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Abstract

The Vehicle Routing Problem with Time Windows (VRPTW) has been widely studied in
the Operations Research (OR) literature given its increasingly widespread applications, rang-
ing from school bus scheduling to packages delivery. In the last decades, and in large part
due to the surge in e-commerce and shortened promised lead times, the scale of the highly
constrained VRPTW instances encountered in real-world applications has significantly in-
creased. Simultaneously, various Machine Learning (ML) methods have been developed to
tackle combinatorial problems and to leverage complex data structure, but little research
has been done on applying these techniques to the VRPTW. In light of this research gap,
our thesis develops a process to solve large-scale VRPTW without classical OR routing by
proposing a two-stage algorithm. In the first stage, we design a clustering algorithm lever-
aging Optimal Classification Trees (OCT), which aims at dividing customers into smaller
subsets. In the second stage, we present an actor-critic Reinforcement Learning (RL) ap-
proach to solve the VRPTW on these smaller customers clusters. Subsequently, we explore
the interactions between ML and OR and develop a framework to overcome the difficulties
linked to the differences between the train and test sets, as well as the adversity created
by the OR algorithm. We also study the generalization limitations of RL methods. Results
show that the clustering approach is competitive with regards to a k-means-based clustering,
yielding improvements up to 5% in terms of number of vehicles, and that a RL approach
can successfully solve medium-size VRPTW instances, providing optimality results similar
to state-of-the-art industrial solvers.

Thesis Supervisor: Matthias Winkenbach
Title: Research Scientist
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Chapter 1

Introduction

1.1 Background

The Vehicle Routing Problem (VRP) is one of the most studied combinatorial problem. It
consists in optimally serving from a fixed depot a set of customers with known demand
while minimizing the total cost. It was first introduced by Dantzig and Ramser in 1959

in Dantzig and Ramser (1959), who proposed a simple matching-based heuristic to route
gasoline delivery trucks. Since then, a large part of the OR community has been devoted
to this problem which naturally arises in a large variety of practical applications. This
trend has been reinforced by the explosion of consumer direct delivery in the beginning of
the century. As an example of this explosion, UPS ground delivered around 11.5 million
packages in 19931, against around 5.5 billion packages in 20192.

Many variations were derived from the VRP. They incorporate real-world constraints to
the initial VRP. A few examples of these variants include the Heterogeneous Fleet Vehicle
Routing Problem (HFVRP) (Gendreau, Laporte, Musaraganyi, & Taillard 1999), in which
the fleet consists of different vehicle types, the Vehicle Routing Problem with Simultaneous
Pickup and Delivery (VRPSPD) (Berbeglia, Cordeau, Gribkovskaia, & Laporte 2007), in
which customers have both a delivery and a pickup demand, and the Multi-depot Vehicle
Routing Problem (MDVRP) (Tillman 1969), in which more than one depot are considered.
Many more extensions of the VRP exist: in the rest of this Thesis we will focus on the
VRPTW (Schrage 1981), in which customers have specific time windows during which they

1https://pressroom.ups.com/pressroom//about/HistoryStackList.page?
2https://pressroom.ups.com/pressroom/ContentDetailsViewer.page?ConceptType=

FactSheets&id=1426321563187-193
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have to be served by a vehicle. Time windows arise naturally in many industrial problems,
such as package delivery or school bus routing (Knight & Hofer 1968, Madsen 1976, Pullen
& Webb 1967, Toth & Vigo 2002), and often lead to a hierarchical bi-level objective: first
minimizing the number of vehicles, second minimizing the total distance traveled. The
rationale behind this objective is that the labor cost, corresponding to how many drivers
and thus vehicles are needed, is often the driver of the total cost, rather than the vehicle
cost per mile or other cost components.

This thesis aims at combining Optimization and ML techniques to tackle the VRPTW.
These two fields have closely been interacted with each other for a few decades, and scientific
advances of each one have been applied to the other one. Given the high combinatorial
dimension of routing problems and the recent ML success in combinatorial optimization,
ML techniques are promising candidates to be combined with OR algorithms to help the
later reduced their search space and improve their heuristics. By learning decisions and
latent structure ML methods provide additional information to OR algorithm.

1.2 Operations Research Applications in Machine Learn-

ing

OR specific techniques have been widely applied to enhance ML methods, both in terms of
convergence speed and optimality. Many ML models can be seen as optimization problems
and therefore have benefited from the OR work performed in these subjects. Regression,
classification and clustering models are among the most well-known ML models directly
derived from optimization problems. For example, a Mixed Integer Programming (MIP)
formulation is used to cluster a set of points while removing outliers in Bertsimas and Shioda
(2007), while a Mixed Integer Quadratic Programming (MIQP) formulation is used to take
into account sparsity, features co-linearity and robustness in Bertsimas and King (2016). We
refer the reader to Gambella, Ghaddar, and Naoum-Sawaya (2019) and Sra, Nowozin, and
Wright (2012) for an extensive review.

Optimization techniques have also been naturally incorporated into ML and have proved
themselves to be powerful tools. They span a wide area of ML techniques. Numerous
ML problems are naturally formulated as non-convex optimization problems (Allen-Zhu &
Hazan 2016, Jain, Kar, et al. 2017) such as Matrix Completion or Topic Model, or as convex
optimization problems such as Regression (Bubeck et al. 2015). Therefore, advances in
these fields have led to strong improvements in terms of convergence and performance in

16



ML problems. More specifically, augmented Lagrangian methods have been used to tackle
constrained Maximum A Posteriori (MAP) Inference (Martins, Figueiredo, Aguiar, Smith, &
Xing 2011) or nuclear norm minimization (Yang & Yuan 2013); cutting planes methods have
been applied to Bayesian network learning (Cussens 2012) or Support Vector Machine (SVM)
(Franc & Sonnenburg 2008); interior point methods have lead to significant advances in large
scale L1 regularized logistic regression (Koh, Kim, & Boyd 2007); robust optimization has
brought a new understanding to regularization in regression and classification (Bertsimas,
Brown, & Caramanis 2011) as well as to adversarial training (Shaham, Yamada, & Negahban
2018). We refer the reader to Sra et al. (2012) for a more detailed review.

1.3 Machine Learning Applications in Combinatorial Op-

timization

A recent trend both in the OR and ML communities has been to apply ML to solve com-
binatorial optimization problems. Most combinatorial optimization problems, including the
VRPTW, are hard to solve, from a theoretical point of view (NP-hard) and from a practical
point of view (techniques computationally expensive). Therefore, ML is often seen as a good
candidate to tackle these problems. Two main ways of doing so have been explored: using
ML to replace heavy computation by a fast approximation, and using ML to explore search
space and learn new policies. The firs approach relies on supervised learning and is also
called imitation learning, while the second approach relies on unsupervised learning and is
also known as experience learning (Bengio, Lodi, & Prouvost 2018). Examples of imitation
learning include learning the promising cuts in a cutting planes methods (Baltean-Lugojan,
Bonami, Misener, & Tramontani 2018), learning the promising variables for branching poli-
cies in MIP (A. M. Alvarez, Louveaux, & Wehenkel 2014, 2017, Lodi & Zarpellon 2017),
learning the promising nodes in branch and bounds methods (H. He, Daume III, & Eisner
2014), learning pruning heuristics (Khalil, Dilkina, Nemhauser, Ahmed, & Shao 2017), learn-
ing the relevance of choosing to linearize (Bonami, Lodi, & Zarpellon 2018), and learning the
active constraints of an optimal solution (Bertsimas & Stellato 2018). Examples of experience
learning include using RL to learn branching strategy (Khalil, Le Bodic, Song, Nemhauser, &
Dilkina 2016), to learn variable selection policies (Lederman, Rabe, Lee, & Seshia 2018), to
learn solving combinatorial problems such as the Traveling Salesman Problem (TSP) (Bello,
Pham, Le, Norouzi, & Bengio 2016, Joshi, Laurent, & Bresson 2019), the Boolean satisfiabil-
ity problem (SAT) and the Constraint Satisfaction Problem (CSP) (Amizadeh, Matusevych,
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& Weimer 2018, 2019). For a more thorough review of ML applications in OR problems, we
refer the reader to Bengio et al. (2018).

1.4 Research Goals and Contributions

This thesis explores the potential of integrating ML methods to optimization algorithms in
solving large-scale VRPTW. The goal of this thesis is threefold.

First, this thesis aims at building a ML classification model predicting the number of
vehicles required to serve a set of customers. To the best of our knowledge, this problem
has not yet been addressed in the literature. We explore three different approach to solve
this problem. We provide customer features at a spatially aggregated level to leverage a
tree-based method. We see this problem as an image classification problem by spatially
dividing the instance in pixels and designing pixel-level features which aggregates the pixel
information. We also explore a graph neural network approach in which we model each
customer as a node, and the distance between two customers as a specific type of edges.

Second, this thesis seeks to propose a clustering algorithm which leverages the classifi-
cation knowledge previously developed within an optimization framework to minimize the
total number of vehicles needed. Within this framework, a cluster corresponds to a set of
customers and is labeled with the number of vehicles serving it. The optimization frame-
work builds on this additional information available at the cluster level to minimize the total
number of vehicles. We develop a set covering approach in which the cost of each cluster
corresponds to its predicted number of vehicles. Here, our first main contribution is an in-
novative algorithm mimicking a column generation approach, which relies on classification
trees to generate clusters of negative reduced cost. We propose a set of heuristics to gen-
erate new clusters by leveraging not only the prediction of the classification tree but also
its mathematical constraints. Our second main contribution is the creation of a framework
to generate training data whose distribution is similar to the distribution of the solution of
the clustering algorithm. We provide a feedback loop between the data generation and the
clustering algorithm, which improves the accuracy of the clusters create by the clustering
algorithm.

Third, this thesis develops a RL model solving the VRPTW, and explores the impor-
tance of the training data as well as the input embedding. We extend a previous work by
Nazari et al. (2018b) to solve the VRPTW, with results similar to the state-of-the-art solver
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Google OR Tools3 on small instances. We explore the influence of the training data used
on the optimal policies found by the RL algorithm and demonstrate the relevance of RL in
industrial applications. We investigate the importance of input embedding by proposing a
node embedding based on transfer learning.

1.5 Outline

The rest of this document is structured as follows. Chapter 2 reviews the related literature.
Given the large span of this thesis, the literature review is decomposed into three main parts.
First, an overview of the VRPTW literature is provided, with an emphasis on heuristics
tackling large-scale problems. Second, we present ML methods applied to routing problems,
with a larger focus on classification methods. Third, we provide an overview of RL methods
and their applications to routing problems. Chapter 3 presents three classification models
predicting the number of vehicles needed to serve a set of customers. We compare three very
different classification approaches, relying on Trees and Deep Learning, and explore their
differences in terms of performance. Chapter 4 proposes a clustering algorithm to overcome
scalability issues and provide a division into smaller set of stops near-optimal with respect
to the routing objective. While a divide and conquer approach is often used to provide
an initial solution to large-scale VRPTWs, an inherent difficulty is to find meaningful sub-
problems from a routing perspective. We address this issue by leveraging a prediction model
to infer the number of routes required on each sub-problem. Chapter 5 focuses on routing
algorithms using RL frameworks. Leveraging recent advances in the literature, we propose
an unsupervised RL method to solve the VRPTW, overcoming the constraints associated
with VRPTW. It also investigates the importance of the training data distribution and
the application of this framework to industrial instances. In Chapter 5.4.3, we conclude by
mentioning shortcomings of our research and proposing future research directions.

3https://developers.google.com/optimization
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Chapter 2

Literature Review

2.1 Existing Literature on the VRPTW

We aim at designing an innovative algorithm integrating ML techniques in an optimization
based framework to solve large scale VRPTW. This section presents the existing approach
tackling VRPTW and large scale VRPTW.

2.1.1 Exact Approaches to Solve the VRPTW

Being extensions of the TSP, the VRP and its variants are NP-hard (Lenstra & Kan 1981).
In the case of the VRPTW with a fixed number of vehicles, Savelsbergh (1985) proves that
even finding a feasible solution is an NP-hard problem. Therefore, exact approaches to solve
the VRPTW are computationally expensive and can only tackle instances of less than a
hundred customers. Despite the VRP complexity, numerous exact solution methods have
been proposed. Toth and Vigo (2002) classify them into three approaches: Branch and Cut
and Price, Branch and Cut, and reduced set partitioning. The Branch and Cut and Price
approach for the VRPTW was introduced by Kohl, Desrosiers, Madsen, Solomon, and Soumis
(1999) and corresponds to a Branch and Bound in which the linear relaxations are solved
by column generation and cutting planes are generated to strengthen them. The pricing
subproblem obtained is a Shortest Path Problem with Resource Constraint (SPPRC) along
the underlying network of customers, as defined in Irnich and Desaulniers (2005). The most
recent contributions involve labelling algorithms (Boland, Dethridge, & Dumitrescu 2006,
Chabrier 2006, Feillet, Dejax, Gendreau, & Gueguen 2004, Irnich & Desaulniers 2005) and
heuristics (Desaulniers, Lessard, & Hadjar 2006, Feillet, Gendreau, & Rousseau 2007). The
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Branch and Cut approach for the VRPTW was first introduced by Bard, Kontoravdis, and
Yu (2002) and consists of a cutting plane method within a Branch and Bound algorithm.
Infeasible cuts often exploit infeasible paths due to time windows and capacity constraints
(Bard et al. 2002, Lysgaard 2006) or rely on subtours elimination (Kallehauge, Boland,
& Madsen 2007). The reduced set partitioning approach was first developed in Baldacci,
Mingozzi, and Roberti (2011). It uses a set partitioning formulation in which routes are
dynamically generated via a column generation and relies on the fact that any integer variable
whose reduced cost is larger than the difference between an upper bound and a lower bound
can be discarded in the optimal solution. Therefore, the focus is on finding good upper and
lower bounds, which can be determined by a good heuristic solution and a solution of the
dual of the linear relaxation, respectively. For an extensive review of exact methods to solve
the VRPTW, the reader is referred to Baldacci, Mingozzi, and Roberti (2012).

2.1.2 Heuristic Approaches to Solve the VRPTW

Given the computational cost of exact methods to solve the VRPTW, heuristics are widely
employed in industry to quickly find relatively high quality feasible solutions on large in-
stances. Routing heuristics are often decomposed in three classes: route-construction heuris-
tics, route-improvement heuristics, and meta-heuristics. These classes are often combined to
create more powerful heuristics. Route construction heuristics select customers in a sequen-
tial way to create feasible solutions. One of the first construction based heuristics for the
VRPTW was proposed in Solomon (1987), based on the well-known saving heuristics from
Clarke and Wright (1964) developed for the VRP. It combines customers based on how much
is saved when they are served within the same route compared to individually serving them.
Time based heuristics, in which customers are first clustered based on their time windows
and then inserted in the route, are also proposed in Potvin and Rousseau (1993), Solomon
(1987) and Russell (1995). These construction heuristics usually provide poor quality solu-
tions compared to more sophisticated heuristics and are often used to build an initial feasible
solution, which is later improved. Route-improvement heuristics are based on local-search
operators, which modifies the current solution by performing small local changes and up-
date the solution based on feasibility and cost functions. One important question for these
local-search operators concerns how local and small these changes should be. This question
is tackled by the neighborhood concept. The neighborhood of a solution is defined by all the
solutions which can be reached from it by applying one of the local search operators. For the
VRPTW, most of the operators consist of customers swap, i.e., exchanging two costumers
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within a route, partial routes combination, i.e., combining the beginning of a route with the
end of another one, and customers removal and insertion, i.e. removing a customer from a
route and inserting it in another route. Bräysy and Gendreau (2005) provide a thorough
overview of most VRPTW neighbours considered. The operators used are both inter-routes,
i.e., performing changes within the same route, and intra-routes, i.e. performing changes
across multiple routes (Christofides & Beasley 1984, Osman 1993, Potvin & Rousseau 1995,
Schulze & Fahle 1999, Solomon & Desrosiers 1988). One of the drawbacks of these operators
is that given the limited search space, the solution may be trapped in a local minimum. To
overcome this, larger neighborhoods which can be reached by operators relaxing and then re-
optimizing the solution have also been widely used in VRPTW heuristics. The most common
one is the Large Neighborhood Search (LNS) framework presented in Shaw (1998), leverag-
ing destroy and repair operators used repeatedly. Combined with Simulated Annealing (SA)
techniques (Kirkpatrick, Gelatt, & Vecchi 1983), it has been the base of the most successful
heuristics to solve the VRPTW (Pisinger & Ropke 2007, Prescott-Gagnon, Desaulniers, &
Rousseau 2009). A key point of these heuristics is the evaluation of the objective function
and of the feasibility of the current solution. To efficiently tackle these key points, tech-
niques involving pre-processing, such as distance computation, updated mechanism, such as
memorizing infeasible customers groups, and filtering to decrease the search space, have been
developed, as described for example in Hashimoto and Yagiura (2008), Nagata, Bräysy, and
Dullaert (2010) and Irnich (2008). For an extensive review of heuristic methods, the reader
is referred to Bräysy and Gendreau (2005), Dixit, Mishra, and Shukla (2019) and Archetti
and Speranza (2014).

Compared to exact approaches, heuristics approaches have greatly increased the size of
tractable VRPTW. Following the initial benchmark instances of 100 customers developed in
Solomon (1987), larger instances have been later reported, such as Gehring and Homberger
instances (Gehring & Homberger 1999) with up to 10, 00 customers, and Kytöjoki, Nuortio,
Bräysy, and Gendreau (2007) instances of 24, 000 customers (2007). Given the large scale
nature of many industrial systems, such as transportation and logistics systems, solving
large scale VRPTW instances is of major interest. In many applications, scalability and
short computation time of the approaches are integral part of successful methods. Since
the beginning of the century, large-scale problem instances results have been continuously
improved. However, many of the solution approaches fail to provide a good compromise
between solution quality and speed, and many are specifically build for targeted instances
so do not generalize well (Gendreau & Tarantilis 2010). Gendreau and Tarantilis (2010)
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divide the approaches tackling large scale VRPTW into two main categories: meta-heuristic
algorithms and parallel and cooperative search methods.

Following the success of meta-heuristics to solve the VRPTW, many meta-heuristics have
been developed to tackle larger instances. Compared with smaller size VRPTW, the key
point of these heuristics is their ability to efficiently handle large neighborhood space, to
quickly converge towards a good feasible solution within the neighborhood considered, and
to successfully explore the solution space. Many approaches can be decomposed into two
distinct steps: first reducing the fleet size and then reducing the distance, with potential
iterations between the two. They often leverage and improve techniques used for classical
VRPTW: iterative variable neighborhood descent strategies (Bräysy 2003, Bräysy, Hasle,
& Dullaert 2004, Kytöjoki et al. 2007), LNS and SA (Chiang & Russell 1996, Pisinger &
Ropke 2007), genetic algorithms (Nagata & Bräysy 2009, Ostertag, Doerner, Hartl, Taillard,
& Waelti 2009), and iterative local searchs (Hashimoto, Yagiura, & Ibaraki 2008, Ibaraki
et al. 2008), among many others. A different type of approaches consists in first creating
smaller independent sub-problems, and second combining them and performing improvement
procedures (Qi, Lin, Li, & Miao 2012). The complexity of these approaches often lies in the
clustering step. A large literature has been devoted to clusters based on customers’ features,
with an important focus on spatial characteristics. The sweep-based heuristics (Gillett &
Miller 1974, Solomon 1987) cluster customers based on their polar coordinates. Spatial
partitioning techniques have been developed to divide customers based on an underlying
density distribution (Daganzo 1984, Newell & Daganzo 1986, Ouyang 2007), on a general
assignment problem (M. L. Fisher & Jaikumar 1981, Ganesh & Narendran 2007), on adaptive
decoupling based on previous solutions (R. Bent & Van Hentenryck 2007), or based on p-
median problem (Ostertag, Doerner, & Hartl 2008, Taillard & Voss 2002). Some approaches
incorporate the temporal features of the customers in route-construction heuristics, focusing
on limiting the traveled distance and the waiting time of the vehicles (Dondo & Cerdá 2007,
Tzeng, Huang, & Teodorovic 1997), in adaptive heuristics (R. Bent & Van Hentenryck 2010),
or in partitioning heuristics (Qi et al. 2012) using time geography theory to represent time
and space in the same coordination system.

Due to the high computation burden of solving large scale VRPTW problems, many
approaches intend to leverage computational power in the most effective way, mostly us-
ing parallelization on different threads. Cooperative search methods are methods in which
several algorithms run in parallel and share information to solve an optimization problem
(Crainic & Toulouse 2003, Crainic, Toulouse, & Gendreau 1997). The literature can be
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divided into three ways of using cooperative search methods. First, the approaches which
parallelize operations solely to speed-up the whole process. Second, the approaches which
divide the set of decision variables into disjoint categories and use parallelization and co-
operation to solve each of these subsets. In particular, it can be used to tuned specific
parameters (Gehring & Homberger 1999, 2002, Homberger & Gehring 2005) or to explore
specific features subset, updating the pool of solution at the end of each thread (Crainic,
Crisan, Gendreau, Lahrichi, & Rei 2009). Third, the approaches which leverage different
algorithms and solution space explorations. Differently exploring the solution space can be
done using a pool of initial solutions, asynchronously updated by the different improvement
algorithms (Jin, Crainic, & Løkketangen 2012, Le Bouthillier & Crainic 2005, Le Bouthillier,
Crainic, & Kropf 2005, Zhu, Yang, & Wu 2012), or by using multi-stage methods using
different operators (Barbucha 2014).

2.2 Prediction and Classification in Routing Problems

Many approaches have been developed to tackle the VRPTW and sometimes more specif-
ically large-scale VRPTW, as presented in sections 2.1.2. However, very few leverage ML
models to solve the VRPTW, and none, to the best of our knowledge, leverages classification
and prediction techniques to estimate the number of vehicles. The methods relying on ML
techniques can be divided into two categories: the ones using ML models to increase the
speed and optimality of optimization algorithms, and the ones using ML to fully design new
policies. The second category has been more developed under the form of RL applied to
VRP and an overview is provided in Section 2.3. Here, we focus on the first category and
particularly supervised classification techniques.

2.2.1 Leveraging Machine Learning Techniques to Increase the Speed

and Efficiency of Routing Algorithms

A few methods incorporating ML techniques in heuristics have been developed to tackle the
VRP and the VRPTW. They can roughly be divided into two categories.

The first ones aim at solving recurrent VRPTW problems on similar customers dataset.
Such problems are faced by postal services, which have to daily deliver mails to customers
following roughly the same distribution over days, weeks or seasons. They leverage prediction
in mainly two fields: demand and congestion, to improve the overall routing optimization.
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Bosman and La Poutré (2006) exploit demand prediction to enhance the performance of
an evolutionary algorithm tackling online VRPTW optimization. The demand prediction is
computed under the form of a probabilistic model enabling the evolutionary algorithm to take
into account the current demand but also the potential future one. Bosman and La Poutré
(2006) show the benefit on integrating this prediction within the heuristic, compared to the
more classical dynamic optimization techniques. Markovic, Cavar, and Caric (2005) also rely
on demand prediction, but couples data mining to stochastic optimization to create a-priori
routes to be later optimized as the demand reveals itself. Other approaches (R. W. Bent &
Van Hentenryck 2004, Ichoua, Gendreau, & Potvin 2006, Mitrović-Minić & Laporte 2004)
integrate future demand predictions within a time window strategy heuristics. Based on the
current environment and the predicted demand, they define a time window during which the
vehicle does not move as a new demand is expected to arrive nearby. Rather than demand
prediction, Kaysi, Ben-Akiva, and Koutsopoulos (1993) focus on congestion prediction using
statistical time series methods to optimize the real-time routing.

The second ones aim at leveraging ML techniques to tune meta-heuristics. Ventresca,
Ombuki-Berman, and Runka (2013) design a clustering approach to identify similar struc-
tures within different VRPTW using information theoretic measures. Then, they predict
on each cluster the performance of genetic algorithms. Based on this knowledge, they are
able to tune the choice of search operators and parameters for each VRPTW. In a simi-
lar approach, Kadaba, Nygard, and Juell (1991) tune the models to be used based on the
VRPTW problem description by using neural network to learn previous problem solutions.
Based on this knowledge, they were able to quickly build partial initial solutions and tune
genetic algorithms improving these initial solutions. Slightly different from the previous
works, Alabas-Uslu and Dengiz (2011) propose a self-adaptive local search approach which
learns its acceptation parameters throughout the local search iterations.

2.2.2 Classification Methods Related to Set Classification

Contrary to previous works using ML techniques as either a pre-processing step or a tuning
tool, we aim at designing a clustering algorithm leveraging information on the final routing
results, under the form of number of vehicles prediction. Since we are interested in the
number of vehicles serving a certain set of customers, we approach this prediction problem
as a classification problem, in which each set of customers belongs to one class whose label
corresponds to the number of vehicles required to serve it. We provide below an overview of
the main classification techniques used in ML, with an emphasis on trees.
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Supervised classification problems consist in finding a classification function 𝑦, which
assigns to every data point 𝑥 a label 𝑙 among a set of finite labels ℒ. The quality of the
classification function is often measured by the accuracy reached on the test set, a set of data
points for which the actual class is known. The accuracy corresponds to the percentage of
correct labels predicted by 𝑦. Classification tasks have many applications, including but not
limited to data mining (Hand 2007, X. Wu et al. 2008), protein interactions (Bock & Gough
2001), cancer diagnosis (Mangasarian, Street, & Wolberg 1995), machine vision (Decoste &
Schölkopf 2002), revenue management (Hendler & Hendler 2004) or bankruptcy prediction
(Min & Lee 2005).

Due to their extensive applications, supervised classification problems have been exten-
sively studied in the literature, and numerous classification methods have been proposed.
According to Kotsiantis, Zaharakis, and Pintelas (2007) and Singh, Thakur, and Sharma
(2016), they can be roughly divided into four main categories: linear classifiers, nearest
neighbors methods, deep neural networks, and classification trees. Linear classifiers assume
the classification function to be linear: 𝑦(𝑥) = 𝑤𝑇𝑥+𝑏, and seek to determine the weight vec-
tor 𝑤 and the offset vector 𝑏. Fisher (1936) developed the first attempt of a linear classifier
to solve an iris classification problem, and led the path for popular linear classifiers, such as
Logistic Regression (LR) and SVM. LR can be seen as a log-likelihood maximization where
the prior is given by the sigmoid function. SVM can be interpreted as finding an hyperplane
dividing the observations according to their class, so that the number of wrongly classified
observations is minimized and the margin of the hyperplane is maximized. Both methods
can be extended to tackle non-linear features through the use of kernel functions. Kernel
functions allow far more complex boundaries than just linear boundaries by projecting the
observations in space of higher dimension (Alvarez, Rosasco, Lawrence, et al. 2012, Amari
& Wu 1999). For example, they can transform a point 𝑥 into 𝑥2, 𝑥3, . . . 𝑥𝑛, hence allowing
for polynomial boundaries. We refer the reader to Hosmer Jr, Lemeshow, and Sturdivant
(2013), and Cristianini, Shawe-Taylor, et al. (2000) for more details about LR and SVM
methods, respectively.

Contrary to linear classifiers, nearest neighbor methods are non-linear methods based on
the distances between data points. The original k-nearest neighbors method introduced by
Cover and Hart (1967) classifies a data point 𝑥 based on the classes of the 𝑘 closest data
points. Usually, the label of 𝑥 is determined by the most frequently present label within these
𝑘 points. While the nearest neighbors methods are easily interpretable: a point is highly
likely to have the same label than the most other similar points, the challenge lies in how to
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measure similarity between points. Given their strong impact on performances, numerous
distance metrics have been developed: Euclidean distance, edit distance (minimum number
of symbols to change between two chains of symbols) or even distance metrics computed on
more complex structures such as graphs (Hastie & Tibshirani 1996, Wagner & Fischer 1974,
K. Zhang & Shasha 1989).

The concept of neural networks has revolutionized many ML applications, including clas-
sification. Neural networks techniques achieve state of the art results on most classification
problems, and have been benchmarked on numerous popular datasets, such as: Cifar dataset1

(Kolesnikov et al. 2019), MNIST dataset2 (Kalganova, Byerly, & Dear 2020), Breast Cancer
dataset3 (Benbrahim, Hachimi, & Amine 2019), and others. The most striking performances
of neural networks have been observed in images classification (S. Li et al. 2019, M. Tan
& Le 2019, Wistuba, Rawat, & Pedapati 2019), language classification (Montavon 2009),
text classification (Lai, Xu, Liu, & Zhao 2015, X. Zhang, Zhao, & LeCun 2015) or graphs
classification (Lee, Rossi, & Kong 2018, M. Zhang, Cui, Neumann, & Chen 2018). To solve
classification tasks, a neural network seeks to minimize a loss function, usually a cross en-
tropy function. Its last layer is usually of the size of the number of classes, and each node
indicates the probability of belonging to the corresponding class. The final label corresponds
to the class with the highest probability. The main strengths of neural networks are their
ability to derive and combine complex features. Based on the set of input features, they are
able to perform complex non-linear feature transformations and to combine features at every
layer. Therefore, deep and large neural networks are able to optimize over an extremely large
set of potential features and combinations.

While neural networks are often criticized as sacrificing interpretability over results, clas-
sification trees propose a compromise between accuracy, simplicity and interpretability. The
classifier is seen as a tree, in which each node corresponds to a partition of the space of
features according to a simple equation, of type: 𝑥𝑙 > 𝑏 (Timofeev 2004). Each node can
be seen as a yes/no question, whose answer indicates which branch to follow, until a leaf is
reached. Therefore, the set of leaves induces a partition on the space of features, and the clas-
sifier assigns to any point the most common label of the leaf to which it belongs. The most
well-known classification tree method is named Classification and Regression Tree (CART),
developed by Breiman, Friedman, Stone, and Olshen (1984). A CART classifier is built in
accordance with the following splitting rule: the data should be divided into two parts with

1https://en.wikipedia.org/wiki/CIFAR-10
2https://en.wikipedia.org/wiki/MNIST_database
3http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
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maximum homogeneity. The homogeneity is measured by a so-called impurity function. The
most commonly discussed impurity functions are Gini impurity (Breiman 2017), information
gain (Quinlan 2014) and variance reduction (Breiman et al. 1984).

So called ensemble methods have been widely used to increase the performance of CART
algorithms (Dietterich 2000). The underlying idea is that the performance of a single clas-
sifier can be improved by combining multiple accurate and diverse classifiers. Among these
methods, boosting, introduced by Freund and Schapire (1995) and Freund, Schapire, et al.
(1996), bagging, introduced by Breiman (1996), and random forests, introduced by Breiman
(2001), have been the most successful. Boosting methods consists in iteratively improving
classifier trees from previously sequentially connected trees. Each iteration attempts to min-
imize the errors of the previous trees, by re-weighting the data on which errors were made. If
the errors are measured by a loss function, which becomes the target to minimize, gradient
descent algorithms can be used, leading to the well-known Gradient boosted decision trees
algorithm (Mason, Baxter, Bartlett, & Frean 2000). Bagging methods consist in randomly
dividing the set of data into a collection of subsets of data. A decision tree is then trained on
each different subset, resulting in a multitude of different trees. The different trees are then
combined by averaging the output or based on the most frequent output. Random forests
are an extension of bagging: in addition to working on random subsets of data, random
forests also consider random selections of features on which to fit a decision tree. Gradi-
ent boosted decision trees and random forests both outperform CART by 2 − 5% on most
ICU classification datasets4, but lose its interpretability. Another approach, called OCT,
to improve the performance of CART algorithms is to interpret a classification tree as the
optimal solution to a MIP (Bertsimas & Dunn 2017). The decision variables of this MIP
correspond to the different coefficients 𝑎, 𝑏 of the equations splitting each node, 𝑥𝑇𝑎 > 𝑏.
Exactly solving this MIP reveals itself to be intractable, therefore, heuristics methods and
relevant warm starts are used to find a solution (Bertsimas & Dunn 2017). One of the bene-
fits of this method is that hyperplane splits are allowed: the node equations can involve more
than one feature. Trees with hyperplane split are called Optimal Classification Trees with
Hyperplane (OCT-H). Bertsimas and Dunn (2017) report that OCT and OCT-H outperform
CART, by 1− 2% and 3− 5% on average over the ICU classification tasks5, respectively. In
addition, OCT maintains a high interpretability, with a small sacrifice made by the OCT-H,
since constraints involving many features are more difficult to parse for humans.

4http://archive.ics.uci.edu/ml/datasets.php
5http://archive.ics.uci.edu/ml/datasets.php
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2.3 Reinforcement Learning Applications in Routing

ML can be divided into roughly three fields: supervised learning, unsupervised learning
and RL. Section 2.2 focuses on supervised learning, i.e., learning from labeled data. At a
high level, this learning process derives specific knowledge from experiments already run.
Unsupervised learning is typically about finding structures hidden in a collection of data.
In this section, we focus on RL,a learning process which occurs by different interactions
with the environment and in which each action results in a reward. An example of RL is
learning for a bakery the number of breads to bake each day so as to maximize the profit,
by iteratively adjusting this number, observing the corresponding profit, and deriving from
it an optimal strategy based on the day of the week.

2.3.1 Introduction to Reinforcement Learning

RL is the problem faced by an agent that must learn behavior through trial-and-error inter-
actions with a dynamic environment. These problems arise in a wide range of fields: games
(Mnih et al. 2015, Silver et al. 2016), robotics (Levine, Finn, Darrell, & Abbeel 2016, Levine,
Pastor, Krizhevsky, Ibarz, & Quillen 2018), vehicle routing (Nazari, Oroojlooy, Snyder, &
Takác 2018a), autonomous driving (Sallab, Abdou, Perot, & Yogamani 2017), drug design
(Popova, Isayev, & Tropsha 2018), and others. As shown in Figure 2-1, RL tackles problems
in which the underlying model is unknown and in which each action impacts the environ-
ment. Its goal is to determine a policy, i.e., which action to take in each state, in order to

Figure 2-1: Decomposition of decision making problems (MIT 6.867, Fall 2019, lecture 21)

obtain the highest reward.
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Formally, an agent observes a state 𝑠𝑡 of its environment at step 𝑡. The agent takes
an action 𝑎𝑡, which impacts the state 𝑠𝑡: the agent transitions to a new state 𝑠𝑡+1. This
transition provides a reward 𝑟𝑡+1 to the agent as feedback. The goal of the agent is to learn a
policy 𝜋 (i.e., a strategy which prescribes an action to take given a state), which maximizes
the expected return 𝑅, which can be seen as a cumulative reward. The optimal policy is
learned through trial and error: the agent only receives the reward 𝑟𝑡 at each discrete step 𝑡.

Approaches to solve RL problems can be divided into three categories: value function
methods (Sutton, McAllester, Singh, & Mansour 2000), policy search methods (Deisenroth,
Neumann, Peters, et al. 2013) and actor-critic methods (Konda & Tsitsiklis 2000), which
combine the two previous methods. Value function methods are based on the value of
being in a given state by estimating the expected return, often denoted state value function
𝑉 𝜋(𝑠) = E(𝑅|𝑆). Some value function methods methods estimate the expected return using
Monte Carlo methods (Lazaric, Restelli, & Bonarini 2008, Sutton & Barto 2018, Thrun
2000). Other value function methods introduce an additional function, the quality function,
also named Q-value, 𝑄𝜋(𝑠, 𝑎) = E(𝑅|𝑠, 𝑎), in which both the initial state 𝑠 and the initial
action 𝑎 are provided. Given 𝑄𝜋(𝑠, 𝑎), the best policy is found by greedily choosing 𝑎, such
that it maximizes the quality function at every step. Therefore, solving RL problems can be
seen as finding 𝑄𝜋(𝑠, 𝑎). Most methods rely on the Bellman equation (Bellman 1954)

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸𝑠𝑡+1 [𝑟𝑡+1 + 𝛾𝑄𝜋(𝑠𝑡+1, 𝜋(𝑠𝑡+1))],

which provides a way of improving the estimation of 𝑄𝜋 by using its current value. Based on
this remark, Q learning (Watkins 1989) and the state-action-reward-state-action (SARSA)
algorithm (Rummery & Niranjan 1994) have been developed. Q-learning sequentially up-
dates the Q value according to the following rule:

𝑄𝑡(𝑠, 𝑎) =

{︃
𝑄𝑡−1(𝑠, 𝑎) if(𝑠, 𝑎) ̸= (𝑠𝑡, 𝑎𝑡),

(1− 𝜖𝑡)𝑄
𝑡−1(𝑠𝑡, 𝑎𝑡) + 𝜖𝑡 [𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾max𝑎′∈𝐴 𝑄𝑡−1(𝑠𝑡+1, 𝑎

′)] if(𝑠, 𝑎) = (𝑠𝑡, 𝑎𝑡),

where 𝑄𝑡 corresponds to the Q-function at time step 𝑡. The rationale behind this update
is that 𝑄𝑡 is updated by the maximal added reward corresponding to the current state and
action (𝑠𝑡, 𝑎𝑡), at a learning rate of 𝜖𝑡 . The convergence of such a sequence has been es-
tablished by Watkins and Dayan (1992) under specific conditions of the sequence 𝜖𝑡. The
SARSA algorithm combines Q learning and the notion of temporal difference (TD) intro-
duced by Sutton and Barto (2018). Contrary to Q-learning in which each observation of each
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step only impacts the next one, in the SARSA algorithm, each observation also impacts all
the previous Q-values, with a decreasing percentage. Therefore, SARSA algorithm updates
the current Q-value based on the most recent observation, but also based on the recently up-
dated Q-values of the previous steps. One of the main drawbacks of value function methods
is their bias. Q-value methods approximate the maximum expected reward of an action 𝑎𝑡

on a specific environment 𝑠𝑡 using the maximum estimated reward of this action. Therefore,
if there is some variance in the distribution over which the expectation is taken, then Q-value
function are highly likely to overestimate the expectation as they consider the maximum of
the estimated values.

Policy search methods do not maintain a value function but directly search for an optimal
policy. Typically, policy are parametrized by a vector 𝜃 belonging to a set of parameters
Θ, such that the space of policies is defined by {𝜋𝜃, 𝜃 ∈ Θ}. 𝜋𝜃 can be seen as a stochastic
function parametrized by 𝜃 which takes as input the current state as well as the previous
states and actions, and outputs a probability distribution over the set of actions. The
parameters 𝜃 are then updated to maximized the expected reward under the current policy
𝜋𝜃 E[𝑅|𝜃]. Given their inherent random nature, the expected rewards are often estimated
using Monte Carlo techniques. Parametrized set of polices are often encoded by neural-
networks: the weight of the neural network corresponds to the parameter 𝜃 of the policy.
In this setting, optimizing the parameters of the policies is equivalent to optimizing the
network. Therefore, powerful techniques such as back-propagation can be used to determine
the optimal policy. For this reason, network-based methods have been the most successful
ones. We detail them in the next sections. Methods that do not rely on neural networks
usually use adaptive heuristics to search for policies, such as evolution strategy (Salimans,
Ho, Chen, Sidor, & Sutskever 2017). Policy search methods usually suffer from high variance,
as a variation in a simple action may completely alter the final results.

Actor critic methods intend to combine value functions with a parametrized policy. The
goal is to learn the Q-value while optimizing for the policy. Figure 2-2 gives an overview of
the interaction between the actor and the critic. At each state, the actor (policy) chooses
the action to perform, while the critic (Q-value) updates itself based on the previous reward
and TD rule. The update of the critic also impacts the actor (policy) as it seeks to maximize
the expected return. Actor-critic methods are very similar to policy search methods, except
that they rely on a learned Q-value. Combining value function methods with policy search
methods leads to a compromise between high variance and high bias (Konda & Tsitsiklis
2000, Schulman, Moritz, Levine, Jordan, & Abbeel 2015).
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Figure 2-2: Overview of the actor critic algorithm, from Sutton and Barto (2018)

2.3.2 Deep Reinforcement Learning

The most successful RL algorithms belong to the family of deep learning algorithms and
rely on parametric approaches. Thanks to their representation learning properties and their
ability to create rich and complex models, neural networks have enabled RL algorithms to
tackle more complex problems at a higher scale, including objects detection, speech recogni-
tion and language translation (Baird III 1993, Bengio, Courville, & Vincent 2013, Pritzel et
al. 2017). The term representation learning properties refers to their ability to learn directly
from high dimensional input, such as images using Convolutional Neural Network (CNN).
In general, neural networks are used to approximate the optimal policy 𝜋*, value function
𝑉 *, Q-value 𝑄*, and advantage function 𝐴* (Williams 1992). The advantage function 𝐴

provides the relative advantage of one action over its alternatives.

Neural networks have been employed in both value function methods and policy search
methods, and therefore also in actor-critic methods. They have greatly increased the scala-
bility of these methods, by either transposing RL techniques into neural networks or using
neural network optimization algorithms, such as back-propagation, to RL algorithms. For
example, the double Q learning method (Hasselt 2010), in which a second estimator pro-
vides a better estimation of the Q-value and therefore reduces the bias, has became scalable
thanks to the re-use of the neural network estimating the first estimator (Van Hasselt, Guez,
& Silver 2016). On the other hand, representation learning enables to successfully learn
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action embedding over a large set of actions, as shown by Dulac-Arnold et al. (2015), as it
speeds up the convergence of the algorithm. Williams (1992) introduces the ’REINFORCE’
rule which allows neural network to use back-propagation to evaluate stochastic objective. It
has been particularly useful in policy search methods to replace the Monte Carlo evaluation.
Another scheme to overcome taking the gradient of the expectation has been developed by
Kingma and Welling (2013), and is known as the “reparameterisation trick”. For example,
it allows to learn stochastic policies to decide where to look within an image to classify an
object (Mnih, Heess, Graves, et al. 2014). Actor critic methods benefit from improvements
in both value function methods and policy search methods. They also benefit from parallel
computation: methods for training networks through asynchronous gradient updates have
been developed to speed up the training (Dean et al. 2012, Recht, Re, Wright, & Niu 2011).
A set of parameters is read and updated in an asynchronous way by multiple copies of the
same neural network: segments from the trajectories of multiple agents are collected and
processed together in a batch (Schulman, Wolski, Dhariwal, Radford, & Klimov 2017).

For an extended and more in depth review of RL and deep RL techniques, we refer
the reader to Arulkumaran, Deisenroth, Brundage, and Bharath (2017), Sutton and Barto
(2018) and Li (2017).

2.3.3 Reinforcement Learning in Routing Problems

Due to its combinatorial nature and complexity, the VRP and its variants have been natural
candidates for optimization problems solved by ML methods. Given the sequential nature
of deciding in which sequence customers should be visited, the dynamic of the demand time,
and the lack of an underlying distribution behind the stops to be served, these methods
mostly rely on deep RL techniques.

Most of RL approach to solving the VRP interpret it as a Markov Decision Process, in
which the optimal solution can be viewed as a sequence of actions deciding which customer
to visit once the previous customer is served. These algorithms face two main difficulties.
First, the VRP is a highly combinatorial problem: encoding and decoding the current state
and action are a crucial step. Second, its state is time-dependent and is impacted by each
decision, so that the problem representation evolves over time. Due to this issue, most
authors have focused on auto-regressive approaches, i.e., models which build on state infor-
mation previously observed. Vinyals, Fortunato, and Jaitly (2015) are the first to introduce
a sequence-to-sequence Pointer Network based on a Recurrent Neural Network (RNN) which
uses an attention mechanism to output a permutation of an input sequence (Bahdanau, Cho,
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& Bengio 2014). While this work outputs tours for the TSP in a supervised way, Bello et
al. (2016) later extend it to unsupervised learning using the actor critic method. They use
the total distance traveled at each state as the penalty function. In addition, they adapt
their work to deal with the constraints of the VRP, using a high-penalty term to penalize
infeasible solutions. Nazari et al. (2018b) further extend this method to solve the VRP by
replacing the Pointer Network with a RNN decoder based on an attention process. Doing
so resulting in capturing the time-dependence and environment changes of the VRP, mainly
how the demand evolves over time. They attain similar results than state-of-the-art solvers
on small to medium-sized problems. Multiple extensions of this work have been introduced
to solve variants of the VRP, such as the heterogeneous VRP (Vera & Abad 2019), syn-
chronous trucks and drone delivery (Chen, Ulmer, & Thomas 2019), and VRPs with soft
time windows VRP (K. Zhang, Li, Zhang, Lin, & He 2020). Another alternative to a Pointer
Network consists of graph encoding, which better reflects the combinatorial nature of the
problem than the sequence-to-sequence methods. Khalil et al. (2017) encode instances us-
ing a graph neural network, which is invariant to the order of nodes. They then solve it
via deep Q-learning algorithm (Mnih et al. 2015). Concurrent work by Deudon, Cournut,
Lacoste, Adulyasak, and Rousseau (2018) and Kool, Van Hoof, and Welling (2018) replaces
the graph embedding model with a Graph Attention Network (Veličković et al. 2017) using
an attention-based decoder. In addition, Deudon et al. (2018) couple their RL algorithm
with a 2-opt local search heuristic at each step, improving model performance. However,
this encoding cannot be directly applied to the VRP as its demand is dynamic across time.
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Chapter 3

A Classification Model to Predict the
Number of Vehicles

In order to solve large-scale VRPTW, many authors reduce these problems to multiple sub-
problems to construct initial solutions which are later combined and improved, as discussed
in Section 2.1.2. To build these sub-problems, they rely on clustering algorithms using
customers level characteristics, which hardly relate to either the number of vehicles required
to serve the demand. Therefore, the quality of the initial solution is often poor.

To overcome this difficulty, we design a clustering algorithm based on aggregated cus-
tomers characteristics, namely the number of vehicles needed to serve a set of customers. To
do so, we build a classification model which takes as input a set of customers and outputs
the expected number of vehicles required. This classification problem assigns to each set of
customer a label corresponding to the minimal number of vehicles required to serve it. This
section focuses on the design and performances of such classification models. We present in
Section 3.1 the dataset on which the classification task is performed. We report in Section 3.2
the results obtained with one of these classification models, OCT, and in Section 3.3, the
results obtained leveraging deep learning techniques such as Graph Neural Network (GNN)
and CNN. In Section 3.4, we discuss the benefits and drawbacks of each classification model.

3.1 Dataset

Since we approach the prediction of the number of vehicles required to serve a set of customers
as a supervised classification task, we need a dataset that associates to each set of customers
the number of vehicles serving it. This is an uncommon dataset, as the literature rather

37



focuses on vehicle routes or on the whole set of customers. In fact, clustering is commonly
performed only to obtain an initial solution, and results at a clusters level are rarely reported.

3.1.1 Stylized Customer Dataset

Our goal is to develop a proof of concept of the value of leveraging prediction in a clustering
algorithm. To facilitate the our analysis, we create a stylized dataset. The area considered
is a square of an arbitrary unit of 300 by 300. The depot is located at the center, while
customer locations are uniformly distributed across this area. The speed of the vehicles is
1 in this same arbitrary unit. Customer time windows are distributed as follows: 30% of
early time windows, which have to be reached within the first 150 time units, 30% of late
time windows, which have to be reached within the last 150 time units, and 60% without
time windows restrictions. A day is composed of 1500 time units and the vehicle capacity is
200. Finally, individual customer demands are uniformly drawn between 1 and 9, and the
service time associated corresponds to twice the demand, in time unit. This stylized dataset
is voluntarily less complex than industrial datasets to make our results more interpretable.
However, it aims at mimicking real-world constraint. In large cities, customer locations
are almost uniformly distributed and early and late time windows correspond to business
constraints encountered by companies. In addition, delivery companies often estimate the
service time as being proportional to the demand.

In order to vary the density of the instance considered, we generate datasets using the
above process with different number of customers. In practice, the total number of customers
varies between 600 and 10000, and ten datasets are generated for each number of customers.

3.1.2 Creating the Labels

We aim at learning the number of vehicles serving a set of customers through supervised
learning. Therefore, each point in the final dataset should correspond to a set of customers
labeled with the number of vehicles that are actually required to serve it. Therefore, two
problems arise: how to select the set of customers and how to obtain the minimal number
of vehicles required to serve it.

Algorithm 1 presents the process used to select the set of customers. It is mainly com-
posed of two parts. First, from step 5 to 15, we randomly sort the stops, and then append
them to the same set as long as the total demand is below a certain threshold 𝑟, which corre-
sponds to the vehicle capacity. Second, from step 17 to 19, we use a k-means algorithm with
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various k to cluster the stops. The underlying rationale of Algorithm 1 is twofold: we want

Algorithm 1: Generate datasets
1 Inputs: 𝑆 a set of stops of total demand 𝑑, 𝑐 the capacity of the vehicles ;
2 𝐷 ← ∅ ;
3 𝑅← [0.65 * 𝑐, 1.15 * 𝑐] ;
4 𝐾 ← [ 𝑑

0.85*𝑐 ,
𝑑

1.35*𝑐 ,
𝑑

1.55*𝑐 ] ;
5 for 𝑟 ∈ 𝑅 do
6 𝑙← ∅ ;
7 for stop 𝑠 ∈ 𝑆 do
8 if 𝑙 ∪ {𝑠} has a demand less or equal than 𝑟 then
9 𝑙← 𝑙 ∪ {𝑠} ;

10 else
11 Route the set 𝑙 of stops, label it with the number of vehicles serving it ;
12 Add the labeled set of customers 𝑙 to 𝐷 ;
13 𝑙← ∅ ;
14 end
15 end
16 end
17 for 𝑘 ∈ 𝐾 do
18 Perform a k-means on the set of stops 𝑆 with 𝑘 being the number of clusters ;
19 Route the obtained clusters of stops, label them and add them to 𝐷 ;
20 end
21 return: 𝐷

to learn how to classify all subsets of customers, and hence learn on random subsets, but
with a focus on meaningful subsets from a routing perspective, and hence learn on subsets
based on distance, via a k-means algorithm. In addition, the sets of customers need to be of
reasonable size, so that the routing algorithm is able to find the minimal number of vehicles
in a short time. This determines the lists 𝑅 and 𝐾 at steps 3 and 4: while the number
multiplying the vehicle capacity are arbitrary, the underlying goal is to obtain sets of stops
which could be served with at most five vehicles. To limit the number of different classes,
each set of stops labeled with strictly more than 5 vehicles is considered as belonging to the
class 6. Therefore in our classification task, the class 6 represents the set of stops which
required 6 or more vehicles to be served.

Once the sets of customers have been determined, we use an industrial software, Local-
Solver1, to perform the routing. Since we aim at predicting the minimal number of vehicles

1https://www.localsolver.com/home.html
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required to serve a set of customers, the objective is to first minimize the number of vehi-
cles, and second the distance. We set a time limit on the routing algorithm and considered
as label the final number of vehicles obtained. Note that, although the small size of these
sets of customers increases the probability of obtaining a near optimal solution given the
allocated time in the routing algorithm, there is no theoretical guarantee that this solution
corresponds to the minimal number of vehicles required to serve these sets.

3.1.3 Augmenting the Dataset

ML algorithms performance relies on a large dataset. However, in our approach, creating
this dataset is computationally expensive since the routing problem has to be solved on each
set of customers generated via Algorithm 1. To augment the size of the dataset at a low
computational cost, we consider each combination of vehicles within a set of customers. For
example, let 𝑠 be a set of customers which requires three vehicles, 𝑎, 𝑏 and 𝑐, to be served.
Routing this set is computationally expensive and leads to one data-point: the set 𝑠 with the
label 3. However, for the same computational cost, we can consider the following additional
six data-points: the set composed of the customers in vehicle 𝑎 with the label 1, the set
composed of the customers in vehicle 𝑏 with the label 1, the set composed of the customers
in vehicle 𝑐 with the label 1, the set composed of the union of customers in vehicle 𝑎 and 𝑏

with the label 2, the set composed of the union of customers in vehicle 𝑎 and 𝑐 with the label
2, and the set composed of the union of customers in vehicle 𝑏 and 𝑐 with the label 2. Each
of these additional sets of customers are guaranteed to be correctly labeled. The number of
vehicle corresponding to their label is guaranteed to be minimal, since the solution of the
initial set of customers was optimal. If subsets of customers from different vehicles could
be merged to reduce the total number of vehicles, then the initial solution on the whole
set of customers would not have been optimal. Therefore, by authorizing every vehicles
combination within a set of customers, we drastically augment the size of our dataset. Each
routing performed leads to

∑︀𝑛
𝑖=1

(︀
𝑛
𝑖

)︀
points, where 𝑛 is the number of vehicles required to

serve the whole set of customers. Note that this way of augmenting the dataset leads to an
unbalanced dataset, as the labels corresponding to a small number of vehicles become more
frequent.
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3.2 A Tree-based Model

Tree-based methods propose a compromise between high performance and interpretability.
The main tree-based classification models have been presented in Section 2.2. Three meth-
ods happen to be similarly competitive in terms of performance: Random Forests, Gradient
Boosted Decision Trees, and OCT. However, only OCT methods fully preserve the inter-
pretability of tree-based methods, i.e., splits at each node being based on a linear inequality.
This interpretability is important as it provides a tool to evaluate the distance of a cluster
to a leaf and which constraints are violated. Given the benefit of interpretability in the clus-
tering algorithm developed in Chapter 4, we use OCT to design our tree-based classification
model.

This section presents the accuracy obtained on the classification with OCT.

3.2.1 Introduction to the Optimal Classification Tree Method

The OCT method has been developed by Bertsimas and Dunn (2017) to overcome the
following drawbacks of the CART algorithm developed in Breiman et al. (1984):

∙ Each split in the tree is determined in isolation without considering the possible impact
of future splits in the tree.

∙ These methods typically require pruning to achieve trees that generalize well.

∙ These methods typically optimize an impurity measure when selecting splits, rather
than using the misclassification rate of training observations.

To resolve this problem, they aim at forming the entire decision tree in a single step, allowing
each split to be determined with full knowledge of all other splits. This single step consist
in solving a mixed-integer optimization problem, whose decision variables correspond to the
splits, or nodes, of the tree. By seeing a tree as a set of linear constraints, as shown in
Figure 3-1, they develop a MIP formulation which maximizes the overall accuracy on the
training set. This formulation is quite complex and cannot be solved to optimality using
industrial solvers. Therefore, they use some heuristics to create warm start solutions, and
alternate between MIP solver and heuristic solutions to reduce the gap between the lower
bound and the best upper bound found. Solving this one step optimization problem instead
of a succession of split decision problems leads to higher performance than the CART method.
In addition, the OCT method preserves the full interpretability of tree-based methods.
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Figure 3-1: Linear constraint applied to every points to be classified

3.2.2 Features

Similar to all tree-based methods, the OCT approach takes as input a set of features and
outputs a label, in our case the minimal number of vehicles required to serve the set of
customers from which the features are derived. Our dataset is composed of sets of customers
labeled with the number of vehicles serving them. While each customer has naturally inherent
features, such as service time, demand, location or time windows, we need to derive aggregate
features for sets of customers. We aim at capturing:

∙ the demand served, using the total number of stops and the sum of their demand.

∙ the spatial stop distribution, using the diameter of the set of stops, the 5𝑡ℎ, 50𝑡ℎ and
90𝑡ℎ percentiles of the average and maximal distance between a stop and its closest 2,
5 and 10 stops, the average number of stops within a certain radius, and the entropy
of the stops’ locations.

∙ the position of the set of stops with respect to the depot, using the 5𝑡ℎ, 50𝑡ℎ and 90𝑡ℎ

percentiles of the distance between the stops and the depot.

∙ the approximate routing distance, using the distance of a tour built in an heuristic way
by always going to the next closest stop.

In addition, we would like to capture the time windows constraints. Therefore, we derive the
above features for four different subsets of customers: the whole set of customers, the subset
of customers with an early time window, the subset of customers with a late time window
and the subset of customers without any time window. In total, we have 47 features which
we compute for each of the four subsets of customers, resulting in 188 features.
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3.2.3 Accuracy

Based on the features previously described, we tune the trees to maximize the obtained
accuracy. Given the high number of features and of observations, only OCTs of rather small
depth are tractable. Therefore, the results presented are obtained using OCTs of maximal
depth being 8. Figure 3-2 presents the accuracy results on both the initial dataset and the
augmented dataset, as a function of the stops density. While the density of customers does

Figure 3-2: Accuracy reached on both datasets using OCT of depth 8.

not seem to have a strong impact on the accuracy, there is a clear accuracy gap between
the two datasets. The accuracy of the initial dataset is 76.3% in average, and the one of
the augmented dataset is 88.9% in average. Section 3.4.1 discusses this gap more in depth,
exploring two main differences between the datasets: their number of observations and the
proportion of each class for each of them.

3.3 Deep Learning Methods

While OCTs achieve high accuracy in a reasonably interpretable way, they take as input
aggregate features of the set of customers, rather than the set of customers itself. Therefore,
deriving features is an important pre-processing step which can result in sub-optimal classifi-
cation. To overcome this difficulty, we intend to use Deep Learning methods to actually learn
the most relevant features given a set of stops. Contrary to trees, Deep Learning methods
are able to directly take a set of customers as an input.
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We mostly investigate two methods, introduced in Section 2.2, that are able to directly
consider a set of customers: image classification through CNNs and graph classification
through GNNs.

3.3.1 Image Classification

Image classification has been an intensively studied topic in ML, in which CNNs play an
important role. While we refer the reader to Rawat and Wang (2017) and Aloysius and
Geetha (2017) for an extensive review of image classification using CNN, we briefly introduce
the main concepts.

The specificity of image classification lies on the spatial structure and the high dimension-
ality of a picture: using classical feed forward layers would lead to an explosion of parameters
and a loss of the spatial structure. To overcome these two difficulties, CNNs have been intro-
duced Fukushima (1980). They can be seen as a tool to extract high-level features, through
the use of filters, capturing the spatial dimensionality of a picture, and through the share and
reuse of weights, enabling an accurate and efficient deep learning. Each filter is sequentially
applied to a small portion of the picture and performs an operation which changes the di-
mension of the picture and captures its relevant features. An example of such an operation,
considering the maximum of the pixel value is shown in Figure 3-3. Powerful CNNs consist

Figure 3-3: An example of max-pooling filter of size 2x2 with a stride of 2

of several feature extraction stages (Yu, Wang, Chen, & Wei 2014), where each stage consists
of a convolutional layer, a non-linear transformation layer and a feature pooling layer. Once
the high-level features have been extracted, one can apply a classical feed forward neural
network to proceed to the classification, as illustrated in Figure 3-4.

By dividing the territory into small pixels, and mapping the RGB color intensity to
the demand of early time window customers, late time window customers and customers
without time window, respectively, one can interpret the subsets of customers as pictures. A

44



Figure 3-4: Example of CNNs used in image classification.

Figure 3-5: Two examples of pictures representing sets of customers served by two and four
vehicles, respectively

few example of the obtained pictures are provided in Figure 3-5, where the red intensity
corresponds to the demand of early time window customers, the green intensity to the
demand of late time window customers and the blue intensity to the demand of customers
without time window.

We used the Wide Residual Network method developed in Zagoruyko and Komodakis
(2016) to perform our classification task. Instead of training a very deep CNN, the authors
train wide residual network composed of CNNs, a few examples of which are presented in
Figure 3-6. The residual network addresses the problem of vanishing gradient as layers go
deep, which is often encountered in classical neural networks, by allowing some connections
to skip layers. In terms of mathematical formulation, if 𝑥 denotes the input of a layer, 𝑓(𝑥)
denotes the layer, and 𝑦 denotes the output, then a standard network would be formulated
as 𝑦 = 𝑓(𝑥), while a residual network would be formulated as 𝑦 = 𝑓(𝑥) + 𝑥. This process is
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Figure 3-6: Various residual blocks used in Zagoruyko and Komodakis (2016)

shown in Figure 3-6. In each residual block (𝑎), (𝑏) (𝑐) and (𝑑), the input 𝑥𝑙 is directly add
to the output of the sequence of convolutional layers on the right. If we denote 𝑓(𝑥𝑙) this
sequence, the output is therefore 𝑥𝑙+1 = 𝑥𝑙 + 𝑓(𝑥𝑙).

Residual networks were first introduced in K. He, Zhang, Ren, and Sun (2016). This new
type of neural network enables the training of very deep CNN layers, leading to an increase
in the accuracy. Zagoruyko and Komodakis (2016) explore wide residual networks rather
than deep residual networks. They show that using wide residual network leads to a faster
convergence as well as a better generalization.

3.3.2 Graph Classification

Graph structures naturally appear in numerous real-world applications, such as social graphs
and diffusion graphs in social media, citation graphs in research, and protein representations
in the medical domain. Using the specificity of the graph structure, nodes and edges in-
formation, graph analysis leads to multiple applications: node classification (Wang et al.
2017), node clustering (Nie, Zhu, & Li 2017), node recommendation (Zhou, Liu, Liu, Liu,
& Gao 2017), link prediction (Wei, Xu, Cao, & Yu 2017), sub-graph or graph classification
(Simonovsky & Komodakis 2017), etc. While we refer the reader to Cai, Zheng, and Chang
(2018) and Z. Wu et al. (2019) for an in-depth review of graph embedding techniques and
applications, we briefly introduce the concept followed in this thesis.

While deep learning has revolutionized the ML domain, it assumes a flat representation of
the observations, no interactions between them and hardly captures the relationships between
observations. To overcome these difficulties, GNNs have been introduced (Gori, Monfardini,
& Scarselli 2005, Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini 2008). Similar to the way
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a CNN intends to capture the spatial structure of an image, a GNN intends to capture the
relationships between nodes, and more generally, the overall graph structure. At a very high
level overview, many of the GNNs can be seen as propagating information along the edges of a
graph by computing messages based on the source nodes representation. Nodes are initialized
with a certain representation, which later evolves based on the propagated information. In
addition, different edge types can be introduced to model different relationships. In this
case, the propagation differs for each type and the final representation is a combination of all
propagated information. This representation is used as a node embedding to perform classical
ML tasks such as classification or regression. In this thesis, we build upon the work realized
in Brockschmidt (2019), which takes into account the target node of the message by using
feature-wise linear modulation. Basically, the message passing layer is a linear transformation
conditioned on the target node representation: each node embedding determines the element
wise transformation of the incoming message. This method allows the model to dynamically
up-weight and down-weight source features transmission based on the information of the
target node. Formally, each node 𝑣 has a representation ℎ𝑡

𝑣 at iteration 𝑡 and each edge type
𝑙 uses one linear layer 𝑊𝑙 to compute messages. Using affine transformation based on the
target node leads to the following update rule:

𝛽𝑡
𝑙,𝑣, 𝛾

𝑡
𝑙,𝑣 = 𝑔(ℎ𝑡

𝑣; 𝜃𝑔,𝑙) (3.1)

ℎ𝑡+1
𝑣 = 𝑙

⎛⎝ ∑︁
𝑙:(𝑢,𝑣)∈ℰ

𝜎(𝛾𝑡
𝑙,𝑣 ⊙𝑊𝑙ℎ

𝑡
𝑢 + 𝛽𝑡

𝑙,𝑣); 𝜃𝑙

⎞⎠ (3.2)

Here, 𝑔 represents a learnable function with parameters 𝜃𝑔,𝑙, which computes the parame-
ters 𝛽𝑡

𝑙,𝑣, 𝛾
𝑡
𝑙,𝑣 for the affine transformation based on the target node: 𝛾𝑡

𝑙,𝑣 ⊙𝑊𝑙ℎ
𝑡
𝑢 + 𝛽𝑡

𝑙,𝑣. 𝜎

corresponds to a non-linear function, while 𝑙 corresponds to an additional layer with param-
eters 𝜃𝑙 which helps controlling the training stability. Therefore, the learnable parameters
are 𝑊𝑙, 𝜃𝑔,𝑙 and 𝜃𝑙. In practice, we use a dense linear layer for 𝑔, the ReLU function for 𝜎

and a normalization layer for 𝑙. Once the nodes have been embedded, we perform a simple
classification task by considering these embedding as flat inputs.

We create our graphs as follows. Each subset of customers is a graph, whose label
corresponds to the minimal number of vehicles required to serve this subset of customers.
Each customer is seen as a node, whose features are the customer’s features. We use 12

different types of edges: each type represents a different time interval. Two nodes are linked
with an edge of type 𝑙 if and only if the time to go from the first one to the second one
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belongs to the time interval represented by the edge type 𝑙.

3.3.3 Accuracy of Deep Learning Methods

This section presents the accuracy results reached with the two deep learning methods previ-
ously presented. Given our limited computational resources, an extensive parameter tuning
has not been conducted. The parameters used are mainly derived from the two reference
papers: Zagoruyko and Komodakis (2016) and Brockschmidt (2019). Figures 3-7 present
the accuracy obtained using deep learning methods on both the augmented and the initial
dataset. Figure 3-7a reports the accuracy of the CNNs, while Figure 3-7b reports the accu-
racy of the GNN. Similar to the results obtained with OCT, the accuracy is higher on the

(a) Results of the CNN method (b) Results of the GNN method

Figure 3-7: Accuracy reached on both datasets using Deep Learning methods.

augmented dataset: 83.2% and 85.7% on average on the augmented dataset versus 73.3%

and 67.9% on average on the initial dataset, for the CNN and the GNN, respectively. While
the results on the initial dataset seems to suggest a density correlation, the results on the
augmented dataset don’t support this hypothesis. Therefore, the increase in accuracy ob-
served between the two datasets and within different number of customers instances in the
initial dataset may be more linked to the total number of observations in each dataset rather
than the overall density. This hypothesis will be discussed further in depth in Section 3.4.

3.4 Comparative Discussion of Prediction Methods

In Section 3.2 and 3.3, a tree and deep learning methods have been introduced. This Section
intends to discuss the benefits and limitations of each method.
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3.4.1 Accuracy

We first discuss the overall accuracy performance of the three methods: OCT, CNN and
GNN, on each dataset. The OCT reaches the best accuracy, both on the initial and aug-
mented dataset. On both, it outperforms GNN by 3% on average and CNN by 7% on
average.

We then discuss the differences in the accuracy obtained throughout the two datasets.
These two datasets differ by the number of observations and the proportion of each label,
which we refer to as label distribution, as shown in Figures 3-8 and 3-9, respectively. Figure 3-

Figure 3-8: Number of points in the initial and augmented datasets.

8 confirms the important difference in terms of number of observations in both dataset.
The augmented dataset is composed of almost ten times more observations than the initial
dataset, for each customers instance. Given the very high number of observations required
to train deep learning models, this difference in the number of observations could explain the
higher accuracy observed on the augmented dataset: the model trained on the augmented
dataset performs better due to the higher number of observations used in the training. This
hypothesis is confirmed by Table 3.1, which presents the accuracy obtained on the initial
dataset with a model trained on the augmented dataset. The first column indicates the
customers instances. The second and fifth column indicate the accuracy obtained on the
initial dataset with a GNN and an OCT fitted on the initial dataset, respectively. The third
and sixth column indicate the accuracy obtained on the initial dataset with a GNN and an
OCT fitted on the augmented dataset, respectively. Finally, the fourth and seventh column
indicate the accuracy obtained on the augmented dataset with a GNN and an OCT fitted
on the augmented dataset, respectively. We see in Table 3.1 that the GNN fitted on the
augmented dataset increases the accuracy on the initial dataset by 2 to 4%, the highest gain
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Customers OCT acc. OCT acc. OCT acc. GNN acc. GNN acc. GNN acc.
dataset init/init init/aug aug/aug init/init init/aug aug/aug

600 75.3 73.8 88.6 67.4 71.6 82.6
1000 75.1 73.8 88.7 70.5 73.5 84.7
3000 76.3 74.1 88.7 71.4 73.8 86.9

Table 3.1: Accuracy results with models trained on different datasets

being on the initial dataset with the lowest number of observations. This trend does not
seem to appear in the OCT model: the accuracy on the initial dataset using a tree fitted on
the augmented dataset is lower than the accuracy obtained with a tree fitted on the initial
dataset.

While a higher number of training observations seems to increase the accuracy of the
deep learning methods, this fact only is not enough to fully explain the difference in accu-
racy obtained between the initial and the augmented datasets, for all models. The second
difference observed between the initial and the augmented datasets is the label distribution,
i.e., the percentage of observations which required 1, 2, 3, 4 and 5 vehicles to be served. Fig-
ure 3-9 presents the percentage of each label within each dataset. The solid lines correspond

Figure 3-9: Difference of label distribution in the initial and augmented datasets.

to the percentage of each label in the initial dataset, while the dotted lines correspond to
the percentage of each label in the augmented dataset. Note that label 𝑖 indicates that 𝑖 is
the minimal number of vehicles required to serve the set of customers. Given the process
used to generate the augmented dataset, the label distribution of these two datasets are

50



different. The augmented dataset is mainly composed of low number labels: labels 1, 2 and
3 represent 90% of the observations, i.e., 90% of the sets of customers require three vehicles
or less to be served. On the contrary, the initial dataset is mainly made up of high number
labels, with label 3 having the highest percentage and label 1 having the lowest percentage.
Labels 2, 3 and 4 represent almost 80% of the observations, which confirms that globally the
sets of customers in the initial dataset required a higher number of vehicles to be served.
These differences seem to suggest that accurately predicting the number of vehicles for sets
of customers which required a low number to be served, is less challenging than for the sets
which required a high number of vehicles to be served.

3.4.2 Parameter Tuning

As most models and algorithms, ML models depend on multiple parameters, and their
performance is known to be extremely parameter dependent. In addition, these parameters
often need to be tuned every time the model is applied to a different dataset.

The main parameters involved in OCT methods are the depth of the tree and the minimal
number of samples in each leaf. To determine the best parameter values, we perform a grid
search over this two parameters.

In contrast with OCTs which rely on a low number of parameters, deep learning models,
such as GNNs and CNNs, involve thousands of parameters. These parameters can be roughly
divided into two categories. The first category relates to the network structure, such as the
number of layers used, their size, their type and their activation function. The second
category relates to the optimization process, such as the batch size, the learning rate, the
type of optimizer used and the maximal norm of the gradients. We choose to keep the same
architectures as the ones proposed by Zagoruyko and Komodakis (2016) and Brockschmidt
(2019). Given the very high number of parameters to tune within the second category,
performing a rigorous grid search is not an option. We restrict ourselves to test tune these
parameters only with a few values. This computationally expensive parameter tuning of
these deep learning models highly contrast with the simple grid-search performed to tune
OCT parameters.

3.4.3 Computation Time

The three methods described so far also differ from a computational point of view. For the
features designed in 3.2.2 and with 100, 000 observations, an OCT required roughly one hour
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to be trained2. With the same number of observations, GNNs and CNNs require roughly
one hour and one day to be trained3, respectively.

3.4.4 Choosing a Classification Model

The three models tested, OCT, CNN and GNN,follow three completely different classification
approaches: a tree classifier, an image classifier, and a graph classifier, respectively. The
OCT approach outperforms the CNN and GNN approaches in terms of accuracy obtained.
This approach does not rely on heavy parameter tuning and is intuitively and mathematically
easily interpretable, contrary to the deep learning approaches. Therefore, we choose the OCT
model as the classification model used in the clustering algorithm developed in Chapter 4.

2Using Interpretable AI softwarehttps://docs.interpretable.ai/stable/, on a macOS 10.14 with a
3.1GHz processor and 16 GB of memory

3Using Google Collab GPU https://colab.research.google.com/notebooks/intro.ipynb
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Chapter 4

A Clustering Algorithm Leveraging
Classification Trees

4.1 Introduction

4.1.1 Motivation

In Chapter 3, we have developed three classification methods to predict the minimal number
of vehicles required to serve a set of customers. In this section, we leverage these predictions
to design an innovative clustering algorithm. This algorithm takes as input a whole set of
customers, and divides it into subsets of stops, so as to minimize the sum of the predicted
number of vehicles required to serve each subset of stops. We refer to these subsets of stops
as clusters in the following. The specificity of this clustering algorithm lies in its objective
function, which directly relates to the routing objective: minimizing the predicted number
of vehicles required to serve the whole set of customers.

We have explored three classification methods in Chapter 3: OCTs in Section 3.2, CNNs
in Section 3.3.1 and GNNs in Section 3.3.2. We choose to design a clustering algorithm which
leverages OCTs. The rationale behind this decision is twofold. First, OCTs outperform
the other classification methods previously studied, in terms of accuracy. Second, OCTs
are interpretable, both intuitively and from an optimization perspective: the mathematical
constraint formulations associated to each node can be easily leveraged in an algorithm.
For example, our intuition would prevent us from clustering together two stops far away in
terms of distance. In an OCT, this intuition would be modeled as a constraint indicating
that if a cluster has a diameter exceeding a certain distance, then a high number of vehicles
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is required. From an algorithmic point of view, this constraint could drive how clusters are
created, and could provide information about which stops should be added to or removed
from a cluster.

4.1.2 Tree Notation

Terminology

Figure 4-1 illustrates a fitted OCT. An OCT is defined by a collection of nodes and branches.

Figure 4-1: Example of a fitted OCT

A node is represented by a rectangle in Figure 4-1. A branch corresponds to a link between
two nodes, and is represented by a black line in Figure 4-1. A branch indicates a relationship
between the parent node, from which the link starts, and the child node, to which the link
arrives. A node without parents is called the root node, and a node without children is called
a leaf. In an OCT, each branch corresponds to a mathematical constraint. For example, the
two first branches, associated to the root node, correspond to 𝑥3 < 220.5 and 𝑥3 ≥ 220.5,
for the left and right branch, respectively, where 𝑥3 refers to the value of the third feature of
the observation to be classified. Each leaf indicates the final prediction made by the tree. In
Figure 4-1, the leaves are represented by colored rectangles, and within each leaf is written
the number of vehicles predicted, with the associated probability. For example, the far left
leaf is associated to a prediction of 3 vehicles with a probability of 67.5%. This means that
on the test set, every observation in this leaf has a 67.5% probability of requiring 3 vehicles
to be served. Finally, we denote as the set of left branch and right branch ancestors of a
node, all the left and right branches which lead to this node. For example, the set of left
branch ancestors associated to the maroon leaf predicting 2 vehicles consists of the branch
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ancestors associated to constraint 𝑥3 < 220.5 and of the branch associated to 𝑥4 < 1687,
while the set of right branch consists of the branch associated to constraint 𝑥3 ≥ 130.5. The
depth of a tree corresponds to the maximum number of edges from a leaf to the root node.
In this example, the depth of the tree is of 3.

A classification tree corresponds to a succession of decisions, i.e., of nodes, which lead to
a prediction, i.e., a leaf. For example, let us consider an observation such that 𝑥3 = 200 and
𝑥4 = 1800 and let us consider the OCT presented in Figure 4-1. The observation enters the
tree via the root node. It follows the left branch since 𝑥3 < 220.5, and arrives at node 2.
It then follows the right branch since 𝑥3 ≥ 130.5, and arrives at node 6. Finally, it follows
the right branch since 𝑥4 ≥ 1687, and reaches the leaf 8 which predicts 3 as a label. In
this thesis, OCTs are trained to classify sets of customers based on the minimal number
of vehicles required to serve them. Therefore, the observation would correspond to a set of
customers, 𝑥3 and 𝑥4 would correspond to aggregate features of this set of customers, such
as the total demand and the sum of the distances between the depot and each stop, and
the label would correspond to the minimal number of vehicles required to serve this set of
customers.

Common Notation

We present here the notation used in the following, when referring to OCTs, and trees in
general. Table 4.1 introduces the common notation and terminology used.

Table 4.1: Common notation for trees and set covering formulations.

Symbol Description
𝑁 The total number of stops to be served. 𝑖 ∈ {1, . . . , 𝑁}.
𝒯 The OCT.
𝐽 The set of leaves of the tree. 𝑗 ∈ 𝐽 .
𝑐𝑗 The prediction associated to leaf 𝑗.
ℳ The set of nodes of the OCT. 𝑚 ∈ℳ.
𝑓 The vector of features of a cluster.
𝑎𝑚 The right coefficient of the split constraint at node 𝑚, of the form 𝑎𝑇𝑚𝑓 ≥ 𝑏𝑚.
𝑏𝑚 The left coefficient of the split constraint at node 𝑚, of the form 𝑎𝑇𝑚𝑓 ≥ 𝑏𝑚.
ℒ(𝑗) The set of left branch ancestors of leaf 𝑗.
ℛ(𝑗) The set of right branch ancestors of leaf 𝑗.
S The set of all existing clusters. 𝑠 ∈ S.
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Continuation of Table 4.1
Symbol Description

𝑐𝑠 The predicted number of vehicles required to serve cluster 𝑠.
𝒞 The set of created clusters. 𝑠 ∈ 𝒞

End of Table

4.2 Exact Mixed Integer Programming Approach

Each node of an OCT is associated to a mathematically interpretable linear constraint.
Given the linearity of these constraints, this section aims at designing an exact approach
relying on a MIP formulation to build clusters of stops which minimize the total predicted
number of vehicles. By this exact approach, we aim at finding the exact predicted minimal
total number of vehicles required to serve a set of customers.

4.2.1 Mixed Integer Programming Formulation

We define ℱ , the function which associates to any set of stops its aggregate features. Using
the above notation, 𝑓 = ℱ(𝑥𝜎(0), . . . , 𝑥𝜎(𝑛)), for any 𝑛 ∈ {1, 2, . . . , 𝑁}, where 𝑁 is the total
number of stops considered and 𝜎 is an injective function from a set {1, 2, . . . , 𝑛} to a set
{1, 2, . . . , 𝑁}. Here, 𝑛 represents the number of stops in the set considered, and the injective
function 𝜎 indicates which stops are part of this set.

We derive an Integer Programming (IP) formulation (4.1) which, given an OCT, min-
imizes the predicted total number of vehicles required to serve all stops. The overall idea
is to create clusters of stops and to derive their predicted number of vehicles according to
the constraints of the tree and their features. We assume the function ℱ to be linear with
respect to the stops. The notation used has been defined in Section 4.1.2.

min
𝑥,𝑦,𝑓

∑︁
𝑗∈𝐽

𝑐𝑗𝑦𝑗 (4.1a)

s.t.
∑︁
𝑗∈𝐽

𝑥𝑖,𝑗 = 1, ∀𝑖 ∈ {1, . . . , 𝑁}, (4.1b)

𝑥𝑖,𝑗 ≤ 𝑦𝑗, ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑁} × 𝐽, (4.1c)

𝑓𝑗 = ℱ(𝑥0,𝑗, . . . 𝑥𝑁,𝑗), ∀𝑗 ∈ 𝐽, (4.1d)

𝑎𝑇𝑚𝑓𝑗 + 𝜖 ≤ 𝑏𝑚 +𝑀(1− 𝑦𝑗), ∀𝑗 ∈ 𝐽, ∀𝑚 ∈ ℒ(𝑗) (4.1e)
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𝑎𝑇𝑚𝑓𝑗 ≥ 𝑏𝑚 −𝑀(1− 𝑦𝑗), ∀𝑗 ∈ 𝐽, ∀𝑚 ∈ ℛ(𝑗) (4.1f)

𝑦𝑗 ∈ {0, 1}, ∀𝑗 ∈ 𝐽, (4.1g)

𝑥𝑖,𝑗 ∈ {0, 1}, ∀(𝑖, 𝑗) ∈ {1, . . . , 𝑁} × 𝐽. (4.1h)

Here, the binary variable 𝑦𝑗 represents the cluster 𝑗, which is associated to the leaf 𝑗. 𝑦𝑗

takes value 1 if a cluster of stops associated to leaf 𝑗 is formed. The prediction of leaf 𝑗, 𝑐𝑗,
corresponds to the minimal number of vehicles required to serve the stops grouped in cluster
𝑗. Therefore, objective function (4.1a) minimizes the predicted total number of vehicles.
The binary variable 𝑥𝑖,𝑗 takes value 1 if stop 𝑖 is assigned to a cluster associated to leaf 𝑗.
Therefore, Constraints (4.1b) ensure that all stops are assigned to exactly one cluster and
Constraints (4.1c) force leaf 𝑗 to be activated as soon as a corresponding cluster is formed.
The Constraints (4.1d) define 𝑓𝑗 as a vector representing the set of features of a cluster
associated to the leaf 𝑗. Given the definition of 𝑎𝑚 and 𝑏𝑚, which represent the coefficients
of the OCT constraints of each branch, Constraints (4.1e) and (4.1f) ensure that the features
of the set of stops assigned to leaf 𝑗 respect the set of constraints associated to the leaf 𝑗.

Note that the above formulation does not allow a leaf to be associated to multiple clusters,
since 𝑦𝑗 is binary. Practically, it means that each cluster of stops should correspond to a
different leaf. This restriction contradicts the optimal clustering we want to reach, in case
the latter consists of at least two clusters belonging to the same leaf. To overcome this
restriction, we introduce multiple copies of each original leaf. These copies have the same
set of associated constraints and the same prediction as the original leaf from which they
derive. This modeling enables us to obtain a solution in which multiple clusters correspond
to the same original leaf.

4.2.2 Designing a Linear Optimal Classification Tree

The MIP formulation (4.1) relies on an OCT predicting for each set of stops the minimal
number of vehicles required to serve it. This formulation assumes the features to be linear
with respect to the stop; otherwise Constraints (4.1d) cannot be formulated as linear con-
straints. Therefore, we cannot rely on all the features introduced in Section 3.2.2, but have
to limit ourselves to those that are linear with respect to the stops. Specifically, we propose
an OCT which relies on the following features: the number of stops, the total demand, and
the sum of the pairwise distances between the stops and the depot. These three features are
derived for all stops, as well as for subsets of stops with similar time windows: early time
window stops, late time window stops, and stops without any time window. Using these
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features, we fit the OCT as described in Section 3.2.

4.2.3 Results

Using the linear OCT proposed in the previous paragraph, we solve MIP (4.1) on the multiple
customer datasets presented in Section 3.1.1. Table 4.2 presents the results obtained. Here,
the OCT accuracy column corresponds to the accuracy obtained with the OCT relying
on only the linear features. The MIP accuracy column corresponds to the percentage of
clusters in the solution of MIP (4.1) for which the actual routing leads to the same number
of vehicles as the OCT prediction. The explicit routing solution is obtained using a state-
of-the-art industrial solver, LocalSolver1, with a time limit of 15s. The MIP prediction error
column reports the gap between the total predicted number of vehicles, i.e., the objective
value of MIP (4.1), and the total number of vehicles obtained when actually solving the
routing problem on each of the clusters in the solution of MIP (4.1). Note that instances

OCT accuracy (%) MIP accuracy (%) MIP prediction error (%)
600 64.6 0 800
1000 66.7 0 1300

Table 4.2: Results of the MIP approach for instances with 600 and 1,000 customers

with more than 1, 500 customers are not tractable, and that we have to limit the depth of
the OCT to 3 to make sure that MIP (4.1) remains tractable. Table 4.2 indicates that this
approach is not very successful. We note that the prediction error rate is extremely high and
that we are not able to predict the right number of vehicles for any cluster in the solution
of MIP (4.1). This may be explained by the following reasons:

∙ The tree has been fitted using clusters of stops which have been arbitrarily created,
as presented in Algorithm 1. The OCT constraints accurately classify such clusters,
but have not been designed to classify all potential clusters. Therefore, the inaccuracy
in the predictions for the clusters in the solution of MIP (4.1) may be explained by a
difference between the test set and the training set.

∙ The accuracy of the OCT with only linear features is quite low, and may not capture
well all the subtleties of the classification. Having such a low accuracy as a baseline
may explain the very low MIP accuracy.

1https://www.localsolver.com/
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∙ The MIP (4.1) creates overall adversarial clusters. By minimizing the predicted number
of vehicles, it seeks to tighten the OCT constraints to their extreme limits, creating
edge cases. The following example may provide an intuitive way of understanding this
phenomenon. Let us assume that most of the clusters requiring one vehicle have 10

stops, most of the clusters requiring two vehicles have 20 stops, and few clusters with
15 stops require either one or two vehicles. One of the OCT constraints may be: having
strictly less than 16 stops leads to one vehicle, having 16 stops or above leads to two
vehicles. Given that we seek to minimize the total predicted number of vehicles, if
we want to build a cluster with one vehicle, it is more interesting to build a cluster
of 15 stops rather than a cluster of 10 stops: one seeks to tighten the constraints.
However, this cluster of 15 stops is more likely to be misclassified than a cluster of
10 stops. While tightening one constraint already increases its probability of being
wrongly classified, the MIP (4.1) seeks to tighten all constraints. Therefore, solving
MIP (4.1) may be equivalent to generating highly adversarial clusters.

4.3 Set Covering Approach

This section aims at overcoming two of the three difficulties that contribute to the poor
performance of the exact MIP approach presented in Section 4.2. To overcome the restriction
of using solely linear features, this approach builds clusters using heuristics instead of linear
programming. To prevent the clusters from being too adversarial, this approach follows two
strategies. First, the cluster creation step is handled outside an exact optimization scheme,
only the cluster selection step is solved exactly using linear programming. Second, the cluster
creation step generates clusters which guarantee a minimal slack value in the constraints of
the leaf they belong to.

4.3.1 Integer Programming Formulation

The IP formulation (4.2) is a set covering problem which minimizes the predicted number
of vehicles, while ensuring that each stop is covered by at least one cluster. We define 𝒮 the
set of considered clusters and we refer to Section 4.1.2 for the remaining notation.

min
𝑦

∑︁
𝑠∈𝒮

𝑐𝑠𝑦𝑠 (4.2a)
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s.t.
∑︁
𝑠∋𝑖

𝑦𝑠 ≥ 1, ∀𝑖 ∈ {1, . . . , 𝑁}, (4.2b)

𝑦𝑠 ∈ {0, 1}, ∀𝑠 ∈ 𝒮. (4.2c)

Here, the binary variable 𝑦𝑠 indicates if cluster 𝑠 is selected or not by taking value 1 or
0, respectively. Therefore, the Objective (4.2a) minimizes the total predicted number of
vehicles and the Constraints (4.2b) ensure that each stop is covered by at least one cluster.
Constraints (4.2c) limit the domain of the binary variables.

The IP formulation (4.2) relies on the prediction of the number of vehicles for each cluster
of stops. Contrary to the approach developed in Section 4.2, there is no constraint on how
we design the features on which the OCT relies. Therefore, we follow the approach described
in Section 3.2, resulting in an OCT relying on linear and non-linear features.

4.3.2 Cluster Generation

As the IP formulation (4.2) selects some clusters among the set of considered clusters 𝒮, its
performance strongly relies on how such a set of clusters is created. Solving the IP (4.2) with
𝒮 = S, where S is the set of all possible clusters, is equivalent to exactly solving the clustering
problem minimizing the total number of vehicles. Given the intractable dimension of S, we
are interested in generating only the relevant clusters, i.e., a limited subset of clusters that
is likely to include the clusters included in the optimal solution of the exact problem.

Algorithm 2: Cluster generation
1 Inputs: {1, . . . , 𝑁} a set of stops, 𝒯 a fitted OCT, 𝑛 a positive integer, 𝑐 the

vehicle’s capacity ;
2 𝒞 ← ∅, an empty set of clusters ;
3 Add to 𝒞 the clusters built via a k-means algorithm, where 𝑘 = 𝑁

𝑐
;

4 for 𝑖 ∈ [0, 𝑛] do
5 Solve the linear relaxation of IP (4.2), using 𝒮 = 𝒞;
6 𝑅𝑐𝑙 ← the reduced costs of each cluster ;
7 𝐷𝑠𝑡𝑜𝑝𝑠 ← the dual value of the covertness constraint for each stop ;
8 Improve the current clusters using algorithm 3 and add them to 𝒞 ;
9 Create new clusters using algorithms 8 and 9, and add them to 𝒞 ;

10 Merge clusters using algorithms 10 and add them to 𝒞 ;
11 end
12 return: the set of created clusters 𝒞

Algorithm 2 presents the general scheme used to generate a set of relevant clusters.

60



Algorithm 2 intends to approximately solve the relaxation of IP (4.2) with 𝒮 = S, following
a column generation approach. A conventional column generation algorithm would start
from an initial set of cluster 𝒞, and iteratively solve IP (4.2) with 𝒮 = 𝒞 to then generate
clusters of most negative reduced cost and add them to 𝒞. This process ends when no
further clusters of negative cost exist. The challenge of such a column generation approach
lies in solving the pricing sub-problem, i.e., generating the clusters of negative reduced cost.
The reduced cost of a cluster 𝑠 is 𝑟𝑠 = 𝑐𝑠 −

∑︀
𝑖∈𝑠 𝜆𝑖, where 𝜆𝑖 is the dual value of the

covertness constraint associated to stop 𝑖. It leads to the following pricing sub-problem:
min𝑠∈S 𝑐𝑠 −

∑︀
𝑖∈𝑠 𝜆𝑖. Usually, such a pricing sub-problem is reformulated as a shortest path

problem in a graph where each node corresponds to a stop, and each path from an arbitrary
source and to an arbitrary destination corresponds to a set of stops, i.e., a cluster. Here,
solving such a shortest path problem is arduous for two reasons. First, the graph considered
is extremely deep when we solve the VRPTW on instances with thousands of stops. Second,
the cost 𝑐𝑠 of a cluster 𝑠 is not linear in the stops due to some non-linear features used in
the OCT. This non-linearity implies that we have to rely on bounds rather than an exact
minimum in commonly used shortest path algorithm such as 𝐴* (Hart, Nilsson, & Raphael
1968), and therefore limits the scale of tractable problems.

We point out two main differences between a conventional column generation approach
and Algorithm 2. First, in a conventional column generation approach, clusters with the
most negative reduced cost are generated and added to the set of clusters to be considered,
𝒞 in Algorithm 2. This process corresponds to Steps 8, 9 and 10 of Algorithm 2. In a
conventional column generation approach, solving the pricing sub-problem guarantees the
addition of clusters of negative reduced costs to 𝒞. However, in Algorithm 2, Steps 8, 9 and
10 rely on heuristics leveraging the OCT information and do not guarantee the addition of
clusters of negative reduced cost. Second, in a conventional column generation algorithm, the
stopping criterion corresponds to all potential clusters having non-negative reduced costs.
In Algorithm 2, the stopping criterion is a maximum number of iterations 𝑛. 𝑛 is a trade-off
between the time spent in Algorithm 2 and the quality of the relaxed solution obtained.
While exactly solving the relaxation of IP (4.2) is hard, it is also not necessarily desirable.
Our goal is to solve the integer formulation of (4.2), not its relaxation. In addition, the cost
of a cluster is only a prediction. Due to the uncertainty inherent to these predictions, a
potential optimality gap is insignificant.

Similar to a conventional column generation algorithm, the critical part of Algorithm 2
lies in generating clusters with a negative reduced cost. Given the structure of the clusters
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reduced cost, two main directions can be explored to obtain negative reduced cost clusters:
decrease the cost 𝑐𝑠 of a cluster 𝑠, or add stops with positive dual values to a cluster 𝑠.
The first goal can be pursued by leveraging the information provided by the OCT, while the
second goal can be pursued by leveraging results obtained from solving the linear relaxation
of IP (4.2). The heuristics described in Section 4.3.3 all follow one of these two goals.

4.3.3 Types of Improvement Heuristics

Algorithm 2 strongly relies on heuristics to generate relevant clusters across iterations. Each
heuristic pursues one of the following three goals:

a) Improving existing clusters. These heuristics target already built clusters, and leverage
the information provided by the linear relaxation of (4.2) to modify these clusters in
order to decrease their reduced cost.

b) Creating new clusters. These heuristics intend to build clusters from scratch, leveraging
information from the linear relaxation of (4.2) to obtain clusters with negative reduced
costs.

c) Merging existing clusters. These heuristics target already built clusters that could be
merged together to create clusters with lower reduced costs.

Heuristics Improving Existing Clusters

Algorithm 3 ties together three potential heuristics to improve existing clusters, each of which
are described in more detail in Algorithms 4, 5 and 6, respectively. Algorithm 3 selects the

Algorithm 3: Improving current clusters
1 Inputs: 𝒞 the set of clusters already built, 𝑅 the reduced costs of each cluster, 𝑛

the number of clusters to be improved ;
2 𝒞𝑛 ← ∅ ;
3 𝐿𝑐 ← clusters in 𝒞 sorted by ascent reduced cost ;
4 𝐿𝑐 ← 𝐿𝑐[0 : 𝑛] ;
5 for cluster 𝑠 ∈ 𝐿𝑐 do
6 Create new cluster from 𝑠 with Algorithms 5 and 6, and add them to 𝒞𝑛 ;
7 Modify cluster 𝑠 with Algorithm 4, and add it to 𝒞𝑛 ;
8 end
9 return: the set 𝒞𝑛 of improved clusters
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existing clusters with the most promising potential for improvement (Step 3), and then
applies the improvement heuristics on them. The rationale behind Step 3 of Algorithm 3 is
that clusters with already low reduced cost may be easier to modify to obtain clusters with
negative reduced cost.

Algorithm 4 intends to add stops to the considered cluster in order to decrease its reduced
cost. Two questions naturally arise when we seek to add stops to a cluster. First, which

Algorithm 4: Complete cluster
1 Inputs: 𝑠 a cluster, 𝒯 a fitted OCT, 𝐷 the set of dual values of the covertness

constraints, 𝑡 a threshold for dual values ;
2 𝑙𝑠 ←leaf of cluster 𝑠 ;
3 𝐿𝑑 ←stops not in 𝑠 whose dual value is greater than 𝑡 ;
4 𝐷𝑐𝑠𝑡,𝑚𝑎𝑟𝑔𝑖𝑛 ←for each constraint active at leaf 𝑙𝑠, its current slack with respect to the

cluster 𝑠 ;
5 𝐷𝑐𝑠𝑡,𝑠𝑡𝑜𝑝𝑠 ←for each stop the changes observed for each active constraint if the stop

was to be added to 𝑠 ;
6 Solve IP (4.3) with 𝑆 = 𝐿𝑑 using 𝐷𝑐𝑠𝑡,𝑚𝑎𝑟𝑔𝑖𝑛 and 𝐷𝑐𝑠𝑡,𝑠𝑡𝑜𝑝𝑠, and denote 𝐿𝑖 the list of

selected stops ;
7 Sort 𝐿𝑖 by descent impact score, as defined in Definition 1 ;
8 for stop 𝑖 ∈ 𝐿𝑖 do
9 if 𝑠 ∪ {𝑖} still respects the constraints of 𝑙𝑠 then

10 𝑠← 𝑠 ∪ {𝑖} ;
11 else
12 break ;
13 end
14 end
15 return: the modified cluster 𝑠

stops are relevant candidates? Second, in which order should they be added? Since the
overall goal is to decrease the reduced cost 𝑟𝑠 = 𝑐𝑠−

∑︀
𝑖∈𝑠 𝜆𝑖 of cluster 𝑠, Algorithm 4 focuses

on stops with a strictly positive dual value (Step 3). Since we aim at remaining within the
same leaf, we seek to find a balance between the impact of a stop on the current features and
the decrease in reduced cost gained with this stop. IP (4.3) selects a list of candidates which
could achieve this balance. IP (4.3) models the stop selection problem as a multi-dimensional
Knapsack problem, in which the gain of a stop is its dual value, and its weight is its impact
on the current cluster’s features. Each feature has a capacity, which corresponds to the slack
or surplus of the constraints active at the leaf with respect to the current feature value of
the cluster. The underlying assumption is that the impact, in terms of features, of adding
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a set of stops to a cluster can be linearized if the number of stops added is relatively low.
Let 𝐼 be a set of stops, which represents the candidates to be added, and let 𝒞𝒮𝒯 be the
set of constraints of the considered cluster’s leaf. For each stop 𝑖 ∈ 𝐼, we denote by 𝜆𝑖 its
dual value, and by 𝑤𝑖,𝑎 the change it would bring to constraint 𝑎 if it was to be added to the
cluster. For each constraint 𝑎 ∈ 𝒞𝒮𝒯 , we denote by 𝐶𝑎 its current slack or surplus for the
considered cluster. The IP formulation (4.3) intends to follow the logic previously described
to select the stops to be tried to be added.

max
𝑥

∑︁
𝑖∈𝐼

𝜆𝑖𝑥𝑖 (4.3a)

s.t.
∑︁
𝑖∈𝐼

𝑤𝑖,𝑎𝑥𝑖 ≤ 𝐶𝑎, ∀𝑖 ∈ 𝐼, ∀𝑎 ∈ 𝒞𝒮𝒯 , (4.3b)

𝑥𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼. (4.3c)

The binary variable 𝑥𝑖 indicates if stop 𝑖 is selected or not. Therefore, the Objective (4.3a)
aims at maximizing the sum of the dual values, while Constraints (4.3b) ensure that each
constraint of the current cluster’s leaf would still be respected.

The solution of IP (4.3) provides us with a set of stops to be tried to be added. However,
the order in which we try to add them is important, as not all stop combinations are feasible.
We define in Definition 1 an impact score for each stop, which proposes a compromise between
the potential gain of a stop and its impact on the cluster’s features.

Definition 1 Let 𝑠 be a cluster, and 𝒞𝒮𝒯 be the set of the tree constraints active at the
cluster’s leaf, 𝑖 a stop not in 𝑠 and 𝜆𝑖 its dual value. For each constraint 𝑎 ∈ 𝒞𝒮𝒯 , we
denote as 𝑤𝑎,𝑖 the change to constraint 𝑎 if stop 𝑖 was to be added to cluster 𝑠. For each
constraint 𝑎 ∈ 𝒞𝒮𝒯 , we denote as 𝐶𝑎 the slack or surplus of constraint 𝑎 with respect to the
current cluster 𝑠. We define the impact score of stop 𝑖 as 𝑠𝑐𝑖 = 𝜆𝑖

𝑓𝑖
, where 𝑓𝑖 =

∑︀
𝑎∈𝒞𝒮𝒯

(︁
𝑤𝑎,𝑖

𝐶𝑎

)︁
.

The rationale behind this score is that the stops with the highest scores yield significant
gains, while having a low impact on the constraints’ slack or surplus. Based on this score, we
determine the order in which the stops should be added, as described in Step 7 of Algorithm 4.

Note that we stop adding stops as soon as one of them happens to not respect the
constraints of the cluster’s leaf, at Step 12 of Algorithm 4. While more stops could possibly
be added to the clusters, we also do not want to create highly adversarial clusters that would
mislead the fitted OCT and be misclassified. Therefore, stopping the stop insertion at this
point is a way of increasing the

∑︀
𝑖∈𝑐𝑙 𝜆𝑖 without highly risking an increase in the number of

vehicles required to serve 𝑠 in the actual routing, number for which 𝑐𝑠 is only a proxy.
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Algorithm 5 intends to remove stops that do not contribute to the reduced cost of the
considered cluster, so that stops with higher associated dual value can later be added.
Comparing to Algorithm 4, the benefits of Algorithm 5 are multiple. First, removing some

Algorithm 5: Remove and add stops
1 Inputs: 𝑠 a cluster, 𝐷 the set of dual value of the covertness constraints ;
2 𝒞𝑛 ← ∅ ;
3 𝐿𝑑 ←stops not in 𝑠 whose dual value is zero ;
4 𝑀 ← [10, 15, 20] ;
5 for 𝑚 ∈𝑀 do
6 Copy 𝑠, and denote it 𝑐𝑜𝑝𝑦_𝑠 ;
7 Randomly take 𝑛 stops from 𝐿𝑑;
8 Remove these stops from 𝑐𝑜𝑝𝑦_𝑠 ;
9 Perform Algorithm 4 on 𝑐𝑜𝑝𝑦_𝑠 ;

10 𝒞𝑛 ← 𝒞𝑛 ∪ {𝑐𝑜𝑝𝑦_𝑠} ;
11 end
12 return: the newly generated set of clusters 𝒞𝑛

stops enables us to insert more relevant stops later using Algorithm 4. Second, it creates
clusters that have more stops distinct from the initial cluster, and therefore may prevent
Algorithm 2 to remain in a local minimum. However, Algorithm 5 is more time consuming
than Algorithm 4, and randomly removing stops may lead to a change in the corresponding
OCT leaf, potentially resulting in clusters with less stops than expected.

In response to the shortcomings of Algorithm 5, Algorithm 6 intends to remove as few
stops as possible to change the cluster’s OCT leaf, and hence potentially reduce its predicted
number of vehicles. Step 3 ensures that the algorithm terminates early if the number of
vehicles is 1. In this case, since the goal is to decrease the number of vehicles serving 𝑠,
there is no incentive to change leaf by removing stops from the cluster. Two questions
naturally arise when we seek to remove stops from a cluster. First, which stops are relevant
candidates? Second, in which order should they be removed? The overall goal is to decrease
the reduced cost of the considered cluster, by decreasing its predicted number of vehicles.
However, since the reduced cost of a cluster 𝑠 is 𝑟𝑠 = 𝑐𝑠 −

∑︀
𝑖∈𝑠 𝜆𝑖, there is a trade-off to be

discussed when removing a stop which leads to a decrease in 𝑐𝑗, but has a high dual value.
IP (4.4) selects a list of stop candidates which could provide this balance. The approach is
to minimize the loss, in terms of dual values removed, while making sure that at least one
of the current constraint is violated. The rationale is that if a current constraint is violated,
then the corresponding leaf of the cluster is modified, leading to a potential decrease in 𝑐𝑗.
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Algorithm 6: Decrease leaf
1 Inputs: 𝑠 a cluster of stops, 𝐷 the set of dual values of the covertness constraints, 𝑛

the number of stops to consider ;
2 𝑣 ←the predicted number of vehicle to serve 𝑠 ;
3 if 𝑣 == 1 then
4 return: 𝑠
5 end
6 𝑙← the leaf of cluster 𝑠 ;
7 Copy 𝑠, and denote it 𝑐𝑜𝑝𝑦_𝑠 ;
8 𝑙′ ← the leaf of cluster 𝑐𝑜𝑝𝑦_𝑠;
9 while 𝑙′ == 𝑙 do

10 Let 𝐿𝑑 be the list of stops in 𝑐𝑜𝑝𝑦_𝑠 ;
11 Sort 𝐿𝑑 by ascent dual value ;
12 𝐿𝑑 ← 𝐿𝑑[0 : 𝑛] ;
13 𝐷𝑐𝑠𝑡,𝑚𝑎𝑟𝑔𝑖𝑛 ←for each constraint active at 𝑙′, its current slack or surplus ;
14 𝐷𝑐𝑠𝑡,𝑠𝑡𝑜𝑝𝑠 ←for each stop in 𝐿𝑠 the changes observed for each active constraint if

the stop was to be removed from 𝑐𝑜𝑝𝑦_𝑠;
15 Solve IP (4.4) with 𝑆 = 𝐿𝑑 using 𝐷𝑐𝑠𝑡,𝑚𝑎𝑟𝑔𝑖𝑛 and 𝐷𝑐𝑠𝑡,𝑠𝑡𝑜𝑝𝑠, and denote 𝐿𝑖 the list

of selected stops ;
16 Sort 𝐿𝑖 by ascending remove score as computed in Definition 2 ;
17 for stop 𝑖 ∈ 𝐿𝑖 do
18 𝑐𝑜𝑝𝑦_𝑠← 𝑐𝑜𝑝𝑦_𝑠∖{𝑖} ;
19 if 𝑙′ == 𝑙 then
20 break;
21 end
22 end
23 end
24 Perform Algorithm 4 on 𝑐𝑜𝑝𝑦_𝑠 ;
25 return: 𝑐𝑜𝑝𝑦_𝑠
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Similarly to the approach used in the IP formulation (4.3), we assume that the impact of
removing a small set of stops from a cluster can be approximated by the sum of the impact
of removing each stop from the cluster. Let 𝐼 be a set of stops which are potential candidates
to be removed, 𝒞𝒮𝒯 be the set of constraints of the considered cluster, and 𝑀 be a very
large number. For each stop 𝑖 ∈ 𝐼, we denote by 𝜆𝑖 its dual value, and by 𝑤𝑖,𝑎 the additional
slack or surplus it would bring to constraint 𝑎 if it was to be removed from the cluster. For
each constraint 𝑎 ∈ 𝒞𝒮𝒯 , we denote by 𝐶𝑎 its current slack or surplus with respect to the
considered cluster. The IP formulation (4.4) intends to follow the logic previously described
to select the stops to be removed.

min
𝑥,𝑧

∑︁
𝑖∈𝐼

𝜆𝑖𝑥𝑖 (4.4a)

s.t.
∑︁

𝑎∈𝒞𝒮𝒯

𝑧𝑎 ≥ 1, (4.4b)∑︁
𝑖∈𝐼

𝑤𝑖,𝑎𝑥𝑖 − 𝐶𝑎 ≥ (𝑧𝑎 − 1) *𝑀, ∀𝑎 ∈ 𝒞𝒮𝒯 , (4.4c)

𝑥𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐼, (4.4d)

𝑧𝑎 ∈ {0, 1}, ∀𝑎 ∈ 𝒞𝒮𝒯 . (4.4e)

The binary variable 𝑥𝑖 indicates if stop 𝑖 is selected or not. Therefore, the Objective (4.4a)
aims at minimizing the loss of dual values if stops were to be removed. The binary variable
𝑧𝑎 indicates if constraint 𝑎 is violated or not. Therefore, Constraint (4.4b) makes sure that
at least one of the current constraint is violated, and thus that the cluster’s leaf changes.
Constraints (4.4c) ensure that 𝑧𝑎 can take the value 1 only if the constraint 𝑎 is indeed
violated.

Note that the IP formulation (4.4) may be infeasible due to Constraint (4.4b): the
number of stops considered may not be large enough to actually change leaf. To prevent this
infeasibility, we have modified Constraints (4.4c) as:

∑︀
𝑖∈𝑆 𝑤𝑖,𝑎𝑥𝑖 − 𝑡 * 𝐶𝑎 ≥ (𝑧𝑎 − 1) *𝑀 ,

where 𝑡 ∈ [0, 1] enables us to control the minimum change required in the constraint’s slack
or surplus to consider the constraint as violated. In practice, we begin by solving IP (4.4)
with 𝑡 = 1, and iteratively decrease its value of 0.2 as long as IP (4.4) remains infeasible.

The solution of IP (4.4) provides us with a set of stops to be removed. However, the
order in which we should remove them is important, as not all stops combinations have the
same impact. We define in Definition 2 a remove score for each stop, based on the trade-off
between the loss in terms of dual value and the gains in terms of slack or surplus of the leaf’s
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constraints.

Definition 2 Let 𝑠 be a cluster, 𝒞𝒮𝒯 be the set of tree constraints active at the cluster’s
leaf, 𝑖 be a stop in 𝑠, and 𝜆𝑖 be its dual value. For each constraint 𝑎 ∈ 𝒞𝒮𝒯 , we denote by
𝑤𝑎,𝑖 the constraint 𝑎’s slack or surplus modification if stop 𝑖 was to be removed cluster 𝑠. For
each constraint 𝑎 ∈ 𝒞𝒮𝒯 , we denote by 𝐶𝑎 the slack or surplus of constraint 𝑎 with respect
to the current cluster 𝑠. We define the remove score of stop 𝑖 as 𝑠𝑟𝑖 =

𝑓𝑖
(1+1000*𝜆𝑖

), where

𝑓𝑖 =
∑︀

𝑎∈𝒞𝒮𝒯

(︁
𝑤𝑎,𝑖

𝐶𝑎

)︁
.

The rationale behind this score is that the stops with the highest scores yields significant
changes in constraints slack or surplus while contributing to low losses in terms of the cluster’s
reduced cost. Based on this score, we determine the order in which the stops should be
removed, as described in Step 16 of Algorithm 6.

Heuristics Creating new Clusters

The heuristics presented in this section are focused on creating new clusters to overcome two
main potential drawbacks of only modifying existing clusters. First, Algorithms 4, 5 and 6
all intend to maintain or decrease the number of vehicles required to serve a cluster. On the
long run, this could lead to severe restrictions on the cluster space explored. Second, by only
modifying existing clusters, these algorithms increase the risk of getting trapped in a local
minimum.

We propose two ways of creating new clusters. The first one is based on the existing
pool of clusters, while the second one is based on the previous solution of the relaxation of
IP (4.2). They both follow the same principle: select an initial stop as a basis of the new
cluster, add more stops to the new cluster until a target demand is reached, then improve
the new cluster using the previously discussed Algorithms 3, 5 and 6.

Algorithm 7 presents the algorithm used to build a cluster from an initial stop 𝑠𝑖. The
rationale behind Algorithm 7 is that stops are added to a cluster based on their dual value,
but also in terms of how similar they are to the other stops in the cluster. This trade-off is
captured by the integration score of Algorithm 7, at Step 7, defined below.

Definition 3 Let 𝐿 be a list of stops, 𝑖 be a stop not in 𝐿, and 𝜆𝑖 be its dual value. Let 𝑑𝑎𝑙𝑙
be the shortest distance between 𝑖 and a stop in 𝐿. Let 𝑑𝑠𝑖𝑚𝑖 be the shortest distance between
𝑖 and a stop in 𝐿 with the same time-window pattern. We define the integration score of
stop 𝑖 as 𝑠𝑖𝑖 = 𝛼 * 𝑑𝑎𝑙𝑙+𝑑𝑠𝑖𝑚𝑖

2
− 𝛽 *𝜆𝑖, where 𝛼 and 𝛽 are coefficients weighting the importance

of the distance and the dual value.
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Algorithm 7: Create cluster
1 Inputs: 𝐷 the set of dual values of the covertness constraints, 𝑑 the target demand

of the cluster, 𝑠𝑖 the initial stop, 𝐼 the set of potential stops ;
2 𝐿← [𝑠𝑖] ;
3 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑒𝑚𝑎𝑛𝑑← 0 ;
4 𝑛← 20 ;
5 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑒𝑚𝑎𝑛𝑑 < 𝑑 do
6 𝐿𝑖 ← 𝐼∖𝐿 ;
7 Sort 𝐿𝑖 by ascending integration score ;
8 𝐿𝑖 ← 𝐿𝑖[0 : 𝑛] ;
9 for stop 𝑖 ∈ 𝐿𝑠 do

10 Let 𝑑𝑖 be the demand of stop 𝑖 ;
11 𝐿← 𝐿 ∪ {𝑠} ;
12 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑒𝑚𝑎𝑛𝑑← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑑𝑒𝑚𝑎𝑛𝑑+ 𝑑𝑖 ;
13 end
14 end
15 Let 𝑠 be the cluster created from the list of stops 𝐿 ;
16 return: the cluster created 𝑠 ;

The target demand 𝑑 ensures that we build clusters of a reasonable size. In practice, we
use 𝑑 being equal to 1.5 times the vehicle’s capacity. Finally, the value of 𝑛 is a trade-off
between computational time and how often the integration score should be updated. As the
integration score is computed based on the stops already chosen to be part of the clusters,
its relevance decreases in 𝑛.

Algorithm 8 selects the initial stop on which to base the cluster by considering how many
low reduced cost clusters are already covering this stop. The rationale behind this algorithm
is that some stops may not have a large choice of low reduced cost clusters to be covered by,
which therefore leads to sub-optimal solutions. The relevance of the clusters is estimated by
their current reduced cost, at Step 4 of Algorithm 8, which has to be lower than a certain
threshold. To ensure that the newly created clusters have the lowest possible reduced cost,
they are improved at Step 8 of Algorithm 8.

Algorithm 9 selects the initial stop based on its dual values. The rationale behind this
algorithm is that initializing a cluster 𝑠 by a stop with a high dual value increases the
likelihood of having a final high sum of dual values over the stops in the cluster, and hence a
low reduced cost. In addition, one could also see the dual value of a stop as being a proxy for
how costly it is to currently serve this stop. Therefore, focusing on these specific stops may
reduce the total cost, i.e., the total number of vehicles. To ensure that the newly created
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Algorithm 8: Create new clusters based on stop covertness
1 Inputs: 𝒞 the set of clusters already built, 𝑅 the reduced costs of each cluster,𝐷

the set of dual values of the covertness constraints, 𝑛 a positive integer ;
2 𝒞𝑛 ← ∅ ;
3 𝑡𝑜 ←the 10th percentile of 𝑅 ;
4 𝐿𝑖 ←the list of stops sorted in ascending order by how many clusters of reduced cost

less than 𝑡𝑜 cover them ;
5 𝐿𝑖 ← 𝐿𝑖[0 : 𝑛] ;
6 for stop 𝑖 ∈ 𝐿𝑖 do
7 𝑠←the cluster created with Algorithm 7, with 𝑠𝑖 = 𝑖 and 𝐼 = 𝐿𝑖∖{𝑖} ;
8 Improve cluster 𝑠 with Algorithm 3, and note 𝒞𝑖 the set of clusters returned by it

𝒞𝑛 ← 𝒞𝑛 ∪ 𝒞𝑖 ∪ {𝑠} ;
9 end

10 return: the set of clusters created 𝒞𝑛 ;

Algorithm 9: Create new clusters based on stop dual value
1 Inputs:𝒞 the set of clusters already built, 𝐷 the set of dual values of the covertness

constraints, 𝑛 the number of clusters to be created ;
2 𝒞𝑛 ← ∅ ;
3 𝐿𝑖 ←the list of stops sorted in ascending order by their dual value ;
4 𝐿𝑖 ← 𝐿𝑖[0 : 𝑛] ;
5 for stop 𝑖 ∈ 𝐿𝑖 do
6 𝑠← the cluster created with Algorithm 7, where 𝑠𝑖 = 𝑖 and 𝑆 = 𝐿𝑖∖{𝑖} ;
7 Improve the cluster 𝑠 with Algorithm 3, and note 𝒞𝑖 the set of clusters returned

by it ;
8 𝒞𝑛 ← 𝒞𝑛 ∪ 𝒞𝑖 ∪ {𝑠};
9 end

10 return: the set of clusters created 𝒞𝑛 ;
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clusters have the lowest possible reduced cost, they are improved using Algorithm 3 at Step 7
of Algorithm 9.

Heuristics Merging Existing Clusters

The heuristics presented in this section are relevant, since as long as clusters are modified
and created individually, very similar clusters may exist and it may be beneficial to combine
them. The rationale of combining similar clusters is twofold. First, it may remove some
overlap in the final set covering solution of IP (4.2). Second, merging two similar clusters
may results in a new cluster with the same predicted number of vehicles than the maximum
predicted number of the two clusters, but a higher number of stops, hence a lower reduced
cost.

Algorithm 10 details how clusters are prioritized per reduced cost. To limit the com-
putational time, we are only considering the clusters whose reduced cost is below a certain
threshold (Step 4). The rationale behind this is that the reduced cost of each merged cluster
should be low enough to produce a cluster of negative reduced cost. The similarity between
two clusters is computed as the number of common stops. It intends to limit stops overlap
and to limit the increase in terms of number of vehicles required to serve the newly created
cluster. The list 𝑉 maintains the list of clusters already merged, so as to not merge the two
same clusters again. Finally, at Step 15 of Algorithm 10, the created clusters are improved
using Algorithm 4 to make sure that they have the lowest possible reduced cost.
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Algorithm 10: Merge two clusters
1 Inputs: 𝒞 the set of clusters already built, 𝑅 the reduced costs of each cluster, 𝐷

the set of dual values of the covertness constraints, 𝑛 the number of clusters to be
created ;

2 𝒞𝑛 ← {} ;
3 𝑡𝑜 ←the 10th percentile of 𝑅 ;
4 𝐿𝑐 ← the clusters in 𝒞 whose reduced cost is less than 𝑡𝑜 ;
5 Sort 𝐿𝑐 per ascending reduced cost ;
6 𝑉 ← [] ;
7 𝑐𝑜𝑚𝑝← 0 ;
8 𝑡𝑟𝑒𝑎𝑡𝑒𝑑← 0 ;
9 while 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 < 𝑛 do

10 𝑠← 𝐿𝑐[𝑐𝑜𝑚𝑝] ;
11 if 𝑠 ̸∈ 𝑉 then
12 𝑃 ← clusters in 𝐿𝑐 not in 𝑉 ;
13 Sort 𝑃 by descending order of common stops with 𝑠 ;
14 Merge 𝑠 and cluster 𝑃 [0], denote 𝑛𝑒𝑤_𝑠 the obtained cluster ;
15 Perform Algorithm 4 on 𝑛𝑒𝑤_𝑠 ;
16 𝒞𝑛 ← 𝒞𝑛 ∪ {𝑛𝑒𝑤_𝑠} ;
17 𝑉 ← 𝑉 ∪ {𝑠, 𝑃 [0]} ;
18 𝑡𝑟𝑒𝑎𝑡𝑒𝑑← 𝑡𝑟𝑒𝑎𝑡𝑒𝑑+ 1 ;
19 end
20 𝑐𝑜𝑚𝑝← 𝑐𝑜𝑚𝑝+ 1 ;
21 end
22 return: the set of created clusters 𝒞𝑛

4.3.4 Results of the Set Covering Approach

This section analyzes the results obtained with the set covering approach, in terms of con-
vergence, optimality, and accuracy.

Convergence

Algorithm 2 mimics a column generation approach to solve the relaxation of the set covering
problem (4.2) with 𝒮 = S, i.e., when the set of clusters consists of all potential stop combi-
nations S. Given the highly combinatorial problem faced, we generate new clusters with a
set of heuristics, and therefore have no convergence guarantee. This section focuses on the
performance of the heuristics generating new clusters and on the overall convergence of Al-
gorithm 2. Figure 4-2 presents the evolution of the objective value of the relaxation of (4.2),
on a 1, 000 customer dataset and using 60 iterations in Algorithm 2. While we cannot derive
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Figure 4-2: Objective value of the relaxation of (4.2) across iterations of Algorithm 2

any optimality result, Figure 4-2 confirms that Algorithm 2 successfully decreases the objec-
tive value. This decrease proves the effectiveness of the different heuristics generating new
clusters. Overall, Algorithm 2 leads to a decrease of 55.7% in the value of the best-found
solution of the relaxation of IP (4.2), compared to the initialization value. The decrease
pattern is quite similar to the one observed in a conventional column generation approach:
a strong decrease at the beginning which tends to diminish throughout the iterations, as
generating clusters of negative reduced cost becomes harder. Interestingly, there seems to
be a minimal number of iterations needed before seeing a decrease in the objective value.
This number may correspond to the number of iterations needed to begin moving away from
the initial local minimum. Indeed, the k-means initialization leads to a perfect covertness,
in the sense that no customer is covered twice. Since most of the heuristics modify current
clusters, it may take a certain number of iterations to create clusters which propose a dif-
ferent covertness. Figures 4-3 present the percentage of clusters having a negative reduced
cost, and the average value of the latter, respectively. They confirm the efficiency of the
heuristics, as most of the clusters created have a negative reduced cost. This percentage de-
creases across iterations, also confirming that generating clusters with negative reduced cost
becomes harder. In addition, the average value of the negative reduced cost is aligned with
the decrease observed in the upper bound of the IP (4.2) relaxation, shown in Figure 4-2.
At the beginning, the newly created clusters have a very low reduced cost, enabling a strong
decrease in the upper bound, until this reduced cost flattens around zero, leading to a slower
decrease in the upper bound.

Figure 4-3 suggests that it may be worth considering the reduced cost of the clusters as
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Figure 4-3: Percentage of clusters created with negative reduced cost and average value of
this negative reduced cost across iterations of Algorithm 2

stopping a criterion for the algorithm, rather than a fixed number of iterations. Most of the
benefits are derived from the first third of the iterations, during which the heuristics perform
well and generate clusters of negative reduced cost with a high frequency. In addition, these
clusters have a significant negative reduced cost, contrary to the ones generated in the last
iterations.

Optimality

Since the clusters are generated using heuristic methods and since the stopping criterion
is a maximum number of iterations, the optimality of the solution found for the IP (4.2)
relaxation with 𝒮 = S is not guaranteed. To estimate the optimality gap resulting from
Algorithm 2, we use only linear features and compare the value of the solution obtained with
Algorithm 2 against the relaxation of MIP (4.1). In addition, we also compare the optimal
value of IP (4.2) solved with the set of clusters generated by Algorithm 2 and the value of
MIP (4.1). The rationale behind these two comparisons is that MIP (4.1) is equivalent to
IP (4.2) solved on the set of all potential clusters,i.e., with 𝒮 = S. However their relaxations
are not equivalent. Given the big-M constraints used in MIP (4.1), its relaxation is not as
strong as the relaxation of IP (4.2): one can easily show that the MIP (4.1) relaxation value
is lower than the IP (4.2) relaxation value. Therefore, the comparison with the relaxation
of MIP (4.1) only provides an upper bound on the optimality gap between Algorithm 2 and
the relaxation value of IP (4.2) with 𝒮 = S.

Table 4.3 presents the optimality gap for the integer formulation and its relaxation,
introduced by using Algorithm 2 with 𝑛 = 100 to generate the set of considered clusters
instead of using S to solve IP (4.2). The first column corresponds to the percentage of
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difference in the optimal value between IP (4.2) solved with the clusters generated through
Algorithm 2 and solved on all potential clusters S. The second column corresponds to an
upper bound on the gap between the relaxation of IP (4.2) solved with the clusters generated
through Algorithm 2 and solved on all potential clusters S. Since the exact method presented

Integer Optimality Gap (%) Relaxation Optimality Gap (%)
600 0.0 33.3
1000 0.0 33.3

Table 4.3: Optimality gap introduced by Algorithm 2 for IP (4.2) and its relaxation

in Section 4.2 only tackles instances with up to 1, 000 customers when relying solely on linear
features, we can only compare the optimality of Algorithm 2 on instances with less than 1, 000

customers, and with a tree solely relying on linear features. Despite the lack of test instances
due to scalability limitation, Table 4.3 seems to suggest that Algorithm 2 with 𝑛 = 100

performs well from an optimality point of view. On both instances, Algorithm 2 generates
relevant enough clusters to obtain an exact integer solution of IP (4.2). The optimality gap
on the relaxation is more pronounced that the one obtained on the integer problem. This
can be explained by the fact that the relaxation of MIP (4.1) is not as strong as the one of
IP (4.2) and that the optimality gap may be over-estimated. Therefore, we emphasize that
the second column of Table 4.3 only presents an upper bound of the optimality gap on the
relaxed problem.

Accuracy

The results of the set covering approach, in terms of accuracy, are presented in Table 4.4.
The first column indicates the instance considered. The OCT accuracy column reports the
accuracy reached on the test set by the fitted OCT as described in Section 3.2. The MIP
accuracy column reports the accuracy reached on the clusters selected by the MIP (4.2), i.e.,
the percentage of these clusters for which the predicted number of vehicles is equal to the
actual number of vehicle found in the routing performed by LocalSolver. The MIP prediction
error is the gap between the total predicted number of vehicles, i.e. the objective value of
the MIP (4.2), and the total number actually obtained when solving the routing problem
on each of the clusters determined by the MIP. For all instances, Algorithm 2 has been run
with 𝑛 = 60, i.e., 60 iterations. Table 4.4 presents a global improvement compared to the
exact approach developed in Section 4.2: the MIP accuracy is higher and the MIP prediction
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Customers dataset OCT accuracy (%) MIP accuracy (%) MIP prediction error (%)
600 75.3 6.1 91.4

1,000 75.1 2.6 126.3
2,000 74.8 3.1 116.1
3,000 76.3 1.9 201.2
5,000 76.9 2.2 115.3
10,000 78.5 16.2 569.9

Table 4.4: Results of the set covering approach for different instances

error is lower. Despite this improvement, the MIP accuracy is still very low compared to the
accuracy obtained on the test set with the fitted OCT. The final clusters selected by IP (4.2)
almost never require the predicted number of vehicles to be served. This inaccuracy leads
to a very high MIP prediction error. In Section 4.2.3, we have proposed three hypotheses to
explain the lack of accuracy on the clusters in the solution of our clustering approach: the
difference between the training and test set, the linearity restriction on the features, and the
adversity of the generated clusters. Algorithm 2 overcomes the restriction of linear features.
Therefore, only two hypotheses are left to explain the low accuracy on the clusters solution:
the difference between the training and test set, and the adversarial nature of the clusters
generated. The first hypothesis is studied in Section 4.4, while the second hypothesis is
discussed in Section 4.3.5.

4.3.5 Increasing the Robustness of the Predictions

The adversarial nature of the clusters is almost inherent to the targeted objective: minimizing
the total number of vehicles. Intuitively, as we seek to minimize the total number of vehicles,
the slack of the tree constraints, with respect to the clusters created, is minimized as well.
Figure 4-4 presents the accuracy on the clusters obtained when solving IP (4.2) for different
iterations of Algorithm 2, on a 600 customer, a 1, 000 customers and a 1, 500 customers
dataset. Since the clusters selected become more optimal with respect to minimizing the
total number of vehicles, Figure 4-4 provides information on the relationship between cluster
accuracy and overall optimality. It confirms that the adversity of the clusters increases
throughout the iterations of Algorithm 2, and seems to suggest that one of the reason for
the low accuracy observed in Table 4.4 is the cluster creation process.
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Figure 4-4: Accuracy of the clusters selected by IP (4.2) across iterations of Algorithm 2

Introducing a Robustness Threshold

From a geometric perspective, each leaf corresponds to a polyhedron over the space of fea-
tures. The distances between an observation and the polyhedron’s edges correspond to the
slack values of the leaf’s constraints. Given that a tree is optimized to maximize leaf accu-
racy, the higher the distances are, the more likely the observation is to be rightly classified.
The following example may provide more intuition. If the training dataset is composed of
sets of stops with 10 customers associated to label 1, and of sets of stops with 20 customers
associated to label 2, then the tree will be composed of two leaves, corresponding to the sets
with less than 15 customers and to the sets with more than 15 customers, and predicting
label 1 and 2, respectively. In this example, two sets with 9 and 14 customers are both
labeled with 1. However, the set with 14 customers is more likely to be misclassified, as it
is closer from the hyperplane separating the space of sets of customers into the ones with
less than 15 customers, and the ones with more than 15 customers. Similarly, the clusters
close to the edges of their leaf’s polyhedron have a high probability of being wrongly classi-
fied by the tree. Therefore, a way of counterbalancing the adversity of the cluster creation
process is to create clusters which respect a minimal distance from the edges of the leaf’s
polyhedron. From a linear programming perspective, doing so is equivalent to setting a lower
bound on the slack of the leaf’s constraints for each cluster. From a geometric perspective,
doing so is equivalent to considering a reduced polyhedron for each leaf. Figure 4-5 geomet-
rically presents the rationale behind considering a reduced polyhedron for each leaf. Let us
consider an arbitrary leaf. Its polyhedron, defined by the set of constraints of the leaf, is
represented by the outer pentagon in Figure 4-5. Its reduced polyhedron is represented by
the inner pentagon. It corresponds to a smaller subspace, and introduces a minimum slack,
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Figure 4-5: The polyhedron associated to a leaf and its reduced version

or surplus, on the initial constraints. Given the construction process of trees, a point within
the reduced polyhedron is more likely to be correctly classified than one close to the borders,
i.e., in the red area of Figure 4-5. The size of this reduced polyhedron is determined by a
robustness threshold 𝑡, indicating the percentage of robustness targeted. If the polyhedron
was previously determined by constraints of the form 𝑥 ≤ 𝑏 and 𝑥 ≥ 𝑏, it is now determined
by the following constraints 𝑥 ≤ (1 − 𝑡) * 𝑏 and 𝑥 ≥ (1 + 𝑡) * 𝑏. For example, if a leaf
is determined by the constraints 𝑑𝑒𝑚𝑎𝑛𝑑 ≤ 20 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑑𝑒𝑝𝑜𝑡 ≥ 100, and that 𝑡 is
set to 0.1, then the reduced polyhedron of the leaf corresponds to the set of clusters such
that 𝑑𝑒𝑚𝑎𝑛𝑑 ≤ 18 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑑𝑒𝑝𝑜𝑡 ≥ 110. Note that the reduced polyhedrons of the
set of leafs do not form a mutually exclusive and collectively exhaustive set of polyhedrons
anymore. In addition, applying a simple percentage to the constraint coefficients does not
capture the dispersion of the feature values. For example, if a feature 𝑓 can only take the
following three values: 219, 220 and 221, leading to the constraint 𝑓 ≤ 220, it does not make
sense to apply a robustness percentage as described above. Indeed, this percentage does not
take into account the dispersion of this feature. Therefore, we discretize 𝑡 per feature. For
each feature 𝑓 we consider a robustness threshold 𝑡𝑓 = 𝜎2

𝜇
* 𝑡, where 𝜇 and 𝜎2 correspond to

the mean and the variance of 𝑓 , and where 𝑡 corresponds to the baseline robustness targeted.

From an algorithmic point of view, every cluster 𝑠 not in this reduced polyhedron is
considered as belonging to a class with an infinite number of vehicles, i.e., 𝑐𝑠 = ∞. Doing
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so prevent them from being selected in the set covering problem (4.2), as it would lead to
an infinite objective value. Therefore, it guarantees that every cluster in the final solution
of IP (4.2) lies in the reduced polyhedron of its leaf. The heuristics used to generate new
clusters in Algorithm 2 at Steps 8, 9, 10, now aim at creating clusters within the reduced
polyhedron of the tree leaves. Very few changes are needed in the different heuristics:

∙ In Algorithm 4, Step 9 becomes lies in the reduced polyhedron of 𝑙𝑠. This change
enables us to target the reduced polyhedron of each leaf, when adding more stops to
the cluster.

∙ In the IP formulations (4.3) and (4.4), the current slack or surplus 𝐶𝑎 of constraint 𝑎 is
taken with respect to the robust constraint 𝑥 ≤ (1− 𝑡𝑓 )* 𝑏, if the initial constraint was
𝑥 ≤ 𝑏, or to the robust constraint 𝑥 ≥ (1 + 𝑡𝑓 ) * 𝑏, if the initial constraint was 𝑥 ≥ 𝑏.
These changes enable both IP formulations to aim at selecting stops to be added to,
or removed from, a cluster with respect to the leaf’s reduced polyhedron.

Accuracy and Optimality

This section presents the accuracy and the optimality of IP (4.2) solved with the clusters
generated by Algorithm 2, for different robustness thresholds. Table 4.5 presents the accuracy
of the clusters in the solution of IP (4.2) and the best relaxation known for IP (4.2) function of
the different robustness thresholds, for instances with 600, 1, 000 and 2, 000 customers. Note
that 𝑡 = 0 corresponds to no robustness, i.e., the approach previously described. Table 4.5

600 customers 1000 customers 2000 customers
Threshold 𝑡 0 0.05 0.10 0.15 0 0.05 0.10 0.15 0 0.05 0.10 0.15

Accuracy (%) 6.1 20 45 46 2.6 29.6 34.4 65.5 16.4 28.6 26.9 32.7
LP value 20.6 26.9 32.1 36.1 42.5 46.7 49.7 58.4 90.9 96.7 98.4 113.8

Table 4.5: Accuracy on the clusters solution of (4.2) and value of its relaxation function of
the robustness threshold 𝑡

confirms that Algorithm 1 tends to generate adversarial clusters. Setting a non-negative
robustness threshold in Algorithm 1 decreases the adversity of the generated clusters and
hence increases the accuracy. Table 4.5 also highlights the trade-off between accuracy and
optimality reached with this concept of a robustness threshold. As the robustness threshold
restrains the generated clusters to be within a reduced polyhedron, and therefore far from the
edges, they are also less optimal with respect to decreasing the value of the relaxed solution
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of IP (4.2). Instead of aiming at solving the relaxation of IP (4.2) on all existing clusters,
Algorithm 2 now aims at solving the relaxation of IP (4.2) on the clusters lying within the
set of the reduced polyhedron of each leaf. Therefore, the value of the solution provided by
Algorithm 2 increases with the robustness threshold, leading to a solution further away from
the relaxed optimal solution on all existing clusters.

Based on this analysis, we decide to set the robustness threshold to 𝑡 = 0.1. The rationale
behind this choice is that 𝑡 = 0.1 leads to important improvement in terms of accuracy, while
limiting the loss in terms of optimality.

4.3.6 Solving the Integer Formulation of the Set Covering Problem

Solving the clustering problem to optimality is equivalent to solving the set covering problem
in IP (4.2) over the set of all existing clusters, i.e., with 𝒮 = S. Since the set S is intractable,
Algorithm 2 intends to generate only the most relevant clusters 𝒞. However, even when
restrained to 𝒞, IP (4.2) can be intractable due to the high number of stops to cover and the
high number of clusters in 𝒞. To overcome this difficulty, we intend to decrease the cardinality
of 𝒞 by selecting clusters based on their reduced cost in the relaxation of IP (4.2).

Algorithm 11 presents the approach taken to speed up the resolution of IP (4.2) on the
set of created clusters 𝒞. The rationale behind Algorithm 11 is to quickly determine a near-

Algorithm 11: Solving the integer formulation
1 Inputs: 𝒞 the set of clusters generated with Algorithm 2 ;
2 Solve the relaxation of (4.2), denote 𝑙𝑏 its value, 𝑅 the reduced costs of each cluster

and 𝑋 the value of each cluster in the relaxed solution ;
3 𝑆𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔 ← a solution provided by the branching algorithm 12 ;
4 𝐶0 ← the clusters whose reduced cost is zero ;
5 Solve the IP (4.2) with 𝒮 = 𝐶0 using as warm start 𝑆𝑏𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔, denote 𝑆𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 its

solution and 𝑢𝑏 its value ;
6 𝐶𝑟 ← the clusters whose reduced cost is below 𝑢𝑏− 𝑙𝑏;
7 Solve the IP (4.2) with 𝒮 = 𝐶𝑟 using as warm start 𝑆𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 and denote 𝑆𝑓𝑖𝑛𝑎𝑙 its

solution ;
8 return: the final solution 𝑆𝑓𝑖𝑛𝑎𝑙

optimal feasible solution to IP (4.2), and then use this solution as both a warm start and an
upper bound to reduce the number of clusters considered. Lemma 1 below ensures that the
value returned is the optimal value of IP (4.2) solved with 𝒮 = 𝒞. Indeed, at Step 5, 𝑢𝑏 is
the value of a solution of IP (4.2) and hence an upper bound of its optimal solution, while
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an optimal value 𝑙𝑏 of the linear relaxation of IP (4.2) provides a lower bound.

Lemma 1 (Nemhauser & Wolsey 1988, Proposition 2.1, p. 389) Consider an integer pro-
gram in standard form with variables (𝑥𝑖) for which the linear relaxation admits a finite
optimal value 𝑣. Suppose given an upper bound UB on the optimal value of the integer pro-
gram. Then for every i such that 𝑐𝑖 > 𝑈𝐵 − 𝑣, the variable 𝑥𝑖 is equal to 0 in all optimal
solutions of the integer program where 𝑐𝑖 denotes the reduced cost of the variable 𝑧𝑖 when the
linear relaxation has been solved to optimality.

Algorithm 12 presents a branching heuristic aiming at quickly proposing a feasible solu-
tion to IP (4.2). This branching heuristic iteratively selects clusters based on their value in

Algorithm 12: A branching heuristic
1 Inputs: 𝒞 the set of clusters generated with Algorithm 2, 𝑛 an integer;
2 𝑆 ← the list of all stops to be served ;
3 𝑆𝑓𝑖𝑛𝑎𝑙 ← ∅ the list of selected clusters ;
4 while 𝑆 ̸= ∅ do
5 Solve the relaxation of (4.2) with 𝒮 = 𝒞∖𝑆𝑓𝑖𝑛𝑎𝑙 over the set of stops 𝑆 ;
6 Add to 𝑆𝑓𝑖𝑛𝑎𝑙 the 𝑛 clusters with the highest relaxed value ;
7 Remove from 𝑆 the stops covered by these clusters ;
8 end
9 return: the final solution 𝑆𝑓𝑖𝑛𝑎𝑙

the relaxation of the set covering problem. Once a cluster is selected, the stops covered by it
are removed from the ones which still need to be covered, reducing the number of constraints
of (4.2).

Although Algorithm 11 speeds up the integer resolution of (4.2), it is not efficient enough
to enable us to solve it to optimality in the allocated time, set to 20 minutes for practical
reasons. The number of clusters in 𝐶𝑟 at Step 7 of Algorithm 11 remains too high and
prevents IP (4.2) from being efficiently solved by an industrial solver. The optimality gap
observed varies with the instances and the number of customers considered, but could be
as high as 13%. This thesis intends to demonstrate the potential benefits of ML techniques
combined to OR algorithms. Therefore, in the following, we choose to focus on how to
combine ML within OR algorithms, rather than focusing on solving a set covering problem.
This choice is supported by the following reasons:

∙ The average optimality gap is around 3%, which is much lower than the 13% gap
occasionally encountered. Therefore, we believe that the potential gain resulting in
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improving the optimality gap will not change the results of our analysis of the innovative
clustering method we are proposing.

∙ In the context of this thesis, obtaining a near-optimal solution to the set covering
problem is relevant only if the accuracy of the clusters within this solution is high.
Given the current accuracy levels obtained on the selected clusters, we believe it is
more important to improve on this accuracy rather that on the optimality of the
solution.

∙ Set covering problems have been widely studied in the literature, and many approaches
have been proposed to solve them. Both heuristics and exact approaches have been de-
veloped. Most of them rely on computing the Lagrangian relaxation (Balas & Carrera
1996, Beasley 1990, Haddadi 1997), and optimizing it using different gradient descent
approaches, such as subgradient multipliers (Held & Karp 1971) or primal-dual sub-
gradient (Ceria, Nobili, & Sassano 1998). We refer the reader to Caprara, Toth, and
Fischetti (2000) for a more extensive review of heuristics and exact approaches devel-
oped to solve the set covering problem.

4.4 Learn and Optimize Approach

In Section 4.3, we develop an algorithm solving large VRPTW instances and allowing for
OCT with non-linear features. Give the high dimensionality of the set of all existing clusters,
the Set Covering Problem is tackled via a column generation approach. While Section 4.3 has
shown the convergence and optimality performance of the Set Covering Approach, it has also
highlights its limitation due to a low accuracy on the final clusters selected by the set covering
problem eq4.2. Three main hypothesis have been developed in this chapter to explain this
low accuracy: a difference between the training and the test set, a low accuracy of the
OCT due to non-relevant features, and the adversarial nature of the clusters generated when
intending to minimize the total number of vehicles. The set covering approach developed in
Section 4.3 has enabled us to overcome two of the three potential sources of low accuracy.
Using non-linear and linear features has enabled the OCT to reach higher accuracy levels on
the training set. Introducing the robustness threshold concept (Section 4.3.5) has decreased
the adversity of the clusters. Therefore, this section aims at tackling the last hypothesis, i.e.,
decreasing the difference between the training dataset and the test dataset, by developing a
new approach to create the dataset on which the OCT is fitted.
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4.4.1 Learn and Optimize Framework

One of the drawbacks of the two previous approaches described in Sections 4.2 and 4.3 is
that the OCT is fitted on observations obtained independently from the optimization part,
i.e., from the clustering algorithm. In this framework, we are trying to combine both parts
to obtain an OCT with a high accuracy on the clusters selected by the optimization part.
Figure 4-6 presents a framework to create a dataset based on the optimization procedure.
The dataset is first initialized with a few clusters obtained from a k-means algorithm, where

Figure 4-6: Learn and Optimize framework

𝑘 = 𝑁
𝑐

with 𝑁 being the total number of stops and 𝑐 the vehicle’s capacity. This dataset
is iteratively extended until a pre-defined termination criterion is met, following the three
steps indicated in Figure 4-6. First, we update the OCT considered by fitting it on the
current dataset. Second, we seek to generate new data points, i.e., sets of stops labeled with
the minimal number of vehicles required to serve them. We create new clusters by applying
the set covering approach described in Section 4.3 with a robustness threshold 𝑡 = 0.1,
using the OCT fitted during the first step. This second step is described in more depth in
Algorithm 13. Third, the routing problem is solved on each of these clusters to determine
the actual minimal number of vehicles required to serve them. These new clusters and
their labels are then added to the dataset. We repeat this procedure until the pre-defined
termination criterion is met. The termination criterion could be either a certain level of
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accuracy reached on the clusters selected by the set covering approach, a certain number of
observations in the dataset, or a certain number of iterations. For the results presented in
this thesis, we set as termination criteria a maximum number of 30 iterations and a threshold
of 6, 000 observations in the dataset, whichever occurs on first.

In terms of computation time, this framework requires slightly more time than the dataset
creation approach presented in Section 4.3. This additional time is mainly due to the cluster
selection process via the set covering approach, i.e., the second step in Figure 4-6, and
corresponds to 10 to 15% of the total computation time.

Algorithm 13 details how we select which clusters should be added to the dataset, i.e.,
Step 2 of the Learn and Optimize framework. The rationale behind Algorithm 13 is to

Algorithm 13: Selecting relevant clusters in the Learn and Optimize Framework
1 𝒳 ← ∅ ;
2 𝒞 ← the set of clusters generated with Algorithm 2 with the robustness threshold

set to 𝑡 = 0.1;
3 𝒞𝑙𝑜𝑤 ← the clusters in 𝒞 with a predicted number of vehicles less or equal than 4;
4 Solve the relaxation of IP (4.2) with 𝒮 = 𝒞, and denote ℛ the set of clusters whose

value is above the 95𝑡ℎ percentile, and ℛ4 the set of cluster whose value is not null
and whose prediction is at least 4 ;

5 𝒳 ← 𝒳 ∪ℛ ∪ℛ4 ;
6 Solve IP (4.2) with 𝒮 = 𝒞𝑙𝑜𝑤, and denote 𝒜1 the solution ;
7 𝒳 ← 𝒳 ∪𝒜1 ;
8 Solve IP (4.2) with 𝒮 = 𝒞𝑙𝑜𝑤∖𝒜1, and denote 𝒜2 the solution ;
9 𝒳 ← 𝒳 ∪𝒜2 ;

10 return: the final set of clusters 𝒳

select near-optimal clusters with respect to the set covering problem IP (4.2). Therefore, we
are interested in the clusters in the solution of the relaxation of IP (4.2), as they strongly
influence the column generation approach in Algorithm 2. We are also interested in the
clusters which compose the solution of the IP (4.2). Note that we solve the IP (4.2) twice, at
Steps 6 and 8 of Algorithm 13, to ensure that we gather enough clusters at each iteration. As
we aim at obtaining a high accuracy on the clusters selected, and as Section 3.4 has shown
that it seems easier to accurately predict a low number of vehicles, we restrain the set of
considered clusters in IP (4.2) to the one requiring at most 4 vehicles to be served. This
enables us to build a dataset aimed at increasing the accuracy on such clusters. However,
to successfully perform this goal, the OCT needs to be able to distinguish between clusters
whose required number of vehicles is at most 4, and the clusters whose required number of
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vehicles is above 4. Therefore, at Step 4 of Algorithm 13, we specifically target clusters with
a label of 4 in the solution of the relaxation of IP (4.2).

4.4.2 Convergence of the Learn and Optimize Approach

The framework presented in Section 4.4.1 intends to increase the accuracy on the clusters
obtained when solving the IP (4.2). This section confirms the increase in the accuracy by
presenting the convergence, in terms of accuracy and prediction error, across iterations.

Figure 4-7 presents the accuracy obtained on the clusters selected via the set covering ap-
proach (MIP accuracy) and the accuracy obtained on the OCT fitted at each iteration (OCT
accuracy), when applying the framework with 1, 000 customers. It shows that the accuracy

Figure 4-7: Accuracy of the Set Covering Approach and of the OCT across iterations

of the OCT and the one obtained on the clusters resulting from the set covering problem gen-
erally increases across iterations, even if the MIP accuracy does not strictly increase at each
iteration. In addition, we note that we reach a higher MIP accuracy when using the Learn
and Optimize approach compared to using the exact or set covering approaches, described
in Sections 4.2.3 and 4.3.4, respectively.

Figure 4-8 presents the error rate across iterations in this framework, i.e., the percentage
of difference between the predicted number of vehicles given by the set covering approach
and the actual number of vehicles obtained when solving the routing problem on each cluster
with an industrial solver. These results are obtained when applying the Learn and Optimize
framework on the 1, 000 customers instances. Figure 4-8 seems to suggest that the error rate
generally decreases throughout iterations. This decrease corroborates the increase in terms
of the MIP accuracy: as the predictions are more accurate, the gap between the number of
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Figure 4-8: Error rate of the set covering problem (4.2) across iterations

vehicles expected and the one obtained once solved exactly reduces. In addition, we note
that the error rate reached at the end of the iterations is lower than the one obtained via
the methods previously developed in Sections 4.2.3 and 4.3.4.

4.4.3 Results of the Learn and Optimize Approach

The results obtained with the last iteration of the Learn and Optimize framework are pre-
sented in Table 4.6. The OCT accuracy column provides the accuracy of the OCT fitted
on all the observations gathered throughout the iterations. The MIP accuracy column cor-
responds to the percentage of clusters obtained with the set covering approach for which
the actual number of vehicles required to serve them is equal to the predicted number of
vehicles. The prediction error rate column indicates the gap between the total predicted
number of vehicles, i.e. the objective value of the IP (4.2), and the total number actually
obtained when solving the routing problem on each of the clusters selected with the set cov-
ering approach. Table 4.6 confirms that this framework enables us to increase the accuracy
on the final clusters, and hence to decrease the error rate. Note that the MIP accuracy and
the prediction error rate are with respect to the last iteration of the Learn and Optimize
framework. However, as show in Figures 4-7 and 4-8, the accuracy and the error rate fluctu-
ate over iterations, despite their clear trend. Therefore, the numbers presented in Table 4.6
confirm the benefit of this framework, but do not enable us to precisely quantify it, because
of the important variations of the accuracy and the error rate. The variations between two
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Number customers OCT accuracy (%) MIP accuracy (%) Prediction error rate (%)
600 76.5 70.6 4.9

1,000 74.6 68 11.9
1,500 81.9 72.7 12.9
2,000 78.7 64.4 12.7
3,000 77.5 58.8 13.9
10,000 81.9 75.1 9.3

Table 4.6: Results of the Learn and Optimize framework for instances with different number
of customers

iterations may be explained by the changes in the OCT, and most importantly by the ran-
domness in the clusters selected, which results from Algorithm 2. While we cannot quantify
the exact accuracy gained from the Lean and Optimize approach, we note that there is still
a gap between the OCT accuracy and the MIP accuracy. This seems to suggest that this
approach does not completely overcome the difficulty of creating an ideal dataset on which
to train the ML model. Given its impact on optimality, improving this further is of great
interest in subject for future research.

4.5 Analysis of Results

This chapter explores the benefits and challenges of combining ML tree-based methods with
an optimization algorithm. More specifically, it develops a clustering algorithm leveraging the
information provided by an OCT predicting the number of vehicles at sets of stops level. The
results discussed in the previous sections have focused on the accuracy of the clusters obtained
via the clustering algorithm, as it appears to be one of the main difficulty encountered
when leveraging OCT information within a clustering algorithm aiming at minimizing the
total number of vehicles required to serve a set of customers. This section discusses the
performance, relative to the total number of vehicles obtained, of the approaches developed
in the previous Sections 4.2, 4.3 and 4.4.

4.5.1 Evaluation and Goals

To evaluate the performance of our approaches, for each number of customers, we consider
one instance among the one generated (Section 3.1). We then solve the routing problems on
this instance using our approaches: the set covering approach (Section 4.3) and the Learn
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and Optimize framework (Section 4.4). We benchmark it against two methods:

1. A naive clustering approach, in which clusters are created using a k-means algorithm.
𝑘 is chosen as the total demand divided by half the vehicle’s capacity. The rationale
behind this number is that we intend to obtain clusters of small size, which require less
than 4 vehicles to be served. The number of vehicles for each cluster is then determined
using LocalSolver, an industrial solver.

2. A global approach, in which we use LocalSolver to solve the VRPTW on each instance.
In this approach, there is no pre-processing step.

The goal of this benchmark is twofold. First, we are interested in comparing the total
actual number of vehicles found between these four approaches. Second, we intend to explore
the computation time of each method.

4.5.2 Optimality in Terms of Number of Vehicles

Given the randomness inherent to the four approaches considered, the set covering approach,
the Learn and Optimize framework, a k-means approach, and LocalSolver, we run them five
times on the same instance and discuss here the averaged results. Figure 4-9 presents the
average total number of vehicles obtained with the different approaches on different cus-
tomer instances. The ’k-means’ label refers to the naive clustering approach described in

Figure 4-9: Total number of vehicles obtained with the different approaches, function of the
number of customers

Section 4.5.1, the ’SCA’ label refers to the set covering approach described in Section 4.3, the

88



’LearnOptimize’ label refers to the Learn and Optimize framework introduced in Section 4.4,
and the ’LocalSolver’ label refers to the industrial solver we use to solve the complete in-
stance, without any pre-processing step. Figure 4-9 shows that the state-of-the-art solver
clearly outperforms any other approach. It also demonstrates that the decrease in error rate
between the set covering approach and the Learn and Optimize framework translates to a
decrease in the actual number of vehicles as well. It seems that its low accuracy severely
hurts the set covering approach: the actual number of vehicles found is almost twice the one
found with LocalSolver. However, we note that the Learn and Optimize framework outper-
forms the k-means clustering approach by 3 to 5% on average, showing the benefit of using
our approach over a traditional k-means.

While Figure 4-9 presents the average actual number of vehicles with each method, we are
also interested in the predicted number of vehicles with each method, to asses the effectiveness
of our approaches and the impact of their accuracy on the difference between the predicted
and actual number of vehicles. Therefore, Figure 4-10 presents the average predicted number
of vehicles with each method, i.e., the sum of the predicted number of vehicles required to
serve each cluster. For the Learn and Optimize framework and for the set covering approach,

Figure 4-10: Predicted number of vehicles of the different approaches, function of the number
of customers

this number directly corresponds to the objective value of IP (4.2) solved with the clusters
generated via Algorithm 2. For the k-means approach, it corresponds to the sum of the
predicted number of vehicles for each of the 𝑘 clusters determined by the k-means algorithm.
However, for the LocalSolver approach, no clustering is performed as a pre-processing step
and no prediction is made. Therefore, we report the predictions a-posteriori: for each route
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in the final solution, we compute its predicted number of vehicles using the OCT previously
fitted through the Learn and Optimize framework. These predictions are then summed to
obtain the predicted total number of vehicles. The results of Figure 4-10 suggest that the
weak performance of the set covering approach, and to a smaller extend the one of the Learn
and Optimize framework, are mainly due to the high prediction errors. While the set covering
approach obtains the best predicted results, it also obtains the worse actual results, as the
accuracy on the clusters built within this approach is very low. It is interesting to notice that,
in the set covering approach and in the Learn and Optimize framework, the OCT under-
estimates the number of vehicles required to serve all customers, while it over-estimates this
number for the routes built by LocalSolver. The under-estimation of the number of vehicles,
in both of our approaches, may be explained by the fact that we aim at minimizing the total
number of vehicles. This objective leads to select a high proportion of adversarial clusters,
for which the number of vehicles required to serve them is under-estimated. The over-
estimation on the routes built by LocalSolver highlights that misclassification also happens
in the reverse sense: a cluster which would only requires one vehicle gets a prediction of two
vehicles. This effect also explains why even the predicted number of vehicles, on both our
approaches, is higher than the actual number of vehicles found by LocalSolver.

4.5.3 Computation Time

In addition to optimality, computation time is another major concern of routing algorithms.
Due to their inherent combinatorial nature, the computation time of routing algorithms is
usually non-linear in the number of customers. One benefit of a divide-and-conquer approach
such as ours, is the ability of parallelizing the routing process on each cluster, as they
are independent of one another. Figure 4-11 presents the number of vehicles obtained on
an instance with 2, 000 customers as a function of the computation time allocated to the
routing problem2. ’LocalSolver’ label corresponds to the total number of vehicles obtained
when using LocalSolver to solve the whole instance. The other labels corresponds to the
total number of vehicles obtained when solving the routing problem using LocalSolver on
each of the clusters determined by the Learn and Optimize framework. 𝑥 threads indicates
the number of threads used to parallelize the routing process. Figure 4-11 suggests that
LocalSolver is quite competitive in terms of computation time: in less than 200 seconds
it reaches its best solution, which is better than any solution reached with the Learn and
Optimize framework. Figure 4-11 confirms the benefit of parallelizing the computation.

2Results obtained on a macOS 10.14 with a 3.1 GHz processor and 16GB of memory
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Figure 4-11: Number of vehicles function of running time on the routing problem

Using 8 or 16 threads enables the user to reach the best solution for the Learn and Optimize
framework within a computation time similar to LocalSolver.

Figure 4-12 focuses on very low computation times. It suggests that the Learn and

Figure 4-12: Number of vehicles function of running time on the routing problem for low
time

Optimize framework provides an advantage over LocalSolver only if the routing is parallelized
with a very high number of threads. Below 16 threads, LocalSolver proposes faster and better
results. If run with 16 threads, the Learn and Optimize framework proposes a better solution
as long as the computation time is below 20 seconds. This solution could therefore be used
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as an initial solution to a global routing approach, such as LocalSolver. However, in addition
to the very high number of threads required for such a benefit, we also point out that the
computation time presented here only corresponds to the time spent on the routing itself.
The time spent on the clustering algorithm is not included. While we believe that the
clustering algorithm used in the Learn and Optimize framework can be sped-up if properly
coded and in a more efficient language than Python, it currently requires several minutes
of computation time, making our approach definitively slower than a state-of-the-art solver
such as LocalSolver.
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Chapter 5

Using Reinforcement Learning Methods
to Solve the VRPTW

In Chapter 4, we developed an algorithm to cluster customers that aims at minimizing the to-
tal number of vehicles. Dividing the initial problem into multiple sub-problems, correspond-
ing to each cluster, enables us to subsequently leverage state of the art routing algorithms,
which are efficient at solving on relatively small sets of customers. In this chapter, rather
than relying on standard routing algorithms for these explicit routing of the customers in
each cluster, we seek to design an algorithm exclusively based on ML techniques. We extend
the work of Nazari et al. (2018b) to tackle the VRPTW with the objective of first minimizing
the number of vehicles and second the total distance.

5.1 An Actor-Critic State Dynamic Approach

Section 2.3.3 provides an overview of the extant RL methods that relate to routing problems.
Our work builds on an actor-critic network created to solve the VRP on randomly generated
and uniformly distributed instances while minimizing the total distance travelled (Nazari et
al. 2018b)1. In this context, Nazari et al. (2018b) sees the VRP as a Markov decision process:
the optimal solution is a sequence of decisions. For each new input, the RL algorithm
increases the probability of decoding near-optimal sequences. In this section, we detail the
architecture of Nazari et al. (2018b)’s network.

1source code: https://github.com/OptMLGroup/VRP-RL)
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5.1.1 Inputs, Actions and Policies

Let 𝑋 = {𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑀} be the set of inputs. Each input 𝑥𝑖 ∈ 𝑋 is composed of static
elements 𝑠𝑖 and dynamic elements 𝑑𝑖, such that 𝑥𝑖 = (𝑥𝑖, 𝑑𝑖). With respect to the VRP, 𝑥𝑖

represents the 𝑖𝑡ℎ node; the static elements are its coordinates and the dynamic element is
the demand. Since the VRP involves a dynamic state, the input changes over time. Formally,
each input 𝑥𝑖 is a sequence {𝑥𝑡

𝑖 = (𝑠𝑖, 𝑑
𝑡
𝑖), 𝑡 = 0, 1, . . . }, in which 𝑥𝑡

𝑖 can be interpreted as the
state of input 𝑥𝑖 at time 𝑡. We denote the set of all inputs at a time 𝑡 as 𝑋𝑡.

Given an arbitrary input 𝑋0, there are a combinatorial number of available inputs 𝑋𝑡.
The actions taken until time 𝑡 determine the input 𝑋𝑡. In the VRP, an action corresponds
to choosing which node is to be visited next, and the transition from one input 𝑋𝑡 to an
input 𝑋𝑡+1 corresponds to an update to the node demand.

Hence, a policy is defined as a sequence of actions that is built step-by-step by using a
decoding process: given the input of the decoder step, an action is chosen and determines
the next input state 𝑋𝑡+1. Let 𝑦𝑡 denote the pointer at step 𝑡, pointing to one of the available
input 𝑋𝑡 and let 𝑌𝑡 = {𝑦0, 𝑦1, . . . , 𝑦𝑡} be the sequence of pointers up to step 𝑡. Through the
chain rule, the probability of generating a sequence 𝑌 according to a policy 𝜋 is

P(𝑌 |𝑋0) =
𝑇∏︁
𝑡=𝑜

𝜋(𝑦𝑡+1|𝑌𝑡, 𝑋𝑡).

If 𝜋 was the optimal policy 𝜋*, then P(𝑌 |𝑋0) = 1 if and only if 𝑌 is the optimal strategy.
Therefore, our goal is to set 𝜋 as close to 𝜋* as possible, i.e., only giving the near-optimal
strategies a high probability.

5.1.2 Actor-Critic Algorithm

Nazari et al. (2018b) use an actor-critic network to solve the VRP. As described in Sec-
tion 2.3.1, the actor-critic method introduced by Konda and Tsitsiklis (2000) can be inter-
preted as a policy search method in which the Q-value, the expected reward for a specific
action taken at a certain step, is learnt. The policy and the Q-value are associated with
two neural networks parametrized by 𝜃 and 𝜑, respectively. Φ denotes the distribution of
the training instances. In Algorithm 14, we provide an overview of the classical actor-critic
method used in Nazari et al. (2018b). At Step 4, 𝑁 instances are drawn and each instance
corresponds to the training batch on which the networks will be updated during the current
iteration. The While loop in Step 7 corresponds to the decoding loop, in which the subse-
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Algorithm 14: Actor-critic method using REINFORCE Algorithm
1 Initialize the actor and critic networks ;
2 for iteration = 1, 2, . . . do
3 Reset gradients: 𝑑𝜃 ← 0, 𝑑𝜑← 0 ;
4 Sample N instances according to Φ ;
5 for n = 1, . . . , 𝑁 do
6 𝑡← 0;
7 while termination criterion do
8 Choose 𝑦𝑛𝑡+1 according to 𝜋(.|𝑌 𝑛

𝑡 , 𝑋
𝑛
𝑡 ; 𝜃) ;

9 Update new state 𝑋𝑡+1 ;
10 𝑡← 𝑡+ 1 ;
11 end
12 Compute reward 𝑅𝑛 = 𝑅(𝑌 𝑛

𝑇 , 𝑋
𝑛
0 ) ;

13 end
14 𝑑𝜃 ← 1

𝑁

∑︀𝑁
𝑛=1(𝑅

𝑛 − 𝑉 (𝑋𝑛
0 ;𝜑))Δ𝜃𝑙𝑜𝑔𝑃 (𝑌 𝑛|𝑋𝑛

0 ; 𝜃) ;
15 𝑑𝜑← 1

𝑁

∑︀𝑁
𝑛=1 Δ𝜑(𝑅

𝑛 − 𝑉 (𝑋𝑛
0 ;𝜑))

2 ;
16 Update 𝜃 and 𝜑 by 𝑑𝜃 and 𝑑𝜑 ;
17 end

quent actions are chosen. Once the 𝑁 instances have been decoded, we update the actor
and critic networks in Steps 14 and 15, respectively. 𝑉 (𝑋𝑛

0 ;𝜑) corresponds to the reward
approximation of the 𝑛𝑡ℎ instance, computed by the critic network. Given that the Q-value
is an expectation, the REINFORCE rule introduced by Williams (1992) is used to update
the gradients of both neural networks, as seen in Steps 14 and 15.

The Actor Network

The actor network, used at Step 8 of Algorithm 14, encodes the policy that outputs a
probability distribution over all actions. Hence, the actor network defines which node to
choose. Figure 5-1 provides an overview of the structure of the actor network. It is composed
of three main parts. The first part is the embedding component: it encodes the input
structure. Given that the VRP inputs are permutation invariant, Nazari et al. (2018b) choose
a convolutional layer, effectively mapping each node’s information to a higher encoding space.
The second component is an RNN decoder that stores the information of the previously
decoded sequence and is only fed with the static elements of the sequence. The third and
main component is an attention mechanism whose input are the RNN’s hidden state and
the embedded input. This attention mechanism produces a probability distribution over the
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Figure 5-1: Actor network model used in Nazari et al. (2018b)

next action. It allows the network to focus on the relevant information of the current state
𝑋𝑡 and of the decoded sequence to produce an improved probability distribution. In contrast
to the RNN, the attention mechanism includes the dynamic elements of the state.

Given the capacity constraints inherent to real-world VRPs, not every action results in
a feasible route. Therefore, to ensure the feasibility of every route, the actor network should
output a probability of zero for infeasible actions. In that regard, a mask is updated at each
step of the decoding process and all masked nodes are attributed a null probability.

Based on the probability distribution outputted by the actor network at each step, the
sequence of customers can be decoded. There are three main decoding techniques:

1. Stochastic: choose the next action by sampling from the outputted probabilities.

2. Greedy: choose the next action to be the one with the highest probability.

3. Beam Search: apply beam search (Medress et al. 1977) over the next predefined range
of actions.

Nazari et al. (2018b) train the network by taking a stochastic approach and evaluate the
model using the greedy and beam search methods.

The Critic Network

The critic network estimates the reward for any instance from a given state, i.e. provides
𝑉 (𝑋𝑛

0 ;𝜑) in Algorithm 14. The network uses a RNN to decode the embedded input, coupled
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with an attention mechanism that takes as input the current sequence and the dynamic
elements of the current states. Finally, the critic network outputs the reward estimation
using two dense layers.

5.2 A Time Window Extension

Nazari et al. (2018b) provide a broad framework to solve routing problems using the actor-
critic method, however, they only adapt it to solve the VRP with no consideration of time
windows. In this section, we present our extension to address the VRPTW, that rely on
modeling additional constraints within the framework and modify the policy search method.

5.2.1 Modeling the Time Windows Constraints

Time windows impose the following constraints: each node must be visited during its sched-
uled time window and we assume that vehicle wait-time at a customer is allowed, should the
vehicle have arrived early. We extend the distribution Φ of the training instances to generate
instances with time windows at each node. The depot is also assigned a time window, the
start of which corresponds to the earliest time that a vehicle is permitted to depart from the
depot, and the end of which corresponds to the latest time at which it is allowed to come
back.

In our proposed modeling scheme, each input 𝑥𝑖 ∈ 𝑋 is composed of three dynamic
elements. 𝑑𝑡𝑖 corresponds to a vector composed of the following elements: the demand of
node 𝑖 at step 𝑡; the time remaining, with respect to step 𝑡, before the beginning commit
time of node 𝑖; and the time left, with respect to step 𝑡, before the end commit time of node
𝑖. To make sure that the time windows are respected, we update the mask for each customer
so that all customers whose end commit times could not be reached in the next decode step
are masked.

5.2.2 Integrating Time Windows in the Attention Mechanism

As dynamic elements of the input, the time window components of all nodes are essential
components in the attention mechanism, as they help to determine on which node to focus.
Therefore, we modify the attention mechanism used in the actor network. The later takes
as input its previous input as well as the remaining time on the commit times for each
node. These remaining times are encoded using two convolutional layers. We also extend
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the attention process used in the critic part, by integrating the beginning and end times of
the time windows of all nodes within the information encoded by the RNN network.

5.2.3 Updating the Penalty Function

Contrary to the VRP, the number of vehicles required to serve a set of customers does
not only depend on the aggregate demand. Instead, the time windows introduce other
limitations: vehicles can both cube-out, i.e., be limited by their capacity, and time-out, i.e.,
be limited by the maximum length of the shift or by the time-windows of the customers.
Analogous to most VRPTW applications and research, and driven by the high cost of labor,
we are interested in first minimizing the total number of vehicles and then minimizing the
total distance traveled. We assume that a vehicle cannot return to the depot during the
shift, i.e., each vehicle is allowed a single route per day. Therefore, a return to the depot is
effectively modeled as a new vehicle, and we aim at minimizing the number of returns to the
depot.

In this case, our reward function is the negative of a factor 𝑀 times the number of returns
to the depot plus the total distance traveled. The factor 𝑀 is set to a large number to give
sufficient weight to minimizing the number of returns.

5.3 Input Embedding

Considering solely the features of a single node (location, demand quantity, and time window)
yields no information about the optimal customer sequence. Therefore, this underlying
structure cannot be used directly by the neural network. Instead, the node features must
first be re-projected to a different space in what we call the input embedding step. This
section is devoted to understanding the impact of the input embedding on the convergence
and performance of the RL model.

5.3.1 The Complexity of Routing Problem Embedding

Routing problems are intrinsically combinatorial problems and their nature makes them
complex to encode in a useful way. This is due to three main reasons:

∙ As mentioned previously, the examination of a single node does not provide a complete
understanding of the problem. The complexity inherent in the VRPTW lies in the
interaction between different nodes: the feasibility of a route can only be determined by
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considering the node sequence as a whole. While Nazari et al. (2018b) face this problem
in the the VRP, the addition of time windows causes increased node dependency.

∙ Routing problems have a graph structure and one of the characteristics of this structure
is node permutation invariance. Ideally, every permutation of the input should be
encoded in the same way.

∙ The VRP and VRPTW have dynamic components, as the capacity and the time re-
maining to meet the time window requirements change over the sequence of actions.
Therefore, a good encoder should not require re-computing the entire encoding at every
state change. Such a re-computation would also harm the back-propagation algorithm
efficiency.

While sequence-to-sequence models, which encode a sequence and then decode it to output
a new sequence, have been extensively studied in combinatorial problems, they do not meet
the second and third requirements. Specifically, they add an unnecessary complexity due to
the fact that there is no inherent order within any VRP and VRPTW input.

Nazari et al. (2018b) propose a simple input embedding, in which each set of customers is
embedded using a one dimensional convolutional layer. To respect the embedding invariance
over actions, only the static elements are embedded: the demand of each node is not part of
the information carried forward.

5.3.2 Designing an Embedding Based on Transfer Learning

Transfer Learning (TL) is a ML technique which intends to transfer knowledge acquired
when learning one task to another task. The task from which is extracted the knowledge is
called the source task, and the task to which the knowledge gained is applied is termed the
target task (Pan & Yang 2009). The goal of TL is to reduce the number of training points
required, an impediment to many successful RL implementations due to its computational
cost, by successfully using the transferred knowledge. Given the ability of deep learning
methods to learn latent features, deep neural networks have naturally been considered as
prime candidates for tasks with complex structure (C. Tan et al. 2018), such as language or
image classification (Huang, Li, Yu, Deng, & Gong 2013, Oquab, Bottou, Laptev, & Sivic
2014).

This section explores the potential benefits of using TL to improve the input embedding
used in the RL model, as discussed in Section 5.3.1. The rationale behind it is twofold.
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First, TL can reduce the number of training data points required, therefore benefiting the
RL algorithm’s computational time. Second, extracting latent features from the input is
complex, and TL could provide such features. Taylor and Stone (2009) provide an overview
of TL applied to RL, and describe four potential benefits:

∙ Jumpstart: the initial performance of an agent in a target task may be improved by
transfer from a source task.

∙ Asymptotic Performance: the learnt performance of an agent in the target task may
be improved via TL.

∙ Total Reward: the total reward accumulated by an agent across iterations may be
improved if it uses TL, compared to learning without TL.

∙ Time to Threshold: the learning time needed by the agent to achieve a pre-specified
performance level may be reduced via TL.

We intend to replace the current embedding process by using latent features learned
through a source task defined for this application. Given a set of nodes as an input, the
source task aims at predicting the number of vehicles required, as described in Chapter 3.
We first generate customer instances following the distribution function Φ of Algorithm 14
and label each set of customers with the number of vehicles required to serve them. Then,
we train a GNN introduced by Brockschmidt (2019), to perform the source task. The GNN
is described in greater detail in Section 3.3.2. Like most deep neural networks, this GNN
can be decomposed into two parts: the first part is the node feature transform, while the
second part is the graph classifier. The hope is that the last layer of the feature transform
component acts like a representation of the aggregate features of set of customers. Therefore,
and as shown in Figure 5-22, we used the first part of this neural network as the embedded
input in our RL task. In Figure 5-2, task A corresponds to the classification task, while task
B corresponds to the RL task.

2source: https://mobilelabs.in/how-to-build-an-audio-detector
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Figure 5-2: Deep TL pictorial representation

5.3.3 Transfer Learning Results and Discussion

This section presents the results obtained with and without the TL embedding, on both
the VRP and VRPTW. Figures 5-3 and 5-4 present the evolution of the penalty function
on the test set considered with and without TL, for the VRP and VRPTW, respectively.
We consider 20 nodes and emphasize that the test sets are the same in both the algorithms
with and without TL, justifying the comparison of the penalty function, defined as the
total distance traveled. For both the VRP and the VRPTW, we see that the TL-enabled

Figure 5-3: Penalty value on the test set when solving the VRP with and without TL

algorithm under-performs with respect to the one without TL. In addition to the increased
embedding time required, the TL appears to penalize the learning of an efficient policy, as
shown by the slower decrease of the penalty value on the test set when compared to the
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Figure 5-4: Penalty value on the test set when solving the VRPTW with and without TL

algorithm without TL. Both Figures 5-3 and 5-4 suggest that using the node representation
provided by the GNN trained on auxiliary task results in a negative transfer, i.e. the transfer
learning inhibits the learner’s performance.

Based on our general knowledge of TL and the results from Nazari et al. (2018b) regarding
the embedding step, we develop three hypotheses, which may explain this negative transfer.
First, the auxiliary task used to train the GNN, predicting the number of vehicle, is very
different from deciding which node to visit next. This may have led to a features extraction
not appropriated for the RL task. Second, the dynamic components, such as demand and
time windows, are integrated within the features of the GNN to perform the classification
task. Therefore, the node representation derived from the GNN represents an accurate
snapshot of the set of customers at the start time, but this is no longer true in subsequent
steps. Third, contrary to the RL algorithm without embedding, the model is not trained to
learn the weights of the embedding layers.

5.4 Computational Experiments

Our objective is to assess the viability of RL methods when addressing the VRPTW and
to understand the extend to which this approach would lead to successful applications.
Therefore, we focus on answering the following questions:

∙ Is the approach valid when optimizing the number of vehicles rather than the total
distance traveled?

∙ Are time window constraints successfully addressed by this RL algorithm?
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∙ What is the importance of the training distribution?

∙ How reliable is the RL algorithm when applied to a specific instance?

Note that the viability of RL in the context of the VRP regarding the minimization of
distance has been addressed in Nazari et al. (2018b), hence we do not address this issue.
To evaluate our approach, we compare our solutions with those obtained from well-known
algorithms proposed in the OR literature: the savings heuristics for the VRP developed by
Clarke and Wright (1964), and the insertion heuristics for the VRPTW, named I1, proposed
by Solomon (1987). In addition, we compare our results against state-of-the-art algorithms
like Google’s optimization tools: Google OR-Tools3.

For all experiments reported below, we generate and run the methods described in this
chapter on 1,000 instances. In each case, we measure:

∙ S: the success rate of the RL approach vs. the other methods as a percentage of the
number of times the RL approach beats or matches the other methods, with respect
to the objective considered.

∙ D: the percentage representing the marginal gap between the distance provided by the
RL approach versus the other methods. If this number is positive, the RL approach
performs better by the corresponding percentage.

∙ V: the percentage representing the marginal gap between the number of vehicles pro-
vided by the RL approach versus the other methods.

5.4.1 Performance of the Extended Actor-critic Algorithm on the

VRPTW

This section evaluates the performance of the extended algorithm on the VRPTW. To
generate the instances, we build upon the distribution used in Nazari et al. (2018b). Each
node is defined by its (𝑥, 𝑦) coordinates, a delivery time window consisting of a pair or times
(𝑠, 𝑡) with 𝑠 < 𝑡 and a demand 𝑑 consisting of a package quantity to be delivered. Each
problem consists of one depot, characterized by its coordinates (𝑥, 𝑦), a null demand, and a
time window indicating the period of the day during which a vehicle can operate. 𝑥 and 𝑦

are uniformly drawn from the [0, 1] interval. 𝑑 is uniformly drawn from the [1, 9] interval.
For each stop the center of its time window is uniformly drawn from the [1, 7] interval and its

3https://developers.google.com/optimization/routing/
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duration is one unit. The vehicle operates from time 0 to 8 and has a constant speed equal
to one unit distance per time. The capacity varies between 20 and 45 items, depending on
the number of customers.

Minimizing the Total Traveled Distance on the VRPTW

In a first set of experiments, we seek to minimize the total traveled distance for the VRPTW
and train three models for 10, 20 and 50 nodes, respectively. We report the results including
comparison with I1 and Google OR Tools in Table 5.1. The RL approach almost always

Nodes 10 20 50
S D V S D V S D V

I1 91.5 21.3 -25.2 99 22 -23.4 99.5 22.6 -14.5
OR Tools 62.9 5.01 -11.2 59.9 3.1 -9.3 42.2 -1.2 -2.8

Table 5.1: Minimizing the total traveled distance: comparison of RL method versus I1 and
Google OR

outperforms the I1 heuristic by a significant margin (∼ 20%) for all sizes of instances. On the
other hand, our method is comparable to Google OR across all problem sizes. Our method
beats Google OR in ∼ 60% of all cases for 10 and 20 node instances by a margin of 3 to 5%,
while it is outperformed by Google OR by a margin of -1.2% on 50 node instances. Once
trained, the RL approach solves all instances in a running time comparable to Google OR,
around 0.1 seconds per instance with 50 nodes.

Minimizing the Total Number of Vehicles on the VRTPW

In a second set of experiments, we seek to first minimize the total number of vehicles, and
then minimize the total distance traveled. This corresponds to the penalty function we
implemented: the number of vehicles is computed as the number of return to the depot. We
train three models for 10, 20 and 50 nodes, respectively, and report the results including a
comparison of the RL approach performance against the I1 heuristic and Google OR Tools
in Table 5.2. The RL approach outperforms all other methods by a comfortable margin,
between 11.1 and 19.3%. On the other hand, the RL method seems to substantially sacrifice
the distance covered. This highlights the importance of parameter tuning for the reward
function, so as to obtain a favorable trade-off between the number of vehicles and the total
distance traveled. Once trained, the RL approach solves all instances in a running time
comparable with Google OR, around 0.1 seconds per instance with 50 nodes.
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Nodes 10 20 50
S D V S D V S D V

I1 100 4.6 18.5 199 -12.5 16.5 100 -18.1 11.1
OR Tools 99.9 -12.6 19.3 100 -38.6 19.1 99.6 -53.6 17.4

Table 5.2: Minimizing first the number of vehicles: comparison of RL approach versus I1
and Google OR

Table 5.2 confirms the benefit of using a RL approach to solve the VRPTW: the quality
of the obtained solutions and running times commonly outperform or match those of state-
of-the-art solver results.

5.4.2 Specificity of the Training Data

In Algorithm 14, the training and test data are generated according to the same distribution
function Φ. This section explores the importance of the distribution function and the gen-
eralization performance, i.e., the performance on unknown instances, of the RL algorithm
proposed by Nazari et al. (2018b) and extended in this work to solve the VRPTW.

We generate a set of instances with a slightly different distribution than the one presented
in Section 5.4.1. Figure 5-5 shows 𝑥 and 𝑦 coordinates of nodes drawn from the new dis-

Figure 5-5: Two different distributions used to generate the training and test instances

tribution, labeled as ’specific’, and from the distribution presented in Section 5.4.1, labeled
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as ’uniform’. The reader will note that we purposefully chose this new distribution to be
similar to the uniform distribution. Similarly, the demand and time window distributions
also slightly differ from the one presented in Section 5.4.1.

To estimate the generalization capability of the RL algorithm, we consider test instances
generated via the new distribution. We trained two different RL models: the first one is
trained on instances drawn from the new distribution, while the second one is trained on
instances drawn from the initial distribution. We then compare the performance of these
two RL models when solving test instances generated via the new distribution. In Table 5.3,
we report results of the RL model trained on the new distribution against the RL model
trained on the uniform distribution.

Nodes 10 20
S D V S D V

RL trained on uniform distribution 99.5 36.4 9.5 99.7 45.8 11.6

Table 5.3: Results on the impact of distinct training and test distributions

In these results, it is clear that the RL approach’s performance on the test data is
improved when train and test data distributions are the same, resulting in an improvement
on the order of 10%. This highlights the fact that the RL method is very sensitive to the
training dataset and that providing specific training data characteristics may yield improved
results when compared to a model trained on a more diverse type of data. In terms of real
world applicability, we show that this method requires the real instances to be very similar to
the one used during the training. Such a requirement may prevent the immediate application
of our RL approach to real-world problems, if the problems tackled slightly differ from the
ones used in the training, the results may be not as optimal as the ones obtained during the
training.

5.4.3 Solving on a Specific Instance

Now that we have shown the importance of the train and test data distribution similarity,
we explore the reliability of our RL approach for solving a specific test instance. To be
able to compare the results obtained from our RL approach with exact solutions, we use the
classical Solomon (1987) instances4.

The Solomon dataset is composed of four different types of instances. We focus on two
types: R1 and R2, in which coordinates and demands are randomly generated. Problem sets

4https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
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of type R1 have a short scheduling horizon, with extremely tight time windows and allow
for only a few customers per route, ranging between 5 and 10. Problem sets of type R2
have a longer scheduling horizon, with larger time windows, and permit the service of many
costumers by each vehicle, often more than 30. Each of these problem sets has a different
time window prevalence, varying between 25% and 100%.

We train two different models: one corresponding to problems of type R1 and the other
to problems of type R2. The difference between these two models consist in the distribution
used to generate the training data. In the model used to solve R1 instances, the training
data have extremely tight time windows, while in the model used to solve R2 instance,
the training data have larger time windows. However, we did not differentiate between the
percentage of customers with time windows in the training data: depending on the model
considered, the training data have either tight or large time windows whose prevalence is
random, between 25% and 75%.

We compare the solution found by our RL algorithm as well as the solutions obtained
from OR-Tools to the best known solution for three instances of type R1 and three instances
of type R2, each of which have a different proportion of customers with time windows. The
instances ending in 01, 02, and 03 have 100%, 50%, and 25% of time window constrained
customers, respectively. The objective function is to first minimize the total number of
vehicles, second to minimize the total distance traveled. We report results in Table 5.4, and
emphasize that the comparison is not between the RL method and OR Tools, but with the
best known results for the Solomon instances.

Instance R1 R2
R101 R102 R103 R201 R202 R203

Method V D V D V D V D V D V D
RL 0 26.5 5.1 37.1 23.1 43.9 100 117.8 166 140.8 100 185.2

OR Tools 15.7 3.3 5.1 2.3 7.7 -4.7 25 7.6 33.3 -3.1 33.3 4.6

Table 5.4: Comparison with the best known results on Solomon instances

From these results, it seems quite clear that our RL model is far from the best known
results, and is usually outperformed by Google OR Tools. In addition, it seems that the RL
approach performs better on highly constrained problems: both RL models are closer to the
optimal solution when the percentage of time windows is higher, and the overall results are
better on the R1 instances. This may be explained by the smaller feasible solution space
encountered in the more constrained problems: given that the set of feasible actions is more
constrained, a near-optimal policy is learnt faster. Furthermore, the RL models were trained
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on minimizing the number of vehicles first, and second the distance, which may explain why
the distance largely surpasses the one found by Google OR Tools.

Contrary to the previous results in which we aggregated results over thousands of in-
stances, in this experiment we only account for three instances, and therefore evaluate the
performance of our model as if it were fed a specific instance at random. This is justified
by the fact that our RL models are trained to perform well on any instance generated in
a similar way. Therefore, we are interested in the convergence of the RL approach on one
single instance across iterations. Figure 5-6 presents the value of the penalty function across
iterations when applied to the specific R101 instance, indicated by the blue line, and its av-
erage value when applied to thousands of generated instances, indicated by the orange line.
While the variation of the average penalty is quite small and decreases with the number of

Figure 5-6: Specific and aggregated penalty function value across iterations.

iterations, the variation of the targeted instance’s penalty is more significant. These results
highlight that our RL approach is built to solve a large number of different problem instances
rather than focusing on one specific instance. It also suggests that relying on policy obtained
across different iterations of the model training to solve one specific instance may provide
more optimal results, despite the drawbacks related to running time of having to compute
different solutions and consider the best one.
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Conclusion and Next Steps

In this thesis, we present a ML approach to solve large scale VRPTWs based on a divide-
and-conquer framework. The demand is first divided into smaller clusters via a clustering
algorithm that leverages cluster level predictions on the number of vehicles required to serve
them. These predictions are obtained with a recently introduced tree-based method, OCTs,
using aggregate features at the cluster level. Relying on these forecasts and on the tree
architecture of the prediction model, the clustering algorithm divides the demand nodes
so as to minimize the total number of vehicles resulting from these clusters. Then, within
each cluster, the explicit routing can be handled by a RL algorithm based on an actor-
critic method. To the best of our knowledge, this thesis proposes the first approach to solve
large-scale VRPTW instances without using OR routing algorithms.

To assess the efficacy of this idea, we define VRPTW instances and analyse the per-
formance of our clustering analysis and of the proposed RL approach. Our results suggest
that the clustering algorithm benefits from integrating the tree-based prediction model, and,
in the right context, yields improvements when compared to a k-means based clustering
approach. More precisely, when compared to a k-means approach, leveraging tree-based
information when clustering demand nodes enables a reduction in the number of vehicles up
to 5%. While this approach is not currently competitive with industrial solvers as it leads to
solution with more vehicles, it provides a method through which routing algorithms can be
parallelized on each of the clusters, potentially resulting in a computation time reduction.
In addition, our framework is flexible and little parameter tuning is required. Regarding
the RL approach for explicit routing, our results confirm the feasibility of using RL to solve
highly constrained combinatorial problems such as the VRPTW. They also point out the
current limitation in the generalization of the RL approach when the train and test datasets
originate from similar but different distributions.

For practitioners, this research provides intuition into how to combine ML and OR al-
gorithms to solve routing problems. The analysis and results presented in this thesis help
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foster an understanding of the inherent difficulty in generalizing ML results and predictions
to unknown distributions, specifically in an adversarial context created by the optimization
algorithm. Although the divide-and-conquer method defined in this thesis under performs
compared to industrial solvers relying on classical OR techniques, our algorithmic results
may be employed as initial solutions in routing algorithms, yielding potential optimality and
computation time improvements.

While we consider time window constraints and vehicle capacity, we do not account for
other real-world constraints such as package volume and weight restrictions, or the road net-
work. From a clustering algorithm perspective, these constraints would result in additional
features for the tree-based model. Therefore, the flexibility of our approach should enable
practitioners to incorporate any number of additional constraints. From a RL perspective,
we expect our approach to be easily modified to handle both the new constraints and the
additional information through the update step for the current state and the feasible ac-
tions set. However, it would be interesting to study the impact of theses constraints on the
performance and computation time of the RL algorithm, as well as its generalizability.

Another consideration for future research relates to the performance of the clustering and
RL algorithms. First, increasing the accuracy of the clustering algorithm will help improve its
optimality performance. This thesis has identified two main hurdles which hinder the overall
accuracy: the adversity of the clusters created via the optimization algorithm and the use
of different distributions to generate the train and test datasets. Leveraging the Bayesian
Optimization Algorithm introduced by Pelikan, Goldberg, Cantú-Paz, et al. (1999) may be
a promising approach. Second, improving the generalization of the RL approach would
extend its applicability. Although we expect an improved input embedding to ameliorate
the approaches’ generalizability and increase the training speed of the actor-critic method,
none of the input embedding solutions explored in this thesis resulted in conclusive results.
Therefore, a deeper analysis of the properties of the input embedding should be carried
out, relating the graphical structure of the routing problem instances and its relationship to
well-known ML architectures.
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