the team members polling all development groups impacted by a
change. Tools are not used to enforce the configuration management, but the
process is well-estabiished and changes are not made until agreed upon.

Requirements changes, including requests for new function, must be approved
by this group, with the development manager responsible for the overall release
becoming involved in these more giobal changes. Design and code changes
are also managed, with code modules not allowed to integrate into the system
until they have been formally approved. As mentioned, the formality changes
due to timing during the release. In the late stages of development, the system
goes under "formal change contro!". Formal control means the level of
management signature required to make a change increases.

Two stages of the process where the more formal process takes place is in
"code freeze" and "problem review". Code freeze is used to make people think
about the real importance of a code change before going forward for approval.
There are blackout phases before component level and system level test where
absolutely no changes can be made due to stability requirements for the code.

115



Outside of that, it is controlled by the level of management signature. The other
stage of the process where control is very formal is after the entry into system
level test. A problem review team locks at all problems and determines which
things should be fixed. This process is very formal with only approved changes
allowed into the system.

Though tools are not in-place to enforce configuration management of individual
changes to code, there is a level of coordination done via the tools. Revision
control is handled by the tools through a check out procedure from the source
library. A single version of the code is kept at the source and ensures that
developers access the latest level of system code available. The code is
"fanned out" to the developers' systems periodicaliy to ensure any testing done
on their systems has recent code. This revision control system is not designed

to and does not prevent multiple people making changes to the same code
moduie for a release.

Metrics

Metrics are a critical part of the development process at HP and prompt
statements such as, "once we have the content defined and agreed to, we let
the metrics manage development of the release”. In the Quality Plan, each
metric is assigned to an owner in the organization who is responsible for
meeting expectations set for it. Metrics are compared to standard expectations
that have been derived from historical data and are also compared to the
results of the previous release. When metrics go outside of the guidelines set,
actions must be taken to recover. HP has historically taken those actions.

The common greups of metrics center on defects of various types, code turmoil,
and coverage percentages during different development phases. In-process
metrics are a clear part of development and post-release metrics are also

116



utilized to determine the quality of code developed. Representative metrics are:

Design inspection coverage (% of code)

Code inspection coverage (% of code)

Test coverage (% of code)

Automated test coverage (% of code)

Test plan coverage

Defects during review stages

Defect backlog, incoming, and resolved during test

Defects by level (3 general groupings of Critical, Serious, and Low)
Code turmoil (how much has been touched during a given period)
Post-release defects

Process Improvement

Process improvement is driven by the individual developers. HP has worked to
support continuous process improvement aclivities as part of the development
process. This has fostered internalization of the discovery process for new
process steps versus "doing what the Quality and Process group requires”.
This approach was necessary from two standpoints: quality improvement is
more effective when done from within, and the HP culture is adverse to
compliance as a method of doing things.

Post mortem analysis is used extensiveiy within the company. Releases are
tracked and analyzed to find the root causes of problems that occurred. The
results of the postmortem analysis are used to drive changes and are also
reported thrcugh management. Quality reports are also generated by corporate
and group staff organizations and serve as another reporting mechanism that
can generate process actions. The final input on quality comes from the
Product Support Organization which tracks and reports the results for existing

17



releases. The development lab does not dispute the results reported by the
support organization and instead analyzes the resuits to determine the
appropriate acticns to take. Results might indicate pervasive problems in an
area of the system that will generate plan items for an upcoming release.

The other sources of process improvement ideas are the CSO (Computer
Systems Organization) and Corporate Quality and Technology Groups. ideas
are brokered by the CSO group which introduces them to development groups
who might implement them. The CSO group acts as a support organization to
these development groups. After seeing the results, the development group
and the CSO group will spread information to make other development groups
aware of the results. Sources of ideas for the CSO and Corporate
organizations are from outside the company as well as other divisions of the
company. Assessments are also used to determine change areas or to support
suggested changes. Some assessments that have been done recently are SEI
Capability Maturity Models, TQC, and internal ISO 9000 assessments.

A final method of bringing process changes to HP is via major projects. In
these projects, there is up-front planning of new process variations that will be
brought in and used throughout the development organization. These changes
are agreed to by the individual development groups and are documented in the
Quality Plan. Improved quality goals, shortened cycle time, or improved
engineer productivity are the normal drivers causing process changes. This
method gives HP a level of planned innovation.

Tools

Software develcpment is done on the systems the software is being developed
for. Common compilers and linkers are used on the different platforms. There
are no design languages used that lead to automatic generation of code, all

118



coding is done manually by the developers. The HF 9000 and HP 3000
developers all have workstations at their desks. HP utilizes a checkout system
where the base level of code is kept in a single location, and individual modules
must be checked out by developers wanting to work on them. To keep
individual development systems at current levels of code, a fan out mechanism
is used to send periodic code updates to the systerns.

Through the last years, the HP 3000 tools group has done significant work on a
revision control system to allow paralle! development of 2 releases. An item
they are looking to include in the support is a way of collecting decision criteria
to understand why certain code changes were macle, which is becoming more
critical due to parallel development. Software Configuration Management
standards are being used as a guide for improving the revision control system.

Process Education

Formal process training is rot required in HP. There are a range of classes
available that include inspection training and other leading topic education.
Over the last couple years, the HP-UX originated the usage of development
templates. The idea has spread to other groups within HP. The templates are
available for the overall development process and each of the individual steps.
Information on the templates include advice for the slep, checklists of
recommended activities, and descriptions of pitfalls to watch for. The templates

have become extremely popular as an effective device for sharing experiences
and suggestions.

Business Life Cycle at the Division Level

As described in the Requirements Stage of the development process, the
Hewlett-Packard business is managed at the Division level. The HP 3000 and

119



HP 9000 both have a management team responsible for managing a portfolio of
business costs and choosing between many good ideas presented in the
product requirements. The division manager and staff make the final decisions
on what big ticket items should be pursued.

Multiple development labs are part of each division and will be affected by the
decisions on what projects to pursue. Projects are collections of functions in a
release and the management of projects is done at the development
management level in the divisions. Multiple investigations must be coordinated
to determine how to get the multiple projects out on time for the release.

Stages of the Business Life Cycle represent checkpoints at the project level.
The stages of the Life Cycle are:

Proposal Signoff - Occurs after the development proposal is generated. The
development proposal is based on customer demands/needs and is written in
terms of how the customer demand will be met. The results from this stage is
approval to commit resources for Investigation.

Investigation Signoff - During the Investigation Stage, the details of the customer
demand and the product response to satisfy it are fleshed out. Elements that are
critical in this stage are the time dependency and feasibility assessments that come
from the investigation. Costs and schedules are roughed out during investigation.
The result of approval in this stage is moving to the Design Stage.

Commit to Development Signoff - During this stage, the design of the technical
solution is completed. The internals of the solution are laid out. Items completed
during this stage include formal cost estimates, determination and agreement to
meet dependencies, and the development schedule. The result of approval in this
stage is moving to coding and testing.

120



MR (Manufacturing Readiness) Signoff - At this point, coding, unit testing, and
system testing have completed and the development group is ready to release the
product. Signoff indicates that quality goals have been met and that customers can
take the product at this point. It then moves to mass production.

Post Review Signoft - This occurs 6 months after the product has been released to
the customers. The review is held to determine if the product has met
commitments for quality. Any unique problems are also analyzed during this
review including performance problems, any major customer concerns. Signoff
indicates that the product has met commitments.

Phase Review Process

The Phase Review Process is used at the executive level within HP. Specific
executive reviews are held to review the status of phase review checkoff
criteria. The criteria are pre-defined and meeting criteria is required before
development can proceed to the next phase. The reviews help keep executives

aware of progress on major programs and gives them the ability to provide input
on big ticket items.

Outcomes beyond proceeding to the next stage can include adjusting priorities
of the computer divisions through funding. Funding decisions between divisions
may be escalated to the executives through phase reviews, or the executives
may use it as an opportunity to adjust funding for multi-year big ticket projects.
Programs that are considered major or "big ticket" are programs over $5-10
million in development costs (which covers most major hardware items and
most software releases), significant strategic items (most major hardware also
falls into this category), and key long-term technologies (RISC architecture).

The phases in the process are:

121



Phase 0 -- Requirements / Plan -- The objective is to ensure that requirements are
consistent with worldwide strategic, annual, and systems business plans. Business
and technology with strong leverage potential are identified. The result of approval
from this stage is organization resources identified and committed to a plan for
studying alternatives for the requirements agreed to.

Phase 1 -- Study / Define -- The objective is to select competitive alternatives that
meet worldwide contribution objectives for the systems. Measurable system
objectives, release criteria, and verification/validation processes are defined. The
result of approval from this stage is organization resources identified and
committed to design.

Phase 2 -- Specify / Design -- The objective is to complete the cross-functional
plans for implementation and delivery of the specified functions. Organizational
resources are identified and commiitted for system deveiopment, release, and
support. The result of approval is movement to the development and testing stage.

Phase 3 -- Develop / Test -- During this phase, the development and testing of the
functions are completed. Actions taken due to completion of this phase are
authorization to publicly announce price, performance, and availability of the
product. Qualified customer shipment/access may also be approved.

Phase 4 -- User Test / Ramp Up -- Test results are reviewed during this phase.
Approval is given for unrestricted shipment to customers. This denotes
Manufacturing Readiness.

Phase 5 -- Enhance / Support -- Product and process strengths are analyzed
during this phase to improve results in subsequent systems. Determine
enhancements that should be made to the product. Another activity that occurs
during this phase is development of a discontinuance plan for the point when the
product will not longer be supported.

122



Phase 6 -- Maturity -- Specialized support options are implemented during this
phase, and the system is removed from the corporate price list.

Summary — Resuits

Quality results have been consistent through the multiple releases. During
these releases, many process steps have changed based on causal analysis
and process improvement recommendations. Process improvement activities fit
very nicely with Hewlett-Packard's culture of being very analytical and striving
for perfection. As the company attempts to balance process structure with
individual creativity, process steps like requiring formal code reviews have been
added relatively late but have been enthusiastically deployed by the engineers.

123



Chapter 7: Microsoft*®

The Company

Microsoft was founded by Bill Gates and Paul Allen in 1975 and went public in
1986. Microsoft develops, markets, and supports a wide range of
microcomputer software for business and professional use. The software
includes operating systems, languages, communications, and application
programs. Microsoft also develops and markets microcomputer-oriented books,
hardware, and CD-ROM products.

Corporate headquarters are in Redmond, Washington. Total employment is
12,000 people in 27 countries. Research and Development is based in the
Redmond complex with additional centers in Tokyo, Japan and Vancouver,
Canada. The new Vancouver R&D center, opened in April 1987, is a
workgroup responsible for developing software for the international market.
Manufacturing is done in 3 different locations: Washington, Ireiand, and Puerto
Rico. Direct and indirect marketing operations are located ir. 30 different
countries worldwide.

Microsoft is the leading PC software vendor based on revenue. In 1992,
revenue was $2.76 billion and net income was $708 million. These represented
increases of 49.7% for revenue and 53% for net income, which came on top of
gains of 55.8% and 65.7% respectively in 1991. The company's revenues were
positively affected by sales of upgrades, growth in worldwide personal computer

124



sales, the success of the Windows operating system, the rapid release of new
products and major new versions of existing products, and expansion of the
international operations to new areas.

Microsoft Organization

Microsoft is organized around three areas of strategic focus. Worldwide
Product Development is responsible for all software and hardware product
development. There are approximately 3200 people in the organization with
1600 in development, 750 in testing, and the rest in market support, program
management, and user education. Worldwide Sales and Support is
responsible for sales and support (handling calls on problems and questions) of
all products. There are approximately 4500 people in the organization with
2000 in support that includes 1100 people answering phone calls from
customers. Worldwide Operations is responsible for manufacturing, information
systems support, finance, and human resources. The Executive Vice
Presidents of the groups report directly to CEO Bill Gates. Removal of a
President in the company was done to accommodate future growth by
managing the company with a team versus a single individual.

Worldwide Product Development is structured into five product business
divisions. The Systems Division has Windows, MS-DOS, 0S/2, and Lan
Manager along with Windows NT. Desktop Applications is responsibic icv
Excel, Word, Project, and Powerpoint applications for the IBM PC and the
Macintosh. Database and Development Tools owns Fox, Access, all
languages, and internal tools used in the company. The Consumer Division is
responsible for products such as Works, Publisher, Money, Flight Simulator,
Profit and multimedia solutions that go to homes and small businesses. Finally,

the Workgro'ip Division is responsible for eMail and other group work products
that are in development.

125



Each product within the Worldwide Product Development group has a product
organization managed by a Business Unit Manager. Each Business Unit
Manager is responsible for profit and loss management for the product. These
tend to be marketing trained individuals that take an overall view of the product
and manage future planning, budgets, and headcount. Within the Product
Organization, there are five major functions that can each have an individual
manager for the larger products or can be combined for smaller products. The
five functions are: development, testing, marketing, program management, and
user education.

Development is responsible for preduct design and coding. For each product, the
group is organized into feature teams. Recalc, charting, printing, and macros are
examples of the eight feature teams on Excel. Each feature team has a team
leader along with multiple team members that tend to be on the product for muitiple
releases.

The testing group is also ordered by feature teams that match up with the
development feature teams. The group is responsible for testing that starts early in
product development and continues all the way through final test.

User education is the final group that has responsibility for developing material for
the product. They write help information on the system, manuals for users, and

determine what user training is needed along with creating the materials that will be
used.

Marketing is the group responsible for preduct marketing. Product marketing
includes driving the product roll-outs with the sales organizations, competitive
analysis, and acting as the main interface to the sales organization. The group
uses focus studies and other mechanisms to get product input that is combined
with input from the sales organization during creation of the product requirements.

Program Management is the final group in the product team. The group is

126



responsible for all product plans and for managing the product through all stayes of
development. They act as the liaison to support and ali other dependent groups.

in addition, they manage ISV (Independent Software Vendor) relationships for
applications that are bundled with the Microsoft product they manage.

Beyond the reporting structures described, there are two informal organization
structures present within Microsoft. Functional structures exist for the five key
disciplines in product development: development, testing, product marketing,
program management, and user education. Processes are owned by ttie
functional groups who continually inject new ideas and improvements. The
“braintrust” is the other informal structure. It consists of 30+ people spread
throughout the development organizations. They are product people that are
known and trusted by Bill Gates, and are highly respected by the development
organization. These long term contributors of good ideas are called upon to
provide input and comments during product planning and review times.
Recognized names like Charles Simonyi and Nathan Myhrvold are part of this
group that helps keep the company on the leading technical edge.

The Sales and Support organization has some unique aspects that are worth
noting. 1100 people handling phone calls is a substantial number that put them
on nearly a 1-1 ratio with developers. Bill Gates has stated that his number 1
goal this year is to get the support side of the business under control since it is
now the fastest growing area in Microsoft. The support people have a very
good knowledge of the products they support. There is one team in place for
each product. A person on the team maintains direct contact with the
developers, working with them on a consistent basis. The team understands

the product specifications and begins involvement during Beta Test to prepare
for support of the product.

Culture

127



Microsoft's culture is evident in their two most important goals: hire the best
people, and give them the best tools possible to do their jobs. Hiring the best
people has been the focus within the company throughout its history. Cornputer
science graduates from major universities and experienced PC-based software
developers are hired and brought onto a product team which they stay with for
a long period of time. This is true for development, testing, marketing and each
of the other functional groups. Staying with the preduct gives them a long-term
investment in the product, ensures they have good familiarity with it, and helps
them understand process liabilities and benefits from prior development cycles.
The work atmosphere is one of flexible hours, flexible dress, and open, honest
relationships. Frank discussions are the norm.

Bill Gates' personality is a significant cultural influence in Microsoft. Individuals
and the overall company are fiercely competitive, driven te technical excellence,
driven to make and meet aggressive commitments, and willing to do what it
takes to get the job done. Due to the hard drive that is the norm, significant
stress is part of the developers' lives. Burnout occurs within the company
among both developers and non-developers.

Changes in development methods provide some evidence of cuitural changes
through the years. The early development culture was one of extreme
individualism with most products involving only three or four developers. The
developers had uitimate control of the way they developed the product. A story
which shows the extreme nature of that period is that of a developer who sat
down and wrote the code for a new product, didn't like the way the product
worked so started from scratch and completely rewrote it, and still did not like
the product so sat down and started from scratch one more time to write the
product?’. The process involved his own vision of how the product should work
and how the internals were designed and coded.

128



When the company moved from doing OEM work to developing products for the
retail market, the culture changed with the addition of specs, testing, marketing,
and support groups. Testing was significantly influenced by IBM through the
joint development work for the iIBM PC. Microsoft also changed its product
quality evaluation systems, project planning, security conditions, and other
business processes. As quality and schedule mistakes began to mount in the
company, developers changed the culture by adopting practices such as code
reviews and more formal design and planning methods. The final significant
influence has been the move of PC software into mission critical applications for
companies. Purchasers are demanding that their suppliers (Microsoft in this
case) have high quality, repeatable processes in place to develop and support
their products. As more structure comes into the company, the chailenge they
are dealing with is the combination of the structure of processes and the
individual creativity needed to create leading edge products.

The final cultural element is Bili Gates. Many believe that the key Microsoft
difference is Gates. He represents a technical visionary that is also the leader
of the company. His involvement extends to reviews and input on each of the

products' specifications and long-term development plans. He make a real
difference in the products.

Product Description

The major products created by Microsoft can be grouped into systems and
applications. Some hardware products such as the Microsoft Mouse and
BallPoint pointing devices are sold but are a smali part of the business.

Systems products generated $1.1 billion of revenue in 1992. Major systems
products include:

The Windows operating system is the major product offered by the group. Briefly,

129



Windows is an operating system wiritten for the IBM PC which provides an easy-io-
use graphic user interface, allows convenient data sharing, provides support for
organizing and managing files created by the applications, and allows switching
between different application programs. It aiso allows programmers to wrile larger
applications than with DOS. Included is a set of general applications and
accessories. Estimates are that over 10 million users have adopted Windows since

introduction in 1983, with a majority coming since the 1990 introduction of version
3.0.

MS-DOS was the base operating system for the first IBM PC and has continued to
be a standard. Windows runs on top of DOS. The initial MS-DOS version came
out in 1981 and updates have continued through MS-DQS 5.0 introduction in 1891.
It still brings in a significant amount of revenue, accounting for 19% in 1990.

Microsoft's version of OS/2 and the Windows NT operating systems are the
advanced products in the systems group. Windows NT is a 32-bit operating
system that forms the foundaticn of Microsoft's new line of operating systems
intended to replace both DOS and Windows 3.1. Microsoft sees NT running on a
wide-range of hardware platforms in both desktop and server environments.

Applications products generated $1.36 billion of revenue in 1992 which made it

the most significant revenue producing group. Applications include an extensive
range of products for the IBM PC and the Apple Macintosh computers. Some
of the most significant products are:

Microsoft Excel is the company's spreadsheet application for the IBM PC and the
Macintosh. It competes with Lotus 1-2-3 for leadership in this category on the IBM
PC and is the clear leader for the Macintosh. New versions were introduced in
1992 that have kept the application leading edge in function and performance.

Microsoft Word is the company's word processing application for the IBM PC and

130



the Macintosh. it competes with WordPerfect for leadership in this category on the
IBM PC and is the clear leader for the Macintosh. New versions of this product
were also introduced in 1992.

Microsoft also competes with PowerPaint for business graphics, Project for support
of project management, and Mail for electronic mail networks. The company
competes in most product markets with strong products that integrate weli with the
Windows environment.

Review and Planning Cycle

When looking at development within Microsoft, the review and pianning cycle is
a logical starting point. The cycle is split into two portions occurring in October

and April. The result of the cycle is executive agreement on product rollouts
and funding for the divisions.

The October review is centered on presentation of 3 year product focus plans.
Each product defines the number of releases. why they are doing a release,
and interdependencies they have with other products. Bill Gates sits in on each
separate division's dedicated review and on the final review in which all
divisions present at once to give everyone a common understanding of the
product plans. Each product receives direction from Bill during this phase.

After the October review is completed, the marketing organizations take the
output and do sales forecasts based on the product plans. Budget planning is
then done based on product sales forecasts. The sales versus budget mix is
looked at to determine how it compares with the profit model for the company.
Based on this analysis, headcount is determined for the fiscal year that begins
in June. Up to this point in time, the company has never hit a limit where needs
are limited due to headcount restrictions. Open headcount has been available

131



in all cases and they have hired to fill it.
Release Structure and Strategy

Releases for the individual products are determined by the product's business
manager and approved during the October Review. Previously, releases were
more function driven based on the key features desired in the next version, but
that has changed through the years to where the delivary date ia now most
important. Tradeoffs of function are made to reach the delivery date that was
committed. Developers and the full product team determine the delivery date
and commit to it, which raises their drive to make it. The transition from
function driven to date driven releases happened in the 1986-1988 timeframe
and was due to a long history of missing dates that no longer was considsred
acceptable by customers or the company.

Changed code is considerable for each release. Estimates are that 50% of the
existing product code in a release is changed. On top of that, another 30% of
new code is added for the functions introduced in the release. The results are
code with an average half-life of only 1.5 years. For this reason, extensive
automated regression tests are critical to development at Microsoft. Without

them, the product could never be tested in time to make reasonable update
schedules.

Development Process Overview

A consistent high-level methodology is now followed throughout the major
product groups in Microsoft for software development. Some groups are further
along in areas such as usage of metrics and adherence to review steps, but
nearly all recognize this general model. Each group has a "Scheduling and
Methodology Document" that describes their process model. The document

132



"runs 30-40 pages in length and is mainly verbiage'® in that no group pre-
defines or adheres to a fixed set product development steps. it does describe
the "key" process steps, which are generally based on knowledge gained from
prior releases. Groups tend to have some variation in steps. The old "OBU"
(Office Business Unit that developed Microsoft Word) process, which was
documented following their development experience, has served as the base for

most product's processes and is used as the default for any group that has not
developed their own.

Microsoft utilizes empowered teams that are responsible for all stages of
development and the decisions required to get their product out. The groups
attempt to keep the teams small or arrange larger teams by function to keep the
small team atmosphere. A full team from the five functional areas is in place for

all products. As was mentioned earlier, team members are invalved with
multiple releases of the product.

From a high-level viewpoint, the development teams are responsible for the
following things:

Producing a quality vision for the product which states what quality means for this
product (bugs, performance, reliability, function).

Own specifications, design, code, testing, and validation of the final packaged
product.

Product improvement with input from marketing, program management, Bill Gates,
and anyone else with an opinion.

Process improvement through usage of post-mortem reviews along with in-stream
changes needed to get products back on track.

133



Customer awareness via ties to the product support organization, monthly flash
reports on problems, call logs on problems, and compatitive analysis done by the
product marketing groups.

Microsoft does not have an extensive set of formal development checkpoints.
At a minimum, three checkpoints are used during the product cycie: Schedule
Complete (specification is complete and approved), Code Complete, and
Release i0o Manufacturing. The development team commits to the set of
functions that will be delivered during the release along with a schedule for the
three checkpoints. Internally, they determine what is necessary to meet these
three checkpoints. This may involve different combinations of design stages
and reviews, along with different approaches to the actual code development.
Internal checkpoints and interdependency plans will also be worked through.
Microsoft does not see themselves doing significantly unique process concepts,
but instead feel they utilize some new ways of putting them together.

Investments within Microsoft for development have tended to follow the
following model:

People

Specifications

Tools

Design-Test Plans

Code-Test Cases

When problems hit during development, they go through these investments in
reverse order attempting to fix it. Actions are taken starting from the bottom,
with people changes only being made as a last resort. They have found that
people changes are the most destructive in the long run and should be avoided
if at all possible. The recognition of this as a decision model is very eftective
for negotiation and efficient problem solving in the company.

134



Requirements Phase

Product. This person is responsible for Soliciting inputs from a|f groups
considered important for the product, Inputs are utilized to Create a final list of
what will be included in the product release.



Development and testing groups are responsible for refining the spec.
Development fleshes out details surrounding the functions, estimates the
amount of work in person months, and estimates the schedule for the project.
Testing works to understand the spec and then estimates the amount of work in
person months, estimates the schedule for the project, and defines what is
needed from development to allow the support group to test the product.

Bill Gates also has a role in specs. The Program Manager is responsible for
figuring out how to get Bill's input for their product. They need to complete this
during the spec stage and have to come out with Bill's buy-in to the spec. Each
product will have at least one formal review with him and key products may
have multiple meetings. During the meetings, Bill will set some key goals for
the product that may be on quality, cost, or function. Before a product can
move on to implementation stage, it must have formal approval from Gates
which constitutes the Schedule Complete checkpoint. In the past, he personally
reviewed every spec in detail but has since brought 2 full-time reviewers onto
his staff to review the specs and assist him on inputs.

An aspect of the spec stage that is important is the usage of prototyping.
Prototypes are always built during the spec stage. Menu, command, and
dialogue will be included in the prototype and serve as inputs to the spec. In
some cases, the prototype may be the spec and be used for the final meeting
to get approval to go on to implementation.

implementation Phase (Design and Coding)

There may only be one formal checkpoint used for the Implementation Phase.
Code Complete is the final step that indicates design and coding work is
compiete and the product is ready for final testing. Individual developers and
groups determine the process and checkpoints necessary to meet the function

136



and schedule commitments.

Design. Development will do sufficient design during the specification stage to
ailow for a solid estimate of the amount of effort required and the schedule it
can be completed on. Development recognizes the estimate as their firm
commitment. The commitment they are required to make drives them to do a
reliable job of this early design work.

A formal set of design stages does not exist. It is up to the development team
to determine what must be detailed during this step. Much of this determination
is done based on process learning from prior releases. Module structure,
dependencies on other functions, input/output details and other normal design
stage considerations are dealt with during this period. Development does hold
a complete design review for their work. This practice has evolved because of
the success developers have seen from past usage. Specification languages
and code generators are not used.

Coding. PC and Macintosh products utilize a significant amount of common
code. About 10 - 15% of the code is unique for the platforms with the rest
being common. The system is broken into modules that consist of 8 - 10
functions each with 40 lines of code per function. Reused code between
products amounts to only about 5 - 10% of the product code. Most of this is for
the user interfaces which have many standard elements in them. Code is not

developed with reuse as the objective. The reuse happens through the general
developer approach of "stealing what | can".

Code generators are not used with coding continuing to be manual and
individually oriented. Object-oriented programming is not currently part of code
development for major products, though new projects, including an OO version
of Windows®, are experimenting with it. Formal code reviews have become

137



part of the standard process at Microsoft due to technical push. The reviews
were tried by groups and proved to be very beneficial such that all development
teams wanted to use them in their processes.

Formal code reviews are done with exactly 2 reviewers per inspection.
Reviewers go through the code independently and strong competition exists
between them to do the best job. Defects and design mistaes are both found
during this stage. Sections of 2 - 5§ KLOC of code are reviewed at a time.

The ccding phase focuses on one key chackpoint which is Code Complete.
This date was estimated by the developers and all activities center around
achieving it. The Development Manager polls each developer to determine
whether they consider themselves finished. When all are ready, Code
Complete is declared and testing can begin. After Code Complete has been
declared, the only changes allowed are approved bug fixes.

Before the Code Complete checkpoint, other milestones are part of the coding
stage. The major milestones are:

Intermediate functional releases which go to testing or development groups with

dependencies on the function. These are agreed to one-on-one between the
developers and the individuals needing the code.

Visual Freeze which is utilized for all products to allow screen shots to be taken for
user documentation. The user education department drives these and negotiates
the date with development. Typically, 20 - 30% change occurs after the freeze.

Functional Freeze which is utilized to lock the text information used for

documentation. This checkpoint is used by many products but not all. The user
education department drives this and negotiates the date with development.

138



Typically, 20 - 30% change occurs after the freeze.

Beta Test Release is a statement of confidence in the coda versus a testing
efficiency statement.

During the coding stage, development continually tells testing what sections of
code are complete and which are incomplete. The communication allows
targeted functional testing to begin as soon as possible. As a final step in
development of the new code, a mandatory suite of deveiopment tests are run.
The tests are internal checks used by the testing group for assertion testing of
the code (assumptions made about conditions that will occur at specific steps
which do not need code to directly check for them), and the usage of check
routines available through debug menus.

Integration Testing. All modules of code are kept in a Master Library on a
central server. The Master Library contains the master version of the code that
the product is built from. A library management tool exists on the server that
allows developers to "check out" a master version of a module to work on it at
their workstation. When the developer completes making changes, they run a
set of unit tests to validate the new function they have added. In addition, they
must run a suite of preliminary integration tests that validate base functions are
not affected by the changed code. If all tests are successful, a "check in" can
be done to put the new version into the Master Library.

Nightly builds are done on the master code for all products. Build tests are then
tun to ensure the product will operate. Problems found must be immediately
resolved and everyone stops work until the problem is fixed. Since builds are
done nightly, tracing back to find the change that caused the problem is
reasonably easy to do. Nightly builds ensure that the product will function at all
times and controls the amount of churn in the system, which helps stability.

139



Testing Phase

Like most organizations, Microsoft's testing strategy is to find defects as early
as possible. The company is different in some of the steps they have taken to
make this happen. Automated suites of tests available for developers to run
prior to integrating their code are extensive and expected to be run. Test tools
for developers to develop tests of riew function are also available and very
functional.

Each of these items is helpful, but the most significiant ditferencs is in the
relationship between the testing and development groups. Testing is done by a
group within the preduct development organization. No independent quality
assurance organization is used in Microsoft. Testers have a very close
relationship with developers. Like the developers, they are involved with the
product over multiple releases. Most work on a 1-1 or 1-2 rativ with developers.
Involvement starts at the spec stage and continues through the rest of the
cycie.

Private releases are utilized between the developer and the tester. Developers
may pass a private release of code to a tester that contains a new feature that
is not fully developed and checked in. The tester will use it to improve and
certify testcases while the developer can get bugs discovered early and recode
as necessary. This coordination assists the developer during development test
and assists the tesier for their final test.

Testing phases are very weli planned. Testing does their own estimates of
resources and schedules during the spec stage and are committed to meet the
plan. Formal test plans are created and test case reviews are held. Reviews
are held for all testcases and development participates in 70 - 80% of them.
Automated tests from prior releases are added to the plan so that total test

140



coverage can be understood.

Final Test is the main verification step run by the testing organization. Products
are tested through customer-like usage and results are tracked closely against
the test plan. Testing includes documentation, tutorials, set-up, hardware
configurations, primary functions, and supporting utilities. Automated testcases
are key to validation of existing function and are extensively used. Performance
is also measured against the performance goals set for the product. Results
from Final Test are the most critical input to the ship decision.

Three types of Beta Tests are also utilized. Tests are done to get awareness
and excitement for a new product or function (marketing reasons), and to get
feedback and remove bugs (technicai reasons). The three types of test are:
narrow tests with a select set of customers that will utilize a new function or
check compliance against specific goals, wide tests that attempt to catch rare
cases not found on typical configurations, and internal distribution to employees
to get resuits similar to wide tests. Beta tests tend to get a very low response
rate of 5 - 6% of users giving feedback to development.

Development has a set of scheduled checkpoints during the test phase where
they attempt to get the number of ,utstanding bugs down to zero. "Zero Bug
Releases" are used as one set o. .1e checkpoints where devzlopment
consciously attempts to drive down to the target of 0 known bugs. The
organization tends to set multiple checkpoints like this during a test phase.
"Release Candidates" are an additicnal set of checkpoints and involve an
attempt to build the final product. While being intended as a verification that the
code will fit on the specified number of diskettes and that the build procedures
work, this is also an attempt to freeze the code and test on a solid product.

Ship decisions are made after Final Test. Program Management makes the

141



final decision and utilizes the position from the “committee of 4" and in some
cases the interests of the Business Unit Manager for the product. The
"committee of 4" consists of development management, testing management,
product marketing management, and the support organization. In the end, it is
the Program Manager that makes the decision.

Maintenance

Separate product support teams exist for each product. These teams are part
of the Sales and Support organization and not part of development. Their main
responsibility is to handle customer calls for the product. When problems come
in, the support organization logs them and creates probiem reports that come to
the development group. Current development staff handles all product

maintenance and all or part of the team will be directed toward fixing problems
when they come in.

Product Support needs have grown rapidly in Microsoft. It is the fastest growing

group in the company. One of the key goals of 1993 is to get the support
"under control".

Process Usage and Compliance

Each product group is responsible for choosing the development process they
will use. Experience tends to dictate the process they choose. The process
described in this case study applies most to mature products like Excel, and
Word. Over the last years, the company has rapidly progressed in usage of
more formal processes. Customer requirements are now becoming a factor in
accelerating adoption of more solid and verifiable processes. As PC
applications become more central to organizations, customers are looking for in-
process metrics and other indicators of quality before new versions are

142



installed.

Process compliance is not handled via formal mechanisms. Deveioper
commitment to quality is the main driver of compliance. The other mechanism
is internal audits called by the Product Managers. The Director of Development
and Quality Assurance is asked to go out and work with the development
groups to analyze major problems and current status for projects. A formal
"Audit" is used to directly act with the purpose of changing things quickly. A
"Review" is used to take a more gentle approach of analyzing the development
work (process or current status) and recommending actions to resolve the
probiems found.

Project Management

Project Managers for the product are the key drivers of the product
development. Business Unit Managers give them the authority to make the
decisions necessary to meet committed schedules. Beyond constant contact
with the groups creating the product, there are two other mechanisms that are
critical to project management:

Schedules are determined by each of the functional groups. All estimating is done
by the people doing the actual work. By having this relationship between estimates
and work, the accuracy of resource and schedule estimates is very good. In
addition, the individuals are very committed to meeting schedules. These factors
come together to be major factors in the management of projects.

Project reviews are also utilized throughout the development process. Project
Managers schedule and run these with the frequency varying (range of weekly to
monthly). Everything associated with the project is reviewed with each group
reporting their status. Monthly s.atus reports also come in fiom each functional

143



area. Major reviews of project status are held with Bill Gates. Timing of the Major
Reviews varies depending on the strategic imporiance of the product.

Change Management / Configuration Management

Network servers are in place to store source directories that are accessible by
everyone in the company. Password control is used to control access to some
of the source directory servers. Network based Configuration Control is used
on everything associated with the products under development. ltems in source
directories include: project documents such as specifications, all code, tools,
releases (current and previcus), plans, and schedules. The parts can be
"checked out", changed, and then "checked in" after changes are made.
Forcing the parts to be checked out and back in placas a level of control on all
project related information.

Changes to requirements, specifications, and frozen code are allowed during
the development process. After checkpoints such as Schedule Complete and
Code Complete, the Program Manager takes control of changes to
specifications and code respectively. By allowing approved changes, the
Program Manager lets innovation continue to happen during phases such as
coding and testing. When decisions are required for necessary changes, a
formal decision model is used to determine the action necessary. The model,
from highest priority to lowest, is:

Schedule / Resources
Components / Functions / Features of the product

Future Extensibility / Maintenance -- These are bad for the long run but may be
necessary
Performance

Reliability / Quality -- This is definitely only done when no other options exist. The

144



changes may be "not fixing" somathing that was previously
planned.

Changes to code are managed by the tools on the system. Source code must
go through the "check out" and "check in" procedures. "Force outs” and “Force
ins" allow developers to check out source code when someone has previously
done a standard "check out". The forces are managed through function in the
network control tool that compares changes to ensure the same lines have not
been altered. Before developers are allowed to check code back in, they are
required to run Synch Tests which serve to validate the code does not degrade
the system. Nightly builds are done on the total product. Synch Tests are then
run on the total product with any problems discovered holding up all
deveiopment until resolved by the developer making the faulty change. Nightly
builds allow the product to be usable everyday. In addition to the "check out"
procedure, changes to code after Code Complete must be approved by the
Program Manager.

Defect management is accomplished through a set of bug tracking tools that run
on the server. Bug reports are entered into a database along with a description
of how the problem can be recreated. Severity codes running from 1 (critical) to
4 (new function request) are assigned by the discoverer of the bug.
Development continuously monitors the database so that they can assign the
problems to someone on the team when they are reported. The defects are
tracked closely by testing, development, and program management.

At the end of the development process, the change control process takes on an
additional level of formality. A "committee of four” (one from development,
testing, program management, and product support) meets daily to review all
problems and determine which to fix. Problems are generated by internal
testing and Beta Tests. Utilizing the committee review helps ensure decisions

145



are made from data versus emotion. Approval requirements, plus the tracking
capability, provide a level of change management for bugs.

Metrics

Data is important in resolving conflicts and making decisions on actions to take.
It was stated a couple times that "Microsoft is data driven". Top management
supports the usage of metrics since they have been shown to help lead to a
product being completed on schedule. The most watched and used metrics
involve bugs.

Tools are in-place and made available to allow metrics to be generated. Some
to the metrics used by various groups are:

Bugs to date

Bug severity mix

Open versus Fixed bugs to date

Bugs found versus bugs fixed

Functional use profiles (not used much yet)

Cluster of defects (helpful to the testing organization)
Code chum

Code coverage of tests

Customer problem calis versus units sold

Bug metrics are described above. They are very important during the

development process. Standardized queries and reports for management are
generated at defined intervals.

Some historical data is used by the product team. |f internal data does not exist
for the product, applicable external data is used as a model. Data most

146



frequently used are models on how many bugs are likely to be in a product and
how many should have been removed through each of the stages.

Process Improvement

New process ideas come largely from the teams themselves. Creativity and
drive for excellence are encouraged. The combination leads to teams finding
solutions to process problems, trying them out, and talking about them to other
groups. Since 19889, it is clear that Dave Moore, in his role as Director of
Development, has individually been responsible for bringing in the concept of
spreading "best practices" information throughout the company. The "best
practices” intormation has come from his search of worldwide sources and from
his involvement with development groups across the company's projects.
Improvements are adopted in this manner of trying new ideas and spreading
information on the results, and are not handled through dictating usage.

Post mortem reviews are utilized by nearly all teams. Problems encountered
during the last cycle are reviewed and analyzed for improvement possibilities.
Process changes are made and used in the next release. Since the teams tend
to stay together, the post mortem analysis is very effective and helps with
process learning by the team. Program Managers run the post mortem
process.

Tools

Development environments consist of personal computers and workstations in
offices connected to the LAN server network. Developers pick the hardware
systems they wish to use and many have multiple systems in their offices. The
LAN has product servers for each product developed and also has network
servers which allow access to data throughout Microsoft. A corporate MIS

147



group is in-place to manage 600 servers in one building along with the network
that is spread throughout the world.

For testing, a good suite of specialized tools are available for automated testing.
These tools have been historically used and have now progressed to event
recorders and playback tools that include event editors which allow editing of
flows versus re-recording whole sequences. Automated test tools are built to
run in multiple environments.

Automated tests are run "hundreds of times" during development. Testers are
continually adding to this set of tests. Quick or Synch Tests are used before all
check-ins and after all nightly builds. Testers run them frequently during Final
Test phase. Development has also supplied a variety of tools to assist in
simulation of memory, data structure, system failure, and memory fill errors.

Process Education

A formal process education class does exist. though most education is done
within the team. Each product team has 2-4 page documents that describe
their product and series of 2-4 page documents that serve as checklists of job
responsibilities for each of the major job types (development, testing, support,
etc). All major product groups and many smaller ones have their "Scheduling
and Methodology" document that describes process information. Mentors are
assigned to each new hire on their team and help introduce the new hire to
processes used in the company.

Two weeks of training is expected each year for all software engineers. A
combination of in-house training, university seminars, and corporate or
conference seminars are used to meet the objective. In-house training is
available for corporate training on management skills, and product group

148



training is available for technical skills.
Summary -- Results

Microsoft is an outstanding study of the transitions invoived in movirg away
from an immature development process. Early development was very
individualistic, dependant on testing to verify quality, and driven by function
completion versus recognizing schedule needs. Through the last years, the
company has done an outstanding job of introducing a level of structure
(maturity) into the development processes while preserving much of the
creativity of their developers. The formalization of the process via reviews,
metrics, and change management were either introduced or strongly supported
by developers. They alsc moved from a process of developing until a
continuously growing set of functions were complete, to a process where they
develop towards a scheduled end point and get as much function in as possible
while still meeting that date. Demands from a growing customer base, in terms
of size and sophistication, have also been factors in the process evolution.

Finally, one of the key items that makes Microsoft unique from the rest is the
presence of Bill Gates and his braintrust. Developers drive the organization, but
the developers have a keen sense of what the market requires. The
combination of technical and market knowledge is the competitive advantage all
software providers would desire, and what Microsoft appears to possess.

149



Chapter 8: Lotus®

The Company

Lotus was founded in 1982. The company and its subsidiaries are engaged in
the development, manufacturing, marketing and suppart of applications software
and information services. The company sells its products primarily through
distributors and resellers. Personal systems and workstations are the main
systems the applications are developed for with an additional set being
developed for minicomputers and mainframe computers.

Corporate headquarters are in Cambridge, Massachusetts. Total employment is
approximately 2800. Product development is concentrated in Cambriage,
Massachusetts. Manufacturing and distribution is done in 4 locations worldwide:
Cambridge; Dubiin, Ireland; Caguas, Puerto Ricc; and Singapore. International
marketing operations exist in 33 couniries with authorized distributors covering
an additional 20 countries.

Lotus is the leading DOS spreadsheet vendor and has leading applications in
other market sectors for personal systems. In 1991, revenue was $829 million
and net income was $43 million. This represented increases of 20% for
revenue and 85% for net income. The company's revenues were positively
affected by continued growth of the 1-2-3 spreadsheet products along with
increases in the sales of the Ami Pro word processing application, cc:Mail
electronic mail product, and the Notes workgroup computing product.

150



International revenues grew 26%, which raised non-US sales to 51% of
revenues.

Lotus Organization

Lotus is organized into five major groups: Development, Sales & iviarketing,
International Operations, Manufacturing, and Finance. Within Development, a
Vice President / General Manager is in-place for each of the product families.
The major product families are: Advanced Spreadsheet Products, Word
Processing Products, Notes, cc:Mail, and Graphics Products. The organization
of each product family varies slightly depending on the number of major
products in the family. For many major product, there is a Director of
Deveiopment and a Product Planning Manager.

The Director of Development for the product owns development, but has joint
responsibility with Product Planning for content of enhancements to existing
products or what will be part of any new product. Once the content has been
decided, the Director is responsible for getting the product developed and
delivered to the marketing organization. Each Director has a Development
Manager responsible for the programmers creating the product, a Quality
Assurance Manager responsible for testing and validating the product, a
Documentation Manager responsible for on-line and printed documentation and
on-line help information, and a Program Manager that is responsible for
managing the execution of the release development. Program Manager
responsibilities include tracking the schedule, owning and ensuring resolution of
issues, working with all outside and inside groups to ensure dependencies are
met, working with the international product groups to get the product available

worldwide, and making sure the internal development groups are working with
each other.

151



The organization responsible for DOS Spreadsheets consists of nearly 50
people handling programming, Quality Assurance, documentation, and
management. The Notes group has approximately 100 people handling the
same functions.

Culture

Lotus started out as a "Cambridge company", which was people with diverse
backgrounds who were technically oriented and very hard driving towards a
specific technical goal. Initially, there were 300 empioyees focused on 1-2-3
prior to a large set moving on to Symphony which was going to be "bigger than
1-2-3". Frustration was a major problem when Symphony was not very
successful, and it was the beginning of a long period where the organization

was slowly recovering frcm the need for products "to be as successful as 1-2-
3".

As the company grew after 1-2-3, they continued to hire very talented people.
Because of the talent the group possessed, they were still able to make dates
by figuring things out as they went. Specs were non-existent and everyone was
forced to "figure it out on your own". The Lotus 1-2-3 Release 3 (Godiva)
project became the next major cultural influence. Developers took on the task
of completely rewriting 1-2-3 in C (a new language for the product), with the
capability to run on multiple platforms, and complete it in 1 year. Project dates
and functional capabilities were not met.

Over the last years since Godiva, the culture has swung to an environment
where people are beginning to work together, code sharing is starting to
happen, and groups are actually iending people to other projects (with the
people eventually returning to their old groups). The environment has begun to
change so that it has become more stable and consistent.

152



In contrast to staying with a product over a long period of time, Lotus tends to
move developers to the next hot project. Product plans do not extend to
multiple releases and developers have grown up seeking out the most
interesting projects versus staying with a single product. New teams are being
built for each project with the group figuring out the existing product before
going on to do the new development for the product's next release. "Project
hopping" has become a cultural element at Lotus. The Notes group looks to be
an exception to the project hopping with the same core development team
being in-place since the product began nearly 8 years ago.

Lotus's growth has been a factor in the culture that has developed. Of the 5
product divisions that compose the company, 3 1/2 were acquired. The
acquired companies had very little structure and Lotus did not rush in to impose
any. As a result, Lotus new has limited structure within the divisions of the

company. Some processes are being introduced to increase controls, but they
continue to be limited.

Product Description

Lotus 1-2-3 for DOS is the most successful spreadsheet application in history.
Measured in dollars, the share in this market rose to 85% in fourth quarter
1991. Upgrade revenues doubled in 1991, driven by new releases of the
Windows product and the DOS products. The spreadsheet has a wide set of
features that include a powerful relational database, an interactive graphic
environment, drawing and editing tools, business graphics, a range of output

options, macros that can be programmed, and ability to access and handle data
from competitive spreadsheet products.

Lotus 1-2-3 was the first really successful spreadsheet on the PC market. It
was oriented towards the IBM PC with Macintosh versions only coming out

153



recently. 1-2-3 products are now available that support OS/2, Windows, and
proprietary versions of UNIX. In recent years, the product has also been
extended to run on many minicomputers and mainframes. Compatibility has
been important throughout these changes with new versions supporting
spreadsheets created with the older versions of the product.

Notes is a relatively new product from Lotus that is broadly classified as a
workgroup computing product. The product is client-server based with a
database existing on the server that can be accessed across the LAN by a set
of client workstations. Notes can be considered a document-oriented database
that allows users to share any type of unstructured information regardless of the
platform or network. Unstructured information can be text, graphics,
spreadsheets, reporis, and word processing documents. The data is stored on
the server which makes it accessible to users in the network, while mail

capabilities exist in the product to send a note to inform others of the data
availability.

Notes has a simple graphical interface that allows relatively untrained users to
access a full set of databases and also set-up their own databases. The mail
features are extensive and make including information from the databases very

easy to do. Security and network administration functions are provided and are
reasonable to use.

Review and Planning Cycle

In some of the case studies | have done, a review and planning cycle was a
distinct phase that warranted its own section. Lotus has combined the intent of
a eview and planning process into their requirements phase for a product.
Resource needs are determined by the number of projects that have been
approved and are unuer development. It was not clear what the planning

154



cycles were for resources.

Executives were part of monthly progress reviews for each major product. The
reviews address status of the product development along with the outstanding
issues the VP should be aware of. The Project Manager schedules and runs
the reviews.

Release Structure and Strategy

DOS Spreadsheet products have relatively long release cycles. Historically,
new releases have come out in roughly 18 month cyclas but the group is
moving to 6 - 12 month cycles. More frequent updates are not desired by
customers since an installation is required and many users do not upgrade
frequently. Updates are also not desired because they cost additional money.
Many users are satisfied with what functions they currently have and are not
interested in upgrading. The structure is to come out with a new version that
has the set of enhancements in it that have been agreed to by the product
director and the product marketing person. Fixes to reported problems along
with enough new functions to entice upgrades or land new customers are what
is included in the release updates. A combination of function and schedule
needs determine the contents of the release.

Notes has been running with a relatively long release cycle also. Current
releases are being brought to market in 18 month to 2 year cycles. The goal is
to bring this to a 1 year cycle, which looks necessary due {o the rapid changes
occurring in this relatively new software market. The release structure is
determined by a combination of date and function. Agreement is reached on a
set of functions that are key to the release and a set that are optionai.
Schedules are then worked out for the key functions and compared with what is
desired by the product marketing group. Give and take happens to come-up

155



with the correct combination of function and schedule.
Development Process Overview

Lotus has a published company development process that is used minimally by
the development groups who determine the real process they will use for a
project. Directors of Development are given the responsibiiity of choosing the
development process they will use for a product. This leads to variations
among the different products.

Two standards drive development within the company and only one of them is
constantly used. The date that is constantly part of a product is the Ship Date.
Within Lotus, this is the key date and is most obviously part of each project.
Commit Checkpoint is the other major date. The date receives enough
attention and is viewed positively enough to be used by most groups.

For DOS Spreadsheets, since the general model does not dictate specific
process actions, the Development Director brings the process she wishes to
use with her. The process has a level of structure and project milestones in it,
which have proven to be necessary in Lotus. It involves the following steps:
determination of requirements; planning through the Product, Documentation,

Development, and QA plans; design; Commitment Checkpoint; implementation;
testing; and maintenance.

Notes has some unique aspects in their development process because of the
fact the programmers are in a different location (in a separate company) than
the Development Director, QA department, and all other support functions. RIS
is the company responsible for product development. The flow through the
stages for a new function in Notes is: generate requirements document, break
requirements into pieces, begin functional and design specing the pieces that

156



are ready, implement the product as soon as design completes, and Feature
Testing of the pieces when the piece is ready. The net result is multiple
independent projects synching up for the release.

Requirements Phase

Lotus has a Product Marketing group for each product family. Individual
Product Marketing people may have a single major product or multiple smaller
products. The person has the responsibility for gathering requirements for
enhancements to existing products or for potential new products. The process
of gathering requirements and interacting with the development group vary
across the products, as was th2 case for DOS Spreadsheets and Notes.

For DOS Spreadsheets, the requirements process is initiated by the prcduct
marketing person coming forward with an idea on the product features and a
desired ship date. The feature ideas tend to come from visits to existing and
potential customers along with some analysis of competitive product features.
The set of requirements are defined in the Marketing Requirements Document
that includes: a definition of the features, the relative priority of each feature,
and a desired schedule for shipping the product. The document is used as a
base to for development to estimate the cost of the features. Negotiation
begins at this point on features, staffing, and delivery date to determine what
can be shifted. The Development Director then closes the process by
specifying what marketing can get in regards to function, cost, and schedule.
Marketing then gives the go-ahead to do the planning and development work
necessary to reach Commitment Checkpoint.

Based on the agreed to set of features and schedule, planning begins. For
DOS Spreadsheets, four plans are created for the products:

157



Product Plans describe the what, why, and how for the overail product. The parts
of the plan are: the description; functions that are part of the product; staffing
estimates; more detailed schedule; feature list for future marketing purposes; a
subset of the development, documentation, and QA plans with references to the full
plans; and an ongoing list of issues. The level of detail varies with the scope of the
product.

Development Plans provide more detail on the features. The parts of the pian
include: where they will steal functions from within the Lotus products, key changes
to file formats, new technologies that will be introduced such as Smarticons, the
network and tools that will be used for development, and an expanded schedule.

Documentation Plans provide more detail on the printed and on-line product
documentation. The parts of the plan include: a description of what the full set of
documentation will be, cost of goods, page counts, tools that will be used for on-
line documentation and Help text, intemational issues for translation, and an
expanded schedule.

Quality Assurance Plans describe the strategy that will be used for testing. The
parts of the plan are: a detailed schedule, description of risks that will be taken,
reused tests from prior products, automated versus manual test plans, testing
matrix of configurations, and international testing considerations.

Notes is a newer product and the requirements phase is slightly different
because of it. Two years ago, it was a small product in a big company which
allowed them to operate on their own. As the product has grown in the size of
customer base and resulting significance to the company, the planning and
requirements process is becoming more organized.

Finalizing the requirements list and laying out a product plan is a combined
process. Planning tends to be done by a small group of 2 - 4 people which are

158



the top management in development along with the product marketing manager.
Previously, the group, which has significant customer contact, generated the
functional requirements and schedules. As the product has grown, more
organization of requirements gathering has been introduced. Product Marketing
is gathering input from: existing customers; potential customers; other Lotus
products that interact with Notes; along with creative input from development,
marketing, and executives. Requirements are then categorized and prioritized
based on goals defined by the small group that previously was handling the full
process. A series of meetings are held where the priorities of the features are
finalized and the top items that will be developed are agreed on. The result of
this process is the Marketing Requirements Document.

Requirements and specifications for Notes go through an iterative process.
Early specifications are very loose due to relatively long development cycles.
Throughout the cycle, customer inputs continue and competitive products
continue to come out. These changes result in adjustments to the requirements
and plans.

Design Phase

Design is not valued at Lotus. In the early days, Mitch Kapor's approach was to
"see the product” even in the earliest stages of development. Marketing
continues to drive the company with no development people in upper
management. Once product features are agreed to, the pressure is on to make
the product visible. Functional design work almost has to be hidden since the
expectation is that the coding is underway after the requirements are finalized.

DOS Spreadsheets utilizes user interface and functional specifications. Since
the look and feel of the products are so important, it is necessary to get some
definition early on. Prototypes are becoming prevalent in showing the

159



interfaces, using throw-away code initially and then replacing that with real code
as it is completed. The prototypes are used to get feedback from customers
acting as "design partners"”, Lotus marketing groups, and executives looking for
updates on the product. Functional design is also used by this group. Past
projects have demonstrated the usefulness of laying out the product structure
prior to moving to the coding phase, and the Director of Development ensures
these are done for all but very short projects. In cases where the formal
documents are not feasible or as a supplement to the documentation, the group
has begun to use videotapes to capture descriptions of the product, functions,
and plans. This is an informal Functional Specification and serves as a good
training mechanism.

For the Notes group, informal specifications are generated for major features.
The developers write the specifications that provide detail on the general
structure of a function and a high-level breakout of the function across program
modules. Specifications are available on-line through the Notes product itself
and informal reviews are held in some cases. Design work in the group is not
significant, with much more focus on getting to the coding.

Both products, along with the rest of Lotus, utilize the formal milestone
"Commitment Checkpoint”. This checkpoint occurs by the end of the design
phase. Plans and product definition are not at the point where all the details
are worked out, but enough information exists for major groups within the
company to evaluate the project. Each must state whether they can commit to
the product responsibilities necessary to take it to market. Major groups
involved with the checkpoint are: development, documentation, Quality
Assurance, marketing, manufacturing, product support, user education/training,
international, and upper management. Key issues are logged and the formal
commitments are sought. After Commitment Checkpoint, everyone turns to the
heads down implementation stage.

160



Coding Phase

The Director of Development and the development team determine the network,
programming language, compilers, linkers, and test tools that are appropriate for
the product they are developing. For enhancements to existing products, many
of these choices are dictated by what was previously done, though variations
are made. Formal programming standards across the company do not exist,
but employees are well educated and utilize structured programming
approaches. Coding is a manual process since design languages are not used
as part of the design phase.

Code reviews are held with varying levels of coverage and formality. The DOS
Spreadsheet group does formal code reviews through a "buddy system" that
involves one person going through the code in detail. These were initially
threatening to members of the team, but are now viewed positively due to the
results that have come out of the review process. For the Notes group, code
reviews are informally done at the discretion of the developer. Reviews are
currently done by peers in development, and the desire is to find a way to get
the product marketing group involved in this step, also.

Development testing is done by the code developers. These tests are at an
individual module level or may involve small combinations of new modules.
Validation of code paths and limits in the code, along with some validation of
functions, is done at this stage. Dévelopment's objective is to get the code

working to some degree with at least some combined testing before the code is
integratea.

Feature Freeze is another milestone used in Lotus that occurs prior to the start
of the formal testing phase. This milestone is where everything is in (has been
integrated) and things are working to some degree. The product is usually

161



buggy at this point, but all pieces are together and problems can be identified

with interfaces and final function. Performance and size are aiso concentrated
on at this point since there is still time to make changes necessary to improve
these critical areas.

Testing Phase

Quality Assurance groups are part of each product organization. These groups
are responsible for testing the overall product and ensuring requirements have
been met. In-house testing, Alpha testing, and multiple phases of Beta testing
are used by Lotus. In-house testing is generally referred to as Feature Test
and is planned through the Quality Assurance Plan that defines the testcases
that will be reused from prior releases along with the new automated and
manual testcases that will be used. Customer environments are simulated
during the testing with non-stress functional verification and stress testing both
used. Quality Assurance is involved throughout the development process and
has a good awareness of the product requirements. Test staffing is on roughly
a one-to-one ratio with development in Lotus.

Product usage by internal and external customers is an important part of
testing. DOS Spreadsheets and Notes use common phases of both Alpha and
Beta tests. Alpha tests are done with internal customers and small groups of
external customers. The test is done before Feature Freeze so that some
validation of the features can be done in time for changes to be worked into the
product. An initial Beta Test is done for quality reasons. During this test, the
group of customers is expanded and the emphasis is on identifying bugs and
getting them resolved before Code Freeze. Some Beta testing is done near the
end of the development cycle for mainly public relations reasons. Early
exposure to certain valued accounts, along with groups that write about the
product, is done through this Beta test phase.

162



At the end of the test phase, the Code Freeze checkpoint occurs. When
Feature Testing is done and the bug count is near zero, Code Freeze is
declared. Code can no ionger be touched proactively, with approved bug fixes
being the only changes allowed to the code. A team from Quality Assurance
and development does the review and approval of bugs that will be fixed. After
Code Freeze occurs, the Quality Assurance group runs a final regression test
that verifies bug fixes and executes a subset of the feature test.

Delivery Phase

Three stages are used to get the product ready to ship to customers. The first
is Release Candidate Builds which are built, tested by QA via a subset of the
regression test, and then sent to internal and external customers for a 1 week
verification. This cycle continues until a build has zero bugs reported against it.
"Golds" is the next stage and involves another build of the product (generally,
the final Release Candidate Build is used). Minimal testing, that mainly involves
a code compare, is done to ensure this version matches the final source code.
Once the "Golds" are completed, the product moves to manufacturing which
does a final build and compare step before mass production begins.

Maintenance

Support is a separate organization in Lotus. Calls come in to this group which
logs the problems and attempts to resolve them over the phone. If support is
unable to resolve the problem, it is routed to the deveiopment team responsible
for the product. Required changes mainly move to the next release of the
product. Immediate fixes are not handled cleanly since no formal process
exists. Since immediate fixes generally require a full re-build of the product,
workarounds are attempted first. |f workarounds are not feasible and a fix is
necessary, a maintenance release will be built for a specific customer, testing

163



will be done in QA, and the release will be shipped to the customer (and any
others with similar problems). When a significant number of fixes are available,
products will do a "slipstream" release so that all new shipments include the
fixes. Customers with a maintenance contract for Notes (and other products)
will be notified of the "slipsiream" release, and will be offered an update on
request.

Process Usage and Compliance

A few years ago, Senior Management at Lotus led a process improvement
effort that created a very structured “Lotus bible" that dictated the development
steps that were to be followed. Dictating the process did not work, and Lotus
has continued to have groups determine the process that fits for their product.
Usage and compliance are managed within the product groups which are
generally small enough for all people to be aware of what is being foliowed for a
process. No formal mechanisms exist to ensure compliance.

Project Management

Methods of project management are determined by each separate group.
Milestones such as Commit Checkpoint, Feature Freeze, and Code Freeze are
used by most groups across their projects to keep the organization coordinated.
Some of the significant actions done individually by a group or commonly
across the groups are described in the remainder of this section.

The DOS Spreadsheet group does an extensive planning phase for each group
(development, QA, documentaticn) as part of the requirements phase. From
there, the groups move to Commitment Checkpoint where they view all aspects
of the project and make a formal commitment to meet the ship requirements.
During the implementaticn and testing stage, each of the individual groups

164



continually reevaluates their progress versus their committed schedule. The
Director of Development has made it clear that if there is a problem, she wants
to take the slippage early. On-going milestones are also set which invcive
taking portions of the product to customers for design validation. These occur
between the Commitment Checkpoint and Code Freeze to give targets that the
development groups can work towards.

An additional step used by the DOS Spreadsheet group to increase project
ownership and improve the level of project management is to give ownership of
a portion of the function to teams. Teams can include members of
development, QA, and documentation. The group is responsible for resolving
issues, answering general questions, analyzing progress versus plans, and
escalating any problems that require assistance to resolve.

A common step in project management used by these two groups, and the rest
of Lotus, is the role of the Program Manager. This person is a part of each
product group and reports to the Director of Development. Their responsibilities
are totally associated with project management and include: tracking overall
project schedules, working inside and outside the project group to coordinate
dependencies, own all issues and take responsibility for resolving them or
ensuring another group resolves them, preparing and reporting overall project
status, and working with the international group and manufacturing to plan the
product roll-out.

The Notes development group uses their own product for most project
management work. Notes makes database creation and cross-project
communications easy. A record exists for each feature that includes information
on: product/feature name, development plans, priority of features, ship date,
Alpha and Beta Test dates, a detailed product description, and status tables.
This is available for everyone to access and text updates can be made to the

165



record. Staffing plans are also kept on the system which allows the
manageiment team to monitor resource allocations at all times. Constant
communication through eMail and database updates is really the key to project
management for the Notes group. The group has had a normal record of
success in meeting ship dates, which has involved some slips along the way.
The most common factor leading to the schedule slips has been adding
functionality during the development cycle.

Change Management / Configuration Management

Change management is another process step that is individually determined by
each product group. DOS Spreadsheets uses multiple stages of change
management. The following describes some of the stages and measures used:

The Feature list is frozen at Commitment Checkpoint. A stretch list is created of
things that would be nice to add if resources or schedules allow it. The Director of
Development must approve any feature changes after the freeze.

A Functional Specification Freeze checkpoint is used early in the coding phase.
This stops changes to the user interface which is necessary to allow documentation
to be finalized. Some additional freezes are defined to meet the requirements of

the international group that is translating the product are: Message Freeze and
Help Freeze.

A Code Freeze checkpoint is used to stop the proactive changing of code. All
bugs are reviewed and the only changes to code allowed are those necessary to

fix an approved bug. This occurs during the testing phase.

Version control/management is utilized for all source code. Developers use a
"check-out" and "check-in" procedure when updating code.

166



For the Notes product development group, some of the procedures vary. The
following describes the general approaches used across their development
stages:

Requirements and specifications are not under any forrn of change control.
Developers communicate with multiple groups and make decisicns on what needs
to be fixed. These changes are often not communicated to the QA department or
the project managerment group. A list of key features agreed to at the start of
development is maintained and changes from that are known.

Code is not under a form of version contro! or "check-in" / "check-out" control.
Each developer gets a copy of the source code after a build is done and is free to
make changes. Communication occurs between the developers but the group has
grown so that this does not provide extensive coverage of project information. On
a monthly basis, builds are done. During the buiid stage, the release architect,
who is a very senior member of the team, brings together the source code versions
one at a time and reviews each change before allowing it into the master code.
This process worked good when there were up to 10 developers, but it is showing
signs it may not work as the group expands.

Extensive tracking of defects occurs. Each user has access via Notes to the

database of problems. Easy to generate reports are available to look at status and
the state of fixes.

Code changes that occur within a build are tracked. This information is
automatically generated by the build tools and lists what modules were changed
beiween builds. The information has some use when doing problem determination.

An item that | will discuss in more detail in the tools section is a very important step
in change management. The full product group for Notes is always running on the
latest product build. After going through some verification steps, the build is
installed on the servers. This ensures the product is always operational and

167



aliminates most regression errors while praviding early feedback on new functions.
Metrics

Metrics currently are not extensively used as part of the development processes
at Lotus. The company has gone through phases where they were used more
extensively. Formality of metric use depends somewhat on the size of the
product, but in most cases they are not used much. Bug/defect count tracking
is done by nearly all groups. Find versus fix rate, size of the backlog, and mix
of severities are used as in-process metrics during testing and they are also
used to monitor post-ship quality. "Progress versus schedule" and
"performance" are two measures used by all groups that generally fall into the
metrics category.

Process Improvement

With the movement of groups between projects and with each project choosing
the process they wish to use, significant process improvement steps do not tend
to occur. The combination of movement and no base process is not something
that leads to refinement of what has been done in the past. The Director of
Development for DOS Spreadsheets does utilize Post Mortem reviews to get
some level of learning for her, and hopefully for the individuals that make up the
groups. Each individual group (development, QA, documentation) holds
individual meetings to understand what was good and what could be improved
on. These are not finger-pointing exercises and are designed to improve the
next development project.

Tools

Notes uses their own product extensively in all work they do. It provides eMail

168



support, project tracking, problem reporting, and collection of information in
databases. The group always is running on the latest version of the preduct
that was built, which exercises the code well before it goes out to any
customers. Notes is therefore aiways operational. This extensive use of a
product throughout the development process is very unigque and the

management team believes it helps the refinement of the product before it goes
to customers.

Summary - Results

Lotus has continued to allew small groups to determine the process they feel is
best to get their work done. Requirements are allowed to change to adapt to
customer requests and developers are given exterisive freedom untii the Code
Freeze checkpoint is reached. This has led to significant product refinements
due to developer freedom, but has made Quality Assurance a very difficult job.

Both products have been successful in their markets. Lotus holds the dominant
position in DOS Spreadsheets and continues to come out with compatitive
refinements of the product. Notes has been very positively received and has a
growing customer-base in a market segment that is expected to grow rapidly.

169



Conclusion

Overalil View

Development life cycles are very consistent across the companies. Each
utilizes the recognized phases of requirements, design, coding, testing, delivery,
and maintenance. Within the phases, variations existed for the number of
formal stages within the phase, the amount of pre-defined actions, and the level
of formality surrounding the actions.

Significant effort was spent by each company on process support activities such
as release management, change management, metrics, and process
improvement. |t was clear each company recognized that the software
development life cycle was only a small part of what is required to develop
software products, and they were spending significant effort improving their
ability to manage software development. The companies were consistently
aware of their problem areas through time and continuously take actions to deal

with the problems.
"Established” and "New Entrant” Comparisons
My initial grouping of "established" versus "new entrant" companies didn't prove

to be accurate. The most significant grouping is around the type of systems the
software must "scale up" to and where the systems have evolved from.

170



"Established" development groups are IBM Federal Systems Company, 1BM
Application Business Systems, Fuijitsu, and Hewlett-Packard. For the most part,
these groups develop system support for mainframe and minicomputer systems
that support multiple concurrent user groups on a single system. Each group
has been in-place developing this type of support for a long period of time.

"New Entrant" development groups are the personal systems oriented
companies developing software for a relatively new market. These companies
are reasonably new and are developing products for markets that are still
defining themselves. The markets have characteristics that are different from
traditional computer software markets, and call for fiexibility and creativity to be
stressed more heavily. Processes used are evolving at a more rapid pace as
the companies try to mix creativity, flexibility, and predictableness. Microsoft
and Lotus are the companies that fall into this category.

To highlight some of the similarities and variations among the groups of
companies, the following table is a summary of characteristics of each group
across the process activities. The first column lists the activity, the second
column addresses "Established" organizations, and the third column addresses
"New Entrant" companies:

171



Activity

Release
Structure
and
Strategy

Require-
ments
and
Planning

"Established"”

Structured to occur on
regular intervals with
support of hardware being a
significant factor driving the
content and schedule of a
release.

Organizations utilize formal
processes for these phases.
Phases are driven by
product management
groups with executives
having final approval of
contents and schedules.
Organizations are striving to
meet the needs of diverse
customer bases while
expanding into new
markets.

172

"New Entrant"'

Releases ware based on
function for initial and
immediate follow-on
releases. They have
moved to a more
predictable schedule-driven
approach as products have
matured.

Requirements and
schedules are determined
by a very smali group
initially. This small group
continues to maintain
significant control over the
product as it matures.
There is continual input
from developers and
development management
on what should be included
in products. At Microsoft,
there is a formal process to
fix the top customer
complaint areas in each
release.



Design
and
Coding

Testing

Process
Usage
and
Compli-
ance

Design and coding is
manually done for the most
part with the exception of
Fujitsu. There is minimal
usage of specification
languages, automatic code
generation, and Object
Oriented programming.
Inspections are formally
used by each with very
positive results.

in-house test groups are
independent from the
developers for 3 of 4
organizations. The in-
house groups are strong for
each company with ratios
ranging from 5-10
developers per tester. Beta
and other customer tests
are used by each for
technical and marketing
reasons (though IBM FSC
has a single customer).

The HP-UX group uses the
software being developed in
day-to-day operations.

Process usage is dominated
by the size of the products
and the integration needs.
Processes need to be used
by all developers. The
process is needed for
predictakbleness of
schedules and quality. A
strong use of metrics aids
the checking of compliance.

173

There is less formal
structure surrounding
specific steps that must be
carried out during
development. These
groups also have minimal
usage of specification
languages, automatic code
generation, and Object
Oriented programming.
They are adopting design
and code reviews due to
positive early results.

In-house groups work more
closely with developers than
in established companies.
There is a high ratio of
testers to developers (nearly
a one-to-one ratin). Beta
tests are used for technical
and marketing reasons.
Both companies use their
product's latest code levels
on a continuous basis to get
additional testing of the
code.

There is some
independence surrounding
process choices. Fewer
formal compliance
measures are in-place.
Process is introduced due
to the need for
predictableness on
schedules.



Release
Manage-
ment

Change
Manage-
ment

Metrics

This is a significant activity
in the organization due to
size of product and number
of people involved. HP and
IBM ABS have gone to an
individual fccused on
fighting fires and ensuring
decisions are made on a
timely basis. Cross-
functional groups are in-
place to support the
individual.

It is done throughout the
development phases with
increased formality during
coding and testing. IBM
FSC and IBM ABS have
moved it all the way up to
the requirements stage.
Tools are in-place to
support change
management.

They are used extensively
to help manage the very
large projects. Historical
bases are in-place to
compare progress resuits
against. Metrics are used
to manage schedules and
quality. In-process metrics
are being used extensively
for design, coding, and
testing stages.

174

A Project Manager is part of
each product development
group. Their focus is strictly
on making sure the release
gets done. They worlk
closely with the Product
Manager, managers of the
specific development
functional groups
(development, testing, etc),
and all outside groups
(support, manufacturing,
etc).

Change management is
done during the coding and
testing stages to varying
degrees. Loose controls
are used during
requirements and design
stages. Change
management appears to
increase as products
mature.

Use of metrics is dependent
on the maturity of the
product and the historical
base available. Microsoft is
now using different metrics
extensively for decision
support on requirements
and on escalations of
decisions.



Process
Improve-
ment

Tools

General

Closing

it is extensively used by ail
four organizations. Causal
Analysis and Defect
Prevention processes are
used to remove sources of
error injection.
Improvement is a continual
process.

The most extensive
invesiment and usage was
at Fujitsu. Each company
has a weli-established tool
set to support change
management, coding, and
product builds. All make
investments in automated
tools for testing. HP uses
their own product during
development work.

The culture of the company
and the formality of the
development processes are
tightly linked.

It is used by the mature
organizations in the
companies. Post-mortems
are now a common and
high-profile activity in
Microsoft. Group continuity
appears to be necessary for
this to be effective. They
are working to get more
sharing and learning acrcss
groups.

Workstation based networks
are used by both. Source
code management tools are
utilized with a variety of
languages and linkers
employed. Each attempts
to use their product while it
is going through
development. Object
Oriented programming is
not being used for major
projects.

The cuiture of the company
and the formality of the
development processes are
tightly linked. Both
companies are finding the
need to add structure to
their development
processes and have been
continually doing that.

Even though there are a number of differences between the "established" and
"new entrant" companies, there are an even larger number of similarities. Each

company is at a different stage of organization evolution, and the processes

175



they use to develop products are tightly linked to the stage in the evolution.
Microsoft is a very interesting case to look at due to it being a single case that
captures the evolution companies go through when moving from immature to
mature processes. The movement is forced by internal and customer demands,

and how an organization reacts to the pressure for movement has a significant
effect on future company success.

176



Endnotes

1. Boehm, B. W. and Papaccio, P. N., "Understanding and Controlling
Software Costs." IEEE Transactions on Software Engineering, Vol. 14,
No. 10, (October 1988), 1462-1477.

2. Boehm, B. W., "Improving Software Productivity." Computer, (September
1987), 43-50.

3. Weber, C.V., Paulk, M.C., Wise, C.J., and Withey, J.V., "Key Practices of
the Capability Maturity Model," Software Engineering Institute, CMU/SEI-
91-TR-25, 1991.

4. Cusumano, Michael, Japan's Software Factories (New York: Oxford
University Press, Inc., 1991).

5. Paulk, M.C,, Curtis, B., Chrissis, M.B., Averill, E.L., Bamberger, J., Kasse,
T.C., Konrad, M., Perdue, J.R., Weber, C.V., Withey, J.V., "Capability
Maturity Mode! for Software”, Software Engineering Institute, SEI-91-TR-
24, 1991.

6. Cusumano, Michael, Japan's Software Factories (New York: Oxford
University Press, Inc., 1991).

7. Ibid

8. Paulk, M.C,, Curtis, B., Chrissis, M.B., Averill, E.L., Bamberger, J., Kasse,
T.C., Konrad, M., Perdue, J.R., Weber, C.V., Withey, J.V., "Capability
Maturity Mudel for Software", Software Engineering Institute, SEI-91-TR-
24, 1991.

9. The description in this paragraph comes from a paper created for a class at
MIT Sloan School of Management by Cynthia Schuyler titled “The
Software Development Process - A Comparison: Toshiba vs. Digital
Equipment”, December 11, 1987.

10. Ibid.

11. The flow of the discussion and some details in this chapter are from the
book Japan’s Software Factories by Michael Cusumano. Details in the
up-front description of the Life Cycle Mode! are based on a section of the
book An Integrated Approach to Software Engineering by Pankaj Jalote.

12. The description in this section is based on a section of the book An
Integrated Approach to Software Engineering by Pankaj Jalote.

177



13

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

. The up-front description of the Waterfall Life Cycle is based on a section of
the book Software Systems Engineering by Andrew P. Sage and James
D. Palmer.

Royce, W. W., "Managing the Development of Large Software Systems:
Concepts and Techniques," Proceedings of IEEE WESCON, pp. 1-9,
1970.

Jalote, Pankaj, An Integrated Approach to Software Engineering (New York:
Springer-Verlag, 1991)

Ibid.

Sage, Andrew P. and Palmer, James D., Software Systems Engineering
(New York: John Wiley & Sons, Inc., 1990)

Ibid.

Brooks, Frederick P., The Mythical Man-Month: Essays on Software
Engineering (Reading, Mass.: Addison-Wesley, 1975).

Brooks, Frederick P., "No Silver Bullet: Essence and Accidents of Software
Engineering", Information Processing ‘86, 1986.

This section is based on information obtained from discussions with Barbara
Kolkhorst, IBM Federai Application Development Consultant, in January
and April, 1993; externally published articles; internal IBM documents:
and the 1992 IBM Annual Report.

This section is based on information obtained through interviews primarily
with 1BM Application Business Systems employees Dick Hedger,
Manager of Quality Technology, Dave Amundson, Manager of
Development Quality Process Technology, and Steve Kan, a member of
Development Quality Process Technology, on March 16, 1993; externally
published articles; internal iBM documents; and the 1992 IBM Annual
Report.

This section is based on information from the book Japan's Software
Factories by Michael Cusumano and Datapro information regarding
Fuijitsu's products.

This section is based on information obtained through interviews with
Hewlett-Packard employees Dave Snow, Manager of Engineering
Systems for the Commercial Systems Division; MaryAnn Betts, member
of Group Process and Technology for Computer Systems Organization:
Doug Herda, Manager of MPE/iX Process and Tools Project Team for

178



the Commerciat Systems Division; and Cathrin Callas, Manager of
Productivity and Quality for the Open Systems Software Division. The
inteiviews were held January 24, 1993.

25. This data was compiled and pubiished by Competitive Resource Center of
the International Data Corporation, Framingham, MA.

26. This section is based on information obtained through an interview on
March 15, 1993 with David Moore, Director of Development and current
Director of Quality Assurance for Microsoft.

27. Gill, Geoffrey K., "Microsoft Corporation: Office Business Unit", Harvard
Business School Case 9-691-033, Boston, 1990.

28. Interview with David Moore, Director of Development and current Director of
Quality Assurance at Microsoft, March 17, 1993.

29. "Soft Lego", Scientific American, January 1993, and "Object Oriented
Technology; Where Microsoft meet Berlitz", InformationWeek, March 1,
1993.

30. This section is based on information obtained through interviews with Beth
Macy, Director of Development for DOS Spreadsheets, on April 16, 1993,
and Rich Diephuis, Director of Development for Lotus Notes, on April 14
& 16, 1993.

179



Bibliography

Brooks, Frederick P., "No Silver Buliet - Essence and Accidents of Software
Engineering”, Information Processing '86, 1986.

Brooks, Frederick P., The Mythical Man-Month: Essays on Software
Engineering (Reading, Mass.: Addison-Wesley, 1975).

Cusumano, Michael, Japan's Software Factories (New York: Oxford University
Press, Inc., 1991).

Humphrey, Watts S., Managing the Software Process (Reading, MA: Addison-
Wesley Publishing Company, Inc., 1989).

Ince, Darrel and Andrews, Derek, The Software Life Cycle (London:
Butterworth & Co, 1990).

Jalote, Pankaj, An Integrated Approach to Software Engineering (New York:
Springer-Verlag New York Inc., 1991).

Paulk, M.C., Curtis, B., Chrissis, M.B., Averill, E.L., Bamberger, J., Kasse, T.C.,
Konrad, M., Perdue, J.R., Weber, C.V., Withey, J.V., "Capability Maturity
Model for Software", Software Engineering Institute, SEI-91-TR-24, 1991.

Ramamoorthy, C.V., et al., "Software Engineering: Problems and Perspectives,”
Computer, October 1984, p. 205.

Royce, Winston W., "Managing the Development of Large Software Systems,"
Proceedings of IEEE Wescon, August 1970.

Sage, Andrew P. and Palmer, James D., Softwaie Systems Engineering (New
York: John Wiley & Sons Inc,, 1990).

Schuyler, Cynthia, "The Software Development Process: A Comparison --
Toshiba vs. Digital Equipment”, unpublished paper at M.I.T. Sloan Schoo!
of Management for the course, "Japanese Technolcgy Management
(15.940), December 11, 1987.

Sulack, Richard A., "Advanced Software Engineering Management Core
Competencies", presentation at Spring 1993 COMMON Meeting,
ASEMTECH, Inc., 1993.

Thayer, Richard, "Modeling a Software Engineering Project Management

180



System," Ph.D. dissertation, University of California at Santa Barbara,
1979.

Weber, C.V., Paulk, M.C., Wise, C.J., and Withey, J.V., "Key Practices of the

Capability Maturity Model," Software Engineering Institute, CMU/SEI-91-
TR-25, 1991.

181



